2013-11-21 Edward Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / stor-layout.c
blob6138b63d2d9fa96cf2d1bc00ed6f458f40864732
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "diagnostic-core.h"
36 #include "ggc.h"
37 #include "target.h"
38 #include "langhooks.h"
39 #include "regs.h"
40 #include "params.h"
41 #include "cgraph.h"
42 #include "tree-inline.h"
43 #include "tree-dump.h"
44 #include "gimple.h"
45 #include "gimplify.h"
47 /* Data type for the expressions representing sizes of data types.
48 It is the first integer type laid out. */
49 tree sizetype_tab[(int) stk_type_kind_last];
51 /* If nonzero, this is an upper limit on alignment of structure fields.
52 The value is measured in bits. */
53 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
55 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
56 in the address spaces' address_mode, not pointer_mode. Set only by
57 internal_reference_types called only by a front end. */
58 static int reference_types_internal = 0;
60 static tree self_referential_size (tree);
61 static void finalize_record_size (record_layout_info);
62 static void finalize_type_size (tree);
63 static void place_union_field (record_layout_info, tree);
64 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
65 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
66 HOST_WIDE_INT, tree);
67 #endif
68 extern void debug_rli (record_layout_info);
70 /* Show that REFERENCE_TYPES are internal and should use address_mode.
71 Called only by front end. */
73 void
74 internal_reference_types (void)
76 reference_types_internal = 1;
79 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
80 to serve as the actual size-expression for a type or decl. */
82 tree
83 variable_size (tree size)
85 /* Obviously. */
86 if (TREE_CONSTANT (size))
87 return size;
89 /* If the size is self-referential, we can't make a SAVE_EXPR (see
90 save_expr for the rationale). But we can do something else. */
91 if (CONTAINS_PLACEHOLDER_P (size))
92 return self_referential_size (size);
94 /* If we are in the global binding level, we can't make a SAVE_EXPR
95 since it may end up being shared across functions, so it is up
96 to the front-end to deal with this case. */
97 if (lang_hooks.decls.global_bindings_p ())
98 return size;
100 return save_expr (size);
103 /* An array of functions used for self-referential size computation. */
104 static GTY(()) vec<tree, va_gc> *size_functions;
106 /* Similar to copy_tree_r but do not copy component references involving
107 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
108 and substituted in substitute_in_expr. */
110 static tree
111 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
113 enum tree_code code = TREE_CODE (*tp);
115 /* Stop at types, decls, constants like copy_tree_r. */
116 if (TREE_CODE_CLASS (code) == tcc_type
117 || TREE_CODE_CLASS (code) == tcc_declaration
118 || TREE_CODE_CLASS (code) == tcc_constant)
120 *walk_subtrees = 0;
121 return NULL_TREE;
124 /* This is the pattern built in ada/make_aligning_type. */
125 else if (code == ADDR_EXPR
126 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
128 *walk_subtrees = 0;
129 return NULL_TREE;
132 /* Default case: the component reference. */
133 else if (code == COMPONENT_REF)
135 tree inner;
136 for (inner = TREE_OPERAND (*tp, 0);
137 REFERENCE_CLASS_P (inner);
138 inner = TREE_OPERAND (inner, 0))
141 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
143 *walk_subtrees = 0;
144 return NULL_TREE;
148 /* We're not supposed to have them in self-referential size trees
149 because we wouldn't properly control when they are evaluated.
150 However, not creating superfluous SAVE_EXPRs requires accurate
151 tracking of readonly-ness all the way down to here, which we
152 cannot always guarantee in practice. So punt in this case. */
153 else if (code == SAVE_EXPR)
154 return error_mark_node;
156 else if (code == STATEMENT_LIST)
157 gcc_unreachable ();
159 return copy_tree_r (tp, walk_subtrees, data);
162 /* Given a SIZE expression that is self-referential, return an equivalent
163 expression to serve as the actual size expression for a type. */
165 static tree
166 self_referential_size (tree size)
168 static unsigned HOST_WIDE_INT fnno = 0;
169 vec<tree> self_refs = vNULL;
170 tree param_type_list = NULL, param_decl_list = NULL;
171 tree t, ref, return_type, fntype, fnname, fndecl;
172 unsigned int i;
173 char buf[128];
174 vec<tree, va_gc> *args = NULL;
176 /* Do not factor out simple operations. */
177 t = skip_simple_constant_arithmetic (size);
178 if (TREE_CODE (t) == CALL_EXPR)
179 return size;
181 /* Collect the list of self-references in the expression. */
182 find_placeholder_in_expr (size, &self_refs);
183 gcc_assert (self_refs.length () > 0);
185 /* Obtain a private copy of the expression. */
186 t = size;
187 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
188 return size;
189 size = t;
191 /* Build the parameter and argument lists in parallel; also
192 substitute the former for the latter in the expression. */
193 vec_alloc (args, self_refs.length ());
194 FOR_EACH_VEC_ELT (self_refs, i, ref)
196 tree subst, param_name, param_type, param_decl;
198 if (DECL_P (ref))
200 /* We shouldn't have true variables here. */
201 gcc_assert (TREE_READONLY (ref));
202 subst = ref;
204 /* This is the pattern built in ada/make_aligning_type. */
205 else if (TREE_CODE (ref) == ADDR_EXPR)
206 subst = ref;
207 /* Default case: the component reference. */
208 else
209 subst = TREE_OPERAND (ref, 1);
211 sprintf (buf, "p%d", i);
212 param_name = get_identifier (buf);
213 param_type = TREE_TYPE (ref);
214 param_decl
215 = build_decl (input_location, PARM_DECL, param_name, param_type);
216 if (targetm.calls.promote_prototypes (NULL_TREE)
217 && INTEGRAL_TYPE_P (param_type)
218 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
219 DECL_ARG_TYPE (param_decl) = integer_type_node;
220 else
221 DECL_ARG_TYPE (param_decl) = param_type;
222 DECL_ARTIFICIAL (param_decl) = 1;
223 TREE_READONLY (param_decl) = 1;
225 size = substitute_in_expr (size, subst, param_decl);
227 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
228 param_decl_list = chainon (param_decl, param_decl_list);
229 args->quick_push (ref);
232 self_refs.release ();
234 /* Append 'void' to indicate that the number of parameters is fixed. */
235 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
237 /* The 3 lists have been created in reverse order. */
238 param_type_list = nreverse (param_type_list);
239 param_decl_list = nreverse (param_decl_list);
241 /* Build the function type. */
242 return_type = TREE_TYPE (size);
243 fntype = build_function_type (return_type, param_type_list);
245 /* Build the function declaration. */
246 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
247 fnname = get_file_function_name (buf);
248 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
249 for (t = param_decl_list; t; t = DECL_CHAIN (t))
250 DECL_CONTEXT (t) = fndecl;
251 DECL_ARGUMENTS (fndecl) = param_decl_list;
252 DECL_RESULT (fndecl)
253 = build_decl (input_location, RESULT_DECL, 0, return_type);
254 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
256 /* The function has been created by the compiler and we don't
257 want to emit debug info for it. */
258 DECL_ARTIFICIAL (fndecl) = 1;
259 DECL_IGNORED_P (fndecl) = 1;
261 /* It is supposed to be "const" and never throw. */
262 TREE_READONLY (fndecl) = 1;
263 TREE_NOTHROW (fndecl) = 1;
265 /* We want it to be inlined when this is deemed profitable, as
266 well as discarded if every call has been integrated. */
267 DECL_DECLARED_INLINE_P (fndecl) = 1;
269 /* It is made up of a unique return statement. */
270 DECL_INITIAL (fndecl) = make_node (BLOCK);
271 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
272 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
273 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
274 TREE_STATIC (fndecl) = 1;
276 /* Put it onto the list of size functions. */
277 vec_safe_push (size_functions, fndecl);
279 /* Replace the original expression with a call to the size function. */
280 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
283 /* Take, queue and compile all the size functions. It is essential that
284 the size functions be gimplified at the very end of the compilation
285 in order to guarantee transparent handling of self-referential sizes.
286 Otherwise the GENERIC inliner would not be able to inline them back
287 at each of their call sites, thus creating artificial non-constant
288 size expressions which would trigger nasty problems later on. */
290 void
291 finalize_size_functions (void)
293 unsigned int i;
294 tree fndecl;
296 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
298 allocate_struct_function (fndecl, false);
299 set_cfun (NULL);
300 dump_function (TDI_original, fndecl);
301 gimplify_function_tree (fndecl);
302 dump_function (TDI_generic, fndecl);
303 cgraph_finalize_function (fndecl, false);
306 vec_free (size_functions);
309 /* Return the machine mode to use for a nonscalar of SIZE bits. The
310 mode must be in class MCLASS, and have exactly that many value bits;
311 it may have padding as well. If LIMIT is nonzero, modes of wider
312 than MAX_FIXED_MODE_SIZE will not be used. */
314 enum machine_mode
315 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
317 enum machine_mode mode;
319 if (limit && size > MAX_FIXED_MODE_SIZE)
320 return BLKmode;
322 /* Get the first mode which has this size, in the specified class. */
323 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
324 mode = GET_MODE_WIDER_MODE (mode))
325 if (GET_MODE_PRECISION (mode) == size)
326 return mode;
328 return BLKmode;
331 /* Similar, except passed a tree node. */
333 enum machine_mode
334 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
336 unsigned HOST_WIDE_INT uhwi;
337 unsigned int ui;
339 if (!tree_fits_uhwi_p (size))
340 return BLKmode;
341 uhwi = tree_to_uhwi (size);
342 ui = uhwi;
343 if (uhwi != ui)
344 return BLKmode;
345 return mode_for_size (ui, mclass, limit);
348 /* Similar, but never return BLKmode; return the narrowest mode that
349 contains at least the requested number of value bits. */
351 enum machine_mode
352 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
354 enum machine_mode mode;
356 /* Get the first mode which has at least this size, in the
357 specified class. */
358 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
359 mode = GET_MODE_WIDER_MODE (mode))
360 if (GET_MODE_PRECISION (mode) >= size)
361 return mode;
363 gcc_unreachable ();
366 /* Find an integer mode of the exact same size, or BLKmode on failure. */
368 enum machine_mode
369 int_mode_for_mode (enum machine_mode mode)
371 switch (GET_MODE_CLASS (mode))
373 case MODE_INT:
374 case MODE_PARTIAL_INT:
375 break;
377 case MODE_COMPLEX_INT:
378 case MODE_COMPLEX_FLOAT:
379 case MODE_FLOAT:
380 case MODE_DECIMAL_FLOAT:
381 case MODE_VECTOR_INT:
382 case MODE_VECTOR_FLOAT:
383 case MODE_FRACT:
384 case MODE_ACCUM:
385 case MODE_UFRACT:
386 case MODE_UACCUM:
387 case MODE_VECTOR_FRACT:
388 case MODE_VECTOR_ACCUM:
389 case MODE_VECTOR_UFRACT:
390 case MODE_VECTOR_UACCUM:
391 case MODE_POINTER_BOUNDS:
392 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
393 break;
395 case MODE_RANDOM:
396 if (mode == BLKmode)
397 break;
399 /* ... fall through ... */
401 case MODE_CC:
402 default:
403 gcc_unreachable ();
406 return mode;
409 /* Find a mode that is suitable for representing a vector with
410 NUNITS elements of mode INNERMODE. Returns BLKmode if there
411 is no suitable mode. */
413 enum machine_mode
414 mode_for_vector (enum machine_mode innermode, unsigned nunits)
416 enum machine_mode mode;
418 /* First, look for a supported vector type. */
419 if (SCALAR_FLOAT_MODE_P (innermode))
420 mode = MIN_MODE_VECTOR_FLOAT;
421 else if (SCALAR_FRACT_MODE_P (innermode))
422 mode = MIN_MODE_VECTOR_FRACT;
423 else if (SCALAR_UFRACT_MODE_P (innermode))
424 mode = MIN_MODE_VECTOR_UFRACT;
425 else if (SCALAR_ACCUM_MODE_P (innermode))
426 mode = MIN_MODE_VECTOR_ACCUM;
427 else if (SCALAR_UACCUM_MODE_P (innermode))
428 mode = MIN_MODE_VECTOR_UACCUM;
429 else
430 mode = MIN_MODE_VECTOR_INT;
432 /* Do not check vector_mode_supported_p here. We'll do that
433 later in vector_type_mode. */
434 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
435 if (GET_MODE_NUNITS (mode) == nunits
436 && GET_MODE_INNER (mode) == innermode)
437 break;
439 /* For integers, try mapping it to a same-sized scalar mode. */
440 if (mode == VOIDmode
441 && GET_MODE_CLASS (innermode) == MODE_INT)
442 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
443 MODE_INT, 0);
445 if (mode == VOIDmode
446 || (GET_MODE_CLASS (mode) == MODE_INT
447 && !have_regs_of_mode[mode]))
448 return BLKmode;
450 return mode;
453 /* Return the alignment of MODE. This will be bounded by 1 and
454 BIGGEST_ALIGNMENT. */
456 unsigned int
457 get_mode_alignment (enum machine_mode mode)
459 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
462 /* Return the precision of the mode, or for a complex or vector mode the
463 precision of the mode of its elements. */
465 unsigned int
466 element_precision (enum machine_mode mode)
468 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
469 mode = GET_MODE_INNER (mode);
471 return GET_MODE_PRECISION (mode);
474 /* Return the natural mode of an array, given that it is SIZE bytes in
475 total and has elements of type ELEM_TYPE. */
477 static enum machine_mode
478 mode_for_array (tree elem_type, tree size)
480 tree elem_size;
481 unsigned HOST_WIDE_INT int_size, int_elem_size;
482 bool limit_p;
484 /* One-element arrays get the component type's mode. */
485 elem_size = TYPE_SIZE (elem_type);
486 if (simple_cst_equal (size, elem_size))
487 return TYPE_MODE (elem_type);
489 limit_p = true;
490 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
492 int_size = tree_to_uhwi (size);
493 int_elem_size = tree_to_uhwi (elem_size);
494 if (int_elem_size > 0
495 && int_size % int_elem_size == 0
496 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
497 int_size / int_elem_size))
498 limit_p = false;
500 return mode_for_size_tree (size, MODE_INT, limit_p);
503 /* Subroutine of layout_decl: Force alignment required for the data type.
504 But if the decl itself wants greater alignment, don't override that. */
506 static inline void
507 do_type_align (tree type, tree decl)
509 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
511 DECL_ALIGN (decl) = TYPE_ALIGN (type);
512 if (TREE_CODE (decl) == FIELD_DECL)
513 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
517 /* Set the size, mode and alignment of a ..._DECL node.
518 TYPE_DECL does need this for C++.
519 Note that LABEL_DECL and CONST_DECL nodes do not need this,
520 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
521 Don't call layout_decl for them.
523 KNOWN_ALIGN is the amount of alignment we can assume this
524 decl has with no special effort. It is relevant only for FIELD_DECLs
525 and depends on the previous fields.
526 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
527 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
528 the record will be aligned to suit. */
530 void
531 layout_decl (tree decl, unsigned int known_align)
533 tree type = TREE_TYPE (decl);
534 enum tree_code code = TREE_CODE (decl);
535 rtx rtl = NULL_RTX;
536 location_t loc = DECL_SOURCE_LOCATION (decl);
538 if (code == CONST_DECL)
539 return;
541 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
542 || code == TYPE_DECL ||code == FIELD_DECL);
544 rtl = DECL_RTL_IF_SET (decl);
546 if (type == error_mark_node)
547 type = void_type_node;
549 /* Usually the size and mode come from the data type without change,
550 however, the front-end may set the explicit width of the field, so its
551 size may not be the same as the size of its type. This happens with
552 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
553 also happens with other fields. For example, the C++ front-end creates
554 zero-sized fields corresponding to empty base classes, and depends on
555 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
556 size in bytes from the size in bits. If we have already set the mode,
557 don't set it again since we can be called twice for FIELD_DECLs. */
559 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
560 if (DECL_MODE (decl) == VOIDmode)
561 DECL_MODE (decl) = TYPE_MODE (type);
563 if (DECL_SIZE (decl) == 0)
565 DECL_SIZE (decl) = TYPE_SIZE (type);
566 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
568 else if (DECL_SIZE_UNIT (decl) == 0)
569 DECL_SIZE_UNIT (decl)
570 = fold_convert_loc (loc, sizetype,
571 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
572 bitsize_unit_node));
574 if (code != FIELD_DECL)
575 /* For non-fields, update the alignment from the type. */
576 do_type_align (type, decl);
577 else
578 /* For fields, it's a bit more complicated... */
580 bool old_user_align = DECL_USER_ALIGN (decl);
581 bool zero_bitfield = false;
582 bool packed_p = DECL_PACKED (decl);
583 unsigned int mfa;
585 if (DECL_BIT_FIELD (decl))
587 DECL_BIT_FIELD_TYPE (decl) = type;
589 /* A zero-length bit-field affects the alignment of the next
590 field. In essence such bit-fields are not influenced by
591 any packing due to #pragma pack or attribute packed. */
592 if (integer_zerop (DECL_SIZE (decl))
593 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
595 zero_bitfield = true;
596 packed_p = false;
597 #ifdef PCC_BITFIELD_TYPE_MATTERS
598 if (PCC_BITFIELD_TYPE_MATTERS)
599 do_type_align (type, decl);
600 else
601 #endif
603 #ifdef EMPTY_FIELD_BOUNDARY
604 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
606 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
607 DECL_USER_ALIGN (decl) = 0;
609 #endif
613 /* See if we can use an ordinary integer mode for a bit-field.
614 Conditions are: a fixed size that is correct for another mode,
615 occupying a complete byte or bytes on proper boundary. */
616 if (TYPE_SIZE (type) != 0
617 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
618 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
620 enum machine_mode xmode
621 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
622 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
624 if (xmode != BLKmode
625 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
626 && (known_align == 0 || known_align >= xalign))
628 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
629 DECL_MODE (decl) = xmode;
630 DECL_BIT_FIELD (decl) = 0;
634 /* Turn off DECL_BIT_FIELD if we won't need it set. */
635 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
636 && known_align >= TYPE_ALIGN (type)
637 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
638 DECL_BIT_FIELD (decl) = 0;
640 else if (packed_p && DECL_USER_ALIGN (decl))
641 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
642 round up; we'll reduce it again below. We want packing to
643 supersede USER_ALIGN inherited from the type, but defer to
644 alignment explicitly specified on the field decl. */;
645 else
646 do_type_align (type, decl);
648 /* If the field is packed and not explicitly aligned, give it the
649 minimum alignment. Note that do_type_align may set
650 DECL_USER_ALIGN, so we need to check old_user_align instead. */
651 if (packed_p
652 && !old_user_align)
653 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
655 if (! packed_p && ! DECL_USER_ALIGN (decl))
657 /* Some targets (i.e. i386, VMS) limit struct field alignment
658 to a lower boundary than alignment of variables unless
659 it was overridden by attribute aligned. */
660 #ifdef BIGGEST_FIELD_ALIGNMENT
661 DECL_ALIGN (decl)
662 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
663 #endif
664 #ifdef ADJUST_FIELD_ALIGN
665 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
666 #endif
669 if (zero_bitfield)
670 mfa = initial_max_fld_align * BITS_PER_UNIT;
671 else
672 mfa = maximum_field_alignment;
673 /* Should this be controlled by DECL_USER_ALIGN, too? */
674 if (mfa != 0)
675 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
678 /* Evaluate nonconstant size only once, either now or as soon as safe. */
679 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
680 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
681 if (DECL_SIZE_UNIT (decl) != 0
682 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
683 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
685 /* If requested, warn about definitions of large data objects. */
686 if (warn_larger_than
687 && (code == VAR_DECL || code == PARM_DECL)
688 && ! DECL_EXTERNAL (decl))
690 tree size = DECL_SIZE_UNIT (decl);
692 if (size != 0 && TREE_CODE (size) == INTEGER_CST
693 && compare_tree_int (size, larger_than_size) > 0)
695 int size_as_int = TREE_INT_CST_LOW (size);
697 if (compare_tree_int (size, size_as_int) == 0)
698 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
699 else
700 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
701 decl, larger_than_size);
705 /* If the RTL was already set, update its mode and mem attributes. */
706 if (rtl)
708 PUT_MODE (rtl, DECL_MODE (decl));
709 SET_DECL_RTL (decl, 0);
710 set_mem_attributes (rtl, decl, 1);
711 SET_DECL_RTL (decl, rtl);
715 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
716 a previous call to layout_decl and calls it again. */
718 void
719 relayout_decl (tree decl)
721 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
722 DECL_MODE (decl) = VOIDmode;
723 if (!DECL_USER_ALIGN (decl))
724 DECL_ALIGN (decl) = 0;
725 SET_DECL_RTL (decl, 0);
727 layout_decl (decl, 0);
730 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
731 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
732 is to be passed to all other layout functions for this record. It is the
733 responsibility of the caller to call `free' for the storage returned.
734 Note that garbage collection is not permitted until we finish laying
735 out the record. */
737 record_layout_info
738 start_record_layout (tree t)
740 record_layout_info rli = XNEW (struct record_layout_info_s);
742 rli->t = t;
744 /* If the type has a minimum specified alignment (via an attribute
745 declaration, for example) use it -- otherwise, start with a
746 one-byte alignment. */
747 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
748 rli->unpacked_align = rli->record_align;
749 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
751 #ifdef STRUCTURE_SIZE_BOUNDARY
752 /* Packed structures don't need to have minimum size. */
753 if (! TYPE_PACKED (t))
755 unsigned tmp;
757 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
758 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
759 if (maximum_field_alignment != 0)
760 tmp = MIN (tmp, maximum_field_alignment);
761 rli->record_align = MAX (rli->record_align, tmp);
763 #endif
765 rli->offset = size_zero_node;
766 rli->bitpos = bitsize_zero_node;
767 rli->prev_field = 0;
768 rli->pending_statics = 0;
769 rli->packed_maybe_necessary = 0;
770 rli->remaining_in_alignment = 0;
772 return rli;
775 /* Return the combined bit position for the byte offset OFFSET and the
776 bit position BITPOS.
778 These functions operate on byte and bit positions present in FIELD_DECLs
779 and assume that these expressions result in no (intermediate) overflow.
780 This assumption is necessary to fold the expressions as much as possible,
781 so as to avoid creating artificially variable-sized types in languages
782 supporting variable-sized types like Ada. */
784 tree
785 bit_from_pos (tree offset, tree bitpos)
787 if (TREE_CODE (offset) == PLUS_EXPR)
788 offset = size_binop (PLUS_EXPR,
789 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
790 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
791 else
792 offset = fold_convert (bitsizetype, offset);
793 return size_binop (PLUS_EXPR, bitpos,
794 size_binop (MULT_EXPR, offset, bitsize_unit_node));
797 /* Return the combined truncated byte position for the byte offset OFFSET and
798 the bit position BITPOS. */
800 tree
801 byte_from_pos (tree offset, tree bitpos)
803 tree bytepos;
804 if (TREE_CODE (bitpos) == MULT_EXPR
805 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
806 bytepos = TREE_OPERAND (bitpos, 0);
807 else
808 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
809 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
812 /* Split the bit position POS into a byte offset *POFFSET and a bit
813 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
815 void
816 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
817 tree pos)
819 tree toff_align = bitsize_int (off_align);
820 if (TREE_CODE (pos) == MULT_EXPR
821 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
823 *poffset = size_binop (MULT_EXPR,
824 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
825 size_int (off_align / BITS_PER_UNIT));
826 *pbitpos = bitsize_zero_node;
828 else
830 *poffset = size_binop (MULT_EXPR,
831 fold_convert (sizetype,
832 size_binop (FLOOR_DIV_EXPR, pos,
833 toff_align)),
834 size_int (off_align / BITS_PER_UNIT));
835 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
839 /* Given a pointer to bit and byte offsets and an offset alignment,
840 normalize the offsets so they are within the alignment. */
842 void
843 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
845 /* If the bit position is now larger than it should be, adjust it
846 downwards. */
847 if (compare_tree_int (*pbitpos, off_align) >= 0)
849 tree offset, bitpos;
850 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
851 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
852 *pbitpos = bitpos;
856 /* Print debugging information about the information in RLI. */
858 DEBUG_FUNCTION void
859 debug_rli (record_layout_info rli)
861 print_node_brief (stderr, "type", rli->t, 0);
862 print_node_brief (stderr, "\noffset", rli->offset, 0);
863 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
865 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
866 rli->record_align, rli->unpacked_align,
867 rli->offset_align);
869 /* The ms_struct code is the only that uses this. */
870 if (targetm.ms_bitfield_layout_p (rli->t))
871 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
873 if (rli->packed_maybe_necessary)
874 fprintf (stderr, "packed may be necessary\n");
876 if (!vec_safe_is_empty (rli->pending_statics))
878 fprintf (stderr, "pending statics:\n");
879 debug_vec_tree (rli->pending_statics);
883 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
884 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
886 void
887 normalize_rli (record_layout_info rli)
889 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
892 /* Returns the size in bytes allocated so far. */
894 tree
895 rli_size_unit_so_far (record_layout_info rli)
897 return byte_from_pos (rli->offset, rli->bitpos);
900 /* Returns the size in bits allocated so far. */
902 tree
903 rli_size_so_far (record_layout_info rli)
905 return bit_from_pos (rli->offset, rli->bitpos);
908 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
909 the next available location within the record is given by KNOWN_ALIGN.
910 Update the variable alignment fields in RLI, and return the alignment
911 to give the FIELD. */
913 unsigned int
914 update_alignment_for_field (record_layout_info rli, tree field,
915 unsigned int known_align)
917 /* The alignment required for FIELD. */
918 unsigned int desired_align;
919 /* The type of this field. */
920 tree type = TREE_TYPE (field);
921 /* True if the field was explicitly aligned by the user. */
922 bool user_align;
923 bool is_bitfield;
925 /* Do not attempt to align an ERROR_MARK node */
926 if (TREE_CODE (type) == ERROR_MARK)
927 return 0;
929 /* Lay out the field so we know what alignment it needs. */
930 layout_decl (field, known_align);
931 desired_align = DECL_ALIGN (field);
932 user_align = DECL_USER_ALIGN (field);
934 is_bitfield = (type != error_mark_node
935 && DECL_BIT_FIELD_TYPE (field)
936 && ! integer_zerop (TYPE_SIZE (type)));
938 /* Record must have at least as much alignment as any field.
939 Otherwise, the alignment of the field within the record is
940 meaningless. */
941 if (targetm.ms_bitfield_layout_p (rli->t))
943 /* Here, the alignment of the underlying type of a bitfield can
944 affect the alignment of a record; even a zero-sized field
945 can do this. The alignment should be to the alignment of
946 the type, except that for zero-size bitfields this only
947 applies if there was an immediately prior, nonzero-size
948 bitfield. (That's the way it is, experimentally.) */
949 if ((!is_bitfield && !DECL_PACKED (field))
950 || ((DECL_SIZE (field) == NULL_TREE
951 || !integer_zerop (DECL_SIZE (field)))
952 ? !DECL_PACKED (field)
953 : (rli->prev_field
954 && DECL_BIT_FIELD_TYPE (rli->prev_field)
955 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
957 unsigned int type_align = TYPE_ALIGN (type);
958 type_align = MAX (type_align, desired_align);
959 if (maximum_field_alignment != 0)
960 type_align = MIN (type_align, maximum_field_alignment);
961 rli->record_align = MAX (rli->record_align, type_align);
962 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
965 #ifdef PCC_BITFIELD_TYPE_MATTERS
966 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
968 /* Named bit-fields cause the entire structure to have the
969 alignment implied by their type. Some targets also apply the same
970 rules to unnamed bitfields. */
971 if (DECL_NAME (field) != 0
972 || targetm.align_anon_bitfield ())
974 unsigned int type_align = TYPE_ALIGN (type);
976 #ifdef ADJUST_FIELD_ALIGN
977 if (! TYPE_USER_ALIGN (type))
978 type_align = ADJUST_FIELD_ALIGN (field, type_align);
979 #endif
981 /* Targets might chose to handle unnamed and hence possibly
982 zero-width bitfield. Those are not influenced by #pragmas
983 or packed attributes. */
984 if (integer_zerop (DECL_SIZE (field)))
986 if (initial_max_fld_align)
987 type_align = MIN (type_align,
988 initial_max_fld_align * BITS_PER_UNIT);
990 else if (maximum_field_alignment != 0)
991 type_align = MIN (type_align, maximum_field_alignment);
992 else if (DECL_PACKED (field))
993 type_align = MIN (type_align, BITS_PER_UNIT);
995 /* The alignment of the record is increased to the maximum
996 of the current alignment, the alignment indicated on the
997 field (i.e., the alignment specified by an __aligned__
998 attribute), and the alignment indicated by the type of
999 the field. */
1000 rli->record_align = MAX (rli->record_align, desired_align);
1001 rli->record_align = MAX (rli->record_align, type_align);
1003 if (warn_packed)
1004 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1005 user_align |= TYPE_USER_ALIGN (type);
1008 #endif
1009 else
1011 rli->record_align = MAX (rli->record_align, desired_align);
1012 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1015 TYPE_USER_ALIGN (rli->t) |= user_align;
1017 return desired_align;
1020 /* Called from place_field to handle unions. */
1022 static void
1023 place_union_field (record_layout_info rli, tree field)
1025 update_alignment_for_field (rli, field, /*known_align=*/0);
1027 DECL_FIELD_OFFSET (field) = size_zero_node;
1028 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1029 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1031 /* If this is an ERROR_MARK return *after* having set the
1032 field at the start of the union. This helps when parsing
1033 invalid fields. */
1034 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1035 return;
1037 /* We assume the union's size will be a multiple of a byte so we don't
1038 bother with BITPOS. */
1039 if (TREE_CODE (rli->t) == UNION_TYPE)
1040 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1041 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1042 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1043 DECL_SIZE_UNIT (field), rli->offset);
1046 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1047 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1048 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1049 units of alignment than the underlying TYPE. */
1050 static int
1051 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1052 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1054 /* Note that the calculation of OFFSET might overflow; we calculate it so
1055 that we still get the right result as long as ALIGN is a power of two. */
1056 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1058 offset = offset % align;
1059 return ((offset + size + align - 1) / align
1060 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1062 #endif
1064 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1065 is a FIELD_DECL to be added after those fields already present in
1066 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1067 callers that desire that behavior must manually perform that step.) */
1069 void
1070 place_field (record_layout_info rli, tree field)
1072 /* The alignment required for FIELD. */
1073 unsigned int desired_align;
1074 /* The alignment FIELD would have if we just dropped it into the
1075 record as it presently stands. */
1076 unsigned int known_align;
1077 unsigned int actual_align;
1078 /* The type of this field. */
1079 tree type = TREE_TYPE (field);
1081 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1083 /* If FIELD is static, then treat it like a separate variable, not
1084 really like a structure field. If it is a FUNCTION_DECL, it's a
1085 method. In both cases, all we do is lay out the decl, and we do
1086 it *after* the record is laid out. */
1087 if (TREE_CODE (field) == VAR_DECL)
1089 vec_safe_push (rli->pending_statics, field);
1090 return;
1093 /* Enumerators and enum types which are local to this class need not
1094 be laid out. Likewise for initialized constant fields. */
1095 else if (TREE_CODE (field) != FIELD_DECL)
1096 return;
1098 /* Unions are laid out very differently than records, so split
1099 that code off to another function. */
1100 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1102 place_union_field (rli, field);
1103 return;
1106 else if (TREE_CODE (type) == ERROR_MARK)
1108 /* Place this field at the current allocation position, so we
1109 maintain monotonicity. */
1110 DECL_FIELD_OFFSET (field) = rli->offset;
1111 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1112 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1113 return;
1116 /* Work out the known alignment so far. Note that A & (-A) is the
1117 value of the least-significant bit in A that is one. */
1118 if (! integer_zerop (rli->bitpos))
1119 known_align = (tree_to_uhwi (rli->bitpos)
1120 & - tree_to_uhwi (rli->bitpos));
1121 else if (integer_zerop (rli->offset))
1122 known_align = 0;
1123 else if (tree_fits_uhwi_p (rli->offset))
1124 known_align = (BITS_PER_UNIT
1125 * (tree_to_uhwi (rli->offset)
1126 & - tree_to_uhwi (rli->offset)));
1127 else
1128 known_align = rli->offset_align;
1130 desired_align = update_alignment_for_field (rli, field, known_align);
1131 if (known_align == 0)
1132 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1134 if (warn_packed && DECL_PACKED (field))
1136 if (known_align >= TYPE_ALIGN (type))
1138 if (TYPE_ALIGN (type) > desired_align)
1140 if (STRICT_ALIGNMENT)
1141 warning (OPT_Wattributes, "packed attribute causes "
1142 "inefficient alignment for %q+D", field);
1143 /* Don't warn if DECL_PACKED was set by the type. */
1144 else if (!TYPE_PACKED (rli->t))
1145 warning (OPT_Wattributes, "packed attribute is "
1146 "unnecessary for %q+D", field);
1149 else
1150 rli->packed_maybe_necessary = 1;
1153 /* Does this field automatically have alignment it needs by virtue
1154 of the fields that precede it and the record's own alignment? */
1155 if (known_align < desired_align)
1157 /* No, we need to skip space before this field.
1158 Bump the cumulative size to multiple of field alignment. */
1160 if (!targetm.ms_bitfield_layout_p (rli->t)
1161 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1162 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1164 /* If the alignment is still within offset_align, just align
1165 the bit position. */
1166 if (desired_align < rli->offset_align)
1167 rli->bitpos = round_up (rli->bitpos, desired_align);
1168 else
1170 /* First adjust OFFSET by the partial bits, then align. */
1171 rli->offset
1172 = size_binop (PLUS_EXPR, rli->offset,
1173 fold_convert (sizetype,
1174 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1175 bitsize_unit_node)));
1176 rli->bitpos = bitsize_zero_node;
1178 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1181 if (! TREE_CONSTANT (rli->offset))
1182 rli->offset_align = desired_align;
1183 if (targetm.ms_bitfield_layout_p (rli->t))
1184 rli->prev_field = NULL;
1187 /* Handle compatibility with PCC. Note that if the record has any
1188 variable-sized fields, we need not worry about compatibility. */
1189 #ifdef PCC_BITFIELD_TYPE_MATTERS
1190 if (PCC_BITFIELD_TYPE_MATTERS
1191 && ! targetm.ms_bitfield_layout_p (rli->t)
1192 && TREE_CODE (field) == FIELD_DECL
1193 && type != error_mark_node
1194 && DECL_BIT_FIELD (field)
1195 && (! DECL_PACKED (field)
1196 /* Enter for these packed fields only to issue a warning. */
1197 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1198 && maximum_field_alignment == 0
1199 && ! integer_zerop (DECL_SIZE (field))
1200 && tree_fits_uhwi_p (DECL_SIZE (field))
1201 && tree_fits_uhwi_p (rli->offset)
1202 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1204 unsigned int type_align = TYPE_ALIGN (type);
1205 tree dsize = DECL_SIZE (field);
1206 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1207 HOST_WIDE_INT offset = tree_to_shwi (rli->offset);
1208 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1210 #ifdef ADJUST_FIELD_ALIGN
1211 if (! TYPE_USER_ALIGN (type))
1212 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1213 #endif
1215 /* A bit field may not span more units of alignment of its type
1216 than its type itself. Advance to next boundary if necessary. */
1217 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1219 if (DECL_PACKED (field))
1221 if (warn_packed_bitfield_compat == 1)
1222 inform
1223 (input_location,
1224 "offset of packed bit-field %qD has changed in GCC 4.4",
1225 field);
1227 else
1228 rli->bitpos = round_up (rli->bitpos, type_align);
1231 if (! DECL_PACKED (field))
1232 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1234 #endif
1236 #ifdef BITFIELD_NBYTES_LIMITED
1237 if (BITFIELD_NBYTES_LIMITED
1238 && ! targetm.ms_bitfield_layout_p (rli->t)
1239 && TREE_CODE (field) == FIELD_DECL
1240 && type != error_mark_node
1241 && DECL_BIT_FIELD_TYPE (field)
1242 && ! DECL_PACKED (field)
1243 && ! integer_zerop (DECL_SIZE (field))
1244 && tree_fits_uhwi_p (DECL_SIZE (field))
1245 && tree_fits_uhwi_p (rli->offset)
1246 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1248 unsigned int type_align = TYPE_ALIGN (type);
1249 tree dsize = DECL_SIZE (field);
1250 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1251 HOST_WIDE_INT offset = tree_to_shwi (rli->offset);
1252 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1254 #ifdef ADJUST_FIELD_ALIGN
1255 if (! TYPE_USER_ALIGN (type))
1256 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1257 #endif
1259 if (maximum_field_alignment != 0)
1260 type_align = MIN (type_align, maximum_field_alignment);
1261 /* ??? This test is opposite the test in the containing if
1262 statement, so this code is unreachable currently. */
1263 else if (DECL_PACKED (field))
1264 type_align = MIN (type_align, BITS_PER_UNIT);
1266 /* A bit field may not span the unit of alignment of its type.
1267 Advance to next boundary if necessary. */
1268 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1269 rli->bitpos = round_up (rli->bitpos, type_align);
1271 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1273 #endif
1275 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1276 A subtlety:
1277 When a bit field is inserted into a packed record, the whole
1278 size of the underlying type is used by one or more same-size
1279 adjacent bitfields. (That is, if its long:3, 32 bits is
1280 used in the record, and any additional adjacent long bitfields are
1281 packed into the same chunk of 32 bits. However, if the size
1282 changes, a new field of that size is allocated.) In an unpacked
1283 record, this is the same as using alignment, but not equivalent
1284 when packing.
1286 Note: for compatibility, we use the type size, not the type alignment
1287 to determine alignment, since that matches the documentation */
1289 if (targetm.ms_bitfield_layout_p (rli->t))
1291 tree prev_saved = rli->prev_field;
1292 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1294 /* This is a bitfield if it exists. */
1295 if (rli->prev_field)
1297 /* If both are bitfields, nonzero, and the same size, this is
1298 the middle of a run. Zero declared size fields are special
1299 and handled as "end of run". (Note: it's nonzero declared
1300 size, but equal type sizes!) (Since we know that both
1301 the current and previous fields are bitfields by the
1302 time we check it, DECL_SIZE must be present for both.) */
1303 if (DECL_BIT_FIELD_TYPE (field)
1304 && !integer_zerop (DECL_SIZE (field))
1305 && !integer_zerop (DECL_SIZE (rli->prev_field))
1306 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1307 && tree_fits_shwi_p (TYPE_SIZE (type))
1308 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1310 /* We're in the middle of a run of equal type size fields; make
1311 sure we realign if we run out of bits. (Not decl size,
1312 type size!) */
1313 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1315 if (rli->remaining_in_alignment < bitsize)
1317 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1319 /* out of bits; bump up to next 'word'. */
1320 rli->bitpos
1321 = size_binop (PLUS_EXPR, rli->bitpos,
1322 bitsize_int (rli->remaining_in_alignment));
1323 rli->prev_field = field;
1324 if (typesize < bitsize)
1325 rli->remaining_in_alignment = 0;
1326 else
1327 rli->remaining_in_alignment = typesize - bitsize;
1329 else
1330 rli->remaining_in_alignment -= bitsize;
1332 else
1334 /* End of a run: if leaving a run of bitfields of the same type
1335 size, we have to "use up" the rest of the bits of the type
1336 size.
1338 Compute the new position as the sum of the size for the prior
1339 type and where we first started working on that type.
1340 Note: since the beginning of the field was aligned then
1341 of course the end will be too. No round needed. */
1343 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1345 rli->bitpos
1346 = size_binop (PLUS_EXPR, rli->bitpos,
1347 bitsize_int (rli->remaining_in_alignment));
1349 else
1350 /* We "use up" size zero fields; the code below should behave
1351 as if the prior field was not a bitfield. */
1352 prev_saved = NULL;
1354 /* Cause a new bitfield to be captured, either this time (if
1355 currently a bitfield) or next time we see one. */
1356 if (!DECL_BIT_FIELD_TYPE (field)
1357 || integer_zerop (DECL_SIZE (field)))
1358 rli->prev_field = NULL;
1361 normalize_rli (rli);
1364 /* If we're starting a new run of same type size bitfields
1365 (or a run of non-bitfields), set up the "first of the run"
1366 fields.
1368 That is, if the current field is not a bitfield, or if there
1369 was a prior bitfield the type sizes differ, or if there wasn't
1370 a prior bitfield the size of the current field is nonzero.
1372 Note: we must be sure to test ONLY the type size if there was
1373 a prior bitfield and ONLY for the current field being zero if
1374 there wasn't. */
1376 if (!DECL_BIT_FIELD_TYPE (field)
1377 || (prev_saved != NULL
1378 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1379 : !integer_zerop (DECL_SIZE (field)) ))
1381 /* Never smaller than a byte for compatibility. */
1382 unsigned int type_align = BITS_PER_UNIT;
1384 /* (When not a bitfield), we could be seeing a flex array (with
1385 no DECL_SIZE). Since we won't be using remaining_in_alignment
1386 until we see a bitfield (and come by here again) we just skip
1387 calculating it. */
1388 if (DECL_SIZE (field) != NULL
1389 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1390 && tree_fits_uhwi_p (DECL_SIZE (field)))
1392 unsigned HOST_WIDE_INT bitsize
1393 = tree_to_uhwi (DECL_SIZE (field));
1394 unsigned HOST_WIDE_INT typesize
1395 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1397 if (typesize < bitsize)
1398 rli->remaining_in_alignment = 0;
1399 else
1400 rli->remaining_in_alignment = typesize - bitsize;
1403 /* Now align (conventionally) for the new type. */
1404 type_align = TYPE_ALIGN (TREE_TYPE (field));
1406 if (maximum_field_alignment != 0)
1407 type_align = MIN (type_align, maximum_field_alignment);
1409 rli->bitpos = round_up (rli->bitpos, type_align);
1411 /* If we really aligned, don't allow subsequent bitfields
1412 to undo that. */
1413 rli->prev_field = NULL;
1417 /* Offset so far becomes the position of this field after normalizing. */
1418 normalize_rli (rli);
1419 DECL_FIELD_OFFSET (field) = rli->offset;
1420 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1421 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1423 /* If this field ended up more aligned than we thought it would be (we
1424 approximate this by seeing if its position changed), lay out the field
1425 again; perhaps we can use an integral mode for it now. */
1426 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1427 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1428 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1429 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1430 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1431 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1432 actual_align = (BITS_PER_UNIT
1433 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1434 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1435 else
1436 actual_align = DECL_OFFSET_ALIGN (field);
1437 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1438 store / extract bit field operations will check the alignment of the
1439 record against the mode of bit fields. */
1441 if (known_align != actual_align)
1442 layout_decl (field, actual_align);
1444 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1445 rli->prev_field = field;
1447 /* Now add size of this field to the size of the record. If the size is
1448 not constant, treat the field as being a multiple of bytes and just
1449 adjust the offset, resetting the bit position. Otherwise, apportion the
1450 size amongst the bit position and offset. First handle the case of an
1451 unspecified size, which can happen when we have an invalid nested struct
1452 definition, such as struct j { struct j { int i; } }. The error message
1453 is printed in finish_struct. */
1454 if (DECL_SIZE (field) == 0)
1455 /* Do nothing. */;
1456 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1457 || TREE_OVERFLOW (DECL_SIZE (field)))
1459 rli->offset
1460 = size_binop (PLUS_EXPR, rli->offset,
1461 fold_convert (sizetype,
1462 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1463 bitsize_unit_node)));
1464 rli->offset
1465 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1466 rli->bitpos = bitsize_zero_node;
1467 rli->offset_align = MIN (rli->offset_align, desired_align);
1469 else if (targetm.ms_bitfield_layout_p (rli->t))
1471 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1473 /* If we ended a bitfield before the full length of the type then
1474 pad the struct out to the full length of the last type. */
1475 if ((DECL_CHAIN (field) == NULL
1476 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1477 && DECL_BIT_FIELD_TYPE (field)
1478 && !integer_zerop (DECL_SIZE (field)))
1479 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1480 bitsize_int (rli->remaining_in_alignment));
1482 normalize_rli (rli);
1484 else
1486 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1487 normalize_rli (rli);
1491 /* Assuming that all the fields have been laid out, this function uses
1492 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1493 indicated by RLI. */
1495 static void
1496 finalize_record_size (record_layout_info rli)
1498 tree unpadded_size, unpadded_size_unit;
1500 /* Now we want just byte and bit offsets, so set the offset alignment
1501 to be a byte and then normalize. */
1502 rli->offset_align = BITS_PER_UNIT;
1503 normalize_rli (rli);
1505 /* Determine the desired alignment. */
1506 #ifdef ROUND_TYPE_ALIGN
1507 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1508 rli->record_align);
1509 #else
1510 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1511 #endif
1513 /* Compute the size so far. Be sure to allow for extra bits in the
1514 size in bytes. We have guaranteed above that it will be no more
1515 than a single byte. */
1516 unpadded_size = rli_size_so_far (rli);
1517 unpadded_size_unit = rli_size_unit_so_far (rli);
1518 if (! integer_zerop (rli->bitpos))
1519 unpadded_size_unit
1520 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1522 /* Round the size up to be a multiple of the required alignment. */
1523 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1524 TYPE_SIZE_UNIT (rli->t)
1525 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1527 if (TREE_CONSTANT (unpadded_size)
1528 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1529 && input_location != BUILTINS_LOCATION)
1530 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1532 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1533 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1534 && TREE_CONSTANT (unpadded_size))
1536 tree unpacked_size;
1538 #ifdef ROUND_TYPE_ALIGN
1539 rli->unpacked_align
1540 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1541 #else
1542 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1543 #endif
1545 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1546 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1548 if (TYPE_NAME (rli->t))
1550 tree name;
1552 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1553 name = TYPE_NAME (rli->t);
1554 else
1555 name = DECL_NAME (TYPE_NAME (rli->t));
1557 if (STRICT_ALIGNMENT)
1558 warning (OPT_Wpacked, "packed attribute causes inefficient "
1559 "alignment for %qE", name);
1560 else
1561 warning (OPT_Wpacked,
1562 "packed attribute is unnecessary for %qE", name);
1564 else
1566 if (STRICT_ALIGNMENT)
1567 warning (OPT_Wpacked,
1568 "packed attribute causes inefficient alignment");
1569 else
1570 warning (OPT_Wpacked, "packed attribute is unnecessary");
1576 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1578 void
1579 compute_record_mode (tree type)
1581 tree field;
1582 enum machine_mode mode = VOIDmode;
1584 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1585 However, if possible, we use a mode that fits in a register
1586 instead, in order to allow for better optimization down the
1587 line. */
1588 SET_TYPE_MODE (type, BLKmode);
1590 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1591 return;
1593 /* A record which has any BLKmode members must itself be
1594 BLKmode; it can't go in a register. Unless the member is
1595 BLKmode only because it isn't aligned. */
1596 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1598 if (TREE_CODE (field) != FIELD_DECL)
1599 continue;
1601 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1602 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1603 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1604 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1605 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1606 || ! tree_fits_uhwi_p (bit_position (field))
1607 || DECL_SIZE (field) == 0
1608 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1609 return;
1611 /* If this field is the whole struct, remember its mode so
1612 that, say, we can put a double in a class into a DF
1613 register instead of forcing it to live in the stack. */
1614 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1615 mode = DECL_MODE (field);
1617 /* With some targets, it is sub-optimal to access an aligned
1618 BLKmode structure as a scalar. */
1619 if (targetm.member_type_forces_blk (field, mode))
1620 return;
1623 /* If we only have one real field; use its mode if that mode's size
1624 matches the type's size. This only applies to RECORD_TYPE. This
1625 does not apply to unions. */
1626 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1627 && tree_fits_uhwi_p (TYPE_SIZE (type))
1628 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1629 SET_TYPE_MODE (type, mode);
1630 else
1631 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1633 /* If structure's known alignment is less than what the scalar
1634 mode would need, and it matters, then stick with BLKmode. */
1635 if (TYPE_MODE (type) != BLKmode
1636 && STRICT_ALIGNMENT
1637 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1638 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1640 /* If this is the only reason this type is BLKmode, then
1641 don't force containing types to be BLKmode. */
1642 TYPE_NO_FORCE_BLK (type) = 1;
1643 SET_TYPE_MODE (type, BLKmode);
1647 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1648 out. */
1650 static void
1651 finalize_type_size (tree type)
1653 /* Normally, use the alignment corresponding to the mode chosen.
1654 However, where strict alignment is not required, avoid
1655 over-aligning structures, since most compilers do not do this
1656 alignment. */
1658 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1659 && (STRICT_ALIGNMENT
1660 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1661 && TREE_CODE (type) != QUAL_UNION_TYPE
1662 && TREE_CODE (type) != ARRAY_TYPE)))
1664 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1666 /* Don't override a larger alignment requirement coming from a user
1667 alignment of one of the fields. */
1668 if (mode_align >= TYPE_ALIGN (type))
1670 TYPE_ALIGN (type) = mode_align;
1671 TYPE_USER_ALIGN (type) = 0;
1675 /* Do machine-dependent extra alignment. */
1676 #ifdef ROUND_TYPE_ALIGN
1677 TYPE_ALIGN (type)
1678 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1679 #endif
1681 /* If we failed to find a simple way to calculate the unit size
1682 of the type, find it by division. */
1683 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1684 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1685 result will fit in sizetype. We will get more efficient code using
1686 sizetype, so we force a conversion. */
1687 TYPE_SIZE_UNIT (type)
1688 = fold_convert (sizetype,
1689 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1690 bitsize_unit_node));
1692 if (TYPE_SIZE (type) != 0)
1694 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1695 TYPE_SIZE_UNIT (type)
1696 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1699 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1700 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1701 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1702 if (TYPE_SIZE_UNIT (type) != 0
1703 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1704 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1706 /* Also layout any other variants of the type. */
1707 if (TYPE_NEXT_VARIANT (type)
1708 || type != TYPE_MAIN_VARIANT (type))
1710 tree variant;
1711 /* Record layout info of this variant. */
1712 tree size = TYPE_SIZE (type);
1713 tree size_unit = TYPE_SIZE_UNIT (type);
1714 unsigned int align = TYPE_ALIGN (type);
1715 unsigned int user_align = TYPE_USER_ALIGN (type);
1716 enum machine_mode mode = TYPE_MODE (type);
1718 /* Copy it into all variants. */
1719 for (variant = TYPE_MAIN_VARIANT (type);
1720 variant != 0;
1721 variant = TYPE_NEXT_VARIANT (variant))
1723 TYPE_SIZE (variant) = size;
1724 TYPE_SIZE_UNIT (variant) = size_unit;
1725 TYPE_ALIGN (variant) = align;
1726 TYPE_USER_ALIGN (variant) = user_align;
1727 SET_TYPE_MODE (variant, mode);
1732 /* Return a new underlying object for a bitfield started with FIELD. */
1734 static tree
1735 start_bitfield_representative (tree field)
1737 tree repr = make_node (FIELD_DECL);
1738 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1739 /* Force the representative to begin at a BITS_PER_UNIT aligned
1740 boundary - C++ may use tail-padding of a base object to
1741 continue packing bits so the bitfield region does not start
1742 at bit zero (see g++.dg/abi/bitfield5.C for example).
1743 Unallocated bits may happen for other reasons as well,
1744 for example Ada which allows explicit bit-granular structure layout. */
1745 DECL_FIELD_BIT_OFFSET (repr)
1746 = size_binop (BIT_AND_EXPR,
1747 DECL_FIELD_BIT_OFFSET (field),
1748 bitsize_int (~(BITS_PER_UNIT - 1)));
1749 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1750 DECL_SIZE (repr) = DECL_SIZE (field);
1751 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1752 DECL_PACKED (repr) = DECL_PACKED (field);
1753 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1754 return repr;
1757 /* Finish up a bitfield group that was started by creating the underlying
1758 object REPR with the last field in the bitfield group FIELD. */
1760 static void
1761 finish_bitfield_representative (tree repr, tree field)
1763 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1764 enum machine_mode mode;
1765 tree nextf, size;
1767 size = size_diffop (DECL_FIELD_OFFSET (field),
1768 DECL_FIELD_OFFSET (repr));
1769 gcc_assert (tree_fits_uhwi_p (size));
1770 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1771 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1772 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1773 + tree_to_uhwi (DECL_SIZE (field)));
1775 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1776 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1778 /* Now nothing tells us how to pad out bitsize ... */
1779 nextf = DECL_CHAIN (field);
1780 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1781 nextf = DECL_CHAIN (nextf);
1782 if (nextf)
1784 tree maxsize;
1785 /* If there was an error, the field may be not laid out
1786 correctly. Don't bother to do anything. */
1787 if (TREE_TYPE (nextf) == error_mark_node)
1788 return;
1789 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1790 DECL_FIELD_OFFSET (repr));
1791 if (tree_fits_uhwi_p (maxsize))
1793 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1794 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1795 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1796 /* If the group ends within a bitfield nextf does not need to be
1797 aligned to BITS_PER_UNIT. Thus round up. */
1798 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1800 else
1801 maxbitsize = bitsize;
1803 else
1805 /* ??? If you consider that tail-padding of this struct might be
1806 re-used when deriving from it we cannot really do the following
1807 and thus need to set maxsize to bitsize? Also we cannot
1808 generally rely on maxsize to fold to an integer constant, so
1809 use bitsize as fallback for this case. */
1810 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1811 DECL_FIELD_OFFSET (repr));
1812 if (tree_fits_uhwi_p (maxsize))
1813 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1814 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1815 else
1816 maxbitsize = bitsize;
1819 /* Only if we don't artificially break up the representative in
1820 the middle of a large bitfield with different possibly
1821 overlapping representatives. And all representatives start
1822 at byte offset. */
1823 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1825 /* Find the smallest nice mode to use. */
1826 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1827 mode = GET_MODE_WIDER_MODE (mode))
1828 if (GET_MODE_BITSIZE (mode) >= bitsize)
1829 break;
1830 if (mode != VOIDmode
1831 && (GET_MODE_BITSIZE (mode) > maxbitsize
1832 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1833 mode = VOIDmode;
1835 if (mode == VOIDmode)
1837 /* We really want a BLKmode representative only as a last resort,
1838 considering the member b in
1839 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1840 Otherwise we simply want to split the representative up
1841 allowing for overlaps within the bitfield region as required for
1842 struct { int a : 7; int b : 7;
1843 int c : 10; int d; } __attribute__((packed));
1844 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1845 DECL_SIZE (repr) = bitsize_int (bitsize);
1846 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1847 DECL_MODE (repr) = BLKmode;
1848 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1849 bitsize / BITS_PER_UNIT);
1851 else
1853 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1854 DECL_SIZE (repr) = bitsize_int (modesize);
1855 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1856 DECL_MODE (repr) = mode;
1857 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1860 /* Remember whether the bitfield group is at the end of the
1861 structure or not. */
1862 DECL_CHAIN (repr) = nextf;
1865 /* Compute and set FIELD_DECLs for the underlying objects we should
1866 use for bitfield access for the structure laid out with RLI. */
1868 static void
1869 finish_bitfield_layout (record_layout_info rli)
1871 tree field, prev;
1872 tree repr = NULL_TREE;
1874 /* Unions would be special, for the ease of type-punning optimizations
1875 we could use the underlying type as hint for the representative
1876 if the bitfield would fit and the representative would not exceed
1877 the union in size. */
1878 if (TREE_CODE (rli->t) != RECORD_TYPE)
1879 return;
1881 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1882 field; field = DECL_CHAIN (field))
1884 if (TREE_CODE (field) != FIELD_DECL)
1885 continue;
1887 /* In the C++ memory model, consecutive bit fields in a structure are
1888 considered one memory location and updating a memory location
1889 may not store into adjacent memory locations. */
1890 if (!repr
1891 && DECL_BIT_FIELD_TYPE (field))
1893 /* Start new representative. */
1894 repr = start_bitfield_representative (field);
1896 else if (repr
1897 && ! DECL_BIT_FIELD_TYPE (field))
1899 /* Finish off new representative. */
1900 finish_bitfield_representative (repr, prev);
1901 repr = NULL_TREE;
1903 else if (DECL_BIT_FIELD_TYPE (field))
1905 gcc_assert (repr != NULL_TREE);
1907 /* Zero-size bitfields finish off a representative and
1908 do not have a representative themselves. This is
1909 required by the C++ memory model. */
1910 if (integer_zerop (DECL_SIZE (field)))
1912 finish_bitfield_representative (repr, prev);
1913 repr = NULL_TREE;
1916 /* We assume that either DECL_FIELD_OFFSET of the representative
1917 and each bitfield member is a constant or they are equal.
1918 This is because we need to be able to compute the bit-offset
1919 of each field relative to the representative in get_bit_range
1920 during RTL expansion.
1921 If these constraints are not met, simply force a new
1922 representative to be generated. That will at most
1923 generate worse code but still maintain correctness with
1924 respect to the C++ memory model. */
1925 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1926 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1927 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1928 DECL_FIELD_OFFSET (field), 0)))
1930 finish_bitfield_representative (repr, prev);
1931 repr = start_bitfield_representative (field);
1934 else
1935 continue;
1937 if (repr)
1938 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1940 prev = field;
1943 if (repr)
1944 finish_bitfield_representative (repr, prev);
1947 /* Do all of the work required to layout the type indicated by RLI,
1948 once the fields have been laid out. This function will call `free'
1949 for RLI, unless FREE_P is false. Passing a value other than false
1950 for FREE_P is bad practice; this option only exists to support the
1951 G++ 3.2 ABI. */
1953 void
1954 finish_record_layout (record_layout_info rli, int free_p)
1956 tree variant;
1958 /* Compute the final size. */
1959 finalize_record_size (rli);
1961 /* Compute the TYPE_MODE for the record. */
1962 compute_record_mode (rli->t);
1964 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1965 finalize_type_size (rli->t);
1967 /* Compute bitfield representatives. */
1968 finish_bitfield_layout (rli);
1970 /* Propagate TYPE_PACKED to variants. With C++ templates,
1971 handle_packed_attribute is too early to do this. */
1972 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1973 variant = TYPE_NEXT_VARIANT (variant))
1974 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1976 /* Lay out any static members. This is done now because their type
1977 may use the record's type. */
1978 while (!vec_safe_is_empty (rli->pending_statics))
1979 layout_decl (rli->pending_statics->pop (), 0);
1981 /* Clean up. */
1982 if (free_p)
1984 vec_free (rli->pending_statics);
1985 free (rli);
1990 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1991 NAME, its fields are chained in reverse on FIELDS.
1993 If ALIGN_TYPE is non-null, it is given the same alignment as
1994 ALIGN_TYPE. */
1996 void
1997 finish_builtin_struct (tree type, const char *name, tree fields,
1998 tree align_type)
2000 tree tail, next;
2002 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2004 DECL_FIELD_CONTEXT (fields) = type;
2005 next = DECL_CHAIN (fields);
2006 DECL_CHAIN (fields) = tail;
2008 TYPE_FIELDS (type) = tail;
2010 if (align_type)
2012 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2013 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2016 layout_type (type);
2017 #if 0 /* not yet, should get fixed properly later */
2018 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2019 #else
2020 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2021 TYPE_DECL, get_identifier (name), type);
2022 #endif
2023 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2024 layout_decl (TYPE_NAME (type), 0);
2027 /* Calculate the mode, size, and alignment for TYPE.
2028 For an array type, calculate the element separation as well.
2029 Record TYPE on the chain of permanent or temporary types
2030 so that dbxout will find out about it.
2032 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2033 layout_type does nothing on such a type.
2035 If the type is incomplete, its TYPE_SIZE remains zero. */
2037 void
2038 layout_type (tree type)
2040 gcc_assert (type);
2042 if (type == error_mark_node)
2043 return;
2045 /* Do nothing if type has been laid out before. */
2046 if (TYPE_SIZE (type))
2047 return;
2049 switch (TREE_CODE (type))
2051 case LANG_TYPE:
2052 /* This kind of type is the responsibility
2053 of the language-specific code. */
2054 gcc_unreachable ();
2056 case BOOLEAN_TYPE:
2057 case INTEGER_TYPE:
2058 case ENUMERAL_TYPE:
2059 SET_TYPE_MODE (type,
2060 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2061 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2062 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2063 break;
2065 case REAL_TYPE:
2066 SET_TYPE_MODE (type,
2067 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2068 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2069 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2070 break;
2072 case FIXED_POINT_TYPE:
2073 /* TYPE_MODE (type) has been set already. */
2074 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2075 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2076 break;
2078 case COMPLEX_TYPE:
2079 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2080 SET_TYPE_MODE (type,
2081 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2082 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2083 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2084 0));
2085 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2086 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2087 break;
2089 case VECTOR_TYPE:
2091 int nunits = TYPE_VECTOR_SUBPARTS (type);
2092 tree innertype = TREE_TYPE (type);
2094 gcc_assert (!(nunits & (nunits - 1)));
2096 /* Find an appropriate mode for the vector type. */
2097 if (TYPE_MODE (type) == VOIDmode)
2098 SET_TYPE_MODE (type,
2099 mode_for_vector (TYPE_MODE (innertype), nunits));
2101 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2102 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2103 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2104 TYPE_SIZE_UNIT (innertype),
2105 size_int (nunits));
2106 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2107 bitsize_int (nunits));
2109 /* For vector types, we do not default to the mode's alignment.
2110 Instead, query a target hook, defaulting to natural alignment.
2111 This prevents ABI changes depending on whether or not native
2112 vector modes are supported. */
2113 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2115 /* However, if the underlying mode requires a bigger alignment than
2116 what the target hook provides, we cannot use the mode. For now,
2117 simply reject that case. */
2118 gcc_assert (TYPE_ALIGN (type)
2119 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2120 break;
2123 case VOID_TYPE:
2124 /* This is an incomplete type and so doesn't have a size. */
2125 TYPE_ALIGN (type) = 1;
2126 TYPE_USER_ALIGN (type) = 0;
2127 SET_TYPE_MODE (type, VOIDmode);
2128 break;
2130 case POINTER_BOUNDS_TYPE:
2131 SET_TYPE_MODE (type,
2132 mode_for_size (TYPE_PRECISION (type),
2133 MODE_POINTER_BOUNDS, 0));
2134 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2135 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2136 break;
2138 case OFFSET_TYPE:
2139 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2140 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2141 /* A pointer might be MODE_PARTIAL_INT,
2142 but ptrdiff_t must be integral. */
2143 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2144 TYPE_PRECISION (type) = POINTER_SIZE;
2145 break;
2147 case FUNCTION_TYPE:
2148 case METHOD_TYPE:
2149 /* It's hard to see what the mode and size of a function ought to
2150 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2151 make it consistent with that. */
2152 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2153 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2154 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2155 break;
2157 case POINTER_TYPE:
2158 case REFERENCE_TYPE:
2160 enum machine_mode mode = TYPE_MODE (type);
2161 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2163 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2164 mode = targetm.addr_space.address_mode (as);
2167 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2168 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2169 TYPE_UNSIGNED (type) = 1;
2170 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2172 break;
2174 case ARRAY_TYPE:
2176 tree index = TYPE_DOMAIN (type);
2177 tree element = TREE_TYPE (type);
2179 build_pointer_type (element);
2181 /* We need to know both bounds in order to compute the size. */
2182 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2183 && TYPE_SIZE (element))
2185 tree ub = TYPE_MAX_VALUE (index);
2186 tree lb = TYPE_MIN_VALUE (index);
2187 tree element_size = TYPE_SIZE (element);
2188 tree length;
2190 /* Make sure that an array of zero-sized element is zero-sized
2191 regardless of its extent. */
2192 if (integer_zerop (element_size))
2193 length = size_zero_node;
2195 /* The computation should happen in the original signedness so
2196 that (possible) negative values are handled appropriately
2197 when determining overflow. */
2198 else
2200 /* ??? When it is obvious that the range is signed
2201 represent it using ssizetype. */
2202 if (TREE_CODE (lb) == INTEGER_CST
2203 && TREE_CODE (ub) == INTEGER_CST
2204 && TYPE_UNSIGNED (TREE_TYPE (lb))
2205 && tree_int_cst_lt (ub, lb))
2207 unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
2208 lb = double_int_to_tree
2209 (ssizetype,
2210 tree_to_double_int (lb).sext (prec));
2211 ub = double_int_to_tree
2212 (ssizetype,
2213 tree_to_double_int (ub).sext (prec));
2215 length
2216 = fold_convert (sizetype,
2217 size_binop (PLUS_EXPR,
2218 build_int_cst (TREE_TYPE (lb), 1),
2219 size_binop (MINUS_EXPR, ub, lb)));
2222 /* ??? We have no way to distinguish a null-sized array from an
2223 array spanning the whole sizetype range, so we arbitrarily
2224 decide that [0, -1] is the only valid representation. */
2225 if (integer_zerop (length)
2226 && TREE_OVERFLOW (length)
2227 && integer_zerop (lb))
2228 length = size_zero_node;
2230 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2231 fold_convert (bitsizetype,
2232 length));
2234 /* If we know the size of the element, calculate the total size
2235 directly, rather than do some division thing below. This
2236 optimization helps Fortran assumed-size arrays (where the
2237 size of the array is determined at runtime) substantially. */
2238 if (TYPE_SIZE_UNIT (element))
2239 TYPE_SIZE_UNIT (type)
2240 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2243 /* Now round the alignment and size,
2244 using machine-dependent criteria if any. */
2246 #ifdef ROUND_TYPE_ALIGN
2247 TYPE_ALIGN (type)
2248 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2249 #else
2250 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2251 #endif
2252 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2253 SET_TYPE_MODE (type, BLKmode);
2254 if (TYPE_SIZE (type) != 0
2255 && ! targetm.member_type_forces_blk (type, VOIDmode)
2256 /* BLKmode elements force BLKmode aggregate;
2257 else extract/store fields may lose. */
2258 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2259 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2261 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2262 TYPE_SIZE (type)));
2263 if (TYPE_MODE (type) != BLKmode
2264 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2265 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2267 TYPE_NO_FORCE_BLK (type) = 1;
2268 SET_TYPE_MODE (type, BLKmode);
2271 /* When the element size is constant, check that it is at least as
2272 large as the element alignment. */
2273 if (TYPE_SIZE_UNIT (element)
2274 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2275 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2276 TYPE_ALIGN_UNIT. */
2277 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2278 && !integer_zerop (TYPE_SIZE_UNIT (element))
2279 && compare_tree_int (TYPE_SIZE_UNIT (element),
2280 TYPE_ALIGN_UNIT (element)) < 0)
2281 error ("alignment of array elements is greater than element size");
2282 break;
2285 case RECORD_TYPE:
2286 case UNION_TYPE:
2287 case QUAL_UNION_TYPE:
2289 tree field;
2290 record_layout_info rli;
2292 /* Initialize the layout information. */
2293 rli = start_record_layout (type);
2295 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2296 in the reverse order in building the COND_EXPR that denotes
2297 its size. We reverse them again later. */
2298 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2299 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2301 /* Place all the fields. */
2302 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2303 place_field (rli, field);
2305 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2306 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2308 /* Finish laying out the record. */
2309 finish_record_layout (rli, /*free_p=*/true);
2311 break;
2313 default:
2314 gcc_unreachable ();
2317 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2318 records and unions, finish_record_layout already called this
2319 function. */
2320 if (TREE_CODE (type) != RECORD_TYPE
2321 && TREE_CODE (type) != UNION_TYPE
2322 && TREE_CODE (type) != QUAL_UNION_TYPE)
2323 finalize_type_size (type);
2325 /* We should never see alias sets on incomplete aggregates. And we
2326 should not call layout_type on not incomplete aggregates. */
2327 if (AGGREGATE_TYPE_P (type))
2328 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2331 /* Vector types need to re-check the target flags each time we report
2332 the machine mode. We need to do this because attribute target can
2333 change the result of vector_mode_supported_p and have_regs_of_mode
2334 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2335 change on a per-function basis. */
2336 /* ??? Possibly a better solution is to run through all the types
2337 referenced by a function and re-compute the TYPE_MODE once, rather
2338 than make the TYPE_MODE macro call a function. */
2340 enum machine_mode
2341 vector_type_mode (const_tree t)
2343 enum machine_mode mode;
2345 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2347 mode = t->type_common.mode;
2348 if (VECTOR_MODE_P (mode)
2349 && (!targetm.vector_mode_supported_p (mode)
2350 || !have_regs_of_mode[mode]))
2352 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2354 /* For integers, try mapping it to a same-sized scalar mode. */
2355 if (GET_MODE_CLASS (innermode) == MODE_INT)
2357 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2358 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2360 if (mode != VOIDmode && have_regs_of_mode[mode])
2361 return mode;
2364 return BLKmode;
2367 return mode;
2370 /* Create and return a type for signed integers of PRECISION bits. */
2372 tree
2373 make_signed_type (int precision)
2375 tree type = make_node (INTEGER_TYPE);
2377 TYPE_PRECISION (type) = precision;
2379 fixup_signed_type (type);
2380 return type;
2383 /* Create and return a type for unsigned integers of PRECISION bits. */
2385 tree
2386 make_unsigned_type (int precision)
2388 tree type = make_node (INTEGER_TYPE);
2390 TYPE_PRECISION (type) = precision;
2392 fixup_unsigned_type (type);
2393 return type;
2396 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2397 and SATP. */
2399 tree
2400 make_fract_type (int precision, int unsignedp, int satp)
2402 tree type = make_node (FIXED_POINT_TYPE);
2404 TYPE_PRECISION (type) = precision;
2406 if (satp)
2407 TYPE_SATURATING (type) = 1;
2409 /* Lay out the type: set its alignment, size, etc. */
2410 if (unsignedp)
2412 TYPE_UNSIGNED (type) = 1;
2413 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2415 else
2416 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2417 layout_type (type);
2419 return type;
2422 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2423 and SATP. */
2425 tree
2426 make_accum_type (int precision, int unsignedp, int satp)
2428 tree type = make_node (FIXED_POINT_TYPE);
2430 TYPE_PRECISION (type) = precision;
2432 if (satp)
2433 TYPE_SATURATING (type) = 1;
2435 /* Lay out the type: set its alignment, size, etc. */
2436 if (unsignedp)
2438 TYPE_UNSIGNED (type) = 1;
2439 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2441 else
2442 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2443 layout_type (type);
2445 return type;
2448 /* Initialize sizetypes so layout_type can use them. */
2450 void
2451 initialize_sizetypes (void)
2453 int precision, bprecision;
2455 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2456 if (strcmp (SIZETYPE, "unsigned int") == 0)
2457 precision = INT_TYPE_SIZE;
2458 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2459 precision = LONG_TYPE_SIZE;
2460 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2461 precision = LONG_LONG_TYPE_SIZE;
2462 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2463 precision = SHORT_TYPE_SIZE;
2464 else
2465 gcc_unreachable ();
2467 bprecision
2468 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2469 bprecision
2470 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2471 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2472 bprecision = HOST_BITS_PER_DOUBLE_INT;
2474 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2475 sizetype = make_node (INTEGER_TYPE);
2476 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2477 TYPE_PRECISION (sizetype) = precision;
2478 TYPE_UNSIGNED (sizetype) = 1;
2479 bitsizetype = make_node (INTEGER_TYPE);
2480 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2481 TYPE_PRECISION (bitsizetype) = bprecision;
2482 TYPE_UNSIGNED (bitsizetype) = 1;
2484 /* Now layout both types manually. */
2485 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2486 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2487 TYPE_SIZE (sizetype) = bitsize_int (precision);
2488 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2489 set_min_and_max_values_for_integral_type (sizetype, precision,
2490 /*is_unsigned=*/true);
2492 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2493 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2494 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2495 TYPE_SIZE_UNIT (bitsizetype)
2496 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2497 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2498 /*is_unsigned=*/true);
2500 /* Create the signed variants of *sizetype. */
2501 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2502 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2503 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2504 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2507 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2508 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2509 for TYPE, based on the PRECISION and whether or not the TYPE
2510 IS_UNSIGNED. PRECISION need not correspond to a width supported
2511 natively by the hardware; for example, on a machine with 8-bit,
2512 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2513 61. */
2515 void
2516 set_min_and_max_values_for_integral_type (tree type,
2517 int precision,
2518 bool is_unsigned)
2520 tree min_value;
2521 tree max_value;
2523 /* For bitfields with zero width we end up creating integer types
2524 with zero precision. Don't assign any minimum/maximum values
2525 to those types, they don't have any valid value. */
2526 if (precision < 1)
2527 return;
2529 if (is_unsigned)
2531 min_value = build_int_cst (type, 0);
2532 max_value
2533 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2534 ? -1
2535 : ((HOST_WIDE_INT) 1 << precision) - 1,
2536 precision - HOST_BITS_PER_WIDE_INT > 0
2537 ? ((unsigned HOST_WIDE_INT) ~0
2538 >> (HOST_BITS_PER_WIDE_INT
2539 - (precision - HOST_BITS_PER_WIDE_INT)))
2540 : 0);
2542 else
2544 min_value
2545 = build_int_cst_wide (type,
2546 (precision - HOST_BITS_PER_WIDE_INT > 0
2548 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2549 (((HOST_WIDE_INT) (-1)
2550 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2551 ? precision - HOST_BITS_PER_WIDE_INT - 1
2552 : 0))));
2553 max_value
2554 = build_int_cst_wide (type,
2555 (precision - HOST_BITS_PER_WIDE_INT > 0
2556 ? -1
2557 : (HOST_WIDE_INT)
2558 (((unsigned HOST_WIDE_INT) 1
2559 << (precision - 1)) - 1)),
2560 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2561 ? (HOST_WIDE_INT)
2562 ((((unsigned HOST_WIDE_INT) 1
2563 << (precision - HOST_BITS_PER_WIDE_INT
2564 - 1))) - 1)
2565 : 0));
2568 TYPE_MIN_VALUE (type) = min_value;
2569 TYPE_MAX_VALUE (type) = max_value;
2572 /* Set the extreme values of TYPE based on its precision in bits,
2573 then lay it out. Used when make_signed_type won't do
2574 because the tree code is not INTEGER_TYPE.
2575 E.g. for Pascal, when the -fsigned-char option is given. */
2577 void
2578 fixup_signed_type (tree type)
2580 int precision = TYPE_PRECISION (type);
2582 /* We can not represent properly constants greater then
2583 HOST_BITS_PER_DOUBLE_INT, still we need the types
2584 as they are used by i386 vector extensions and friends. */
2585 if (precision > HOST_BITS_PER_DOUBLE_INT)
2586 precision = HOST_BITS_PER_DOUBLE_INT;
2588 set_min_and_max_values_for_integral_type (type, precision,
2589 /*is_unsigned=*/false);
2591 /* Lay out the type: set its alignment, size, etc. */
2592 layout_type (type);
2595 /* Set the extreme values of TYPE based on its precision in bits,
2596 then lay it out. This is used both in `make_unsigned_type'
2597 and for enumeral types. */
2599 void
2600 fixup_unsigned_type (tree type)
2602 int precision = TYPE_PRECISION (type);
2604 /* We can not represent properly constants greater then
2605 HOST_BITS_PER_DOUBLE_INT, still we need the types
2606 as they are used by i386 vector extensions and friends. */
2607 if (precision > HOST_BITS_PER_DOUBLE_INT)
2608 precision = HOST_BITS_PER_DOUBLE_INT;
2610 TYPE_UNSIGNED (type) = 1;
2612 set_min_and_max_values_for_integral_type (type, precision,
2613 /*is_unsigned=*/true);
2615 /* Lay out the type: set its alignment, size, etc. */
2616 layout_type (type);
2619 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2620 starting at BITPOS.
2622 BITREGION_START is the bit position of the first bit in this
2623 sequence of bit fields. BITREGION_END is the last bit in this
2624 sequence. If these two fields are non-zero, we should restrict the
2625 memory access to that range. Otherwise, we are allowed to touch
2626 any adjacent non bit-fields.
2628 ALIGN is the alignment of the underlying object in bits.
2629 VOLATILEP says whether the bitfield is volatile. */
2631 bit_field_mode_iterator
2632 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2633 HOST_WIDE_INT bitregion_start,
2634 HOST_WIDE_INT bitregion_end,
2635 unsigned int align, bool volatilep)
2636 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2637 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2638 m_bitregion_end (bitregion_end), m_align (align),
2639 m_volatilep (volatilep), m_count (0)
2641 if (!m_bitregion_end)
2643 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2644 the bitfield is mapped and won't trap, provided that ALIGN isn't
2645 too large. The cap is the biggest required alignment for data,
2646 or at least the word size. And force one such chunk at least. */
2647 unsigned HOST_WIDE_INT units
2648 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2649 if (bitsize <= 0)
2650 bitsize = 1;
2651 m_bitregion_end = bitpos + bitsize + units - 1;
2652 m_bitregion_end -= m_bitregion_end % units + 1;
2656 /* Calls to this function return successively larger modes that can be used
2657 to represent the bitfield. Return true if another bitfield mode is
2658 available, storing it in *OUT_MODE if so. */
2660 bool
2661 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2663 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2665 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2667 /* Skip modes that don't have full precision. */
2668 if (unit != GET_MODE_PRECISION (m_mode))
2669 continue;
2671 /* Stop if the mode is too wide to handle efficiently. */
2672 if (unit > MAX_FIXED_MODE_SIZE)
2673 break;
2675 /* Don't deliver more than one multiword mode; the smallest one
2676 should be used. */
2677 if (m_count > 0 && unit > BITS_PER_WORD)
2678 break;
2680 /* Skip modes that are too small. */
2681 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2682 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2683 if (subend > unit)
2684 continue;
2686 /* Stop if the mode goes outside the bitregion. */
2687 HOST_WIDE_INT start = m_bitpos - substart;
2688 if (m_bitregion_start && start < m_bitregion_start)
2689 break;
2690 HOST_WIDE_INT end = start + unit;
2691 if (end > m_bitregion_end + 1)
2692 break;
2694 /* Stop if the mode requires too much alignment. */
2695 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2696 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2697 break;
2699 *out_mode = m_mode;
2700 m_mode = GET_MODE_WIDER_MODE (m_mode);
2701 m_count++;
2702 return true;
2704 return false;
2707 /* Return true if smaller modes are generally preferred for this kind
2708 of bitfield. */
2710 bool
2711 bit_field_mode_iterator::prefer_smaller_modes ()
2713 return (m_volatilep
2714 ? targetm.narrow_volatile_bitfield ()
2715 : !SLOW_BYTE_ACCESS);
2718 /* Find the best machine mode to use when referencing a bit field of length
2719 BITSIZE bits starting at BITPOS.
2721 BITREGION_START is the bit position of the first bit in this
2722 sequence of bit fields. BITREGION_END is the last bit in this
2723 sequence. If these two fields are non-zero, we should restrict the
2724 memory access to that range. Otherwise, we are allowed to touch
2725 any adjacent non bit-fields.
2727 The underlying object is known to be aligned to a boundary of ALIGN bits.
2728 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2729 larger than LARGEST_MODE (usually SImode).
2731 If no mode meets all these conditions, we return VOIDmode.
2733 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2734 smallest mode meeting these conditions.
2736 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2737 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2738 all the conditions.
2740 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2741 decide which of the above modes should be used. */
2743 enum machine_mode
2744 get_best_mode (int bitsize, int bitpos,
2745 unsigned HOST_WIDE_INT bitregion_start,
2746 unsigned HOST_WIDE_INT bitregion_end,
2747 unsigned int align,
2748 enum machine_mode largest_mode, bool volatilep)
2750 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2751 bitregion_end, align, volatilep);
2752 enum machine_mode widest_mode = VOIDmode;
2753 enum machine_mode mode;
2754 while (iter.next_mode (&mode)
2755 /* ??? For historical reasons, reject modes that would normally
2756 receive greater alignment, even if unaligned accesses are
2757 acceptable. This has both advantages and disadvantages.
2758 Removing this check means that something like:
2760 struct s { unsigned int x; unsigned int y; };
2761 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2763 can be implemented using a single load and compare on
2764 64-bit machines that have no alignment restrictions.
2765 For example, on powerpc64-linux-gnu, we would generate:
2767 ld 3,0(3)
2768 cntlzd 3,3
2769 srdi 3,3,6
2772 rather than:
2774 lwz 9,0(3)
2775 cmpwi 7,9,0
2776 bne 7,.L3
2777 lwz 3,4(3)
2778 cntlzw 3,3
2779 srwi 3,3,5
2780 extsw 3,3
2782 .p2align 4,,15
2783 .L3:
2784 li 3,0
2787 However, accessing more than one field can make life harder
2788 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2789 has a series of unsigned short copies followed by a series of
2790 unsigned short comparisons. With this check, both the copies
2791 and comparisons remain 16-bit accesses and FRE is able
2792 to eliminate the latter. Without the check, the comparisons
2793 can be done using 2 64-bit operations, which FRE isn't able
2794 to handle in the same way.
2796 Either way, it would probably be worth disabling this check
2797 during expand. One particular example where removing the
2798 check would help is the get_best_mode call in store_bit_field.
2799 If we are given a memory bitregion of 128 bits that is aligned
2800 to a 64-bit boundary, and the bitfield we want to modify is
2801 in the second half of the bitregion, this check causes
2802 store_bitfield to turn the memory into a 64-bit reference
2803 to the _first_ half of the region. We later use
2804 adjust_bitfield_address to get a reference to the correct half,
2805 but doing so looks to adjust_bitfield_address as though we are
2806 moving past the end of the original object, so it drops the
2807 associated MEM_EXPR and MEM_OFFSET. Removing the check
2808 causes store_bit_field to keep a 128-bit memory reference,
2809 so that the final bitfield reference still has a MEM_EXPR
2810 and MEM_OFFSET. */
2811 && GET_MODE_ALIGNMENT (mode) <= align
2812 && (largest_mode == VOIDmode
2813 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2815 widest_mode = mode;
2816 if (iter.prefer_smaller_modes ())
2817 break;
2819 return widest_mode;
2822 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2823 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2825 void
2826 get_mode_bounds (enum machine_mode mode, int sign,
2827 enum machine_mode target_mode,
2828 rtx *mmin, rtx *mmax)
2830 unsigned size = GET_MODE_BITSIZE (mode);
2831 unsigned HOST_WIDE_INT min_val, max_val;
2833 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2835 if (sign)
2837 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2838 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2840 else
2842 min_val = 0;
2843 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2846 *mmin = gen_int_mode (min_val, target_mode);
2847 *mmax = gen_int_mode (max_val, target_mode);
2850 #include "gt-stor-layout.h"