1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
25 #include "stor-layout.h"
29 #include "gimple-iterator.h"
30 #include "gimplify-me.h"
31 #include "gimple-ssa.h"
33 #include "tree-phinodes.h"
34 #include "ssa-iterators.h"
35 #include "stringpool.h"
36 #include "tree-ssanames.h"
40 #include "tree-iterator.h"
41 #include "tree-pass.h"
42 #include "tree-ssa-propagate.h"
43 #include "tree-hasher.h"
47 /* For each complex ssa name, a lattice value. We're interested in finding
48 out whether a complex number is degenerate in some way, having only real
49 or only complex parts. */
59 /* The type complex_lattice_t holds combinations of the above
61 typedef int complex_lattice_t
;
63 #define PAIR(a, b) ((a) << 2 | (b))
66 static vec
<complex_lattice_t
> complex_lattice_values
;
68 /* For each complex variable, a pair of variables for the components exists in
70 static int_tree_htab_type complex_variable_components
;
72 /* For each complex SSA_NAME, a pair of ssa names for the components. */
73 static vec
<tree
> complex_ssa_name_components
;
75 /* Lookup UID in the complex_variable_components hashtable and return the
78 cvc_lookup (unsigned int uid
)
80 struct int_tree_map
*h
, in
;
82 h
= complex_variable_components
.find_with_hash (&in
, uid
);
83 return h
? h
->to
: NULL
;
86 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
89 cvc_insert (unsigned int uid
, tree to
)
91 struct int_tree_map
*h
;
94 h
= XNEW (struct int_tree_map
);
97 loc
= complex_variable_components
.find_slot_with_hash (h
, uid
, INSERT
);
101 /* Return true if T is not a zero constant. In the case of real values,
102 we're only interested in +0.0. */
105 some_nonzerop (tree t
)
109 /* Operations with real or imaginary part of a complex number zero
110 cannot be treated the same as operations with a real or imaginary
111 operand if we care about the signs of zeros in the result. */
112 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
113 zerop
= REAL_VALUES_IDENTICAL (TREE_REAL_CST (t
), dconst0
);
114 else if (TREE_CODE (t
) == FIXED_CST
)
115 zerop
= fixed_zerop (t
);
116 else if (TREE_CODE (t
) == INTEGER_CST
)
117 zerop
= integer_zerop (t
);
123 /* Compute a lattice value from the components of a complex type REAL
126 static complex_lattice_t
127 find_lattice_value_parts (tree real
, tree imag
)
130 complex_lattice_t ret
;
132 r
= some_nonzerop (real
);
133 i
= some_nonzerop (imag
);
134 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
136 /* ??? On occasion we could do better than mapping 0+0i to real, but we
137 certainly don't want to leave it UNINITIALIZED, which eventually gets
138 mapped to VARYING. */
139 if (ret
== UNINITIALIZED
)
146 /* Compute a lattice value from gimple_val T. */
148 static complex_lattice_t
149 find_lattice_value (tree t
)
153 switch (TREE_CODE (t
))
156 return complex_lattice_values
[SSA_NAME_VERSION (t
)];
159 real
= TREE_REALPART (t
);
160 imag
= TREE_IMAGPART (t
);
167 return find_lattice_value_parts (real
, imag
);
170 /* Determine if LHS is something for which we're interested in seeing
171 simulation results. */
174 is_complex_reg (tree lhs
)
176 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
179 /* Mark the incoming parameters to the function as VARYING. */
182 init_parameter_lattice_values (void)
186 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
187 if (is_complex_reg (parm
)
188 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
189 complex_lattice_values
[SSA_NAME_VERSION (ssa_name
)] = VARYING
;
192 /* Initialize simulation state for each statement. Return false if we
193 found no statements we want to simulate, and thus there's nothing
194 for the entire pass to do. */
197 init_dont_simulate_again (void)
200 gimple_stmt_iterator gsi
;
202 bool saw_a_complex_op
= false;
206 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
208 phi
= gsi_stmt (gsi
);
209 prop_set_simulate_again (phi
,
210 is_complex_reg (gimple_phi_result (phi
)));
213 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
219 stmt
= gsi_stmt (gsi
);
220 op0
= op1
= NULL_TREE
;
222 /* Most control-altering statements must be initially
223 simulated, else we won't cover the entire cfg. */
224 sim_again_p
= stmt_ends_bb_p (stmt
);
226 switch (gimple_code (stmt
))
229 if (gimple_call_lhs (stmt
))
230 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
234 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
235 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
236 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
237 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
239 op0
= gimple_assign_rhs1 (stmt
);
240 if (gimple_num_ops (stmt
) > 2)
241 op1
= gimple_assign_rhs2 (stmt
);
245 op0
= gimple_cond_lhs (stmt
);
246 op1
= gimple_cond_rhs (stmt
);
254 switch (gimple_expr_code (stmt
))
266 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
267 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
268 saw_a_complex_op
= true;
273 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
274 saw_a_complex_op
= true;
279 /* The total store transformation performed during
280 gimplification creates such uninitialized loads
281 and we need to lower the statement to be able
283 if (TREE_CODE (op0
) == SSA_NAME
284 && ssa_undefined_value_p (op0
))
285 saw_a_complex_op
= true;
292 prop_set_simulate_again (stmt
, sim_again_p
);
296 return saw_a_complex_op
;
300 /* Evaluate statement STMT against the complex lattice defined above. */
302 static enum ssa_prop_result
303 complex_visit_stmt (gimple stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
306 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
310 lhs
= gimple_get_lhs (stmt
);
311 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
313 return SSA_PROP_VARYING
;
315 /* These conditions should be satisfied due to the initial filter
316 set up in init_dont_simulate_again. */
317 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
318 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
321 ver
= SSA_NAME_VERSION (lhs
);
322 old_l
= complex_lattice_values
[ver
];
324 switch (gimple_expr_code (stmt
))
328 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
332 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
333 gimple_assign_rhs2 (stmt
));
338 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
339 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
341 /* We've set up the lattice values such that IOR neatly
343 new_l
= op1_l
| op2_l
;
352 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
353 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
355 /* Obviously, if either varies, so does the result. */
356 if (op1_l
== VARYING
|| op2_l
== VARYING
)
358 /* Don't prematurely promote variables if we've not yet seen
360 else if (op1_l
== UNINITIALIZED
)
362 else if (op2_l
== UNINITIALIZED
)
366 /* At this point both numbers have only one component. If the
367 numbers are of opposite kind, the result is imaginary,
368 otherwise the result is real. The add/subtract translates
369 the real/imag from/to 0/1; the ^ performs the comparison. */
370 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
372 /* Don't allow the lattice value to flip-flop indefinitely. */
379 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
387 /* If nothing changed this round, let the propagator know. */
389 return SSA_PROP_NOT_INTERESTING
;
391 complex_lattice_values
[ver
] = new_l
;
392 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
395 /* Evaluate a PHI node against the complex lattice defined above. */
397 static enum ssa_prop_result
398 complex_visit_phi (gimple phi
)
400 complex_lattice_t new_l
, old_l
;
405 lhs
= gimple_phi_result (phi
);
407 /* This condition should be satisfied due to the initial filter
408 set up in init_dont_simulate_again. */
409 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
411 /* We've set up the lattice values such that IOR neatly models PHI meet. */
412 new_l
= UNINITIALIZED
;
413 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
414 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
416 ver
= SSA_NAME_VERSION (lhs
);
417 old_l
= complex_lattice_values
[ver
];
420 return SSA_PROP_NOT_INTERESTING
;
422 complex_lattice_values
[ver
] = new_l
;
423 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
426 /* Create one backing variable for a complex component of ORIG. */
429 create_one_component_var (tree type
, tree orig
, const char *prefix
,
430 const char *suffix
, enum tree_code code
)
432 tree r
= create_tmp_var (type
, prefix
);
434 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
435 DECL_ARTIFICIAL (r
) = 1;
437 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
439 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
441 DECL_NAME (r
) = get_identifier (ACONCAT ((name
, suffix
, NULL
)));
443 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
444 DECL_HAS_DEBUG_EXPR_P (r
) = 1;
445 DECL_IGNORED_P (r
) = 0;
446 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
450 DECL_IGNORED_P (r
) = 1;
451 TREE_NO_WARNING (r
) = 1;
457 /* Retrieve a value for a complex component of VAR. */
460 get_component_var (tree var
, bool imag_p
)
462 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
463 tree ret
= cvc_lookup (decl_index
);
467 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
468 imag_p
? "CI" : "CR",
469 imag_p
? "$imag" : "$real",
470 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
471 cvc_insert (decl_index
, ret
);
477 /* Retrieve a value for a complex component of SSA_NAME. */
480 get_component_ssa_name (tree ssa_name
, bool imag_p
)
482 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
483 size_t ssa_name_index
;
486 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
488 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
489 if (SCALAR_FLOAT_TYPE_P (inner_type
))
490 return build_real (inner_type
, dconst0
);
492 return build_int_cst (inner_type
, 0);
495 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
496 ret
= complex_ssa_name_components
[ssa_name_index
];
499 if (SSA_NAME_VAR (ssa_name
))
500 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
502 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
503 ret
= make_ssa_name (ret
, NULL
);
505 /* Copy some properties from the original. In particular, whether it
506 is used in an abnormal phi, and whether it's uninitialized. */
507 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
508 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
509 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
510 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
512 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
513 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
516 complex_ssa_name_components
[ssa_name_index
] = ret
;
522 /* Set a value for a complex component of SSA_NAME, return a
523 gimple_seq of stuff that needs doing. */
526 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
528 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
529 size_t ssa_name_index
;
534 /* We know the value must be zero, else there's a bug in our lattice
535 analysis. But the value may well be a variable known to contain
536 zero. We should be safe ignoring it. */
537 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
540 /* If we've already assigned an SSA_NAME to this component, then this
541 means that our walk of the basic blocks found a use before the set.
542 This is fine. Now we should create an initialization for the value
543 we created earlier. */
544 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
545 comp
= complex_ssa_name_components
[ssa_name_index
];
549 /* If we've nothing assigned, and the value we're given is already stable,
550 then install that as the value for this SSA_NAME. This preemptively
551 copy-propagates the value, which avoids unnecessary memory allocation. */
552 else if (is_gimple_min_invariant (value
)
553 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
555 complex_ssa_name_components
[ssa_name_index
] = value
;
558 else if (TREE_CODE (value
) == SSA_NAME
559 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
561 /* Replace an anonymous base value with the variable from cvc_lookup.
562 This should result in better debug info. */
563 if (SSA_NAME_VAR (ssa_name
)
564 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
565 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
567 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
568 replace_ssa_name_symbol (value
, comp
);
571 complex_ssa_name_components
[ssa_name_index
] = value
;
575 /* Finally, we need to stabilize the result by installing the value into
578 comp
= get_component_ssa_name (ssa_name
, imag_p
);
580 /* Do all the work to assign VALUE to COMP. */
582 value
= force_gimple_operand (value
, &list
, false, NULL
);
583 last
= gimple_build_assign (comp
, value
);
584 gimple_seq_add_stmt (&list
, last
);
585 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
590 /* Extract the real or imaginary part of a complex variable or constant.
591 Make sure that it's a proper gimple_val and gimplify it if not.
592 Emit any new code before gsi. */
595 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
598 switch (TREE_CODE (t
))
601 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
611 case VIEW_CONVERT_EXPR
:
614 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
616 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
617 inner_type
, unshare_expr (t
));
620 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
627 return get_component_ssa_name (t
, imagpart_p
);
634 /* Update the complex components of the ssa name on the lhs of STMT. */
637 update_complex_components (gimple_stmt_iterator
*gsi
, gimple stmt
, tree r
,
643 lhs
= gimple_get_lhs (stmt
);
645 list
= set_component_ssa_name (lhs
, false, r
);
647 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
649 list
= set_component_ssa_name (lhs
, true, i
);
651 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
655 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
659 list
= set_component_ssa_name (lhs
, false, r
);
661 gsi_insert_seq_on_edge (e
, list
);
663 list
= set_component_ssa_name (lhs
, true, i
);
665 gsi_insert_seq_on_edge (e
, list
);
669 /* Update an assignment to a complex variable in place. */
672 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
676 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
677 stmt
= gsi_stmt (*gsi
);
679 if (maybe_clean_eh_stmt (stmt
))
680 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
682 if (gimple_in_ssa_p (cfun
))
683 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
687 /* Generate code at the entry point of the function to initialize the
688 component variables for a complex parameter. */
691 update_parameter_components (void)
693 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
696 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
698 tree type
= TREE_TYPE (parm
);
701 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
704 type
= TREE_TYPE (type
);
705 ssa_name
= ssa_default_def (cfun
, parm
);
709 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
710 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
711 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
715 /* Generate code to set the component variables of a complex variable
716 to match the PHI statements in block BB. */
719 update_phi_components (basic_block bb
)
721 gimple_stmt_iterator gsi
;
723 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
725 gimple phi
= gsi_stmt (gsi
);
727 if (is_complex_reg (gimple_phi_result (phi
)))
730 gimple pr
= NULL
, pi
= NULL
;
733 lr
= get_component_ssa_name (gimple_phi_result (phi
), false);
734 if (TREE_CODE (lr
) == SSA_NAME
)
735 pr
= create_phi_node (lr
, bb
);
737 li
= get_component_ssa_name (gimple_phi_result (phi
), true);
738 if (TREE_CODE (li
) == SSA_NAME
)
739 pi
= create_phi_node (li
, bb
);
741 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
743 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
746 comp
= extract_component (NULL
, arg
, false, false);
747 SET_PHI_ARG_DEF (pr
, i
, comp
);
751 comp
= extract_component (NULL
, arg
, true, false);
752 SET_PHI_ARG_DEF (pi
, i
, comp
);
759 /* Expand a complex move to scalars. */
762 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
764 tree inner_type
= TREE_TYPE (type
);
766 gimple stmt
= gsi_stmt (*gsi
);
768 if (is_gimple_assign (stmt
))
770 lhs
= gimple_assign_lhs (stmt
);
771 if (gimple_num_ops (stmt
) == 2)
772 rhs
= gimple_assign_rhs1 (stmt
);
776 else if (is_gimple_call (stmt
))
778 lhs
= gimple_call_lhs (stmt
);
784 if (TREE_CODE (lhs
) == SSA_NAME
)
786 if (is_ctrl_altering_stmt (stmt
))
790 /* The value is not assigned on the exception edges, so we need not
791 concern ourselves there. We do need to update on the fallthru
793 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
797 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
798 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
799 update_complex_components_on_edge (e
, lhs
, r
, i
);
801 else if (is_gimple_call (stmt
)
802 || gimple_has_side_effects (stmt
)
803 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
805 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
806 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
807 update_complex_components (gsi
, stmt
, r
, i
);
811 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
813 r
= extract_component (gsi
, rhs
, 0, true);
814 i
= extract_component (gsi
, rhs
, 1, true);
818 r
= gimple_assign_rhs1 (stmt
);
819 i
= gimple_assign_rhs2 (stmt
);
821 update_complex_assignment (gsi
, r
, i
);
824 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
829 r
= extract_component (gsi
, rhs
, 0, false);
830 i
= extract_component (gsi
, rhs
, 1, false);
832 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
833 t
= gimple_build_assign (x
, r
);
834 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
836 if (stmt
== gsi_stmt (*gsi
))
838 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
839 gimple_assign_set_lhs (stmt
, x
);
840 gimple_assign_set_rhs1 (stmt
, i
);
844 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
845 t
= gimple_build_assign (x
, i
);
846 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
848 stmt
= gsi_stmt (*gsi
);
849 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
850 gimple_return_set_retval (stmt
, lhs
);
857 /* Expand complex addition to scalars:
858 a + b = (ar + br) + i(ai + bi)
859 a - b = (ar - br) + i(ai + bi)
863 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
864 tree ar
, tree ai
, tree br
, tree bi
,
866 complex_lattice_t al
, complex_lattice_t bl
)
870 switch (PAIR (al
, bl
))
872 case PAIR (ONLY_REAL
, ONLY_REAL
):
873 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
877 case PAIR (ONLY_REAL
, ONLY_IMAG
):
879 if (code
== MINUS_EXPR
)
880 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
885 case PAIR (ONLY_IMAG
, ONLY_REAL
):
886 if (code
== MINUS_EXPR
)
887 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
893 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
895 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
898 case PAIR (VARYING
, ONLY_REAL
):
899 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
903 case PAIR (VARYING
, ONLY_IMAG
):
905 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
908 case PAIR (ONLY_REAL
, VARYING
):
909 if (code
== MINUS_EXPR
)
911 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
915 case PAIR (ONLY_IMAG
, VARYING
):
916 if (code
== MINUS_EXPR
)
919 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
922 case PAIR (VARYING
, VARYING
):
924 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
925 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
932 update_complex_assignment (gsi
, rr
, ri
);
935 /* Expand a complex multiplication or division to a libcall to the c99
936 compliant routines. */
939 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
940 tree br
, tree bi
, enum tree_code code
)
942 enum machine_mode mode
;
943 enum built_in_function bcode
;
945 gimple old_stmt
, stmt
;
947 old_stmt
= gsi_stmt (*gsi
);
948 lhs
= gimple_assign_lhs (old_stmt
);
949 type
= TREE_TYPE (lhs
);
951 mode
= TYPE_MODE (type
);
952 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
954 if (code
== MULT_EXPR
)
955 bcode
= ((enum built_in_function
)
956 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
957 else if (code
== RDIV_EXPR
)
958 bcode
= ((enum built_in_function
)
959 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
962 fn
= builtin_decl_explicit (bcode
);
964 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
965 gimple_call_set_lhs (stmt
, lhs
);
967 gsi_replace (gsi
, stmt
, false);
969 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
970 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
972 if (gimple_in_ssa_p (cfun
))
974 type
= TREE_TYPE (type
);
975 update_complex_components (gsi
, stmt
,
976 build1 (REALPART_EXPR
, type
, lhs
),
977 build1 (IMAGPART_EXPR
, type
, lhs
));
978 SSA_NAME_DEF_STMT (lhs
) = stmt
;
982 /* Expand complex multiplication to scalars:
983 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
987 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
988 tree ar
, tree ai
, tree br
, tree bi
,
989 complex_lattice_t al
, complex_lattice_t bl
)
995 complex_lattice_t tl
;
996 rr
= ar
, ar
= br
, br
= rr
;
997 ri
= ai
, ai
= bi
, bi
= ri
;
998 tl
= al
, al
= bl
, bl
= tl
;
1001 switch (PAIR (al
, bl
))
1003 case PAIR (ONLY_REAL
, ONLY_REAL
):
1004 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1008 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1010 if (TREE_CODE (ai
) == REAL_CST
1011 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai
), dconst1
))
1014 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1017 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1018 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1019 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1023 case PAIR (VARYING
, ONLY_REAL
):
1024 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1025 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1028 case PAIR (VARYING
, ONLY_IMAG
):
1029 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1030 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1031 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1034 case PAIR (VARYING
, VARYING
):
1035 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1037 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1042 tree t1
, t2
, t3
, t4
;
1044 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1045 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1046 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1048 /* Avoid expanding redundant multiplication for the common
1049 case of squaring a complex number. */
1050 if (ar
== br
&& ai
== bi
)
1053 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1055 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1056 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1064 update_complex_assignment (gsi
, rr
, ri
);
1067 /* Keep this algorithm in sync with fold-const.c:const_binop().
1069 Expand complex division to scalars, straightforward algorithm.
1070 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1075 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1076 tree ar
, tree ai
, tree br
, tree bi
,
1077 enum tree_code code
)
1079 tree rr
, ri
, div
, t1
, t2
, t3
;
1081 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1082 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1083 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1085 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1086 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1087 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1088 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1090 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1091 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1092 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1093 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1095 update_complex_assignment (gsi
, rr
, ri
);
1098 /* Keep this algorithm in sync with fold-const.c:const_binop().
1100 Expand complex division to scalars, modified algorithm to minimize
1101 overflow with wide input ranges. */
1104 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1105 tree ar
, tree ai
, tree br
, tree bi
,
1106 enum tree_code code
)
1108 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1109 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1112 /* Examine |br| < |bi|, and branch. */
1113 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1114 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1115 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1116 LT_EXPR
, boolean_type_node
, t1
, t2
);
1117 STRIP_NOPS (compare
);
1119 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1120 rr
= ri
= tr
= ti
= NULL
;
1121 if (TREE_CODE (compare
) != INTEGER_CST
)
1127 tmp
= create_tmp_var (boolean_type_node
, NULL
);
1128 stmt
= gimple_build_assign (tmp
, compare
);
1129 if (gimple_in_ssa_p (cfun
))
1131 tmp
= make_ssa_name (tmp
, stmt
);
1132 gimple_assign_set_lhs (stmt
, tmp
);
1135 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1137 cond
= fold_build2_loc (gimple_location (stmt
),
1138 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1139 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1140 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1142 /* Split the original block, and create the TRUE and FALSE blocks. */
1143 e
= split_block (gsi_bb (*gsi
), stmt
);
1146 bb_true
= create_empty_bb (bb_cond
);
1147 bb_false
= create_empty_bb (bb_true
);
1149 /* Wire the blocks together. */
1150 e
->flags
= EDGE_TRUE_VALUE
;
1151 redirect_edge_succ (e
, bb_true
);
1152 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1153 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1154 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1157 add_bb_to_loop (bb_true
, bb_cond
->loop_father
);
1158 add_bb_to_loop (bb_false
, bb_cond
->loop_father
);
1161 /* Update dominance info. Note that bb_join's data was
1162 updated by split_block. */
1163 if (dom_info_available_p (CDI_DOMINATORS
))
1165 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1166 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1169 rr
= create_tmp_reg (inner_type
, NULL
);
1170 ri
= create_tmp_reg (inner_type
, NULL
);
1173 /* In the TRUE branch, we compute
1175 div = (br * ratio) + bi;
1176 tr = (ar * ratio) + ai;
1177 ti = (ai * ratio) - ar;
1180 if (bb_true
|| integer_nonzerop (compare
))
1184 *gsi
= gsi_last_bb (bb_true
);
1185 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1188 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1190 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1191 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1193 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1194 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1196 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1197 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1199 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1200 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1204 stmt
= gimple_build_assign (rr
, tr
);
1205 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1206 stmt
= gimple_build_assign (ri
, ti
);
1207 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1208 gsi_remove (gsi
, true);
1212 /* In the FALSE branch, we compute
1214 divisor = (d * ratio) + c;
1215 tr = (b * ratio) + a;
1216 ti = b - (a * ratio);
1219 if (bb_false
|| integer_zerop (compare
))
1223 *gsi
= gsi_last_bb (bb_false
);
1224 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1227 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1229 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1230 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1232 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1233 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1235 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1236 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1238 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1239 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1243 stmt
= gimple_build_assign (rr
, tr
);
1244 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1245 stmt
= gimple_build_assign (ri
, ti
);
1246 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1247 gsi_remove (gsi
, true);
1252 *gsi
= gsi_start_bb (bb_join
);
1256 update_complex_assignment (gsi
, rr
, ri
);
1259 /* Expand complex division to scalars. */
1262 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1263 tree ar
, tree ai
, tree br
, tree bi
,
1264 enum tree_code code
,
1265 complex_lattice_t al
, complex_lattice_t bl
)
1269 switch (PAIR (al
, bl
))
1271 case PAIR (ONLY_REAL
, ONLY_REAL
):
1272 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1276 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1278 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1279 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1282 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1284 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1287 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1288 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1292 case PAIR (VARYING
, ONLY_REAL
):
1293 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1294 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1297 case PAIR (VARYING
, ONLY_IMAG
):
1298 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1299 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1300 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1302 case PAIR (ONLY_REAL
, VARYING
):
1303 case PAIR (ONLY_IMAG
, VARYING
):
1304 case PAIR (VARYING
, VARYING
):
1305 switch (flag_complex_method
)
1308 /* straightforward implementation of complex divide acceptable. */
1309 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1313 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1315 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1321 /* wide ranges of inputs must work for complex divide. */
1322 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1334 update_complex_assignment (gsi
, rr
, ri
);
1337 /* Expand complex negation to scalars:
1342 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1347 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1348 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1350 update_complex_assignment (gsi
, rr
, ri
);
1353 /* Expand complex conjugate to scalars:
1358 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1363 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1365 update_complex_assignment (gsi
, ar
, ri
);
1368 /* Expand complex comparison (EQ or NE only). */
1371 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1372 tree br
, tree bi
, enum tree_code code
)
1374 tree cr
, ci
, cc
, type
;
1377 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1378 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1379 cc
= gimplify_build2 (gsi
,
1380 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1381 boolean_type_node
, cr
, ci
);
1383 stmt
= gsi_stmt (*gsi
);
1385 switch (gimple_code (stmt
))
1388 type
= TREE_TYPE (gimple_return_retval (stmt
));
1389 gimple_return_set_retval (stmt
, fold_convert (type
, cc
));
1393 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1394 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1395 stmt
= gsi_stmt (*gsi
);
1399 gimple_cond_set_code (stmt
, EQ_EXPR
);
1400 gimple_cond_set_lhs (stmt
, cc
);
1401 gimple_cond_set_rhs (stmt
, boolean_true_node
);
1411 /* Expand inline asm that sets some complex SSA_NAMEs. */
1414 expand_complex_asm (gimple_stmt_iterator
*gsi
)
1416 gimple stmt
= gsi_stmt (*gsi
);
1419 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
1421 tree link
= gimple_asm_output_op (stmt
, i
);
1422 tree op
= TREE_VALUE (link
);
1423 if (TREE_CODE (op
) == SSA_NAME
1424 && TREE_CODE (TREE_TYPE (op
)) == COMPLEX_TYPE
)
1426 tree type
= TREE_TYPE (op
);
1427 tree inner_type
= TREE_TYPE (type
);
1428 tree r
= build1 (REALPART_EXPR
, inner_type
, op
);
1429 tree i
= build1 (IMAGPART_EXPR
, inner_type
, op
);
1430 gimple_seq list
= set_component_ssa_name (op
, false, r
);
1433 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1435 list
= set_component_ssa_name (op
, true, i
);
1437 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1442 /* Process one statement. If we identify a complex operation, expand it. */
1445 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1447 gimple stmt
= gsi_stmt (*gsi
);
1448 tree type
, inner_type
, lhs
;
1449 tree ac
, ar
, ai
, bc
, br
, bi
;
1450 complex_lattice_t al
, bl
;
1451 enum tree_code code
;
1453 if (gimple_code (stmt
) == GIMPLE_ASM
)
1455 expand_complex_asm (gsi
);
1459 lhs
= gimple_get_lhs (stmt
);
1460 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1463 type
= TREE_TYPE (gimple_op (stmt
, 0));
1464 code
= gimple_expr_code (stmt
);
1466 /* Initial filter for operations we handle. */
1472 case TRUNC_DIV_EXPR
:
1474 case FLOOR_DIV_EXPR
:
1475 case ROUND_DIV_EXPR
:
1479 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1481 inner_type
= TREE_TYPE (type
);
1486 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1487 subcode, so we need to access the operands using gimple_op. */
1488 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1489 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1497 /* GIMPLE_COND may also fallthru here, but we do not need to
1498 do anything with it. */
1499 if (gimple_code (stmt
) == GIMPLE_COND
)
1502 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1503 expand_complex_move (gsi
, type
);
1504 else if (is_gimple_assign (stmt
)
1505 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1506 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1507 && TREE_CODE (lhs
) == SSA_NAME
)
1509 rhs
= gimple_assign_rhs1 (stmt
);
1510 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1511 gimple_assign_rhs_code (stmt
)
1514 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1515 stmt
= gsi_stmt (*gsi
);
1522 /* Extract the components of the two complex values. Make sure and
1523 handle the common case of the same value used twice specially. */
1524 if (is_gimple_assign (stmt
))
1526 ac
= gimple_assign_rhs1 (stmt
);
1527 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1529 /* GIMPLE_CALL can not get here. */
1532 ac
= gimple_cond_lhs (stmt
);
1533 bc
= gimple_cond_rhs (stmt
);
1536 ar
= extract_component (gsi
, ac
, false, true);
1537 ai
= extract_component (gsi
, ac
, true, true);
1543 br
= extract_component (gsi
, bc
, 0, true);
1544 bi
= extract_component (gsi
, bc
, 1, true);
1547 br
= bi
= NULL_TREE
;
1549 if (gimple_in_ssa_p (cfun
))
1551 al
= find_lattice_value (ac
);
1552 if (al
== UNINITIALIZED
)
1555 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1561 bl
= find_lattice_value (bc
);
1562 if (bl
== UNINITIALIZED
)
1573 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1577 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1580 case TRUNC_DIV_EXPR
:
1582 case FLOOR_DIV_EXPR
:
1583 case ROUND_DIV_EXPR
:
1585 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1589 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1593 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1598 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1607 /* Entry point for complex operation lowering during optimization. */
1610 tree_lower_complex (void)
1612 int old_last_basic_block
;
1613 gimple_stmt_iterator gsi
;
1616 if (!init_dont_simulate_again ())
1619 complex_lattice_values
.create (num_ssa_names
);
1620 complex_lattice_values
.safe_grow_cleared (num_ssa_names
);
1622 init_parameter_lattice_values ();
1623 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1625 complex_variable_components
.create (10);
1627 complex_ssa_name_components
.create (2 * num_ssa_names
);
1628 complex_ssa_name_components
.safe_grow_cleared (2 * num_ssa_names
);
1630 update_parameter_components ();
1632 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1633 old_last_basic_block
= last_basic_block
;
1636 if (bb
->index
>= old_last_basic_block
)
1639 update_phi_components (bb
);
1640 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1641 expand_complex_operations_1 (&gsi
);
1644 gsi_commit_edge_inserts ();
1646 complex_variable_components
.dispose ();
1647 complex_ssa_name_components
.release ();
1648 complex_lattice_values
.release ();
1654 const pass_data pass_data_lower_complex
=
1656 GIMPLE_PASS
, /* type */
1657 "cplxlower", /* name */
1658 OPTGROUP_NONE
, /* optinfo_flags */
1659 false, /* has_gate */
1660 true, /* has_execute */
1661 TV_NONE
, /* tv_id */
1662 PROP_ssa
, /* properties_required */
1663 PROP_gimple_lcx
, /* properties_provided */
1664 0, /* properties_destroyed */
1665 0, /* todo_flags_start */
1666 ( TODO_update_ssa
| TODO_verify_stmts
), /* todo_flags_finish */
1669 class pass_lower_complex
: public gimple_opt_pass
1672 pass_lower_complex (gcc::context
*ctxt
)
1673 : gimple_opt_pass (pass_data_lower_complex
, ctxt
)
1676 /* opt_pass methods: */
1677 opt_pass
* clone () { return new pass_lower_complex (m_ctxt
); }
1678 unsigned int execute () { return tree_lower_complex (); }
1680 }; // class pass_lower_complex
1685 make_pass_lower_complex (gcc::context
*ctxt
)
1687 return new pass_lower_complex (ctxt
);
1692 gate_no_optimization (void)
1694 /* With errors, normal optimization passes are not run. If we don't
1695 lower complex operations at all, rtl expansion will abort. */
1696 return !(cfun
->curr_properties
& PROP_gimple_lcx
);
1701 const pass_data pass_data_lower_complex_O0
=
1703 GIMPLE_PASS
, /* type */
1704 "cplxlower0", /* name */
1705 OPTGROUP_NONE
, /* optinfo_flags */
1706 true, /* has_gate */
1707 true, /* has_execute */
1708 TV_NONE
, /* tv_id */
1709 PROP_cfg
, /* properties_required */
1710 PROP_gimple_lcx
, /* properties_provided */
1711 0, /* properties_destroyed */
1712 0, /* todo_flags_start */
1713 ( TODO_update_ssa
| TODO_verify_stmts
), /* todo_flags_finish */
1716 class pass_lower_complex_O0
: public gimple_opt_pass
1719 pass_lower_complex_O0 (gcc::context
*ctxt
)
1720 : gimple_opt_pass (pass_data_lower_complex_O0
, ctxt
)
1723 /* opt_pass methods: */
1724 bool gate () { return gate_no_optimization (); }
1725 unsigned int execute () { return tree_lower_complex (); }
1727 }; // class pass_lower_complex_O0
1732 make_pass_lower_complex_O0 (gcc::context
*ctxt
)
1734 return new pass_lower_complex_O0 (ctxt
);