PR c++/50852
[official-gcc.git] / gcc / fwprop.c
blobe3ca1fd13afc9d631b8bd808271915a35e82cc9a
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
28 #include "sparseset.h"
29 #include "timevar.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "flags.h"
35 #include "obstack.h"
36 #include "basic-block.h"
37 #include "df.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "tree-pass.h"
41 #include "domwalk.h"
42 #include "emit-rtl.h"
45 /* This pass does simple forward propagation and simplification when an
46 operand of an insn can only come from a single def. This pass uses
47 df.c, so it is global. However, we only do limited analysis of
48 available expressions.
50 1) The pass tries to propagate the source of the def into the use,
51 and checks if the result is independent of the substituted value.
52 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
53 zero, independent of the source register.
55 In particular, we propagate constants into the use site. Sometimes
56 RTL expansion did not put the constant in the same insn on purpose,
57 to satisfy a predicate, and the result will fail to be recognized;
58 but this happens rarely and in this case we can still create a
59 REG_EQUAL note. For multi-word operations, this
61 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
62 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
63 (set (subreg:SI (reg:DI 122) 0)
64 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
65 (set (subreg:SI (reg:DI 122) 4)
66 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
68 can be simplified to the much simpler
70 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
71 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
73 This particular propagation is also effective at putting together
74 complex addressing modes. We are more aggressive inside MEMs, in
75 that all definitions are propagated if the use is in a MEM; if the
76 result is a valid memory address we check address_cost to decide
77 whether the substitution is worthwhile.
79 2) The pass propagates register copies. This is not as effective as
80 the copy propagation done by CSE's canon_reg, which works by walking
81 the instruction chain, it can help the other transformations.
83 We should consider removing this optimization, and instead reorder the
84 RTL passes, because GCSE does this transformation too. With some luck,
85 the CSE pass at the end of rest_of_handle_gcse could also go away.
87 3) The pass looks for paradoxical subregs that are actually unnecessary.
88 Things like this:
90 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
91 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
92 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
93 (subreg:SI (reg:QI 121) 0)))
95 are very common on machines that can only do word-sized operations.
96 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
97 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
98 we can replace the paradoxical subreg with simply (reg:WIDE M). The
99 above will simplify this to
101 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
102 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
103 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
105 where the first two insns are now dead.
107 We used to use reaching definitions to find which uses have a
108 single reaching definition (sounds obvious...), but this is too
109 complex a problem in nasty testcases like PR33928. Now we use the
110 multiple definitions problem in df-problems.c. The similarity
111 between that problem and SSA form creation is taken further, in
112 that fwprop does a dominator walk to create its chains; however,
113 instead of creating a PHI function where multiple definitions meet
114 I just punt and record only singleton use-def chains, which is
115 all that is needed by fwprop. */
118 static int num_changes;
120 DEF_VEC_P(df_ref);
121 DEF_VEC_ALLOC_P(df_ref,heap);
122 static VEC(df_ref,heap) *use_def_ref;
123 static VEC(df_ref,heap) *reg_defs;
124 static VEC(df_ref,heap) *reg_defs_stack;
126 /* The MD bitmaps are trimmed to include only live registers to cut
127 memory usage on testcases like insn-recog.c. Track live registers
128 in the basic block and do not perform forward propagation if the
129 destination is a dead pseudo occurring in a note. */
130 static bitmap local_md;
131 static bitmap local_lr;
133 /* Return the only def in USE's use-def chain, or NULL if there is
134 more than one def in the chain. */
136 static inline df_ref
137 get_def_for_use (df_ref use)
139 return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
143 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
144 TOP_FLAG says which artificials uses should be used, when DEF_REC
145 is an artificial def vector. LOCAL_MD is modified as after a
146 df_md_simulate_* function; we do more or less the same processing
147 done there, so we do not use those functions. */
149 #define DF_MD_GEN_FLAGS \
150 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
152 static void
153 process_defs (df_ref *def_rec, int top_flag)
155 df_ref def;
156 while ((def = *def_rec++) != NULL)
158 df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
159 unsigned int dregno;
161 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
162 continue;
164 dregno = DF_REF_REGNO (def);
165 if (curr_def)
166 VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
167 else
169 /* Do not store anything if "transitioning" from NULL to NULL. But
170 otherwise, push a special entry on the stack to tell the
171 leave_block callback that the entry in reg_defs was NULL. */
172 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
174 else
175 VEC_safe_push (df_ref, heap, reg_defs_stack, def);
178 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
180 bitmap_set_bit (local_md, dregno);
181 VEC_replace (df_ref, reg_defs, dregno, NULL);
183 else
185 bitmap_clear_bit (local_md, dregno);
186 VEC_replace (df_ref, reg_defs, dregno, def);
192 /* Fill the use_def_ref vector with values for the uses in USE_REC,
193 taking reaching definitions info from LOCAL_MD and REG_DEFS.
194 TOP_FLAG says which artificials uses should be used, when USE_REC
195 is an artificial use vector. */
197 static void
198 process_uses (df_ref *use_rec, int top_flag)
200 df_ref use;
201 while ((use = *use_rec++) != NULL)
202 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
204 unsigned int uregno = DF_REF_REGNO (use);
205 if (VEC_index (df_ref, reg_defs, uregno)
206 && !bitmap_bit_p (local_md, uregno)
207 && bitmap_bit_p (local_lr, uregno))
208 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
209 VEC_index (df_ref, reg_defs, uregno));
214 static void
215 single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
216 basic_block bb)
218 int bb_index = bb->index;
219 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
220 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
221 rtx insn;
223 bitmap_copy (local_md, &md_bb_info->in);
224 bitmap_copy (local_lr, &lr_bb_info->in);
226 /* Push a marker for the leave_block callback. */
227 VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
229 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
230 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
232 /* We don't call df_simulate_initialize_forwards, as it may overestimate
233 the live registers if there are unused artificial defs. We prefer
234 liveness to be underestimated. */
236 FOR_BB_INSNS (bb, insn)
237 if (INSN_P (insn))
239 unsigned int uid = INSN_UID (insn);
240 process_uses (DF_INSN_UID_USES (uid), 0);
241 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
242 process_defs (DF_INSN_UID_DEFS (uid), 0);
243 df_simulate_one_insn_forwards (bb, insn, local_lr);
246 process_uses (df_get_artificial_uses (bb_index), 0);
247 process_defs (df_get_artificial_defs (bb_index), 0);
250 /* Pop the definitions created in this basic block when leaving its
251 dominated parts. */
253 static void
254 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
255 basic_block bb ATTRIBUTE_UNUSED)
257 df_ref saved_def;
258 while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
260 unsigned int dregno = DF_REF_REGNO (saved_def);
262 /* See also process_defs. */
263 if (saved_def == VEC_index (df_ref, reg_defs, dregno))
264 VEC_replace (df_ref, reg_defs, dregno, NULL);
265 else
266 VEC_replace (df_ref, reg_defs, dregno, saved_def);
271 /* Build a vector holding the reaching definitions of uses reached by a
272 single dominating definition. */
274 static void
275 build_single_def_use_links (void)
277 struct dom_walk_data walk_data;
279 /* We use the multiple definitions problem to compute our restricted
280 use-def chains. */
281 df_set_flags (DF_EQ_NOTES);
282 df_md_add_problem ();
283 df_note_add_problem ();
284 df_analyze ();
285 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
287 use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
288 VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
290 reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
291 VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
293 reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
294 local_md = BITMAP_ALLOC (NULL);
295 local_lr = BITMAP_ALLOC (NULL);
297 /* Walk the dominator tree looking for single reaching definitions
298 dominating the uses. This is similar to how SSA form is built. */
299 walk_data.dom_direction = CDI_DOMINATORS;
300 walk_data.initialize_block_local_data = NULL;
301 walk_data.before_dom_children = single_def_use_enter_block;
302 walk_data.after_dom_children = single_def_use_leave_block;
304 init_walk_dominator_tree (&walk_data);
305 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
306 fini_walk_dominator_tree (&walk_data);
308 BITMAP_FREE (local_lr);
309 BITMAP_FREE (local_md);
310 VEC_free (df_ref, heap, reg_defs);
311 VEC_free (df_ref, heap, reg_defs_stack);
315 /* Do not try to replace constant addresses or addresses of local and
316 argument slots. These MEM expressions are made only once and inserted
317 in many instructions, as well as being used to control symbol table
318 output. It is not safe to clobber them.
320 There are some uncommon cases where the address is already in a register
321 for some reason, but we cannot take advantage of that because we have
322 no easy way to unshare the MEM. In addition, looking up all stack
323 addresses is costly. */
325 static bool
326 can_simplify_addr (rtx addr)
328 rtx reg;
330 if (CONSTANT_ADDRESS_P (addr))
331 return false;
333 if (GET_CODE (addr) == PLUS)
334 reg = XEXP (addr, 0);
335 else
336 reg = addr;
338 return (!REG_P (reg)
339 || (REGNO (reg) != FRAME_POINTER_REGNUM
340 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
341 && REGNO (reg) != ARG_POINTER_REGNUM));
344 /* Returns a canonical version of X for the address, from the point of view,
345 that all multiplications are represented as MULT instead of the multiply
346 by a power of 2 being represented as ASHIFT.
348 Every ASHIFT we find has been made by simplify_gen_binary and was not
349 there before, so it is not shared. So we can do this in place. */
351 static void
352 canonicalize_address (rtx x)
354 for (;;)
355 switch (GET_CODE (x))
357 case ASHIFT:
358 if (CONST_INT_P (XEXP (x, 1))
359 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
360 && INTVAL (XEXP (x, 1)) >= 0)
362 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
363 PUT_CODE (x, MULT);
364 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
365 GET_MODE (x));
368 x = XEXP (x, 0);
369 break;
371 case PLUS:
372 if (GET_CODE (XEXP (x, 0)) == PLUS
373 || GET_CODE (XEXP (x, 0)) == ASHIFT
374 || GET_CODE (XEXP (x, 0)) == CONST)
375 canonicalize_address (XEXP (x, 0));
377 x = XEXP (x, 1);
378 break;
380 case CONST:
381 x = XEXP (x, 0);
382 break;
384 default:
385 return;
389 /* OLD is a memory address. Return whether it is good to use NEW instead,
390 for a memory access in the given MODE. */
392 static bool
393 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
394 addr_space_t as, bool speed)
396 int gain;
398 if (rtx_equal_p (old_rtx, new_rtx)
399 || !memory_address_addr_space_p (mode, new_rtx, as))
400 return false;
402 /* Copy propagation is always ok. */
403 if (REG_P (old_rtx) && REG_P (new_rtx))
404 return true;
406 /* Prefer the new address if it is less expensive. */
407 gain = (address_cost (old_rtx, mode, as, speed)
408 - address_cost (new_rtx, mode, as, speed));
410 /* If the addresses have equivalent cost, prefer the new address
411 if it has the highest `set_src_cost'. That has the potential of
412 eliminating the most insns without additional costs, and it
413 is the same that cse.c used to do. */
414 if (gain == 0)
415 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
417 return (gain > 0);
421 /* Flags for the last parameter of propagate_rtx_1. */
423 enum {
424 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
425 if it is false, propagate_rtx_1 returns false if, for at least
426 one occurrence OLD, it failed to collapse the result to a constant.
427 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
428 collapse to zero if replacing (reg:M B) with (reg:M A).
430 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
431 propagate_rtx_1 just tries to make cheaper and valid memory
432 addresses. */
433 PR_CAN_APPEAR = 1,
435 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
436 outside memory addresses. This is needed because propagate_rtx_1 does
437 not do any analysis on memory; thus it is very conservative and in general
438 it will fail if non-read-only MEMs are found in the source expression.
440 PR_HANDLE_MEM is set when the source of the propagation was not
441 another MEM. Then, it is safe not to treat non-read-only MEMs as
442 ``opaque'' objects. */
443 PR_HANDLE_MEM = 2,
445 /* Set when costs should be optimized for speed. */
446 PR_OPTIMIZE_FOR_SPEED = 4
450 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
451 resulting expression. Replace *PX with a new RTL expression if an
452 occurrence of OLD was found.
454 This is only a wrapper around simplify-rtx.c: do not add any pattern
455 matching code here. (The sole exception is the handling of LO_SUM, but
456 that is because there is no simplify_gen_* function for LO_SUM). */
458 static bool
459 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
461 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
462 enum rtx_code code = GET_CODE (x);
463 enum machine_mode mode = GET_MODE (x);
464 enum machine_mode op_mode;
465 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
466 bool valid_ops = true;
468 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
470 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
471 they have side effects or not). */
472 *px = (side_effects_p (x)
473 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
474 : gen_rtx_SCRATCH (GET_MODE (x)));
475 return false;
478 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
479 address, and we are *not* inside one. */
480 if (x == old_rtx)
482 *px = new_rtx;
483 return can_appear;
486 /* If this is an expression, try recursive substitution. */
487 switch (GET_RTX_CLASS (code))
489 case RTX_UNARY:
490 op0 = XEXP (x, 0);
491 op_mode = GET_MODE (op0);
492 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
493 if (op0 == XEXP (x, 0))
494 return true;
495 tem = simplify_gen_unary (code, mode, op0, op_mode);
496 break;
498 case RTX_BIN_ARITH:
499 case RTX_COMM_ARITH:
500 op0 = XEXP (x, 0);
501 op1 = XEXP (x, 1);
502 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
503 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
504 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
505 return true;
506 tem = simplify_gen_binary (code, mode, op0, op1);
507 break;
509 case RTX_COMPARE:
510 case RTX_COMM_COMPARE:
511 op0 = XEXP (x, 0);
512 op1 = XEXP (x, 1);
513 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
514 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
515 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
516 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
517 return true;
518 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
519 break;
521 case RTX_TERNARY:
522 case RTX_BITFIELD_OPS:
523 op0 = XEXP (x, 0);
524 op1 = XEXP (x, 1);
525 op2 = XEXP (x, 2);
526 op_mode = GET_MODE (op0);
527 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
528 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
529 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
530 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
531 return true;
532 if (op_mode == VOIDmode)
533 op_mode = GET_MODE (op0);
534 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
535 break;
537 case RTX_EXTRA:
538 /* The only case we try to handle is a SUBREG. */
539 if (code == SUBREG)
541 op0 = XEXP (x, 0);
542 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
543 if (op0 == XEXP (x, 0))
544 return true;
545 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
546 SUBREG_BYTE (x));
548 break;
550 case RTX_OBJ:
551 if (code == MEM && x != new_rtx)
553 rtx new_op0;
554 op0 = XEXP (x, 0);
556 /* There are some addresses that we cannot work on. */
557 if (!can_simplify_addr (op0))
558 return true;
560 op0 = new_op0 = targetm.delegitimize_address (op0);
561 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
562 flags | PR_CAN_APPEAR);
564 /* Dismiss transformation that we do not want to carry on. */
565 if (!valid_ops
566 || new_op0 == op0
567 || !(GET_MODE (new_op0) == GET_MODE (op0)
568 || GET_MODE (new_op0) == VOIDmode))
569 return true;
571 canonicalize_address (new_op0);
573 /* Copy propagations are always ok. Otherwise check the costs. */
574 if (!(REG_P (old_rtx) && REG_P (new_rtx))
575 && !should_replace_address (op0, new_op0, GET_MODE (x),
576 MEM_ADDR_SPACE (x),
577 flags & PR_OPTIMIZE_FOR_SPEED))
578 return true;
580 tem = replace_equiv_address_nv (x, new_op0);
583 else if (code == LO_SUM)
585 op0 = XEXP (x, 0);
586 op1 = XEXP (x, 1);
588 /* The only simplification we do attempts to remove references to op0
589 or make it constant -- in both cases, op0's invalidity will not
590 make the result invalid. */
591 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
592 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
593 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
594 return true;
596 /* (lo_sum (high x) x) -> x */
597 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
598 tem = op1;
599 else
600 tem = gen_rtx_LO_SUM (mode, op0, op1);
602 /* OP1 is likely not a legitimate address, otherwise there would have
603 been no LO_SUM. We want it to disappear if it is invalid, return
604 false in that case. */
605 return memory_address_p (mode, tem);
608 else if (code == REG)
610 if (rtx_equal_p (x, old_rtx))
612 *px = new_rtx;
613 return can_appear;
616 break;
618 default:
619 break;
622 /* No change, no trouble. */
623 if (tem == NULL_RTX)
624 return true;
626 *px = tem;
628 /* The replacement we made so far is valid, if all of the recursive
629 replacements were valid, or we could simplify everything to
630 a constant. */
631 return valid_ops || can_appear || CONSTANT_P (tem);
635 /* for_each_rtx traversal function that returns 1 if BODY points to
636 a non-constant mem. */
638 static int
639 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
641 rtx x = *body;
642 return MEM_P (x) && !MEM_READONLY_P (x);
646 /* Replace all occurrences of OLD in X with NEW and try to simplify the
647 resulting expression (in mode MODE). Return a new expression if it is
648 a constant, otherwise X.
650 Simplifications where occurrences of NEW collapse to a constant are always
651 accepted. All simplifications are accepted if NEW is a pseudo too.
652 Otherwise, we accept simplifications that have a lower or equal cost. */
654 static rtx
655 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
656 bool speed)
658 rtx tem;
659 bool collapsed;
660 int flags;
662 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
663 return NULL_RTX;
665 flags = 0;
666 if (REG_P (new_rtx)
667 || CONSTANT_P (new_rtx)
668 || (GET_CODE (new_rtx) == SUBREG
669 && REG_P (SUBREG_REG (new_rtx))
670 && (GET_MODE_SIZE (mode)
671 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
672 flags |= PR_CAN_APPEAR;
673 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
674 flags |= PR_HANDLE_MEM;
676 if (speed)
677 flags |= PR_OPTIMIZE_FOR_SPEED;
679 tem = x;
680 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
681 if (tem == x || !collapsed)
682 return NULL_RTX;
684 /* gen_lowpart_common will not be able to process VOIDmode entities other
685 than CONST_INTs. */
686 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
687 return NULL_RTX;
689 if (GET_MODE (tem) == VOIDmode)
690 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
691 else
692 gcc_assert (GET_MODE (tem) == mode);
694 return tem;
700 /* Return true if the register from reference REF is killed
701 between FROM to (but not including) TO. */
703 static bool
704 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
706 rtx insn;
708 for (insn = from; insn != to; insn = NEXT_INSN (insn))
710 df_ref *def_rec;
711 if (!INSN_P (insn))
712 continue;
714 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
716 df_ref def = *def_rec;
717 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
718 return true;
721 return false;
725 /* Check if the given DEF is available in INSN. This would require full
726 computation of available expressions; we check only restricted conditions:
727 - if DEF is the sole definition of its register, go ahead;
728 - in the same basic block, we check for no definitions killing the
729 definition of DEF_INSN;
730 - if USE's basic block has DEF's basic block as the sole predecessor,
731 we check if the definition is killed after DEF_INSN or before
732 TARGET_INSN insn, in their respective basic blocks. */
733 static bool
734 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
736 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
737 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
738 int regno;
739 df_ref def;
741 /* We used to have a def reaching a use that is _before_ the def,
742 with the def not dominating the use even though the use and def
743 are in the same basic block, when a register may be used
744 uninitialized in a loop. This should not happen anymore since
745 we do not use reaching definitions, but still we test for such
746 cases and assume that DEF is not available. */
747 if (def_bb == target_bb
748 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
749 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
750 return true;
752 /* Check if the reg in USE has only one definition. We already
753 know that this definition reaches use, or we wouldn't be here.
754 However, this is invalid for hard registers because if they are
755 live at the beginning of the function it does not mean that we
756 have an uninitialized access. */
757 regno = DF_REF_REGNO (use);
758 def = DF_REG_DEF_CHAIN (regno);
759 if (def
760 && DF_REF_NEXT_REG (def) == NULL
761 && regno >= FIRST_PSEUDO_REGISTER)
762 return false;
764 /* Check locally if we are in the same basic block. */
765 if (def_bb == target_bb)
766 return local_ref_killed_between_p (use, def_insn, target_insn);
768 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
769 if (single_pred_p (target_bb)
770 && single_pred (target_bb) == def_bb)
772 df_ref x;
774 /* See if USE is killed between DEF_INSN and the last insn in the
775 basic block containing DEF_INSN. */
776 x = df_bb_regno_last_def_find (def_bb, regno);
777 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
778 return true;
780 /* See if USE is killed between TARGET_INSN and the first insn in the
781 basic block containing TARGET_INSN. */
782 x = df_bb_regno_first_def_find (target_bb, regno);
783 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
784 return true;
786 return false;
789 /* Otherwise assume the worst case. */
790 return true;
794 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
795 would require full computation of available expressions;
796 we check only restricted conditions, see use_killed_between. */
797 static bool
798 all_uses_available_at (rtx def_insn, rtx target_insn)
800 df_ref *use_rec;
801 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
802 rtx def_set = single_set (def_insn);
804 gcc_assert (def_set);
806 /* If target_insn comes right after def_insn, which is very common
807 for addresses, we can use a quicker test. */
808 if (NEXT_INSN (def_insn) == target_insn
809 && REG_P (SET_DEST (def_set)))
811 rtx def_reg = SET_DEST (def_set);
813 /* If the insn uses the reg that it defines, the substitution is
814 invalid. */
815 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
817 df_ref use = *use_rec;
818 if (rtx_equal_p (DF_REF_REG (use), def_reg))
819 return false;
821 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
823 df_ref use = *use_rec;
824 if (rtx_equal_p (DF_REF_REG (use), def_reg))
825 return false;
828 else
830 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
832 /* Look at all the uses of DEF_INSN, and see if they are not
833 killed between DEF_INSN and TARGET_INSN. */
834 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
836 df_ref use = *use_rec;
837 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
838 return false;
839 if (use_killed_between (use, def_insn, target_insn))
840 return false;
842 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
844 df_ref use = *use_rec;
845 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
846 return false;
847 if (use_killed_between (use, def_insn, target_insn))
848 return false;
852 return true;
856 static df_ref *active_defs;
857 #ifdef ENABLE_CHECKING
858 static sparseset active_defs_check;
859 #endif
861 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
862 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
863 too, for checking purposes. */
865 static void
866 register_active_defs (df_ref *use_rec)
868 while (*use_rec)
870 df_ref use = *use_rec++;
871 df_ref def = get_def_for_use (use);
872 int regno = DF_REF_REGNO (use);
874 #ifdef ENABLE_CHECKING
875 sparseset_set_bit (active_defs_check, regno);
876 #endif
877 active_defs[regno] = def;
882 /* Build the use->def links that we use to update the dataflow info
883 for new uses. Note that building the links is very cheap and if
884 it were done earlier, they could be used to rule out invalid
885 propagations (in addition to what is done in all_uses_available_at).
886 I'm not doing this yet, though. */
888 static void
889 update_df_init (rtx def_insn, rtx insn)
891 #ifdef ENABLE_CHECKING
892 sparseset_clear (active_defs_check);
893 #endif
894 register_active_defs (DF_INSN_USES (def_insn));
895 register_active_defs (DF_INSN_USES (insn));
896 register_active_defs (DF_INSN_EQ_USES (insn));
900 /* Update the USE_DEF_REF array for the given use, using the active definitions
901 in the ACTIVE_DEFS array to match pseudos to their def. */
903 static inline void
904 update_uses (df_ref *use_rec)
906 while (*use_rec)
908 df_ref use = *use_rec++;
909 int regno = DF_REF_REGNO (use);
911 /* Set up the use-def chain. */
912 if (DF_REF_ID (use) >= (int) VEC_length (df_ref, use_def_ref))
913 VEC_safe_grow_cleared (df_ref, heap, use_def_ref,
914 DF_REF_ID (use) + 1);
916 #ifdef ENABLE_CHECKING
917 gcc_assert (sparseset_bit_p (active_defs_check, regno));
918 #endif
919 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use), active_defs[regno]);
924 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
925 uses if NOTES_ONLY is true. */
927 static void
928 update_df (rtx insn, rtx note)
930 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
932 if (note)
934 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
935 df_notes_rescan (insn);
937 else
939 df_uses_create (&PATTERN (insn), insn, 0);
940 df_insn_rescan (insn);
941 update_uses (DF_INSN_INFO_USES (insn_info));
944 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
948 /* Try substituting NEW into LOC, which originated from forward propagation
949 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
950 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
951 new insn is not recognized. Return whether the substitution was
952 performed. */
954 static bool
955 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
957 rtx insn = DF_REF_INSN (use);
958 rtx set = single_set (insn);
959 rtx note = NULL_RTX;
960 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
961 int old_cost = 0;
962 bool ok;
964 update_df_init (def_insn, insn);
966 /* forward_propagate_subreg may be operating on an instruction with
967 multiple sets. If so, assume the cost of the new instruction is
968 not greater than the old one. */
969 if (set)
970 old_cost = set_src_cost (SET_SRC (set), speed);
971 if (dump_file)
973 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
974 print_inline_rtx (dump_file, *loc, 2);
975 fprintf (dump_file, "\n with ");
976 print_inline_rtx (dump_file, new_rtx, 2);
977 fprintf (dump_file, "\n");
980 validate_unshare_change (insn, loc, new_rtx, true);
981 if (!verify_changes (0))
983 if (dump_file)
984 fprintf (dump_file, "Changes to insn %d not recognized\n",
985 INSN_UID (insn));
986 ok = false;
989 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
990 && set
991 && set_src_cost (SET_SRC (set), speed) > old_cost)
993 if (dump_file)
994 fprintf (dump_file, "Changes to insn %d not profitable\n",
995 INSN_UID (insn));
996 ok = false;
999 else
1001 if (dump_file)
1002 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1003 ok = true;
1006 if (ok)
1008 confirm_change_group ();
1009 num_changes++;
1011 else
1013 cancel_changes (0);
1015 /* Can also record a simplified value in a REG_EQUAL note,
1016 making a new one if one does not already exist. */
1017 if (set_reg_equal)
1019 if (dump_file)
1020 fprintf (dump_file, " Setting REG_EQUAL note\n");
1022 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1026 if ((ok || note) && !CONSTANT_P (new_rtx))
1027 update_df (insn, note);
1029 return ok;
1032 /* For the given single_set INSN, containing SRC known to be a
1033 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1034 is redundant due to the register being set by a LOAD_EXTEND_OP
1035 load from memory. */
1037 static bool
1038 free_load_extend (rtx src, rtx insn)
1040 rtx reg;
1041 df_ref *use_vec;
1042 df_ref use = 0, def;
1044 reg = XEXP (src, 0);
1045 #ifdef LOAD_EXTEND_OP
1046 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1047 #endif
1048 return false;
1050 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1052 use = *use_vec;
1054 if (!DF_REF_IS_ARTIFICIAL (use)
1055 && DF_REF_TYPE (use) == DF_REF_REG_USE
1056 && DF_REF_REG (use) == reg)
1057 break;
1059 if (!use)
1060 return false;
1062 def = get_def_for_use (use);
1063 if (!def)
1064 return false;
1066 if (DF_REF_IS_ARTIFICIAL (def))
1067 return false;
1069 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1071 rtx patt = PATTERN (DF_REF_INSN (def));
1073 if (GET_CODE (patt) == SET
1074 && GET_CODE (SET_SRC (patt)) == MEM
1075 && rtx_equal_p (SET_DEST (patt), reg))
1076 return true;
1078 return false;
1081 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1083 static bool
1084 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1086 rtx use_reg = DF_REF_REG (use);
1087 rtx use_insn, src;
1089 /* Only consider subregs... */
1090 enum machine_mode use_mode = GET_MODE (use_reg);
1091 if (GET_CODE (use_reg) != SUBREG
1092 || !REG_P (SET_DEST (def_set)))
1093 return false;
1095 /* If this is a paradoxical SUBREG... */
1096 if (GET_MODE_SIZE (use_mode)
1097 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1099 /* If this is a paradoxical SUBREG, we have no idea what value the
1100 extra bits would have. However, if the operand is equivalent to
1101 a SUBREG whose operand is the same as our mode, and all the modes
1102 are within a word, we can just use the inner operand because
1103 these SUBREGs just say how to treat the register. */
1104 use_insn = DF_REF_INSN (use);
1105 src = SET_SRC (def_set);
1106 if (GET_CODE (src) == SUBREG
1107 && REG_P (SUBREG_REG (src))
1108 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1109 && GET_MODE (SUBREG_REG (src)) == use_mode
1110 && subreg_lowpart_p (src)
1111 && all_uses_available_at (def_insn, use_insn))
1112 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1113 def_insn, false);
1116 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1117 is the low part of the reg being extended then just use the inner
1118 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1119 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1120 or due to the operation being a no-op when applied to registers.
1121 For example, if we have:
1123 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1124 B: (... (subreg:SI (reg:DI X)) ...)
1126 and mode_rep_extended says that Y is already sign-extended,
1127 the backend will typically allow A to be combined with the
1128 definition of Y or, failing that, allow A to be deleted after
1129 reload through register tying. Introducing more uses of Y
1130 prevents both optimisations. */
1131 else if (subreg_lowpart_p (use_reg))
1133 use_insn = DF_REF_INSN (use);
1134 src = SET_SRC (def_set);
1135 if ((GET_CODE (src) == ZERO_EXTEND
1136 || GET_CODE (src) == SIGN_EXTEND)
1137 && REG_P (XEXP (src, 0))
1138 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1139 && GET_MODE (XEXP (src, 0)) == use_mode
1140 && !free_load_extend (src, def_insn)
1141 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1142 != (int) GET_CODE (src))
1143 && all_uses_available_at (def_insn, use_insn))
1144 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1145 def_insn, false);
1148 return false;
1151 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1153 static bool
1154 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1156 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1157 int speed_p, i;
1158 df_ref *use_vec;
1160 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1162 src = SET_SRC (def_set);
1163 use_pat = PATTERN (use_insn);
1165 /* In __asm don't replace if src might need more registers than
1166 reg, as that could increase register pressure on the __asm. */
1167 use_vec = DF_INSN_USES (def_insn);
1168 if (use_vec[0] && use_vec[1])
1169 return false;
1171 update_df_init (def_insn, use_insn);
1172 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1173 asm_operands = NULL_RTX;
1174 switch (GET_CODE (use_pat))
1176 case ASM_OPERANDS:
1177 asm_operands = use_pat;
1178 break;
1179 case SET:
1180 if (MEM_P (SET_DEST (use_pat)))
1182 loc = &SET_DEST (use_pat);
1183 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1184 if (new_rtx)
1185 validate_unshare_change (use_insn, loc, new_rtx, true);
1187 asm_operands = SET_SRC (use_pat);
1188 break;
1189 case PARALLEL:
1190 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1191 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1193 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1195 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1196 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1197 src, speed_p);
1198 if (new_rtx)
1199 validate_unshare_change (use_insn, loc, new_rtx, true);
1201 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1203 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1204 asm_operands = XVECEXP (use_pat, 0, i);
1205 break;
1206 default:
1207 gcc_unreachable ();
1210 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1211 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1213 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1214 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1215 if (new_rtx)
1216 validate_unshare_change (use_insn, loc, new_rtx, true);
1219 if (num_changes_pending () == 0 || !apply_change_group ())
1220 return false;
1222 update_df (use_insn, NULL);
1223 num_changes++;
1224 return true;
1227 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1228 result. */
1230 static bool
1231 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1233 rtx use_insn = DF_REF_INSN (use);
1234 rtx use_set = single_set (use_insn);
1235 rtx src, reg, new_rtx, *loc;
1236 bool set_reg_equal;
1237 enum machine_mode mode;
1238 int asm_use = -1;
1240 if (INSN_CODE (use_insn) < 0)
1241 asm_use = asm_noperands (PATTERN (use_insn));
1243 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1244 return false;
1246 /* Do not propagate into PC, CC0, etc. */
1247 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1248 return false;
1250 /* If def and use are subreg, check if they match. */
1251 reg = DF_REF_REG (use);
1252 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1254 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1255 return false;
1257 /* Check if the def had a subreg, but the use has the whole reg. */
1258 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1259 return false;
1260 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1261 previous case, the optimization is possible and often useful indeed. */
1262 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1263 reg = SUBREG_REG (reg);
1265 /* Make sure that we can treat REG as having the same mode as the
1266 source of DEF_SET. */
1267 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1268 return false;
1270 /* Check if the substitution is valid (last, because it's the most
1271 expensive check!). */
1272 src = SET_SRC (def_set);
1273 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1274 return false;
1276 /* Check if the def is loading something from the constant pool; in this
1277 case we would undo optimization such as compress_float_constant.
1278 Still, we can set a REG_EQUAL note. */
1279 if (MEM_P (src) && MEM_READONLY_P (src))
1281 rtx x = avoid_constant_pool_reference (src);
1282 if (x != src && use_set)
1284 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1285 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1286 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1287 if (old_rtx != new_rtx)
1288 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1290 return false;
1293 if (asm_use >= 0)
1294 return forward_propagate_asm (use, def_insn, def_set, reg);
1296 /* Else try simplifying. */
1298 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1300 loc = &SET_DEST (use_set);
1301 set_reg_equal = false;
1303 else if (!use_set)
1305 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1306 set_reg_equal = false;
1308 else
1310 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1311 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1312 loc = &XEXP (note, 0);
1313 else
1314 loc = &SET_SRC (use_set);
1316 /* Do not replace an existing REG_EQUAL note if the insn is not
1317 recognized. Either we're already replacing in the note, or we'll
1318 separately try plugging the definition in the note and simplifying.
1319 And only install a REQ_EQUAL note when the destination is a REG,
1320 as the note would be invalid otherwise. */
1321 set_reg_equal = (note == NULL_RTX && REG_P (SET_DEST (use_set)));
1324 if (GET_MODE (*loc) == VOIDmode)
1325 mode = GET_MODE (SET_DEST (use_set));
1326 else
1327 mode = GET_MODE (*loc);
1329 new_rtx = propagate_rtx (*loc, mode, reg, src,
1330 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1332 if (!new_rtx)
1333 return false;
1335 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1339 /* Given a use USE of an insn, if it has a single reaching
1340 definition, try to forward propagate it into that insn.
1341 Return true if cfg cleanup will be needed. */
1343 static bool
1344 forward_propagate_into (df_ref use)
1346 df_ref def;
1347 rtx def_insn, def_set, use_insn;
1348 rtx parent;
1350 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1351 return false;
1352 if (DF_REF_IS_ARTIFICIAL (use))
1353 return false;
1355 /* Only consider uses that have a single definition. */
1356 def = get_def_for_use (use);
1357 if (!def)
1358 return false;
1359 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1360 return false;
1361 if (DF_REF_IS_ARTIFICIAL (def))
1362 return false;
1364 /* Do not propagate loop invariant definitions inside the loop. */
1365 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1366 return false;
1368 /* Check if the use is still present in the insn! */
1369 use_insn = DF_REF_INSN (use);
1370 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1371 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1372 else
1373 parent = PATTERN (use_insn);
1375 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1376 return false;
1378 def_insn = DF_REF_INSN (def);
1379 if (multiple_sets (def_insn))
1380 return false;
1381 def_set = single_set (def_insn);
1382 if (!def_set)
1383 return false;
1385 /* Only try one kind of propagation. If two are possible, we'll
1386 do it on the following iterations. */
1387 if (forward_propagate_and_simplify (use, def_insn, def_set)
1388 || forward_propagate_subreg (use, def_insn, def_set))
1390 if (cfun->can_throw_non_call_exceptions
1391 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1392 && purge_dead_edges (DF_REF_BB (use)))
1393 return true;
1395 return false;
1399 static void
1400 fwprop_init (void)
1402 num_changes = 0;
1403 calculate_dominance_info (CDI_DOMINATORS);
1405 /* We do not always want to propagate into loops, so we have to find
1406 loops and be careful about them. But we have to call flow_loops_find
1407 before df_analyze, because flow_loops_find may introduce new jump
1408 insns (sadly) if we are not working in cfglayout mode. */
1409 loop_optimizer_init (0);
1411 build_single_def_use_links ();
1412 df_set_flags (DF_DEFER_INSN_RESCAN);
1414 active_defs = XNEWVEC (df_ref, max_reg_num ());
1415 #ifdef ENABLE_CHECKING
1416 active_defs_check = sparseset_alloc (max_reg_num ());
1417 #endif
1420 static void
1421 fwprop_done (void)
1423 loop_optimizer_finalize ();
1425 VEC_free (df_ref, heap, use_def_ref);
1426 free (active_defs);
1427 #ifdef ENABLE_CHECKING
1428 sparseset_free (active_defs_check);
1429 #endif
1431 free_dominance_info (CDI_DOMINATORS);
1432 cleanup_cfg (0);
1433 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1435 if (dump_file)
1436 fprintf (dump_file,
1437 "\nNumber of successful forward propagations: %d\n\n",
1438 num_changes);
1442 /* Main entry point. */
1444 static bool
1445 gate_fwprop (void)
1447 return optimize > 0 && flag_forward_propagate;
1450 static unsigned int
1451 fwprop (void)
1453 unsigned i;
1454 bool need_cleanup = false;
1456 fwprop_init ();
1458 /* Go through all the uses. df_uses_create will create new ones at the
1459 end, and we'll go through them as well.
1461 Do not forward propagate addresses into loops until after unrolling.
1462 CSE did so because it was able to fix its own mess, but we are not. */
1464 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1466 df_ref use = DF_USES_GET (i);
1467 if (use)
1468 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1469 || DF_REF_BB (use)->loop_father == NULL
1470 /* The outer most loop is not really a loop. */
1471 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1472 need_cleanup |= forward_propagate_into (use);
1475 fwprop_done ();
1476 if (need_cleanup)
1477 cleanup_cfg (0);
1478 return 0;
1481 struct rtl_opt_pass pass_rtl_fwprop =
1484 RTL_PASS,
1485 "fwprop1", /* name */
1486 gate_fwprop, /* gate */
1487 fwprop, /* execute */
1488 NULL, /* sub */
1489 NULL, /* next */
1490 0, /* static_pass_number */
1491 TV_FWPROP, /* tv_id */
1492 0, /* properties_required */
1493 0, /* properties_provided */
1494 0, /* properties_destroyed */
1495 0, /* todo_flags_start */
1496 TODO_df_finish
1497 | TODO_verify_flow
1498 | TODO_verify_rtl_sharing /* todo_flags_finish */
1502 static unsigned int
1503 fwprop_addr (void)
1505 unsigned i;
1506 bool need_cleanup = false;
1508 fwprop_init ();
1510 /* Go through all the uses. df_uses_create will create new ones at the
1511 end, and we'll go through them as well. */
1512 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1514 df_ref use = DF_USES_GET (i);
1515 if (use)
1516 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1517 && DF_REF_BB (use)->loop_father != NULL
1518 /* The outer most loop is not really a loop. */
1519 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1520 need_cleanup |= forward_propagate_into (use);
1523 fwprop_done ();
1525 if (need_cleanup)
1526 cleanup_cfg (0);
1527 return 0;
1530 struct rtl_opt_pass pass_rtl_fwprop_addr =
1533 RTL_PASS,
1534 "fwprop2", /* name */
1535 gate_fwprop, /* gate */
1536 fwprop_addr, /* execute */
1537 NULL, /* sub */
1538 NULL, /* next */
1539 0, /* static_pass_number */
1540 TV_FWPROP, /* tv_id */
1541 0, /* properties_required */
1542 0, /* properties_provided */
1543 0, /* properties_destroyed */
1544 0, /* todo_flags_start */
1545 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */