2013-11-21 Edward Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob6ea634c17819a4b88e5a53905e013b79faca1803
1 /* Loop invariant motion.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "gimple.h"
29 #include "gimplify.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "gimple-ssa.h"
33 #include "tree-cfg.h"
34 #include "tree-phinodes.h"
35 #include "ssa-iterators.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "tree-ssa-loop-manip.h"
39 #include "tree-ssa-loop.h"
40 #include "tree-into-ssa.h"
41 #include "cfgloop.h"
42 #include "domwalk.h"
43 #include "params.h"
44 #include "tree-pass.h"
45 #include "flags.h"
46 #include "hash-table.h"
47 #include "tree-affine.h"
48 #include "pointer-set.h"
49 #include "tree-ssa-propagate.h"
50 #include "trans-mem.h"
52 /* TODO: Support for predicated code motion. I.e.
54 while (1)
56 if (cond)
58 a = inv;
59 something;
63 Where COND and INV are invariants, but evaluating INV may trap or be
64 invalid from some other reason if !COND. This may be transformed to
66 if (cond)
67 a = inv;
68 while (1)
70 if (cond)
71 something;
72 } */
74 /* The auxiliary data kept for each statement. */
76 struct lim_aux_data
78 struct loop *max_loop; /* The outermost loop in that the statement
79 is invariant. */
81 struct loop *tgt_loop; /* The loop out of that we want to move the
82 invariant. */
84 struct loop *always_executed_in;
85 /* The outermost loop for that we are sure
86 the statement is executed if the loop
87 is entered. */
89 unsigned cost; /* Cost of the computation performed by the
90 statement. */
92 vec<gimple> depends; /* Vector of statements that must be also
93 hoisted out of the loop when this statement
94 is hoisted; i.e. those that define the
95 operands of the statement and are inside of
96 the MAX_LOOP loop. */
99 /* Maps statements to their lim_aux_data. */
101 static struct pointer_map_t *lim_aux_data_map;
103 /* Description of a memory reference location. */
105 typedef struct mem_ref_loc
107 tree *ref; /* The reference itself. */
108 gimple stmt; /* The statement in that it occurs. */
109 } *mem_ref_loc_p;
112 /* Description of a memory reference. */
114 typedef struct mem_ref
116 unsigned id; /* ID assigned to the memory reference
117 (its index in memory_accesses.refs_list) */
118 hashval_t hash; /* Its hash value. */
120 /* The memory access itself and associated caching of alias-oracle
121 query meta-data. */
122 ao_ref mem;
124 bitmap_head stored; /* The set of loops in that this memory location
125 is stored to. */
126 vec<vec<mem_ref_loc> > accesses_in_loop;
127 /* The locations of the accesses. Vector
128 indexed by the loop number. */
130 /* The following sets are computed on demand. We keep both set and
131 its complement, so that we know whether the information was
132 already computed or not. */
133 bitmap_head indep_loop; /* The set of loops in that the memory
134 reference is independent, meaning:
135 If it is stored in the loop, this store
136 is independent on all other loads and
137 stores.
138 If it is only loaded, then it is independent
139 on all stores in the loop. */
140 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
141 } *mem_ref_p;
143 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
144 to record (in)dependence against stores in the loop and its subloops, the
145 second to record (in)dependence against all references in the loop
146 and its subloops. */
147 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
149 /* Mem_ref hashtable helpers. */
151 struct mem_ref_hasher : typed_noop_remove <mem_ref>
153 typedef mem_ref value_type;
154 typedef tree_node compare_type;
155 static inline hashval_t hash (const value_type *);
156 static inline bool equal (const value_type *, const compare_type *);
159 /* A hash function for struct mem_ref object OBJ. */
161 inline hashval_t
162 mem_ref_hasher::hash (const value_type *mem)
164 return mem->hash;
167 /* An equality function for struct mem_ref object MEM1 with
168 memory reference OBJ2. */
170 inline bool
171 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
173 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
177 /* Description of memory accesses in loops. */
179 static struct
181 /* The hash table of memory references accessed in loops. */
182 hash_table <mem_ref_hasher> refs;
184 /* The list of memory references. */
185 vec<mem_ref_p> refs_list;
187 /* The set of memory references accessed in each loop. */
188 vec<bitmap_head> refs_in_loop;
190 /* The set of memory references stored in each loop. */
191 vec<bitmap_head> refs_stored_in_loop;
193 /* The set of memory references stored in each loop, including subloops . */
194 vec<bitmap_head> all_refs_stored_in_loop;
196 /* Cache for expanding memory addresses. */
197 struct pointer_map_t *ttae_cache;
198 } memory_accesses;
200 /* Obstack for the bitmaps in the above data structures. */
201 static bitmap_obstack lim_bitmap_obstack;
203 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
205 /* Minimum cost of an expensive expression. */
206 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
208 /* The outermost loop for which execution of the header guarantees that the
209 block will be executed. */
210 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
211 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
213 /* ID of the shared unanalyzable mem. */
214 #define UNANALYZABLE_MEM_ID 0
216 /* Whether the reference was analyzable. */
217 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
219 static struct lim_aux_data *
220 init_lim_data (gimple stmt)
222 void **p = pointer_map_insert (lim_aux_data_map, stmt);
224 *p = XCNEW (struct lim_aux_data);
225 return (struct lim_aux_data *) *p;
228 static struct lim_aux_data *
229 get_lim_data (gimple stmt)
231 void **p = pointer_map_contains (lim_aux_data_map, stmt);
232 if (!p)
233 return NULL;
235 return (struct lim_aux_data *) *p;
238 /* Releases the memory occupied by DATA. */
240 static void
241 free_lim_aux_data (struct lim_aux_data *data)
243 data->depends.release ();
244 free (data);
247 static void
248 clear_lim_data (gimple stmt)
250 void **p = pointer_map_contains (lim_aux_data_map, stmt);
251 if (!p)
252 return;
254 free_lim_aux_data ((struct lim_aux_data *) *p);
255 *p = NULL;
259 /* The possibilities of statement movement. */
260 enum move_pos
262 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
263 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
264 become executed -- memory accesses, ... */
265 MOVE_POSSIBLE /* Unlimited movement. */
269 /* If it is possible to hoist the statement STMT unconditionally,
270 returns MOVE_POSSIBLE.
271 If it is possible to hoist the statement STMT, but we must avoid making
272 it executed if it would not be executed in the original program (e.g.
273 because it may trap), return MOVE_PRESERVE_EXECUTION.
274 Otherwise return MOVE_IMPOSSIBLE. */
276 enum move_pos
277 movement_possibility (gimple stmt)
279 tree lhs;
280 enum move_pos ret = MOVE_POSSIBLE;
282 if (flag_unswitch_loops
283 && gimple_code (stmt) == GIMPLE_COND)
285 /* If we perform unswitching, force the operands of the invariant
286 condition to be moved out of the loop. */
287 return MOVE_POSSIBLE;
290 if (gimple_code (stmt) == GIMPLE_PHI
291 && gimple_phi_num_args (stmt) <= 2
292 && !virtual_operand_p (gimple_phi_result (stmt))
293 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
294 return MOVE_POSSIBLE;
296 if (gimple_get_lhs (stmt) == NULL_TREE)
297 return MOVE_IMPOSSIBLE;
299 if (gimple_vdef (stmt))
300 return MOVE_IMPOSSIBLE;
302 if (stmt_ends_bb_p (stmt)
303 || gimple_has_volatile_ops (stmt)
304 || gimple_has_side_effects (stmt)
305 || stmt_could_throw_p (stmt))
306 return MOVE_IMPOSSIBLE;
308 if (is_gimple_call (stmt))
310 /* While pure or const call is guaranteed to have no side effects, we
311 cannot move it arbitrarily. Consider code like
313 char *s = something ();
315 while (1)
317 if (s)
318 t = strlen (s);
319 else
320 t = 0;
323 Here the strlen call cannot be moved out of the loop, even though
324 s is invariant. In addition to possibly creating a call with
325 invalid arguments, moving out a function call that is not executed
326 may cause performance regressions in case the call is costly and
327 not executed at all. */
328 ret = MOVE_PRESERVE_EXECUTION;
329 lhs = gimple_call_lhs (stmt);
331 else if (is_gimple_assign (stmt))
332 lhs = gimple_assign_lhs (stmt);
333 else
334 return MOVE_IMPOSSIBLE;
336 if (TREE_CODE (lhs) == SSA_NAME
337 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
338 return MOVE_IMPOSSIBLE;
340 if (TREE_CODE (lhs) != SSA_NAME
341 || gimple_could_trap_p (stmt))
342 return MOVE_PRESERVE_EXECUTION;
344 /* Non local loads in a transaction cannot be hoisted out. Well,
345 unless the load happens on every path out of the loop, but we
346 don't take this into account yet. */
347 if (flag_tm
348 && gimple_in_transaction (stmt)
349 && gimple_assign_single_p (stmt))
351 tree rhs = gimple_assign_rhs1 (stmt);
352 if (DECL_P (rhs) && is_global_var (rhs))
354 if (dump_file)
356 fprintf (dump_file, "Cannot hoist conditional load of ");
357 print_generic_expr (dump_file, rhs, TDF_SLIM);
358 fprintf (dump_file, " because it is in a transaction.\n");
360 return MOVE_IMPOSSIBLE;
364 return ret;
367 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
368 loop to that we could move the expression using DEF if it did not have
369 other operands, i.e. the outermost loop enclosing LOOP in that the value
370 of DEF is invariant. */
372 static struct loop *
373 outermost_invariant_loop (tree def, struct loop *loop)
375 gimple def_stmt;
376 basic_block def_bb;
377 struct loop *max_loop;
378 struct lim_aux_data *lim_data;
380 if (!def)
381 return superloop_at_depth (loop, 1);
383 if (TREE_CODE (def) != SSA_NAME)
385 gcc_assert (is_gimple_min_invariant (def));
386 return superloop_at_depth (loop, 1);
389 def_stmt = SSA_NAME_DEF_STMT (def);
390 def_bb = gimple_bb (def_stmt);
391 if (!def_bb)
392 return superloop_at_depth (loop, 1);
394 max_loop = find_common_loop (loop, def_bb->loop_father);
396 lim_data = get_lim_data (def_stmt);
397 if (lim_data != NULL && lim_data->max_loop != NULL)
398 max_loop = find_common_loop (max_loop,
399 loop_outer (lim_data->max_loop));
400 if (max_loop == loop)
401 return NULL;
402 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
404 return max_loop;
407 /* DATA is a structure containing information associated with a statement
408 inside LOOP. DEF is one of the operands of this statement.
410 Find the outermost loop enclosing LOOP in that value of DEF is invariant
411 and record this in DATA->max_loop field. If DEF itself is defined inside
412 this loop as well (i.e. we need to hoist it out of the loop if we want
413 to hoist the statement represented by DATA), record the statement in that
414 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
415 add the cost of the computation of DEF to the DATA->cost.
417 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
419 static bool
420 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
421 bool add_cost)
423 gimple def_stmt = SSA_NAME_DEF_STMT (def);
424 basic_block def_bb = gimple_bb (def_stmt);
425 struct loop *max_loop;
426 struct lim_aux_data *def_data;
428 if (!def_bb)
429 return true;
431 max_loop = outermost_invariant_loop (def, loop);
432 if (!max_loop)
433 return false;
435 if (flow_loop_nested_p (data->max_loop, max_loop))
436 data->max_loop = max_loop;
438 def_data = get_lim_data (def_stmt);
439 if (!def_data)
440 return true;
442 if (add_cost
443 /* Only add the cost if the statement defining DEF is inside LOOP,
444 i.e. if it is likely that by moving the invariants dependent
445 on it, we will be able to avoid creating a new register for
446 it (since it will be only used in these dependent invariants). */
447 && def_bb->loop_father == loop)
448 data->cost += def_data->cost;
450 data->depends.safe_push (def_stmt);
452 return true;
455 /* Returns an estimate for a cost of statement STMT. The values here
456 are just ad-hoc constants, similar to costs for inlining. */
458 static unsigned
459 stmt_cost (gimple stmt)
461 /* Always try to create possibilities for unswitching. */
462 if (gimple_code (stmt) == GIMPLE_COND
463 || gimple_code (stmt) == GIMPLE_PHI)
464 return LIM_EXPENSIVE;
466 /* We should be hoisting calls if possible. */
467 if (is_gimple_call (stmt))
469 tree fndecl;
471 /* Unless the call is a builtin_constant_p; this always folds to a
472 constant, so moving it is useless. */
473 fndecl = gimple_call_fndecl (stmt);
474 if (fndecl
475 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
476 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
477 return 0;
479 return LIM_EXPENSIVE;
482 /* Hoisting memory references out should almost surely be a win. */
483 if (gimple_references_memory_p (stmt))
484 return LIM_EXPENSIVE;
486 if (gimple_code (stmt) != GIMPLE_ASSIGN)
487 return 1;
489 switch (gimple_assign_rhs_code (stmt))
491 case MULT_EXPR:
492 case WIDEN_MULT_EXPR:
493 case WIDEN_MULT_PLUS_EXPR:
494 case WIDEN_MULT_MINUS_EXPR:
495 case DOT_PROD_EXPR:
496 case FMA_EXPR:
497 case TRUNC_DIV_EXPR:
498 case CEIL_DIV_EXPR:
499 case FLOOR_DIV_EXPR:
500 case ROUND_DIV_EXPR:
501 case EXACT_DIV_EXPR:
502 case CEIL_MOD_EXPR:
503 case FLOOR_MOD_EXPR:
504 case ROUND_MOD_EXPR:
505 case TRUNC_MOD_EXPR:
506 case RDIV_EXPR:
507 /* Division and multiplication are usually expensive. */
508 return LIM_EXPENSIVE;
510 case LSHIFT_EXPR:
511 case RSHIFT_EXPR:
512 case WIDEN_LSHIFT_EXPR:
513 case LROTATE_EXPR:
514 case RROTATE_EXPR:
515 /* Shifts and rotates are usually expensive. */
516 return LIM_EXPENSIVE;
518 case CONSTRUCTOR:
519 /* Make vector construction cost proportional to the number
520 of elements. */
521 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
523 case SSA_NAME:
524 case PAREN_EXPR:
525 /* Whether or not something is wrapped inside a PAREN_EXPR
526 should not change move cost. Nor should an intermediate
527 unpropagated SSA name copy. */
528 return 0;
530 default:
531 return 1;
535 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
536 REF is independent. If REF is not independent in LOOP, NULL is returned
537 instead. */
539 static struct loop *
540 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
542 struct loop *aloop;
544 if (bitmap_bit_p (&ref->stored, loop->num))
545 return NULL;
547 for (aloop = outer;
548 aloop != loop;
549 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
550 if (!bitmap_bit_p (&ref->stored, aloop->num)
551 && ref_indep_loop_p (aloop, ref))
552 return aloop;
554 if (ref_indep_loop_p (loop, ref))
555 return loop;
556 else
557 return NULL;
560 /* If there is a simple load or store to a memory reference in STMT, returns
561 the location of the memory reference, and sets IS_STORE according to whether
562 it is a store or load. Otherwise, returns NULL. */
564 static tree *
565 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
567 tree *lhs, *rhs;
569 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
570 if (!gimple_assign_single_p (stmt))
571 return NULL;
573 lhs = gimple_assign_lhs_ptr (stmt);
574 rhs = gimple_assign_rhs1_ptr (stmt);
576 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
578 *is_store = false;
579 return rhs;
581 else if (gimple_vdef (stmt)
582 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
584 *is_store = true;
585 return lhs;
587 else
588 return NULL;
591 /* Returns the memory reference contained in STMT. */
593 static mem_ref_p
594 mem_ref_in_stmt (gimple stmt)
596 bool store;
597 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
598 hashval_t hash;
599 mem_ref_p ref;
601 if (!mem)
602 return NULL;
603 gcc_assert (!store);
605 hash = iterative_hash_expr (*mem, 0);
606 ref = memory_accesses.refs.find_with_hash (*mem, hash);
608 gcc_assert (ref != NULL);
609 return ref;
612 /* From a controlling predicate in DOM determine the arguments from
613 the PHI node PHI that are chosen if the predicate evaluates to
614 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
615 they are non-NULL. Returns true if the arguments can be determined,
616 else return false. */
618 static bool
619 extract_true_false_args_from_phi (basic_block dom, gimple phi,
620 tree *true_arg_p, tree *false_arg_p)
622 basic_block bb = gimple_bb (phi);
623 edge true_edge, false_edge, tem;
624 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
626 /* We have to verify that one edge into the PHI node is dominated
627 by the true edge of the predicate block and the other edge
628 dominated by the false edge. This ensures that the PHI argument
629 we are going to take is completely determined by the path we
630 take from the predicate block.
631 We can only use BB dominance checks below if the destination of
632 the true/false edges are dominated by their edge, thus only
633 have a single predecessor. */
634 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
635 tem = EDGE_PRED (bb, 0);
636 if (tem == true_edge
637 || (single_pred_p (true_edge->dest)
638 && (tem->src == true_edge->dest
639 || dominated_by_p (CDI_DOMINATORS,
640 tem->src, true_edge->dest))))
641 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
642 else if (tem == false_edge
643 || (single_pred_p (false_edge->dest)
644 && (tem->src == false_edge->dest
645 || dominated_by_p (CDI_DOMINATORS,
646 tem->src, false_edge->dest))))
647 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
648 else
649 return false;
650 tem = EDGE_PRED (bb, 1);
651 if (tem == true_edge
652 || (single_pred_p (true_edge->dest)
653 && (tem->src == true_edge->dest
654 || dominated_by_p (CDI_DOMINATORS,
655 tem->src, true_edge->dest))))
656 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
657 else if (tem == false_edge
658 || (single_pred_p (false_edge->dest)
659 && (tem->src == false_edge->dest
660 || dominated_by_p (CDI_DOMINATORS,
661 tem->src, false_edge->dest))))
662 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
663 else
664 return false;
665 if (!arg0 || !arg1)
666 return false;
668 if (true_arg_p)
669 *true_arg_p = arg0;
670 if (false_arg_p)
671 *false_arg_p = arg1;
673 return true;
676 /* Determine the outermost loop to that it is possible to hoist a statement
677 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
678 the outermost loop in that the value computed by STMT is invariant.
679 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
680 we preserve the fact whether STMT is executed. It also fills other related
681 information to LIM_DATA (STMT).
683 The function returns false if STMT cannot be hoisted outside of the loop it
684 is defined in, and true otherwise. */
686 static bool
687 determine_max_movement (gimple stmt, bool must_preserve_exec)
689 basic_block bb = gimple_bb (stmt);
690 struct loop *loop = bb->loop_father;
691 struct loop *level;
692 struct lim_aux_data *lim_data = get_lim_data (stmt);
693 tree val;
694 ssa_op_iter iter;
696 if (must_preserve_exec)
697 level = ALWAYS_EXECUTED_IN (bb);
698 else
699 level = superloop_at_depth (loop, 1);
700 lim_data->max_loop = level;
702 if (gimple_code (stmt) == GIMPLE_PHI)
704 use_operand_p use_p;
705 unsigned min_cost = UINT_MAX;
706 unsigned total_cost = 0;
707 struct lim_aux_data *def_data;
709 /* We will end up promoting dependencies to be unconditionally
710 evaluated. For this reason the PHI cost (and thus the
711 cost we remove from the loop by doing the invariant motion)
712 is that of the cheapest PHI argument dependency chain. */
713 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
715 val = USE_FROM_PTR (use_p);
716 if (TREE_CODE (val) != SSA_NAME)
717 continue;
718 if (!add_dependency (val, lim_data, loop, false))
719 return false;
720 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
721 if (def_data)
723 min_cost = MIN (min_cost, def_data->cost);
724 total_cost += def_data->cost;
728 lim_data->cost += min_cost;
730 if (gimple_phi_num_args (stmt) > 1)
732 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
733 gimple cond;
734 if (gsi_end_p (gsi_last_bb (dom)))
735 return false;
736 cond = gsi_stmt (gsi_last_bb (dom));
737 if (gimple_code (cond) != GIMPLE_COND)
738 return false;
739 /* Verify that this is an extended form of a diamond and
740 the PHI arguments are completely controlled by the
741 predicate in DOM. */
742 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
743 return false;
745 /* Fold in dependencies and cost of the condition. */
746 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
748 if (!add_dependency (val, lim_data, loop, false))
749 return false;
750 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
751 if (def_data)
752 total_cost += def_data->cost;
755 /* We want to avoid unconditionally executing very expensive
756 operations. As costs for our dependencies cannot be
757 negative just claim we are not invariand for this case.
758 We also are not sure whether the control-flow inside the
759 loop will vanish. */
760 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
761 && !(min_cost != 0
762 && total_cost / min_cost <= 2))
763 return false;
765 /* Assume that the control-flow in the loop will vanish.
766 ??? We should verify this and not artificially increase
767 the cost if that is not the case. */
768 lim_data->cost += stmt_cost (stmt);
771 return true;
773 else
774 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
775 if (!add_dependency (val, lim_data, loop, true))
776 return false;
778 if (gimple_vuse (stmt))
780 mem_ref_p ref = mem_ref_in_stmt (stmt);
782 if (ref)
784 lim_data->max_loop
785 = outermost_indep_loop (lim_data->max_loop, loop, ref);
786 if (!lim_data->max_loop)
787 return false;
789 else
791 if ((val = gimple_vuse (stmt)) != NULL_TREE)
793 if (!add_dependency (val, lim_data, loop, false))
794 return false;
799 lim_data->cost += stmt_cost (stmt);
801 return true;
804 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
805 and that one of the operands of this statement is computed by STMT.
806 Ensure that STMT (together with all the statements that define its
807 operands) is hoisted at least out of the loop LEVEL. */
809 static void
810 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
812 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
813 struct lim_aux_data *lim_data;
814 gimple dep_stmt;
815 unsigned i;
817 stmt_loop = find_common_loop (orig_loop, stmt_loop);
818 lim_data = get_lim_data (stmt);
819 if (lim_data != NULL && lim_data->tgt_loop != NULL)
820 stmt_loop = find_common_loop (stmt_loop,
821 loop_outer (lim_data->tgt_loop));
822 if (flow_loop_nested_p (stmt_loop, level))
823 return;
825 gcc_assert (level == lim_data->max_loop
826 || flow_loop_nested_p (lim_data->max_loop, level));
828 lim_data->tgt_loop = level;
829 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
830 set_level (dep_stmt, orig_loop, level);
833 /* Determines an outermost loop from that we want to hoist the statement STMT.
834 For now we chose the outermost possible loop. TODO -- use profiling
835 information to set it more sanely. */
837 static void
838 set_profitable_level (gimple stmt)
840 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
843 /* Returns true if STMT is a call that has side effects. */
845 static bool
846 nonpure_call_p (gimple stmt)
848 if (gimple_code (stmt) != GIMPLE_CALL)
849 return false;
851 return gimple_has_side_effects (stmt);
854 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
856 static gimple
857 rewrite_reciprocal (gimple_stmt_iterator *bsi)
859 gimple stmt, stmt1, stmt2;
860 tree name, lhs, type;
861 tree real_one;
862 gimple_stmt_iterator gsi;
864 stmt = gsi_stmt (*bsi);
865 lhs = gimple_assign_lhs (stmt);
866 type = TREE_TYPE (lhs);
868 real_one = build_one_cst (type);
870 name = make_temp_ssa_name (type, NULL, "reciptmp");
871 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
872 gimple_assign_rhs2 (stmt));
874 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
875 gimple_assign_rhs1 (stmt));
877 /* Replace division stmt with reciprocal and multiply stmts.
878 The multiply stmt is not invariant, so update iterator
879 and avoid rescanning. */
880 gsi = *bsi;
881 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
882 gsi_replace (&gsi, stmt2, true);
884 /* Continue processing with invariant reciprocal statement. */
885 return stmt1;
888 /* Check if the pattern at *BSI is a bittest of the form
889 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
891 static gimple
892 rewrite_bittest (gimple_stmt_iterator *bsi)
894 gimple stmt, use_stmt, stmt1, stmt2;
895 tree lhs, name, t, a, b;
896 use_operand_p use;
898 stmt = gsi_stmt (*bsi);
899 lhs = gimple_assign_lhs (stmt);
901 /* Verify that the single use of lhs is a comparison against zero. */
902 if (TREE_CODE (lhs) != SSA_NAME
903 || !single_imm_use (lhs, &use, &use_stmt)
904 || gimple_code (use_stmt) != GIMPLE_COND)
905 return stmt;
906 if (gimple_cond_lhs (use_stmt) != lhs
907 || (gimple_cond_code (use_stmt) != NE_EXPR
908 && gimple_cond_code (use_stmt) != EQ_EXPR)
909 || !integer_zerop (gimple_cond_rhs (use_stmt)))
910 return stmt;
912 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
913 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
914 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
915 return stmt;
917 /* There is a conversion in between possibly inserted by fold. */
918 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
920 t = gimple_assign_rhs1 (stmt1);
921 if (TREE_CODE (t) != SSA_NAME
922 || !has_single_use (t))
923 return stmt;
924 stmt1 = SSA_NAME_DEF_STMT (t);
925 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
926 return stmt;
929 /* Verify that B is loop invariant but A is not. Verify that with
930 all the stmt walking we are still in the same loop. */
931 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
932 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
933 return stmt;
935 a = gimple_assign_rhs1 (stmt1);
936 b = gimple_assign_rhs2 (stmt1);
938 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
939 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
941 gimple_stmt_iterator rsi;
943 /* 1 << B */
944 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
945 build_int_cst (TREE_TYPE (a), 1), b);
946 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
947 stmt1 = gimple_build_assign (name, t);
949 /* A & (1 << B) */
950 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
951 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
952 stmt2 = gimple_build_assign (name, t);
954 /* Replace the SSA_NAME we compare against zero. Adjust
955 the type of zero accordingly. */
956 SET_USE (use, name);
957 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
959 /* Don't use gsi_replace here, none of the new assignments sets
960 the variable originally set in stmt. Move bsi to stmt1, and
961 then remove the original stmt, so that we get a chance to
962 retain debug info for it. */
963 rsi = *bsi;
964 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
965 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
966 gsi_remove (&rsi, true);
968 return stmt1;
971 return stmt;
974 /* For each statement determines the outermost loop in that it is invariant,
975 - statements on whose motion it depends and the cost of the computation.
976 - This information is stored to the LIM_DATA structure associated with
977 - each statement. */
978 class invariantness_dom_walker : public dom_walker
980 public:
981 invariantness_dom_walker (cdi_direction direction)
982 : dom_walker (direction) {}
984 virtual void before_dom_children (basic_block);
987 /* Determine the outermost loops in that statements in basic block BB are
988 invariant, and record them to the LIM_DATA associated with the statements.
989 Callback for dom_walker. */
991 void
992 invariantness_dom_walker::before_dom_children (basic_block bb)
994 enum move_pos pos;
995 gimple_stmt_iterator bsi;
996 gimple stmt;
997 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
998 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
999 struct lim_aux_data *lim_data;
1001 if (!loop_outer (bb->loop_father))
1002 return;
1004 if (dump_file && (dump_flags & TDF_DETAILS))
1005 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1006 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1008 /* Look at PHI nodes, but only if there is at most two.
1009 ??? We could relax this further by post-processing the inserted
1010 code and transforming adjacent cond-exprs with the same predicate
1011 to control flow again. */
1012 bsi = gsi_start_phis (bb);
1013 if (!gsi_end_p (bsi)
1014 && ((gsi_next (&bsi), gsi_end_p (bsi))
1015 || (gsi_next (&bsi), gsi_end_p (bsi))))
1016 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1018 stmt = gsi_stmt (bsi);
1020 pos = movement_possibility (stmt);
1021 if (pos == MOVE_IMPOSSIBLE)
1022 continue;
1024 lim_data = init_lim_data (stmt);
1025 lim_data->always_executed_in = outermost;
1027 if (!determine_max_movement (stmt, false))
1029 lim_data->max_loop = NULL;
1030 continue;
1033 if (dump_file && (dump_flags & TDF_DETAILS))
1035 print_gimple_stmt (dump_file, stmt, 2, 0);
1036 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1037 loop_depth (lim_data->max_loop),
1038 lim_data->cost);
1041 if (lim_data->cost >= LIM_EXPENSIVE)
1042 set_profitable_level (stmt);
1045 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1047 stmt = gsi_stmt (bsi);
1049 pos = movement_possibility (stmt);
1050 if (pos == MOVE_IMPOSSIBLE)
1052 if (nonpure_call_p (stmt))
1054 maybe_never = true;
1055 outermost = NULL;
1057 /* Make sure to note always_executed_in for stores to make
1058 store-motion work. */
1059 else if (stmt_makes_single_store (stmt))
1061 struct lim_aux_data *lim_data = init_lim_data (stmt);
1062 lim_data->always_executed_in = outermost;
1064 continue;
1067 if (is_gimple_assign (stmt)
1068 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1069 == GIMPLE_BINARY_RHS))
1071 tree op0 = gimple_assign_rhs1 (stmt);
1072 tree op1 = gimple_assign_rhs2 (stmt);
1073 struct loop *ol1 = outermost_invariant_loop (op1,
1074 loop_containing_stmt (stmt));
1076 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1077 to be hoisted out of loop, saving expensive divide. */
1078 if (pos == MOVE_POSSIBLE
1079 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1080 && flag_unsafe_math_optimizations
1081 && !flag_trapping_math
1082 && ol1 != NULL
1083 && outermost_invariant_loop (op0, ol1) == NULL)
1084 stmt = rewrite_reciprocal (&bsi);
1086 /* If the shift count is invariant, convert (A >> B) & 1 to
1087 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1088 saving an expensive shift. */
1089 if (pos == MOVE_POSSIBLE
1090 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1091 && integer_onep (op1)
1092 && TREE_CODE (op0) == SSA_NAME
1093 && has_single_use (op0))
1094 stmt = rewrite_bittest (&bsi);
1097 lim_data = init_lim_data (stmt);
1098 lim_data->always_executed_in = outermost;
1100 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1101 continue;
1103 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1105 lim_data->max_loop = NULL;
1106 continue;
1109 if (dump_file && (dump_flags & TDF_DETAILS))
1111 print_gimple_stmt (dump_file, stmt, 2, 0);
1112 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1113 loop_depth (lim_data->max_loop),
1114 lim_data->cost);
1117 if (lim_data->cost >= LIM_EXPENSIVE)
1118 set_profitable_level (stmt);
1122 class move_computations_dom_walker : public dom_walker
1124 public:
1125 move_computations_dom_walker (cdi_direction direction)
1126 : dom_walker (direction), todo_ (0) {}
1128 virtual void before_dom_children (basic_block);
1130 unsigned int todo_;
1133 /* Return true if CODE is an operation that when operating on signed
1134 integer types involves undefined behavior on overflow and the
1135 operation can be expressed with unsigned arithmetic. */
1137 static bool
1138 arith_code_with_undefined_signed_overflow (tree_code code)
1140 switch (code)
1142 case PLUS_EXPR:
1143 case MINUS_EXPR:
1144 case MULT_EXPR:
1145 case NEGATE_EXPR:
1146 case POINTER_PLUS_EXPR:
1147 return true;
1148 default:
1149 return false;
1153 /* Rewrite STMT, an assignment with a signed integer or pointer arithmetic
1154 operation that can be transformed to unsigned arithmetic by converting
1155 its operand, carrying out the operation in the corresponding unsigned
1156 type and converting the result back to the original type.
1158 Returns a sequence of statements that replace STMT and also contain
1159 a modified form of STMT itself. */
1161 static gimple_seq
1162 rewrite_to_defined_overflow (gimple stmt)
1164 if (dump_file && (dump_flags & TDF_DETAILS))
1166 fprintf (dump_file, "rewriting stmt with undefined signed "
1167 "overflow ");
1168 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1171 tree lhs = gimple_assign_lhs (stmt);
1172 tree type = unsigned_type_for (TREE_TYPE (lhs));
1173 gimple_seq stmts = NULL;
1174 for (unsigned i = 1; i < gimple_num_ops (stmt); ++i)
1176 gimple_seq stmts2 = NULL;
1177 gimple_set_op (stmt, i,
1178 force_gimple_operand (fold_convert (type,
1179 gimple_op (stmt, i)),
1180 &stmts2, true, NULL_TREE));
1181 gimple_seq_add_seq (&stmts, stmts2);
1183 gimple_assign_set_lhs (stmt, make_ssa_name (type, stmt));
1184 if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
1185 gimple_assign_set_rhs_code (stmt, PLUS_EXPR);
1186 gimple_seq_add_stmt (&stmts, stmt);
1187 gimple cvt = gimple_build_assign_with_ops
1188 (NOP_EXPR, lhs, gimple_assign_lhs (stmt), NULL_TREE);
1189 gimple_seq_add_stmt (&stmts, cvt);
1191 return stmts;
1194 /* Hoist the statements in basic block BB out of the loops prescribed by
1195 data stored in LIM_DATA structures associated with each statement. Callback
1196 for walk_dominator_tree. */
1198 void
1199 move_computations_dom_walker::before_dom_children (basic_block bb)
1201 struct loop *level;
1202 gimple_stmt_iterator bsi;
1203 gimple stmt;
1204 unsigned cost = 0;
1205 struct lim_aux_data *lim_data;
1207 if (!loop_outer (bb->loop_father))
1208 return;
1210 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1212 gimple new_stmt;
1213 stmt = gsi_stmt (bsi);
1215 lim_data = get_lim_data (stmt);
1216 if (lim_data == NULL)
1218 gsi_next (&bsi);
1219 continue;
1222 cost = lim_data->cost;
1223 level = lim_data->tgt_loop;
1224 clear_lim_data (stmt);
1226 if (!level)
1228 gsi_next (&bsi);
1229 continue;
1232 if (dump_file && (dump_flags & TDF_DETAILS))
1234 fprintf (dump_file, "Moving PHI node\n");
1235 print_gimple_stmt (dump_file, stmt, 0, 0);
1236 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1237 cost, level->num);
1240 if (gimple_phi_num_args (stmt) == 1)
1242 tree arg = PHI_ARG_DEF (stmt, 0);
1243 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1244 gimple_phi_result (stmt),
1245 arg, NULL_TREE);
1247 else
1249 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1250 gimple cond = gsi_stmt (gsi_last_bb (dom));
1251 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1252 /* Get the PHI arguments corresponding to the true and false
1253 edges of COND. */
1254 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1255 gcc_assert (arg0 && arg1);
1256 t = build2 (gimple_cond_code (cond), boolean_type_node,
1257 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1258 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1259 gimple_phi_result (stmt),
1260 t, arg0, arg1);
1261 todo_ |= TODO_cleanup_cfg;
1263 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1264 remove_phi_node (&bsi, false);
1267 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1269 edge e;
1271 stmt = gsi_stmt (bsi);
1273 lim_data = get_lim_data (stmt);
1274 if (lim_data == NULL)
1276 gsi_next (&bsi);
1277 continue;
1280 cost = lim_data->cost;
1281 level = lim_data->tgt_loop;
1282 clear_lim_data (stmt);
1284 if (!level)
1286 gsi_next (&bsi);
1287 continue;
1290 /* We do not really want to move conditionals out of the loop; we just
1291 placed it here to force its operands to be moved if necessary. */
1292 if (gimple_code (stmt) == GIMPLE_COND)
1293 continue;
1295 if (dump_file && (dump_flags & TDF_DETAILS))
1297 fprintf (dump_file, "Moving statement\n");
1298 print_gimple_stmt (dump_file, stmt, 0, 0);
1299 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1300 cost, level->num);
1303 e = loop_preheader_edge (level);
1304 gcc_assert (!gimple_vdef (stmt));
1305 if (gimple_vuse (stmt))
1307 /* The new VUSE is the one from the virtual PHI in the loop
1308 header or the one already present. */
1309 gimple_stmt_iterator gsi2;
1310 for (gsi2 = gsi_start_phis (e->dest);
1311 !gsi_end_p (gsi2); gsi_next (&gsi2))
1313 gimple phi = gsi_stmt (gsi2);
1314 if (virtual_operand_p (gimple_phi_result (phi)))
1316 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1317 break;
1321 gsi_remove (&bsi, false);
1322 /* In case this is a stmt that is not unconditionally executed
1323 when the target loop header is executed and the stmt may
1324 invoke undefined integer or pointer overflow rewrite it to
1325 unsigned arithmetic. */
1326 if (is_gimple_assign (stmt)
1327 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1328 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1329 && arith_code_with_undefined_signed_overflow
1330 (gimple_assign_rhs_code (stmt))
1331 && (!ALWAYS_EXECUTED_IN (bb)
1332 || !(ALWAYS_EXECUTED_IN (bb) == level
1333 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1334 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1335 else
1336 gsi_insert_on_edge (e, stmt);
1340 /* Hoist the statements out of the loops prescribed by data stored in
1341 LIM_DATA structures associated with each statement.*/
1343 static unsigned int
1344 move_computations (void)
1346 move_computations_dom_walker walker (CDI_DOMINATORS);
1347 walker.walk (cfun->cfg->x_entry_block_ptr);
1349 gsi_commit_edge_inserts ();
1350 if (need_ssa_update_p (cfun))
1351 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1353 return walker.todo_;
1356 /* Checks whether the statement defining variable *INDEX can be hoisted
1357 out of the loop passed in DATA. Callback for for_each_index. */
1359 static bool
1360 may_move_till (tree ref, tree *index, void *data)
1362 struct loop *loop = (struct loop *) data, *max_loop;
1364 /* If REF is an array reference, check also that the step and the lower
1365 bound is invariant in LOOP. */
1366 if (TREE_CODE (ref) == ARRAY_REF)
1368 tree step = TREE_OPERAND (ref, 3);
1369 tree lbound = TREE_OPERAND (ref, 2);
1371 max_loop = outermost_invariant_loop (step, loop);
1372 if (!max_loop)
1373 return false;
1375 max_loop = outermost_invariant_loop (lbound, loop);
1376 if (!max_loop)
1377 return false;
1380 max_loop = outermost_invariant_loop (*index, loop);
1381 if (!max_loop)
1382 return false;
1384 return true;
1387 /* If OP is SSA NAME, force the statement that defines it to be
1388 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1390 static void
1391 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1393 gimple stmt;
1395 if (!op
1396 || is_gimple_min_invariant (op))
1397 return;
1399 gcc_assert (TREE_CODE (op) == SSA_NAME);
1401 stmt = SSA_NAME_DEF_STMT (op);
1402 if (gimple_nop_p (stmt))
1403 return;
1405 set_level (stmt, orig_loop, loop);
1408 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1409 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1410 for_each_index. */
1412 struct fmt_data
1414 struct loop *loop;
1415 struct loop *orig_loop;
1418 static bool
1419 force_move_till (tree ref, tree *index, void *data)
1421 struct fmt_data *fmt_data = (struct fmt_data *) data;
1423 if (TREE_CODE (ref) == ARRAY_REF)
1425 tree step = TREE_OPERAND (ref, 3);
1426 tree lbound = TREE_OPERAND (ref, 2);
1428 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1429 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1432 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1434 return true;
1437 /* A function to free the mem_ref object OBJ. */
1439 static void
1440 memref_free (struct mem_ref *mem)
1442 unsigned i;
1443 vec<mem_ref_loc> *accs;
1445 FOR_EACH_VEC_ELT (mem->accesses_in_loop, i, accs)
1446 accs->release ();
1447 mem->accesses_in_loop.release ();
1449 free (mem);
1452 /* Allocates and returns a memory reference description for MEM whose hash
1453 value is HASH and id is ID. */
1455 static mem_ref_p
1456 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1458 mem_ref_p ref = XNEW (struct mem_ref);
1459 ao_ref_init (&ref->mem, mem);
1460 ref->id = id;
1461 ref->hash = hash;
1462 bitmap_initialize (&ref->stored, &lim_bitmap_obstack);
1463 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1464 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1465 ref->accesses_in_loop.create (0);
1467 return ref;
1470 /* Records memory reference location *LOC in LOOP to the memory reference
1471 description REF. The reference occurs in statement STMT. */
1473 static void
1474 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1476 mem_ref_loc aref;
1478 if (ref->accesses_in_loop.length ()
1479 <= (unsigned) loop->num)
1480 ref->accesses_in_loop.safe_grow_cleared (loop->num + 1);
1482 aref.stmt = stmt;
1483 aref.ref = loc;
1484 ref->accesses_in_loop[loop->num].safe_push (aref);
1487 /* Marks reference REF as stored in LOOP. */
1489 static void
1490 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1492 while (loop != current_loops->tree_root
1493 && bitmap_set_bit (&ref->stored, loop->num))
1494 loop = loop_outer (loop);
1497 /* Gathers memory references in statement STMT in LOOP, storing the
1498 information about them in the memory_accesses structure. Marks
1499 the vops accessed through unrecognized statements there as
1500 well. */
1502 static void
1503 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1505 tree *mem = NULL;
1506 hashval_t hash;
1507 mem_ref **slot;
1508 mem_ref_p ref;
1509 bool is_stored;
1510 unsigned id;
1512 if (!gimple_vuse (stmt))
1513 return;
1515 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1516 if (!mem)
1518 /* We use the shared mem_ref for all unanalyzable refs. */
1519 id = UNANALYZABLE_MEM_ID;
1520 ref = memory_accesses.refs_list[id];
1521 if (dump_file && (dump_flags & TDF_DETAILS))
1523 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1524 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1526 is_stored = gimple_vdef (stmt);
1528 else
1530 hash = iterative_hash_expr (*mem, 0);
1531 slot = memory_accesses.refs.find_slot_with_hash (*mem, hash, INSERT);
1532 if (*slot)
1534 ref = (mem_ref_p) *slot;
1535 id = ref->id;
1537 else
1539 id = memory_accesses.refs_list.length ();
1540 ref = mem_ref_alloc (*mem, hash, id);
1541 memory_accesses.refs_list.safe_push (ref);
1542 *slot = ref;
1544 if (dump_file && (dump_flags & TDF_DETAILS))
1546 fprintf (dump_file, "Memory reference %u: ", id);
1547 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1548 fprintf (dump_file, "\n");
1552 record_mem_ref_loc (ref, loop, stmt, mem);
1554 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1555 if (is_stored)
1557 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1558 mark_ref_stored (ref, loop);
1560 return;
1563 static unsigned *bb_loop_postorder;
1565 /* qsort sort function to sort blocks after their loop fathers postorder. */
1567 static int
1568 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1570 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1571 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1572 struct loop *loop1 = bb1->loop_father;
1573 struct loop *loop2 = bb2->loop_father;
1574 if (loop1->num == loop2->num)
1575 return 0;
1576 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1579 /* Gathers memory references in loops. */
1581 static void
1582 analyze_memory_references (void)
1584 gimple_stmt_iterator bsi;
1585 basic_block bb, *bbs;
1586 struct loop *loop, *outer;
1587 unsigned i, n;
1589 /* Initialize bb_loop_postorder with a mapping from loop->num to
1590 its postorder index. */
1591 i = 0;
1592 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
1593 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1594 bb_loop_postorder[loop->num] = i++;
1595 /* Collect all basic-blocks in loops and sort them after their
1596 loops postorder. */
1597 i = 0;
1598 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1599 FOR_EACH_BB (bb)
1600 if (bb->loop_father != current_loops->tree_root)
1601 bbs[i++] = bb;
1602 n = i;
1603 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1604 free (bb_loop_postorder);
1606 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1607 That results in better locality for all the bitmaps. */
1608 for (i = 0; i < n; ++i)
1610 basic_block bb = bbs[i];
1611 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1612 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1615 free (bbs);
1617 /* Propagate the information about accessed memory references up
1618 the loop hierarchy. */
1619 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1621 /* Finalize the overall touched references (including subloops). */
1622 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1623 &memory_accesses.refs_stored_in_loop[loop->num]);
1625 /* Propagate the information about accessed memory references up
1626 the loop hierarchy. */
1627 outer = loop_outer (loop);
1628 if (outer == current_loops->tree_root)
1629 continue;
1631 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1632 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1636 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1637 tree_to_aff_combination_expand. */
1639 static bool
1640 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1641 struct pointer_map_t **ttae_cache)
1643 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1644 object and their offset differ in such a way that the locations cannot
1645 overlap, then they cannot alias. */
1646 double_int size1, size2;
1647 aff_tree off1, off2;
1649 /* Perform basic offset and type-based disambiguation. */
1650 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1651 return false;
1653 /* The expansion of addresses may be a bit expensive, thus we only do
1654 the check at -O2 and higher optimization levels. */
1655 if (optimize < 2)
1656 return true;
1658 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1659 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1660 aff_combination_expand (&off1, ttae_cache);
1661 aff_combination_expand (&off2, ttae_cache);
1662 aff_combination_scale (&off1, double_int_minus_one);
1663 aff_combination_add (&off2, &off1);
1665 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1666 return false;
1668 return true;
1671 /* Iterates over all locations of REF in LOOP and its subloops calling
1672 fn.operator() with the location as argument. When that operator
1673 returns true the iteration is stopped and true is returned.
1674 Otherwise false is returned. */
1676 template <typename FN>
1677 static bool
1678 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1680 unsigned i;
1681 mem_ref_loc_p loc;
1682 struct loop *subloop;
1684 if (ref->accesses_in_loop.length () > (unsigned) loop->num)
1685 FOR_EACH_VEC_ELT (ref->accesses_in_loop[loop->num], i, loc)
1686 if (fn (loc))
1687 return true;
1689 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1690 if (for_all_locs_in_loop (subloop, ref, fn))
1691 return true;
1693 return false;
1696 /* Rewrites location LOC by TMP_VAR. */
1698 struct rewrite_mem_ref_loc
1700 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1701 bool operator () (mem_ref_loc_p loc);
1702 tree tmp_var;
1705 bool
1706 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1708 *loc->ref = tmp_var;
1709 update_stmt (loc->stmt);
1710 return false;
1713 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1715 static void
1716 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1718 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1721 /* Stores the first reference location in LOCP. */
1723 struct first_mem_ref_loc_1
1725 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1726 bool operator () (mem_ref_loc_p loc);
1727 mem_ref_loc_p *locp;
1730 bool
1731 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1733 *locp = loc;
1734 return true;
1737 /* Returns the first reference location to REF in LOOP. */
1739 static mem_ref_loc_p
1740 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1742 mem_ref_loc_p locp = NULL;
1743 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1744 return locp;
1747 struct prev_flag_edges {
1748 /* Edge to insert new flag comparison code. */
1749 edge append_cond_position;
1751 /* Edge for fall through from previous flag comparison. */
1752 edge last_cond_fallthru;
1755 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1756 MEM along edge EX.
1758 The store is only done if MEM has changed. We do this so no
1759 changes to MEM occur on code paths that did not originally store
1760 into it.
1762 The common case for execute_sm will transform:
1764 for (...) {
1765 if (foo)
1766 stuff;
1767 else
1768 MEM = TMP_VAR;
1771 into:
1773 lsm = MEM;
1774 for (...) {
1775 if (foo)
1776 stuff;
1777 else
1778 lsm = TMP_VAR;
1780 MEM = lsm;
1782 This function will generate:
1784 lsm = MEM;
1786 lsm_flag = false;
1788 for (...) {
1789 if (foo)
1790 stuff;
1791 else {
1792 lsm = TMP_VAR;
1793 lsm_flag = true;
1796 if (lsm_flag) <--
1797 MEM = lsm; <--
1800 static void
1801 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1803 basic_block new_bb, then_bb, old_dest;
1804 bool loop_has_only_one_exit;
1805 edge then_old_edge, orig_ex = ex;
1806 gimple_stmt_iterator gsi;
1807 gimple stmt;
1808 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1810 /* ?? Insert store after previous store if applicable. See note
1811 below. */
1812 if (prev_edges)
1813 ex = prev_edges->append_cond_position;
1815 loop_has_only_one_exit = single_pred_p (ex->dest);
1817 if (loop_has_only_one_exit)
1818 ex = split_block_after_labels (ex->dest);
1820 old_dest = ex->dest;
1821 new_bb = split_edge (ex);
1822 then_bb = create_empty_bb (new_bb);
1823 if (current_loops && new_bb->loop_father)
1824 add_bb_to_loop (then_bb, new_bb->loop_father);
1826 gsi = gsi_start_bb (new_bb);
1827 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1828 NULL_TREE, NULL_TREE);
1829 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1831 gsi = gsi_start_bb (then_bb);
1832 /* Insert actual store. */
1833 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1834 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1836 make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
1837 make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
1838 then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
1840 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1842 if (prev_edges)
1844 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1845 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1846 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1847 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1848 recompute_dominator (CDI_DOMINATORS, old_dest));
1851 /* ?? Because stores may alias, they must happen in the exact
1852 sequence they originally happened. Save the position right after
1853 the (_lsm) store we just created so we can continue appending after
1854 it and maintain the original order. */
1856 struct prev_flag_edges *p;
1858 if (orig_ex->aux)
1859 orig_ex->aux = NULL;
1860 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1861 p = (struct prev_flag_edges *) orig_ex->aux;
1862 p->append_cond_position = then_old_edge;
1863 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1864 orig_ex->aux = (void *) p;
1867 if (!loop_has_only_one_exit)
1868 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
1870 gimple phi = gsi_stmt (gsi);
1871 unsigned i;
1873 for (i = 0; i < gimple_phi_num_args (phi); i++)
1874 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1876 tree arg = gimple_phi_arg_def (phi, i);
1877 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1878 update_stmt (phi);
1881 /* Remove the original fall through edge. This was the
1882 single_succ_edge (new_bb). */
1883 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1886 /* When REF is set on the location, set flag indicating the store. */
1888 struct sm_set_flag_if_changed
1890 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1891 bool operator () (mem_ref_loc_p loc);
1892 tree flag;
1895 bool
1896 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1898 /* Only set the flag for writes. */
1899 if (is_gimple_assign (loc->stmt)
1900 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1902 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1903 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1904 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1906 return false;
1909 /* Helper function for execute_sm. On every location where REF is
1910 set, set an appropriate flag indicating the store. */
1912 static tree
1913 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1915 tree flag;
1916 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1917 flag = create_tmp_reg (boolean_type_node, str);
1918 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1919 return flag;
1922 /* Executes store motion of memory reference REF from LOOP.
1923 Exits from the LOOP are stored in EXITS. The initialization of the
1924 temporary variable is put to the preheader of the loop, and assignments
1925 to the reference from the temporary variable are emitted to exits. */
1927 static void
1928 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1930 tree tmp_var, store_flag;
1931 unsigned i;
1932 gimple load;
1933 struct fmt_data fmt_data;
1934 edge ex;
1935 struct lim_aux_data *lim_data;
1936 bool multi_threaded_model_p = false;
1937 gimple_stmt_iterator gsi;
1939 if (dump_file && (dump_flags & TDF_DETAILS))
1941 fprintf (dump_file, "Executing store motion of ");
1942 print_generic_expr (dump_file, ref->mem.ref, 0);
1943 fprintf (dump_file, " from loop %d\n", loop->num);
1946 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1947 get_lsm_tmp_name (ref->mem.ref, ~0));
1949 fmt_data.loop = loop;
1950 fmt_data.orig_loop = loop;
1951 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1953 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1954 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1955 multi_threaded_model_p = true;
1957 if (multi_threaded_model_p)
1958 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1960 rewrite_mem_refs (loop, ref, tmp_var);
1962 /* Emit the load code on a random exit edge or into the latch if
1963 the loop does not exit, so that we are sure it will be processed
1964 by move_computations after all dependencies. */
1965 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1967 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1968 load altogether, since the store is predicated by a flag. We
1969 could, do the load only if it was originally in the loop. */
1970 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1971 lim_data = init_lim_data (load);
1972 lim_data->max_loop = loop;
1973 lim_data->tgt_loop = loop;
1974 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1976 if (multi_threaded_model_p)
1978 load = gimple_build_assign (store_flag, boolean_false_node);
1979 lim_data = init_lim_data (load);
1980 lim_data->max_loop = loop;
1981 lim_data->tgt_loop = loop;
1982 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1985 /* Sink the store to every exit from the loop. */
1986 FOR_EACH_VEC_ELT (exits, i, ex)
1987 if (!multi_threaded_model_p)
1989 gimple store;
1990 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
1991 gsi_insert_on_edge (ex, store);
1993 else
1994 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
1997 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
1998 edges of the LOOP. */
2000 static void
2001 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2002 vec<edge> exits)
2004 mem_ref_p ref;
2005 unsigned i;
2006 bitmap_iterator bi;
2008 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2010 ref = memory_accesses.refs_list[i];
2011 execute_sm (loop, exits, ref);
2015 struct ref_always_accessed
2017 ref_always_accessed (struct loop *loop_, tree base_, bool stored_p_)
2018 : loop (loop_), base (base_), stored_p (stored_p_) {}
2019 bool operator () (mem_ref_loc_p loc);
2020 struct loop *loop;
2021 tree base;
2022 bool stored_p;
2025 bool
2026 ref_always_accessed::operator () (mem_ref_loc_p loc)
2028 struct loop *must_exec;
2030 if (!get_lim_data (loc->stmt))
2031 return false;
2033 /* If we require an always executed store make sure the statement
2034 stores to the reference. */
2035 if (stored_p)
2037 tree lhs;
2038 if (!gimple_get_lhs (loc->stmt))
2039 return false;
2040 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2041 if (!lhs)
2042 return false;
2043 if (INDIRECT_REF_P (lhs)
2044 || TREE_CODE (lhs) == MEM_REF)
2045 lhs = TREE_OPERAND (lhs, 0);
2046 if (lhs != base)
2047 return false;
2050 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2051 if (!must_exec)
2052 return false;
2054 if (must_exec == loop
2055 || flow_loop_nested_p (must_exec, loop))
2056 return true;
2058 return false;
2061 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2062 make sure REF is always stored to in LOOP. */
2064 static bool
2065 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2067 tree base = ao_ref_base (&ref->mem);
2068 if (TREE_CODE (base) == MEM_REF)
2069 base = TREE_OPERAND (base, 0);
2071 return for_all_locs_in_loop (loop, ref,
2072 ref_always_accessed (loop, base, stored_p));
2075 /* Returns true if REF1 and REF2 are independent. */
2077 static bool
2078 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2080 if (ref1 == ref2)
2081 return true;
2083 if (dump_file && (dump_flags & TDF_DETAILS))
2084 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2085 ref1->id, ref2->id);
2087 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2089 if (dump_file && (dump_flags & TDF_DETAILS))
2090 fprintf (dump_file, "dependent.\n");
2091 return false;
2093 else
2095 if (dump_file && (dump_flags & TDF_DETAILS))
2096 fprintf (dump_file, "independent.\n");
2097 return true;
2101 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2102 and its super-loops. */
2104 static void
2105 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2107 /* We can propagate dependent-in-loop bits up the loop
2108 hierarchy to all outer loops. */
2109 while (loop != current_loops->tree_root
2110 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2111 loop = loop_outer (loop);
2114 /* Returns true if REF is independent on all other memory references in
2115 LOOP. */
2117 static bool
2118 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2120 bitmap refs_to_check;
2121 unsigned i;
2122 bitmap_iterator bi;
2123 mem_ref_p aref;
2125 if (stored_p)
2126 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2127 else
2128 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2130 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2131 return false;
2133 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2135 aref = memory_accesses.refs_list[i];
2136 if (!refs_independent_p (ref, aref))
2137 return false;
2140 return true;
2143 /* Returns true if REF is independent on all other memory references in
2144 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2146 static bool
2147 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2149 stored_p |= bitmap_bit_p (&ref->stored, loop->num);
2151 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2152 return true;
2153 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2154 return false;
2156 struct loop *inner = loop->inner;
2157 while (inner)
2159 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2160 return false;
2161 inner = inner->next;
2164 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2166 if (dump_file && (dump_flags & TDF_DETAILS))
2167 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2168 ref->id, loop->num, indep_p ? "independent" : "dependent");
2170 /* Record the computed result in the cache. */
2171 if (indep_p)
2173 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2174 && stored_p)
2176 /* If it's independend against all refs then it's independent
2177 against stores, too. */
2178 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2181 else
2183 record_dep_loop (loop, ref, stored_p);
2184 if (!stored_p)
2186 /* If it's dependent against stores it's dependent against
2187 all refs, too. */
2188 record_dep_loop (loop, ref, true);
2192 return indep_p;
2195 /* Returns true if REF is independent on all other memory references in
2196 LOOP. */
2198 static bool
2199 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2201 gcc_checking_assert (MEM_ANALYZABLE (ref));
2203 return ref_indep_loop_p_2 (loop, ref, false);
2206 /* Returns true if we can perform store motion of REF from LOOP. */
2208 static bool
2209 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2211 tree base;
2213 /* Can't hoist unanalyzable refs. */
2214 if (!MEM_ANALYZABLE (ref))
2215 return false;
2217 /* It should be movable. */
2218 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2219 || TREE_THIS_VOLATILE (ref->mem.ref)
2220 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2221 return false;
2223 /* If it can throw fail, we do not properly update EH info. */
2224 if (tree_could_throw_p (ref->mem.ref))
2225 return false;
2227 /* If it can trap, it must be always executed in LOOP.
2228 Readonly memory locations may trap when storing to them, but
2229 tree_could_trap_p is a predicate for rvalues, so check that
2230 explicitly. */
2231 base = get_base_address (ref->mem.ref);
2232 if ((tree_could_trap_p (ref->mem.ref)
2233 || (DECL_P (base) && TREE_READONLY (base)))
2234 && !ref_always_accessed_p (loop, ref, true))
2235 return false;
2237 /* And it must be independent on all other memory references
2238 in LOOP. */
2239 if (!ref_indep_loop_p (loop, ref))
2240 return false;
2242 return true;
2245 /* Marks the references in LOOP for that store motion should be performed
2246 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2247 motion was performed in one of the outer loops. */
2249 static void
2250 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2252 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2253 unsigned i;
2254 bitmap_iterator bi;
2255 mem_ref_p ref;
2257 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2259 ref = memory_accesses.refs_list[i];
2260 if (can_sm_ref_p (loop, ref))
2261 bitmap_set_bit (refs_to_sm, i);
2265 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2266 for a store motion optimization (i.e. whether we can insert statement
2267 on its exits). */
2269 static bool
2270 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2271 vec<edge> exits)
2273 unsigned i;
2274 edge ex;
2276 FOR_EACH_VEC_ELT (exits, i, ex)
2277 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2278 return false;
2280 return true;
2283 /* Try to perform store motion for all memory references modified inside
2284 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2285 store motion was executed in one of the outer loops. */
2287 static void
2288 store_motion_loop (struct loop *loop, bitmap sm_executed)
2290 vec<edge> exits = get_loop_exit_edges (loop);
2291 struct loop *subloop;
2292 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2294 if (loop_suitable_for_sm (loop, exits))
2296 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2297 hoist_memory_references (loop, sm_in_loop, exits);
2299 exits.release ();
2301 bitmap_ior_into (sm_executed, sm_in_loop);
2302 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2303 store_motion_loop (subloop, sm_executed);
2304 bitmap_and_compl_into (sm_executed, sm_in_loop);
2305 BITMAP_FREE (sm_in_loop);
2308 /* Try to perform store motion for all memory references modified inside
2309 loops. */
2311 static void
2312 store_motion (void)
2314 struct loop *loop;
2315 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2317 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2318 store_motion_loop (loop, sm_executed);
2320 BITMAP_FREE (sm_executed);
2321 gsi_commit_edge_inserts ();
2324 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2325 for each such basic block bb records the outermost loop for that execution
2326 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2327 blocks that contain a nonpure call. */
2329 static void
2330 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2332 basic_block bb = NULL, *bbs, last = NULL;
2333 unsigned i;
2334 edge e;
2335 struct loop *inn_loop = loop;
2337 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2339 bbs = get_loop_body_in_dom_order (loop);
2341 for (i = 0; i < loop->num_nodes; i++)
2343 edge_iterator ei;
2344 bb = bbs[i];
2346 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2347 last = bb;
2349 if (bitmap_bit_p (contains_call, bb->index))
2350 break;
2352 FOR_EACH_EDGE (e, ei, bb->succs)
2353 if (!flow_bb_inside_loop_p (loop, e->dest))
2354 break;
2355 if (e)
2356 break;
2358 /* A loop might be infinite (TODO use simple loop analysis
2359 to disprove this if possible). */
2360 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2361 break;
2363 if (!flow_bb_inside_loop_p (inn_loop, bb))
2364 break;
2366 if (bb->loop_father->header == bb)
2368 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2369 break;
2371 /* In a loop that is always entered we may proceed anyway.
2372 But record that we entered it and stop once we leave it. */
2373 inn_loop = bb->loop_father;
2377 while (1)
2379 SET_ALWAYS_EXECUTED_IN (last, loop);
2380 if (last == loop->header)
2381 break;
2382 last = get_immediate_dominator (CDI_DOMINATORS, last);
2385 free (bbs);
2388 for (loop = loop->inner; loop; loop = loop->next)
2389 fill_always_executed_in_1 (loop, contains_call);
2392 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2393 for each such basic block bb records the outermost loop for that execution
2394 of its header implies execution of bb. */
2396 static void
2397 fill_always_executed_in (void)
2399 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2400 basic_block bb;
2401 struct loop *loop;
2403 bitmap_clear (contains_call);
2404 FOR_EACH_BB (bb)
2406 gimple_stmt_iterator gsi;
2407 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2409 if (nonpure_call_p (gsi_stmt (gsi)))
2410 break;
2413 if (!gsi_end_p (gsi))
2414 bitmap_set_bit (contains_call, bb->index);
2417 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2418 fill_always_executed_in_1 (loop, contains_call);
2420 sbitmap_free (contains_call);
2424 /* Compute the global information needed by the loop invariant motion pass. */
2426 static void
2427 tree_ssa_lim_initialize (void)
2429 unsigned i;
2431 bitmap_obstack_initialize (&lim_bitmap_obstack);
2432 lim_aux_data_map = pointer_map_create ();
2434 if (flag_tm)
2435 compute_transaction_bits ();
2437 alloc_aux_for_edges (0);
2439 memory_accesses.refs.create (100);
2440 memory_accesses.refs_list.create (100);
2441 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2442 memory_accesses.refs_list.quick_push
2443 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2445 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2446 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2447 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2448 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2449 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2450 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2452 for (i = 0; i < number_of_loops (cfun); i++)
2454 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2455 &lim_bitmap_obstack);
2456 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2457 &lim_bitmap_obstack);
2458 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2459 &lim_bitmap_obstack);
2462 memory_accesses.ttae_cache = NULL;
2465 /* Cleans up after the invariant motion pass. */
2467 static void
2468 tree_ssa_lim_finalize (void)
2470 basic_block bb;
2471 unsigned i;
2472 mem_ref_p ref;
2474 free_aux_for_edges ();
2476 FOR_EACH_BB (bb)
2477 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2479 bitmap_obstack_release (&lim_bitmap_obstack);
2480 pointer_map_destroy (lim_aux_data_map);
2482 memory_accesses.refs.dispose ();
2484 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2485 memref_free (ref);
2486 memory_accesses.refs_list.release ();
2488 memory_accesses.refs_in_loop.release ();
2489 memory_accesses.refs_stored_in_loop.release ();
2490 memory_accesses.all_refs_stored_in_loop.release ();
2492 if (memory_accesses.ttae_cache)
2493 free_affine_expand_cache (&memory_accesses.ttae_cache);
2496 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2497 i.e. those that are likely to be win regardless of the register pressure. */
2499 unsigned int
2500 tree_ssa_lim (void)
2502 unsigned int todo;
2504 tree_ssa_lim_initialize ();
2506 /* Gathers information about memory accesses in the loops. */
2507 analyze_memory_references ();
2509 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2510 fill_always_executed_in ();
2512 /* For each statement determine the outermost loop in that it is
2513 invariant and cost for computing the invariant. */
2514 invariantness_dom_walker (CDI_DOMINATORS)
2515 .walk (cfun->cfg->x_entry_block_ptr);
2517 /* Execute store motion. Force the necessary invariants to be moved
2518 out of the loops as well. */
2519 store_motion ();
2521 /* Move the expressions that are expensive enough. */
2522 todo = move_computations ();
2524 tree_ssa_lim_finalize ();
2526 return todo;
2529 /* Loop invariant motion pass. */
2531 static unsigned int
2532 tree_ssa_loop_im (void)
2534 if (number_of_loops (cfun) <= 1)
2535 return 0;
2537 return tree_ssa_lim ();
2540 static bool
2541 gate_tree_ssa_loop_im (void)
2543 return flag_tree_loop_im != 0;
2546 namespace {
2548 const pass_data pass_data_lim =
2550 GIMPLE_PASS, /* type */
2551 "lim", /* name */
2552 OPTGROUP_LOOP, /* optinfo_flags */
2553 true, /* has_gate */
2554 true, /* has_execute */
2555 TV_LIM, /* tv_id */
2556 PROP_cfg, /* properties_required */
2557 0, /* properties_provided */
2558 0, /* properties_destroyed */
2559 0, /* todo_flags_start */
2560 0, /* todo_flags_finish */
2563 class pass_lim : public gimple_opt_pass
2565 public:
2566 pass_lim (gcc::context *ctxt)
2567 : gimple_opt_pass (pass_data_lim, ctxt)
2570 /* opt_pass methods: */
2571 opt_pass * clone () { return new pass_lim (m_ctxt); }
2572 bool gate () { return gate_tree_ssa_loop_im (); }
2573 unsigned int execute () { return tree_ssa_loop_im (); }
2575 }; // class pass_lim
2577 } // anon namespace
2579 gimple_opt_pass *
2580 make_pass_lim (gcc::context *ctxt)
2582 return new pass_lim (ctxt);