PR c++/50852
[official-gcc.git] / gcc / combine.c
blob70b80bca738e662d026968e600184a4ba1fcc2ec
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "timevar.h"
102 #include "tree-pass.h"
103 #include "df.h"
104 #include "cgraph.h"
105 #include "obstack.h"
107 /* Number of attempts to combine instructions in this function. */
109 static int combine_attempts;
111 /* Number of attempts that got as far as substitution in this function. */
113 static int combine_merges;
115 /* Number of instructions combined with added SETs in this function. */
117 static int combine_extras;
119 /* Number of instructions combined in this function. */
121 static int combine_successes;
123 /* Totals over entire compilation. */
125 static int total_attempts, total_merges, total_extras, total_successes;
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
134 static rtx i2mod;
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138 static rtx i2mod_old_rhs;
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142 static rtx i2mod_new_rhs;
144 typedef struct reg_stat_struct {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
164 Therefore, we maintain the following fields:
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
180 (The next two parameters are out of date).
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
194 /* Record last value assigned to (hard or pseudo) register n. */
196 rtx last_set_value;
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
201 int last_set_table_tick;
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
206 int last_set_label;
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
221 char last_set_invalid;
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
233 If an entry is zero, it means that we don't know anything special. */
235 unsigned char sign_bit_copies;
237 unsigned HOST_WIDE_INT nonzero_bits;
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
243 int truncation_label;
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 } reg_stat_type;
253 DEF_VEC_O(reg_stat_type);
254 DEF_VEC_ALLOC_O(reg_stat_type,heap);
256 static VEC(reg_stat_type,heap) *reg_stat;
258 /* Record the luid of the last insn that invalidated memory
259 (anything that writes memory, and subroutine calls, but not pushes). */
261 static int mem_last_set;
263 /* Record the luid of the last CALL_INSN
264 so we can tell whether a potential combination crosses any calls. */
266 static int last_call_luid;
268 /* When `subst' is called, this is the insn that is being modified
269 (by combining in a previous insn). The PATTERN of this insn
270 is still the old pattern partially modified and it should not be
271 looked at, but this may be used to examine the successors of the insn
272 to judge whether a simplification is valid. */
274 static rtx subst_insn;
276 /* This is the lowest LUID that `subst' is currently dealing with.
277 get_last_value will not return a value if the register was set at or
278 after this LUID. If not for this mechanism, we could get confused if
279 I2 or I1 in try_combine were an insn that used the old value of a register
280 to obtain a new value. In that case, we might erroneously get the
281 new value of the register when we wanted the old one. */
283 static int subst_low_luid;
285 /* This contains any hard registers that are used in newpat; reg_dead_at_p
286 must consider all these registers to be always live. */
288 static HARD_REG_SET newpat_used_regs;
290 /* This is an insn to which a LOG_LINKS entry has been added. If this
291 insn is the earlier than I2 or I3, combine should rescan starting at
292 that location. */
294 static rtx added_links_insn;
296 /* Basic block in which we are performing combines. */
297 static basic_block this_basic_block;
298 static bool optimize_this_for_speed_p;
301 /* Length of the currently allocated uid_insn_cost array. */
303 static int max_uid_known;
305 /* The following array records the insn_rtx_cost for every insn
306 in the instruction stream. */
308 static int *uid_insn_cost;
310 /* The following array records the LOG_LINKS for every insn in the
311 instruction stream as struct insn_link pointers. */
313 struct insn_link {
314 rtx insn;
315 struct insn_link *next;
318 static struct insn_link **uid_log_links;
320 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
321 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
323 #define FOR_EACH_LOG_LINK(L, INSN) \
324 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
326 /* Links for LOG_LINKS are allocated from this obstack. */
328 static struct obstack insn_link_obstack;
330 /* Allocate a link. */
332 static inline struct insn_link *
333 alloc_insn_link (rtx insn, struct insn_link *next)
335 struct insn_link *l
336 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
337 sizeof (struct insn_link));
338 l->insn = insn;
339 l->next = next;
340 return l;
343 /* Incremented for each basic block. */
345 static int label_tick;
347 /* Reset to label_tick for each extended basic block in scanning order. */
349 static int label_tick_ebb_start;
351 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
352 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
354 static enum machine_mode nonzero_bits_mode;
356 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
357 be safely used. It is zero while computing them and after combine has
358 completed. This former test prevents propagating values based on
359 previously set values, which can be incorrect if a variable is modified
360 in a loop. */
362 static int nonzero_sign_valid;
365 /* Record one modification to rtl structure
366 to be undone by storing old_contents into *where. */
368 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
370 struct undo
372 struct undo *next;
373 enum undo_kind kind;
374 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
375 union { rtx *r; int *i; struct insn_link **l; } where;
378 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
379 num_undo says how many are currently recorded.
381 other_insn is nonzero if we have modified some other insn in the process
382 of working on subst_insn. It must be verified too. */
384 struct undobuf
386 struct undo *undos;
387 struct undo *frees;
388 rtx other_insn;
391 static struct undobuf undobuf;
393 /* Number of times the pseudo being substituted for
394 was found and replaced. */
396 static int n_occurrences;
398 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
399 enum machine_mode,
400 unsigned HOST_WIDE_INT,
401 unsigned HOST_WIDE_INT *);
402 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
403 enum machine_mode,
404 unsigned int, unsigned int *);
405 static void do_SUBST (rtx *, rtx);
406 static void do_SUBST_INT (int *, int);
407 static void init_reg_last (void);
408 static void setup_incoming_promotions (rtx);
409 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
410 static int cant_combine_insn_p (rtx);
411 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
412 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
413 static int contains_muldiv (rtx);
414 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
415 static void undo_all (void);
416 static void undo_commit (void);
417 static rtx *find_split_point (rtx *, rtx, bool);
418 static rtx subst (rtx, rtx, rtx, int, int, int);
419 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
420 static rtx simplify_if_then_else (rtx);
421 static rtx simplify_set (rtx);
422 static rtx simplify_logical (rtx);
423 static rtx expand_compound_operation (rtx);
424 static const_rtx expand_field_assignment (const_rtx);
425 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
426 rtx, unsigned HOST_WIDE_INT, int, int, int);
427 static rtx extract_left_shift (rtx, int);
428 static rtx make_compound_operation (rtx, enum rtx_code);
429 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
430 unsigned HOST_WIDE_INT *);
431 static rtx canon_reg_for_combine (rtx, rtx);
432 static rtx force_to_mode (rtx, enum machine_mode,
433 unsigned HOST_WIDE_INT, int);
434 static rtx if_then_else_cond (rtx, rtx *, rtx *);
435 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
436 static int rtx_equal_for_field_assignment_p (rtx, rtx);
437 static rtx make_field_assignment (rtx);
438 static rtx apply_distributive_law (rtx);
439 static rtx distribute_and_simplify_rtx (rtx, int);
440 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
441 unsigned HOST_WIDE_INT);
442 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
443 unsigned HOST_WIDE_INT);
444 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
445 HOST_WIDE_INT, enum machine_mode, int *);
446 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
447 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
448 int);
449 static int recog_for_combine (rtx *, rtx, rtx *);
450 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
451 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
452 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
453 static void update_table_tick (rtx);
454 static void record_value_for_reg (rtx, rtx, rtx);
455 static void check_promoted_subreg (rtx, rtx);
456 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
457 static void record_dead_and_set_regs (rtx);
458 static int get_last_value_validate (rtx *, rtx, int, int);
459 static rtx get_last_value (const_rtx);
460 static int use_crosses_set_p (const_rtx, int);
461 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
462 static int reg_dead_at_p (rtx, rtx);
463 static void move_deaths (rtx, rtx, int, rtx, rtx *);
464 static int reg_bitfield_target_p (rtx, rtx);
465 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
466 static void distribute_links (struct insn_link *);
467 static void mark_used_regs_combine (rtx);
468 static void record_promoted_value (rtx, rtx);
469 static int unmentioned_reg_p_1 (rtx *, void *);
470 static bool unmentioned_reg_p (rtx, rtx);
471 static int record_truncated_value (rtx *, void *);
472 static void record_truncated_values (rtx *, void *);
473 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
474 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
477 /* It is not safe to use ordinary gen_lowpart in combine.
478 See comments in gen_lowpart_for_combine. */
479 #undef RTL_HOOKS_GEN_LOWPART
480 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
482 /* Our implementation of gen_lowpart never emits a new pseudo. */
483 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
484 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
486 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
487 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
489 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
490 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
492 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
493 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
495 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
498 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
499 PATTERN can not be split. Otherwise, it returns an insn sequence.
500 This is a wrapper around split_insns which ensures that the
501 reg_stat vector is made larger if the splitter creates a new
502 register. */
504 static rtx
505 combine_split_insns (rtx pattern, rtx insn)
507 rtx ret;
508 unsigned int nregs;
510 ret = split_insns (pattern, insn);
511 nregs = max_reg_num ();
512 if (nregs > VEC_length (reg_stat_type, reg_stat))
513 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
514 return ret;
517 /* This is used by find_single_use to locate an rtx in LOC that
518 contains exactly one use of DEST, which is typically either a REG
519 or CC0. It returns a pointer to the innermost rtx expression
520 containing DEST. Appearances of DEST that are being used to
521 totally replace it are not counted. */
523 static rtx *
524 find_single_use_1 (rtx dest, rtx *loc)
526 rtx x = *loc;
527 enum rtx_code code = GET_CODE (x);
528 rtx *result = NULL;
529 rtx *this_result;
530 int i;
531 const char *fmt;
533 switch (code)
535 case CONST_INT:
536 case CONST:
537 case LABEL_REF:
538 case SYMBOL_REF:
539 case CONST_DOUBLE:
540 case CONST_VECTOR:
541 case CLOBBER:
542 return 0;
544 case SET:
545 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
546 of a REG that occupies all of the REG, the insn uses DEST if
547 it is mentioned in the destination or the source. Otherwise, we
548 need just check the source. */
549 if (GET_CODE (SET_DEST (x)) != CC0
550 && GET_CODE (SET_DEST (x)) != PC
551 && !REG_P (SET_DEST (x))
552 && ! (GET_CODE (SET_DEST (x)) == SUBREG
553 && REG_P (SUBREG_REG (SET_DEST (x)))
554 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
555 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
556 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
557 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
558 break;
560 return find_single_use_1 (dest, &SET_SRC (x));
562 case MEM:
563 case SUBREG:
564 return find_single_use_1 (dest, &XEXP (x, 0));
566 default:
567 break;
570 /* If it wasn't one of the common cases above, check each expression and
571 vector of this code. Look for a unique usage of DEST. */
573 fmt = GET_RTX_FORMAT (code);
574 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
576 if (fmt[i] == 'e')
578 if (dest == XEXP (x, i)
579 || (REG_P (dest) && REG_P (XEXP (x, i))
580 && REGNO (dest) == REGNO (XEXP (x, i))))
581 this_result = loc;
582 else
583 this_result = find_single_use_1 (dest, &XEXP (x, i));
585 if (result == NULL)
586 result = this_result;
587 else if (this_result)
588 /* Duplicate usage. */
589 return NULL;
591 else if (fmt[i] == 'E')
593 int j;
595 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
597 if (XVECEXP (x, i, j) == dest
598 || (REG_P (dest)
599 && REG_P (XVECEXP (x, i, j))
600 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
601 this_result = loc;
602 else
603 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
605 if (result == NULL)
606 result = this_result;
607 else if (this_result)
608 return NULL;
613 return result;
617 /* See if DEST, produced in INSN, is used only a single time in the
618 sequel. If so, return a pointer to the innermost rtx expression in which
619 it is used.
621 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
623 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
624 care about REG_DEAD notes or LOG_LINKS.
626 Otherwise, we find the single use by finding an insn that has a
627 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
628 only referenced once in that insn, we know that it must be the first
629 and last insn referencing DEST. */
631 static rtx *
632 find_single_use (rtx dest, rtx insn, rtx *ploc)
634 basic_block bb;
635 rtx next;
636 rtx *result;
637 struct insn_link *link;
639 #ifdef HAVE_cc0
640 if (dest == cc0_rtx)
642 next = NEXT_INSN (insn);
643 if (next == 0
644 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
645 return 0;
647 result = find_single_use_1 (dest, &PATTERN (next));
648 if (result && ploc)
649 *ploc = next;
650 return result;
652 #endif
654 if (!REG_P (dest))
655 return 0;
657 bb = BLOCK_FOR_INSN (insn);
658 for (next = NEXT_INSN (insn);
659 next && BLOCK_FOR_INSN (next) == bb;
660 next = NEXT_INSN (next))
661 if (INSN_P (next) && dead_or_set_p (next, dest))
663 FOR_EACH_LOG_LINK (link, next)
664 if (link->insn == insn)
665 break;
667 if (link)
669 result = find_single_use_1 (dest, &PATTERN (next));
670 if (ploc)
671 *ploc = next;
672 return result;
676 return 0;
679 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
680 insn. The substitution can be undone by undo_all. If INTO is already
681 set to NEWVAL, do not record this change. Because computing NEWVAL might
682 also call SUBST, we have to compute it before we put anything into
683 the undo table. */
685 static void
686 do_SUBST (rtx *into, rtx newval)
688 struct undo *buf;
689 rtx oldval = *into;
691 if (oldval == newval)
692 return;
694 /* We'd like to catch as many invalid transformations here as
695 possible. Unfortunately, there are way too many mode changes
696 that are perfectly valid, so we'd waste too much effort for
697 little gain doing the checks here. Focus on catching invalid
698 transformations involving integer constants. */
699 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
700 && CONST_INT_P (newval))
702 /* Sanity check that we're replacing oldval with a CONST_INT
703 that is a valid sign-extension for the original mode. */
704 gcc_assert (INTVAL (newval)
705 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
707 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
708 CONST_INT is not valid, because after the replacement, the
709 original mode would be gone. Unfortunately, we can't tell
710 when do_SUBST is called to replace the operand thereof, so we
711 perform this test on oldval instead, checking whether an
712 invalid replacement took place before we got here. */
713 gcc_assert (!(GET_CODE (oldval) == SUBREG
714 && CONST_INT_P (SUBREG_REG (oldval))));
715 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
716 && CONST_INT_P (XEXP (oldval, 0))));
719 if (undobuf.frees)
720 buf = undobuf.frees, undobuf.frees = buf->next;
721 else
722 buf = XNEW (struct undo);
724 buf->kind = UNDO_RTX;
725 buf->where.r = into;
726 buf->old_contents.r = oldval;
727 *into = newval;
729 buf->next = undobuf.undos, undobuf.undos = buf;
732 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
734 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
735 for the value of a HOST_WIDE_INT value (including CONST_INT) is
736 not safe. */
738 static void
739 do_SUBST_INT (int *into, int newval)
741 struct undo *buf;
742 int oldval = *into;
744 if (oldval == newval)
745 return;
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
752 buf->kind = UNDO_INT;
753 buf->where.i = into;
754 buf->old_contents.i = oldval;
755 *into = newval;
757 buf->next = undobuf.undos, undobuf.undos = buf;
760 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
762 /* Similar to SUBST, but just substitute the mode. This is used when
763 changing the mode of a pseudo-register, so that any other
764 references to the entry in the regno_reg_rtx array will change as
765 well. */
767 static void
768 do_SUBST_MODE (rtx *into, enum machine_mode newval)
770 struct undo *buf;
771 enum machine_mode oldval = GET_MODE (*into);
773 if (oldval == newval)
774 return;
776 if (undobuf.frees)
777 buf = undobuf.frees, undobuf.frees = buf->next;
778 else
779 buf = XNEW (struct undo);
781 buf->kind = UNDO_MODE;
782 buf->where.r = into;
783 buf->old_contents.m = oldval;
784 adjust_reg_mode (*into, newval);
786 buf->next = undobuf.undos, undobuf.undos = buf;
789 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
791 #ifndef HAVE_cc0
792 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
794 static void
795 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
797 struct undo *buf;
798 struct insn_link * oldval = *into;
800 if (oldval == newval)
801 return;
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
808 buf->kind = UNDO_LINKS;
809 buf->where.l = into;
810 buf->old_contents.l = oldval;
811 *into = newval;
813 buf->next = undobuf.undos, undobuf.undos = buf;
816 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
817 #endif
819 /* Subroutine of try_combine. Determine whether the replacement patterns
820 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
821 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
822 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
823 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
824 of all the instructions can be estimated and the replacements are more
825 expensive than the original sequence. */
827 static bool
828 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
829 rtx newi2pat, rtx newotherpat)
831 int i0_cost, i1_cost, i2_cost, i3_cost;
832 int new_i2_cost, new_i3_cost;
833 int old_cost, new_cost;
835 /* Lookup the original insn_rtx_costs. */
836 i2_cost = INSN_COST (i2);
837 i3_cost = INSN_COST (i3);
839 if (i1)
841 i1_cost = INSN_COST (i1);
842 if (i0)
844 i0_cost = INSN_COST (i0);
845 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
846 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
848 else
850 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
851 ? i1_cost + i2_cost + i3_cost : 0);
852 i0_cost = 0;
855 else
857 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
858 i1_cost = i0_cost = 0;
861 /* Calculate the replacement insn_rtx_costs. */
862 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
863 if (newi2pat)
865 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
866 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
867 ? new_i2_cost + new_i3_cost : 0;
869 else
871 new_cost = new_i3_cost;
872 new_i2_cost = 0;
875 if (undobuf.other_insn)
877 int old_other_cost, new_other_cost;
879 old_other_cost = INSN_COST (undobuf.other_insn);
880 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
881 if (old_other_cost > 0 && new_other_cost > 0)
883 old_cost += old_other_cost;
884 new_cost += new_other_cost;
886 else
887 old_cost = 0;
890 /* Disallow this combination if both new_cost and old_cost are greater than
891 zero, and new_cost is greater than old cost. */
892 if (old_cost > 0 && new_cost > old_cost)
894 if (dump_file)
896 if (i0)
898 fprintf (dump_file,
899 "rejecting combination of insns %d, %d, %d and %d\n",
900 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
901 INSN_UID (i3));
902 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
903 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
905 else if (i1)
907 fprintf (dump_file,
908 "rejecting combination of insns %d, %d and %d\n",
909 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
910 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
911 i1_cost, i2_cost, i3_cost, old_cost);
913 else
915 fprintf (dump_file,
916 "rejecting combination of insns %d and %d\n",
917 INSN_UID (i2), INSN_UID (i3));
918 fprintf (dump_file, "original costs %d + %d = %d\n",
919 i2_cost, i3_cost, old_cost);
922 if (newi2pat)
924 fprintf (dump_file, "replacement costs %d + %d = %d\n",
925 new_i2_cost, new_i3_cost, new_cost);
927 else
928 fprintf (dump_file, "replacement cost %d\n", new_cost);
931 return false;
934 /* Update the uid_insn_cost array with the replacement costs. */
935 INSN_COST (i2) = new_i2_cost;
936 INSN_COST (i3) = new_i3_cost;
937 if (i1)
939 INSN_COST (i1) = 0;
940 if (i0)
941 INSN_COST (i0) = 0;
944 return true;
948 /* Delete any insns that copy a register to itself. */
950 static void
951 delete_noop_moves (void)
953 rtx insn, next;
954 basic_block bb;
956 FOR_EACH_BB (bb)
958 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
960 next = NEXT_INSN (insn);
961 if (INSN_P (insn) && noop_move_p (insn))
963 if (dump_file)
964 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
966 delete_insn_and_edges (insn);
973 /* Fill in log links field for all insns. */
975 static void
976 create_log_links (void)
978 basic_block bb;
979 rtx *next_use, insn;
980 df_ref *def_vec, *use_vec;
982 next_use = XCNEWVEC (rtx, max_reg_num ());
984 /* Pass through each block from the end, recording the uses of each
985 register and establishing log links when def is encountered.
986 Note that we do not clear next_use array in order to save time,
987 so we have to test whether the use is in the same basic block as def.
989 There are a few cases below when we do not consider the definition or
990 usage -- these are taken from original flow.c did. Don't ask me why it is
991 done this way; I don't know and if it works, I don't want to know. */
993 FOR_EACH_BB (bb)
995 FOR_BB_INSNS_REVERSE (bb, insn)
997 if (!NONDEBUG_INSN_P (insn))
998 continue;
1000 /* Log links are created only once. */
1001 gcc_assert (!LOG_LINKS (insn));
1003 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1005 df_ref def = *def_vec;
1006 int regno = DF_REF_REGNO (def);
1007 rtx use_insn;
1009 if (!next_use[regno])
1010 continue;
1012 /* Do not consider if it is pre/post modification in MEM. */
1013 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1014 continue;
1016 /* Do not make the log link for frame pointer. */
1017 if ((regno == FRAME_POINTER_REGNUM
1018 && (! reload_completed || frame_pointer_needed))
1019 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1020 || (regno == HARD_FRAME_POINTER_REGNUM
1021 && (! reload_completed || frame_pointer_needed))
1022 #endif
1023 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1024 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1025 #endif
1027 continue;
1029 use_insn = next_use[regno];
1030 if (BLOCK_FOR_INSN (use_insn) == bb)
1032 /* flow.c claimed:
1034 We don't build a LOG_LINK for hard registers contained
1035 in ASM_OPERANDs. If these registers get replaced,
1036 we might wind up changing the semantics of the insn,
1037 even if reload can make what appear to be valid
1038 assignments later. */
1039 if (regno >= FIRST_PSEUDO_REGISTER
1040 || asm_noperands (PATTERN (use_insn)) < 0)
1042 /* Don't add duplicate links between instructions. */
1043 struct insn_link *links;
1044 FOR_EACH_LOG_LINK (links, use_insn)
1045 if (insn == links->insn)
1046 break;
1048 if (!links)
1049 LOG_LINKS (use_insn)
1050 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1053 next_use[regno] = NULL_RTX;
1056 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1058 df_ref use = *use_vec;
1059 int regno = DF_REF_REGNO (use);
1061 /* Do not consider the usage of the stack pointer
1062 by function call. */
1063 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1064 continue;
1066 next_use[regno] = insn;
1071 free (next_use);
1074 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1075 true if we found a LOG_LINK that proves that A feeds B. This only works
1076 if there are no instructions between A and B which could have a link
1077 depending on A, since in that case we would not record a link for B.
1078 We also check the implicit dependency created by a cc0 setter/user
1079 pair. */
1081 static bool
1082 insn_a_feeds_b (rtx a, rtx b)
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, b)
1086 if (links->insn == a)
1087 return true;
1088 #ifdef HAVE_cc0
1089 if (sets_cc0_p (a))
1090 return true;
1091 #endif
1092 return false;
1095 /* Main entry point for combiner. F is the first insn of the function.
1096 NREGS is the first unused pseudo-reg number.
1098 Return nonzero if the combiner has turned an indirect jump
1099 instruction into a direct jump. */
1100 static int
1101 combine_instructions (rtx f, unsigned int nregs)
1103 rtx insn, next;
1104 #ifdef HAVE_cc0
1105 rtx prev;
1106 #endif
1107 struct insn_link *links, *nextlinks;
1108 rtx first;
1109 basic_block last_bb;
1111 int new_direct_jump_p = 0;
1113 for (first = f; first && !INSN_P (first); )
1114 first = NEXT_INSN (first);
1115 if (!first)
1116 return 0;
1118 combine_attempts = 0;
1119 combine_merges = 0;
1120 combine_extras = 0;
1121 combine_successes = 0;
1123 rtl_hooks = combine_rtl_hooks;
1125 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1127 init_recog_no_volatile ();
1129 /* Allocate array for insn info. */
1130 max_uid_known = get_max_uid ();
1131 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1132 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1133 gcc_obstack_init (&insn_link_obstack);
1135 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1137 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1138 problems when, for example, we have j <<= 1 in a loop. */
1140 nonzero_sign_valid = 0;
1141 label_tick = label_tick_ebb_start = 1;
1143 /* Scan all SETs and see if we can deduce anything about what
1144 bits are known to be zero for some registers and how many copies
1145 of the sign bit are known to exist for those registers.
1147 Also set any known values so that we can use it while searching
1148 for what bits are known to be set. */
1150 setup_incoming_promotions (first);
1151 /* Allow the entry block and the first block to fall into the same EBB.
1152 Conceptually the incoming promotions are assigned to the entry block. */
1153 last_bb = ENTRY_BLOCK_PTR;
1155 create_log_links ();
1156 FOR_EACH_BB (this_basic_block)
1158 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1159 last_call_luid = 0;
1160 mem_last_set = -1;
1162 label_tick++;
1163 if (!single_pred_p (this_basic_block)
1164 || single_pred (this_basic_block) != last_bb)
1165 label_tick_ebb_start = label_tick;
1166 last_bb = this_basic_block;
1168 FOR_BB_INSNS (this_basic_block, insn)
1169 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1171 #ifdef AUTO_INC_DEC
1172 rtx links;
1173 #endif
1175 subst_low_luid = DF_INSN_LUID (insn);
1176 subst_insn = insn;
1178 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1179 insn);
1180 record_dead_and_set_regs (insn);
1182 #ifdef AUTO_INC_DEC
1183 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1184 if (REG_NOTE_KIND (links) == REG_INC)
1185 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1186 insn);
1187 #endif
1189 /* Record the current insn_rtx_cost of this instruction. */
1190 if (NONJUMP_INSN_P (insn))
1191 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1192 optimize_this_for_speed_p);
1193 if (dump_file)
1194 fprintf(dump_file, "insn_cost %d: %d\n",
1195 INSN_UID (insn), INSN_COST (insn));
1199 nonzero_sign_valid = 1;
1201 /* Now scan all the insns in forward order. */
1202 label_tick = label_tick_ebb_start = 1;
1203 init_reg_last ();
1204 setup_incoming_promotions (first);
1205 last_bb = ENTRY_BLOCK_PTR;
1207 FOR_EACH_BB (this_basic_block)
1209 rtx last_combined_insn = NULL_RTX;
1210 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1211 last_call_luid = 0;
1212 mem_last_set = -1;
1214 label_tick++;
1215 if (!single_pred_p (this_basic_block)
1216 || single_pred (this_basic_block) != last_bb)
1217 label_tick_ebb_start = label_tick;
1218 last_bb = this_basic_block;
1220 rtl_profile_for_bb (this_basic_block);
1221 for (insn = BB_HEAD (this_basic_block);
1222 insn != NEXT_INSN (BB_END (this_basic_block));
1223 insn = next ? next : NEXT_INSN (insn))
1225 next = 0;
1226 if (NONDEBUG_INSN_P (insn))
1228 while (last_combined_insn
1229 && INSN_DELETED_P (last_combined_insn))
1230 last_combined_insn = PREV_INSN (last_combined_insn);
1231 if (last_combined_insn == NULL_RTX
1232 || BARRIER_P (last_combined_insn)
1233 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1234 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1235 last_combined_insn = insn;
1237 /* See if we know about function return values before this
1238 insn based upon SUBREG flags. */
1239 check_promoted_subreg (insn, PATTERN (insn));
1241 /* See if we can find hardregs and subreg of pseudos in
1242 narrower modes. This could help turning TRUNCATEs
1243 into SUBREGs. */
1244 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1246 /* Try this insn with each insn it links back to. */
1248 FOR_EACH_LOG_LINK (links, insn)
1249 if ((next = try_combine (insn, links->insn, NULL_RTX,
1250 NULL_RTX, &new_direct_jump_p,
1251 last_combined_insn)) != 0)
1252 goto retry;
1254 /* Try each sequence of three linked insns ending with this one. */
1256 FOR_EACH_LOG_LINK (links, insn)
1258 rtx link = links->insn;
1260 /* If the linked insn has been replaced by a note, then there
1261 is no point in pursuing this chain any further. */
1262 if (NOTE_P (link))
1263 continue;
1265 FOR_EACH_LOG_LINK (nextlinks, link)
1266 if ((next = try_combine (insn, link, nextlinks->insn,
1267 NULL_RTX, &new_direct_jump_p,
1268 last_combined_insn)) != 0)
1269 goto retry;
1272 #ifdef HAVE_cc0
1273 /* Try to combine a jump insn that uses CC0
1274 with a preceding insn that sets CC0, and maybe with its
1275 logical predecessor as well.
1276 This is how we make decrement-and-branch insns.
1277 We need this special code because data flow connections
1278 via CC0 do not get entered in LOG_LINKS. */
1280 if (JUMP_P (insn)
1281 && (prev = prev_nonnote_insn (insn)) != 0
1282 && NONJUMP_INSN_P (prev)
1283 && sets_cc0_p (PATTERN (prev)))
1285 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1286 &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1288 goto retry;
1290 FOR_EACH_LOG_LINK (nextlinks, prev)
1291 if ((next = try_combine (insn, prev, nextlinks->insn,
1292 NULL_RTX, &new_direct_jump_p,
1293 last_combined_insn)) != 0)
1294 goto retry;
1297 /* Do the same for an insn that explicitly references CC0. */
1298 if (NONJUMP_INSN_P (insn)
1299 && (prev = prev_nonnote_insn (insn)) != 0
1300 && NONJUMP_INSN_P (prev)
1301 && sets_cc0_p (PATTERN (prev))
1302 && GET_CODE (PATTERN (insn)) == SET
1303 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1305 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1306 &new_direct_jump_p,
1307 last_combined_insn)) != 0)
1308 goto retry;
1310 FOR_EACH_LOG_LINK (nextlinks, prev)
1311 if ((next = try_combine (insn, prev, nextlinks->insn,
1312 NULL_RTX, &new_direct_jump_p,
1313 last_combined_insn)) != 0)
1314 goto retry;
1317 /* Finally, see if any of the insns that this insn links to
1318 explicitly references CC0. If so, try this insn, that insn,
1319 and its predecessor if it sets CC0. */
1320 FOR_EACH_LOG_LINK (links, insn)
1321 if (NONJUMP_INSN_P (links->insn)
1322 && GET_CODE (PATTERN (links->insn)) == SET
1323 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1324 && (prev = prev_nonnote_insn (links->insn)) != 0
1325 && NONJUMP_INSN_P (prev)
1326 && sets_cc0_p (PATTERN (prev))
1327 && (next = try_combine (insn, links->insn,
1328 prev, NULL_RTX, &new_direct_jump_p,
1329 last_combined_insn)) != 0)
1330 goto retry;
1331 #endif
1333 /* Try combining an insn with two different insns whose results it
1334 uses. */
1335 FOR_EACH_LOG_LINK (links, insn)
1336 for (nextlinks = links->next; nextlinks;
1337 nextlinks = nextlinks->next)
1338 if ((next = try_combine (insn, links->insn,
1339 nextlinks->insn, NULL_RTX,
1340 &new_direct_jump_p,
1341 last_combined_insn)) != 0)
1342 goto retry;
1344 /* Try four-instruction combinations. */
1345 FOR_EACH_LOG_LINK (links, insn)
1347 struct insn_link *next1;
1348 rtx link = links->insn;
1350 /* If the linked insn has been replaced by a note, then there
1351 is no point in pursuing this chain any further. */
1352 if (NOTE_P (link))
1353 continue;
1355 FOR_EACH_LOG_LINK (next1, link)
1357 rtx link1 = next1->insn;
1358 if (NOTE_P (link1))
1359 continue;
1360 /* I0 -> I1 -> I2 -> I3. */
1361 FOR_EACH_LOG_LINK (nextlinks, link1)
1362 if ((next = try_combine (insn, link, link1,
1363 nextlinks->insn,
1364 &new_direct_jump_p,
1365 last_combined_insn)) != 0)
1366 goto retry;
1367 /* I0, I1 -> I2, I2 -> I3. */
1368 for (nextlinks = next1->next; nextlinks;
1369 nextlinks = nextlinks->next)
1370 if ((next = try_combine (insn, link, link1,
1371 nextlinks->insn,
1372 &new_direct_jump_p,
1373 last_combined_insn)) != 0)
1374 goto retry;
1377 for (next1 = links->next; next1; next1 = next1->next)
1379 rtx link1 = next1->insn;
1380 if (NOTE_P (link1))
1381 continue;
1382 /* I0 -> I2; I1, I2 -> I3. */
1383 FOR_EACH_LOG_LINK (nextlinks, link)
1384 if ((next = try_combine (insn, link, link1,
1385 nextlinks->insn,
1386 &new_direct_jump_p,
1387 last_combined_insn)) != 0)
1388 goto retry;
1389 /* I0 -> I1; I1, I2 -> I3. */
1390 FOR_EACH_LOG_LINK (nextlinks, link1)
1391 if ((next = try_combine (insn, link, link1,
1392 nextlinks->insn,
1393 &new_direct_jump_p,
1394 last_combined_insn)) != 0)
1395 goto retry;
1399 /* Try this insn with each REG_EQUAL note it links back to. */
1400 FOR_EACH_LOG_LINK (links, insn)
1402 rtx set, note;
1403 rtx temp = links->insn;
1404 if ((set = single_set (temp)) != 0
1405 && (note = find_reg_equal_equiv_note (temp)) != 0
1406 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1407 /* Avoid using a register that may already been marked
1408 dead by an earlier instruction. */
1409 && ! unmentioned_reg_p (note, SET_SRC (set))
1410 && (GET_MODE (note) == VOIDmode
1411 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1412 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1414 /* Temporarily replace the set's source with the
1415 contents of the REG_EQUAL note. The insn will
1416 be deleted or recognized by try_combine. */
1417 rtx orig = SET_SRC (set);
1418 SET_SRC (set) = note;
1419 i2mod = temp;
1420 i2mod_old_rhs = copy_rtx (orig);
1421 i2mod_new_rhs = copy_rtx (note);
1422 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1423 &new_direct_jump_p,
1424 last_combined_insn);
1425 i2mod = NULL_RTX;
1426 if (next)
1427 goto retry;
1428 SET_SRC (set) = orig;
1432 if (!NOTE_P (insn))
1433 record_dead_and_set_regs (insn);
1435 retry:
1441 default_rtl_profile ();
1442 clear_bb_flags ();
1443 new_direct_jump_p |= purge_all_dead_edges ();
1444 delete_noop_moves ();
1446 /* Clean up. */
1447 obstack_free (&insn_link_obstack, NULL);
1448 free (uid_log_links);
1449 free (uid_insn_cost);
1450 VEC_free (reg_stat_type, heap, reg_stat);
1453 struct undo *undo, *next;
1454 for (undo = undobuf.frees; undo; undo = next)
1456 next = undo->next;
1457 free (undo);
1459 undobuf.frees = 0;
1462 total_attempts += combine_attempts;
1463 total_merges += combine_merges;
1464 total_extras += combine_extras;
1465 total_successes += combine_successes;
1467 nonzero_sign_valid = 0;
1468 rtl_hooks = general_rtl_hooks;
1470 /* Make recognizer allow volatile MEMs again. */
1471 init_recog ();
1473 return new_direct_jump_p;
1476 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1478 static void
1479 init_reg_last (void)
1481 unsigned int i;
1482 reg_stat_type *p;
1484 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1485 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1488 /* Set up any promoted values for incoming argument registers. */
1490 static void
1491 setup_incoming_promotions (rtx first)
1493 tree arg;
1494 bool strictly_local = false;
1496 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1497 arg = DECL_CHAIN (arg))
1499 rtx x, reg = DECL_INCOMING_RTL (arg);
1500 int uns1, uns3;
1501 enum machine_mode mode1, mode2, mode3, mode4;
1503 /* Only continue if the incoming argument is in a register. */
1504 if (!REG_P (reg))
1505 continue;
1507 /* Determine, if possible, whether all call sites of the current
1508 function lie within the current compilation unit. (This does
1509 take into account the exporting of a function via taking its
1510 address, and so forth.) */
1511 strictly_local = cgraph_local_info (current_function_decl)->local;
1513 /* The mode and signedness of the argument before any promotions happen
1514 (equal to the mode of the pseudo holding it at that stage). */
1515 mode1 = TYPE_MODE (TREE_TYPE (arg));
1516 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1518 /* The mode and signedness of the argument after any source language and
1519 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1520 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1521 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1523 /* The mode and signedness of the argument as it is actually passed,
1524 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1525 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1526 TREE_TYPE (cfun->decl), 0);
1528 /* The mode of the register in which the argument is being passed. */
1529 mode4 = GET_MODE (reg);
1531 /* Eliminate sign extensions in the callee when:
1532 (a) A mode promotion has occurred; */
1533 if (mode1 == mode3)
1534 continue;
1535 /* (b) The mode of the register is the same as the mode of
1536 the argument as it is passed; */
1537 if (mode3 != mode4)
1538 continue;
1539 /* (c) There's no language level extension; */
1540 if (mode1 == mode2)
1542 /* (c.1) All callers are from the current compilation unit. If that's
1543 the case we don't have to rely on an ABI, we only have to know
1544 what we're generating right now, and we know that we will do the
1545 mode1 to mode2 promotion with the given sign. */
1546 else if (!strictly_local)
1547 continue;
1548 /* (c.2) The combination of the two promotions is useful. This is
1549 true when the signs match, or if the first promotion is unsigned.
1550 In the later case, (sign_extend (zero_extend x)) is the same as
1551 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1552 else if (uns1)
1553 uns3 = true;
1554 else if (uns3)
1555 continue;
1557 /* Record that the value was promoted from mode1 to mode3,
1558 so that any sign extension at the head of the current
1559 function may be eliminated. */
1560 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1561 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1562 record_value_for_reg (reg, first, x);
1566 /* Called via note_stores. If X is a pseudo that is narrower than
1567 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1569 If we are setting only a portion of X and we can't figure out what
1570 portion, assume all bits will be used since we don't know what will
1571 be happening.
1573 Similarly, set how many bits of X are known to be copies of the sign bit
1574 at all locations in the function. This is the smallest number implied
1575 by any set of X. */
1577 static void
1578 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1580 rtx insn = (rtx) data;
1581 unsigned int num;
1583 if (REG_P (x)
1584 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1585 /* If this register is undefined at the start of the file, we can't
1586 say what its contents were. */
1587 && ! REGNO_REG_SET_P
1588 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1589 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1591 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1593 if (set == 0 || GET_CODE (set) == CLOBBER)
1595 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1596 rsp->sign_bit_copies = 1;
1597 return;
1600 /* If this register is being initialized using itself, and the
1601 register is uninitialized in this basic block, and there are
1602 no LOG_LINKS which set the register, then part of the
1603 register is uninitialized. In that case we can't assume
1604 anything about the number of nonzero bits.
1606 ??? We could do better if we checked this in
1607 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1608 could avoid making assumptions about the insn which initially
1609 sets the register, while still using the information in other
1610 insns. We would have to be careful to check every insn
1611 involved in the combination. */
1613 if (insn
1614 && reg_referenced_p (x, PATTERN (insn))
1615 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1616 REGNO (x)))
1618 struct insn_link *link;
1620 FOR_EACH_LOG_LINK (link, insn)
1621 if (dead_or_set_p (link->insn, x))
1622 break;
1623 if (!link)
1625 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1626 rsp->sign_bit_copies = 1;
1627 return;
1631 /* If this is a complex assignment, see if we can convert it into a
1632 simple assignment. */
1633 set = expand_field_assignment (set);
1635 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1636 set what we know about X. */
1638 if (SET_DEST (set) == x
1639 || (paradoxical_subreg_p (SET_DEST (set))
1640 && SUBREG_REG (SET_DEST (set)) == x))
1642 rtx src = SET_SRC (set);
1644 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1645 /* If X is narrower than a word and SRC is a non-negative
1646 constant that would appear negative in the mode of X,
1647 sign-extend it for use in reg_stat[].nonzero_bits because some
1648 machines (maybe most) will actually do the sign-extension
1649 and this is the conservative approach.
1651 ??? For 2.5, try to tighten up the MD files in this regard
1652 instead of this kludge. */
1654 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1655 && CONST_INT_P (src)
1656 && INTVAL (src) > 0
1657 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1658 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1659 #endif
1661 /* Don't call nonzero_bits if it cannot change anything. */
1662 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1663 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1664 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1665 if (rsp->sign_bit_copies == 0
1666 || rsp->sign_bit_copies > num)
1667 rsp->sign_bit_copies = num;
1669 else
1671 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1672 rsp->sign_bit_copies = 1;
1677 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1678 optionally insns that were previously combined into I3 or that will be
1679 combined into the merger of INSN and I3. The order is PRED, PRED2,
1680 INSN, SUCC, SUCC2, I3.
1682 Return 0 if the combination is not allowed for any reason.
1684 If the combination is allowed, *PDEST will be set to the single
1685 destination of INSN and *PSRC to the single source, and this function
1686 will return 1. */
1688 static int
1689 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1690 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1691 rtx *pdest, rtx *psrc)
1693 int i;
1694 const_rtx set = 0;
1695 rtx src, dest;
1696 rtx p;
1697 #ifdef AUTO_INC_DEC
1698 rtx link;
1699 #endif
1700 bool all_adjacent = true;
1701 int (*is_volatile_p) (const_rtx);
1703 if (succ)
1705 if (succ2)
1707 if (next_active_insn (succ2) != i3)
1708 all_adjacent = false;
1709 if (next_active_insn (succ) != succ2)
1710 all_adjacent = false;
1712 else if (next_active_insn (succ) != i3)
1713 all_adjacent = false;
1714 if (next_active_insn (insn) != succ)
1715 all_adjacent = false;
1717 else if (next_active_insn (insn) != i3)
1718 all_adjacent = false;
1720 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1721 or a PARALLEL consisting of such a SET and CLOBBERs.
1723 If INSN has CLOBBER parallel parts, ignore them for our processing.
1724 By definition, these happen during the execution of the insn. When it
1725 is merged with another insn, all bets are off. If they are, in fact,
1726 needed and aren't also supplied in I3, they may be added by
1727 recog_for_combine. Otherwise, it won't match.
1729 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1730 note.
1732 Get the source and destination of INSN. If more than one, can't
1733 combine. */
1735 if (GET_CODE (PATTERN (insn)) == SET)
1736 set = PATTERN (insn);
1737 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1738 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1740 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1742 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1744 switch (GET_CODE (elt))
1746 /* This is important to combine floating point insns
1747 for the SH4 port. */
1748 case USE:
1749 /* Combining an isolated USE doesn't make sense.
1750 We depend here on combinable_i3pat to reject them. */
1751 /* The code below this loop only verifies that the inputs of
1752 the SET in INSN do not change. We call reg_set_between_p
1753 to verify that the REG in the USE does not change between
1754 I3 and INSN.
1755 If the USE in INSN was for a pseudo register, the matching
1756 insn pattern will likely match any register; combining this
1757 with any other USE would only be safe if we knew that the
1758 used registers have identical values, or if there was
1759 something to tell them apart, e.g. different modes. For
1760 now, we forgo such complicated tests and simply disallow
1761 combining of USES of pseudo registers with any other USE. */
1762 if (REG_P (XEXP (elt, 0))
1763 && GET_CODE (PATTERN (i3)) == PARALLEL)
1765 rtx i3pat = PATTERN (i3);
1766 int i = XVECLEN (i3pat, 0) - 1;
1767 unsigned int regno = REGNO (XEXP (elt, 0));
1771 rtx i3elt = XVECEXP (i3pat, 0, i);
1773 if (GET_CODE (i3elt) == USE
1774 && REG_P (XEXP (i3elt, 0))
1775 && (REGNO (XEXP (i3elt, 0)) == regno
1776 ? reg_set_between_p (XEXP (elt, 0),
1777 PREV_INSN (insn), i3)
1778 : regno >= FIRST_PSEUDO_REGISTER))
1779 return 0;
1781 while (--i >= 0);
1783 break;
1785 /* We can ignore CLOBBERs. */
1786 case CLOBBER:
1787 break;
1789 case SET:
1790 /* Ignore SETs whose result isn't used but not those that
1791 have side-effects. */
1792 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1793 && insn_nothrow_p (insn)
1794 && !side_effects_p (elt))
1795 break;
1797 /* If we have already found a SET, this is a second one and
1798 so we cannot combine with this insn. */
1799 if (set)
1800 return 0;
1802 set = elt;
1803 break;
1805 default:
1806 /* Anything else means we can't combine. */
1807 return 0;
1811 if (set == 0
1812 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1813 so don't do anything with it. */
1814 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1815 return 0;
1817 else
1818 return 0;
1820 if (set == 0)
1821 return 0;
1823 /* The simplification in expand_field_assignment may call back to
1824 get_last_value, so set safe guard here. */
1825 subst_low_luid = DF_INSN_LUID (insn);
1827 set = expand_field_assignment (set);
1828 src = SET_SRC (set), dest = SET_DEST (set);
1830 /* Don't eliminate a store in the stack pointer. */
1831 if (dest == stack_pointer_rtx
1832 /* Don't combine with an insn that sets a register to itself if it has
1833 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1834 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1835 /* Can't merge an ASM_OPERANDS. */
1836 || GET_CODE (src) == ASM_OPERANDS
1837 /* Can't merge a function call. */
1838 || GET_CODE (src) == CALL
1839 /* Don't eliminate a function call argument. */
1840 || (CALL_P (i3)
1841 && (find_reg_fusage (i3, USE, dest)
1842 || (REG_P (dest)
1843 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1844 && global_regs[REGNO (dest)])))
1845 /* Don't substitute into an incremented register. */
1846 || FIND_REG_INC_NOTE (i3, dest)
1847 || (succ && FIND_REG_INC_NOTE (succ, dest))
1848 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1849 /* Don't substitute into a non-local goto, this confuses CFG. */
1850 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1851 /* Make sure that DEST is not used after SUCC but before I3. */
1852 || (!all_adjacent
1853 && ((succ2
1854 && (reg_used_between_p (dest, succ2, i3)
1855 || reg_used_between_p (dest, succ, succ2)))
1856 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1857 /* Make sure that the value that is to be substituted for the register
1858 does not use any registers whose values alter in between. However,
1859 If the insns are adjacent, a use can't cross a set even though we
1860 think it might (this can happen for a sequence of insns each setting
1861 the same destination; last_set of that register might point to
1862 a NOTE). If INSN has a REG_EQUIV note, the register is always
1863 equivalent to the memory so the substitution is valid even if there
1864 are intervening stores. Also, don't move a volatile asm or
1865 UNSPEC_VOLATILE across any other insns. */
1866 || (! all_adjacent
1867 && (((!MEM_P (src)
1868 || ! find_reg_note (insn, REG_EQUIV, src))
1869 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1870 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1871 || GET_CODE (src) == UNSPEC_VOLATILE))
1872 /* Don't combine across a CALL_INSN, because that would possibly
1873 change whether the life span of some REGs crosses calls or not,
1874 and it is a pain to update that information.
1875 Exception: if source is a constant, moving it later can't hurt.
1876 Accept that as a special case. */
1877 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1878 return 0;
1880 /* DEST must either be a REG or CC0. */
1881 if (REG_P (dest))
1883 /* If register alignment is being enforced for multi-word items in all
1884 cases except for parameters, it is possible to have a register copy
1885 insn referencing a hard register that is not allowed to contain the
1886 mode being copied and which would not be valid as an operand of most
1887 insns. Eliminate this problem by not combining with such an insn.
1889 Also, on some machines we don't want to extend the life of a hard
1890 register. */
1892 if (REG_P (src)
1893 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1894 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1895 /* Don't extend the life of a hard register unless it is
1896 user variable (if we have few registers) or it can't
1897 fit into the desired register (meaning something special
1898 is going on).
1899 Also avoid substituting a return register into I3, because
1900 reload can't handle a conflict with constraints of other
1901 inputs. */
1902 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1903 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1904 return 0;
1906 else if (GET_CODE (dest) != CC0)
1907 return 0;
1910 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1911 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1912 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1914 /* Don't substitute for a register intended as a clobberable
1915 operand. */
1916 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1917 if (rtx_equal_p (reg, dest))
1918 return 0;
1920 /* If the clobber represents an earlyclobber operand, we must not
1921 substitute an expression containing the clobbered register.
1922 As we do not analyze the constraint strings here, we have to
1923 make the conservative assumption. However, if the register is
1924 a fixed hard reg, the clobber cannot represent any operand;
1925 we leave it up to the machine description to either accept or
1926 reject use-and-clobber patterns. */
1927 if (!REG_P (reg)
1928 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1929 || !fixed_regs[REGNO (reg)])
1930 if (reg_overlap_mentioned_p (reg, src))
1931 return 0;
1934 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1935 or not), reject, unless nothing volatile comes between it and I3 */
1937 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1939 /* Make sure neither succ nor succ2 contains a volatile reference. */
1940 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1941 return 0;
1942 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1943 return 0;
1944 /* We'll check insns between INSN and I3 below. */
1947 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1948 to be an explicit register variable, and was chosen for a reason. */
1950 if (GET_CODE (src) == ASM_OPERANDS
1951 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1952 return 0;
1954 /* If INSN contains volatile references (specifically volatile MEMs),
1955 we cannot combine across any other volatile references.
1956 Even if INSN doesn't contain volatile references, any intervening
1957 volatile insn might affect machine state. */
1959 is_volatile_p = volatile_refs_p (PATTERN (insn))
1960 ? volatile_refs_p
1961 : volatile_insn_p;
1963 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1964 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1965 return 0;
1967 /* If INSN contains an autoincrement or autodecrement, make sure that
1968 register is not used between there and I3, and not already used in
1969 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1970 Also insist that I3 not be a jump; if it were one
1971 and the incremented register were spilled, we would lose. */
1973 #ifdef AUTO_INC_DEC
1974 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1975 if (REG_NOTE_KIND (link) == REG_INC
1976 && (JUMP_P (i3)
1977 || reg_used_between_p (XEXP (link, 0), insn, i3)
1978 || (pred != NULL_RTX
1979 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1980 || (pred2 != NULL_RTX
1981 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1982 || (succ != NULL_RTX
1983 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1984 || (succ2 != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1986 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1987 return 0;
1988 #endif
1990 #ifdef HAVE_cc0
1991 /* Don't combine an insn that follows a CC0-setting insn.
1992 An insn that uses CC0 must not be separated from the one that sets it.
1993 We do, however, allow I2 to follow a CC0-setting insn if that insn
1994 is passed as I1; in that case it will be deleted also.
1995 We also allow combining in this case if all the insns are adjacent
1996 because that would leave the two CC0 insns adjacent as well.
1997 It would be more logical to test whether CC0 occurs inside I1 or I2,
1998 but that would be much slower, and this ought to be equivalent. */
2000 p = prev_nonnote_insn (insn);
2001 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2002 && ! all_adjacent)
2003 return 0;
2004 #endif
2006 /* If we get here, we have passed all the tests and the combination is
2007 to be allowed. */
2009 *pdest = dest;
2010 *psrc = src;
2012 return 1;
2015 /* LOC is the location within I3 that contains its pattern or the component
2016 of a PARALLEL of the pattern. We validate that it is valid for combining.
2018 One problem is if I3 modifies its output, as opposed to replacing it
2019 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2020 doing so would produce an insn that is not equivalent to the original insns.
2022 Consider:
2024 (set (reg:DI 101) (reg:DI 100))
2025 (set (subreg:SI (reg:DI 101) 0) <foo>)
2027 This is NOT equivalent to:
2029 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2030 (set (reg:DI 101) (reg:DI 100))])
2032 Not only does this modify 100 (in which case it might still be valid
2033 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2035 We can also run into a problem if I2 sets a register that I1
2036 uses and I1 gets directly substituted into I3 (not via I2). In that
2037 case, we would be getting the wrong value of I2DEST into I3, so we
2038 must reject the combination. This case occurs when I2 and I1 both
2039 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2040 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2041 of a SET must prevent combination from occurring. The same situation
2042 can occur for I0, in which case I0_NOT_IN_SRC is set.
2044 Before doing the above check, we first try to expand a field assignment
2045 into a set of logical operations.
2047 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2048 we place a register that is both set and used within I3. If more than one
2049 such register is detected, we fail.
2051 Return 1 if the combination is valid, zero otherwise. */
2053 static int
2054 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2055 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2057 rtx x = *loc;
2059 if (GET_CODE (x) == SET)
2061 rtx set = x ;
2062 rtx dest = SET_DEST (set);
2063 rtx src = SET_SRC (set);
2064 rtx inner_dest = dest;
2065 rtx subdest;
2067 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2068 || GET_CODE (inner_dest) == SUBREG
2069 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2070 inner_dest = XEXP (inner_dest, 0);
2072 /* Check for the case where I3 modifies its output, as discussed
2073 above. We don't want to prevent pseudos from being combined
2074 into the address of a MEM, so only prevent the combination if
2075 i1 or i2 set the same MEM. */
2076 if ((inner_dest != dest &&
2077 (!MEM_P (inner_dest)
2078 || rtx_equal_p (i2dest, inner_dest)
2079 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2080 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2081 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2082 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2083 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2085 /* This is the same test done in can_combine_p except we can't test
2086 all_adjacent; we don't have to, since this instruction will stay
2087 in place, thus we are not considering increasing the lifetime of
2088 INNER_DEST.
2090 Also, if this insn sets a function argument, combining it with
2091 something that might need a spill could clobber a previous
2092 function argument; the all_adjacent test in can_combine_p also
2093 checks this; here, we do a more specific test for this case. */
2095 || (REG_P (inner_dest)
2096 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2097 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2098 GET_MODE (inner_dest))))
2099 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2100 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2101 return 0;
2103 /* If DEST is used in I3, it is being killed in this insn, so
2104 record that for later. We have to consider paradoxical
2105 subregs here, since they kill the whole register, but we
2106 ignore partial subregs, STRICT_LOW_PART, etc.
2107 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2108 STACK_POINTER_REGNUM, since these are always considered to be
2109 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2110 subdest = dest;
2111 if (GET_CODE (subdest) == SUBREG
2112 && (GET_MODE_SIZE (GET_MODE (subdest))
2113 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2114 subdest = SUBREG_REG (subdest);
2115 if (pi3dest_killed
2116 && REG_P (subdest)
2117 && reg_referenced_p (subdest, PATTERN (i3))
2118 && REGNO (subdest) != FRAME_POINTER_REGNUM
2119 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2120 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2121 #endif
2122 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2123 && (REGNO (subdest) != ARG_POINTER_REGNUM
2124 || ! fixed_regs [REGNO (subdest)])
2125 #endif
2126 && REGNO (subdest) != STACK_POINTER_REGNUM)
2128 if (*pi3dest_killed)
2129 return 0;
2131 *pi3dest_killed = subdest;
2135 else if (GET_CODE (x) == PARALLEL)
2137 int i;
2139 for (i = 0; i < XVECLEN (x, 0); i++)
2140 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2141 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2142 return 0;
2145 return 1;
2148 /* Return 1 if X is an arithmetic expression that contains a multiplication
2149 and division. We don't count multiplications by powers of two here. */
2151 static int
2152 contains_muldiv (rtx x)
2154 switch (GET_CODE (x))
2156 case MOD: case DIV: case UMOD: case UDIV:
2157 return 1;
2159 case MULT:
2160 return ! (CONST_INT_P (XEXP (x, 1))
2161 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2162 default:
2163 if (BINARY_P (x))
2164 return contains_muldiv (XEXP (x, 0))
2165 || contains_muldiv (XEXP (x, 1));
2167 if (UNARY_P (x))
2168 return contains_muldiv (XEXP (x, 0));
2170 return 0;
2174 /* Determine whether INSN can be used in a combination. Return nonzero if
2175 not. This is used in try_combine to detect early some cases where we
2176 can't perform combinations. */
2178 static int
2179 cant_combine_insn_p (rtx insn)
2181 rtx set;
2182 rtx src, dest;
2184 /* If this isn't really an insn, we can't do anything.
2185 This can occur when flow deletes an insn that it has merged into an
2186 auto-increment address. */
2187 if (! INSN_P (insn))
2188 return 1;
2190 /* Never combine loads and stores involving hard regs that are likely
2191 to be spilled. The register allocator can usually handle such
2192 reg-reg moves by tying. If we allow the combiner to make
2193 substitutions of likely-spilled regs, reload might die.
2194 As an exception, we allow combinations involving fixed regs; these are
2195 not available to the register allocator so there's no risk involved. */
2197 set = single_set (insn);
2198 if (! set)
2199 return 0;
2200 src = SET_SRC (set);
2201 dest = SET_DEST (set);
2202 if (GET_CODE (src) == SUBREG)
2203 src = SUBREG_REG (src);
2204 if (GET_CODE (dest) == SUBREG)
2205 dest = SUBREG_REG (dest);
2206 if (REG_P (src) && REG_P (dest)
2207 && ((HARD_REGISTER_P (src)
2208 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2209 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2210 || (HARD_REGISTER_P (dest)
2211 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2212 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2213 return 1;
2215 return 0;
2218 struct likely_spilled_retval_info
2220 unsigned regno, nregs;
2221 unsigned mask;
2224 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2225 hard registers that are known to be written to / clobbered in full. */
2226 static void
2227 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2229 struct likely_spilled_retval_info *const info =
2230 (struct likely_spilled_retval_info *) data;
2231 unsigned regno, nregs;
2232 unsigned new_mask;
2234 if (!REG_P (XEXP (set, 0)))
2235 return;
2236 regno = REGNO (x);
2237 if (regno >= info->regno + info->nregs)
2238 return;
2239 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2240 if (regno + nregs <= info->regno)
2241 return;
2242 new_mask = (2U << (nregs - 1)) - 1;
2243 if (regno < info->regno)
2244 new_mask >>= info->regno - regno;
2245 else
2246 new_mask <<= regno - info->regno;
2247 info->mask &= ~new_mask;
2250 /* Return nonzero iff part of the return value is live during INSN, and
2251 it is likely spilled. This can happen when more than one insn is needed
2252 to copy the return value, e.g. when we consider to combine into the
2253 second copy insn for a complex value. */
2255 static int
2256 likely_spilled_retval_p (rtx insn)
2258 rtx use = BB_END (this_basic_block);
2259 rtx reg, p;
2260 unsigned regno, nregs;
2261 /* We assume here that no machine mode needs more than
2262 32 hard registers when the value overlaps with a register
2263 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2264 unsigned mask;
2265 struct likely_spilled_retval_info info;
2267 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2268 return 0;
2269 reg = XEXP (PATTERN (use), 0);
2270 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2271 return 0;
2272 regno = REGNO (reg);
2273 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2274 if (nregs == 1)
2275 return 0;
2276 mask = (2U << (nregs - 1)) - 1;
2278 /* Disregard parts of the return value that are set later. */
2279 info.regno = regno;
2280 info.nregs = nregs;
2281 info.mask = mask;
2282 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2283 if (INSN_P (p))
2284 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2285 mask = info.mask;
2287 /* Check if any of the (probably) live return value registers is
2288 likely spilled. */
2289 nregs --;
2292 if ((mask & 1 << nregs)
2293 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2294 return 1;
2295 } while (nregs--);
2296 return 0;
2299 /* Adjust INSN after we made a change to its destination.
2301 Changing the destination can invalidate notes that say something about
2302 the results of the insn and a LOG_LINK pointing to the insn. */
2304 static void
2305 adjust_for_new_dest (rtx insn)
2307 /* For notes, be conservative and simply remove them. */
2308 remove_reg_equal_equiv_notes (insn);
2310 /* The new insn will have a destination that was previously the destination
2311 of an insn just above it. Call distribute_links to make a LOG_LINK from
2312 the next use of that destination. */
2313 distribute_links (alloc_insn_link (insn, NULL));
2315 df_insn_rescan (insn);
2318 /* Return TRUE if combine can reuse reg X in mode MODE.
2319 ADDED_SETS is nonzero if the original set is still required. */
2320 static bool
2321 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2323 unsigned int regno;
2325 if (!REG_P(x))
2326 return false;
2328 regno = REGNO (x);
2329 /* Allow hard registers if the new mode is legal, and occupies no more
2330 registers than the old mode. */
2331 if (regno < FIRST_PSEUDO_REGISTER)
2332 return (HARD_REGNO_MODE_OK (regno, mode)
2333 && (hard_regno_nregs[regno][GET_MODE (x)]
2334 >= hard_regno_nregs[regno][mode]));
2336 /* Or a pseudo that is only used once. */
2337 return (REG_N_SETS (regno) == 1 && !added_sets
2338 && !REG_USERVAR_P (x));
2342 /* Check whether X, the destination of a set, refers to part of
2343 the register specified by REG. */
2345 static bool
2346 reg_subword_p (rtx x, rtx reg)
2348 /* Check that reg is an integer mode register. */
2349 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2350 return false;
2352 if (GET_CODE (x) == STRICT_LOW_PART
2353 || GET_CODE (x) == ZERO_EXTRACT)
2354 x = XEXP (x, 0);
2356 return GET_CODE (x) == SUBREG
2357 && SUBREG_REG (x) == reg
2358 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2361 #ifdef AUTO_INC_DEC
2362 /* Replace auto-increment addressing modes with explicit operations to access
2363 the same addresses without modifying the corresponding registers. */
2365 static rtx
2366 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2368 rtx x = src;
2369 const RTX_CODE code = GET_CODE (x);
2370 int i;
2371 const char *fmt;
2373 switch (code)
2375 case REG:
2376 case CONST_INT:
2377 case CONST_DOUBLE:
2378 case CONST_FIXED:
2379 case CONST_VECTOR:
2380 case SYMBOL_REF:
2381 case CODE_LABEL:
2382 case PC:
2383 case CC0:
2384 case SCRATCH:
2385 /* SCRATCH must be shared because they represent distinct values. */
2386 return x;
2387 case CLOBBER:
2388 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2389 return x;
2390 break;
2392 case CONST:
2393 if (shared_const_p (x))
2394 return x;
2395 break;
2397 case MEM:
2398 mem_mode = GET_MODE (x);
2399 break;
2401 case PRE_INC:
2402 case PRE_DEC:
2403 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2404 return gen_rtx_PLUS (GET_MODE (x),
2405 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2406 GEN_INT (code == PRE_INC
2407 ? GET_MODE_SIZE (mem_mode)
2408 : -GET_MODE_SIZE (mem_mode)));
2410 case POST_INC:
2411 case POST_DEC:
2412 case PRE_MODIFY:
2413 case POST_MODIFY:
2414 return cleanup_auto_inc_dec (code == PRE_MODIFY
2415 ? XEXP (x, 1) : XEXP (x, 0),
2416 mem_mode);
2418 default:
2419 break;
2422 /* Copy the various flags, fields, and other information. We assume
2423 that all fields need copying, and then clear the fields that should
2424 not be copied. That is the sensible default behavior, and forces
2425 us to explicitly document why we are *not* copying a flag. */
2426 x = shallow_copy_rtx (x);
2428 /* We do not copy the USED flag, which is used as a mark bit during
2429 walks over the RTL. */
2430 RTX_FLAG (x, used) = 0;
2432 /* We do not copy FRAME_RELATED for INSNs. */
2433 if (INSN_P (x))
2434 RTX_FLAG (x, frame_related) = 0;
2436 fmt = GET_RTX_FORMAT (code);
2437 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2438 if (fmt[i] == 'e')
2439 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2440 else if (fmt[i] == 'E' || fmt[i] == 'V')
2442 int j;
2443 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2444 for (j = 0; j < XVECLEN (x, i); j++)
2445 XVECEXP (x, i, j)
2446 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2449 return x;
2451 #endif
2453 /* Auxiliary data structure for propagate_for_debug_stmt. */
2455 struct rtx_subst_pair
2457 rtx to;
2458 bool adjusted;
2461 /* DATA points to an rtx_subst_pair. Return the value that should be
2462 substituted. */
2464 static rtx
2465 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2467 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2469 if (!rtx_equal_p (from, old_rtx))
2470 return NULL_RTX;
2471 if (!pair->adjusted)
2473 pair->adjusted = true;
2474 #ifdef AUTO_INC_DEC
2475 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2476 #else
2477 pair->to = copy_rtx (pair->to);
2478 #endif
2479 pair->to = make_compound_operation (pair->to, SET);
2480 return pair->to;
2482 return copy_rtx (pair->to);
2485 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2486 and LAST, not including INSN, but including LAST. Also stop at the end
2487 of THIS_BASIC_BLOCK. */
2489 static void
2490 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2492 rtx next, loc, end = NEXT_INSN (BB_END (this_basic_block));
2494 struct rtx_subst_pair p;
2495 p.to = src;
2496 p.adjusted = false;
2498 next = NEXT_INSN (insn);
2499 last = NEXT_INSN (last);
2500 while (next != last && next != end)
2502 insn = next;
2503 next = NEXT_INSN (insn);
2504 if (DEBUG_INSN_P (insn))
2506 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2507 dest, propagate_for_debug_subst, &p);
2508 if (loc == INSN_VAR_LOCATION_LOC (insn))
2509 continue;
2510 INSN_VAR_LOCATION_LOC (insn) = loc;
2511 df_insn_rescan (insn);
2516 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2517 Note that the INSN should be deleted *after* removing dead edges, so
2518 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2519 but not for a (set (pc) (label_ref FOO)). */
2521 static void
2522 update_cfg_for_uncondjump (rtx insn)
2524 basic_block bb = BLOCK_FOR_INSN (insn);
2525 gcc_assert (BB_END (bb) == insn);
2527 purge_dead_edges (bb);
2529 delete_insn (insn);
2530 if (EDGE_COUNT (bb->succs) == 1)
2532 rtx insn;
2534 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2536 /* Remove barriers from the footer if there are any. */
2537 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2538 if (BARRIER_P (insn))
2540 if (PREV_INSN (insn))
2541 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2542 else
2543 BB_FOOTER (bb) = NEXT_INSN (insn);
2544 if (NEXT_INSN (insn))
2545 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2547 else if (LABEL_P (insn))
2548 break;
2552 /* Try to combine the insns I0, I1 and I2 into I3.
2553 Here I0, I1 and I2 appear earlier than I3.
2554 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2557 If we are combining more than two insns and the resulting insn is not
2558 recognized, try splitting it into two insns. If that happens, I2 and I3
2559 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2560 Otherwise, I0, I1 and I2 are pseudo-deleted.
2562 Return 0 if the combination does not work. Then nothing is changed.
2563 If we did the combination, return the insn at which combine should
2564 resume scanning.
2566 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2567 new direct jump instruction.
2569 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2570 been I3 passed to an earlier try_combine within the same basic
2571 block. */
2573 static rtx
2574 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2575 rtx last_combined_insn)
2577 /* New patterns for I3 and I2, respectively. */
2578 rtx newpat, newi2pat = 0;
2579 rtvec newpat_vec_with_clobbers = 0;
2580 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2581 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2582 dead. */
2583 int added_sets_0, added_sets_1, added_sets_2;
2584 /* Total number of SETs to put into I3. */
2585 int total_sets;
2586 /* Nonzero if I2's or I1's body now appears in I3. */
2587 int i2_is_used = 0, i1_is_used = 0;
2588 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2589 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2590 /* Contains I3 if the destination of I3 is used in its source, which means
2591 that the old life of I3 is being killed. If that usage is placed into
2592 I2 and not in I3, a REG_DEAD note must be made. */
2593 rtx i3dest_killed = 0;
2594 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2595 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2596 /* Copy of SET_SRC of I1 and I0, if needed. */
2597 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2598 /* Set if I2DEST was reused as a scratch register. */
2599 bool i2scratch = false;
2600 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2601 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2602 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2603 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2604 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2605 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2606 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2607 /* Notes that must be added to REG_NOTES in I3 and I2. */
2608 rtx new_i3_notes, new_i2_notes;
2609 /* Notes that we substituted I3 into I2 instead of the normal case. */
2610 int i3_subst_into_i2 = 0;
2611 /* Notes that I1, I2 or I3 is a MULT operation. */
2612 int have_mult = 0;
2613 int swap_i2i3 = 0;
2614 int changed_i3_dest = 0;
2616 int maxreg;
2617 rtx temp;
2618 struct insn_link *link;
2619 rtx other_pat = 0;
2620 rtx new_other_notes;
2621 int i;
2623 /* Only try four-insn combinations when there's high likelihood of
2624 success. Look for simple insns, such as loads of constants or
2625 binary operations involving a constant. */
2626 if (i0)
2628 int i;
2629 int ngood = 0;
2630 int nshift = 0;
2632 if (!flag_expensive_optimizations)
2633 return 0;
2635 for (i = 0; i < 4; i++)
2637 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2638 rtx set = single_set (insn);
2639 rtx src;
2640 if (!set)
2641 continue;
2642 src = SET_SRC (set);
2643 if (CONSTANT_P (src))
2645 ngood += 2;
2646 break;
2648 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2649 ngood++;
2650 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2651 || GET_CODE (src) == LSHIFTRT)
2652 nshift++;
2654 if (ngood < 2 && nshift < 2)
2655 return 0;
2658 /* Exit early if one of the insns involved can't be used for
2659 combinations. */
2660 if (cant_combine_insn_p (i3)
2661 || cant_combine_insn_p (i2)
2662 || (i1 && cant_combine_insn_p (i1))
2663 || (i0 && cant_combine_insn_p (i0))
2664 || likely_spilled_retval_p (i3))
2665 return 0;
2667 combine_attempts++;
2668 undobuf.other_insn = 0;
2670 /* Reset the hard register usage information. */
2671 CLEAR_HARD_REG_SET (newpat_used_regs);
2673 if (dump_file && (dump_flags & TDF_DETAILS))
2675 if (i0)
2676 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2677 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2678 else if (i1)
2679 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2680 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2681 else
2682 fprintf (dump_file, "\nTrying %d -> %d:\n",
2683 INSN_UID (i2), INSN_UID (i3));
2686 /* If multiple insns feed into one of I2 or I3, they can be in any
2687 order. To simplify the code below, reorder them in sequence. */
2688 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2689 temp = i2, i2 = i0, i0 = temp;
2690 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2691 temp = i1, i1 = i0, i0 = temp;
2692 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2693 temp = i1, i1 = i2, i2 = temp;
2695 added_links_insn = 0;
2697 /* First check for one important special case that the code below will
2698 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2699 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2700 we may be able to replace that destination with the destination of I3.
2701 This occurs in the common code where we compute both a quotient and
2702 remainder into a structure, in which case we want to do the computation
2703 directly into the structure to avoid register-register copies.
2705 Note that this case handles both multiple sets in I2 and also cases
2706 where I2 has a number of CLOBBERs inside the PARALLEL.
2708 We make very conservative checks below and only try to handle the
2709 most common cases of this. For example, we only handle the case
2710 where I2 and I3 are adjacent to avoid making difficult register
2711 usage tests. */
2713 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2714 && REG_P (SET_SRC (PATTERN (i3)))
2715 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2716 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2717 && GET_CODE (PATTERN (i2)) == PARALLEL
2718 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2719 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2720 below would need to check what is inside (and reg_overlap_mentioned_p
2721 doesn't support those codes anyway). Don't allow those destinations;
2722 the resulting insn isn't likely to be recognized anyway. */
2723 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2724 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2725 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2726 SET_DEST (PATTERN (i3)))
2727 && next_active_insn (i2) == i3)
2729 rtx p2 = PATTERN (i2);
2731 /* Make sure that the destination of I3,
2732 which we are going to substitute into one output of I2,
2733 is not used within another output of I2. We must avoid making this:
2734 (parallel [(set (mem (reg 69)) ...)
2735 (set (reg 69) ...)])
2736 which is not well-defined as to order of actions.
2737 (Besides, reload can't handle output reloads for this.)
2739 The problem can also happen if the dest of I3 is a memory ref,
2740 if another dest in I2 is an indirect memory ref. */
2741 for (i = 0; i < XVECLEN (p2, 0); i++)
2742 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2743 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2744 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2745 SET_DEST (XVECEXP (p2, 0, i))))
2746 break;
2748 if (i == XVECLEN (p2, 0))
2749 for (i = 0; i < XVECLEN (p2, 0); i++)
2750 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2751 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2753 combine_merges++;
2755 subst_insn = i3;
2756 subst_low_luid = DF_INSN_LUID (i2);
2758 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2759 i2src = SET_SRC (XVECEXP (p2, 0, i));
2760 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2761 i2dest_killed = dead_or_set_p (i2, i2dest);
2763 /* Replace the dest in I2 with our dest and make the resulting
2764 insn the new pattern for I3. Then skip to where we validate
2765 the pattern. Everything was set up above. */
2766 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2767 newpat = p2;
2768 i3_subst_into_i2 = 1;
2769 goto validate_replacement;
2773 /* If I2 is setting a pseudo to a constant and I3 is setting some
2774 sub-part of it to another constant, merge them by making a new
2775 constant. */
2776 if (i1 == 0
2777 && (temp = single_set (i2)) != 0
2778 && (CONST_INT_P (SET_SRC (temp))
2779 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2780 && GET_CODE (PATTERN (i3)) == SET
2781 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2782 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2783 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2785 rtx dest = SET_DEST (PATTERN (i3));
2786 int offset = -1;
2787 int width = 0;
2789 if (GET_CODE (dest) == ZERO_EXTRACT)
2791 if (CONST_INT_P (XEXP (dest, 1))
2792 && CONST_INT_P (XEXP (dest, 2)))
2794 width = INTVAL (XEXP (dest, 1));
2795 offset = INTVAL (XEXP (dest, 2));
2796 dest = XEXP (dest, 0);
2797 if (BITS_BIG_ENDIAN)
2798 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2801 else
2803 if (GET_CODE (dest) == STRICT_LOW_PART)
2804 dest = XEXP (dest, 0);
2805 width = GET_MODE_PRECISION (GET_MODE (dest));
2806 offset = 0;
2809 if (offset >= 0)
2811 /* If this is the low part, we're done. */
2812 if (subreg_lowpart_p (dest))
2814 /* Handle the case where inner is twice the size of outer. */
2815 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2816 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2817 offset += GET_MODE_PRECISION (GET_MODE (dest));
2818 /* Otherwise give up for now. */
2819 else
2820 offset = -1;
2823 if (offset >= 0
2824 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2825 <= HOST_BITS_PER_DOUBLE_INT))
2827 double_int m, o, i;
2828 rtx inner = SET_SRC (PATTERN (i3));
2829 rtx outer = SET_SRC (temp);
2831 o = rtx_to_double_int (outer);
2832 i = rtx_to_double_int (inner);
2834 m = double_int_mask (width);
2835 i = double_int_and (i, m);
2836 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2837 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2838 o = double_int_ior (double_int_and_not (o, m), i);
2840 combine_merges++;
2841 subst_insn = i3;
2842 subst_low_luid = DF_INSN_LUID (i2);
2843 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2844 i2dest = SET_DEST (temp);
2845 i2dest_killed = dead_or_set_p (i2, i2dest);
2847 /* Replace the source in I2 with the new constant and make the
2848 resulting insn the new pattern for I3. Then skip to where we
2849 validate the pattern. Everything was set up above. */
2850 SUBST (SET_SRC (temp),
2851 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2853 newpat = PATTERN (i2);
2855 /* The dest of I3 has been replaced with the dest of I2. */
2856 changed_i3_dest = 1;
2857 goto validate_replacement;
2861 #ifndef HAVE_cc0
2862 /* If we have no I1 and I2 looks like:
2863 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2864 (set Y OP)])
2865 make up a dummy I1 that is
2866 (set Y OP)
2867 and change I2 to be
2868 (set (reg:CC X) (compare:CC Y (const_int 0)))
2870 (We can ignore any trailing CLOBBERs.)
2872 This undoes a previous combination and allows us to match a branch-and-
2873 decrement insn. */
2875 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2876 && XVECLEN (PATTERN (i2), 0) >= 2
2877 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2878 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2879 == MODE_CC)
2880 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2881 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2882 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2883 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2884 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2885 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2887 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2888 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2889 break;
2891 if (i == 1)
2893 /* We make I1 with the same INSN_UID as I2. This gives it
2894 the same DF_INSN_LUID for value tracking. Our fake I1 will
2895 never appear in the insn stream so giving it the same INSN_UID
2896 as I2 will not cause a problem. */
2898 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2899 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2900 INSN_LOCATOR (i2), -1, NULL_RTX);
2902 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2903 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2904 SET_DEST (PATTERN (i1)));
2905 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2908 #endif
2910 /* Verify that I2 and I1 are valid for combining. */
2911 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2912 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2913 &i1dest, &i1src))
2914 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2915 &i0dest, &i0src)))
2917 undo_all ();
2918 return 0;
2921 /* Record whether I2DEST is used in I2SRC and similarly for the other
2922 cases. Knowing this will help in register status updating below. */
2923 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2924 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2925 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2926 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2927 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2928 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2929 i2dest_killed = dead_or_set_p (i2, i2dest);
2930 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2931 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2933 /* For the earlier insns, determine which of the subsequent ones they
2934 feed. */
2935 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2936 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2937 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2938 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2939 && reg_overlap_mentioned_p (i0dest, i2src))));
2941 /* Ensure that I3's pattern can be the destination of combines. */
2942 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2943 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2944 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2945 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2946 &i3dest_killed))
2948 undo_all ();
2949 return 0;
2952 /* See if any of the insns is a MULT operation. Unless one is, we will
2953 reject a combination that is, since it must be slower. Be conservative
2954 here. */
2955 if (GET_CODE (i2src) == MULT
2956 || (i1 != 0 && GET_CODE (i1src) == MULT)
2957 || (i0 != 0 && GET_CODE (i0src) == MULT)
2958 || (GET_CODE (PATTERN (i3)) == SET
2959 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2960 have_mult = 1;
2962 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2963 We used to do this EXCEPT in one case: I3 has a post-inc in an
2964 output operand. However, that exception can give rise to insns like
2965 mov r3,(r3)+
2966 which is a famous insn on the PDP-11 where the value of r3 used as the
2967 source was model-dependent. Avoid this sort of thing. */
2969 #if 0
2970 if (!(GET_CODE (PATTERN (i3)) == SET
2971 && REG_P (SET_SRC (PATTERN (i3)))
2972 && MEM_P (SET_DEST (PATTERN (i3)))
2973 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2974 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2975 /* It's not the exception. */
2976 #endif
2977 #ifdef AUTO_INC_DEC
2979 rtx link;
2980 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2981 if (REG_NOTE_KIND (link) == REG_INC
2982 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2983 || (i1 != 0
2984 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2986 undo_all ();
2987 return 0;
2990 #endif
2992 /* See if the SETs in I1 or I2 need to be kept around in the merged
2993 instruction: whenever the value set there is still needed past I3.
2994 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2996 For the SET in I1, we have two cases: If I1 and I2 independently
2997 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2998 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2999 in I1 needs to be kept around unless I1DEST dies or is set in either
3000 I2 or I3. The same consideration applies to I0. */
3002 added_sets_2 = !dead_or_set_p (i3, i2dest);
3004 if (i1)
3005 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3006 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3007 else
3008 added_sets_1 = 0;
3010 if (i0)
3011 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3012 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3013 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
3014 else
3015 added_sets_0 = 0;
3017 /* We are about to copy insns for the case where they need to be kept
3018 around. Check that they can be copied in the merged instruction. */
3020 if (targetm.cannot_copy_insn_p
3021 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3022 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3023 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3025 undo_all ();
3026 return 0;
3029 /* If the set in I2 needs to be kept around, we must make a copy of
3030 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3031 PATTERN (I2), we are only substituting for the original I1DEST, not into
3032 an already-substituted copy. This also prevents making self-referential
3033 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3034 I2DEST. */
3036 if (added_sets_2)
3038 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3039 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3040 else
3041 i2pat = copy_rtx (PATTERN (i2));
3044 if (added_sets_1)
3046 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3047 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3048 else
3049 i1pat = copy_rtx (PATTERN (i1));
3052 if (added_sets_0)
3054 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3055 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3056 else
3057 i0pat = copy_rtx (PATTERN (i0));
3060 combine_merges++;
3062 /* Substitute in the latest insn for the regs set by the earlier ones. */
3064 maxreg = max_reg_num ();
3066 subst_insn = i3;
3068 #ifndef HAVE_cc0
3069 /* Many machines that don't use CC0 have insns that can both perform an
3070 arithmetic operation and set the condition code. These operations will
3071 be represented as a PARALLEL with the first element of the vector
3072 being a COMPARE of an arithmetic operation with the constant zero.
3073 The second element of the vector will set some pseudo to the result
3074 of the same arithmetic operation. If we simplify the COMPARE, we won't
3075 match such a pattern and so will generate an extra insn. Here we test
3076 for this case, where both the comparison and the operation result are
3077 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3078 I2SRC. Later we will make the PARALLEL that contains I2. */
3080 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3081 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3082 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3083 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3085 rtx newpat_dest;
3086 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
3087 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3088 enum machine_mode compare_mode, orig_compare_mode;
3089 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3091 newpat = PATTERN (i3);
3092 newpat_dest = SET_DEST (newpat);
3093 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3095 if (undobuf.other_insn == 0
3096 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3097 &cc_use_insn)))
3099 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3100 compare_code = simplify_compare_const (compare_code,
3101 op0, &op1);
3102 #ifdef CANONICALIZE_COMPARISON
3103 CANONICALIZE_COMPARISON (compare_code, op0, op1);
3104 #endif
3107 /* Do the rest only if op1 is const0_rtx, which may be the
3108 result of simplification. */
3109 if (op1 == const0_rtx)
3111 /* If a single use of the CC is found, prepare to modify it
3112 when SELECT_CC_MODE returns a new CC-class mode, or when
3113 the above simplify_compare_const() returned a new comparison
3114 operator. undobuf.other_insn is assigned the CC use insn
3115 when modifying it. */
3116 if (cc_use_loc)
3118 #ifdef SELECT_CC_MODE
3119 enum machine_mode new_mode
3120 = SELECT_CC_MODE (compare_code, op0, op1);
3121 if (new_mode != orig_compare_mode
3122 && can_change_dest_mode (SET_DEST (newpat),
3123 added_sets_2, new_mode))
3125 unsigned int regno = REGNO (newpat_dest);
3126 compare_mode = new_mode;
3127 if (regno < FIRST_PSEUDO_REGISTER)
3128 newpat_dest = gen_rtx_REG (compare_mode, regno);
3129 else
3131 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3132 newpat_dest = regno_reg_rtx[regno];
3135 #endif
3136 /* Cases for modifying the CC-using comparison. */
3137 if (compare_code != orig_compare_code
3138 /* ??? Do we need to verify the zero rtx? */
3139 && XEXP (*cc_use_loc, 1) == const0_rtx)
3141 /* Replace cc_use_loc with entire new RTX. */
3142 SUBST (*cc_use_loc,
3143 gen_rtx_fmt_ee (compare_code, compare_mode,
3144 newpat_dest, const0_rtx));
3145 undobuf.other_insn = cc_use_insn;
3147 else if (compare_mode != orig_compare_mode)
3149 /* Just replace the CC reg with a new mode. */
3150 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3151 undobuf.other_insn = cc_use_insn;
3155 /* Now we modify the current newpat:
3156 First, SET_DEST(newpat) is updated if the CC mode has been
3157 altered. For targets without SELECT_CC_MODE, this should be
3158 optimized away. */
3159 if (compare_mode != orig_compare_mode)
3160 SUBST (SET_DEST (newpat), newpat_dest);
3161 /* This is always done to propagate i2src into newpat. */
3162 SUBST (SET_SRC (newpat),
3163 gen_rtx_COMPARE (compare_mode, op0, op1));
3164 /* Create new version of i2pat if needed; the below PARALLEL
3165 creation needs this to work correctly. */
3166 if (! rtx_equal_p (i2src, op0))
3167 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3168 i2_is_used = 1;
3171 #endif
3173 if (i2_is_used == 0)
3175 /* It is possible that the source of I2 or I1 may be performing
3176 an unneeded operation, such as a ZERO_EXTEND of something
3177 that is known to have the high part zero. Handle that case
3178 by letting subst look at the inner insns.
3180 Another way to do this would be to have a function that tries
3181 to simplify a single insn instead of merging two or more
3182 insns. We don't do this because of the potential of infinite
3183 loops and because of the potential extra memory required.
3184 However, doing it the way we are is a bit of a kludge and
3185 doesn't catch all cases.
3187 But only do this if -fexpensive-optimizations since it slows
3188 things down and doesn't usually win.
3190 This is not done in the COMPARE case above because the
3191 unmodified I2PAT is used in the PARALLEL and so a pattern
3192 with a modified I2SRC would not match. */
3194 if (flag_expensive_optimizations)
3196 /* Pass pc_rtx so no substitutions are done, just
3197 simplifications. */
3198 if (i1)
3200 subst_low_luid = DF_INSN_LUID (i1);
3201 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3204 subst_low_luid = DF_INSN_LUID (i2);
3205 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3208 n_occurrences = 0; /* `subst' counts here */
3209 subst_low_luid = DF_INSN_LUID (i2);
3211 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3212 copy of I2SRC each time we substitute it, in order to avoid creating
3213 self-referential RTL when we will be substituting I1SRC for I1DEST
3214 later. Likewise if I0 feeds into I2, either directly or indirectly
3215 through I1, and I0DEST is in I0SRC. */
3216 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3217 (i1_feeds_i2_n && i1dest_in_i1src)
3218 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3219 && i0dest_in_i0src));
3220 substed_i2 = 1;
3222 /* Record whether I2's body now appears within I3's body. */
3223 i2_is_used = n_occurrences;
3226 /* If we already got a failure, don't try to do more. Otherwise, try to
3227 substitute I1 if we have it. */
3229 if (i1 && GET_CODE (newpat) != CLOBBER)
3231 /* Check that an autoincrement side-effect on I1 has not been lost.
3232 This happens if I1DEST is mentioned in I2 and dies there, and
3233 has disappeared from the new pattern. */
3234 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3235 && i1_feeds_i2_n
3236 && dead_or_set_p (i2, i1dest)
3237 && !reg_overlap_mentioned_p (i1dest, newpat))
3238 /* Before we can do this substitution, we must redo the test done
3239 above (see detailed comments there) that ensures I1DEST isn't
3240 mentioned in any SETs in NEWPAT that are field assignments. */
3241 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3242 0, 0, 0))
3244 undo_all ();
3245 return 0;
3248 n_occurrences = 0;
3249 subst_low_luid = DF_INSN_LUID (i1);
3251 /* If the following substitution will modify I1SRC, make a copy of it
3252 for the case where it is substituted for I1DEST in I2PAT later. */
3253 if (added_sets_2 && i1_feeds_i2_n)
3254 i1src_copy = copy_rtx (i1src);
3256 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3257 copy of I1SRC each time we substitute it, in order to avoid creating
3258 self-referential RTL when we will be substituting I0SRC for I0DEST
3259 later. */
3260 newpat = subst (newpat, i1dest, i1src, 0, 0,
3261 i0_feeds_i1_n && i0dest_in_i0src);
3262 substed_i1 = 1;
3264 /* Record whether I1's body now appears within I3's body. */
3265 i1_is_used = n_occurrences;
3268 /* Likewise for I0 if we have it. */
3270 if (i0 && GET_CODE (newpat) != CLOBBER)
3272 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3273 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3274 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3275 && !reg_overlap_mentioned_p (i0dest, newpat))
3276 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3277 0, 0, 0))
3279 undo_all ();
3280 return 0;
3283 /* If the following substitution will modify I0SRC, make a copy of it
3284 for the case where it is substituted for I0DEST in I1PAT later. */
3285 if (added_sets_1 && i0_feeds_i1_n)
3286 i0src_copy = copy_rtx (i0src);
3287 /* And a copy for I0DEST in I2PAT substitution. */
3288 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3289 || (i0_feeds_i2_n)))
3290 i0src_copy2 = copy_rtx (i0src);
3292 n_occurrences = 0;
3293 subst_low_luid = DF_INSN_LUID (i0);
3294 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3295 substed_i0 = 1;
3298 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3299 to count all the ways that I2SRC and I1SRC can be used. */
3300 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3301 && i2_is_used + added_sets_2 > 1)
3302 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3303 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3304 > 1))
3305 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3306 && (n_occurrences + added_sets_0
3307 + (added_sets_1 && i0_feeds_i1_n)
3308 + (added_sets_2 && i0_feeds_i2_n)
3309 > 1))
3310 /* Fail if we tried to make a new register. */
3311 || max_reg_num () != maxreg
3312 /* Fail if we couldn't do something and have a CLOBBER. */
3313 || GET_CODE (newpat) == CLOBBER
3314 /* Fail if this new pattern is a MULT and we didn't have one before
3315 at the outer level. */
3316 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3317 && ! have_mult))
3319 undo_all ();
3320 return 0;
3323 /* If the actions of the earlier insns must be kept
3324 in addition to substituting them into the latest one,
3325 we must make a new PARALLEL for the latest insn
3326 to hold additional the SETs. */
3328 if (added_sets_0 || added_sets_1 || added_sets_2)
3330 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3331 combine_extras++;
3333 if (GET_CODE (newpat) == PARALLEL)
3335 rtvec old = XVEC (newpat, 0);
3336 total_sets = XVECLEN (newpat, 0) + extra_sets;
3337 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3338 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3339 sizeof (old->elem[0]) * old->num_elem);
3341 else
3343 rtx old = newpat;
3344 total_sets = 1 + extra_sets;
3345 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3346 XVECEXP (newpat, 0, 0) = old;
3349 if (added_sets_0)
3350 XVECEXP (newpat, 0, --total_sets) = i0pat;
3352 if (added_sets_1)
3354 rtx t = i1pat;
3355 if (i0_feeds_i1_n)
3356 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3358 XVECEXP (newpat, 0, --total_sets) = t;
3360 if (added_sets_2)
3362 rtx t = i2pat;
3363 if (i1_feeds_i2_n)
3364 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3365 i0_feeds_i1_n && i0dest_in_i0src);
3366 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3367 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3369 XVECEXP (newpat, 0, --total_sets) = t;
3373 validate_replacement:
3375 /* Note which hard regs this insn has as inputs. */
3376 mark_used_regs_combine (newpat);
3378 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3379 consider splitting this pattern, we might need these clobbers. */
3380 if (i1 && GET_CODE (newpat) == PARALLEL
3381 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3383 int len = XVECLEN (newpat, 0);
3385 newpat_vec_with_clobbers = rtvec_alloc (len);
3386 for (i = 0; i < len; i++)
3387 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3390 /* Is the result of combination a valid instruction? */
3391 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3393 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3394 the second SET's destination is a register that is unused and isn't
3395 marked as an instruction that might trap in an EH region. In that case,
3396 we just need the first SET. This can occur when simplifying a divmod
3397 insn. We *must* test for this case here because the code below that
3398 splits two independent SETs doesn't handle this case correctly when it
3399 updates the register status.
3401 It's pointless doing this if we originally had two sets, one from
3402 i3, and one from i2. Combining then splitting the parallel results
3403 in the original i2 again plus an invalid insn (which we delete).
3404 The net effect is only to move instructions around, which makes
3405 debug info less accurate.
3407 Also check the case where the first SET's destination is unused.
3408 That would not cause incorrect code, but does cause an unneeded
3409 insn to remain. */
3411 if (insn_code_number < 0
3412 && !(added_sets_2 && i1 == 0)
3413 && GET_CODE (newpat) == PARALLEL
3414 && XVECLEN (newpat, 0) == 2
3415 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3416 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3417 && asm_noperands (newpat) < 0)
3419 rtx set0 = XVECEXP (newpat, 0, 0);
3420 rtx set1 = XVECEXP (newpat, 0, 1);
3422 if (((REG_P (SET_DEST (set1))
3423 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3424 || (GET_CODE (SET_DEST (set1)) == SUBREG
3425 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3426 && insn_nothrow_p (i3)
3427 && !side_effects_p (SET_SRC (set1)))
3429 newpat = set0;
3430 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3433 else if (((REG_P (SET_DEST (set0))
3434 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3435 || (GET_CODE (SET_DEST (set0)) == SUBREG
3436 && find_reg_note (i3, REG_UNUSED,
3437 SUBREG_REG (SET_DEST (set0)))))
3438 && insn_nothrow_p (i3)
3439 && !side_effects_p (SET_SRC (set0)))
3441 newpat = set1;
3442 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3444 if (insn_code_number >= 0)
3445 changed_i3_dest = 1;
3449 /* If we were combining three insns and the result is a simple SET
3450 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3451 insns. There are two ways to do this. It can be split using a
3452 machine-specific method (like when you have an addition of a large
3453 constant) or by combine in the function find_split_point. */
3455 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3456 && asm_noperands (newpat) < 0)
3458 rtx parallel, m_split, *split;
3460 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3461 use I2DEST as a scratch register will help. In the latter case,
3462 convert I2DEST to the mode of the source of NEWPAT if we can. */
3464 m_split = combine_split_insns (newpat, i3);
3466 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3467 inputs of NEWPAT. */
3469 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3470 possible to try that as a scratch reg. This would require adding
3471 more code to make it work though. */
3473 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3475 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3477 /* First try to split using the original register as a
3478 scratch register. */
3479 parallel = gen_rtx_PARALLEL (VOIDmode,
3480 gen_rtvec (2, newpat,
3481 gen_rtx_CLOBBER (VOIDmode,
3482 i2dest)));
3483 m_split = combine_split_insns (parallel, i3);
3485 /* If that didn't work, try changing the mode of I2DEST if
3486 we can. */
3487 if (m_split == 0
3488 && new_mode != GET_MODE (i2dest)
3489 && new_mode != VOIDmode
3490 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3492 enum machine_mode old_mode = GET_MODE (i2dest);
3493 rtx ni2dest;
3495 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3496 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3497 else
3499 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3500 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3503 parallel = (gen_rtx_PARALLEL
3504 (VOIDmode,
3505 gen_rtvec (2, newpat,
3506 gen_rtx_CLOBBER (VOIDmode,
3507 ni2dest))));
3508 m_split = combine_split_insns (parallel, i3);
3510 if (m_split == 0
3511 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3513 struct undo *buf;
3515 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3516 buf = undobuf.undos;
3517 undobuf.undos = buf->next;
3518 buf->next = undobuf.frees;
3519 undobuf.frees = buf;
3523 i2scratch = m_split != 0;
3526 /* If recog_for_combine has discarded clobbers, try to use them
3527 again for the split. */
3528 if (m_split == 0 && newpat_vec_with_clobbers)
3530 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3531 m_split = combine_split_insns (parallel, i3);
3534 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3536 m_split = PATTERN (m_split);
3537 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3538 if (insn_code_number >= 0)
3539 newpat = m_split;
3541 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3542 && (next_nonnote_nondebug_insn (i2) == i3
3543 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3545 rtx i2set, i3set;
3546 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3547 newi2pat = PATTERN (m_split);
3549 i3set = single_set (NEXT_INSN (m_split));
3550 i2set = single_set (m_split);
3552 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3554 /* If I2 or I3 has multiple SETs, we won't know how to track
3555 register status, so don't use these insns. If I2's destination
3556 is used between I2 and I3, we also can't use these insns. */
3558 if (i2_code_number >= 0 && i2set && i3set
3559 && (next_nonnote_nondebug_insn (i2) == i3
3560 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3561 insn_code_number = recog_for_combine (&newi3pat, i3,
3562 &new_i3_notes);
3563 if (insn_code_number >= 0)
3564 newpat = newi3pat;
3566 /* It is possible that both insns now set the destination of I3.
3567 If so, we must show an extra use of it. */
3569 if (insn_code_number >= 0)
3571 rtx new_i3_dest = SET_DEST (i3set);
3572 rtx new_i2_dest = SET_DEST (i2set);
3574 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3575 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3576 || GET_CODE (new_i3_dest) == SUBREG)
3577 new_i3_dest = XEXP (new_i3_dest, 0);
3579 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3580 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3581 || GET_CODE (new_i2_dest) == SUBREG)
3582 new_i2_dest = XEXP (new_i2_dest, 0);
3584 if (REG_P (new_i3_dest)
3585 && REG_P (new_i2_dest)
3586 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3587 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3591 /* If we can split it and use I2DEST, go ahead and see if that
3592 helps things be recognized. Verify that none of the registers
3593 are set between I2 and I3. */
3594 if (insn_code_number < 0
3595 && (split = find_split_point (&newpat, i3, false)) != 0
3596 #ifdef HAVE_cc0
3597 && REG_P (i2dest)
3598 #endif
3599 /* We need I2DEST in the proper mode. If it is a hard register
3600 or the only use of a pseudo, we can change its mode.
3601 Make sure we don't change a hard register to have a mode that
3602 isn't valid for it, or change the number of registers. */
3603 && (GET_MODE (*split) == GET_MODE (i2dest)
3604 || GET_MODE (*split) == VOIDmode
3605 || can_change_dest_mode (i2dest, added_sets_2,
3606 GET_MODE (*split)))
3607 && (next_nonnote_nondebug_insn (i2) == i3
3608 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3609 /* We can't overwrite I2DEST if its value is still used by
3610 NEWPAT. */
3611 && ! reg_referenced_p (i2dest, newpat))
3613 rtx newdest = i2dest;
3614 enum rtx_code split_code = GET_CODE (*split);
3615 enum machine_mode split_mode = GET_MODE (*split);
3616 bool subst_done = false;
3617 newi2pat = NULL_RTX;
3619 i2scratch = true;
3621 /* *SPLIT may be part of I2SRC, so make sure we have the
3622 original expression around for later debug processing.
3623 We should not need I2SRC any more in other cases. */
3624 if (MAY_HAVE_DEBUG_INSNS)
3625 i2src = copy_rtx (i2src);
3626 else
3627 i2src = NULL;
3629 /* Get NEWDEST as a register in the proper mode. We have already
3630 validated that we can do this. */
3631 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3633 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3634 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3635 else
3637 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3638 newdest = regno_reg_rtx[REGNO (i2dest)];
3642 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3643 an ASHIFT. This can occur if it was inside a PLUS and hence
3644 appeared to be a memory address. This is a kludge. */
3645 if (split_code == MULT
3646 && CONST_INT_P (XEXP (*split, 1))
3647 && INTVAL (XEXP (*split, 1)) > 0
3648 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3650 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3651 XEXP (*split, 0), GEN_INT (i)));
3652 /* Update split_code because we may not have a multiply
3653 anymore. */
3654 split_code = GET_CODE (*split);
3657 #ifdef INSN_SCHEDULING
3658 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3659 be written as a ZERO_EXTEND. */
3660 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3662 #ifdef LOAD_EXTEND_OP
3663 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3664 what it really is. */
3665 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3666 == SIGN_EXTEND)
3667 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3668 SUBREG_REG (*split)));
3669 else
3670 #endif
3671 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3672 SUBREG_REG (*split)));
3674 #endif
3676 /* Attempt to split binary operators using arithmetic identities. */
3677 if (BINARY_P (SET_SRC (newpat))
3678 && split_mode == GET_MODE (SET_SRC (newpat))
3679 && ! side_effects_p (SET_SRC (newpat)))
3681 rtx setsrc = SET_SRC (newpat);
3682 enum machine_mode mode = GET_MODE (setsrc);
3683 enum rtx_code code = GET_CODE (setsrc);
3684 rtx src_op0 = XEXP (setsrc, 0);
3685 rtx src_op1 = XEXP (setsrc, 1);
3687 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3688 if (rtx_equal_p (src_op0, src_op1))
3690 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3691 SUBST (XEXP (setsrc, 0), newdest);
3692 SUBST (XEXP (setsrc, 1), newdest);
3693 subst_done = true;
3695 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3696 else if ((code == PLUS || code == MULT)
3697 && GET_CODE (src_op0) == code
3698 && GET_CODE (XEXP (src_op0, 0)) == code
3699 && (INTEGRAL_MODE_P (mode)
3700 || (FLOAT_MODE_P (mode)
3701 && flag_unsafe_math_optimizations)))
3703 rtx p = XEXP (XEXP (src_op0, 0), 0);
3704 rtx q = XEXP (XEXP (src_op0, 0), 1);
3705 rtx r = XEXP (src_op0, 1);
3706 rtx s = src_op1;
3708 /* Split both "((X op Y) op X) op Y" and
3709 "((X op Y) op Y) op X" as "T op T" where T is
3710 "X op Y". */
3711 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3712 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3714 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3715 XEXP (src_op0, 0));
3716 SUBST (XEXP (setsrc, 0), newdest);
3717 SUBST (XEXP (setsrc, 1), newdest);
3718 subst_done = true;
3720 /* Split "((X op X) op Y) op Y)" as "T op T" where
3721 T is "X op Y". */
3722 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3724 rtx tmp = simplify_gen_binary (code, mode, p, r);
3725 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3726 SUBST (XEXP (setsrc, 0), newdest);
3727 SUBST (XEXP (setsrc, 1), newdest);
3728 subst_done = true;
3733 if (!subst_done)
3735 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3736 SUBST (*split, newdest);
3739 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3741 /* recog_for_combine might have added CLOBBERs to newi2pat.
3742 Make sure NEWPAT does not depend on the clobbered regs. */
3743 if (GET_CODE (newi2pat) == PARALLEL)
3744 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3745 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3747 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3748 if (reg_overlap_mentioned_p (reg, newpat))
3750 undo_all ();
3751 return 0;
3755 /* If the split point was a MULT and we didn't have one before,
3756 don't use one now. */
3757 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3758 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3762 /* Check for a case where we loaded from memory in a narrow mode and
3763 then sign extended it, but we need both registers. In that case,
3764 we have a PARALLEL with both loads from the same memory location.
3765 We can split this into a load from memory followed by a register-register
3766 copy. This saves at least one insn, more if register allocation can
3767 eliminate the copy.
3769 We cannot do this if the destination of the first assignment is a
3770 condition code register or cc0. We eliminate this case by making sure
3771 the SET_DEST and SET_SRC have the same mode.
3773 We cannot do this if the destination of the second assignment is
3774 a register that we have already assumed is zero-extended. Similarly
3775 for a SUBREG of such a register. */
3777 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3778 && GET_CODE (newpat) == PARALLEL
3779 && XVECLEN (newpat, 0) == 2
3780 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3781 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3782 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3783 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3784 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3785 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3786 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3787 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3788 DF_INSN_LUID (i2))
3789 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3790 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3791 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3792 (REG_P (temp)
3793 && VEC_index (reg_stat_type, reg_stat,
3794 REGNO (temp))->nonzero_bits != 0
3795 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3796 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3797 && (VEC_index (reg_stat_type, reg_stat,
3798 REGNO (temp))->nonzero_bits
3799 != GET_MODE_MASK (word_mode))))
3800 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3801 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3802 (REG_P (temp)
3803 && VEC_index (reg_stat_type, reg_stat,
3804 REGNO (temp))->nonzero_bits != 0
3805 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3806 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3807 && (VEC_index (reg_stat_type, reg_stat,
3808 REGNO (temp))->nonzero_bits
3809 != GET_MODE_MASK (word_mode)))))
3810 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3811 SET_SRC (XVECEXP (newpat, 0, 1)))
3812 && ! find_reg_note (i3, REG_UNUSED,
3813 SET_DEST (XVECEXP (newpat, 0, 0))))
3815 rtx ni2dest;
3817 newi2pat = XVECEXP (newpat, 0, 0);
3818 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3819 newpat = XVECEXP (newpat, 0, 1);
3820 SUBST (SET_SRC (newpat),
3821 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3822 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3824 if (i2_code_number >= 0)
3825 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3827 if (insn_code_number >= 0)
3828 swap_i2i3 = 1;
3831 /* Similarly, check for a case where we have a PARALLEL of two independent
3832 SETs but we started with three insns. In this case, we can do the sets
3833 as two separate insns. This case occurs when some SET allows two
3834 other insns to combine, but the destination of that SET is still live. */
3836 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3837 && GET_CODE (newpat) == PARALLEL
3838 && XVECLEN (newpat, 0) == 2
3839 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3840 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3841 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3842 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3843 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3844 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3845 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3846 XVECEXP (newpat, 0, 0))
3847 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3848 XVECEXP (newpat, 0, 1))
3849 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3850 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3852 /* Normally, it doesn't matter which of the two is done first,
3853 but the one that references cc0 can't be the second, and
3854 one which uses any regs/memory set in between i2 and i3 can't
3855 be first. */
3856 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3857 DF_INSN_LUID (i2))
3858 #ifdef HAVE_cc0
3859 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3860 #endif
3863 newi2pat = XVECEXP (newpat, 0, 1);
3864 newpat = XVECEXP (newpat, 0, 0);
3866 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3867 DF_INSN_LUID (i2))
3868 #ifdef HAVE_cc0
3869 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3870 #endif
3873 newi2pat = XVECEXP (newpat, 0, 0);
3874 newpat = XVECEXP (newpat, 0, 1);
3876 else
3878 undo_all ();
3879 return 0;
3882 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3884 if (i2_code_number >= 0)
3886 /* recog_for_combine might have added CLOBBERs to newi2pat.
3887 Make sure NEWPAT does not depend on the clobbered regs. */
3888 if (GET_CODE (newi2pat) == PARALLEL)
3890 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3891 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3893 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3894 if (reg_overlap_mentioned_p (reg, newpat))
3896 undo_all ();
3897 return 0;
3902 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3906 /* If it still isn't recognized, fail and change things back the way they
3907 were. */
3908 if ((insn_code_number < 0
3909 /* Is the result a reasonable ASM_OPERANDS? */
3910 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3912 undo_all ();
3913 return 0;
3916 /* If we had to change another insn, make sure it is valid also. */
3917 if (undobuf.other_insn)
3919 CLEAR_HARD_REG_SET (newpat_used_regs);
3921 other_pat = PATTERN (undobuf.other_insn);
3922 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3923 &new_other_notes);
3925 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3927 undo_all ();
3928 return 0;
3932 #ifdef HAVE_cc0
3933 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3934 they are adjacent to each other or not. */
3936 rtx p = prev_nonnote_insn (i3);
3937 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3938 && sets_cc0_p (newi2pat))
3940 undo_all ();
3941 return 0;
3944 #endif
3946 /* Only allow this combination if insn_rtx_costs reports that the
3947 replacement instructions are cheaper than the originals. */
3948 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3950 undo_all ();
3951 return 0;
3954 if (MAY_HAVE_DEBUG_INSNS)
3956 struct undo *undo;
3958 for (undo = undobuf.undos; undo; undo = undo->next)
3959 if (undo->kind == UNDO_MODE)
3961 rtx reg = *undo->where.r;
3962 enum machine_mode new_mode = GET_MODE (reg);
3963 enum machine_mode old_mode = undo->old_contents.m;
3965 /* Temporarily revert mode back. */
3966 adjust_reg_mode (reg, old_mode);
3968 if (reg == i2dest && i2scratch)
3970 /* If we used i2dest as a scratch register with a
3971 different mode, substitute it for the original
3972 i2src while its original mode is temporarily
3973 restored, and then clear i2scratch so that we don't
3974 do it again later. */
3975 propagate_for_debug (i2, last_combined_insn, reg, i2src);
3976 i2scratch = false;
3977 /* Put back the new mode. */
3978 adjust_reg_mode (reg, new_mode);
3980 else
3982 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3983 rtx first, last;
3985 if (reg == i2dest)
3987 first = i2;
3988 last = last_combined_insn;
3990 else
3992 first = i3;
3993 last = undobuf.other_insn;
3994 gcc_assert (last);
3995 if (DF_INSN_LUID (last)
3996 < DF_INSN_LUID (last_combined_insn))
3997 last = last_combined_insn;
4000 /* We're dealing with a reg that changed mode but not
4001 meaning, so we want to turn it into a subreg for
4002 the new mode. However, because of REG sharing and
4003 because its mode had already changed, we have to do
4004 it in two steps. First, replace any debug uses of
4005 reg, with its original mode temporarily restored,
4006 with this copy we have created; then, replace the
4007 copy with the SUBREG of the original shared reg,
4008 once again changed to the new mode. */
4009 propagate_for_debug (first, last, reg, tempreg);
4010 adjust_reg_mode (reg, new_mode);
4011 propagate_for_debug (first, last, tempreg,
4012 lowpart_subreg (old_mode, reg, new_mode));
4017 /* If we will be able to accept this, we have made a
4018 change to the destination of I3. This requires us to
4019 do a few adjustments. */
4021 if (changed_i3_dest)
4023 PATTERN (i3) = newpat;
4024 adjust_for_new_dest (i3);
4027 /* We now know that we can do this combination. Merge the insns and
4028 update the status of registers and LOG_LINKS. */
4030 if (undobuf.other_insn)
4032 rtx note, next;
4034 PATTERN (undobuf.other_insn) = other_pat;
4036 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
4037 are still valid. Then add any non-duplicate notes added by
4038 recog_for_combine. */
4039 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4041 next = XEXP (note, 1);
4043 if (REG_NOTE_KIND (note) == REG_UNUSED
4044 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
4045 remove_note (undobuf.other_insn, note);
4048 distribute_notes (new_other_notes, undobuf.other_insn,
4049 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
4050 NULL_RTX);
4053 if (swap_i2i3)
4055 rtx insn;
4056 struct insn_link *link;
4057 rtx ni2dest;
4059 /* I3 now uses what used to be its destination and which is now
4060 I2's destination. This requires us to do a few adjustments. */
4061 PATTERN (i3) = newpat;
4062 adjust_for_new_dest (i3);
4064 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4065 so we still will.
4067 However, some later insn might be using I2's dest and have
4068 a LOG_LINK pointing at I3. We must remove this link.
4069 The simplest way to remove the link is to point it at I1,
4070 which we know will be a NOTE. */
4072 /* newi2pat is usually a SET here; however, recog_for_combine might
4073 have added some clobbers. */
4074 if (GET_CODE (newi2pat) == PARALLEL)
4075 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4076 else
4077 ni2dest = SET_DEST (newi2pat);
4079 for (insn = NEXT_INSN (i3);
4080 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4081 || insn != BB_HEAD (this_basic_block->next_bb));
4082 insn = NEXT_INSN (insn))
4084 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4086 FOR_EACH_LOG_LINK (link, insn)
4087 if (link->insn == i3)
4088 link->insn = i1;
4090 break;
4096 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4097 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4098 rtx midnotes = 0;
4099 int from_luid;
4100 /* Compute which registers we expect to eliminate. newi2pat may be setting
4101 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4102 same as i3dest, in which case newi2pat may be setting i1dest. */
4103 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4104 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4105 || !i2dest_killed
4106 ? 0 : i2dest);
4107 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4108 || (newi2pat && reg_set_p (i1dest, newi2pat))
4109 || !i1dest_killed
4110 ? 0 : i1dest);
4111 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
4112 || (newi2pat && reg_set_p (i0dest, newi2pat))
4113 || !i0dest_killed
4114 ? 0 : i0dest);
4116 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4117 clear them. */
4118 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4119 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4120 if (i1)
4121 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4122 if (i0)
4123 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4125 /* Ensure that we do not have something that should not be shared but
4126 occurs multiple times in the new insns. Check this by first
4127 resetting all the `used' flags and then copying anything is shared. */
4129 reset_used_flags (i3notes);
4130 reset_used_flags (i2notes);
4131 reset_used_flags (i1notes);
4132 reset_used_flags (i0notes);
4133 reset_used_flags (newpat);
4134 reset_used_flags (newi2pat);
4135 if (undobuf.other_insn)
4136 reset_used_flags (PATTERN (undobuf.other_insn));
4138 i3notes = copy_rtx_if_shared (i3notes);
4139 i2notes = copy_rtx_if_shared (i2notes);
4140 i1notes = copy_rtx_if_shared (i1notes);
4141 i0notes = copy_rtx_if_shared (i0notes);
4142 newpat = copy_rtx_if_shared (newpat);
4143 newi2pat = copy_rtx_if_shared (newi2pat);
4144 if (undobuf.other_insn)
4145 reset_used_flags (PATTERN (undobuf.other_insn));
4147 INSN_CODE (i3) = insn_code_number;
4148 PATTERN (i3) = newpat;
4150 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4152 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4154 reset_used_flags (call_usage);
4155 call_usage = copy_rtx (call_usage);
4157 if (substed_i2)
4159 /* I2SRC must still be meaningful at this point. Some splitting
4160 operations can invalidate I2SRC, but those operations do not
4161 apply to calls. */
4162 gcc_assert (i2src);
4163 replace_rtx (call_usage, i2dest, i2src);
4166 if (substed_i1)
4167 replace_rtx (call_usage, i1dest, i1src);
4168 if (substed_i0)
4169 replace_rtx (call_usage, i0dest, i0src);
4171 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4174 if (undobuf.other_insn)
4175 INSN_CODE (undobuf.other_insn) = other_code_number;
4177 /* We had one special case above where I2 had more than one set and
4178 we replaced a destination of one of those sets with the destination
4179 of I3. In that case, we have to update LOG_LINKS of insns later
4180 in this basic block. Note that this (expensive) case is rare.
4182 Also, in this case, we must pretend that all REG_NOTEs for I2
4183 actually came from I3, so that REG_UNUSED notes from I2 will be
4184 properly handled. */
4186 if (i3_subst_into_i2)
4188 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4189 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4190 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4191 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4192 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4193 && ! find_reg_note (i2, REG_UNUSED,
4194 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4195 for (temp = NEXT_INSN (i2);
4196 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4197 || BB_HEAD (this_basic_block) != temp);
4198 temp = NEXT_INSN (temp))
4199 if (temp != i3 && INSN_P (temp))
4200 FOR_EACH_LOG_LINK (link, temp)
4201 if (link->insn == i2)
4202 link->insn = i3;
4204 if (i3notes)
4206 rtx link = i3notes;
4207 while (XEXP (link, 1))
4208 link = XEXP (link, 1);
4209 XEXP (link, 1) = i2notes;
4211 else
4212 i3notes = i2notes;
4213 i2notes = 0;
4216 LOG_LINKS (i3) = NULL;
4217 REG_NOTES (i3) = 0;
4218 LOG_LINKS (i2) = NULL;
4219 REG_NOTES (i2) = 0;
4221 if (newi2pat)
4223 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4224 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4225 INSN_CODE (i2) = i2_code_number;
4226 PATTERN (i2) = newi2pat;
4228 else
4230 if (MAY_HAVE_DEBUG_INSNS && i2src)
4231 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4232 SET_INSN_DELETED (i2);
4235 if (i1)
4237 LOG_LINKS (i1) = NULL;
4238 REG_NOTES (i1) = 0;
4239 if (MAY_HAVE_DEBUG_INSNS)
4240 propagate_for_debug (i1, last_combined_insn, i1dest, i1src);
4241 SET_INSN_DELETED (i1);
4244 if (i0)
4246 LOG_LINKS (i0) = NULL;
4247 REG_NOTES (i0) = 0;
4248 if (MAY_HAVE_DEBUG_INSNS)
4249 propagate_for_debug (i0, last_combined_insn, i0dest, i0src);
4250 SET_INSN_DELETED (i0);
4253 /* Get death notes for everything that is now used in either I3 or
4254 I2 and used to die in a previous insn. If we built two new
4255 patterns, move from I1 to I2 then I2 to I3 so that we get the
4256 proper movement on registers that I2 modifies. */
4258 if (i0)
4259 from_luid = DF_INSN_LUID (i0);
4260 else if (i1)
4261 from_luid = DF_INSN_LUID (i1);
4262 else
4263 from_luid = DF_INSN_LUID (i2);
4264 if (newi2pat)
4265 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4266 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4268 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4269 if (i3notes)
4270 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4271 elim_i2, elim_i1, elim_i0);
4272 if (i2notes)
4273 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4274 elim_i2, elim_i1, elim_i0);
4275 if (i1notes)
4276 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4277 elim_i2, elim_i1, elim_i0);
4278 if (i0notes)
4279 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4280 elim_i2, elim_i1, elim_i0);
4281 if (midnotes)
4282 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4283 elim_i2, elim_i1, elim_i0);
4285 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4286 know these are REG_UNUSED and want them to go to the desired insn,
4287 so we always pass it as i3. */
4289 if (newi2pat && new_i2_notes)
4290 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4291 NULL_RTX);
4293 if (new_i3_notes)
4294 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4295 NULL_RTX);
4297 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4298 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4299 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4300 in that case, it might delete I2. Similarly for I2 and I1.
4301 Show an additional death due to the REG_DEAD note we make here. If
4302 we discard it in distribute_notes, we will decrement it again. */
4304 if (i3dest_killed)
4306 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4307 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4308 NULL_RTX),
4309 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4310 else
4311 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4312 NULL_RTX),
4313 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4314 elim_i2, elim_i1, elim_i0);
4317 if (i2dest_in_i2src)
4319 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4320 if (newi2pat && reg_set_p (i2dest, newi2pat))
4321 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4322 NULL_RTX, NULL_RTX);
4323 else
4324 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4325 NULL_RTX, NULL_RTX, NULL_RTX);
4328 if (i1dest_in_i1src)
4330 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4331 if (newi2pat && reg_set_p (i1dest, newi2pat))
4332 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4333 NULL_RTX, NULL_RTX);
4334 else
4335 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4336 NULL_RTX, NULL_RTX, NULL_RTX);
4339 if (i0dest_in_i0src)
4341 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4342 if (newi2pat && reg_set_p (i0dest, newi2pat))
4343 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4344 NULL_RTX, NULL_RTX);
4345 else
4346 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4347 NULL_RTX, NULL_RTX, NULL_RTX);
4350 distribute_links (i3links);
4351 distribute_links (i2links);
4352 distribute_links (i1links);
4353 distribute_links (i0links);
4355 if (REG_P (i2dest))
4357 struct insn_link *link;
4358 rtx i2_insn = 0, i2_val = 0, set;
4360 /* The insn that used to set this register doesn't exist, and
4361 this life of the register may not exist either. See if one of
4362 I3's links points to an insn that sets I2DEST. If it does,
4363 that is now the last known value for I2DEST. If we don't update
4364 this and I2 set the register to a value that depended on its old
4365 contents, we will get confused. If this insn is used, thing
4366 will be set correctly in combine_instructions. */
4367 FOR_EACH_LOG_LINK (link, i3)
4368 if ((set = single_set (link->insn)) != 0
4369 && rtx_equal_p (i2dest, SET_DEST (set)))
4370 i2_insn = link->insn, i2_val = SET_SRC (set);
4372 record_value_for_reg (i2dest, i2_insn, i2_val);
4374 /* If the reg formerly set in I2 died only once and that was in I3,
4375 zero its use count so it won't make `reload' do any work. */
4376 if (! added_sets_2
4377 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4378 && ! i2dest_in_i2src)
4379 INC_REG_N_SETS (REGNO (i2dest), -1);
4382 if (i1 && REG_P (i1dest))
4384 struct insn_link *link;
4385 rtx i1_insn = 0, i1_val = 0, set;
4387 FOR_EACH_LOG_LINK (link, i3)
4388 if ((set = single_set (link->insn)) != 0
4389 && rtx_equal_p (i1dest, SET_DEST (set)))
4390 i1_insn = link->insn, i1_val = SET_SRC (set);
4392 record_value_for_reg (i1dest, i1_insn, i1_val);
4394 if (! added_sets_1 && ! i1dest_in_i1src)
4395 INC_REG_N_SETS (REGNO (i1dest), -1);
4398 if (i0 && REG_P (i0dest))
4400 struct insn_link *link;
4401 rtx i0_insn = 0, i0_val = 0, set;
4403 FOR_EACH_LOG_LINK (link, i3)
4404 if ((set = single_set (link->insn)) != 0
4405 && rtx_equal_p (i0dest, SET_DEST (set)))
4406 i0_insn = link->insn, i0_val = SET_SRC (set);
4408 record_value_for_reg (i0dest, i0_insn, i0_val);
4410 if (! added_sets_0 && ! i0dest_in_i0src)
4411 INC_REG_N_SETS (REGNO (i0dest), -1);
4414 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4415 been made to this insn. The order of
4416 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4417 can affect nonzero_bits of newpat */
4418 if (newi2pat)
4419 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4420 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4423 if (undobuf.other_insn != NULL_RTX)
4425 if (dump_file)
4427 fprintf (dump_file, "modifying other_insn ");
4428 dump_insn_slim (dump_file, undobuf.other_insn);
4430 df_insn_rescan (undobuf.other_insn);
4433 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4435 if (dump_file)
4437 fprintf (dump_file, "modifying insn i1 ");
4438 dump_insn_slim (dump_file, i0);
4440 df_insn_rescan (i0);
4443 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4445 if (dump_file)
4447 fprintf (dump_file, "modifying insn i1 ");
4448 dump_insn_slim (dump_file, i1);
4450 df_insn_rescan (i1);
4453 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4455 if (dump_file)
4457 fprintf (dump_file, "modifying insn i2 ");
4458 dump_insn_slim (dump_file, i2);
4460 df_insn_rescan (i2);
4463 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4465 if (dump_file)
4467 fprintf (dump_file, "modifying insn i3 ");
4468 dump_insn_slim (dump_file, i3);
4470 df_insn_rescan (i3);
4473 /* Set new_direct_jump_p if a new return or simple jump instruction
4474 has been created. Adjust the CFG accordingly. */
4476 if (returnjump_p (i3) || any_uncondjump_p (i3))
4478 *new_direct_jump_p = 1;
4479 mark_jump_label (PATTERN (i3), i3, 0);
4480 update_cfg_for_uncondjump (i3);
4483 if (undobuf.other_insn != NULL_RTX
4484 && (returnjump_p (undobuf.other_insn)
4485 || any_uncondjump_p (undobuf.other_insn)))
4487 *new_direct_jump_p = 1;
4488 update_cfg_for_uncondjump (undobuf.other_insn);
4491 /* A noop might also need cleaning up of CFG, if it comes from the
4492 simplification of a jump. */
4493 if (JUMP_P (i3)
4494 && GET_CODE (newpat) == SET
4495 && SET_SRC (newpat) == pc_rtx
4496 && SET_DEST (newpat) == pc_rtx)
4498 *new_direct_jump_p = 1;
4499 update_cfg_for_uncondjump (i3);
4502 if (undobuf.other_insn != NULL_RTX
4503 && JUMP_P (undobuf.other_insn)
4504 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4505 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4506 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4508 *new_direct_jump_p = 1;
4509 update_cfg_for_uncondjump (undobuf.other_insn);
4512 combine_successes++;
4513 undo_commit ();
4515 if (added_links_insn
4516 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4517 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4518 return added_links_insn;
4519 else
4520 return newi2pat ? i2 : i3;
4523 /* Undo all the modifications recorded in undobuf. */
4525 static void
4526 undo_all (void)
4528 struct undo *undo, *next;
4530 for (undo = undobuf.undos; undo; undo = next)
4532 next = undo->next;
4533 switch (undo->kind)
4535 case UNDO_RTX:
4536 *undo->where.r = undo->old_contents.r;
4537 break;
4538 case UNDO_INT:
4539 *undo->where.i = undo->old_contents.i;
4540 break;
4541 case UNDO_MODE:
4542 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4543 break;
4544 case UNDO_LINKS:
4545 *undo->where.l = undo->old_contents.l;
4546 break;
4547 default:
4548 gcc_unreachable ();
4551 undo->next = undobuf.frees;
4552 undobuf.frees = undo;
4555 undobuf.undos = 0;
4558 /* We've committed to accepting the changes we made. Move all
4559 of the undos to the free list. */
4561 static void
4562 undo_commit (void)
4564 struct undo *undo, *next;
4566 for (undo = undobuf.undos; undo; undo = next)
4568 next = undo->next;
4569 undo->next = undobuf.frees;
4570 undobuf.frees = undo;
4572 undobuf.undos = 0;
4575 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4576 where we have an arithmetic expression and return that point. LOC will
4577 be inside INSN.
4579 try_combine will call this function to see if an insn can be split into
4580 two insns. */
4582 static rtx *
4583 find_split_point (rtx *loc, rtx insn, bool set_src)
4585 rtx x = *loc;
4586 enum rtx_code code = GET_CODE (x);
4587 rtx *split;
4588 unsigned HOST_WIDE_INT len = 0;
4589 HOST_WIDE_INT pos = 0;
4590 int unsignedp = 0;
4591 rtx inner = NULL_RTX;
4593 /* First special-case some codes. */
4594 switch (code)
4596 case SUBREG:
4597 #ifdef INSN_SCHEDULING
4598 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4599 point. */
4600 if (MEM_P (SUBREG_REG (x)))
4601 return loc;
4602 #endif
4603 return find_split_point (&SUBREG_REG (x), insn, false);
4605 case MEM:
4606 #ifdef HAVE_lo_sum
4607 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4608 using LO_SUM and HIGH. */
4609 if (GET_CODE (XEXP (x, 0)) == CONST
4610 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4612 enum machine_mode address_mode = get_address_mode (x);
4614 SUBST (XEXP (x, 0),
4615 gen_rtx_LO_SUM (address_mode,
4616 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4617 XEXP (x, 0)));
4618 return &XEXP (XEXP (x, 0), 0);
4620 #endif
4622 /* If we have a PLUS whose second operand is a constant and the
4623 address is not valid, perhaps will can split it up using
4624 the machine-specific way to split large constants. We use
4625 the first pseudo-reg (one of the virtual regs) as a placeholder;
4626 it will not remain in the result. */
4627 if (GET_CODE (XEXP (x, 0)) == PLUS
4628 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4629 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4630 MEM_ADDR_SPACE (x)))
4632 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4633 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4634 XEXP (x, 0)),
4635 subst_insn);
4637 /* This should have produced two insns, each of which sets our
4638 placeholder. If the source of the second is a valid address,
4639 we can make put both sources together and make a split point
4640 in the middle. */
4642 if (seq
4643 && NEXT_INSN (seq) != NULL_RTX
4644 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4645 && NONJUMP_INSN_P (seq)
4646 && GET_CODE (PATTERN (seq)) == SET
4647 && SET_DEST (PATTERN (seq)) == reg
4648 && ! reg_mentioned_p (reg,
4649 SET_SRC (PATTERN (seq)))
4650 && NONJUMP_INSN_P (NEXT_INSN (seq))
4651 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4652 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4653 && memory_address_addr_space_p
4654 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4655 MEM_ADDR_SPACE (x)))
4657 rtx src1 = SET_SRC (PATTERN (seq));
4658 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4660 /* Replace the placeholder in SRC2 with SRC1. If we can
4661 find where in SRC2 it was placed, that can become our
4662 split point and we can replace this address with SRC2.
4663 Just try two obvious places. */
4665 src2 = replace_rtx (src2, reg, src1);
4666 split = 0;
4667 if (XEXP (src2, 0) == src1)
4668 split = &XEXP (src2, 0);
4669 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4670 && XEXP (XEXP (src2, 0), 0) == src1)
4671 split = &XEXP (XEXP (src2, 0), 0);
4673 if (split)
4675 SUBST (XEXP (x, 0), src2);
4676 return split;
4680 /* If that didn't work, perhaps the first operand is complex and
4681 needs to be computed separately, so make a split point there.
4682 This will occur on machines that just support REG + CONST
4683 and have a constant moved through some previous computation. */
4685 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4686 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4687 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4688 return &XEXP (XEXP (x, 0), 0);
4691 /* If we have a PLUS whose first operand is complex, try computing it
4692 separately by making a split there. */
4693 if (GET_CODE (XEXP (x, 0)) == PLUS
4694 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4695 MEM_ADDR_SPACE (x))
4696 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4697 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4698 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4699 return &XEXP (XEXP (x, 0), 0);
4700 break;
4702 case SET:
4703 #ifdef HAVE_cc0
4704 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4705 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4706 we need to put the operand into a register. So split at that
4707 point. */
4709 if (SET_DEST (x) == cc0_rtx
4710 && GET_CODE (SET_SRC (x)) != COMPARE
4711 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4712 && !OBJECT_P (SET_SRC (x))
4713 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4714 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4715 return &SET_SRC (x);
4716 #endif
4718 /* See if we can split SET_SRC as it stands. */
4719 split = find_split_point (&SET_SRC (x), insn, true);
4720 if (split && split != &SET_SRC (x))
4721 return split;
4723 /* See if we can split SET_DEST as it stands. */
4724 split = find_split_point (&SET_DEST (x), insn, false);
4725 if (split && split != &SET_DEST (x))
4726 return split;
4728 /* See if this is a bitfield assignment with everything constant. If
4729 so, this is an IOR of an AND, so split it into that. */
4730 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4731 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4732 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4733 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4734 && CONST_INT_P (SET_SRC (x))
4735 && ((INTVAL (XEXP (SET_DEST (x), 1))
4736 + INTVAL (XEXP (SET_DEST (x), 2)))
4737 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4738 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4740 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4741 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4742 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4743 rtx dest = XEXP (SET_DEST (x), 0);
4744 enum machine_mode mode = GET_MODE (dest);
4745 unsigned HOST_WIDE_INT mask
4746 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4747 rtx or_mask;
4749 if (BITS_BIG_ENDIAN)
4750 pos = GET_MODE_PRECISION (mode) - len - pos;
4752 or_mask = gen_int_mode (src << pos, mode);
4753 if (src == mask)
4754 SUBST (SET_SRC (x),
4755 simplify_gen_binary (IOR, mode, dest, or_mask));
4756 else
4758 rtx negmask = gen_int_mode (~(mask << pos), mode);
4759 SUBST (SET_SRC (x),
4760 simplify_gen_binary (IOR, mode,
4761 simplify_gen_binary (AND, mode,
4762 dest, negmask),
4763 or_mask));
4766 SUBST (SET_DEST (x), dest);
4768 split = find_split_point (&SET_SRC (x), insn, true);
4769 if (split && split != &SET_SRC (x))
4770 return split;
4773 /* Otherwise, see if this is an operation that we can split into two.
4774 If so, try to split that. */
4775 code = GET_CODE (SET_SRC (x));
4777 switch (code)
4779 case AND:
4780 /* If we are AND'ing with a large constant that is only a single
4781 bit and the result is only being used in a context where we
4782 need to know if it is zero or nonzero, replace it with a bit
4783 extraction. This will avoid the large constant, which might
4784 have taken more than one insn to make. If the constant were
4785 not a valid argument to the AND but took only one insn to make,
4786 this is no worse, but if it took more than one insn, it will
4787 be better. */
4789 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4790 && REG_P (XEXP (SET_SRC (x), 0))
4791 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4792 && REG_P (SET_DEST (x))
4793 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4794 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4795 && XEXP (*split, 0) == SET_DEST (x)
4796 && XEXP (*split, 1) == const0_rtx)
4798 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4799 XEXP (SET_SRC (x), 0),
4800 pos, NULL_RTX, 1, 1, 0, 0);
4801 if (extraction != 0)
4803 SUBST (SET_SRC (x), extraction);
4804 return find_split_point (loc, insn, false);
4807 break;
4809 case NE:
4810 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4811 is known to be on, this can be converted into a NEG of a shift. */
4812 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4813 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4814 && 1 <= (pos = exact_log2
4815 (nonzero_bits (XEXP (SET_SRC (x), 0),
4816 GET_MODE (XEXP (SET_SRC (x), 0))))))
4818 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4820 SUBST (SET_SRC (x),
4821 gen_rtx_NEG (mode,
4822 gen_rtx_LSHIFTRT (mode,
4823 XEXP (SET_SRC (x), 0),
4824 GEN_INT (pos))));
4826 split = find_split_point (&SET_SRC (x), insn, true);
4827 if (split && split != &SET_SRC (x))
4828 return split;
4830 break;
4832 case SIGN_EXTEND:
4833 inner = XEXP (SET_SRC (x), 0);
4835 /* We can't optimize if either mode is a partial integer
4836 mode as we don't know how many bits are significant
4837 in those modes. */
4838 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4839 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4840 break;
4842 pos = 0;
4843 len = GET_MODE_PRECISION (GET_MODE (inner));
4844 unsignedp = 0;
4845 break;
4847 case SIGN_EXTRACT:
4848 case ZERO_EXTRACT:
4849 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4850 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4852 inner = XEXP (SET_SRC (x), 0);
4853 len = INTVAL (XEXP (SET_SRC (x), 1));
4854 pos = INTVAL (XEXP (SET_SRC (x), 2));
4856 if (BITS_BIG_ENDIAN)
4857 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4858 unsignedp = (code == ZERO_EXTRACT);
4860 break;
4862 default:
4863 break;
4866 if (len && pos >= 0
4867 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4869 enum machine_mode mode = GET_MODE (SET_SRC (x));
4871 /* For unsigned, we have a choice of a shift followed by an
4872 AND or two shifts. Use two shifts for field sizes where the
4873 constant might be too large. We assume here that we can
4874 always at least get 8-bit constants in an AND insn, which is
4875 true for every current RISC. */
4877 if (unsignedp && len <= 8)
4879 SUBST (SET_SRC (x),
4880 gen_rtx_AND (mode,
4881 gen_rtx_LSHIFTRT
4882 (mode, gen_lowpart (mode, inner),
4883 GEN_INT (pos)),
4884 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4885 - 1)));
4887 split = find_split_point (&SET_SRC (x), insn, true);
4888 if (split && split != &SET_SRC (x))
4889 return split;
4891 else
4893 SUBST (SET_SRC (x),
4894 gen_rtx_fmt_ee
4895 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4896 gen_rtx_ASHIFT (mode,
4897 gen_lowpart (mode, inner),
4898 GEN_INT (GET_MODE_PRECISION (mode)
4899 - len - pos)),
4900 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4902 split = find_split_point (&SET_SRC (x), insn, true);
4903 if (split && split != &SET_SRC (x))
4904 return split;
4908 /* See if this is a simple operation with a constant as the second
4909 operand. It might be that this constant is out of range and hence
4910 could be used as a split point. */
4911 if (BINARY_P (SET_SRC (x))
4912 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4913 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4914 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4915 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4916 return &XEXP (SET_SRC (x), 1);
4918 /* Finally, see if this is a simple operation with its first operand
4919 not in a register. The operation might require this operand in a
4920 register, so return it as a split point. We can always do this
4921 because if the first operand were another operation, we would have
4922 already found it as a split point. */
4923 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4924 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4925 return &XEXP (SET_SRC (x), 0);
4927 return 0;
4929 case AND:
4930 case IOR:
4931 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4932 it is better to write this as (not (ior A B)) so we can split it.
4933 Similarly for IOR. */
4934 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4936 SUBST (*loc,
4937 gen_rtx_NOT (GET_MODE (x),
4938 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4939 GET_MODE (x),
4940 XEXP (XEXP (x, 0), 0),
4941 XEXP (XEXP (x, 1), 0))));
4942 return find_split_point (loc, insn, set_src);
4945 /* Many RISC machines have a large set of logical insns. If the
4946 second operand is a NOT, put it first so we will try to split the
4947 other operand first. */
4948 if (GET_CODE (XEXP (x, 1)) == NOT)
4950 rtx tem = XEXP (x, 0);
4951 SUBST (XEXP (x, 0), XEXP (x, 1));
4952 SUBST (XEXP (x, 1), tem);
4954 break;
4956 case PLUS:
4957 case MINUS:
4958 /* Canonicalization can produce (minus A (mult B C)), where C is a
4959 constant. It may be better to try splitting (plus (mult B -C) A)
4960 instead if this isn't a multiply by a power of two. */
4961 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4962 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4963 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4965 enum machine_mode mode = GET_MODE (x);
4966 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4967 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4968 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4969 XEXP (XEXP (x, 1), 0),
4970 GEN_INT (other_int)),
4971 XEXP (x, 0)));
4972 return find_split_point (loc, insn, set_src);
4975 /* Split at a multiply-accumulate instruction. However if this is
4976 the SET_SRC, we likely do not have such an instruction and it's
4977 worthless to try this split. */
4978 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4979 return loc;
4981 default:
4982 break;
4985 /* Otherwise, select our actions depending on our rtx class. */
4986 switch (GET_RTX_CLASS (code))
4988 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4989 case RTX_TERNARY:
4990 split = find_split_point (&XEXP (x, 2), insn, false);
4991 if (split)
4992 return split;
4993 /* ... fall through ... */
4994 case RTX_BIN_ARITH:
4995 case RTX_COMM_ARITH:
4996 case RTX_COMPARE:
4997 case RTX_COMM_COMPARE:
4998 split = find_split_point (&XEXP (x, 1), insn, false);
4999 if (split)
5000 return split;
5001 /* ... fall through ... */
5002 case RTX_UNARY:
5003 /* Some machines have (and (shift ...) ...) insns. If X is not
5004 an AND, but XEXP (X, 0) is, use it as our split point. */
5005 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5006 return &XEXP (x, 0);
5008 split = find_split_point (&XEXP (x, 0), insn, false);
5009 if (split)
5010 return split;
5011 return loc;
5013 default:
5014 /* Otherwise, we don't have a split point. */
5015 return 0;
5019 /* Throughout X, replace FROM with TO, and return the result.
5020 The result is TO if X is FROM;
5021 otherwise the result is X, but its contents may have been modified.
5022 If they were modified, a record was made in undobuf so that
5023 undo_all will (among other things) return X to its original state.
5025 If the number of changes necessary is too much to record to undo,
5026 the excess changes are not made, so the result is invalid.
5027 The changes already made can still be undone.
5028 undobuf.num_undo is incremented for such changes, so by testing that
5029 the caller can tell whether the result is valid.
5031 `n_occurrences' is incremented each time FROM is replaced.
5033 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5035 IN_COND is nonzero if we are at the top level of a condition.
5037 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5038 by copying if `n_occurrences' is nonzero. */
5040 static rtx
5041 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5043 enum rtx_code code = GET_CODE (x);
5044 enum machine_mode op0_mode = VOIDmode;
5045 const char *fmt;
5046 int len, i;
5047 rtx new_rtx;
5049 /* Two expressions are equal if they are identical copies of a shared
5050 RTX or if they are both registers with the same register number
5051 and mode. */
5053 #define COMBINE_RTX_EQUAL_P(X,Y) \
5054 ((X) == (Y) \
5055 || (REG_P (X) && REG_P (Y) \
5056 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5058 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5060 n_occurrences++;
5061 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5064 /* If X and FROM are the same register but different modes, they
5065 will not have been seen as equal above. However, the log links code
5066 will make a LOG_LINKS entry for that case. If we do nothing, we
5067 will try to rerecognize our original insn and, when it succeeds,
5068 we will delete the feeding insn, which is incorrect.
5070 So force this insn not to match in this (rare) case. */
5071 if (! in_dest && code == REG && REG_P (from)
5072 && reg_overlap_mentioned_p (x, from))
5073 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5075 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5076 of which may contain things that can be combined. */
5077 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5078 return x;
5080 /* It is possible to have a subexpression appear twice in the insn.
5081 Suppose that FROM is a register that appears within TO.
5082 Then, after that subexpression has been scanned once by `subst',
5083 the second time it is scanned, TO may be found. If we were
5084 to scan TO here, we would find FROM within it and create a
5085 self-referent rtl structure which is completely wrong. */
5086 if (COMBINE_RTX_EQUAL_P (x, to))
5087 return to;
5089 /* Parallel asm_operands need special attention because all of the
5090 inputs are shared across the arms. Furthermore, unsharing the
5091 rtl results in recognition failures. Failure to handle this case
5092 specially can result in circular rtl.
5094 Solve this by doing a normal pass across the first entry of the
5095 parallel, and only processing the SET_DESTs of the subsequent
5096 entries. Ug. */
5098 if (code == PARALLEL
5099 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5100 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5102 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5104 /* If this substitution failed, this whole thing fails. */
5105 if (GET_CODE (new_rtx) == CLOBBER
5106 && XEXP (new_rtx, 0) == const0_rtx)
5107 return new_rtx;
5109 SUBST (XVECEXP (x, 0, 0), new_rtx);
5111 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5113 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5115 if (!REG_P (dest)
5116 && GET_CODE (dest) != CC0
5117 && GET_CODE (dest) != PC)
5119 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5121 /* If this substitution failed, this whole thing fails. */
5122 if (GET_CODE (new_rtx) == CLOBBER
5123 && XEXP (new_rtx, 0) == const0_rtx)
5124 return new_rtx;
5126 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5130 else
5132 len = GET_RTX_LENGTH (code);
5133 fmt = GET_RTX_FORMAT (code);
5135 /* We don't need to process a SET_DEST that is a register, CC0,
5136 or PC, so set up to skip this common case. All other cases
5137 where we want to suppress replacing something inside a
5138 SET_SRC are handled via the IN_DEST operand. */
5139 if (code == SET
5140 && (REG_P (SET_DEST (x))
5141 || GET_CODE (SET_DEST (x)) == CC0
5142 || GET_CODE (SET_DEST (x)) == PC))
5143 fmt = "ie";
5145 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5146 constant. */
5147 if (fmt[0] == 'e')
5148 op0_mode = GET_MODE (XEXP (x, 0));
5150 for (i = 0; i < len; i++)
5152 if (fmt[i] == 'E')
5154 int j;
5155 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5157 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5159 new_rtx = (unique_copy && n_occurrences
5160 ? copy_rtx (to) : to);
5161 n_occurrences++;
5163 else
5165 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5166 unique_copy);
5168 /* If this substitution failed, this whole thing
5169 fails. */
5170 if (GET_CODE (new_rtx) == CLOBBER
5171 && XEXP (new_rtx, 0) == const0_rtx)
5172 return new_rtx;
5175 SUBST (XVECEXP (x, i, j), new_rtx);
5178 else if (fmt[i] == 'e')
5180 /* If this is a register being set, ignore it. */
5181 new_rtx = XEXP (x, i);
5182 if (in_dest
5183 && i == 0
5184 && (((code == SUBREG || code == ZERO_EXTRACT)
5185 && REG_P (new_rtx))
5186 || code == STRICT_LOW_PART))
5189 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5191 /* In general, don't install a subreg involving two
5192 modes not tieable. It can worsen register
5193 allocation, and can even make invalid reload
5194 insns, since the reg inside may need to be copied
5195 from in the outside mode, and that may be invalid
5196 if it is an fp reg copied in integer mode.
5198 We allow two exceptions to this: It is valid if
5199 it is inside another SUBREG and the mode of that
5200 SUBREG and the mode of the inside of TO is
5201 tieable and it is valid if X is a SET that copies
5202 FROM to CC0. */
5204 if (GET_CODE (to) == SUBREG
5205 && ! MODES_TIEABLE_P (GET_MODE (to),
5206 GET_MODE (SUBREG_REG (to)))
5207 && ! (code == SUBREG
5208 && MODES_TIEABLE_P (GET_MODE (x),
5209 GET_MODE (SUBREG_REG (to))))
5210 #ifdef HAVE_cc0
5211 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5212 #endif
5214 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5216 #ifdef CANNOT_CHANGE_MODE_CLASS
5217 if (code == SUBREG
5218 && REG_P (to)
5219 && REGNO (to) < FIRST_PSEUDO_REGISTER
5220 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5221 GET_MODE (to),
5222 GET_MODE (x)))
5223 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5224 #endif
5226 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5227 n_occurrences++;
5229 else
5230 /* If we are in a SET_DEST, suppress most cases unless we
5231 have gone inside a MEM, in which case we want to
5232 simplify the address. We assume here that things that
5233 are actually part of the destination have their inner
5234 parts in the first expression. This is true for SUBREG,
5235 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5236 things aside from REG and MEM that should appear in a
5237 SET_DEST. */
5238 new_rtx = subst (XEXP (x, i), from, to,
5239 (((in_dest
5240 && (code == SUBREG || code == STRICT_LOW_PART
5241 || code == ZERO_EXTRACT))
5242 || code == SET)
5243 && i == 0),
5244 code == IF_THEN_ELSE && i == 0,
5245 unique_copy);
5247 /* If we found that we will have to reject this combination,
5248 indicate that by returning the CLOBBER ourselves, rather than
5249 an expression containing it. This will speed things up as
5250 well as prevent accidents where two CLOBBERs are considered
5251 to be equal, thus producing an incorrect simplification. */
5253 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5254 return new_rtx;
5256 if (GET_CODE (x) == SUBREG
5257 && (CONST_INT_P (new_rtx)
5258 || GET_CODE (new_rtx) == CONST_DOUBLE))
5260 enum machine_mode mode = GET_MODE (x);
5262 x = simplify_subreg (GET_MODE (x), new_rtx,
5263 GET_MODE (SUBREG_REG (x)),
5264 SUBREG_BYTE (x));
5265 if (! x)
5266 x = gen_rtx_CLOBBER (mode, const0_rtx);
5268 else if (CONST_INT_P (new_rtx)
5269 && GET_CODE (x) == ZERO_EXTEND)
5271 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5272 new_rtx, GET_MODE (XEXP (x, 0)));
5273 gcc_assert (x);
5275 else
5276 SUBST (XEXP (x, i), new_rtx);
5281 /* Check if we are loading something from the constant pool via float
5282 extension; in this case we would undo compress_float_constant
5283 optimization and degenerate constant load to an immediate value. */
5284 if (GET_CODE (x) == FLOAT_EXTEND
5285 && MEM_P (XEXP (x, 0))
5286 && MEM_READONLY_P (XEXP (x, 0)))
5288 rtx tmp = avoid_constant_pool_reference (x);
5289 if (x != tmp)
5290 return x;
5293 /* Try to simplify X. If the simplification changed the code, it is likely
5294 that further simplification will help, so loop, but limit the number
5295 of repetitions that will be performed. */
5297 for (i = 0; i < 4; i++)
5299 /* If X is sufficiently simple, don't bother trying to do anything
5300 with it. */
5301 if (code != CONST_INT && code != REG && code != CLOBBER)
5302 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5304 if (GET_CODE (x) == code)
5305 break;
5307 code = GET_CODE (x);
5309 /* We no longer know the original mode of operand 0 since we
5310 have changed the form of X) */
5311 op0_mode = VOIDmode;
5314 return x;
5317 /* Simplify X, a piece of RTL. We just operate on the expression at the
5318 outer level; call `subst' to simplify recursively. Return the new
5319 expression.
5321 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5322 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5323 of a condition. */
5325 static rtx
5326 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5327 int in_cond)
5329 enum rtx_code code = GET_CODE (x);
5330 enum machine_mode mode = GET_MODE (x);
5331 rtx temp;
5332 int i;
5334 /* If this is a commutative operation, put a constant last and a complex
5335 expression first. We don't need to do this for comparisons here. */
5336 if (COMMUTATIVE_ARITH_P (x)
5337 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5339 temp = XEXP (x, 0);
5340 SUBST (XEXP (x, 0), XEXP (x, 1));
5341 SUBST (XEXP (x, 1), temp);
5344 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5345 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5346 things. Check for cases where both arms are testing the same
5347 condition.
5349 Don't do anything if all operands are very simple. */
5351 if ((BINARY_P (x)
5352 && ((!OBJECT_P (XEXP (x, 0))
5353 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5354 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5355 || (!OBJECT_P (XEXP (x, 1))
5356 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5357 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5358 || (UNARY_P (x)
5359 && (!OBJECT_P (XEXP (x, 0))
5360 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5361 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5363 rtx cond, true_rtx, false_rtx;
5365 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5366 if (cond != 0
5367 /* If everything is a comparison, what we have is highly unlikely
5368 to be simpler, so don't use it. */
5369 && ! (COMPARISON_P (x)
5370 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5372 rtx cop1 = const0_rtx;
5373 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5375 if (cond_code == NE && COMPARISON_P (cond))
5376 return x;
5378 /* Simplify the alternative arms; this may collapse the true and
5379 false arms to store-flag values. Be careful to use copy_rtx
5380 here since true_rtx or false_rtx might share RTL with x as a
5381 result of the if_then_else_cond call above. */
5382 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5383 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5385 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5386 is unlikely to be simpler. */
5387 if (general_operand (true_rtx, VOIDmode)
5388 && general_operand (false_rtx, VOIDmode))
5390 enum rtx_code reversed;
5392 /* Restarting if we generate a store-flag expression will cause
5393 us to loop. Just drop through in this case. */
5395 /* If the result values are STORE_FLAG_VALUE and zero, we can
5396 just make the comparison operation. */
5397 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5398 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5399 cond, cop1);
5400 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5401 && ((reversed = reversed_comparison_code_parts
5402 (cond_code, cond, cop1, NULL))
5403 != UNKNOWN))
5404 x = simplify_gen_relational (reversed, mode, VOIDmode,
5405 cond, cop1);
5407 /* Likewise, we can make the negate of a comparison operation
5408 if the result values are - STORE_FLAG_VALUE and zero. */
5409 else if (CONST_INT_P (true_rtx)
5410 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5411 && false_rtx == const0_rtx)
5412 x = simplify_gen_unary (NEG, mode,
5413 simplify_gen_relational (cond_code,
5414 mode, VOIDmode,
5415 cond, cop1),
5416 mode);
5417 else if (CONST_INT_P (false_rtx)
5418 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5419 && true_rtx == const0_rtx
5420 && ((reversed = reversed_comparison_code_parts
5421 (cond_code, cond, cop1, NULL))
5422 != UNKNOWN))
5423 x = simplify_gen_unary (NEG, mode,
5424 simplify_gen_relational (reversed,
5425 mode, VOIDmode,
5426 cond, cop1),
5427 mode);
5428 else
5429 return gen_rtx_IF_THEN_ELSE (mode,
5430 simplify_gen_relational (cond_code,
5431 mode,
5432 VOIDmode,
5433 cond,
5434 cop1),
5435 true_rtx, false_rtx);
5437 code = GET_CODE (x);
5438 op0_mode = VOIDmode;
5443 /* Try to fold this expression in case we have constants that weren't
5444 present before. */
5445 temp = 0;
5446 switch (GET_RTX_CLASS (code))
5448 case RTX_UNARY:
5449 if (op0_mode == VOIDmode)
5450 op0_mode = GET_MODE (XEXP (x, 0));
5451 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5452 break;
5453 case RTX_COMPARE:
5454 case RTX_COMM_COMPARE:
5456 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5457 if (cmp_mode == VOIDmode)
5459 cmp_mode = GET_MODE (XEXP (x, 1));
5460 if (cmp_mode == VOIDmode)
5461 cmp_mode = op0_mode;
5463 temp = simplify_relational_operation (code, mode, cmp_mode,
5464 XEXP (x, 0), XEXP (x, 1));
5466 break;
5467 case RTX_COMM_ARITH:
5468 case RTX_BIN_ARITH:
5469 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5470 break;
5471 case RTX_BITFIELD_OPS:
5472 case RTX_TERNARY:
5473 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5474 XEXP (x, 1), XEXP (x, 2));
5475 break;
5476 default:
5477 break;
5480 if (temp)
5482 x = temp;
5483 code = GET_CODE (temp);
5484 op0_mode = VOIDmode;
5485 mode = GET_MODE (temp);
5488 /* First see if we can apply the inverse distributive law. */
5489 if (code == PLUS || code == MINUS
5490 || code == AND || code == IOR || code == XOR)
5492 x = apply_distributive_law (x);
5493 code = GET_CODE (x);
5494 op0_mode = VOIDmode;
5497 /* If CODE is an associative operation not otherwise handled, see if we
5498 can associate some operands. This can win if they are constants or
5499 if they are logically related (i.e. (a & b) & a). */
5500 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5501 || code == AND || code == IOR || code == XOR
5502 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5503 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5504 || (flag_associative_math && FLOAT_MODE_P (mode))))
5506 if (GET_CODE (XEXP (x, 0)) == code)
5508 rtx other = XEXP (XEXP (x, 0), 0);
5509 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5510 rtx inner_op1 = XEXP (x, 1);
5511 rtx inner;
5513 /* Make sure we pass the constant operand if any as the second
5514 one if this is a commutative operation. */
5515 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5517 rtx tem = inner_op0;
5518 inner_op0 = inner_op1;
5519 inner_op1 = tem;
5521 inner = simplify_binary_operation (code == MINUS ? PLUS
5522 : code == DIV ? MULT
5523 : code,
5524 mode, inner_op0, inner_op1);
5526 /* For commutative operations, try the other pair if that one
5527 didn't simplify. */
5528 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5530 other = XEXP (XEXP (x, 0), 1);
5531 inner = simplify_binary_operation (code, mode,
5532 XEXP (XEXP (x, 0), 0),
5533 XEXP (x, 1));
5536 if (inner)
5537 return simplify_gen_binary (code, mode, other, inner);
5541 /* A little bit of algebraic simplification here. */
5542 switch (code)
5544 case MEM:
5545 /* Ensure that our address has any ASHIFTs converted to MULT in case
5546 address-recognizing predicates are called later. */
5547 temp = make_compound_operation (XEXP (x, 0), MEM);
5548 SUBST (XEXP (x, 0), temp);
5549 break;
5551 case SUBREG:
5552 if (op0_mode == VOIDmode)
5553 op0_mode = GET_MODE (SUBREG_REG (x));
5555 /* See if this can be moved to simplify_subreg. */
5556 if (CONSTANT_P (SUBREG_REG (x))
5557 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5558 /* Don't call gen_lowpart if the inner mode
5559 is VOIDmode and we cannot simplify it, as SUBREG without
5560 inner mode is invalid. */
5561 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5562 || gen_lowpart_common (mode, SUBREG_REG (x))))
5563 return gen_lowpart (mode, SUBREG_REG (x));
5565 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5566 break;
5568 rtx temp;
5569 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5570 SUBREG_BYTE (x));
5571 if (temp)
5572 return temp;
5575 /* Don't change the mode of the MEM if that would change the meaning
5576 of the address. */
5577 if (MEM_P (SUBREG_REG (x))
5578 && (MEM_VOLATILE_P (SUBREG_REG (x))
5579 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5580 return gen_rtx_CLOBBER (mode, const0_rtx);
5582 /* Note that we cannot do any narrowing for non-constants since
5583 we might have been counting on using the fact that some bits were
5584 zero. We now do this in the SET. */
5586 break;
5588 case NEG:
5589 temp = expand_compound_operation (XEXP (x, 0));
5591 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5592 replaced by (lshiftrt X C). This will convert
5593 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5595 if (GET_CODE (temp) == ASHIFTRT
5596 && CONST_INT_P (XEXP (temp, 1))
5597 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5598 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5599 INTVAL (XEXP (temp, 1)));
5601 /* If X has only a single bit that might be nonzero, say, bit I, convert
5602 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5603 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5604 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5605 or a SUBREG of one since we'd be making the expression more
5606 complex if it was just a register. */
5608 if (!REG_P (temp)
5609 && ! (GET_CODE (temp) == SUBREG
5610 && REG_P (SUBREG_REG (temp)))
5611 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5613 rtx temp1 = simplify_shift_const
5614 (NULL_RTX, ASHIFTRT, mode,
5615 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5616 GET_MODE_PRECISION (mode) - 1 - i),
5617 GET_MODE_PRECISION (mode) - 1 - i);
5619 /* If all we did was surround TEMP with the two shifts, we
5620 haven't improved anything, so don't use it. Otherwise,
5621 we are better off with TEMP1. */
5622 if (GET_CODE (temp1) != ASHIFTRT
5623 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5624 || XEXP (XEXP (temp1, 0), 0) != temp)
5625 return temp1;
5627 break;
5629 case TRUNCATE:
5630 /* We can't handle truncation to a partial integer mode here
5631 because we don't know the real bitsize of the partial
5632 integer mode. */
5633 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5634 break;
5636 if (HWI_COMPUTABLE_MODE_P (mode))
5637 SUBST (XEXP (x, 0),
5638 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5639 GET_MODE_MASK (mode), 0));
5641 /* We can truncate a constant value and return it. */
5642 if (CONST_INT_P (XEXP (x, 0)))
5643 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5645 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5646 whose value is a comparison can be replaced with a subreg if
5647 STORE_FLAG_VALUE permits. */
5648 if (HWI_COMPUTABLE_MODE_P (mode)
5649 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5650 && (temp = get_last_value (XEXP (x, 0)))
5651 && COMPARISON_P (temp))
5652 return gen_lowpart (mode, XEXP (x, 0));
5653 break;
5655 case CONST:
5656 /* (const (const X)) can become (const X). Do it this way rather than
5657 returning the inner CONST since CONST can be shared with a
5658 REG_EQUAL note. */
5659 if (GET_CODE (XEXP (x, 0)) == CONST)
5660 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5661 break;
5663 #ifdef HAVE_lo_sum
5664 case LO_SUM:
5665 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5666 can add in an offset. find_split_point will split this address up
5667 again if it doesn't match. */
5668 if (GET_CODE (XEXP (x, 0)) == HIGH
5669 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5670 return XEXP (x, 1);
5671 break;
5672 #endif
5674 case PLUS:
5675 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5676 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5677 bit-field and can be replaced by either a sign_extend or a
5678 sign_extract. The `and' may be a zero_extend and the two
5679 <c>, -<c> constants may be reversed. */
5680 if (GET_CODE (XEXP (x, 0)) == XOR
5681 && CONST_INT_P (XEXP (x, 1))
5682 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5683 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5684 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5685 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5686 && HWI_COMPUTABLE_MODE_P (mode)
5687 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5688 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5689 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5690 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5691 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5692 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5693 == (unsigned int) i + 1))))
5694 return simplify_shift_const
5695 (NULL_RTX, ASHIFTRT, mode,
5696 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5697 XEXP (XEXP (XEXP (x, 0), 0), 0),
5698 GET_MODE_PRECISION (mode) - (i + 1)),
5699 GET_MODE_PRECISION (mode) - (i + 1));
5701 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5702 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5703 the bitsize of the mode - 1. This allows simplification of
5704 "a = (b & 8) == 0;" */
5705 if (XEXP (x, 1) == constm1_rtx
5706 && !REG_P (XEXP (x, 0))
5707 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5708 && REG_P (SUBREG_REG (XEXP (x, 0))))
5709 && nonzero_bits (XEXP (x, 0), mode) == 1)
5710 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5711 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5712 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5713 GET_MODE_PRECISION (mode) - 1),
5714 GET_MODE_PRECISION (mode) - 1);
5716 /* If we are adding two things that have no bits in common, convert
5717 the addition into an IOR. This will often be further simplified,
5718 for example in cases like ((a & 1) + (a & 2)), which can
5719 become a & 3. */
5721 if (HWI_COMPUTABLE_MODE_P (mode)
5722 && (nonzero_bits (XEXP (x, 0), mode)
5723 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5725 /* Try to simplify the expression further. */
5726 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5727 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5729 /* If we could, great. If not, do not go ahead with the IOR
5730 replacement, since PLUS appears in many special purpose
5731 address arithmetic instructions. */
5732 if (GET_CODE (temp) != CLOBBER
5733 && (GET_CODE (temp) != IOR
5734 || ((XEXP (temp, 0) != XEXP (x, 0)
5735 || XEXP (temp, 1) != XEXP (x, 1))
5736 && (XEXP (temp, 0) != XEXP (x, 1)
5737 || XEXP (temp, 1) != XEXP (x, 0)))))
5738 return temp;
5740 break;
5742 case MINUS:
5743 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5744 (and <foo> (const_int pow2-1)) */
5745 if (GET_CODE (XEXP (x, 1)) == AND
5746 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5747 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5748 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5749 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5750 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5751 break;
5753 case MULT:
5754 /* If we have (mult (plus A B) C), apply the distributive law and then
5755 the inverse distributive law to see if things simplify. This
5756 occurs mostly in addresses, often when unrolling loops. */
5758 if (GET_CODE (XEXP (x, 0)) == PLUS)
5760 rtx result = distribute_and_simplify_rtx (x, 0);
5761 if (result)
5762 return result;
5765 /* Try simplify a*(b/c) as (a*b)/c. */
5766 if (FLOAT_MODE_P (mode) && flag_associative_math
5767 && GET_CODE (XEXP (x, 0)) == DIV)
5769 rtx tem = simplify_binary_operation (MULT, mode,
5770 XEXP (XEXP (x, 0), 0),
5771 XEXP (x, 1));
5772 if (tem)
5773 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5775 break;
5777 case UDIV:
5778 /* If this is a divide by a power of two, treat it as a shift if
5779 its first operand is a shift. */
5780 if (CONST_INT_P (XEXP (x, 1))
5781 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5782 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5783 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5784 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5785 || GET_CODE (XEXP (x, 0)) == ROTATE
5786 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5787 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5788 break;
5790 case EQ: case NE:
5791 case GT: case GTU: case GE: case GEU:
5792 case LT: case LTU: case LE: case LEU:
5793 case UNEQ: case LTGT:
5794 case UNGT: case UNGE:
5795 case UNLT: case UNLE:
5796 case UNORDERED: case ORDERED:
5797 /* If the first operand is a condition code, we can't do anything
5798 with it. */
5799 if (GET_CODE (XEXP (x, 0)) == COMPARE
5800 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5801 && ! CC0_P (XEXP (x, 0))))
5803 rtx op0 = XEXP (x, 0);
5804 rtx op1 = XEXP (x, 1);
5805 enum rtx_code new_code;
5807 if (GET_CODE (op0) == COMPARE)
5808 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5810 /* Simplify our comparison, if possible. */
5811 new_code = simplify_comparison (code, &op0, &op1);
5813 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5814 if only the low-order bit is possibly nonzero in X (such as when
5815 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5816 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5817 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5818 (plus X 1).
5820 Remove any ZERO_EXTRACT we made when thinking this was a
5821 comparison. It may now be simpler to use, e.g., an AND. If a
5822 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5823 the call to make_compound_operation in the SET case.
5825 Don't apply these optimizations if the caller would
5826 prefer a comparison rather than a value.
5827 E.g., for the condition in an IF_THEN_ELSE most targets need
5828 an explicit comparison. */
5830 if (in_cond)
5833 else if (STORE_FLAG_VALUE == 1
5834 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5835 && op1 == const0_rtx
5836 && mode == GET_MODE (op0)
5837 && nonzero_bits (op0, mode) == 1)
5838 return gen_lowpart (mode,
5839 expand_compound_operation (op0));
5841 else if (STORE_FLAG_VALUE == 1
5842 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5843 && op1 == const0_rtx
5844 && mode == GET_MODE (op0)
5845 && (num_sign_bit_copies (op0, mode)
5846 == GET_MODE_PRECISION (mode)))
5848 op0 = expand_compound_operation (op0);
5849 return simplify_gen_unary (NEG, mode,
5850 gen_lowpart (mode, op0),
5851 mode);
5854 else if (STORE_FLAG_VALUE == 1
5855 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5856 && op1 == const0_rtx
5857 && mode == GET_MODE (op0)
5858 && nonzero_bits (op0, mode) == 1)
5860 op0 = expand_compound_operation (op0);
5861 return simplify_gen_binary (XOR, mode,
5862 gen_lowpart (mode, op0),
5863 const1_rtx);
5866 else if (STORE_FLAG_VALUE == 1
5867 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5868 && op1 == const0_rtx
5869 && mode == GET_MODE (op0)
5870 && (num_sign_bit_copies (op0, mode)
5871 == GET_MODE_PRECISION (mode)))
5873 op0 = expand_compound_operation (op0);
5874 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5877 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5878 those above. */
5879 if (in_cond)
5882 else if (STORE_FLAG_VALUE == -1
5883 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5884 && op1 == const0_rtx
5885 && (num_sign_bit_copies (op0, mode)
5886 == GET_MODE_PRECISION (mode)))
5887 return gen_lowpart (mode,
5888 expand_compound_operation (op0));
5890 else if (STORE_FLAG_VALUE == -1
5891 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5892 && op1 == const0_rtx
5893 && mode == GET_MODE (op0)
5894 && nonzero_bits (op0, mode) == 1)
5896 op0 = expand_compound_operation (op0);
5897 return simplify_gen_unary (NEG, mode,
5898 gen_lowpart (mode, op0),
5899 mode);
5902 else if (STORE_FLAG_VALUE == -1
5903 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5904 && op1 == const0_rtx
5905 && mode == GET_MODE (op0)
5906 && (num_sign_bit_copies (op0, mode)
5907 == GET_MODE_PRECISION (mode)))
5909 op0 = expand_compound_operation (op0);
5910 return simplify_gen_unary (NOT, mode,
5911 gen_lowpart (mode, op0),
5912 mode);
5915 /* If X is 0/1, (eq X 0) is X-1. */
5916 else if (STORE_FLAG_VALUE == -1
5917 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5918 && op1 == const0_rtx
5919 && mode == GET_MODE (op0)
5920 && nonzero_bits (op0, mode) == 1)
5922 op0 = expand_compound_operation (op0);
5923 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5926 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5927 one bit that might be nonzero, we can convert (ne x 0) to
5928 (ashift x c) where C puts the bit in the sign bit. Remove any
5929 AND with STORE_FLAG_VALUE when we are done, since we are only
5930 going to test the sign bit. */
5931 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5932 && HWI_COMPUTABLE_MODE_P (mode)
5933 && val_signbit_p (mode, STORE_FLAG_VALUE)
5934 && op1 == const0_rtx
5935 && mode == GET_MODE (op0)
5936 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5938 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5939 expand_compound_operation (op0),
5940 GET_MODE_PRECISION (mode) - 1 - i);
5941 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5942 return XEXP (x, 0);
5943 else
5944 return x;
5947 /* If the code changed, return a whole new comparison. */
5948 if (new_code != code)
5949 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5951 /* Otherwise, keep this operation, but maybe change its operands.
5952 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5953 SUBST (XEXP (x, 0), op0);
5954 SUBST (XEXP (x, 1), op1);
5956 break;
5958 case IF_THEN_ELSE:
5959 return simplify_if_then_else (x);
5961 case ZERO_EXTRACT:
5962 case SIGN_EXTRACT:
5963 case ZERO_EXTEND:
5964 case SIGN_EXTEND:
5965 /* If we are processing SET_DEST, we are done. */
5966 if (in_dest)
5967 return x;
5969 return expand_compound_operation (x);
5971 case SET:
5972 return simplify_set (x);
5974 case AND:
5975 case IOR:
5976 return simplify_logical (x);
5978 case ASHIFT:
5979 case LSHIFTRT:
5980 case ASHIFTRT:
5981 case ROTATE:
5982 case ROTATERT:
5983 /* If this is a shift by a constant amount, simplify it. */
5984 if (CONST_INT_P (XEXP (x, 1)))
5985 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5986 INTVAL (XEXP (x, 1)));
5988 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5989 SUBST (XEXP (x, 1),
5990 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5991 ((unsigned HOST_WIDE_INT) 1
5992 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5993 - 1,
5994 0));
5995 break;
5997 default:
5998 break;
6001 return x;
6004 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6006 static rtx
6007 simplify_if_then_else (rtx x)
6009 enum machine_mode mode = GET_MODE (x);
6010 rtx cond = XEXP (x, 0);
6011 rtx true_rtx = XEXP (x, 1);
6012 rtx false_rtx = XEXP (x, 2);
6013 enum rtx_code true_code = GET_CODE (cond);
6014 int comparison_p = COMPARISON_P (cond);
6015 rtx temp;
6016 int i;
6017 enum rtx_code false_code;
6018 rtx reversed;
6020 /* Simplify storing of the truth value. */
6021 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6022 return simplify_gen_relational (true_code, mode, VOIDmode,
6023 XEXP (cond, 0), XEXP (cond, 1));
6025 /* Also when the truth value has to be reversed. */
6026 if (comparison_p
6027 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6028 && (reversed = reversed_comparison (cond, mode)))
6029 return reversed;
6031 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6032 in it is being compared against certain values. Get the true and false
6033 comparisons and see if that says anything about the value of each arm. */
6035 if (comparison_p
6036 && ((false_code = reversed_comparison_code (cond, NULL))
6037 != UNKNOWN)
6038 && REG_P (XEXP (cond, 0)))
6040 HOST_WIDE_INT nzb;
6041 rtx from = XEXP (cond, 0);
6042 rtx true_val = XEXP (cond, 1);
6043 rtx false_val = true_val;
6044 int swapped = 0;
6046 /* If FALSE_CODE is EQ, swap the codes and arms. */
6048 if (false_code == EQ)
6050 swapped = 1, true_code = EQ, false_code = NE;
6051 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6054 /* If we are comparing against zero and the expression being tested has
6055 only a single bit that might be nonzero, that is its value when it is
6056 not equal to zero. Similarly if it is known to be -1 or 0. */
6058 if (true_code == EQ && true_val == const0_rtx
6059 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6061 false_code = EQ;
6062 false_val = gen_int_mode (nzb, GET_MODE (from));
6064 else if (true_code == EQ && true_val == const0_rtx
6065 && (num_sign_bit_copies (from, GET_MODE (from))
6066 == GET_MODE_PRECISION (GET_MODE (from))))
6068 false_code = EQ;
6069 false_val = constm1_rtx;
6072 /* Now simplify an arm if we know the value of the register in the
6073 branch and it is used in the arm. Be careful due to the potential
6074 of locally-shared RTL. */
6076 if (reg_mentioned_p (from, true_rtx))
6077 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6078 from, true_val),
6079 pc_rtx, pc_rtx, 0, 0, 0);
6080 if (reg_mentioned_p (from, false_rtx))
6081 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6082 from, false_val),
6083 pc_rtx, pc_rtx, 0, 0, 0);
6085 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6086 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6088 true_rtx = XEXP (x, 1);
6089 false_rtx = XEXP (x, 2);
6090 true_code = GET_CODE (cond);
6093 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6094 reversed, do so to avoid needing two sets of patterns for
6095 subtract-and-branch insns. Similarly if we have a constant in the true
6096 arm, the false arm is the same as the first operand of the comparison, or
6097 the false arm is more complicated than the true arm. */
6099 if (comparison_p
6100 && reversed_comparison_code (cond, NULL) != UNKNOWN
6101 && (true_rtx == pc_rtx
6102 || (CONSTANT_P (true_rtx)
6103 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6104 || true_rtx == const0_rtx
6105 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6106 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6107 && !OBJECT_P (false_rtx))
6108 || reg_mentioned_p (true_rtx, false_rtx)
6109 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6111 true_code = reversed_comparison_code (cond, NULL);
6112 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6113 SUBST (XEXP (x, 1), false_rtx);
6114 SUBST (XEXP (x, 2), true_rtx);
6116 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6117 cond = XEXP (x, 0);
6119 /* It is possible that the conditional has been simplified out. */
6120 true_code = GET_CODE (cond);
6121 comparison_p = COMPARISON_P (cond);
6124 /* If the two arms are identical, we don't need the comparison. */
6126 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6127 return true_rtx;
6129 /* Convert a == b ? b : a to "a". */
6130 if (true_code == EQ && ! side_effects_p (cond)
6131 && !HONOR_NANS (mode)
6132 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6133 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6134 return false_rtx;
6135 else if (true_code == NE && ! side_effects_p (cond)
6136 && !HONOR_NANS (mode)
6137 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6138 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6139 return true_rtx;
6141 /* Look for cases where we have (abs x) or (neg (abs X)). */
6143 if (GET_MODE_CLASS (mode) == MODE_INT
6144 && comparison_p
6145 && XEXP (cond, 1) == const0_rtx
6146 && GET_CODE (false_rtx) == NEG
6147 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6148 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6149 && ! side_effects_p (true_rtx))
6150 switch (true_code)
6152 case GT:
6153 case GE:
6154 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6155 case LT:
6156 case LE:
6157 return
6158 simplify_gen_unary (NEG, mode,
6159 simplify_gen_unary (ABS, mode, true_rtx, mode),
6160 mode);
6161 default:
6162 break;
6165 /* Look for MIN or MAX. */
6167 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6168 && comparison_p
6169 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6170 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6171 && ! side_effects_p (cond))
6172 switch (true_code)
6174 case GE:
6175 case GT:
6176 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6177 case LE:
6178 case LT:
6179 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6180 case GEU:
6181 case GTU:
6182 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6183 case LEU:
6184 case LTU:
6185 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6186 default:
6187 break;
6190 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6191 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6192 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6193 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6194 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6195 neither 1 or -1, but it isn't worth checking for. */
6197 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6198 && comparison_p
6199 && GET_MODE_CLASS (mode) == MODE_INT
6200 && ! side_effects_p (x))
6202 rtx t = make_compound_operation (true_rtx, SET);
6203 rtx f = make_compound_operation (false_rtx, SET);
6204 rtx cond_op0 = XEXP (cond, 0);
6205 rtx cond_op1 = XEXP (cond, 1);
6206 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6207 enum machine_mode m = mode;
6208 rtx z = 0, c1 = NULL_RTX;
6210 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6211 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6212 || GET_CODE (t) == ASHIFT
6213 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6214 && rtx_equal_p (XEXP (t, 0), f))
6215 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6217 /* If an identity-zero op is commutative, check whether there
6218 would be a match if we swapped the operands. */
6219 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6220 || GET_CODE (t) == XOR)
6221 && rtx_equal_p (XEXP (t, 1), f))
6222 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6223 else if (GET_CODE (t) == SIGN_EXTEND
6224 && (GET_CODE (XEXP (t, 0)) == PLUS
6225 || GET_CODE (XEXP (t, 0)) == MINUS
6226 || GET_CODE (XEXP (t, 0)) == IOR
6227 || GET_CODE (XEXP (t, 0)) == XOR
6228 || GET_CODE (XEXP (t, 0)) == ASHIFT
6229 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6230 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6231 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6232 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6233 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6234 && (num_sign_bit_copies (f, GET_MODE (f))
6235 > (unsigned int)
6236 (GET_MODE_PRECISION (mode)
6237 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6239 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6240 extend_op = SIGN_EXTEND;
6241 m = GET_MODE (XEXP (t, 0));
6243 else if (GET_CODE (t) == SIGN_EXTEND
6244 && (GET_CODE (XEXP (t, 0)) == PLUS
6245 || GET_CODE (XEXP (t, 0)) == IOR
6246 || GET_CODE (XEXP (t, 0)) == XOR)
6247 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6248 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6249 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6250 && (num_sign_bit_copies (f, GET_MODE (f))
6251 > (unsigned int)
6252 (GET_MODE_PRECISION (mode)
6253 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6255 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6256 extend_op = SIGN_EXTEND;
6257 m = GET_MODE (XEXP (t, 0));
6259 else if (GET_CODE (t) == ZERO_EXTEND
6260 && (GET_CODE (XEXP (t, 0)) == PLUS
6261 || GET_CODE (XEXP (t, 0)) == MINUS
6262 || GET_CODE (XEXP (t, 0)) == IOR
6263 || GET_CODE (XEXP (t, 0)) == XOR
6264 || GET_CODE (XEXP (t, 0)) == ASHIFT
6265 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6266 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6267 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6268 && HWI_COMPUTABLE_MODE_P (mode)
6269 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6270 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6271 && ((nonzero_bits (f, GET_MODE (f))
6272 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6273 == 0))
6275 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6276 extend_op = ZERO_EXTEND;
6277 m = GET_MODE (XEXP (t, 0));
6279 else if (GET_CODE (t) == ZERO_EXTEND
6280 && (GET_CODE (XEXP (t, 0)) == PLUS
6281 || GET_CODE (XEXP (t, 0)) == IOR
6282 || GET_CODE (XEXP (t, 0)) == XOR)
6283 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6284 && HWI_COMPUTABLE_MODE_P (mode)
6285 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6286 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6287 && ((nonzero_bits (f, GET_MODE (f))
6288 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6289 == 0))
6291 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6292 extend_op = ZERO_EXTEND;
6293 m = GET_MODE (XEXP (t, 0));
6296 if (z)
6298 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6299 cond_op0, cond_op1),
6300 pc_rtx, pc_rtx, 0, 0, 0);
6301 temp = simplify_gen_binary (MULT, m, temp,
6302 simplify_gen_binary (MULT, m, c1,
6303 const_true_rtx));
6304 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6305 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6307 if (extend_op != UNKNOWN)
6308 temp = simplify_gen_unary (extend_op, mode, temp, m);
6310 return temp;
6314 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6315 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6316 negation of a single bit, we can convert this operation to a shift. We
6317 can actually do this more generally, but it doesn't seem worth it. */
6319 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6320 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6321 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6322 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6323 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6324 == GET_MODE_PRECISION (mode))
6325 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6326 return
6327 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6328 gen_lowpart (mode, XEXP (cond, 0)), i);
6330 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6331 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6332 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6333 && GET_MODE (XEXP (cond, 0)) == mode
6334 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6335 == nonzero_bits (XEXP (cond, 0), mode)
6336 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6337 return XEXP (cond, 0);
6339 return x;
6342 /* Simplify X, a SET expression. Return the new expression. */
6344 static rtx
6345 simplify_set (rtx x)
6347 rtx src = SET_SRC (x);
6348 rtx dest = SET_DEST (x);
6349 enum machine_mode mode
6350 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6351 rtx other_insn;
6352 rtx *cc_use;
6354 /* (set (pc) (return)) gets written as (return). */
6355 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6356 return src;
6358 /* Now that we know for sure which bits of SRC we are using, see if we can
6359 simplify the expression for the object knowing that we only need the
6360 low-order bits. */
6362 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6364 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6365 SUBST (SET_SRC (x), src);
6368 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6369 the comparison result and try to simplify it unless we already have used
6370 undobuf.other_insn. */
6371 if ((GET_MODE_CLASS (mode) == MODE_CC
6372 || GET_CODE (src) == COMPARE
6373 || CC0_P (dest))
6374 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6375 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6376 && COMPARISON_P (*cc_use)
6377 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6379 enum rtx_code old_code = GET_CODE (*cc_use);
6380 enum rtx_code new_code;
6381 rtx op0, op1, tmp;
6382 int other_changed = 0;
6383 rtx inner_compare = NULL_RTX;
6384 enum machine_mode compare_mode = GET_MODE (dest);
6386 if (GET_CODE (src) == COMPARE)
6388 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6389 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6391 inner_compare = op0;
6392 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6395 else
6396 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6398 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6399 op0, op1);
6400 if (!tmp)
6401 new_code = old_code;
6402 else if (!CONSTANT_P (tmp))
6404 new_code = GET_CODE (tmp);
6405 op0 = XEXP (tmp, 0);
6406 op1 = XEXP (tmp, 1);
6408 else
6410 rtx pat = PATTERN (other_insn);
6411 undobuf.other_insn = other_insn;
6412 SUBST (*cc_use, tmp);
6414 /* Attempt to simplify CC user. */
6415 if (GET_CODE (pat) == SET)
6417 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6418 if (new_rtx != NULL_RTX)
6419 SUBST (SET_SRC (pat), new_rtx);
6422 /* Convert X into a no-op move. */
6423 SUBST (SET_DEST (x), pc_rtx);
6424 SUBST (SET_SRC (x), pc_rtx);
6425 return x;
6428 /* Simplify our comparison, if possible. */
6429 new_code = simplify_comparison (new_code, &op0, &op1);
6431 #ifdef SELECT_CC_MODE
6432 /* If this machine has CC modes other than CCmode, check to see if we
6433 need to use a different CC mode here. */
6434 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6435 compare_mode = GET_MODE (op0);
6436 else if (inner_compare
6437 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6438 && new_code == old_code
6439 && op0 == XEXP (inner_compare, 0)
6440 && op1 == XEXP (inner_compare, 1))
6441 compare_mode = GET_MODE (inner_compare);
6442 else
6443 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6445 #ifndef HAVE_cc0
6446 /* If the mode changed, we have to change SET_DEST, the mode in the
6447 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6448 a hard register, just build new versions with the proper mode. If it
6449 is a pseudo, we lose unless it is only time we set the pseudo, in
6450 which case we can safely change its mode. */
6451 if (compare_mode != GET_MODE (dest))
6453 if (can_change_dest_mode (dest, 0, compare_mode))
6455 unsigned int regno = REGNO (dest);
6456 rtx new_dest;
6458 if (regno < FIRST_PSEUDO_REGISTER)
6459 new_dest = gen_rtx_REG (compare_mode, regno);
6460 else
6462 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6463 new_dest = regno_reg_rtx[regno];
6466 SUBST (SET_DEST (x), new_dest);
6467 SUBST (XEXP (*cc_use, 0), new_dest);
6468 other_changed = 1;
6470 dest = new_dest;
6473 #endif /* cc0 */
6474 #endif /* SELECT_CC_MODE */
6476 /* If the code changed, we have to build a new comparison in
6477 undobuf.other_insn. */
6478 if (new_code != old_code)
6480 int other_changed_previously = other_changed;
6481 unsigned HOST_WIDE_INT mask;
6482 rtx old_cc_use = *cc_use;
6484 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6485 dest, const0_rtx));
6486 other_changed = 1;
6488 /* If the only change we made was to change an EQ into an NE or
6489 vice versa, OP0 has only one bit that might be nonzero, and OP1
6490 is zero, check if changing the user of the condition code will
6491 produce a valid insn. If it won't, we can keep the original code
6492 in that insn by surrounding our operation with an XOR. */
6494 if (((old_code == NE && new_code == EQ)
6495 || (old_code == EQ && new_code == NE))
6496 && ! other_changed_previously && op1 == const0_rtx
6497 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6498 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6500 rtx pat = PATTERN (other_insn), note = 0;
6502 if ((recog_for_combine (&pat, other_insn, &note) < 0
6503 && ! check_asm_operands (pat)))
6505 *cc_use = old_cc_use;
6506 other_changed = 0;
6508 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6509 op0, GEN_INT (mask));
6514 if (other_changed)
6515 undobuf.other_insn = other_insn;
6517 /* Otherwise, if we didn't previously have a COMPARE in the
6518 correct mode, we need one. */
6519 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6521 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6522 src = SET_SRC (x);
6524 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6526 SUBST (SET_SRC (x), op0);
6527 src = SET_SRC (x);
6529 /* Otherwise, update the COMPARE if needed. */
6530 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6532 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6533 src = SET_SRC (x);
6536 else
6538 /* Get SET_SRC in a form where we have placed back any
6539 compound expressions. Then do the checks below. */
6540 src = make_compound_operation (src, SET);
6541 SUBST (SET_SRC (x), src);
6544 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6545 and X being a REG or (subreg (reg)), we may be able to convert this to
6546 (set (subreg:m2 x) (op)).
6548 We can always do this if M1 is narrower than M2 because that means that
6549 we only care about the low bits of the result.
6551 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6552 perform a narrower operation than requested since the high-order bits will
6553 be undefined. On machine where it is defined, this transformation is safe
6554 as long as M1 and M2 have the same number of words. */
6556 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6557 && !OBJECT_P (SUBREG_REG (src))
6558 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6559 / UNITS_PER_WORD)
6560 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6561 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6562 #ifndef WORD_REGISTER_OPERATIONS
6563 && (GET_MODE_SIZE (GET_MODE (src))
6564 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6565 #endif
6566 #ifdef CANNOT_CHANGE_MODE_CLASS
6567 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6568 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6569 GET_MODE (SUBREG_REG (src)),
6570 GET_MODE (src)))
6571 #endif
6572 && (REG_P (dest)
6573 || (GET_CODE (dest) == SUBREG
6574 && REG_P (SUBREG_REG (dest)))))
6576 SUBST (SET_DEST (x),
6577 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6578 dest));
6579 SUBST (SET_SRC (x), SUBREG_REG (src));
6581 src = SET_SRC (x), dest = SET_DEST (x);
6584 #ifdef HAVE_cc0
6585 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6586 in SRC. */
6587 if (dest == cc0_rtx
6588 && GET_CODE (src) == SUBREG
6589 && subreg_lowpart_p (src)
6590 && (GET_MODE_PRECISION (GET_MODE (src))
6591 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6593 rtx inner = SUBREG_REG (src);
6594 enum machine_mode inner_mode = GET_MODE (inner);
6596 /* Here we make sure that we don't have a sign bit on. */
6597 if (val_signbit_known_clear_p (GET_MODE (src),
6598 nonzero_bits (inner, inner_mode)))
6600 SUBST (SET_SRC (x), inner);
6601 src = SET_SRC (x);
6604 #endif
6606 #ifdef LOAD_EXTEND_OP
6607 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6608 would require a paradoxical subreg. Replace the subreg with a
6609 zero_extend to avoid the reload that would otherwise be required. */
6611 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6612 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6613 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6614 && SUBREG_BYTE (src) == 0
6615 && paradoxical_subreg_p (src)
6616 && MEM_P (SUBREG_REG (src)))
6618 SUBST (SET_SRC (x),
6619 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6620 GET_MODE (src), SUBREG_REG (src)));
6622 src = SET_SRC (x);
6624 #endif
6626 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6627 are comparing an item known to be 0 or -1 against 0, use a logical
6628 operation instead. Check for one of the arms being an IOR of the other
6629 arm with some value. We compute three terms to be IOR'ed together. In
6630 practice, at most two will be nonzero. Then we do the IOR's. */
6632 if (GET_CODE (dest) != PC
6633 && GET_CODE (src) == IF_THEN_ELSE
6634 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6635 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6636 && XEXP (XEXP (src, 0), 1) == const0_rtx
6637 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6638 #ifdef HAVE_conditional_move
6639 && ! can_conditionally_move_p (GET_MODE (src))
6640 #endif
6641 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6642 GET_MODE (XEXP (XEXP (src, 0), 0)))
6643 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6644 && ! side_effects_p (src))
6646 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6647 ? XEXP (src, 1) : XEXP (src, 2));
6648 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6649 ? XEXP (src, 2) : XEXP (src, 1));
6650 rtx term1 = const0_rtx, term2, term3;
6652 if (GET_CODE (true_rtx) == IOR
6653 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6654 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6655 else if (GET_CODE (true_rtx) == IOR
6656 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6657 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6658 else if (GET_CODE (false_rtx) == IOR
6659 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6660 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6661 else if (GET_CODE (false_rtx) == IOR
6662 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6663 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6665 term2 = simplify_gen_binary (AND, GET_MODE (src),
6666 XEXP (XEXP (src, 0), 0), true_rtx);
6667 term3 = simplify_gen_binary (AND, GET_MODE (src),
6668 simplify_gen_unary (NOT, GET_MODE (src),
6669 XEXP (XEXP (src, 0), 0),
6670 GET_MODE (src)),
6671 false_rtx);
6673 SUBST (SET_SRC (x),
6674 simplify_gen_binary (IOR, GET_MODE (src),
6675 simplify_gen_binary (IOR, GET_MODE (src),
6676 term1, term2),
6677 term3));
6679 src = SET_SRC (x);
6682 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6683 whole thing fail. */
6684 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6685 return src;
6686 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6687 return dest;
6688 else
6689 /* Convert this into a field assignment operation, if possible. */
6690 return make_field_assignment (x);
6693 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6694 result. */
6696 static rtx
6697 simplify_logical (rtx x)
6699 enum machine_mode mode = GET_MODE (x);
6700 rtx op0 = XEXP (x, 0);
6701 rtx op1 = XEXP (x, 1);
6703 switch (GET_CODE (x))
6705 case AND:
6706 /* We can call simplify_and_const_int only if we don't lose
6707 any (sign) bits when converting INTVAL (op1) to
6708 "unsigned HOST_WIDE_INT". */
6709 if (CONST_INT_P (op1)
6710 && (HWI_COMPUTABLE_MODE_P (mode)
6711 || INTVAL (op1) > 0))
6713 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6714 if (GET_CODE (x) != AND)
6715 return x;
6717 op0 = XEXP (x, 0);
6718 op1 = XEXP (x, 1);
6721 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6722 apply the distributive law and then the inverse distributive
6723 law to see if things simplify. */
6724 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6726 rtx result = distribute_and_simplify_rtx (x, 0);
6727 if (result)
6728 return result;
6730 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6732 rtx result = distribute_and_simplify_rtx (x, 1);
6733 if (result)
6734 return result;
6736 break;
6738 case IOR:
6739 /* If we have (ior (and A B) C), apply the distributive law and then
6740 the inverse distributive law to see if things simplify. */
6742 if (GET_CODE (op0) == AND)
6744 rtx result = distribute_and_simplify_rtx (x, 0);
6745 if (result)
6746 return result;
6749 if (GET_CODE (op1) == AND)
6751 rtx result = distribute_and_simplify_rtx (x, 1);
6752 if (result)
6753 return result;
6755 break;
6757 default:
6758 gcc_unreachable ();
6761 return x;
6764 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6765 operations" because they can be replaced with two more basic operations.
6766 ZERO_EXTEND is also considered "compound" because it can be replaced with
6767 an AND operation, which is simpler, though only one operation.
6769 The function expand_compound_operation is called with an rtx expression
6770 and will convert it to the appropriate shifts and AND operations,
6771 simplifying at each stage.
6773 The function make_compound_operation is called to convert an expression
6774 consisting of shifts and ANDs into the equivalent compound expression.
6775 It is the inverse of this function, loosely speaking. */
6777 static rtx
6778 expand_compound_operation (rtx x)
6780 unsigned HOST_WIDE_INT pos = 0, len;
6781 int unsignedp = 0;
6782 unsigned int modewidth;
6783 rtx tem;
6785 switch (GET_CODE (x))
6787 case ZERO_EXTEND:
6788 unsignedp = 1;
6789 case SIGN_EXTEND:
6790 /* We can't necessarily use a const_int for a multiword mode;
6791 it depends on implicitly extending the value.
6792 Since we don't know the right way to extend it,
6793 we can't tell whether the implicit way is right.
6795 Even for a mode that is no wider than a const_int,
6796 we can't win, because we need to sign extend one of its bits through
6797 the rest of it, and we don't know which bit. */
6798 if (CONST_INT_P (XEXP (x, 0)))
6799 return x;
6801 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6802 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6803 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6804 reloaded. If not for that, MEM's would very rarely be safe.
6806 Reject MODEs bigger than a word, because we might not be able
6807 to reference a two-register group starting with an arbitrary register
6808 (and currently gen_lowpart might crash for a SUBREG). */
6810 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6811 return x;
6813 /* Reject MODEs that aren't scalar integers because turning vector
6814 or complex modes into shifts causes problems. */
6816 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6817 return x;
6819 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6820 /* If the inner object has VOIDmode (the only way this can happen
6821 is if it is an ASM_OPERANDS), we can't do anything since we don't
6822 know how much masking to do. */
6823 if (len == 0)
6824 return x;
6826 break;
6828 case ZERO_EXTRACT:
6829 unsignedp = 1;
6831 /* ... fall through ... */
6833 case SIGN_EXTRACT:
6834 /* If the operand is a CLOBBER, just return it. */
6835 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6836 return XEXP (x, 0);
6838 if (!CONST_INT_P (XEXP (x, 1))
6839 || !CONST_INT_P (XEXP (x, 2))
6840 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6841 return x;
6843 /* Reject MODEs that aren't scalar integers because turning vector
6844 or complex modes into shifts causes problems. */
6846 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6847 return x;
6849 len = INTVAL (XEXP (x, 1));
6850 pos = INTVAL (XEXP (x, 2));
6852 /* This should stay within the object being extracted, fail otherwise. */
6853 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6854 return x;
6856 if (BITS_BIG_ENDIAN)
6857 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6859 break;
6861 default:
6862 return x;
6864 /* Convert sign extension to zero extension, if we know that the high
6865 bit is not set, as this is easier to optimize. It will be converted
6866 back to cheaper alternative in make_extraction. */
6867 if (GET_CODE (x) == SIGN_EXTEND
6868 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6869 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6870 & ~(((unsigned HOST_WIDE_INT)
6871 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6872 >> 1))
6873 == 0)))
6875 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6876 rtx temp2 = expand_compound_operation (temp);
6878 /* Make sure this is a profitable operation. */
6879 if (set_src_cost (x, optimize_this_for_speed_p)
6880 > set_src_cost (temp2, optimize_this_for_speed_p))
6881 return temp2;
6882 else if (set_src_cost (x, optimize_this_for_speed_p)
6883 > set_src_cost (temp, optimize_this_for_speed_p))
6884 return temp;
6885 else
6886 return x;
6889 /* We can optimize some special cases of ZERO_EXTEND. */
6890 if (GET_CODE (x) == ZERO_EXTEND)
6892 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6893 know that the last value didn't have any inappropriate bits
6894 set. */
6895 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6896 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6897 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6898 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6899 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6900 return XEXP (XEXP (x, 0), 0);
6902 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6903 if (GET_CODE (XEXP (x, 0)) == SUBREG
6904 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6905 && subreg_lowpart_p (XEXP (x, 0))
6906 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6907 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6908 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6909 return SUBREG_REG (XEXP (x, 0));
6911 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6912 is a comparison and STORE_FLAG_VALUE permits. This is like
6913 the first case, but it works even when GET_MODE (x) is larger
6914 than HOST_WIDE_INT. */
6915 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6916 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6917 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6918 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6919 <= HOST_BITS_PER_WIDE_INT)
6920 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6921 return XEXP (XEXP (x, 0), 0);
6923 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6924 if (GET_CODE (XEXP (x, 0)) == SUBREG
6925 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6926 && subreg_lowpart_p (XEXP (x, 0))
6927 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6928 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6929 <= HOST_BITS_PER_WIDE_INT)
6930 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6931 return SUBREG_REG (XEXP (x, 0));
6935 /* If we reach here, we want to return a pair of shifts. The inner
6936 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6937 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6938 logical depending on the value of UNSIGNEDP.
6940 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6941 converted into an AND of a shift.
6943 We must check for the case where the left shift would have a negative
6944 count. This can happen in a case like (x >> 31) & 255 on machines
6945 that can't shift by a constant. On those machines, we would first
6946 combine the shift with the AND to produce a variable-position
6947 extraction. Then the constant of 31 would be substituted in
6948 to produce such a position. */
6950 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6951 if (modewidth >= pos + len)
6953 enum machine_mode mode = GET_MODE (x);
6954 tem = gen_lowpart (mode, XEXP (x, 0));
6955 if (!tem || GET_CODE (tem) == CLOBBER)
6956 return x;
6957 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6958 tem, modewidth - pos - len);
6959 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6960 mode, tem, modewidth - len);
6962 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6963 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6964 simplify_shift_const (NULL_RTX, LSHIFTRT,
6965 GET_MODE (x),
6966 XEXP (x, 0), pos),
6967 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6968 else
6969 /* Any other cases we can't handle. */
6970 return x;
6972 /* If we couldn't do this for some reason, return the original
6973 expression. */
6974 if (GET_CODE (tem) == CLOBBER)
6975 return x;
6977 return tem;
6980 /* X is a SET which contains an assignment of one object into
6981 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6982 or certain SUBREGS). If possible, convert it into a series of
6983 logical operations.
6985 We half-heartedly support variable positions, but do not at all
6986 support variable lengths. */
6988 static const_rtx
6989 expand_field_assignment (const_rtx x)
6991 rtx inner;
6992 rtx pos; /* Always counts from low bit. */
6993 int len;
6994 rtx mask, cleared, masked;
6995 enum machine_mode compute_mode;
6997 /* Loop until we find something we can't simplify. */
6998 while (1)
7000 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7001 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7003 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7004 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7005 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7007 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7008 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7010 inner = XEXP (SET_DEST (x), 0);
7011 len = INTVAL (XEXP (SET_DEST (x), 1));
7012 pos = XEXP (SET_DEST (x), 2);
7014 /* A constant position should stay within the width of INNER. */
7015 if (CONST_INT_P (pos)
7016 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7017 break;
7019 if (BITS_BIG_ENDIAN)
7021 if (CONST_INT_P (pos))
7022 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7023 - INTVAL (pos));
7024 else if (GET_CODE (pos) == MINUS
7025 && CONST_INT_P (XEXP (pos, 1))
7026 && (INTVAL (XEXP (pos, 1))
7027 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7028 /* If position is ADJUST - X, new position is X. */
7029 pos = XEXP (pos, 0);
7030 else
7031 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7032 GEN_INT (GET_MODE_PRECISION (
7033 GET_MODE (inner))
7034 - len),
7035 pos);
7039 /* A SUBREG between two modes that occupy the same numbers of words
7040 can be done by moving the SUBREG to the source. */
7041 else if (GET_CODE (SET_DEST (x)) == SUBREG
7042 /* We need SUBREGs to compute nonzero_bits properly. */
7043 && nonzero_sign_valid
7044 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7045 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7046 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7047 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7049 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7050 gen_lowpart
7051 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7052 SET_SRC (x)));
7053 continue;
7055 else
7056 break;
7058 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7059 inner = SUBREG_REG (inner);
7061 compute_mode = GET_MODE (inner);
7063 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7064 if (! SCALAR_INT_MODE_P (compute_mode))
7066 enum machine_mode imode;
7068 /* Don't do anything for vector or complex integral types. */
7069 if (! FLOAT_MODE_P (compute_mode))
7070 break;
7072 /* Try to find an integral mode to pun with. */
7073 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7074 if (imode == BLKmode)
7075 break;
7077 compute_mode = imode;
7078 inner = gen_lowpart (imode, inner);
7081 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7082 if (len >= HOST_BITS_PER_WIDE_INT)
7083 break;
7085 /* Now compute the equivalent expression. Make a copy of INNER
7086 for the SET_DEST in case it is a MEM into which we will substitute;
7087 we don't want shared RTL in that case. */
7088 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
7089 cleared = simplify_gen_binary (AND, compute_mode,
7090 simplify_gen_unary (NOT, compute_mode,
7091 simplify_gen_binary (ASHIFT,
7092 compute_mode,
7093 mask, pos),
7094 compute_mode),
7095 inner);
7096 masked = simplify_gen_binary (ASHIFT, compute_mode,
7097 simplify_gen_binary (
7098 AND, compute_mode,
7099 gen_lowpart (compute_mode, SET_SRC (x)),
7100 mask),
7101 pos);
7103 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7104 simplify_gen_binary (IOR, compute_mode,
7105 cleared, masked));
7108 return x;
7111 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7112 it is an RTX that represents a variable starting position; otherwise,
7113 POS is the (constant) starting bit position (counted from the LSB).
7115 UNSIGNEDP is nonzero for an unsigned reference and zero for a
7116 signed reference.
7118 IN_DEST is nonzero if this is a reference in the destination of a
7119 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7120 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7121 be used.
7123 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7124 ZERO_EXTRACT should be built even for bits starting at bit 0.
7126 MODE is the desired mode of the result (if IN_DEST == 0).
7128 The result is an RTX for the extraction or NULL_RTX if the target
7129 can't handle it. */
7131 static rtx
7132 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7133 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7134 int in_dest, int in_compare)
7136 /* This mode describes the size of the storage area
7137 to fetch the overall value from. Within that, we
7138 ignore the POS lowest bits, etc. */
7139 enum machine_mode is_mode = GET_MODE (inner);
7140 enum machine_mode inner_mode;
7141 enum machine_mode wanted_inner_mode;
7142 enum machine_mode wanted_inner_reg_mode = word_mode;
7143 enum machine_mode pos_mode = word_mode;
7144 enum machine_mode extraction_mode = word_mode;
7145 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7146 rtx new_rtx = 0;
7147 rtx orig_pos_rtx = pos_rtx;
7148 HOST_WIDE_INT orig_pos;
7150 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7152 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7153 consider just the QI as the memory to extract from.
7154 The subreg adds or removes high bits; its mode is
7155 irrelevant to the meaning of this extraction,
7156 since POS and LEN count from the lsb. */
7157 if (MEM_P (SUBREG_REG (inner)))
7158 is_mode = GET_MODE (SUBREG_REG (inner));
7159 inner = SUBREG_REG (inner);
7161 else if (GET_CODE (inner) == ASHIFT
7162 && CONST_INT_P (XEXP (inner, 1))
7163 && pos_rtx == 0 && pos == 0
7164 && len > UINTVAL (XEXP (inner, 1)))
7166 /* We're extracting the least significant bits of an rtx
7167 (ashift X (const_int C)), where LEN > C. Extract the
7168 least significant (LEN - C) bits of X, giving an rtx
7169 whose mode is MODE, then shift it left C times. */
7170 new_rtx = make_extraction (mode, XEXP (inner, 0),
7171 0, 0, len - INTVAL (XEXP (inner, 1)),
7172 unsignedp, in_dest, in_compare);
7173 if (new_rtx != 0)
7174 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7177 inner_mode = GET_MODE (inner);
7179 if (pos_rtx && CONST_INT_P (pos_rtx))
7180 pos = INTVAL (pos_rtx), pos_rtx = 0;
7182 /* See if this can be done without an extraction. We never can if the
7183 width of the field is not the same as that of some integer mode. For
7184 registers, we can only avoid the extraction if the position is at the
7185 low-order bit and this is either not in the destination or we have the
7186 appropriate STRICT_LOW_PART operation available.
7188 For MEM, we can avoid an extract if the field starts on an appropriate
7189 boundary and we can change the mode of the memory reference. */
7191 if (tmode != BLKmode
7192 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7193 && !MEM_P (inner)
7194 && (inner_mode == tmode
7195 || !REG_P (inner)
7196 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7197 || reg_truncated_to_mode (tmode, inner))
7198 && (! in_dest
7199 || (REG_P (inner)
7200 && have_insn_for (STRICT_LOW_PART, tmode))))
7201 || (MEM_P (inner) && pos_rtx == 0
7202 && (pos
7203 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7204 : BITS_PER_UNIT)) == 0
7205 /* We can't do this if we are widening INNER_MODE (it
7206 may not be aligned, for one thing). */
7207 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7208 && (inner_mode == tmode
7209 || (! mode_dependent_address_p (XEXP (inner, 0))
7210 && ! MEM_VOLATILE_P (inner))))))
7212 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7213 field. If the original and current mode are the same, we need not
7214 adjust the offset. Otherwise, we do if bytes big endian.
7216 If INNER is not a MEM, get a piece consisting of just the field
7217 of interest (in this case POS % BITS_PER_WORD must be 0). */
7219 if (MEM_P (inner))
7221 HOST_WIDE_INT offset;
7223 /* POS counts from lsb, but make OFFSET count in memory order. */
7224 if (BYTES_BIG_ENDIAN)
7225 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7226 else
7227 offset = pos / BITS_PER_UNIT;
7229 new_rtx = adjust_address_nv (inner, tmode, offset);
7231 else if (REG_P (inner))
7233 if (tmode != inner_mode)
7235 /* We can't call gen_lowpart in a DEST since we
7236 always want a SUBREG (see below) and it would sometimes
7237 return a new hard register. */
7238 if (pos || in_dest)
7240 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7242 if (WORDS_BIG_ENDIAN
7243 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7244 final_word = ((GET_MODE_SIZE (inner_mode)
7245 - GET_MODE_SIZE (tmode))
7246 / UNITS_PER_WORD) - final_word;
7248 final_word *= UNITS_PER_WORD;
7249 if (BYTES_BIG_ENDIAN &&
7250 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7251 final_word += (GET_MODE_SIZE (inner_mode)
7252 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7254 /* Avoid creating invalid subregs, for example when
7255 simplifying (x>>32)&255. */
7256 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7257 return NULL_RTX;
7259 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7261 else
7262 new_rtx = gen_lowpart (tmode, inner);
7264 else
7265 new_rtx = inner;
7267 else
7268 new_rtx = force_to_mode (inner, tmode,
7269 len >= HOST_BITS_PER_WIDE_INT
7270 ? ~(unsigned HOST_WIDE_INT) 0
7271 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7274 /* If this extraction is going into the destination of a SET,
7275 make a STRICT_LOW_PART unless we made a MEM. */
7277 if (in_dest)
7278 return (MEM_P (new_rtx) ? new_rtx
7279 : (GET_CODE (new_rtx) != SUBREG
7280 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7281 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7283 if (mode == tmode)
7284 return new_rtx;
7286 if (CONST_INT_P (new_rtx)
7287 || GET_CODE (new_rtx) == CONST_DOUBLE)
7288 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7289 mode, new_rtx, tmode);
7291 /* If we know that no extraneous bits are set, and that the high
7292 bit is not set, convert the extraction to the cheaper of
7293 sign and zero extension, that are equivalent in these cases. */
7294 if (flag_expensive_optimizations
7295 && (HWI_COMPUTABLE_MODE_P (tmode)
7296 && ((nonzero_bits (new_rtx, tmode)
7297 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7298 == 0)))
7300 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7301 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7303 /* Prefer ZERO_EXTENSION, since it gives more information to
7304 backends. */
7305 if (set_src_cost (temp, optimize_this_for_speed_p)
7306 <= set_src_cost (temp1, optimize_this_for_speed_p))
7307 return temp;
7308 return temp1;
7311 /* Otherwise, sign- or zero-extend unless we already are in the
7312 proper mode. */
7314 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7315 mode, new_rtx));
7318 /* Unless this is a COMPARE or we have a funny memory reference,
7319 don't do anything with zero-extending field extracts starting at
7320 the low-order bit since they are simple AND operations. */
7321 if (pos_rtx == 0 && pos == 0 && ! in_dest
7322 && ! in_compare && unsignedp)
7323 return 0;
7325 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7326 if the position is not a constant and the length is not 1. In all
7327 other cases, we would only be going outside our object in cases when
7328 an original shift would have been undefined. */
7329 if (MEM_P (inner)
7330 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7331 || (pos_rtx != 0 && len != 1)))
7332 return 0;
7334 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7335 and the mode for the result. */
7336 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7338 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7339 pos_mode = mode_for_extraction (EP_insv, 2);
7340 extraction_mode = mode_for_extraction (EP_insv, 3);
7343 if (! in_dest && unsignedp
7344 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7346 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7347 pos_mode = mode_for_extraction (EP_extzv, 3);
7348 extraction_mode = mode_for_extraction (EP_extzv, 0);
7351 if (! in_dest && ! unsignedp
7352 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7354 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7355 pos_mode = mode_for_extraction (EP_extv, 3);
7356 extraction_mode = mode_for_extraction (EP_extv, 0);
7359 /* Never narrow an object, since that might not be safe. */
7361 if (mode != VOIDmode
7362 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7363 extraction_mode = mode;
7365 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7366 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7367 pos_mode = GET_MODE (pos_rtx);
7369 /* If this is not from memory, the desired mode is the preferred mode
7370 for an extraction pattern's first input operand, or word_mode if there
7371 is none. */
7372 if (!MEM_P (inner))
7373 wanted_inner_mode = wanted_inner_reg_mode;
7374 else
7376 /* Be careful not to go beyond the extracted object and maintain the
7377 natural alignment of the memory. */
7378 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7379 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7380 > GET_MODE_BITSIZE (wanted_inner_mode))
7382 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7383 gcc_assert (wanted_inner_mode != VOIDmode);
7386 /* If we have to change the mode of memory and cannot, the desired mode
7387 is EXTRACTION_MODE. */
7388 if (inner_mode != wanted_inner_mode
7389 && (mode_dependent_address_p (XEXP (inner, 0))
7390 || MEM_VOLATILE_P (inner)
7391 || pos_rtx))
7392 wanted_inner_mode = extraction_mode;
7395 orig_pos = pos;
7397 if (BITS_BIG_ENDIAN)
7399 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7400 BITS_BIG_ENDIAN style. If position is constant, compute new
7401 position. Otherwise, build subtraction.
7402 Note that POS is relative to the mode of the original argument.
7403 If it's a MEM we need to recompute POS relative to that.
7404 However, if we're extracting from (or inserting into) a register,
7405 we want to recompute POS relative to wanted_inner_mode. */
7406 int width = (MEM_P (inner)
7407 ? GET_MODE_BITSIZE (is_mode)
7408 : GET_MODE_BITSIZE (wanted_inner_mode));
7410 if (pos_rtx == 0)
7411 pos = width - len - pos;
7412 else
7413 pos_rtx
7414 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7415 /* POS may be less than 0 now, but we check for that below.
7416 Note that it can only be less than 0 if !MEM_P (inner). */
7419 /* If INNER has a wider mode, and this is a constant extraction, try to
7420 make it smaller and adjust the byte to point to the byte containing
7421 the value. */
7422 if (wanted_inner_mode != VOIDmode
7423 && inner_mode != wanted_inner_mode
7424 && ! pos_rtx
7425 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7426 && MEM_P (inner)
7427 && ! mode_dependent_address_p (XEXP (inner, 0))
7428 && ! MEM_VOLATILE_P (inner))
7430 int offset = 0;
7432 /* The computations below will be correct if the machine is big
7433 endian in both bits and bytes or little endian in bits and bytes.
7434 If it is mixed, we must adjust. */
7436 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7437 adjust OFFSET to compensate. */
7438 if (BYTES_BIG_ENDIAN
7439 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7440 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7442 /* We can now move to the desired byte. */
7443 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7444 * GET_MODE_SIZE (wanted_inner_mode);
7445 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7447 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7448 && is_mode != wanted_inner_mode)
7449 offset = (GET_MODE_SIZE (is_mode)
7450 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7452 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7455 /* If INNER is not memory, get it into the proper mode. If we are changing
7456 its mode, POS must be a constant and smaller than the size of the new
7457 mode. */
7458 else if (!MEM_P (inner))
7460 /* On the LHS, don't create paradoxical subregs implicitely truncating
7461 the register unless TRULY_NOOP_TRUNCATION. */
7462 if (in_dest
7463 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7464 wanted_inner_mode))
7465 return NULL_RTX;
7467 if (GET_MODE (inner) != wanted_inner_mode
7468 && (pos_rtx != 0
7469 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7470 return NULL_RTX;
7472 if (orig_pos < 0)
7473 return NULL_RTX;
7475 inner = force_to_mode (inner, wanted_inner_mode,
7476 pos_rtx
7477 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7478 ? ~(unsigned HOST_WIDE_INT) 0
7479 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7480 << orig_pos),
7484 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7485 have to zero extend. Otherwise, we can just use a SUBREG. */
7486 if (pos_rtx != 0
7487 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7489 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7491 /* If we know that no extraneous bits are set, and that the high
7492 bit is not set, convert extraction to cheaper one - either
7493 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7494 cases. */
7495 if (flag_expensive_optimizations
7496 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7497 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7498 & ~(((unsigned HOST_WIDE_INT)
7499 GET_MODE_MASK (GET_MODE (pos_rtx)))
7500 >> 1))
7501 == 0)))
7503 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7505 /* Prefer ZERO_EXTENSION, since it gives more information to
7506 backends. */
7507 if (set_src_cost (temp1, optimize_this_for_speed_p)
7508 < set_src_cost (temp, optimize_this_for_speed_p))
7509 temp = temp1;
7511 pos_rtx = temp;
7513 else if (pos_rtx != 0
7514 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7515 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7517 /* Make POS_RTX unless we already have it and it is correct. If we don't
7518 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7519 be a CONST_INT. */
7520 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7521 pos_rtx = orig_pos_rtx;
7523 else if (pos_rtx == 0)
7524 pos_rtx = GEN_INT (pos);
7526 /* Make the required operation. See if we can use existing rtx. */
7527 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7528 extraction_mode, inner, GEN_INT (len), pos_rtx);
7529 if (! in_dest)
7530 new_rtx = gen_lowpart (mode, new_rtx);
7532 return new_rtx;
7535 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7536 with any other operations in X. Return X without that shift if so. */
7538 static rtx
7539 extract_left_shift (rtx x, int count)
7541 enum rtx_code code = GET_CODE (x);
7542 enum machine_mode mode = GET_MODE (x);
7543 rtx tem;
7545 switch (code)
7547 case ASHIFT:
7548 /* This is the shift itself. If it is wide enough, we will return
7549 either the value being shifted if the shift count is equal to
7550 COUNT or a shift for the difference. */
7551 if (CONST_INT_P (XEXP (x, 1))
7552 && INTVAL (XEXP (x, 1)) >= count)
7553 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7554 INTVAL (XEXP (x, 1)) - count);
7555 break;
7557 case NEG: case NOT:
7558 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7559 return simplify_gen_unary (code, mode, tem, mode);
7561 break;
7563 case PLUS: case IOR: case XOR: case AND:
7564 /* If we can safely shift this constant and we find the inner shift,
7565 make a new operation. */
7566 if (CONST_INT_P (XEXP (x, 1))
7567 && (UINTVAL (XEXP (x, 1))
7568 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7569 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7570 return simplify_gen_binary (code, mode, tem,
7571 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7573 break;
7575 default:
7576 break;
7579 return 0;
7582 /* Look at the expression rooted at X. Look for expressions
7583 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7584 Form these expressions.
7586 Return the new rtx, usually just X.
7588 Also, for machines like the VAX that don't have logical shift insns,
7589 try to convert logical to arithmetic shift operations in cases where
7590 they are equivalent. This undoes the canonicalizations to logical
7591 shifts done elsewhere.
7593 We try, as much as possible, to re-use rtl expressions to save memory.
7595 IN_CODE says what kind of expression we are processing. Normally, it is
7596 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7597 being kludges), it is MEM. When processing the arguments of a comparison
7598 or a COMPARE against zero, it is COMPARE. */
7600 static rtx
7601 make_compound_operation (rtx x, enum rtx_code in_code)
7603 enum rtx_code code = GET_CODE (x);
7604 enum machine_mode mode = GET_MODE (x);
7605 int mode_width = GET_MODE_PRECISION (mode);
7606 rtx rhs, lhs;
7607 enum rtx_code next_code;
7608 int i, j;
7609 rtx new_rtx = 0;
7610 rtx tem;
7611 const char *fmt;
7613 /* Select the code to be used in recursive calls. Once we are inside an
7614 address, we stay there. If we have a comparison, set to COMPARE,
7615 but once inside, go back to our default of SET. */
7617 next_code = (code == MEM ? MEM
7618 : ((code == PLUS || code == MINUS)
7619 && SCALAR_INT_MODE_P (mode)) ? MEM
7620 : ((code == COMPARE || COMPARISON_P (x))
7621 && XEXP (x, 1) == const0_rtx) ? COMPARE
7622 : in_code == COMPARE ? SET : in_code);
7624 /* Process depending on the code of this operation. If NEW is set
7625 nonzero, it will be returned. */
7627 switch (code)
7629 case ASHIFT:
7630 /* Convert shifts by constants into multiplications if inside
7631 an address. */
7632 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7633 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7634 && INTVAL (XEXP (x, 1)) >= 0
7635 && SCALAR_INT_MODE_P (mode))
7637 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7638 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7640 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7641 if (GET_CODE (new_rtx) == NEG)
7643 new_rtx = XEXP (new_rtx, 0);
7644 multval = -multval;
7646 multval = trunc_int_for_mode (multval, mode);
7647 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7649 break;
7651 case PLUS:
7652 lhs = XEXP (x, 0);
7653 rhs = XEXP (x, 1);
7654 lhs = make_compound_operation (lhs, next_code);
7655 rhs = make_compound_operation (rhs, next_code);
7656 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7657 && SCALAR_INT_MODE_P (mode))
7659 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7660 XEXP (lhs, 1));
7661 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7663 else if (GET_CODE (lhs) == MULT
7664 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7666 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7667 simplify_gen_unary (NEG, mode,
7668 XEXP (lhs, 1),
7669 mode));
7670 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7672 else
7674 SUBST (XEXP (x, 0), lhs);
7675 SUBST (XEXP (x, 1), rhs);
7676 goto maybe_swap;
7678 x = gen_lowpart (mode, new_rtx);
7679 goto maybe_swap;
7681 case MINUS:
7682 lhs = XEXP (x, 0);
7683 rhs = XEXP (x, 1);
7684 lhs = make_compound_operation (lhs, next_code);
7685 rhs = make_compound_operation (rhs, next_code);
7686 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7687 && SCALAR_INT_MODE_P (mode))
7689 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7690 XEXP (rhs, 1));
7691 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7693 else if (GET_CODE (rhs) == MULT
7694 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7696 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7697 simplify_gen_unary (NEG, mode,
7698 XEXP (rhs, 1),
7699 mode));
7700 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7702 else
7704 SUBST (XEXP (x, 0), lhs);
7705 SUBST (XEXP (x, 1), rhs);
7706 return x;
7708 return gen_lowpart (mode, new_rtx);
7710 case AND:
7711 /* If the second operand is not a constant, we can't do anything
7712 with it. */
7713 if (!CONST_INT_P (XEXP (x, 1)))
7714 break;
7716 /* If the constant is a power of two minus one and the first operand
7717 is a logical right shift, make an extraction. */
7718 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7719 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7721 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7722 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7723 0, in_code == COMPARE);
7726 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7727 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7728 && subreg_lowpart_p (XEXP (x, 0))
7729 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7730 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7732 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7733 next_code);
7734 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7735 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7736 0, in_code == COMPARE);
7738 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7739 else if ((GET_CODE (XEXP (x, 0)) == XOR
7740 || GET_CODE (XEXP (x, 0)) == IOR)
7741 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7742 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7743 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7745 /* Apply the distributive law, and then try to make extractions. */
7746 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7747 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7748 XEXP (x, 1)),
7749 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7750 XEXP (x, 1)));
7751 new_rtx = make_compound_operation (new_rtx, in_code);
7754 /* If we are have (and (rotate X C) M) and C is larger than the number
7755 of bits in M, this is an extraction. */
7757 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7758 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7759 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7760 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7762 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7763 new_rtx = make_extraction (mode, new_rtx,
7764 (GET_MODE_PRECISION (mode)
7765 - INTVAL (XEXP (XEXP (x, 0), 1))),
7766 NULL_RTX, i, 1, 0, in_code == COMPARE);
7769 /* On machines without logical shifts, if the operand of the AND is
7770 a logical shift and our mask turns off all the propagated sign
7771 bits, we can replace the logical shift with an arithmetic shift. */
7772 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7773 && !have_insn_for (LSHIFTRT, mode)
7774 && have_insn_for (ASHIFTRT, mode)
7775 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7776 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7777 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7778 && mode_width <= HOST_BITS_PER_WIDE_INT)
7780 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7782 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7783 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7784 SUBST (XEXP (x, 0),
7785 gen_rtx_ASHIFTRT (mode,
7786 make_compound_operation
7787 (XEXP (XEXP (x, 0), 0), next_code),
7788 XEXP (XEXP (x, 0), 1)));
7791 /* If the constant is one less than a power of two, this might be
7792 representable by an extraction even if no shift is present.
7793 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7794 we are in a COMPARE. */
7795 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7796 new_rtx = make_extraction (mode,
7797 make_compound_operation (XEXP (x, 0),
7798 next_code),
7799 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7801 /* If we are in a comparison and this is an AND with a power of two,
7802 convert this into the appropriate bit extract. */
7803 else if (in_code == COMPARE
7804 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7805 new_rtx = make_extraction (mode,
7806 make_compound_operation (XEXP (x, 0),
7807 next_code),
7808 i, NULL_RTX, 1, 1, 0, 1);
7810 break;
7812 case LSHIFTRT:
7813 /* If the sign bit is known to be zero, replace this with an
7814 arithmetic shift. */
7815 if (have_insn_for (ASHIFTRT, mode)
7816 && ! have_insn_for (LSHIFTRT, mode)
7817 && mode_width <= HOST_BITS_PER_WIDE_INT
7818 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7820 new_rtx = gen_rtx_ASHIFTRT (mode,
7821 make_compound_operation (XEXP (x, 0),
7822 next_code),
7823 XEXP (x, 1));
7824 break;
7827 /* ... fall through ... */
7829 case ASHIFTRT:
7830 lhs = XEXP (x, 0);
7831 rhs = XEXP (x, 1);
7833 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7834 this is a SIGN_EXTRACT. */
7835 if (CONST_INT_P (rhs)
7836 && GET_CODE (lhs) == ASHIFT
7837 && CONST_INT_P (XEXP (lhs, 1))
7838 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7839 && INTVAL (XEXP (lhs, 1)) >= 0
7840 && INTVAL (rhs) < mode_width)
7842 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7843 new_rtx = make_extraction (mode, new_rtx,
7844 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7845 NULL_RTX, mode_width - INTVAL (rhs),
7846 code == LSHIFTRT, 0, in_code == COMPARE);
7847 break;
7850 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7851 If so, try to merge the shifts into a SIGN_EXTEND. We could
7852 also do this for some cases of SIGN_EXTRACT, but it doesn't
7853 seem worth the effort; the case checked for occurs on Alpha. */
7855 if (!OBJECT_P (lhs)
7856 && ! (GET_CODE (lhs) == SUBREG
7857 && (OBJECT_P (SUBREG_REG (lhs))))
7858 && CONST_INT_P (rhs)
7859 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7860 && INTVAL (rhs) < mode_width
7861 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7862 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7863 0, NULL_RTX, mode_width - INTVAL (rhs),
7864 code == LSHIFTRT, 0, in_code == COMPARE);
7866 break;
7868 case SUBREG:
7869 /* Call ourselves recursively on the inner expression. If we are
7870 narrowing the object and it has a different RTL code from
7871 what it originally did, do this SUBREG as a force_to_mode. */
7873 rtx inner = SUBREG_REG (x), simplified;
7875 tem = make_compound_operation (inner, in_code);
7877 simplified
7878 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7879 if (simplified)
7880 tem = simplified;
7882 if (GET_CODE (tem) != GET_CODE (inner)
7883 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7884 && subreg_lowpart_p (x))
7886 rtx newer
7887 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7889 /* If we have something other than a SUBREG, we might have
7890 done an expansion, so rerun ourselves. */
7891 if (GET_CODE (newer) != SUBREG)
7892 newer = make_compound_operation (newer, in_code);
7894 /* force_to_mode can expand compounds. If it just re-expanded the
7895 compound, use gen_lowpart to convert to the desired mode. */
7896 if (rtx_equal_p (newer, x)
7897 /* Likewise if it re-expanded the compound only partially.
7898 This happens for SUBREG of ZERO_EXTRACT if they extract
7899 the same number of bits. */
7900 || (GET_CODE (newer) == SUBREG
7901 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7902 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7903 && GET_CODE (inner) == AND
7904 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7905 return gen_lowpart (GET_MODE (x), tem);
7907 return newer;
7910 if (simplified)
7911 return tem;
7913 break;
7915 default:
7916 break;
7919 if (new_rtx)
7921 x = gen_lowpart (mode, new_rtx);
7922 code = GET_CODE (x);
7925 /* Now recursively process each operand of this operation. We need to
7926 handle ZERO_EXTEND specially so that we don't lose track of the
7927 inner mode. */
7928 if (GET_CODE (x) == ZERO_EXTEND)
7930 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7931 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7932 new_rtx, GET_MODE (XEXP (x, 0)));
7933 if (tem)
7934 return tem;
7935 SUBST (XEXP (x, 0), new_rtx);
7936 return x;
7939 fmt = GET_RTX_FORMAT (code);
7940 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7941 if (fmt[i] == 'e')
7943 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7944 SUBST (XEXP (x, i), new_rtx);
7946 else if (fmt[i] == 'E')
7947 for (j = 0; j < XVECLEN (x, i); j++)
7949 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7950 SUBST (XVECEXP (x, i, j), new_rtx);
7953 maybe_swap:
7954 /* If this is a commutative operation, the changes to the operands
7955 may have made it noncanonical. */
7956 if (COMMUTATIVE_ARITH_P (x)
7957 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7959 tem = XEXP (x, 0);
7960 SUBST (XEXP (x, 0), XEXP (x, 1));
7961 SUBST (XEXP (x, 1), tem);
7964 return x;
7967 /* Given M see if it is a value that would select a field of bits
7968 within an item, but not the entire word. Return -1 if not.
7969 Otherwise, return the starting position of the field, where 0 is the
7970 low-order bit.
7972 *PLEN is set to the length of the field. */
7974 static int
7975 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7977 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7978 int pos = m ? ctz_hwi (m) : -1;
7979 int len = 0;
7981 if (pos >= 0)
7982 /* Now shift off the low-order zero bits and see if we have a
7983 power of two minus 1. */
7984 len = exact_log2 ((m >> pos) + 1);
7986 if (len <= 0)
7987 pos = -1;
7989 *plen = len;
7990 return pos;
7993 /* If X refers to a register that equals REG in value, replace these
7994 references with REG. */
7995 static rtx
7996 canon_reg_for_combine (rtx x, rtx reg)
7998 rtx op0, op1, op2;
7999 const char *fmt;
8000 int i;
8001 bool copied;
8003 enum rtx_code code = GET_CODE (x);
8004 switch (GET_RTX_CLASS (code))
8006 case RTX_UNARY:
8007 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8008 if (op0 != XEXP (x, 0))
8009 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8010 GET_MODE (reg));
8011 break;
8013 case RTX_BIN_ARITH:
8014 case RTX_COMM_ARITH:
8015 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8016 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8017 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8018 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8019 break;
8021 case RTX_COMPARE:
8022 case RTX_COMM_COMPARE:
8023 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8024 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8025 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8026 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8027 GET_MODE (op0), op0, op1);
8028 break;
8030 case RTX_TERNARY:
8031 case RTX_BITFIELD_OPS:
8032 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8033 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8034 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8035 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8036 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8037 GET_MODE (op0), op0, op1, op2);
8039 case RTX_OBJ:
8040 if (REG_P (x))
8042 if (rtx_equal_p (get_last_value (reg), x)
8043 || rtx_equal_p (reg, get_last_value (x)))
8044 return reg;
8045 else
8046 break;
8049 /* fall through */
8051 default:
8052 fmt = GET_RTX_FORMAT (code);
8053 copied = false;
8054 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8055 if (fmt[i] == 'e')
8057 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8058 if (op != XEXP (x, i))
8060 if (!copied)
8062 copied = true;
8063 x = copy_rtx (x);
8065 XEXP (x, i) = op;
8068 else if (fmt[i] == 'E')
8070 int j;
8071 for (j = 0; j < XVECLEN (x, i); j++)
8073 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8074 if (op != XVECEXP (x, i, j))
8076 if (!copied)
8078 copied = true;
8079 x = copy_rtx (x);
8081 XVECEXP (x, i, j) = op;
8086 break;
8089 return x;
8092 /* Return X converted to MODE. If the value is already truncated to
8093 MODE we can just return a subreg even though in the general case we
8094 would need an explicit truncation. */
8096 static rtx
8097 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
8099 if (!CONST_INT_P (x)
8100 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8101 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8102 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8104 /* Bit-cast X into an integer mode. */
8105 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8106 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8107 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8108 x, GET_MODE (x));
8111 return gen_lowpart (mode, x);
8114 /* See if X can be simplified knowing that we will only refer to it in
8115 MODE and will only refer to those bits that are nonzero in MASK.
8116 If other bits are being computed or if masking operations are done
8117 that select a superset of the bits in MASK, they can sometimes be
8118 ignored.
8120 Return a possibly simplified expression, but always convert X to
8121 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8123 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8124 are all off in X. This is used when X will be complemented, by either
8125 NOT, NEG, or XOR. */
8127 static rtx
8128 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8129 int just_select)
8131 enum rtx_code code = GET_CODE (x);
8132 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8133 enum machine_mode op_mode;
8134 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8135 rtx op0, op1, temp;
8137 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8138 code below will do the wrong thing since the mode of such an
8139 expression is VOIDmode.
8141 Also do nothing if X is a CLOBBER; this can happen if X was
8142 the return value from a call to gen_lowpart. */
8143 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8144 return x;
8146 /* We want to perform the operation is its present mode unless we know
8147 that the operation is valid in MODE, in which case we do the operation
8148 in MODE. */
8149 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8150 && have_insn_for (code, mode))
8151 ? mode : GET_MODE (x));
8153 /* It is not valid to do a right-shift in a narrower mode
8154 than the one it came in with. */
8155 if ((code == LSHIFTRT || code == ASHIFTRT)
8156 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8157 op_mode = GET_MODE (x);
8159 /* Truncate MASK to fit OP_MODE. */
8160 if (op_mode)
8161 mask &= GET_MODE_MASK (op_mode);
8163 /* When we have an arithmetic operation, or a shift whose count we
8164 do not know, we need to assume that all bits up to the highest-order
8165 bit in MASK will be needed. This is how we form such a mask. */
8166 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8167 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8168 else
8169 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8170 - 1);
8172 /* Determine what bits of X are guaranteed to be (non)zero. */
8173 nonzero = nonzero_bits (x, mode);
8175 /* If none of the bits in X are needed, return a zero. */
8176 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8177 x = const0_rtx;
8179 /* If X is a CONST_INT, return a new one. Do this here since the
8180 test below will fail. */
8181 if (CONST_INT_P (x))
8183 if (SCALAR_INT_MODE_P (mode))
8184 return gen_int_mode (INTVAL (x) & mask, mode);
8185 else
8187 x = GEN_INT (INTVAL (x) & mask);
8188 return gen_lowpart_common (mode, x);
8192 /* If X is narrower than MODE and we want all the bits in X's mode, just
8193 get X in the proper mode. */
8194 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8195 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8196 return gen_lowpart (mode, x);
8198 /* We can ignore the effect of a SUBREG if it narrows the mode or
8199 if the constant masks to zero all the bits the mode doesn't have. */
8200 if (GET_CODE (x) == SUBREG
8201 && subreg_lowpart_p (x)
8202 && ((GET_MODE_SIZE (GET_MODE (x))
8203 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8204 || (0 == (mask
8205 & GET_MODE_MASK (GET_MODE (x))
8206 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8207 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8209 /* The arithmetic simplifications here only work for scalar integer modes. */
8210 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8211 return gen_lowpart_or_truncate (mode, x);
8213 switch (code)
8215 case CLOBBER:
8216 /* If X is a (clobber (const_int)), return it since we know we are
8217 generating something that won't match. */
8218 return x;
8220 case SIGN_EXTEND:
8221 case ZERO_EXTEND:
8222 case ZERO_EXTRACT:
8223 case SIGN_EXTRACT:
8224 x = expand_compound_operation (x);
8225 if (GET_CODE (x) != code)
8226 return force_to_mode (x, mode, mask, next_select);
8227 break;
8229 case TRUNCATE:
8230 /* Similarly for a truncate. */
8231 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8233 case AND:
8234 /* If this is an AND with a constant, convert it into an AND
8235 whose constant is the AND of that constant with MASK. If it
8236 remains an AND of MASK, delete it since it is redundant. */
8238 if (CONST_INT_P (XEXP (x, 1)))
8240 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8241 mask & INTVAL (XEXP (x, 1)));
8243 /* If X is still an AND, see if it is an AND with a mask that
8244 is just some low-order bits. If so, and it is MASK, we don't
8245 need it. */
8247 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8248 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8249 == mask))
8250 x = XEXP (x, 0);
8252 /* If it remains an AND, try making another AND with the bits
8253 in the mode mask that aren't in MASK turned on. If the
8254 constant in the AND is wide enough, this might make a
8255 cheaper constant. */
8257 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8258 && GET_MODE_MASK (GET_MODE (x)) != mask
8259 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8261 unsigned HOST_WIDE_INT cval
8262 = UINTVAL (XEXP (x, 1))
8263 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8264 int width = GET_MODE_PRECISION (GET_MODE (x));
8265 rtx y;
8267 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8268 number, sign extend it. */
8269 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8270 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8271 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8273 y = simplify_gen_binary (AND, GET_MODE (x),
8274 XEXP (x, 0), GEN_INT (cval));
8275 if (set_src_cost (y, optimize_this_for_speed_p)
8276 < set_src_cost (x, optimize_this_for_speed_p))
8277 x = y;
8280 break;
8283 goto binop;
8285 case PLUS:
8286 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8287 low-order bits (as in an alignment operation) and FOO is already
8288 aligned to that boundary, mask C1 to that boundary as well.
8289 This may eliminate that PLUS and, later, the AND. */
8292 unsigned int width = GET_MODE_PRECISION (mode);
8293 unsigned HOST_WIDE_INT smask = mask;
8295 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8296 number, sign extend it. */
8298 if (width < HOST_BITS_PER_WIDE_INT
8299 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8300 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8302 if (CONST_INT_P (XEXP (x, 1))
8303 && exact_log2 (- smask) >= 0
8304 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8305 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8306 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8307 (INTVAL (XEXP (x, 1)) & smask)),
8308 mode, smask, next_select);
8311 /* ... fall through ... */
8313 case MULT:
8314 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8315 most significant bit in MASK since carries from those bits will
8316 affect the bits we are interested in. */
8317 mask = fuller_mask;
8318 goto binop;
8320 case MINUS:
8321 /* If X is (minus C Y) where C's least set bit is larger than any bit
8322 in the mask, then we may replace with (neg Y). */
8323 if (CONST_INT_P (XEXP (x, 0))
8324 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8325 & -INTVAL (XEXP (x, 0))))
8326 > mask))
8328 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8329 GET_MODE (x));
8330 return force_to_mode (x, mode, mask, next_select);
8333 /* Similarly, if C contains every bit in the fuller_mask, then we may
8334 replace with (not Y). */
8335 if (CONST_INT_P (XEXP (x, 0))
8336 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8338 x = simplify_gen_unary (NOT, GET_MODE (x),
8339 XEXP (x, 1), GET_MODE (x));
8340 return force_to_mode (x, mode, mask, next_select);
8343 mask = fuller_mask;
8344 goto binop;
8346 case IOR:
8347 case XOR:
8348 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8349 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8350 operation which may be a bitfield extraction. Ensure that the
8351 constant we form is not wider than the mode of X. */
8353 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8354 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8355 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8356 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8357 && CONST_INT_P (XEXP (x, 1))
8358 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8359 + floor_log2 (INTVAL (XEXP (x, 1))))
8360 < GET_MODE_PRECISION (GET_MODE (x)))
8361 && (UINTVAL (XEXP (x, 1))
8362 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8364 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8365 << INTVAL (XEXP (XEXP (x, 0), 1)));
8366 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8367 XEXP (XEXP (x, 0), 0), temp);
8368 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8369 XEXP (XEXP (x, 0), 1));
8370 return force_to_mode (x, mode, mask, next_select);
8373 binop:
8374 /* For most binary operations, just propagate into the operation and
8375 change the mode if we have an operation of that mode. */
8377 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8378 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8380 /* If we ended up truncating both operands, truncate the result of the
8381 operation instead. */
8382 if (GET_CODE (op0) == TRUNCATE
8383 && GET_CODE (op1) == TRUNCATE)
8385 op0 = XEXP (op0, 0);
8386 op1 = XEXP (op1, 0);
8389 op0 = gen_lowpart_or_truncate (op_mode, op0);
8390 op1 = gen_lowpart_or_truncate (op_mode, op1);
8392 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8393 x = simplify_gen_binary (code, op_mode, op0, op1);
8394 break;
8396 case ASHIFT:
8397 /* For left shifts, do the same, but just for the first operand.
8398 However, we cannot do anything with shifts where we cannot
8399 guarantee that the counts are smaller than the size of the mode
8400 because such a count will have a different meaning in a
8401 wider mode. */
8403 if (! (CONST_INT_P (XEXP (x, 1))
8404 && INTVAL (XEXP (x, 1)) >= 0
8405 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8406 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8407 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8408 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8409 break;
8411 /* If the shift count is a constant and we can do arithmetic in
8412 the mode of the shift, refine which bits we need. Otherwise, use the
8413 conservative form of the mask. */
8414 if (CONST_INT_P (XEXP (x, 1))
8415 && INTVAL (XEXP (x, 1)) >= 0
8416 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8417 && HWI_COMPUTABLE_MODE_P (op_mode))
8418 mask >>= INTVAL (XEXP (x, 1));
8419 else
8420 mask = fuller_mask;
8422 op0 = gen_lowpart_or_truncate (op_mode,
8423 force_to_mode (XEXP (x, 0), op_mode,
8424 mask, next_select));
8426 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8427 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8428 break;
8430 case LSHIFTRT:
8431 /* Here we can only do something if the shift count is a constant,
8432 this shift constant is valid for the host, and we can do arithmetic
8433 in OP_MODE. */
8435 if (CONST_INT_P (XEXP (x, 1))
8436 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8437 && HWI_COMPUTABLE_MODE_P (op_mode))
8439 rtx inner = XEXP (x, 0);
8440 unsigned HOST_WIDE_INT inner_mask;
8442 /* Select the mask of the bits we need for the shift operand. */
8443 inner_mask = mask << INTVAL (XEXP (x, 1));
8445 /* We can only change the mode of the shift if we can do arithmetic
8446 in the mode of the shift and INNER_MASK is no wider than the
8447 width of X's mode. */
8448 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8449 op_mode = GET_MODE (x);
8451 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8453 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8454 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8457 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8458 shift and AND produces only copies of the sign bit (C2 is one less
8459 than a power of two), we can do this with just a shift. */
8461 if (GET_CODE (x) == LSHIFTRT
8462 && CONST_INT_P (XEXP (x, 1))
8463 /* The shift puts one of the sign bit copies in the least significant
8464 bit. */
8465 && ((INTVAL (XEXP (x, 1))
8466 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8467 >= GET_MODE_PRECISION (GET_MODE (x)))
8468 && exact_log2 (mask + 1) >= 0
8469 /* Number of bits left after the shift must be more than the mask
8470 needs. */
8471 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8472 <= GET_MODE_PRECISION (GET_MODE (x)))
8473 /* Must be more sign bit copies than the mask needs. */
8474 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8475 >= exact_log2 (mask + 1)))
8476 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8477 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8478 - exact_log2 (mask + 1)));
8480 goto shiftrt;
8482 case ASHIFTRT:
8483 /* If we are just looking for the sign bit, we don't need this shift at
8484 all, even if it has a variable count. */
8485 if (val_signbit_p (GET_MODE (x), mask))
8486 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8488 /* If this is a shift by a constant, get a mask that contains those bits
8489 that are not copies of the sign bit. We then have two cases: If
8490 MASK only includes those bits, this can be a logical shift, which may
8491 allow simplifications. If MASK is a single-bit field not within
8492 those bits, we are requesting a copy of the sign bit and hence can
8493 shift the sign bit to the appropriate location. */
8495 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8496 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8498 int i;
8500 /* If the considered data is wider than HOST_WIDE_INT, we can't
8501 represent a mask for all its bits in a single scalar.
8502 But we only care about the lower bits, so calculate these. */
8504 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8506 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8508 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8509 is the number of bits a full-width mask would have set.
8510 We need only shift if these are fewer than nonzero can
8511 hold. If not, we must keep all bits set in nonzero. */
8513 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8514 < HOST_BITS_PER_WIDE_INT)
8515 nonzero >>= INTVAL (XEXP (x, 1))
8516 + HOST_BITS_PER_WIDE_INT
8517 - GET_MODE_PRECISION (GET_MODE (x)) ;
8519 else
8521 nonzero = GET_MODE_MASK (GET_MODE (x));
8522 nonzero >>= INTVAL (XEXP (x, 1));
8525 if ((mask & ~nonzero) == 0)
8527 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8528 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8529 if (GET_CODE (x) != ASHIFTRT)
8530 return force_to_mode (x, mode, mask, next_select);
8533 else if ((i = exact_log2 (mask)) >= 0)
8535 x = simplify_shift_const
8536 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8537 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8539 if (GET_CODE (x) != ASHIFTRT)
8540 return force_to_mode (x, mode, mask, next_select);
8544 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8545 even if the shift count isn't a constant. */
8546 if (mask == 1)
8547 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8548 XEXP (x, 0), XEXP (x, 1));
8550 shiftrt:
8552 /* If this is a zero- or sign-extension operation that just affects bits
8553 we don't care about, remove it. Be sure the call above returned
8554 something that is still a shift. */
8556 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8557 && CONST_INT_P (XEXP (x, 1))
8558 && INTVAL (XEXP (x, 1)) >= 0
8559 && (INTVAL (XEXP (x, 1))
8560 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8561 && GET_CODE (XEXP (x, 0)) == ASHIFT
8562 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8563 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8564 next_select);
8566 break;
8568 case ROTATE:
8569 case ROTATERT:
8570 /* If the shift count is constant and we can do computations
8571 in the mode of X, compute where the bits we care about are.
8572 Otherwise, we can't do anything. Don't change the mode of
8573 the shift or propagate MODE into the shift, though. */
8574 if (CONST_INT_P (XEXP (x, 1))
8575 && INTVAL (XEXP (x, 1)) >= 0)
8577 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8578 GET_MODE (x), GEN_INT (mask),
8579 XEXP (x, 1));
8580 if (temp && CONST_INT_P (temp))
8581 SUBST (XEXP (x, 0),
8582 force_to_mode (XEXP (x, 0), GET_MODE (x),
8583 INTVAL (temp), next_select));
8585 break;
8587 case NEG:
8588 /* If we just want the low-order bit, the NEG isn't needed since it
8589 won't change the low-order bit. */
8590 if (mask == 1)
8591 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8593 /* We need any bits less significant than the most significant bit in
8594 MASK since carries from those bits will affect the bits we are
8595 interested in. */
8596 mask = fuller_mask;
8597 goto unop;
8599 case NOT:
8600 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8601 same as the XOR case above. Ensure that the constant we form is not
8602 wider than the mode of X. */
8604 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8605 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8606 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8607 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8608 < GET_MODE_PRECISION (GET_MODE (x)))
8609 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8611 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8612 GET_MODE (x));
8613 temp = simplify_gen_binary (XOR, GET_MODE (x),
8614 XEXP (XEXP (x, 0), 0), temp);
8615 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8616 temp, XEXP (XEXP (x, 0), 1));
8618 return force_to_mode (x, mode, mask, next_select);
8621 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8622 use the full mask inside the NOT. */
8623 mask = fuller_mask;
8625 unop:
8626 op0 = gen_lowpart_or_truncate (op_mode,
8627 force_to_mode (XEXP (x, 0), mode, mask,
8628 next_select));
8629 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8630 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8631 break;
8633 case NE:
8634 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8635 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8636 which is equal to STORE_FLAG_VALUE. */
8637 if ((mask & ~STORE_FLAG_VALUE) == 0
8638 && XEXP (x, 1) == const0_rtx
8639 && GET_MODE (XEXP (x, 0)) == mode
8640 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8641 && (nonzero_bits (XEXP (x, 0), mode)
8642 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8643 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8645 break;
8647 case IF_THEN_ELSE:
8648 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8649 written in a narrower mode. We play it safe and do not do so. */
8651 SUBST (XEXP (x, 1),
8652 gen_lowpart_or_truncate (GET_MODE (x),
8653 force_to_mode (XEXP (x, 1), mode,
8654 mask, next_select)));
8655 SUBST (XEXP (x, 2),
8656 gen_lowpart_or_truncate (GET_MODE (x),
8657 force_to_mode (XEXP (x, 2), mode,
8658 mask, next_select)));
8659 break;
8661 default:
8662 break;
8665 /* Ensure we return a value of the proper mode. */
8666 return gen_lowpart_or_truncate (mode, x);
8669 /* Return nonzero if X is an expression that has one of two values depending on
8670 whether some other value is zero or nonzero. In that case, we return the
8671 value that is being tested, *PTRUE is set to the value if the rtx being
8672 returned has a nonzero value, and *PFALSE is set to the other alternative.
8674 If we return zero, we set *PTRUE and *PFALSE to X. */
8676 static rtx
8677 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8679 enum machine_mode mode = GET_MODE (x);
8680 enum rtx_code code = GET_CODE (x);
8681 rtx cond0, cond1, true0, true1, false0, false1;
8682 unsigned HOST_WIDE_INT nz;
8684 /* If we are comparing a value against zero, we are done. */
8685 if ((code == NE || code == EQ)
8686 && XEXP (x, 1) == const0_rtx)
8688 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8689 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8690 return XEXP (x, 0);
8693 /* If this is a unary operation whose operand has one of two values, apply
8694 our opcode to compute those values. */
8695 else if (UNARY_P (x)
8696 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8698 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8699 *pfalse = simplify_gen_unary (code, mode, false0,
8700 GET_MODE (XEXP (x, 0)));
8701 return cond0;
8704 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8705 make can't possibly match and would suppress other optimizations. */
8706 else if (code == COMPARE)
8709 /* If this is a binary operation, see if either side has only one of two
8710 values. If either one does or if both do and they are conditional on
8711 the same value, compute the new true and false values. */
8712 else if (BINARY_P (x))
8714 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8715 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8717 if ((cond0 != 0 || cond1 != 0)
8718 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8720 /* If if_then_else_cond returned zero, then true/false are the
8721 same rtl. We must copy one of them to prevent invalid rtl
8722 sharing. */
8723 if (cond0 == 0)
8724 true0 = copy_rtx (true0);
8725 else if (cond1 == 0)
8726 true1 = copy_rtx (true1);
8728 if (COMPARISON_P (x))
8730 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8731 true0, true1);
8732 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8733 false0, false1);
8735 else
8737 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8738 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8741 return cond0 ? cond0 : cond1;
8744 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8745 operands is zero when the other is nonzero, and vice-versa,
8746 and STORE_FLAG_VALUE is 1 or -1. */
8748 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8749 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8750 || code == UMAX)
8751 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8753 rtx op0 = XEXP (XEXP (x, 0), 1);
8754 rtx op1 = XEXP (XEXP (x, 1), 1);
8756 cond0 = XEXP (XEXP (x, 0), 0);
8757 cond1 = XEXP (XEXP (x, 1), 0);
8759 if (COMPARISON_P (cond0)
8760 && COMPARISON_P (cond1)
8761 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8762 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8763 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8764 || ((swap_condition (GET_CODE (cond0))
8765 == reversed_comparison_code (cond1, NULL))
8766 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8767 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8768 && ! side_effects_p (x))
8770 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8771 *pfalse = simplify_gen_binary (MULT, mode,
8772 (code == MINUS
8773 ? simplify_gen_unary (NEG, mode,
8774 op1, mode)
8775 : op1),
8776 const_true_rtx);
8777 return cond0;
8781 /* Similarly for MULT, AND and UMIN, except that for these the result
8782 is always zero. */
8783 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8784 && (code == MULT || code == AND || code == UMIN)
8785 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8787 cond0 = XEXP (XEXP (x, 0), 0);
8788 cond1 = XEXP (XEXP (x, 1), 0);
8790 if (COMPARISON_P (cond0)
8791 && COMPARISON_P (cond1)
8792 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8793 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8794 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8795 || ((swap_condition (GET_CODE (cond0))
8796 == reversed_comparison_code (cond1, NULL))
8797 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8798 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8799 && ! side_effects_p (x))
8801 *ptrue = *pfalse = const0_rtx;
8802 return cond0;
8807 else if (code == IF_THEN_ELSE)
8809 /* If we have IF_THEN_ELSE already, extract the condition and
8810 canonicalize it if it is NE or EQ. */
8811 cond0 = XEXP (x, 0);
8812 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8813 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8814 return XEXP (cond0, 0);
8815 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8817 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8818 return XEXP (cond0, 0);
8820 else
8821 return cond0;
8824 /* If X is a SUBREG, we can narrow both the true and false values
8825 if the inner expression, if there is a condition. */
8826 else if (code == SUBREG
8827 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8828 &true0, &false0)))
8830 true0 = simplify_gen_subreg (mode, true0,
8831 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8832 false0 = simplify_gen_subreg (mode, false0,
8833 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8834 if (true0 && false0)
8836 *ptrue = true0;
8837 *pfalse = false0;
8838 return cond0;
8842 /* If X is a constant, this isn't special and will cause confusions
8843 if we treat it as such. Likewise if it is equivalent to a constant. */
8844 else if (CONSTANT_P (x)
8845 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8848 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8849 will be least confusing to the rest of the compiler. */
8850 else if (mode == BImode)
8852 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8853 return x;
8856 /* If X is known to be either 0 or -1, those are the true and
8857 false values when testing X. */
8858 else if (x == constm1_rtx || x == const0_rtx
8859 || (mode != VOIDmode
8860 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8862 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8863 return x;
8866 /* Likewise for 0 or a single bit. */
8867 else if (HWI_COMPUTABLE_MODE_P (mode)
8868 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8870 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8871 return x;
8874 /* Otherwise fail; show no condition with true and false values the same. */
8875 *ptrue = *pfalse = x;
8876 return 0;
8879 /* Return the value of expression X given the fact that condition COND
8880 is known to be true when applied to REG as its first operand and VAL
8881 as its second. X is known to not be shared and so can be modified in
8882 place.
8884 We only handle the simplest cases, and specifically those cases that
8885 arise with IF_THEN_ELSE expressions. */
8887 static rtx
8888 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8890 enum rtx_code code = GET_CODE (x);
8891 rtx temp;
8892 const char *fmt;
8893 int i, j;
8895 if (side_effects_p (x))
8896 return x;
8898 /* If either operand of the condition is a floating point value,
8899 then we have to avoid collapsing an EQ comparison. */
8900 if (cond == EQ
8901 && rtx_equal_p (x, reg)
8902 && ! FLOAT_MODE_P (GET_MODE (x))
8903 && ! FLOAT_MODE_P (GET_MODE (val)))
8904 return val;
8906 if (cond == UNEQ && rtx_equal_p (x, reg))
8907 return val;
8909 /* If X is (abs REG) and we know something about REG's relationship
8910 with zero, we may be able to simplify this. */
8912 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8913 switch (cond)
8915 case GE: case GT: case EQ:
8916 return XEXP (x, 0);
8917 case LT: case LE:
8918 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8919 XEXP (x, 0),
8920 GET_MODE (XEXP (x, 0)));
8921 default:
8922 break;
8925 /* The only other cases we handle are MIN, MAX, and comparisons if the
8926 operands are the same as REG and VAL. */
8928 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8930 if (rtx_equal_p (XEXP (x, 0), val))
8931 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8933 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8935 if (COMPARISON_P (x))
8937 if (comparison_dominates_p (cond, code))
8938 return const_true_rtx;
8940 code = reversed_comparison_code (x, NULL);
8941 if (code != UNKNOWN
8942 && comparison_dominates_p (cond, code))
8943 return const0_rtx;
8944 else
8945 return x;
8947 else if (code == SMAX || code == SMIN
8948 || code == UMIN || code == UMAX)
8950 int unsignedp = (code == UMIN || code == UMAX);
8952 /* Do not reverse the condition when it is NE or EQ.
8953 This is because we cannot conclude anything about
8954 the value of 'SMAX (x, y)' when x is not equal to y,
8955 but we can when x equals y. */
8956 if ((code == SMAX || code == UMAX)
8957 && ! (cond == EQ || cond == NE))
8958 cond = reverse_condition (cond);
8960 switch (cond)
8962 case GE: case GT:
8963 return unsignedp ? x : XEXP (x, 1);
8964 case LE: case LT:
8965 return unsignedp ? x : XEXP (x, 0);
8966 case GEU: case GTU:
8967 return unsignedp ? XEXP (x, 1) : x;
8968 case LEU: case LTU:
8969 return unsignedp ? XEXP (x, 0) : x;
8970 default:
8971 break;
8976 else if (code == SUBREG)
8978 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8979 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8981 if (SUBREG_REG (x) != r)
8983 /* We must simplify subreg here, before we lose track of the
8984 original inner_mode. */
8985 new_rtx = simplify_subreg (GET_MODE (x), r,
8986 inner_mode, SUBREG_BYTE (x));
8987 if (new_rtx)
8988 return new_rtx;
8989 else
8990 SUBST (SUBREG_REG (x), r);
8993 return x;
8995 /* We don't have to handle SIGN_EXTEND here, because even in the
8996 case of replacing something with a modeless CONST_INT, a
8997 CONST_INT is already (supposed to be) a valid sign extension for
8998 its narrower mode, which implies it's already properly
8999 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9000 story is different. */
9001 else if (code == ZERO_EXTEND)
9003 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9004 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9006 if (XEXP (x, 0) != r)
9008 /* We must simplify the zero_extend here, before we lose
9009 track of the original inner_mode. */
9010 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9011 r, inner_mode);
9012 if (new_rtx)
9013 return new_rtx;
9014 else
9015 SUBST (XEXP (x, 0), r);
9018 return x;
9021 fmt = GET_RTX_FORMAT (code);
9022 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9024 if (fmt[i] == 'e')
9025 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9026 else if (fmt[i] == 'E')
9027 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9028 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9029 cond, reg, val));
9032 return x;
9035 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9036 assignment as a field assignment. */
9038 static int
9039 rtx_equal_for_field_assignment_p (rtx x, rtx y)
9041 if (x == y || rtx_equal_p (x, y))
9042 return 1;
9044 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9045 return 0;
9047 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9048 Note that all SUBREGs of MEM are paradoxical; otherwise they
9049 would have been rewritten. */
9050 if (MEM_P (x) && GET_CODE (y) == SUBREG
9051 && MEM_P (SUBREG_REG (y))
9052 && rtx_equal_p (SUBREG_REG (y),
9053 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9054 return 1;
9056 if (MEM_P (y) && GET_CODE (x) == SUBREG
9057 && MEM_P (SUBREG_REG (x))
9058 && rtx_equal_p (SUBREG_REG (x),
9059 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9060 return 1;
9062 /* We used to see if get_last_value of X and Y were the same but that's
9063 not correct. In one direction, we'll cause the assignment to have
9064 the wrong destination and in the case, we'll import a register into this
9065 insn that might have already have been dead. So fail if none of the
9066 above cases are true. */
9067 return 0;
9070 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9071 Return that assignment if so.
9073 We only handle the most common cases. */
9075 static rtx
9076 make_field_assignment (rtx x)
9078 rtx dest = SET_DEST (x);
9079 rtx src = SET_SRC (x);
9080 rtx assign;
9081 rtx rhs, lhs;
9082 HOST_WIDE_INT c1;
9083 HOST_WIDE_INT pos;
9084 unsigned HOST_WIDE_INT len;
9085 rtx other;
9086 enum machine_mode mode;
9088 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9089 a clear of a one-bit field. We will have changed it to
9090 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9091 for a SUBREG. */
9093 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9094 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9095 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9096 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9098 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9099 1, 1, 1, 0);
9100 if (assign != 0)
9101 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9102 return x;
9105 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9106 && subreg_lowpart_p (XEXP (src, 0))
9107 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9108 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9109 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9110 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9111 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9112 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9114 assign = make_extraction (VOIDmode, dest, 0,
9115 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9116 1, 1, 1, 0);
9117 if (assign != 0)
9118 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9119 return x;
9122 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9123 one-bit field. */
9124 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9125 && XEXP (XEXP (src, 0), 0) == const1_rtx
9126 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9128 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9129 1, 1, 1, 0);
9130 if (assign != 0)
9131 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9132 return x;
9135 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9136 SRC is an AND with all bits of that field set, then we can discard
9137 the AND. */
9138 if (GET_CODE (dest) == ZERO_EXTRACT
9139 && CONST_INT_P (XEXP (dest, 1))
9140 && GET_CODE (src) == AND
9141 && CONST_INT_P (XEXP (src, 1)))
9143 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9144 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9145 unsigned HOST_WIDE_INT ze_mask;
9147 if (width >= HOST_BITS_PER_WIDE_INT)
9148 ze_mask = -1;
9149 else
9150 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9152 /* Complete overlap. We can remove the source AND. */
9153 if ((and_mask & ze_mask) == ze_mask)
9154 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9156 /* Partial overlap. We can reduce the source AND. */
9157 if ((and_mask & ze_mask) != and_mask)
9159 mode = GET_MODE (src);
9160 src = gen_rtx_AND (mode, XEXP (src, 0),
9161 gen_int_mode (and_mask & ze_mask, mode));
9162 return gen_rtx_SET (VOIDmode, dest, src);
9166 /* The other case we handle is assignments into a constant-position
9167 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9168 a mask that has all one bits except for a group of zero bits and
9169 OTHER is known to have zeros where C1 has ones, this is such an
9170 assignment. Compute the position and length from C1. Shift OTHER
9171 to the appropriate position, force it to the required mode, and
9172 make the extraction. Check for the AND in both operands. */
9174 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9175 return x;
9177 rhs = expand_compound_operation (XEXP (src, 0));
9178 lhs = expand_compound_operation (XEXP (src, 1));
9180 if (GET_CODE (rhs) == AND
9181 && CONST_INT_P (XEXP (rhs, 1))
9182 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9183 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9184 else if (GET_CODE (lhs) == AND
9185 && CONST_INT_P (XEXP (lhs, 1))
9186 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9187 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9188 else
9189 return x;
9191 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9192 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9193 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9194 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9195 return x;
9197 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9198 if (assign == 0)
9199 return x;
9201 /* The mode to use for the source is the mode of the assignment, or of
9202 what is inside a possible STRICT_LOW_PART. */
9203 mode = (GET_CODE (assign) == STRICT_LOW_PART
9204 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9206 /* Shift OTHER right POS places and make it the source, restricting it
9207 to the proper length and mode. */
9209 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9210 GET_MODE (src),
9211 other, pos),
9212 dest);
9213 src = force_to_mode (src, mode,
9214 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9215 ? ~(unsigned HOST_WIDE_INT) 0
9216 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9219 /* If SRC is masked by an AND that does not make a difference in
9220 the value being stored, strip it. */
9221 if (GET_CODE (assign) == ZERO_EXTRACT
9222 && CONST_INT_P (XEXP (assign, 1))
9223 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9224 && GET_CODE (src) == AND
9225 && CONST_INT_P (XEXP (src, 1))
9226 && UINTVAL (XEXP (src, 1))
9227 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9228 src = XEXP (src, 0);
9230 return gen_rtx_SET (VOIDmode, assign, src);
9233 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9234 if so. */
9236 static rtx
9237 apply_distributive_law (rtx x)
9239 enum rtx_code code = GET_CODE (x);
9240 enum rtx_code inner_code;
9241 rtx lhs, rhs, other;
9242 rtx tem;
9244 /* Distributivity is not true for floating point as it can change the
9245 value. So we don't do it unless -funsafe-math-optimizations. */
9246 if (FLOAT_MODE_P (GET_MODE (x))
9247 && ! flag_unsafe_math_optimizations)
9248 return x;
9250 /* The outer operation can only be one of the following: */
9251 if (code != IOR && code != AND && code != XOR
9252 && code != PLUS && code != MINUS)
9253 return x;
9255 lhs = XEXP (x, 0);
9256 rhs = XEXP (x, 1);
9258 /* If either operand is a primitive we can't do anything, so get out
9259 fast. */
9260 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9261 return x;
9263 lhs = expand_compound_operation (lhs);
9264 rhs = expand_compound_operation (rhs);
9265 inner_code = GET_CODE (lhs);
9266 if (inner_code != GET_CODE (rhs))
9267 return x;
9269 /* See if the inner and outer operations distribute. */
9270 switch (inner_code)
9272 case LSHIFTRT:
9273 case ASHIFTRT:
9274 case AND:
9275 case IOR:
9276 /* These all distribute except over PLUS. */
9277 if (code == PLUS || code == MINUS)
9278 return x;
9279 break;
9281 case MULT:
9282 if (code != PLUS && code != MINUS)
9283 return x;
9284 break;
9286 case ASHIFT:
9287 /* This is also a multiply, so it distributes over everything. */
9288 break;
9290 /* This used to handle SUBREG, but this turned out to be counter-
9291 productive, since (subreg (op ...)) usually is not handled by
9292 insn patterns, and this "optimization" therefore transformed
9293 recognizable patterns into unrecognizable ones. Therefore the
9294 SUBREG case was removed from here.
9296 It is possible that distributing SUBREG over arithmetic operations
9297 leads to an intermediate result than can then be optimized further,
9298 e.g. by moving the outer SUBREG to the other side of a SET as done
9299 in simplify_set. This seems to have been the original intent of
9300 handling SUBREGs here.
9302 However, with current GCC this does not appear to actually happen,
9303 at least on major platforms. If some case is found where removing
9304 the SUBREG case here prevents follow-on optimizations, distributing
9305 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9307 default:
9308 return x;
9311 /* Set LHS and RHS to the inner operands (A and B in the example
9312 above) and set OTHER to the common operand (C in the example).
9313 There is only one way to do this unless the inner operation is
9314 commutative. */
9315 if (COMMUTATIVE_ARITH_P (lhs)
9316 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9317 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9318 else if (COMMUTATIVE_ARITH_P (lhs)
9319 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9320 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9321 else if (COMMUTATIVE_ARITH_P (lhs)
9322 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9323 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9324 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9325 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9326 else
9327 return x;
9329 /* Form the new inner operation, seeing if it simplifies first. */
9330 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9332 /* There is one exception to the general way of distributing:
9333 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9334 if (code == XOR && inner_code == IOR)
9336 inner_code = AND;
9337 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9340 /* We may be able to continuing distributing the result, so call
9341 ourselves recursively on the inner operation before forming the
9342 outer operation, which we return. */
9343 return simplify_gen_binary (inner_code, GET_MODE (x),
9344 apply_distributive_law (tem), other);
9347 /* See if X is of the form (* (+ A B) C), and if so convert to
9348 (+ (* A C) (* B C)) and try to simplify.
9350 Most of the time, this results in no change. However, if some of
9351 the operands are the same or inverses of each other, simplifications
9352 will result.
9354 For example, (and (ior A B) (not B)) can occur as the result of
9355 expanding a bit field assignment. When we apply the distributive
9356 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9357 which then simplifies to (and (A (not B))).
9359 Note that no checks happen on the validity of applying the inverse
9360 distributive law. This is pointless since we can do it in the
9361 few places where this routine is called.
9363 N is the index of the term that is decomposed (the arithmetic operation,
9364 i.e. (+ A B) in the first example above). !N is the index of the term that
9365 is distributed, i.e. of C in the first example above. */
9366 static rtx
9367 distribute_and_simplify_rtx (rtx x, int n)
9369 enum machine_mode mode;
9370 enum rtx_code outer_code, inner_code;
9371 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9373 /* Distributivity is not true for floating point as it can change the
9374 value. So we don't do it unless -funsafe-math-optimizations. */
9375 if (FLOAT_MODE_P (GET_MODE (x))
9376 && ! flag_unsafe_math_optimizations)
9377 return NULL_RTX;
9379 decomposed = XEXP (x, n);
9380 if (!ARITHMETIC_P (decomposed))
9381 return NULL_RTX;
9383 mode = GET_MODE (x);
9384 outer_code = GET_CODE (x);
9385 distributed = XEXP (x, !n);
9387 inner_code = GET_CODE (decomposed);
9388 inner_op0 = XEXP (decomposed, 0);
9389 inner_op1 = XEXP (decomposed, 1);
9391 /* Special case (and (xor B C) (not A)), which is equivalent to
9392 (xor (ior A B) (ior A C)) */
9393 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9395 distributed = XEXP (distributed, 0);
9396 outer_code = IOR;
9399 if (n == 0)
9401 /* Distribute the second term. */
9402 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9403 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9405 else
9407 /* Distribute the first term. */
9408 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9409 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9412 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9413 new_op0, new_op1));
9414 if (GET_CODE (tmp) != outer_code
9415 && (set_src_cost (tmp, optimize_this_for_speed_p)
9416 < set_src_cost (x, optimize_this_for_speed_p)))
9417 return tmp;
9419 return NULL_RTX;
9422 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9423 in MODE. Return an equivalent form, if different from (and VAROP
9424 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9426 static rtx
9427 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9428 unsigned HOST_WIDE_INT constop)
9430 unsigned HOST_WIDE_INT nonzero;
9431 unsigned HOST_WIDE_INT orig_constop;
9432 rtx orig_varop;
9433 int i;
9435 orig_varop = varop;
9436 orig_constop = constop;
9437 if (GET_CODE (varop) == CLOBBER)
9438 return NULL_RTX;
9440 /* Simplify VAROP knowing that we will be only looking at some of the
9441 bits in it.
9443 Note by passing in CONSTOP, we guarantee that the bits not set in
9444 CONSTOP are not significant and will never be examined. We must
9445 ensure that is the case by explicitly masking out those bits
9446 before returning. */
9447 varop = force_to_mode (varop, mode, constop, 0);
9449 /* If VAROP is a CLOBBER, we will fail so return it. */
9450 if (GET_CODE (varop) == CLOBBER)
9451 return varop;
9453 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9454 to VAROP and return the new constant. */
9455 if (CONST_INT_P (varop))
9456 return gen_int_mode (INTVAL (varop) & constop, mode);
9458 /* See what bits may be nonzero in VAROP. Unlike the general case of
9459 a call to nonzero_bits, here we don't care about bits outside
9460 MODE. */
9462 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9464 /* Turn off all bits in the constant that are known to already be zero.
9465 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9466 which is tested below. */
9468 constop &= nonzero;
9470 /* If we don't have any bits left, return zero. */
9471 if (constop == 0)
9472 return const0_rtx;
9474 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9475 a power of two, we can replace this with an ASHIFT. */
9476 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9477 && (i = exact_log2 (constop)) >= 0)
9478 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9480 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9481 or XOR, then try to apply the distributive law. This may eliminate
9482 operations if either branch can be simplified because of the AND.
9483 It may also make some cases more complex, but those cases probably
9484 won't match a pattern either with or without this. */
9486 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9487 return
9488 gen_lowpart
9489 (mode,
9490 apply_distributive_law
9491 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9492 simplify_and_const_int (NULL_RTX,
9493 GET_MODE (varop),
9494 XEXP (varop, 0),
9495 constop),
9496 simplify_and_const_int (NULL_RTX,
9497 GET_MODE (varop),
9498 XEXP (varop, 1),
9499 constop))));
9501 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9502 the AND and see if one of the operands simplifies to zero. If so, we
9503 may eliminate it. */
9505 if (GET_CODE (varop) == PLUS
9506 && exact_log2 (constop + 1) >= 0)
9508 rtx o0, o1;
9510 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9511 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9512 if (o0 == const0_rtx)
9513 return o1;
9514 if (o1 == const0_rtx)
9515 return o0;
9518 /* Make a SUBREG if necessary. If we can't make it, fail. */
9519 varop = gen_lowpart (mode, varop);
9520 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9521 return NULL_RTX;
9523 /* If we are only masking insignificant bits, return VAROP. */
9524 if (constop == nonzero)
9525 return varop;
9527 if (varop == orig_varop && constop == orig_constop)
9528 return NULL_RTX;
9530 /* Otherwise, return an AND. */
9531 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9535 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9536 in MODE.
9538 Return an equivalent form, if different from X. Otherwise, return X. If
9539 X is zero, we are to always construct the equivalent form. */
9541 static rtx
9542 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9543 unsigned HOST_WIDE_INT constop)
9545 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9546 if (tem)
9547 return tem;
9549 if (!x)
9550 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9551 gen_int_mode (constop, mode));
9552 if (GET_MODE (x) != mode)
9553 x = gen_lowpart (mode, x);
9554 return x;
9557 /* Given a REG, X, compute which bits in X can be nonzero.
9558 We don't care about bits outside of those defined in MODE.
9560 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9561 a shift, AND, or zero_extract, we can do better. */
9563 static rtx
9564 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9565 const_rtx known_x ATTRIBUTE_UNUSED,
9566 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9567 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9568 unsigned HOST_WIDE_INT *nonzero)
9570 rtx tem;
9571 reg_stat_type *rsp;
9573 /* If X is a register whose nonzero bits value is current, use it.
9574 Otherwise, if X is a register whose value we can find, use that
9575 value. Otherwise, use the previously-computed global nonzero bits
9576 for this register. */
9578 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9579 if (rsp->last_set_value != 0
9580 && (rsp->last_set_mode == mode
9581 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9582 && GET_MODE_CLASS (mode) == MODE_INT))
9583 && ((rsp->last_set_label >= label_tick_ebb_start
9584 && rsp->last_set_label < label_tick)
9585 || (rsp->last_set_label == label_tick
9586 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9587 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9588 && REG_N_SETS (REGNO (x)) == 1
9589 && !REGNO_REG_SET_P
9590 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9592 *nonzero &= rsp->last_set_nonzero_bits;
9593 return NULL;
9596 tem = get_last_value (x);
9598 if (tem)
9600 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9601 /* If X is narrower than MODE and TEM is a non-negative
9602 constant that would appear negative in the mode of X,
9603 sign-extend it for use in reg_nonzero_bits because some
9604 machines (maybe most) will actually do the sign-extension
9605 and this is the conservative approach.
9607 ??? For 2.5, try to tighten up the MD files in this regard
9608 instead of this kludge. */
9610 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9611 && CONST_INT_P (tem)
9612 && INTVAL (tem) > 0
9613 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9614 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9615 #endif
9616 return tem;
9618 else if (nonzero_sign_valid && rsp->nonzero_bits)
9620 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9622 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9623 /* We don't know anything about the upper bits. */
9624 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9625 *nonzero &= mask;
9628 return NULL;
9631 /* Return the number of bits at the high-order end of X that are known to
9632 be equal to the sign bit. X will be used in mode MODE; if MODE is
9633 VOIDmode, X will be used in its own mode. The returned value will always
9634 be between 1 and the number of bits in MODE. */
9636 static rtx
9637 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9638 const_rtx known_x ATTRIBUTE_UNUSED,
9639 enum machine_mode known_mode
9640 ATTRIBUTE_UNUSED,
9641 unsigned int known_ret ATTRIBUTE_UNUSED,
9642 unsigned int *result)
9644 rtx tem;
9645 reg_stat_type *rsp;
9647 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9648 if (rsp->last_set_value != 0
9649 && rsp->last_set_mode == mode
9650 && ((rsp->last_set_label >= label_tick_ebb_start
9651 && rsp->last_set_label < label_tick)
9652 || (rsp->last_set_label == label_tick
9653 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9654 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9655 && REG_N_SETS (REGNO (x)) == 1
9656 && !REGNO_REG_SET_P
9657 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9659 *result = rsp->last_set_sign_bit_copies;
9660 return NULL;
9663 tem = get_last_value (x);
9664 if (tem != 0)
9665 return tem;
9667 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9668 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9669 *result = rsp->sign_bit_copies;
9671 return NULL;
9674 /* Return the number of "extended" bits there are in X, when interpreted
9675 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9676 unsigned quantities, this is the number of high-order zero bits.
9677 For signed quantities, this is the number of copies of the sign bit
9678 minus 1. In both case, this function returns the number of "spare"
9679 bits. For example, if two quantities for which this function returns
9680 at least 1 are added, the addition is known not to overflow.
9682 This function will always return 0 unless called during combine, which
9683 implies that it must be called from a define_split. */
9685 unsigned int
9686 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9688 if (nonzero_sign_valid == 0)
9689 return 0;
9691 return (unsignedp
9692 ? (HWI_COMPUTABLE_MODE_P (mode)
9693 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9694 - floor_log2 (nonzero_bits (x, mode)))
9695 : 0)
9696 : num_sign_bit_copies (x, mode) - 1);
9699 /* This function is called from `simplify_shift_const' to merge two
9700 outer operations. Specifically, we have already found that we need
9701 to perform operation *POP0 with constant *PCONST0 at the outermost
9702 position. We would now like to also perform OP1 with constant CONST1
9703 (with *POP0 being done last).
9705 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9706 the resulting operation. *PCOMP_P is set to 1 if we would need to
9707 complement the innermost operand, otherwise it is unchanged.
9709 MODE is the mode in which the operation will be done. No bits outside
9710 the width of this mode matter. It is assumed that the width of this mode
9711 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9713 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9714 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9715 result is simply *PCONST0.
9717 If the resulting operation cannot be expressed as one operation, we
9718 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9720 static int
9721 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9723 enum rtx_code op0 = *pop0;
9724 HOST_WIDE_INT const0 = *pconst0;
9726 const0 &= GET_MODE_MASK (mode);
9727 const1 &= GET_MODE_MASK (mode);
9729 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9730 if (op0 == AND)
9731 const1 &= const0;
9733 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9734 if OP0 is SET. */
9736 if (op1 == UNKNOWN || op0 == SET)
9737 return 1;
9739 else if (op0 == UNKNOWN)
9740 op0 = op1, const0 = const1;
9742 else if (op0 == op1)
9744 switch (op0)
9746 case AND:
9747 const0 &= const1;
9748 break;
9749 case IOR:
9750 const0 |= const1;
9751 break;
9752 case XOR:
9753 const0 ^= const1;
9754 break;
9755 case PLUS:
9756 const0 += const1;
9757 break;
9758 case NEG:
9759 op0 = UNKNOWN;
9760 break;
9761 default:
9762 break;
9766 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9767 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9768 return 0;
9770 /* If the two constants aren't the same, we can't do anything. The
9771 remaining six cases can all be done. */
9772 else if (const0 != const1)
9773 return 0;
9775 else
9776 switch (op0)
9778 case IOR:
9779 if (op1 == AND)
9780 /* (a & b) | b == b */
9781 op0 = SET;
9782 else /* op1 == XOR */
9783 /* (a ^ b) | b == a | b */
9785 break;
9787 case XOR:
9788 if (op1 == AND)
9789 /* (a & b) ^ b == (~a) & b */
9790 op0 = AND, *pcomp_p = 1;
9791 else /* op1 == IOR */
9792 /* (a | b) ^ b == a & ~b */
9793 op0 = AND, const0 = ~const0;
9794 break;
9796 case AND:
9797 if (op1 == IOR)
9798 /* (a | b) & b == b */
9799 op0 = SET;
9800 else /* op1 == XOR */
9801 /* (a ^ b) & b) == (~a) & b */
9802 *pcomp_p = 1;
9803 break;
9804 default:
9805 break;
9808 /* Check for NO-OP cases. */
9809 const0 &= GET_MODE_MASK (mode);
9810 if (const0 == 0
9811 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9812 op0 = UNKNOWN;
9813 else if (const0 == 0 && op0 == AND)
9814 op0 = SET;
9815 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9816 && op0 == AND)
9817 op0 = UNKNOWN;
9819 *pop0 = op0;
9821 /* ??? Slightly redundant with the above mask, but not entirely.
9822 Moving this above means we'd have to sign-extend the mode mask
9823 for the final test. */
9824 if (op0 != UNKNOWN && op0 != NEG)
9825 *pconst0 = trunc_int_for_mode (const0, mode);
9827 return 1;
9830 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9831 the shift in. The original shift operation CODE is performed on OP in
9832 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9833 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9834 result of the shift is subject to operation OUTER_CODE with operand
9835 OUTER_CONST. */
9837 static enum machine_mode
9838 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9839 enum machine_mode orig_mode, enum machine_mode mode,
9840 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9842 if (orig_mode == mode)
9843 return mode;
9844 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9846 /* In general we can't perform in wider mode for right shift and rotate. */
9847 switch (code)
9849 case ASHIFTRT:
9850 /* We can still widen if the bits brought in from the left are identical
9851 to the sign bit of ORIG_MODE. */
9852 if (num_sign_bit_copies (op, mode)
9853 > (unsigned) (GET_MODE_PRECISION (mode)
9854 - GET_MODE_PRECISION (orig_mode)))
9855 return mode;
9856 return orig_mode;
9858 case LSHIFTRT:
9859 /* Similarly here but with zero bits. */
9860 if (HWI_COMPUTABLE_MODE_P (mode)
9861 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9862 return mode;
9864 /* We can also widen if the bits brought in will be masked off. This
9865 operation is performed in ORIG_MODE. */
9866 if (outer_code == AND)
9868 int care_bits = low_bitmask_len (orig_mode, outer_const);
9870 if (care_bits >= 0
9871 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9872 return mode;
9874 /* fall through */
9876 case ROTATE:
9877 return orig_mode;
9879 case ROTATERT:
9880 gcc_unreachable ();
9882 default:
9883 return mode;
9887 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9888 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9889 if we cannot simplify it. Otherwise, return a simplified value.
9891 The shift is normally computed in the widest mode we find in VAROP, as
9892 long as it isn't a different number of words than RESULT_MODE. Exceptions
9893 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9895 static rtx
9896 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9897 rtx varop, int orig_count)
9899 enum rtx_code orig_code = code;
9900 rtx orig_varop = varop;
9901 int count;
9902 enum machine_mode mode = result_mode;
9903 enum machine_mode shift_mode, tmode;
9904 unsigned int mode_words
9905 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9906 /* We form (outer_op (code varop count) (outer_const)). */
9907 enum rtx_code outer_op = UNKNOWN;
9908 HOST_WIDE_INT outer_const = 0;
9909 int complement_p = 0;
9910 rtx new_rtx, x;
9912 /* Make sure and truncate the "natural" shift on the way in. We don't
9913 want to do this inside the loop as it makes it more difficult to
9914 combine shifts. */
9915 if (SHIFT_COUNT_TRUNCATED)
9916 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9918 /* If we were given an invalid count, don't do anything except exactly
9919 what was requested. */
9921 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9922 return NULL_RTX;
9924 count = orig_count;
9926 /* Unless one of the branches of the `if' in this loop does a `continue',
9927 we will `break' the loop after the `if'. */
9929 while (count != 0)
9931 /* If we have an operand of (clobber (const_int 0)), fail. */
9932 if (GET_CODE (varop) == CLOBBER)
9933 return NULL_RTX;
9935 /* Convert ROTATERT to ROTATE. */
9936 if (code == ROTATERT)
9938 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9939 code = ROTATE;
9940 if (VECTOR_MODE_P (result_mode))
9941 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9942 else
9943 count = bitsize - count;
9946 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9947 mode, outer_op, outer_const);
9949 /* Handle cases where the count is greater than the size of the mode
9950 minus 1. For ASHIFT, use the size minus one as the count (this can
9951 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9952 take the count modulo the size. For other shifts, the result is
9953 zero.
9955 Since these shifts are being produced by the compiler by combining
9956 multiple operations, each of which are defined, we know what the
9957 result is supposed to be. */
9959 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9961 if (code == ASHIFTRT)
9962 count = GET_MODE_PRECISION (shift_mode) - 1;
9963 else if (code == ROTATE || code == ROTATERT)
9964 count %= GET_MODE_PRECISION (shift_mode);
9965 else
9967 /* We can't simply return zero because there may be an
9968 outer op. */
9969 varop = const0_rtx;
9970 count = 0;
9971 break;
9975 /* If we discovered we had to complement VAROP, leave. Making a NOT
9976 here would cause an infinite loop. */
9977 if (complement_p)
9978 break;
9980 /* An arithmetic right shift of a quantity known to be -1 or 0
9981 is a no-op. */
9982 if (code == ASHIFTRT
9983 && (num_sign_bit_copies (varop, shift_mode)
9984 == GET_MODE_PRECISION (shift_mode)))
9986 count = 0;
9987 break;
9990 /* If we are doing an arithmetic right shift and discarding all but
9991 the sign bit copies, this is equivalent to doing a shift by the
9992 bitsize minus one. Convert it into that shift because it will often
9993 allow other simplifications. */
9995 if (code == ASHIFTRT
9996 && (count + num_sign_bit_copies (varop, shift_mode)
9997 >= GET_MODE_PRECISION (shift_mode)))
9998 count = GET_MODE_PRECISION (shift_mode) - 1;
10000 /* We simplify the tests below and elsewhere by converting
10001 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10002 `make_compound_operation' will convert it to an ASHIFTRT for
10003 those machines (such as VAX) that don't have an LSHIFTRT. */
10004 if (code == ASHIFTRT
10005 && val_signbit_known_clear_p (shift_mode,
10006 nonzero_bits (varop, shift_mode)))
10007 code = LSHIFTRT;
10009 if (((code == LSHIFTRT
10010 && HWI_COMPUTABLE_MODE_P (shift_mode)
10011 && !(nonzero_bits (varop, shift_mode) >> count))
10012 || (code == ASHIFT
10013 && HWI_COMPUTABLE_MODE_P (shift_mode)
10014 && !((nonzero_bits (varop, shift_mode) << count)
10015 & GET_MODE_MASK (shift_mode))))
10016 && !side_effects_p (varop))
10017 varop = const0_rtx;
10019 switch (GET_CODE (varop))
10021 case SIGN_EXTEND:
10022 case ZERO_EXTEND:
10023 case SIGN_EXTRACT:
10024 case ZERO_EXTRACT:
10025 new_rtx = expand_compound_operation (varop);
10026 if (new_rtx != varop)
10028 varop = new_rtx;
10029 continue;
10031 break;
10033 case MEM:
10034 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10035 minus the width of a smaller mode, we can do this with a
10036 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10037 if ((code == ASHIFTRT || code == LSHIFTRT)
10038 && ! mode_dependent_address_p (XEXP (varop, 0))
10039 && ! MEM_VOLATILE_P (varop)
10040 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10041 MODE_INT, 1)) != BLKmode)
10043 new_rtx = adjust_address_nv (varop, tmode,
10044 BYTES_BIG_ENDIAN ? 0
10045 : count / BITS_PER_UNIT);
10047 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10048 : ZERO_EXTEND, mode, new_rtx);
10049 count = 0;
10050 continue;
10052 break;
10054 case SUBREG:
10055 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10056 the same number of words as what we've seen so far. Then store
10057 the widest mode in MODE. */
10058 if (subreg_lowpart_p (varop)
10059 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10060 > GET_MODE_SIZE (GET_MODE (varop)))
10061 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10062 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10063 == mode_words
10064 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10065 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10067 varop = SUBREG_REG (varop);
10068 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10069 mode = GET_MODE (varop);
10070 continue;
10072 break;
10074 case MULT:
10075 /* Some machines use MULT instead of ASHIFT because MULT
10076 is cheaper. But it is still better on those machines to
10077 merge two shifts into one. */
10078 if (CONST_INT_P (XEXP (varop, 1))
10079 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10081 varop
10082 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10083 XEXP (varop, 0),
10084 GEN_INT (exact_log2 (
10085 UINTVAL (XEXP (varop, 1)))));
10086 continue;
10088 break;
10090 case UDIV:
10091 /* Similar, for when divides are cheaper. */
10092 if (CONST_INT_P (XEXP (varop, 1))
10093 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10095 varop
10096 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10097 XEXP (varop, 0),
10098 GEN_INT (exact_log2 (
10099 UINTVAL (XEXP (varop, 1)))));
10100 continue;
10102 break;
10104 case ASHIFTRT:
10105 /* If we are extracting just the sign bit of an arithmetic
10106 right shift, that shift is not needed. However, the sign
10107 bit of a wider mode may be different from what would be
10108 interpreted as the sign bit in a narrower mode, so, if
10109 the result is narrower, don't discard the shift. */
10110 if (code == LSHIFTRT
10111 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10112 && (GET_MODE_BITSIZE (result_mode)
10113 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10115 varop = XEXP (varop, 0);
10116 continue;
10119 /* ... fall through ... */
10121 case LSHIFTRT:
10122 case ASHIFT:
10123 case ROTATE:
10124 /* Here we have two nested shifts. The result is usually the
10125 AND of a new shift with a mask. We compute the result below. */
10126 if (CONST_INT_P (XEXP (varop, 1))
10127 && INTVAL (XEXP (varop, 1)) >= 0
10128 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10129 && HWI_COMPUTABLE_MODE_P (result_mode)
10130 && HWI_COMPUTABLE_MODE_P (mode)
10131 && !VECTOR_MODE_P (result_mode))
10133 enum rtx_code first_code = GET_CODE (varop);
10134 unsigned int first_count = INTVAL (XEXP (varop, 1));
10135 unsigned HOST_WIDE_INT mask;
10136 rtx mask_rtx;
10138 /* We have one common special case. We can't do any merging if
10139 the inner code is an ASHIFTRT of a smaller mode. However, if
10140 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10141 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10142 we can convert it to
10143 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10144 This simplifies certain SIGN_EXTEND operations. */
10145 if (code == ASHIFT && first_code == ASHIFTRT
10146 && count == (GET_MODE_PRECISION (result_mode)
10147 - GET_MODE_PRECISION (GET_MODE (varop))))
10149 /* C3 has the low-order C1 bits zero. */
10151 mask = GET_MODE_MASK (mode)
10152 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10154 varop = simplify_and_const_int (NULL_RTX, result_mode,
10155 XEXP (varop, 0), mask);
10156 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10157 varop, count);
10158 count = first_count;
10159 code = ASHIFTRT;
10160 continue;
10163 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10164 than C1 high-order bits equal to the sign bit, we can convert
10165 this to either an ASHIFT or an ASHIFTRT depending on the
10166 two counts.
10168 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10170 if (code == ASHIFTRT && first_code == ASHIFT
10171 && GET_MODE (varop) == shift_mode
10172 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10173 > first_count))
10175 varop = XEXP (varop, 0);
10176 count -= first_count;
10177 if (count < 0)
10179 count = -count;
10180 code = ASHIFT;
10183 continue;
10186 /* There are some cases we can't do. If CODE is ASHIFTRT,
10187 we can only do this if FIRST_CODE is also ASHIFTRT.
10189 We can't do the case when CODE is ROTATE and FIRST_CODE is
10190 ASHIFTRT.
10192 If the mode of this shift is not the mode of the outer shift,
10193 we can't do this if either shift is a right shift or ROTATE.
10195 Finally, we can't do any of these if the mode is too wide
10196 unless the codes are the same.
10198 Handle the case where the shift codes are the same
10199 first. */
10201 if (code == first_code)
10203 if (GET_MODE (varop) != result_mode
10204 && (code == ASHIFTRT || code == LSHIFTRT
10205 || code == ROTATE))
10206 break;
10208 count += first_count;
10209 varop = XEXP (varop, 0);
10210 continue;
10213 if (code == ASHIFTRT
10214 || (code == ROTATE && first_code == ASHIFTRT)
10215 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10216 || (GET_MODE (varop) != result_mode
10217 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10218 || first_code == ROTATE
10219 || code == ROTATE)))
10220 break;
10222 /* To compute the mask to apply after the shift, shift the
10223 nonzero bits of the inner shift the same way the
10224 outer shift will. */
10226 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10228 mask_rtx
10229 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10230 GEN_INT (count));
10232 /* Give up if we can't compute an outer operation to use. */
10233 if (mask_rtx == 0
10234 || !CONST_INT_P (mask_rtx)
10235 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10236 INTVAL (mask_rtx),
10237 result_mode, &complement_p))
10238 break;
10240 /* If the shifts are in the same direction, we add the
10241 counts. Otherwise, we subtract them. */
10242 if ((code == ASHIFTRT || code == LSHIFTRT)
10243 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10244 count += first_count;
10245 else
10246 count -= first_count;
10248 /* If COUNT is positive, the new shift is usually CODE,
10249 except for the two exceptions below, in which case it is
10250 FIRST_CODE. If the count is negative, FIRST_CODE should
10251 always be used */
10252 if (count > 0
10253 && ((first_code == ROTATE && code == ASHIFT)
10254 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10255 code = first_code;
10256 else if (count < 0)
10257 code = first_code, count = -count;
10259 varop = XEXP (varop, 0);
10260 continue;
10263 /* If we have (A << B << C) for any shift, we can convert this to
10264 (A << C << B). This wins if A is a constant. Only try this if
10265 B is not a constant. */
10267 else if (GET_CODE (varop) == code
10268 && CONST_INT_P (XEXP (varop, 0))
10269 && !CONST_INT_P (XEXP (varop, 1)))
10271 rtx new_rtx = simplify_const_binary_operation (code, mode,
10272 XEXP (varop, 0),
10273 GEN_INT (count));
10274 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10275 count = 0;
10276 continue;
10278 break;
10280 case NOT:
10281 if (VECTOR_MODE_P (mode))
10282 break;
10284 /* Make this fit the case below. */
10285 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10286 continue;
10288 case IOR:
10289 case AND:
10290 case XOR:
10291 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10292 with C the size of VAROP - 1 and the shift is logical if
10293 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10294 we have an (le X 0) operation. If we have an arithmetic shift
10295 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10296 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10298 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10299 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10300 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10301 && (code == LSHIFTRT || code == ASHIFTRT)
10302 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10303 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10305 count = 0;
10306 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10307 const0_rtx);
10309 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10310 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10312 continue;
10315 /* If we have (shift (logical)), move the logical to the outside
10316 to allow it to possibly combine with another logical and the
10317 shift to combine with another shift. This also canonicalizes to
10318 what a ZERO_EXTRACT looks like. Also, some machines have
10319 (and (shift)) insns. */
10321 if (CONST_INT_P (XEXP (varop, 1))
10322 /* We can't do this if we have (ashiftrt (xor)) and the
10323 constant has its sign bit set in shift_mode. */
10324 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10325 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10326 shift_mode))
10327 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10328 XEXP (varop, 1),
10329 GEN_INT (count))) != 0
10330 && CONST_INT_P (new_rtx)
10331 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10332 INTVAL (new_rtx), result_mode, &complement_p))
10334 varop = XEXP (varop, 0);
10335 continue;
10338 /* If we can't do that, try to simplify the shift in each arm of the
10339 logical expression, make a new logical expression, and apply
10340 the inverse distributive law. This also can't be done
10341 for some (ashiftrt (xor)). */
10342 if (CONST_INT_P (XEXP (varop, 1))
10343 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10344 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10345 shift_mode)))
10347 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10348 XEXP (varop, 0), count);
10349 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10350 XEXP (varop, 1), count);
10352 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10353 lhs, rhs);
10354 varop = apply_distributive_law (varop);
10356 count = 0;
10357 continue;
10359 break;
10361 case EQ:
10362 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10363 says that the sign bit can be tested, FOO has mode MODE, C is
10364 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10365 that may be nonzero. */
10366 if (code == LSHIFTRT
10367 && XEXP (varop, 1) == const0_rtx
10368 && GET_MODE (XEXP (varop, 0)) == result_mode
10369 && count == (GET_MODE_PRECISION (result_mode) - 1)
10370 && HWI_COMPUTABLE_MODE_P (result_mode)
10371 && STORE_FLAG_VALUE == -1
10372 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10373 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10374 &complement_p))
10376 varop = XEXP (varop, 0);
10377 count = 0;
10378 continue;
10380 break;
10382 case NEG:
10383 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10384 than the number of bits in the mode is equivalent to A. */
10385 if (code == LSHIFTRT
10386 && count == (GET_MODE_PRECISION (result_mode) - 1)
10387 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10389 varop = XEXP (varop, 0);
10390 count = 0;
10391 continue;
10394 /* NEG commutes with ASHIFT since it is multiplication. Move the
10395 NEG outside to allow shifts to combine. */
10396 if (code == ASHIFT
10397 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10398 &complement_p))
10400 varop = XEXP (varop, 0);
10401 continue;
10403 break;
10405 case PLUS:
10406 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10407 is one less than the number of bits in the mode is
10408 equivalent to (xor A 1). */
10409 if (code == LSHIFTRT
10410 && count == (GET_MODE_PRECISION (result_mode) - 1)
10411 && XEXP (varop, 1) == constm1_rtx
10412 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10413 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10414 &complement_p))
10416 count = 0;
10417 varop = XEXP (varop, 0);
10418 continue;
10421 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10422 that might be nonzero in BAR are those being shifted out and those
10423 bits are known zero in FOO, we can replace the PLUS with FOO.
10424 Similarly in the other operand order. This code occurs when
10425 we are computing the size of a variable-size array. */
10427 if ((code == ASHIFTRT || code == LSHIFTRT)
10428 && count < HOST_BITS_PER_WIDE_INT
10429 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10430 && (nonzero_bits (XEXP (varop, 1), result_mode)
10431 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10433 varop = XEXP (varop, 0);
10434 continue;
10436 else if ((code == ASHIFTRT || code == LSHIFTRT)
10437 && count < HOST_BITS_PER_WIDE_INT
10438 && HWI_COMPUTABLE_MODE_P (result_mode)
10439 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10440 >> count)
10441 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10442 & nonzero_bits (XEXP (varop, 1),
10443 result_mode)))
10445 varop = XEXP (varop, 1);
10446 continue;
10449 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10450 if (code == ASHIFT
10451 && CONST_INT_P (XEXP (varop, 1))
10452 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10453 XEXP (varop, 1),
10454 GEN_INT (count))) != 0
10455 && CONST_INT_P (new_rtx)
10456 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10457 INTVAL (new_rtx), result_mode, &complement_p))
10459 varop = XEXP (varop, 0);
10460 continue;
10463 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10464 signbit', and attempt to change the PLUS to an XOR and move it to
10465 the outer operation as is done above in the AND/IOR/XOR case
10466 leg for shift(logical). See details in logical handling above
10467 for reasoning in doing so. */
10468 if (code == LSHIFTRT
10469 && CONST_INT_P (XEXP (varop, 1))
10470 && mode_signbit_p (result_mode, XEXP (varop, 1))
10471 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10472 XEXP (varop, 1),
10473 GEN_INT (count))) != 0
10474 && CONST_INT_P (new_rtx)
10475 && merge_outer_ops (&outer_op, &outer_const, XOR,
10476 INTVAL (new_rtx), result_mode, &complement_p))
10478 varop = XEXP (varop, 0);
10479 continue;
10482 break;
10484 case MINUS:
10485 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10486 with C the size of VAROP - 1 and the shift is logical if
10487 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10488 we have a (gt X 0) operation. If the shift is arithmetic with
10489 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10490 we have a (neg (gt X 0)) operation. */
10492 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10493 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10494 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10495 && (code == LSHIFTRT || code == ASHIFTRT)
10496 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10497 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10498 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10500 count = 0;
10501 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10502 const0_rtx);
10504 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10505 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10507 continue;
10509 break;
10511 case TRUNCATE:
10512 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10513 if the truncate does not affect the value. */
10514 if (code == LSHIFTRT
10515 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10516 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10517 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10518 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10519 - GET_MODE_PRECISION (GET_MODE (varop)))))
10521 rtx varop_inner = XEXP (varop, 0);
10523 varop_inner
10524 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10525 XEXP (varop_inner, 0),
10526 GEN_INT
10527 (count + INTVAL (XEXP (varop_inner, 1))));
10528 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10529 count = 0;
10530 continue;
10532 break;
10534 default:
10535 break;
10538 break;
10541 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10542 outer_op, outer_const);
10544 /* We have now finished analyzing the shift. The result should be
10545 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10546 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10547 to the result of the shift. OUTER_CONST is the relevant constant,
10548 but we must turn off all bits turned off in the shift. */
10550 if (outer_op == UNKNOWN
10551 && orig_code == code && orig_count == count
10552 && varop == orig_varop
10553 && shift_mode == GET_MODE (varop))
10554 return NULL_RTX;
10556 /* Make a SUBREG if necessary. If we can't make it, fail. */
10557 varop = gen_lowpart (shift_mode, varop);
10558 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10559 return NULL_RTX;
10561 /* If we have an outer operation and we just made a shift, it is
10562 possible that we could have simplified the shift were it not
10563 for the outer operation. So try to do the simplification
10564 recursively. */
10566 if (outer_op != UNKNOWN)
10567 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10568 else
10569 x = NULL_RTX;
10571 if (x == NULL_RTX)
10572 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10574 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10575 turn off all the bits that the shift would have turned off. */
10576 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10577 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10578 GET_MODE_MASK (result_mode) >> orig_count);
10580 /* Do the remainder of the processing in RESULT_MODE. */
10581 x = gen_lowpart_or_truncate (result_mode, x);
10583 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10584 operation. */
10585 if (complement_p)
10586 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10588 if (outer_op != UNKNOWN)
10590 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10591 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10592 outer_const = trunc_int_for_mode (outer_const, result_mode);
10594 if (outer_op == AND)
10595 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10596 else if (outer_op == SET)
10598 /* This means that we have determined that the result is
10599 equivalent to a constant. This should be rare. */
10600 if (!side_effects_p (x))
10601 x = GEN_INT (outer_const);
10603 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10604 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10605 else
10606 x = simplify_gen_binary (outer_op, result_mode, x,
10607 GEN_INT (outer_const));
10610 return x;
10613 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10614 The result of the shift is RESULT_MODE. If we cannot simplify it,
10615 return X or, if it is NULL, synthesize the expression with
10616 simplify_gen_binary. Otherwise, return a simplified value.
10618 The shift is normally computed in the widest mode we find in VAROP, as
10619 long as it isn't a different number of words than RESULT_MODE. Exceptions
10620 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10622 static rtx
10623 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10624 rtx varop, int count)
10626 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10627 if (tem)
10628 return tem;
10630 if (!x)
10631 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10632 if (GET_MODE (x) != result_mode)
10633 x = gen_lowpart (result_mode, x);
10634 return x;
10638 /* Like recog, but we receive the address of a pointer to a new pattern.
10639 We try to match the rtx that the pointer points to.
10640 If that fails, we may try to modify or replace the pattern,
10641 storing the replacement into the same pointer object.
10643 Modifications include deletion or addition of CLOBBERs.
10645 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10646 the CLOBBERs are placed.
10648 The value is the final insn code from the pattern ultimately matched,
10649 or -1. */
10651 static int
10652 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10654 rtx pat = *pnewpat;
10655 int insn_code_number;
10656 int num_clobbers_to_add = 0;
10657 int i;
10658 rtx notes = 0;
10659 rtx old_notes, old_pat;
10661 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10662 we use to indicate that something didn't match. If we find such a
10663 thing, force rejection. */
10664 if (GET_CODE (pat) == PARALLEL)
10665 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10666 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10667 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10668 return -1;
10670 old_pat = PATTERN (insn);
10671 old_notes = REG_NOTES (insn);
10672 PATTERN (insn) = pat;
10673 REG_NOTES (insn) = 0;
10675 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10676 if (dump_file && (dump_flags & TDF_DETAILS))
10678 if (insn_code_number < 0)
10679 fputs ("Failed to match this instruction:\n", dump_file);
10680 else
10681 fputs ("Successfully matched this instruction:\n", dump_file);
10682 print_rtl_single (dump_file, pat);
10685 /* If it isn't, there is the possibility that we previously had an insn
10686 that clobbered some register as a side effect, but the combined
10687 insn doesn't need to do that. So try once more without the clobbers
10688 unless this represents an ASM insn. */
10690 if (insn_code_number < 0 && ! check_asm_operands (pat)
10691 && GET_CODE (pat) == PARALLEL)
10693 int pos;
10695 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10696 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10698 if (i != pos)
10699 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10700 pos++;
10703 SUBST_INT (XVECLEN (pat, 0), pos);
10705 if (pos == 1)
10706 pat = XVECEXP (pat, 0, 0);
10708 PATTERN (insn) = pat;
10709 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10710 if (dump_file && (dump_flags & TDF_DETAILS))
10712 if (insn_code_number < 0)
10713 fputs ("Failed to match this instruction:\n", dump_file);
10714 else
10715 fputs ("Successfully matched this instruction:\n", dump_file);
10716 print_rtl_single (dump_file, pat);
10719 PATTERN (insn) = old_pat;
10720 REG_NOTES (insn) = old_notes;
10722 /* Recognize all noop sets, these will be killed by followup pass. */
10723 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10724 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10726 /* If we had any clobbers to add, make a new pattern than contains
10727 them. Then check to make sure that all of them are dead. */
10728 if (num_clobbers_to_add)
10730 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10731 rtvec_alloc (GET_CODE (pat) == PARALLEL
10732 ? (XVECLEN (pat, 0)
10733 + num_clobbers_to_add)
10734 : num_clobbers_to_add + 1));
10736 if (GET_CODE (pat) == PARALLEL)
10737 for (i = 0; i < XVECLEN (pat, 0); i++)
10738 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10739 else
10740 XVECEXP (newpat, 0, 0) = pat;
10742 add_clobbers (newpat, insn_code_number);
10744 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10745 i < XVECLEN (newpat, 0); i++)
10747 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10748 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10749 return -1;
10750 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10752 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10753 notes = alloc_reg_note (REG_UNUSED,
10754 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10757 pat = newpat;
10760 *pnewpat = pat;
10761 *pnotes = notes;
10763 return insn_code_number;
10766 /* Like gen_lowpart_general but for use by combine. In combine it
10767 is not possible to create any new pseudoregs. However, it is
10768 safe to create invalid memory addresses, because combine will
10769 try to recognize them and all they will do is make the combine
10770 attempt fail.
10772 If for some reason this cannot do its job, an rtx
10773 (clobber (const_int 0)) is returned.
10774 An insn containing that will not be recognized. */
10776 static rtx
10777 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10779 enum machine_mode imode = GET_MODE (x);
10780 unsigned int osize = GET_MODE_SIZE (omode);
10781 unsigned int isize = GET_MODE_SIZE (imode);
10782 rtx result;
10784 if (omode == imode)
10785 return x;
10787 /* Return identity if this is a CONST or symbolic reference. */
10788 if (omode == Pmode
10789 && (GET_CODE (x) == CONST
10790 || GET_CODE (x) == SYMBOL_REF
10791 || GET_CODE (x) == LABEL_REF))
10792 return x;
10794 /* We can only support MODE being wider than a word if X is a
10795 constant integer or has a mode the same size. */
10796 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10797 && ! ((imode == VOIDmode
10798 && (CONST_INT_P (x)
10799 || GET_CODE (x) == CONST_DOUBLE))
10800 || isize == osize))
10801 goto fail;
10803 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10804 won't know what to do. So we will strip off the SUBREG here and
10805 process normally. */
10806 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10808 x = SUBREG_REG (x);
10810 /* For use in case we fall down into the address adjustments
10811 further below, we need to adjust the known mode and size of
10812 x; imode and isize, since we just adjusted x. */
10813 imode = GET_MODE (x);
10815 if (imode == omode)
10816 return x;
10818 isize = GET_MODE_SIZE (imode);
10821 result = gen_lowpart_common (omode, x);
10823 if (result)
10824 return result;
10826 if (MEM_P (x))
10828 int offset = 0;
10830 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10831 address. */
10832 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10833 goto fail;
10835 /* If we want to refer to something bigger than the original memref,
10836 generate a paradoxical subreg instead. That will force a reload
10837 of the original memref X. */
10838 if (isize < osize)
10839 return gen_rtx_SUBREG (omode, x, 0);
10841 if (WORDS_BIG_ENDIAN)
10842 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10844 /* Adjust the address so that the address-after-the-data is
10845 unchanged. */
10846 if (BYTES_BIG_ENDIAN)
10847 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10849 return adjust_address_nv (x, omode, offset);
10852 /* If X is a comparison operator, rewrite it in a new mode. This
10853 probably won't match, but may allow further simplifications. */
10854 else if (COMPARISON_P (x))
10855 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10857 /* If we couldn't simplify X any other way, just enclose it in a
10858 SUBREG. Normally, this SUBREG won't match, but some patterns may
10859 include an explicit SUBREG or we may simplify it further in combine. */
10860 else
10862 int offset = 0;
10863 rtx res;
10865 offset = subreg_lowpart_offset (omode, imode);
10866 if (imode == VOIDmode)
10868 imode = int_mode_for_mode (omode);
10869 x = gen_lowpart_common (imode, x);
10870 if (x == NULL)
10871 goto fail;
10873 res = simplify_gen_subreg (omode, x, imode, offset);
10874 if (res)
10875 return res;
10878 fail:
10879 return gen_rtx_CLOBBER (omode, const0_rtx);
10882 /* Try to simplify a comparison between OP0 and a constant OP1,
10883 where CODE is the comparison code that will be tested, into a
10884 (CODE OP0 const0_rtx) form.
10886 The result is a possibly different comparison code to use.
10887 *POP1 may be updated. */
10889 static enum rtx_code
10890 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10892 enum machine_mode mode = GET_MODE (op0);
10893 unsigned int mode_width = GET_MODE_PRECISION (mode);
10894 HOST_WIDE_INT const_op = INTVAL (*pop1);
10896 /* Get the constant we are comparing against and turn off all bits
10897 not on in our mode. */
10898 if (mode != VOIDmode)
10899 const_op = trunc_int_for_mode (const_op, mode);
10901 /* If we are comparing against a constant power of two and the value
10902 being compared can only have that single bit nonzero (e.g., it was
10903 `and'ed with that bit), we can replace this with a comparison
10904 with zero. */
10905 if (const_op
10906 && (code == EQ || code == NE || code == GE || code == GEU
10907 || code == LT || code == LTU)
10908 && mode_width <= HOST_BITS_PER_WIDE_INT
10909 && exact_log2 (const_op) >= 0
10910 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10912 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10913 const_op = 0;
10916 /* Similarly, if we are comparing a value known to be either -1 or
10917 0 with -1, change it to the opposite comparison against zero. */
10918 if (const_op == -1
10919 && (code == EQ || code == NE || code == GT || code == LE
10920 || code == GEU || code == LTU)
10921 && num_sign_bit_copies (op0, mode) == mode_width)
10923 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10924 const_op = 0;
10927 /* Do some canonicalizations based on the comparison code. We prefer
10928 comparisons against zero and then prefer equality comparisons.
10929 If we can reduce the size of a constant, we will do that too. */
10930 switch (code)
10932 case LT:
10933 /* < C is equivalent to <= (C - 1) */
10934 if (const_op > 0)
10936 const_op -= 1;
10937 code = LE;
10938 /* ... fall through to LE case below. */
10940 else
10941 break;
10943 case LE:
10944 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10945 if (const_op < 0)
10947 const_op += 1;
10948 code = LT;
10951 /* If we are doing a <= 0 comparison on a value known to have
10952 a zero sign bit, we can replace this with == 0. */
10953 else if (const_op == 0
10954 && mode_width <= HOST_BITS_PER_WIDE_INT
10955 && (nonzero_bits (op0, mode)
10956 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10957 == 0)
10958 code = EQ;
10959 break;
10961 case GE:
10962 /* >= C is equivalent to > (C - 1). */
10963 if (const_op > 0)
10965 const_op -= 1;
10966 code = GT;
10967 /* ... fall through to GT below. */
10969 else
10970 break;
10972 case GT:
10973 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10974 if (const_op < 0)
10976 const_op += 1;
10977 code = GE;
10980 /* If we are doing a > 0 comparison on a value known to have
10981 a zero sign bit, we can replace this with != 0. */
10982 else if (const_op == 0
10983 && mode_width <= HOST_BITS_PER_WIDE_INT
10984 && (nonzero_bits (op0, mode)
10985 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10986 == 0)
10987 code = NE;
10988 break;
10990 case LTU:
10991 /* < C is equivalent to <= (C - 1). */
10992 if (const_op > 0)
10994 const_op -= 1;
10995 code = LEU;
10996 /* ... fall through ... */
10998 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10999 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11000 && (unsigned HOST_WIDE_INT) const_op
11001 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11003 const_op = 0;
11004 code = GE;
11005 break;
11007 else
11008 break;
11010 case LEU:
11011 /* unsigned <= 0 is equivalent to == 0 */
11012 if (const_op == 0)
11013 code = EQ;
11014 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11015 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11016 && (unsigned HOST_WIDE_INT) const_op
11017 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11019 const_op = 0;
11020 code = GE;
11022 break;
11024 case GEU:
11025 /* >= C is equivalent to > (C - 1). */
11026 if (const_op > 1)
11028 const_op -= 1;
11029 code = GTU;
11030 /* ... fall through ... */
11033 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11034 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11035 && (unsigned HOST_WIDE_INT) const_op
11036 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11038 const_op = 0;
11039 code = LT;
11040 break;
11042 else
11043 break;
11045 case GTU:
11046 /* unsigned > 0 is equivalent to != 0 */
11047 if (const_op == 0)
11048 code = NE;
11049 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11050 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11051 && (unsigned HOST_WIDE_INT) const_op
11052 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11054 const_op = 0;
11055 code = LT;
11057 break;
11059 default:
11060 break;
11063 *pop1 = GEN_INT (const_op);
11064 return code;
11067 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11068 comparison code that will be tested.
11070 The result is a possibly different comparison code to use. *POP0 and
11071 *POP1 may be updated.
11073 It is possible that we might detect that a comparison is either always
11074 true or always false. However, we do not perform general constant
11075 folding in combine, so this knowledge isn't useful. Such tautologies
11076 should have been detected earlier. Hence we ignore all such cases. */
11078 static enum rtx_code
11079 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11081 rtx op0 = *pop0;
11082 rtx op1 = *pop1;
11083 rtx tem, tem1;
11084 int i;
11085 enum machine_mode mode, tmode;
11087 /* Try a few ways of applying the same transformation to both operands. */
11088 while (1)
11090 #ifndef WORD_REGISTER_OPERATIONS
11091 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11092 so check specially. */
11093 if (code != GTU && code != GEU && code != LTU && code != LEU
11094 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11095 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11096 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11097 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11098 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11099 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11100 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11101 && CONST_INT_P (XEXP (op0, 1))
11102 && XEXP (op0, 1) == XEXP (op1, 1)
11103 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11104 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11105 && (INTVAL (XEXP (op0, 1))
11106 == (GET_MODE_PRECISION (GET_MODE (op0))
11107 - (GET_MODE_PRECISION
11108 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11110 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11111 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11113 #endif
11115 /* If both operands are the same constant shift, see if we can ignore the
11116 shift. We can if the shift is a rotate or if the bits shifted out of
11117 this shift are known to be zero for both inputs and if the type of
11118 comparison is compatible with the shift. */
11119 if (GET_CODE (op0) == GET_CODE (op1)
11120 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11121 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11122 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11123 && (code != GT && code != LT && code != GE && code != LE))
11124 || (GET_CODE (op0) == ASHIFTRT
11125 && (code != GTU && code != LTU
11126 && code != GEU && code != LEU)))
11127 && CONST_INT_P (XEXP (op0, 1))
11128 && INTVAL (XEXP (op0, 1)) >= 0
11129 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11130 && XEXP (op0, 1) == XEXP (op1, 1))
11132 enum machine_mode mode = GET_MODE (op0);
11133 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11134 int shift_count = INTVAL (XEXP (op0, 1));
11136 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11137 mask &= (mask >> shift_count) << shift_count;
11138 else if (GET_CODE (op0) == ASHIFT)
11139 mask = (mask & (mask << shift_count)) >> shift_count;
11141 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11142 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11143 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11144 else
11145 break;
11148 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11149 SUBREGs are of the same mode, and, in both cases, the AND would
11150 be redundant if the comparison was done in the narrower mode,
11151 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11152 and the operand's possibly nonzero bits are 0xffffff01; in that case
11153 if we only care about QImode, we don't need the AND). This case
11154 occurs if the output mode of an scc insn is not SImode and
11155 STORE_FLAG_VALUE == 1 (e.g., the 386).
11157 Similarly, check for a case where the AND's are ZERO_EXTEND
11158 operations from some narrower mode even though a SUBREG is not
11159 present. */
11161 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11162 && CONST_INT_P (XEXP (op0, 1))
11163 && CONST_INT_P (XEXP (op1, 1)))
11165 rtx inner_op0 = XEXP (op0, 0);
11166 rtx inner_op1 = XEXP (op1, 0);
11167 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11168 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11169 int changed = 0;
11171 if (paradoxical_subreg_p (inner_op0)
11172 && GET_CODE (inner_op1) == SUBREG
11173 && (GET_MODE (SUBREG_REG (inner_op0))
11174 == GET_MODE (SUBREG_REG (inner_op1)))
11175 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11176 <= HOST_BITS_PER_WIDE_INT)
11177 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11178 GET_MODE (SUBREG_REG (inner_op0)))))
11179 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11180 GET_MODE (SUBREG_REG (inner_op1))))))
11182 op0 = SUBREG_REG (inner_op0);
11183 op1 = SUBREG_REG (inner_op1);
11185 /* The resulting comparison is always unsigned since we masked
11186 off the original sign bit. */
11187 code = unsigned_condition (code);
11189 changed = 1;
11192 else if (c0 == c1)
11193 for (tmode = GET_CLASS_NARROWEST_MODE
11194 (GET_MODE_CLASS (GET_MODE (op0)));
11195 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11196 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11198 op0 = gen_lowpart (tmode, inner_op0);
11199 op1 = gen_lowpart (tmode, inner_op1);
11200 code = unsigned_condition (code);
11201 changed = 1;
11202 break;
11205 if (! changed)
11206 break;
11209 /* If both operands are NOT, we can strip off the outer operation
11210 and adjust the comparison code for swapped operands; similarly for
11211 NEG, except that this must be an equality comparison. */
11212 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11213 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11214 && (code == EQ || code == NE)))
11215 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11217 else
11218 break;
11221 /* If the first operand is a constant, swap the operands and adjust the
11222 comparison code appropriately, but don't do this if the second operand
11223 is already a constant integer. */
11224 if (swap_commutative_operands_p (op0, op1))
11226 tem = op0, op0 = op1, op1 = tem;
11227 code = swap_condition (code);
11230 /* We now enter a loop during which we will try to simplify the comparison.
11231 For the most part, we only are concerned with comparisons with zero,
11232 but some things may really be comparisons with zero but not start
11233 out looking that way. */
11235 while (CONST_INT_P (op1))
11237 enum machine_mode mode = GET_MODE (op0);
11238 unsigned int mode_width = GET_MODE_PRECISION (mode);
11239 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11240 int equality_comparison_p;
11241 int sign_bit_comparison_p;
11242 int unsigned_comparison_p;
11243 HOST_WIDE_INT const_op;
11245 /* We only want to handle integral modes. This catches VOIDmode,
11246 CCmode, and the floating-point modes. An exception is that we
11247 can handle VOIDmode if OP0 is a COMPARE or a comparison
11248 operation. */
11250 if (GET_MODE_CLASS (mode) != MODE_INT
11251 && ! (mode == VOIDmode
11252 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11253 break;
11255 /* Try to simplify the compare to constant, possibly changing the
11256 comparison op, and/or changing op1 to zero. */
11257 code = simplify_compare_const (code, op0, &op1);
11258 const_op = INTVAL (op1);
11260 /* Compute some predicates to simplify code below. */
11262 equality_comparison_p = (code == EQ || code == NE);
11263 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11264 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11265 || code == GEU);
11267 /* If this is a sign bit comparison and we can do arithmetic in
11268 MODE, say that we will only be needing the sign bit of OP0. */
11269 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11270 op0 = force_to_mode (op0, mode,
11271 (unsigned HOST_WIDE_INT) 1
11272 << (GET_MODE_PRECISION (mode) - 1),
11275 /* Now try cases based on the opcode of OP0. If none of the cases
11276 does a "continue", we exit this loop immediately after the
11277 switch. */
11279 switch (GET_CODE (op0))
11281 case ZERO_EXTRACT:
11282 /* If we are extracting a single bit from a variable position in
11283 a constant that has only a single bit set and are comparing it
11284 with zero, we can convert this into an equality comparison
11285 between the position and the location of the single bit. */
11286 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11287 have already reduced the shift count modulo the word size. */
11288 if (!SHIFT_COUNT_TRUNCATED
11289 && CONST_INT_P (XEXP (op0, 0))
11290 && XEXP (op0, 1) == const1_rtx
11291 && equality_comparison_p && const_op == 0
11292 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11294 if (BITS_BIG_ENDIAN)
11296 enum machine_mode new_mode
11297 = mode_for_extraction (EP_extzv, 1);
11298 if (new_mode == MAX_MACHINE_MODE)
11299 i = BITS_PER_WORD - 1 - i;
11300 else
11302 mode = new_mode;
11303 i = (GET_MODE_PRECISION (mode) - 1 - i);
11307 op0 = XEXP (op0, 2);
11308 op1 = GEN_INT (i);
11309 const_op = i;
11311 /* Result is nonzero iff shift count is equal to I. */
11312 code = reverse_condition (code);
11313 continue;
11316 /* ... fall through ... */
11318 case SIGN_EXTRACT:
11319 tem = expand_compound_operation (op0);
11320 if (tem != op0)
11322 op0 = tem;
11323 continue;
11325 break;
11327 case NOT:
11328 /* If testing for equality, we can take the NOT of the constant. */
11329 if (equality_comparison_p
11330 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11332 op0 = XEXP (op0, 0);
11333 op1 = tem;
11334 continue;
11337 /* If just looking at the sign bit, reverse the sense of the
11338 comparison. */
11339 if (sign_bit_comparison_p)
11341 op0 = XEXP (op0, 0);
11342 code = (code == GE ? LT : GE);
11343 continue;
11345 break;
11347 case NEG:
11348 /* If testing for equality, we can take the NEG of the constant. */
11349 if (equality_comparison_p
11350 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11352 op0 = XEXP (op0, 0);
11353 op1 = tem;
11354 continue;
11357 /* The remaining cases only apply to comparisons with zero. */
11358 if (const_op != 0)
11359 break;
11361 /* When X is ABS or is known positive,
11362 (neg X) is < 0 if and only if X != 0. */
11364 if (sign_bit_comparison_p
11365 && (GET_CODE (XEXP (op0, 0)) == ABS
11366 || (mode_width <= HOST_BITS_PER_WIDE_INT
11367 && (nonzero_bits (XEXP (op0, 0), mode)
11368 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11369 == 0)))
11371 op0 = XEXP (op0, 0);
11372 code = (code == LT ? NE : EQ);
11373 continue;
11376 /* If we have NEG of something whose two high-order bits are the
11377 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11378 if (num_sign_bit_copies (op0, mode) >= 2)
11380 op0 = XEXP (op0, 0);
11381 code = swap_condition (code);
11382 continue;
11384 break;
11386 case ROTATE:
11387 /* If we are testing equality and our count is a constant, we
11388 can perform the inverse operation on our RHS. */
11389 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11390 && (tem = simplify_binary_operation (ROTATERT, mode,
11391 op1, XEXP (op0, 1))) != 0)
11393 op0 = XEXP (op0, 0);
11394 op1 = tem;
11395 continue;
11398 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11399 a particular bit. Convert it to an AND of a constant of that
11400 bit. This will be converted into a ZERO_EXTRACT. */
11401 if (const_op == 0 && sign_bit_comparison_p
11402 && CONST_INT_P (XEXP (op0, 1))
11403 && mode_width <= HOST_BITS_PER_WIDE_INT)
11405 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11406 ((unsigned HOST_WIDE_INT) 1
11407 << (mode_width - 1
11408 - INTVAL (XEXP (op0, 1)))));
11409 code = (code == LT ? NE : EQ);
11410 continue;
11413 /* Fall through. */
11415 case ABS:
11416 /* ABS is ignorable inside an equality comparison with zero. */
11417 if (const_op == 0 && equality_comparison_p)
11419 op0 = XEXP (op0, 0);
11420 continue;
11422 break;
11424 case SIGN_EXTEND:
11425 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11426 (compare FOO CONST) if CONST fits in FOO's mode and we
11427 are either testing inequality or have an unsigned
11428 comparison with ZERO_EXTEND or a signed comparison with
11429 SIGN_EXTEND. But don't do it if we don't have a compare
11430 insn of the given mode, since we'd have to revert it
11431 later on, and then we wouldn't know whether to sign- or
11432 zero-extend. */
11433 mode = GET_MODE (XEXP (op0, 0));
11434 if (GET_MODE_CLASS (mode) == MODE_INT
11435 && ! unsigned_comparison_p
11436 && HWI_COMPUTABLE_MODE_P (mode)
11437 && trunc_int_for_mode (const_op, mode) == const_op
11438 && have_insn_for (COMPARE, mode))
11440 op0 = XEXP (op0, 0);
11441 continue;
11443 break;
11445 case SUBREG:
11446 /* Check for the case where we are comparing A - C1 with C2, that is
11448 (subreg:MODE (plus (A) (-C1))) op (C2)
11450 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11451 comparison in the wider mode. One of the following two conditions
11452 must be true in order for this to be valid:
11454 1. The mode extension results in the same bit pattern being added
11455 on both sides and the comparison is equality or unsigned. As
11456 C2 has been truncated to fit in MODE, the pattern can only be
11457 all 0s or all 1s.
11459 2. The mode extension results in the sign bit being copied on
11460 each side.
11462 The difficulty here is that we have predicates for A but not for
11463 (A - C1) so we need to check that C1 is within proper bounds so
11464 as to perturbate A as little as possible. */
11466 if (mode_width <= HOST_BITS_PER_WIDE_INT
11467 && subreg_lowpart_p (op0)
11468 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11469 && GET_CODE (SUBREG_REG (op0)) == PLUS
11470 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11472 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11473 rtx a = XEXP (SUBREG_REG (op0), 0);
11474 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11476 if ((c1 > 0
11477 && (unsigned HOST_WIDE_INT) c1
11478 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11479 && (equality_comparison_p || unsigned_comparison_p)
11480 /* (A - C1) zero-extends if it is positive and sign-extends
11481 if it is negative, C2 both zero- and sign-extends. */
11482 && ((0 == (nonzero_bits (a, inner_mode)
11483 & ~GET_MODE_MASK (mode))
11484 && const_op >= 0)
11485 /* (A - C1) sign-extends if it is positive and 1-extends
11486 if it is negative, C2 both sign- and 1-extends. */
11487 || (num_sign_bit_copies (a, inner_mode)
11488 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11489 - mode_width)
11490 && const_op < 0)))
11491 || ((unsigned HOST_WIDE_INT) c1
11492 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11493 /* (A - C1) always sign-extends, like C2. */
11494 && num_sign_bit_copies (a, inner_mode)
11495 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11496 - (mode_width - 1))))
11498 op0 = SUBREG_REG (op0);
11499 continue;
11503 /* If the inner mode is narrower and we are extracting the low part,
11504 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11505 if (subreg_lowpart_p (op0)
11506 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11507 /* Fall through */ ;
11508 else
11509 break;
11511 /* ... fall through ... */
11513 case ZERO_EXTEND:
11514 mode = GET_MODE (XEXP (op0, 0));
11515 if (GET_MODE_CLASS (mode) == MODE_INT
11516 && (unsigned_comparison_p || equality_comparison_p)
11517 && HWI_COMPUTABLE_MODE_P (mode)
11518 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11519 && const_op >= 0
11520 && have_insn_for (COMPARE, mode))
11522 op0 = XEXP (op0, 0);
11523 continue;
11525 break;
11527 case PLUS:
11528 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11529 this for equality comparisons due to pathological cases involving
11530 overflows. */
11531 if (equality_comparison_p
11532 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11533 op1, XEXP (op0, 1))))
11535 op0 = XEXP (op0, 0);
11536 op1 = tem;
11537 continue;
11540 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11541 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11542 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11544 op0 = XEXP (XEXP (op0, 0), 0);
11545 code = (code == LT ? EQ : NE);
11546 continue;
11548 break;
11550 case MINUS:
11551 /* We used to optimize signed comparisons against zero, but that
11552 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11553 arrive here as equality comparisons, or (GEU, LTU) are
11554 optimized away. No need to special-case them. */
11556 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11557 (eq B (minus A C)), whichever simplifies. We can only do
11558 this for equality comparisons due to pathological cases involving
11559 overflows. */
11560 if (equality_comparison_p
11561 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11562 XEXP (op0, 1), op1)))
11564 op0 = XEXP (op0, 0);
11565 op1 = tem;
11566 continue;
11569 if (equality_comparison_p
11570 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11571 XEXP (op0, 0), op1)))
11573 op0 = XEXP (op0, 1);
11574 op1 = tem;
11575 continue;
11578 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11579 of bits in X minus 1, is one iff X > 0. */
11580 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11581 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11582 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11583 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11585 op0 = XEXP (op0, 1);
11586 code = (code == GE ? LE : GT);
11587 continue;
11589 break;
11591 case XOR:
11592 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11593 if C is zero or B is a constant. */
11594 if (equality_comparison_p
11595 && 0 != (tem = simplify_binary_operation (XOR, mode,
11596 XEXP (op0, 1), op1)))
11598 op0 = XEXP (op0, 0);
11599 op1 = tem;
11600 continue;
11602 break;
11604 case EQ: case NE:
11605 case UNEQ: case LTGT:
11606 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11607 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11608 case UNORDERED: case ORDERED:
11609 /* We can't do anything if OP0 is a condition code value, rather
11610 than an actual data value. */
11611 if (const_op != 0
11612 || CC0_P (XEXP (op0, 0))
11613 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11614 break;
11616 /* Get the two operands being compared. */
11617 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11618 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11619 else
11620 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11622 /* Check for the cases where we simply want the result of the
11623 earlier test or the opposite of that result. */
11624 if (code == NE || code == EQ
11625 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11626 && (code == LT || code == GE)))
11628 enum rtx_code new_code;
11629 if (code == LT || code == NE)
11630 new_code = GET_CODE (op0);
11631 else
11632 new_code = reversed_comparison_code (op0, NULL);
11634 if (new_code != UNKNOWN)
11636 code = new_code;
11637 op0 = tem;
11638 op1 = tem1;
11639 continue;
11642 break;
11644 case IOR:
11645 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11646 iff X <= 0. */
11647 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11648 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11649 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11651 op0 = XEXP (op0, 1);
11652 code = (code == GE ? GT : LE);
11653 continue;
11655 break;
11657 case AND:
11658 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11659 will be converted to a ZERO_EXTRACT later. */
11660 if (const_op == 0 && equality_comparison_p
11661 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11662 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11664 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11665 XEXP (XEXP (op0, 0), 1));
11666 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11667 continue;
11670 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11671 zero and X is a comparison and C1 and C2 describe only bits set
11672 in STORE_FLAG_VALUE, we can compare with X. */
11673 if (const_op == 0 && equality_comparison_p
11674 && mode_width <= HOST_BITS_PER_WIDE_INT
11675 && CONST_INT_P (XEXP (op0, 1))
11676 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11677 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11678 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11679 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11681 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11682 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11683 if ((~STORE_FLAG_VALUE & mask) == 0
11684 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11685 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11686 && COMPARISON_P (tem))))
11688 op0 = XEXP (XEXP (op0, 0), 0);
11689 continue;
11693 /* If we are doing an equality comparison of an AND of a bit equal
11694 to the sign bit, replace this with a LT or GE comparison of
11695 the underlying value. */
11696 if (equality_comparison_p
11697 && const_op == 0
11698 && CONST_INT_P (XEXP (op0, 1))
11699 && mode_width <= HOST_BITS_PER_WIDE_INT
11700 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11701 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11703 op0 = XEXP (op0, 0);
11704 code = (code == EQ ? GE : LT);
11705 continue;
11708 /* If this AND operation is really a ZERO_EXTEND from a narrower
11709 mode, the constant fits within that mode, and this is either an
11710 equality or unsigned comparison, try to do this comparison in
11711 the narrower mode.
11713 Note that in:
11715 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11716 -> (ne:DI (reg:SI 4) (const_int 0))
11718 unless TRULY_NOOP_TRUNCATION allows it or the register is
11719 known to hold a value of the required mode the
11720 transformation is invalid. */
11721 if ((equality_comparison_p || unsigned_comparison_p)
11722 && CONST_INT_P (XEXP (op0, 1))
11723 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11724 & GET_MODE_MASK (mode))
11725 + 1)) >= 0
11726 && const_op >> i == 0
11727 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11728 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11729 || (REG_P (XEXP (op0, 0))
11730 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11732 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11733 continue;
11736 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11737 fits in both M1 and M2 and the SUBREG is either paradoxical
11738 or represents the low part, permute the SUBREG and the AND
11739 and try again. */
11740 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11742 unsigned HOST_WIDE_INT c1;
11743 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11744 /* Require an integral mode, to avoid creating something like
11745 (AND:SF ...). */
11746 if (SCALAR_INT_MODE_P (tmode)
11747 /* It is unsafe to commute the AND into the SUBREG if the
11748 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11749 not defined. As originally written the upper bits
11750 have a defined value due to the AND operation.
11751 However, if we commute the AND inside the SUBREG then
11752 they no longer have defined values and the meaning of
11753 the code has been changed. */
11754 && (0
11755 #ifdef WORD_REGISTER_OPERATIONS
11756 || (mode_width > GET_MODE_PRECISION (tmode)
11757 && mode_width <= BITS_PER_WORD)
11758 #endif
11759 || (mode_width <= GET_MODE_PRECISION (tmode)
11760 && subreg_lowpart_p (XEXP (op0, 0))))
11761 && CONST_INT_P (XEXP (op0, 1))
11762 && mode_width <= HOST_BITS_PER_WIDE_INT
11763 && HWI_COMPUTABLE_MODE_P (tmode)
11764 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11765 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11766 && c1 != mask
11767 && c1 != GET_MODE_MASK (tmode))
11769 op0 = simplify_gen_binary (AND, tmode,
11770 SUBREG_REG (XEXP (op0, 0)),
11771 gen_int_mode (c1, tmode));
11772 op0 = gen_lowpart (mode, op0);
11773 continue;
11777 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11778 if (const_op == 0 && equality_comparison_p
11779 && XEXP (op0, 1) == const1_rtx
11780 && GET_CODE (XEXP (op0, 0)) == NOT)
11782 op0 = simplify_and_const_int (NULL_RTX, mode,
11783 XEXP (XEXP (op0, 0), 0), 1);
11784 code = (code == NE ? EQ : NE);
11785 continue;
11788 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11789 (eq (and (lshiftrt X) 1) 0).
11790 Also handle the case where (not X) is expressed using xor. */
11791 if (const_op == 0 && equality_comparison_p
11792 && XEXP (op0, 1) == const1_rtx
11793 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11795 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11796 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11798 if (GET_CODE (shift_op) == NOT
11799 || (GET_CODE (shift_op) == XOR
11800 && CONST_INT_P (XEXP (shift_op, 1))
11801 && CONST_INT_P (shift_count)
11802 && HWI_COMPUTABLE_MODE_P (mode)
11803 && (UINTVAL (XEXP (shift_op, 1))
11804 == (unsigned HOST_WIDE_INT) 1
11805 << INTVAL (shift_count))))
11808 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11809 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11810 code = (code == NE ? EQ : NE);
11811 continue;
11814 break;
11816 case ASHIFT:
11817 /* If we have (compare (ashift FOO N) (const_int C)) and
11818 the high order N bits of FOO (N+1 if an inequality comparison)
11819 are known to be zero, we can do this by comparing FOO with C
11820 shifted right N bits so long as the low-order N bits of C are
11821 zero. */
11822 if (CONST_INT_P (XEXP (op0, 1))
11823 && INTVAL (XEXP (op0, 1)) >= 0
11824 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11825 < HOST_BITS_PER_WIDE_INT)
11826 && (((unsigned HOST_WIDE_INT) const_op
11827 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11828 - 1)) == 0)
11829 && mode_width <= HOST_BITS_PER_WIDE_INT
11830 && (nonzero_bits (XEXP (op0, 0), mode)
11831 & ~(mask >> (INTVAL (XEXP (op0, 1))
11832 + ! equality_comparison_p))) == 0)
11834 /* We must perform a logical shift, not an arithmetic one,
11835 as we want the top N bits of C to be zero. */
11836 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11838 temp >>= INTVAL (XEXP (op0, 1));
11839 op1 = gen_int_mode (temp, mode);
11840 op0 = XEXP (op0, 0);
11841 continue;
11844 /* If we are doing a sign bit comparison, it means we are testing
11845 a particular bit. Convert it to the appropriate AND. */
11846 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11847 && mode_width <= HOST_BITS_PER_WIDE_INT)
11849 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11850 ((unsigned HOST_WIDE_INT) 1
11851 << (mode_width - 1
11852 - INTVAL (XEXP (op0, 1)))));
11853 code = (code == LT ? NE : EQ);
11854 continue;
11857 /* If this an equality comparison with zero and we are shifting
11858 the low bit to the sign bit, we can convert this to an AND of the
11859 low-order bit. */
11860 if (const_op == 0 && equality_comparison_p
11861 && CONST_INT_P (XEXP (op0, 1))
11862 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11864 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11865 continue;
11867 break;
11869 case ASHIFTRT:
11870 /* If this is an equality comparison with zero, we can do this
11871 as a logical shift, which might be much simpler. */
11872 if (equality_comparison_p && const_op == 0
11873 && CONST_INT_P (XEXP (op0, 1)))
11875 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11876 XEXP (op0, 0),
11877 INTVAL (XEXP (op0, 1)));
11878 continue;
11881 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11882 do the comparison in a narrower mode. */
11883 if (! unsigned_comparison_p
11884 && CONST_INT_P (XEXP (op0, 1))
11885 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11886 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11887 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11888 MODE_INT, 1)) != BLKmode
11889 && (((unsigned HOST_WIDE_INT) const_op
11890 + (GET_MODE_MASK (tmode) >> 1) + 1)
11891 <= GET_MODE_MASK (tmode)))
11893 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11894 continue;
11897 /* Likewise if OP0 is a PLUS of a sign extension with a
11898 constant, which is usually represented with the PLUS
11899 between the shifts. */
11900 if (! unsigned_comparison_p
11901 && CONST_INT_P (XEXP (op0, 1))
11902 && GET_CODE (XEXP (op0, 0)) == PLUS
11903 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11904 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11905 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11906 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11907 MODE_INT, 1)) != BLKmode
11908 && (((unsigned HOST_WIDE_INT) const_op
11909 + (GET_MODE_MASK (tmode) >> 1) + 1)
11910 <= GET_MODE_MASK (tmode)))
11912 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11913 rtx add_const = XEXP (XEXP (op0, 0), 1);
11914 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11915 add_const, XEXP (op0, 1));
11917 op0 = simplify_gen_binary (PLUS, tmode,
11918 gen_lowpart (tmode, inner),
11919 new_const);
11920 continue;
11923 /* ... fall through ... */
11924 case LSHIFTRT:
11925 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11926 the low order N bits of FOO are known to be zero, we can do this
11927 by comparing FOO with C shifted left N bits so long as no
11928 overflow occurs. Even if the low order N bits of FOO aren't known
11929 to be zero, if the comparison is >= or < we can use the same
11930 optimization and for > or <= by setting all the low
11931 order N bits in the comparison constant. */
11932 if (CONST_INT_P (XEXP (op0, 1))
11933 && INTVAL (XEXP (op0, 1)) > 0
11934 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11935 && mode_width <= HOST_BITS_PER_WIDE_INT
11936 && (((unsigned HOST_WIDE_INT) const_op
11937 + (GET_CODE (op0) != LSHIFTRT
11938 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11939 + 1)
11940 : 0))
11941 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11943 unsigned HOST_WIDE_INT low_bits
11944 = (nonzero_bits (XEXP (op0, 0), mode)
11945 & (((unsigned HOST_WIDE_INT) 1
11946 << INTVAL (XEXP (op0, 1))) - 1));
11947 if (low_bits == 0 || !equality_comparison_p)
11949 /* If the shift was logical, then we must make the condition
11950 unsigned. */
11951 if (GET_CODE (op0) == LSHIFTRT)
11952 code = unsigned_condition (code);
11954 const_op <<= INTVAL (XEXP (op0, 1));
11955 if (low_bits != 0
11956 && (code == GT || code == GTU
11957 || code == LE || code == LEU))
11958 const_op
11959 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11960 op1 = GEN_INT (const_op);
11961 op0 = XEXP (op0, 0);
11962 continue;
11966 /* If we are using this shift to extract just the sign bit, we
11967 can replace this with an LT or GE comparison. */
11968 if (const_op == 0
11969 && (equality_comparison_p || sign_bit_comparison_p)
11970 && CONST_INT_P (XEXP (op0, 1))
11971 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11973 op0 = XEXP (op0, 0);
11974 code = (code == NE || code == GT ? LT : GE);
11975 continue;
11977 break;
11979 default:
11980 break;
11983 break;
11986 /* Now make any compound operations involved in this comparison. Then,
11987 check for an outmost SUBREG on OP0 that is not doing anything or is
11988 paradoxical. The latter transformation must only be performed when
11989 it is known that the "extra" bits will be the same in op0 and op1 or
11990 that they don't matter. There are three cases to consider:
11992 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11993 care bits and we can assume they have any convenient value. So
11994 making the transformation is safe.
11996 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11997 In this case the upper bits of op0 are undefined. We should not make
11998 the simplification in that case as we do not know the contents of
11999 those bits.
12001 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12002 UNKNOWN. In that case we know those bits are zeros or ones. We must
12003 also be sure that they are the same as the upper bits of op1.
12005 We can never remove a SUBREG for a non-equality comparison because
12006 the sign bit is in a different place in the underlying object. */
12008 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12009 op1 = make_compound_operation (op1, SET);
12011 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12012 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12013 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12014 && (code == NE || code == EQ))
12016 if (paradoxical_subreg_p (op0))
12018 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12019 implemented. */
12020 if (REG_P (SUBREG_REG (op0)))
12022 op0 = SUBREG_REG (op0);
12023 op1 = gen_lowpart (GET_MODE (op0), op1);
12026 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12027 <= HOST_BITS_PER_WIDE_INT)
12028 && (nonzero_bits (SUBREG_REG (op0),
12029 GET_MODE (SUBREG_REG (op0)))
12030 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12032 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12034 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12035 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12036 op0 = SUBREG_REG (op0), op1 = tem;
12040 /* We now do the opposite procedure: Some machines don't have compare
12041 insns in all modes. If OP0's mode is an integer mode smaller than a
12042 word and we can't do a compare in that mode, see if there is a larger
12043 mode for which we can do the compare. There are a number of cases in
12044 which we can use the wider mode. */
12046 mode = GET_MODE (op0);
12047 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12048 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12049 && ! have_insn_for (COMPARE, mode))
12050 for (tmode = GET_MODE_WIDER_MODE (mode);
12051 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12052 tmode = GET_MODE_WIDER_MODE (tmode))
12053 if (have_insn_for (COMPARE, tmode))
12055 int zero_extended;
12057 /* If this is a test for negative, we can make an explicit
12058 test of the sign bit. Test this first so we can use
12059 a paradoxical subreg to extend OP0. */
12061 if (op1 == const0_rtx && (code == LT || code == GE)
12062 && HWI_COMPUTABLE_MODE_P (mode))
12064 op0 = simplify_gen_binary (AND, tmode,
12065 gen_lowpart (tmode, op0),
12066 GEN_INT ((unsigned HOST_WIDE_INT) 1
12067 << (GET_MODE_BITSIZE (mode)
12068 - 1)));
12069 code = (code == LT) ? NE : EQ;
12070 break;
12073 /* If the only nonzero bits in OP0 and OP1 are those in the
12074 narrower mode and this is an equality or unsigned comparison,
12075 we can use the wider mode. Similarly for sign-extended
12076 values, in which case it is true for all comparisons. */
12077 zero_extended = ((code == EQ || code == NE
12078 || code == GEU || code == GTU
12079 || code == LEU || code == LTU)
12080 && (nonzero_bits (op0, tmode)
12081 & ~GET_MODE_MASK (mode)) == 0
12082 && ((CONST_INT_P (op1)
12083 || (nonzero_bits (op1, tmode)
12084 & ~GET_MODE_MASK (mode)) == 0)));
12086 if (zero_extended
12087 || ((num_sign_bit_copies (op0, tmode)
12088 > (unsigned int) (GET_MODE_PRECISION (tmode)
12089 - GET_MODE_PRECISION (mode)))
12090 && (num_sign_bit_copies (op1, tmode)
12091 > (unsigned int) (GET_MODE_PRECISION (tmode)
12092 - GET_MODE_PRECISION (mode)))))
12094 /* If OP0 is an AND and we don't have an AND in MODE either,
12095 make a new AND in the proper mode. */
12096 if (GET_CODE (op0) == AND
12097 && !have_insn_for (AND, mode))
12098 op0 = simplify_gen_binary (AND, tmode,
12099 gen_lowpart (tmode,
12100 XEXP (op0, 0)),
12101 gen_lowpart (tmode,
12102 XEXP (op0, 1)));
12103 else
12105 if (zero_extended)
12107 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12108 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12110 else
12112 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12113 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12115 break;
12120 #ifdef CANONICALIZE_COMPARISON
12121 /* If this machine only supports a subset of valid comparisons, see if we
12122 can convert an unsupported one into a supported one. */
12123 CANONICALIZE_COMPARISON (code, op0, op1);
12124 #endif
12126 *pop0 = op0;
12127 *pop1 = op1;
12129 return code;
12132 /* Utility function for record_value_for_reg. Count number of
12133 rtxs in X. */
12134 static int
12135 count_rtxs (rtx x)
12137 enum rtx_code code = GET_CODE (x);
12138 const char *fmt;
12139 int i, j, ret = 1;
12141 if (GET_RTX_CLASS (code) == '2'
12142 || GET_RTX_CLASS (code) == 'c')
12144 rtx x0 = XEXP (x, 0);
12145 rtx x1 = XEXP (x, 1);
12147 if (x0 == x1)
12148 return 1 + 2 * count_rtxs (x0);
12150 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12151 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12152 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12153 return 2 + 2 * count_rtxs (x0)
12154 + count_rtxs (x == XEXP (x1, 0)
12155 ? XEXP (x1, 1) : XEXP (x1, 0));
12157 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12158 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12159 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12160 return 2 + 2 * count_rtxs (x1)
12161 + count_rtxs (x == XEXP (x0, 0)
12162 ? XEXP (x0, 1) : XEXP (x0, 0));
12165 fmt = GET_RTX_FORMAT (code);
12166 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12167 if (fmt[i] == 'e')
12168 ret += count_rtxs (XEXP (x, i));
12169 else if (fmt[i] == 'E')
12170 for (j = 0; j < XVECLEN (x, i); j++)
12171 ret += count_rtxs (XVECEXP (x, i, j));
12173 return ret;
12176 /* Utility function for following routine. Called when X is part of a value
12177 being stored into last_set_value. Sets last_set_table_tick
12178 for each register mentioned. Similar to mention_regs in cse.c */
12180 static void
12181 update_table_tick (rtx x)
12183 enum rtx_code code = GET_CODE (x);
12184 const char *fmt = GET_RTX_FORMAT (code);
12185 int i, j;
12187 if (code == REG)
12189 unsigned int regno = REGNO (x);
12190 unsigned int endregno = END_REGNO (x);
12191 unsigned int r;
12193 for (r = regno; r < endregno; r++)
12195 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12196 rsp->last_set_table_tick = label_tick;
12199 return;
12202 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12203 if (fmt[i] == 'e')
12205 /* Check for identical subexpressions. If x contains
12206 identical subexpression we only have to traverse one of
12207 them. */
12208 if (i == 0 && ARITHMETIC_P (x))
12210 /* Note that at this point x1 has already been
12211 processed. */
12212 rtx x0 = XEXP (x, 0);
12213 rtx x1 = XEXP (x, 1);
12215 /* If x0 and x1 are identical then there is no need to
12216 process x0. */
12217 if (x0 == x1)
12218 break;
12220 /* If x0 is identical to a subexpression of x1 then while
12221 processing x1, x0 has already been processed. Thus we
12222 are done with x. */
12223 if (ARITHMETIC_P (x1)
12224 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12225 break;
12227 /* If x1 is identical to a subexpression of x0 then we
12228 still have to process the rest of x0. */
12229 if (ARITHMETIC_P (x0)
12230 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12232 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12233 break;
12237 update_table_tick (XEXP (x, i));
12239 else if (fmt[i] == 'E')
12240 for (j = 0; j < XVECLEN (x, i); j++)
12241 update_table_tick (XVECEXP (x, i, j));
12244 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12245 are saying that the register is clobbered and we no longer know its
12246 value. If INSN is zero, don't update reg_stat[].last_set; this is
12247 only permitted with VALUE also zero and is used to invalidate the
12248 register. */
12250 static void
12251 record_value_for_reg (rtx reg, rtx insn, rtx value)
12253 unsigned int regno = REGNO (reg);
12254 unsigned int endregno = END_REGNO (reg);
12255 unsigned int i;
12256 reg_stat_type *rsp;
12258 /* If VALUE contains REG and we have a previous value for REG, substitute
12259 the previous value. */
12260 if (value && insn && reg_overlap_mentioned_p (reg, value))
12262 rtx tem;
12264 /* Set things up so get_last_value is allowed to see anything set up to
12265 our insn. */
12266 subst_low_luid = DF_INSN_LUID (insn);
12267 tem = get_last_value (reg);
12269 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12270 it isn't going to be useful and will take a lot of time to process,
12271 so just use the CLOBBER. */
12273 if (tem)
12275 if (ARITHMETIC_P (tem)
12276 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12277 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12278 tem = XEXP (tem, 0);
12279 else if (count_occurrences (value, reg, 1) >= 2)
12281 /* If there are two or more occurrences of REG in VALUE,
12282 prevent the value from growing too much. */
12283 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12284 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12287 value = replace_rtx (copy_rtx (value), reg, tem);
12291 /* For each register modified, show we don't know its value, that
12292 we don't know about its bitwise content, that its value has been
12293 updated, and that we don't know the location of the death of the
12294 register. */
12295 for (i = regno; i < endregno; i++)
12297 rsp = VEC_index (reg_stat_type, reg_stat, i);
12299 if (insn)
12300 rsp->last_set = insn;
12302 rsp->last_set_value = 0;
12303 rsp->last_set_mode = VOIDmode;
12304 rsp->last_set_nonzero_bits = 0;
12305 rsp->last_set_sign_bit_copies = 0;
12306 rsp->last_death = 0;
12307 rsp->truncated_to_mode = VOIDmode;
12310 /* Mark registers that are being referenced in this value. */
12311 if (value)
12312 update_table_tick (value);
12314 /* Now update the status of each register being set.
12315 If someone is using this register in this block, set this register
12316 to invalid since we will get confused between the two lives in this
12317 basic block. This makes using this register always invalid. In cse, we
12318 scan the table to invalidate all entries using this register, but this
12319 is too much work for us. */
12321 for (i = regno; i < endregno; i++)
12323 rsp = VEC_index (reg_stat_type, reg_stat, i);
12324 rsp->last_set_label = label_tick;
12325 if (!insn
12326 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12327 rsp->last_set_invalid = 1;
12328 else
12329 rsp->last_set_invalid = 0;
12332 /* The value being assigned might refer to X (like in "x++;"). In that
12333 case, we must replace it with (clobber (const_int 0)) to prevent
12334 infinite loops. */
12335 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12336 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12338 value = copy_rtx (value);
12339 if (!get_last_value_validate (&value, insn, label_tick, 1))
12340 value = 0;
12343 /* For the main register being modified, update the value, the mode, the
12344 nonzero bits, and the number of sign bit copies. */
12346 rsp->last_set_value = value;
12348 if (value)
12350 enum machine_mode mode = GET_MODE (reg);
12351 subst_low_luid = DF_INSN_LUID (insn);
12352 rsp->last_set_mode = mode;
12353 if (GET_MODE_CLASS (mode) == MODE_INT
12354 && HWI_COMPUTABLE_MODE_P (mode))
12355 mode = nonzero_bits_mode;
12356 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12357 rsp->last_set_sign_bit_copies
12358 = num_sign_bit_copies (value, GET_MODE (reg));
12362 /* Called via note_stores from record_dead_and_set_regs to handle one
12363 SET or CLOBBER in an insn. DATA is the instruction in which the
12364 set is occurring. */
12366 static void
12367 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12369 rtx record_dead_insn = (rtx) data;
12371 if (GET_CODE (dest) == SUBREG)
12372 dest = SUBREG_REG (dest);
12374 if (!record_dead_insn)
12376 if (REG_P (dest))
12377 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12378 return;
12381 if (REG_P (dest))
12383 /* If we are setting the whole register, we know its value. Otherwise
12384 show that we don't know the value. We can handle SUBREG in
12385 some cases. */
12386 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12387 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12388 else if (GET_CODE (setter) == SET
12389 && GET_CODE (SET_DEST (setter)) == SUBREG
12390 && SUBREG_REG (SET_DEST (setter)) == dest
12391 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12392 && subreg_lowpart_p (SET_DEST (setter)))
12393 record_value_for_reg (dest, record_dead_insn,
12394 gen_lowpart (GET_MODE (dest),
12395 SET_SRC (setter)));
12396 else
12397 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12399 else if (MEM_P (dest)
12400 /* Ignore pushes, they clobber nothing. */
12401 && ! push_operand (dest, GET_MODE (dest)))
12402 mem_last_set = DF_INSN_LUID (record_dead_insn);
12405 /* Update the records of when each REG was most recently set or killed
12406 for the things done by INSN. This is the last thing done in processing
12407 INSN in the combiner loop.
12409 We update reg_stat[], in particular fields last_set, last_set_value,
12410 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12411 last_death, and also the similar information mem_last_set (which insn
12412 most recently modified memory) and last_call_luid (which insn was the
12413 most recent subroutine call). */
12415 static void
12416 record_dead_and_set_regs (rtx insn)
12418 rtx link;
12419 unsigned int i;
12421 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12423 if (REG_NOTE_KIND (link) == REG_DEAD
12424 && REG_P (XEXP (link, 0)))
12426 unsigned int regno = REGNO (XEXP (link, 0));
12427 unsigned int endregno = END_REGNO (XEXP (link, 0));
12429 for (i = regno; i < endregno; i++)
12431 reg_stat_type *rsp;
12433 rsp = VEC_index (reg_stat_type, reg_stat, i);
12434 rsp->last_death = insn;
12437 else if (REG_NOTE_KIND (link) == REG_INC)
12438 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12441 if (CALL_P (insn))
12443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12444 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12446 reg_stat_type *rsp;
12448 rsp = VEC_index (reg_stat_type, reg_stat, i);
12449 rsp->last_set_invalid = 1;
12450 rsp->last_set = insn;
12451 rsp->last_set_value = 0;
12452 rsp->last_set_mode = VOIDmode;
12453 rsp->last_set_nonzero_bits = 0;
12454 rsp->last_set_sign_bit_copies = 0;
12455 rsp->last_death = 0;
12456 rsp->truncated_to_mode = VOIDmode;
12459 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12461 /* We can't combine into a call pattern. Remember, though, that
12462 the return value register is set at this LUID. We could
12463 still replace a register with the return value from the
12464 wrong subroutine call! */
12465 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12467 else
12468 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12471 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12472 register present in the SUBREG, so for each such SUBREG go back and
12473 adjust nonzero and sign bit information of the registers that are
12474 known to have some zero/sign bits set.
12476 This is needed because when combine blows the SUBREGs away, the
12477 information on zero/sign bits is lost and further combines can be
12478 missed because of that. */
12480 static void
12481 record_promoted_value (rtx insn, rtx subreg)
12483 struct insn_link *links;
12484 rtx set;
12485 unsigned int regno = REGNO (SUBREG_REG (subreg));
12486 enum machine_mode mode = GET_MODE (subreg);
12488 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12489 return;
12491 for (links = LOG_LINKS (insn); links;)
12493 reg_stat_type *rsp;
12495 insn = links->insn;
12496 set = single_set (insn);
12498 if (! set || !REG_P (SET_DEST (set))
12499 || REGNO (SET_DEST (set)) != regno
12500 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12502 links = links->next;
12503 continue;
12506 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12507 if (rsp->last_set == insn)
12509 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12510 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12513 if (REG_P (SET_SRC (set)))
12515 regno = REGNO (SET_SRC (set));
12516 links = LOG_LINKS (insn);
12518 else
12519 break;
12523 /* Check if X, a register, is known to contain a value already
12524 truncated to MODE. In this case we can use a subreg to refer to
12525 the truncated value even though in the generic case we would need
12526 an explicit truncation. */
12528 static bool
12529 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12531 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12532 enum machine_mode truncated = rsp->truncated_to_mode;
12534 if (truncated == 0
12535 || rsp->truncation_label < label_tick_ebb_start)
12536 return false;
12537 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12538 return true;
12539 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12540 return true;
12541 return false;
12544 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12545 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12546 might be able to turn a truncate into a subreg using this information.
12547 Return -1 if traversing *P is complete or 0 otherwise. */
12549 static int
12550 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12552 rtx x = *p;
12553 enum machine_mode truncated_mode;
12554 reg_stat_type *rsp;
12556 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12558 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12559 truncated_mode = GET_MODE (x);
12561 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12562 return -1;
12564 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12565 return -1;
12567 x = SUBREG_REG (x);
12569 /* ??? For hard-regs we now record everything. We might be able to
12570 optimize this using last_set_mode. */
12571 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12572 truncated_mode = GET_MODE (x);
12573 else
12574 return 0;
12576 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12577 if (rsp->truncated_to_mode == 0
12578 || rsp->truncation_label < label_tick_ebb_start
12579 || (GET_MODE_SIZE (truncated_mode)
12580 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12582 rsp->truncated_to_mode = truncated_mode;
12583 rsp->truncation_label = label_tick;
12586 return -1;
12589 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12590 the modes they are used in. This can help truning TRUNCATEs into
12591 SUBREGs. */
12593 static void
12594 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12596 for_each_rtx (x, record_truncated_value, NULL);
12599 /* Scan X for promoted SUBREGs. For each one found,
12600 note what it implies to the registers used in it. */
12602 static void
12603 check_promoted_subreg (rtx insn, rtx x)
12605 if (GET_CODE (x) == SUBREG
12606 && SUBREG_PROMOTED_VAR_P (x)
12607 && REG_P (SUBREG_REG (x)))
12608 record_promoted_value (insn, x);
12609 else
12611 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12612 int i, j;
12614 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12615 switch (format[i])
12617 case 'e':
12618 check_promoted_subreg (insn, XEXP (x, i));
12619 break;
12620 case 'V':
12621 case 'E':
12622 if (XVEC (x, i) != 0)
12623 for (j = 0; j < XVECLEN (x, i); j++)
12624 check_promoted_subreg (insn, XVECEXP (x, i, j));
12625 break;
12630 /* Verify that all the registers and memory references mentioned in *LOC are
12631 still valid. *LOC was part of a value set in INSN when label_tick was
12632 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12633 the invalid references with (clobber (const_int 0)) and return 1. This
12634 replacement is useful because we often can get useful information about
12635 the form of a value (e.g., if it was produced by a shift that always
12636 produces -1 or 0) even though we don't know exactly what registers it
12637 was produced from. */
12639 static int
12640 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12642 rtx x = *loc;
12643 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12644 int len = GET_RTX_LENGTH (GET_CODE (x));
12645 int i, j;
12647 if (REG_P (x))
12649 unsigned int regno = REGNO (x);
12650 unsigned int endregno = END_REGNO (x);
12651 unsigned int j;
12653 for (j = regno; j < endregno; j++)
12655 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12656 if (rsp->last_set_invalid
12657 /* If this is a pseudo-register that was only set once and not
12658 live at the beginning of the function, it is always valid. */
12659 || (! (regno >= FIRST_PSEUDO_REGISTER
12660 && REG_N_SETS (regno) == 1
12661 && (!REGNO_REG_SET_P
12662 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12663 && rsp->last_set_label > tick))
12665 if (replace)
12666 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12667 return replace;
12671 return 1;
12673 /* If this is a memory reference, make sure that there were no stores after
12674 it that might have clobbered the value. We don't have alias info, so we
12675 assume any store invalidates it. Moreover, we only have local UIDs, so
12676 we also assume that there were stores in the intervening basic blocks. */
12677 else if (MEM_P (x) && !MEM_READONLY_P (x)
12678 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12680 if (replace)
12681 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12682 return replace;
12685 for (i = 0; i < len; i++)
12687 if (fmt[i] == 'e')
12689 /* Check for identical subexpressions. If x contains
12690 identical subexpression we only have to traverse one of
12691 them. */
12692 if (i == 1 && ARITHMETIC_P (x))
12694 /* Note that at this point x0 has already been checked
12695 and found valid. */
12696 rtx x0 = XEXP (x, 0);
12697 rtx x1 = XEXP (x, 1);
12699 /* If x0 and x1 are identical then x is also valid. */
12700 if (x0 == x1)
12701 return 1;
12703 /* If x1 is identical to a subexpression of x0 then
12704 while checking x0, x1 has already been checked. Thus
12705 it is valid and so as x. */
12706 if (ARITHMETIC_P (x0)
12707 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12708 return 1;
12710 /* If x0 is identical to a subexpression of x1 then x is
12711 valid iff the rest of x1 is valid. */
12712 if (ARITHMETIC_P (x1)
12713 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12714 return
12715 get_last_value_validate (&XEXP (x1,
12716 x0 == XEXP (x1, 0) ? 1 : 0),
12717 insn, tick, replace);
12720 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12721 replace) == 0)
12722 return 0;
12724 else if (fmt[i] == 'E')
12725 for (j = 0; j < XVECLEN (x, i); j++)
12726 if (get_last_value_validate (&XVECEXP (x, i, j),
12727 insn, tick, replace) == 0)
12728 return 0;
12731 /* If we haven't found a reason for it to be invalid, it is valid. */
12732 return 1;
12735 /* Get the last value assigned to X, if known. Some registers
12736 in the value may be replaced with (clobber (const_int 0)) if their value
12737 is known longer known reliably. */
12739 static rtx
12740 get_last_value (const_rtx x)
12742 unsigned int regno;
12743 rtx value;
12744 reg_stat_type *rsp;
12746 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12747 then convert it to the desired mode. If this is a paradoxical SUBREG,
12748 we cannot predict what values the "extra" bits might have. */
12749 if (GET_CODE (x) == SUBREG
12750 && subreg_lowpart_p (x)
12751 && !paradoxical_subreg_p (x)
12752 && (value = get_last_value (SUBREG_REG (x))) != 0)
12753 return gen_lowpart (GET_MODE (x), value);
12755 if (!REG_P (x))
12756 return 0;
12758 regno = REGNO (x);
12759 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12760 value = rsp->last_set_value;
12762 /* If we don't have a value, or if it isn't for this basic block and
12763 it's either a hard register, set more than once, or it's a live
12764 at the beginning of the function, return 0.
12766 Because if it's not live at the beginning of the function then the reg
12767 is always set before being used (is never used without being set).
12768 And, if it's set only once, and it's always set before use, then all
12769 uses must have the same last value, even if it's not from this basic
12770 block. */
12772 if (value == 0
12773 || (rsp->last_set_label < label_tick_ebb_start
12774 && (regno < FIRST_PSEUDO_REGISTER
12775 || REG_N_SETS (regno) != 1
12776 || REGNO_REG_SET_P
12777 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12778 return 0;
12780 /* If the value was set in a later insn than the ones we are processing,
12781 we can't use it even if the register was only set once. */
12782 if (rsp->last_set_label == label_tick
12783 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12784 return 0;
12786 /* If the value has all its registers valid, return it. */
12787 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12788 return value;
12790 /* Otherwise, make a copy and replace any invalid register with
12791 (clobber (const_int 0)). If that fails for some reason, return 0. */
12793 value = copy_rtx (value);
12794 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12795 return value;
12797 return 0;
12800 /* Return nonzero if expression X refers to a REG or to memory
12801 that is set in an instruction more recent than FROM_LUID. */
12803 static int
12804 use_crosses_set_p (const_rtx x, int from_luid)
12806 const char *fmt;
12807 int i;
12808 enum rtx_code code = GET_CODE (x);
12810 if (code == REG)
12812 unsigned int regno = REGNO (x);
12813 unsigned endreg = END_REGNO (x);
12815 #ifdef PUSH_ROUNDING
12816 /* Don't allow uses of the stack pointer to be moved,
12817 because we don't know whether the move crosses a push insn. */
12818 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12819 return 1;
12820 #endif
12821 for (; regno < endreg; regno++)
12823 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12824 if (rsp->last_set
12825 && rsp->last_set_label == label_tick
12826 && DF_INSN_LUID (rsp->last_set) > from_luid)
12827 return 1;
12829 return 0;
12832 if (code == MEM && mem_last_set > from_luid)
12833 return 1;
12835 fmt = GET_RTX_FORMAT (code);
12837 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12839 if (fmt[i] == 'E')
12841 int j;
12842 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12843 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12844 return 1;
12846 else if (fmt[i] == 'e'
12847 && use_crosses_set_p (XEXP (x, i), from_luid))
12848 return 1;
12850 return 0;
12853 /* Define three variables used for communication between the following
12854 routines. */
12856 static unsigned int reg_dead_regno, reg_dead_endregno;
12857 static int reg_dead_flag;
12859 /* Function called via note_stores from reg_dead_at_p.
12861 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12862 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12864 static void
12865 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12867 unsigned int regno, endregno;
12869 if (!REG_P (dest))
12870 return;
12872 regno = REGNO (dest);
12873 endregno = END_REGNO (dest);
12874 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12875 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12878 /* Return nonzero if REG is known to be dead at INSN.
12880 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12881 referencing REG, it is dead. If we hit a SET referencing REG, it is
12882 live. Otherwise, see if it is live or dead at the start of the basic
12883 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12884 must be assumed to be always live. */
12886 static int
12887 reg_dead_at_p (rtx reg, rtx insn)
12889 basic_block block;
12890 unsigned int i;
12892 /* Set variables for reg_dead_at_p_1. */
12893 reg_dead_regno = REGNO (reg);
12894 reg_dead_endregno = END_REGNO (reg);
12896 reg_dead_flag = 0;
12898 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12899 we allow the machine description to decide whether use-and-clobber
12900 patterns are OK. */
12901 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12903 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12904 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12905 return 0;
12908 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12909 beginning of basic block. */
12910 block = BLOCK_FOR_INSN (insn);
12911 for (;;)
12913 if (INSN_P (insn))
12915 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12916 if (reg_dead_flag)
12917 return reg_dead_flag == 1 ? 1 : 0;
12919 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12920 return 1;
12923 if (insn == BB_HEAD (block))
12924 break;
12926 insn = PREV_INSN (insn);
12929 /* Look at live-in sets for the basic block that we were in. */
12930 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12931 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12932 return 0;
12934 return 1;
12937 /* Note hard registers in X that are used. */
12939 static void
12940 mark_used_regs_combine (rtx x)
12942 RTX_CODE code = GET_CODE (x);
12943 unsigned int regno;
12944 int i;
12946 switch (code)
12948 case LABEL_REF:
12949 case SYMBOL_REF:
12950 case CONST_INT:
12951 case CONST:
12952 case CONST_DOUBLE:
12953 case CONST_VECTOR:
12954 case PC:
12955 case ADDR_VEC:
12956 case ADDR_DIFF_VEC:
12957 case ASM_INPUT:
12958 #ifdef HAVE_cc0
12959 /* CC0 must die in the insn after it is set, so we don't need to take
12960 special note of it here. */
12961 case CC0:
12962 #endif
12963 return;
12965 case CLOBBER:
12966 /* If we are clobbering a MEM, mark any hard registers inside the
12967 address as used. */
12968 if (MEM_P (XEXP (x, 0)))
12969 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12970 return;
12972 case REG:
12973 regno = REGNO (x);
12974 /* A hard reg in a wide mode may really be multiple registers.
12975 If so, mark all of them just like the first. */
12976 if (regno < FIRST_PSEUDO_REGISTER)
12978 /* None of this applies to the stack, frame or arg pointers. */
12979 if (regno == STACK_POINTER_REGNUM
12980 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12981 || regno == HARD_FRAME_POINTER_REGNUM
12982 #endif
12983 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12984 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12985 #endif
12986 || regno == FRAME_POINTER_REGNUM)
12987 return;
12989 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12991 return;
12993 case SET:
12995 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12996 the address. */
12997 rtx testreg = SET_DEST (x);
12999 while (GET_CODE (testreg) == SUBREG
13000 || GET_CODE (testreg) == ZERO_EXTRACT
13001 || GET_CODE (testreg) == STRICT_LOW_PART)
13002 testreg = XEXP (testreg, 0);
13004 if (MEM_P (testreg))
13005 mark_used_regs_combine (XEXP (testreg, 0));
13007 mark_used_regs_combine (SET_SRC (x));
13009 return;
13011 default:
13012 break;
13015 /* Recursively scan the operands of this expression. */
13018 const char *fmt = GET_RTX_FORMAT (code);
13020 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13022 if (fmt[i] == 'e')
13023 mark_used_regs_combine (XEXP (x, i));
13024 else if (fmt[i] == 'E')
13026 int j;
13028 for (j = 0; j < XVECLEN (x, i); j++)
13029 mark_used_regs_combine (XVECEXP (x, i, j));
13035 /* Remove register number REGNO from the dead registers list of INSN.
13037 Return the note used to record the death, if there was one. */
13040 remove_death (unsigned int regno, rtx insn)
13042 rtx note = find_regno_note (insn, REG_DEAD, regno);
13044 if (note)
13045 remove_note (insn, note);
13047 return note;
13050 /* For each register (hardware or pseudo) used within expression X, if its
13051 death is in an instruction with luid between FROM_LUID (inclusive) and
13052 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13053 list headed by PNOTES.
13055 That said, don't move registers killed by maybe_kill_insn.
13057 This is done when X is being merged by combination into TO_INSN. These
13058 notes will then be distributed as needed. */
13060 static void
13061 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
13062 rtx *pnotes)
13064 const char *fmt;
13065 int len, i;
13066 enum rtx_code code = GET_CODE (x);
13068 if (code == REG)
13070 unsigned int regno = REGNO (x);
13071 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
13073 /* Don't move the register if it gets killed in between from and to. */
13074 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13075 && ! reg_referenced_p (x, maybe_kill_insn))
13076 return;
13078 if (where_dead
13079 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13080 && DF_INSN_LUID (where_dead) >= from_luid
13081 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13083 rtx note = remove_death (regno, where_dead);
13085 /* It is possible for the call above to return 0. This can occur
13086 when last_death points to I2 or I1 that we combined with.
13087 In that case make a new note.
13089 We must also check for the case where X is a hard register
13090 and NOTE is a death note for a range of hard registers
13091 including X. In that case, we must put REG_DEAD notes for
13092 the remaining registers in place of NOTE. */
13094 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13095 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13096 > GET_MODE_SIZE (GET_MODE (x))))
13098 unsigned int deadregno = REGNO (XEXP (note, 0));
13099 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13100 unsigned int ourend = END_HARD_REGNO (x);
13101 unsigned int i;
13103 for (i = deadregno; i < deadend; i++)
13104 if (i < regno || i >= ourend)
13105 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13108 /* If we didn't find any note, or if we found a REG_DEAD note that
13109 covers only part of the given reg, and we have a multi-reg hard
13110 register, then to be safe we must check for REG_DEAD notes
13111 for each register other than the first. They could have
13112 their own REG_DEAD notes lying around. */
13113 else if ((note == 0
13114 || (note != 0
13115 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13116 < GET_MODE_SIZE (GET_MODE (x)))))
13117 && regno < FIRST_PSEUDO_REGISTER
13118 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13120 unsigned int ourend = END_HARD_REGNO (x);
13121 unsigned int i, offset;
13122 rtx oldnotes = 0;
13124 if (note)
13125 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13126 else
13127 offset = 1;
13129 for (i = regno + offset; i < ourend; i++)
13130 move_deaths (regno_reg_rtx[i],
13131 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13134 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13136 XEXP (note, 1) = *pnotes;
13137 *pnotes = note;
13139 else
13140 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13143 return;
13146 else if (GET_CODE (x) == SET)
13148 rtx dest = SET_DEST (x);
13150 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13152 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13153 that accesses one word of a multi-word item, some
13154 piece of everything register in the expression is used by
13155 this insn, so remove any old death. */
13156 /* ??? So why do we test for equality of the sizes? */
13158 if (GET_CODE (dest) == ZERO_EXTRACT
13159 || GET_CODE (dest) == STRICT_LOW_PART
13160 || (GET_CODE (dest) == SUBREG
13161 && (((GET_MODE_SIZE (GET_MODE (dest))
13162 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13163 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13164 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13166 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13167 return;
13170 /* If this is some other SUBREG, we know it replaces the entire
13171 value, so use that as the destination. */
13172 if (GET_CODE (dest) == SUBREG)
13173 dest = SUBREG_REG (dest);
13175 /* If this is a MEM, adjust deaths of anything used in the address.
13176 For a REG (the only other possibility), the entire value is
13177 being replaced so the old value is not used in this insn. */
13179 if (MEM_P (dest))
13180 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13181 to_insn, pnotes);
13182 return;
13185 else if (GET_CODE (x) == CLOBBER)
13186 return;
13188 len = GET_RTX_LENGTH (code);
13189 fmt = GET_RTX_FORMAT (code);
13191 for (i = 0; i < len; i++)
13193 if (fmt[i] == 'E')
13195 int j;
13196 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13197 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13198 to_insn, pnotes);
13200 else if (fmt[i] == 'e')
13201 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13205 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13206 pattern of an insn. X must be a REG. */
13208 static int
13209 reg_bitfield_target_p (rtx x, rtx body)
13211 int i;
13213 if (GET_CODE (body) == SET)
13215 rtx dest = SET_DEST (body);
13216 rtx target;
13217 unsigned int regno, tregno, endregno, endtregno;
13219 if (GET_CODE (dest) == ZERO_EXTRACT)
13220 target = XEXP (dest, 0);
13221 else if (GET_CODE (dest) == STRICT_LOW_PART)
13222 target = SUBREG_REG (XEXP (dest, 0));
13223 else
13224 return 0;
13226 if (GET_CODE (target) == SUBREG)
13227 target = SUBREG_REG (target);
13229 if (!REG_P (target))
13230 return 0;
13232 tregno = REGNO (target), regno = REGNO (x);
13233 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13234 return target == x;
13236 endtregno = end_hard_regno (GET_MODE (target), tregno);
13237 endregno = end_hard_regno (GET_MODE (x), regno);
13239 return endregno > tregno && regno < endtregno;
13242 else if (GET_CODE (body) == PARALLEL)
13243 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13244 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13245 return 1;
13247 return 0;
13250 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13251 as appropriate. I3 and I2 are the insns resulting from the combination
13252 insns including FROM (I2 may be zero).
13254 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13255 not need REG_DEAD notes because they are being substituted for. This
13256 saves searching in the most common cases.
13258 Each note in the list is either ignored or placed on some insns, depending
13259 on the type of note. */
13261 static void
13262 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13263 rtx elim_i1, rtx elim_i0)
13265 rtx note, next_note;
13266 rtx tem;
13268 for (note = notes; note; note = next_note)
13270 rtx place = 0, place2 = 0;
13272 next_note = XEXP (note, 1);
13273 switch (REG_NOTE_KIND (note))
13275 case REG_BR_PROB:
13276 case REG_BR_PRED:
13277 /* Doesn't matter much where we put this, as long as it's somewhere.
13278 It is preferable to keep these notes on branches, which is most
13279 likely to be i3. */
13280 place = i3;
13281 break;
13283 case REG_NON_LOCAL_GOTO:
13284 if (JUMP_P (i3))
13285 place = i3;
13286 else
13288 gcc_assert (i2 && JUMP_P (i2));
13289 place = i2;
13291 break;
13293 case REG_EH_REGION:
13294 /* These notes must remain with the call or trapping instruction. */
13295 if (CALL_P (i3))
13296 place = i3;
13297 else if (i2 && CALL_P (i2))
13298 place = i2;
13299 else
13301 gcc_assert (cfun->can_throw_non_call_exceptions);
13302 if (may_trap_p (i3))
13303 place = i3;
13304 else if (i2 && may_trap_p (i2))
13305 place = i2;
13306 /* ??? Otherwise assume we've combined things such that we
13307 can now prove that the instructions can't trap. Drop the
13308 note in this case. */
13310 break;
13312 case REG_ARGS_SIZE:
13313 /* ??? How to distribute between i3-i1. Assume i3 contains the
13314 entire adjustment. Assert i3 contains at least some adjust. */
13315 if (!noop_move_p (i3))
13317 int old_size, args_size = INTVAL (XEXP (note, 0));
13318 /* fixup_args_size_notes looks at REG_NORETURN note,
13319 so ensure the note is placed there first. */
13320 if (CALL_P (i3))
13322 rtx *np;
13323 for (np = &next_note; *np; np = &XEXP (*np, 1))
13324 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13326 rtx n = *np;
13327 *np = XEXP (n, 1);
13328 XEXP (n, 1) = REG_NOTES (i3);
13329 REG_NOTES (i3) = n;
13330 break;
13333 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13334 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13335 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13336 gcc_assert (old_size != args_size
13337 || (CALL_P (i3)
13338 && !ACCUMULATE_OUTGOING_ARGS
13339 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13341 break;
13343 case REG_NORETURN:
13344 case REG_SETJMP:
13345 case REG_TM:
13346 /* These notes must remain with the call. It should not be
13347 possible for both I2 and I3 to be a call. */
13348 if (CALL_P (i3))
13349 place = i3;
13350 else
13352 gcc_assert (i2 && CALL_P (i2));
13353 place = i2;
13355 break;
13357 case REG_UNUSED:
13358 /* Any clobbers for i3 may still exist, and so we must process
13359 REG_UNUSED notes from that insn.
13361 Any clobbers from i2 or i1 can only exist if they were added by
13362 recog_for_combine. In that case, recog_for_combine created the
13363 necessary REG_UNUSED notes. Trying to keep any original
13364 REG_UNUSED notes from these insns can cause incorrect output
13365 if it is for the same register as the original i3 dest.
13366 In that case, we will notice that the register is set in i3,
13367 and then add a REG_UNUSED note for the destination of i3, which
13368 is wrong. However, it is possible to have REG_UNUSED notes from
13369 i2 or i1 for register which were both used and clobbered, so
13370 we keep notes from i2 or i1 if they will turn into REG_DEAD
13371 notes. */
13373 /* If this register is set or clobbered in I3, put the note there
13374 unless there is one already. */
13375 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13377 if (from_insn != i3)
13378 break;
13380 if (! (REG_P (XEXP (note, 0))
13381 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13382 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13383 place = i3;
13385 /* Otherwise, if this register is used by I3, then this register
13386 now dies here, so we must put a REG_DEAD note here unless there
13387 is one already. */
13388 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13389 && ! (REG_P (XEXP (note, 0))
13390 ? find_regno_note (i3, REG_DEAD,
13391 REGNO (XEXP (note, 0)))
13392 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13394 PUT_REG_NOTE_KIND (note, REG_DEAD);
13395 place = i3;
13397 break;
13399 case REG_EQUAL:
13400 case REG_EQUIV:
13401 case REG_NOALIAS:
13402 /* These notes say something about results of an insn. We can
13403 only support them if they used to be on I3 in which case they
13404 remain on I3. Otherwise they are ignored.
13406 If the note refers to an expression that is not a constant, we
13407 must also ignore the note since we cannot tell whether the
13408 equivalence is still true. It might be possible to do
13409 slightly better than this (we only have a problem if I2DEST
13410 or I1DEST is present in the expression), but it doesn't
13411 seem worth the trouble. */
13413 if (from_insn == i3
13414 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13415 place = i3;
13416 break;
13418 case REG_INC:
13419 /* These notes say something about how a register is used. They must
13420 be present on any use of the register in I2 or I3. */
13421 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13422 place = i3;
13424 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13426 if (place)
13427 place2 = i2;
13428 else
13429 place = i2;
13431 break;
13433 case REG_LABEL_TARGET:
13434 case REG_LABEL_OPERAND:
13435 /* This can show up in several ways -- either directly in the
13436 pattern, or hidden off in the constant pool with (or without?)
13437 a REG_EQUAL note. */
13438 /* ??? Ignore the without-reg_equal-note problem for now. */
13439 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13440 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13441 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13442 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13443 place = i3;
13445 if (i2
13446 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13447 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13448 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13449 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13451 if (place)
13452 place2 = i2;
13453 else
13454 place = i2;
13457 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13458 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13459 there. */
13460 if (place && JUMP_P (place)
13461 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13462 && (JUMP_LABEL (place) == NULL
13463 || JUMP_LABEL (place) == XEXP (note, 0)))
13465 rtx label = JUMP_LABEL (place);
13467 if (!label)
13468 JUMP_LABEL (place) = XEXP (note, 0);
13469 else if (LABEL_P (label))
13470 LABEL_NUSES (label)--;
13473 if (place2 && JUMP_P (place2)
13474 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13475 && (JUMP_LABEL (place2) == NULL
13476 || JUMP_LABEL (place2) == XEXP (note, 0)))
13478 rtx label = JUMP_LABEL (place2);
13480 if (!label)
13481 JUMP_LABEL (place2) = XEXP (note, 0);
13482 else if (LABEL_P (label))
13483 LABEL_NUSES (label)--;
13484 place2 = 0;
13486 break;
13488 case REG_NONNEG:
13489 /* This note says something about the value of a register prior
13490 to the execution of an insn. It is too much trouble to see
13491 if the note is still correct in all situations. It is better
13492 to simply delete it. */
13493 break;
13495 case REG_DEAD:
13496 /* If we replaced the right hand side of FROM_INSN with a
13497 REG_EQUAL note, the original use of the dying register
13498 will not have been combined into I3 and I2. In such cases,
13499 FROM_INSN is guaranteed to be the first of the combined
13500 instructions, so we simply need to search back before
13501 FROM_INSN for the previous use or set of this register,
13502 then alter the notes there appropriately.
13504 If the register is used as an input in I3, it dies there.
13505 Similarly for I2, if it is nonzero and adjacent to I3.
13507 If the register is not used as an input in either I3 or I2
13508 and it is not one of the registers we were supposed to eliminate,
13509 there are two possibilities. We might have a non-adjacent I2
13510 or we might have somehow eliminated an additional register
13511 from a computation. For example, we might have had A & B where
13512 we discover that B will always be zero. In this case we will
13513 eliminate the reference to A.
13515 In both cases, we must search to see if we can find a previous
13516 use of A and put the death note there. */
13518 if (from_insn
13519 && from_insn == i2mod
13520 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13521 tem = from_insn;
13522 else
13524 if (from_insn
13525 && CALL_P (from_insn)
13526 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13527 place = from_insn;
13528 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13529 place = i3;
13530 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13531 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13532 place = i2;
13533 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13534 && !(i2mod
13535 && reg_overlap_mentioned_p (XEXP (note, 0),
13536 i2mod_old_rhs)))
13537 || rtx_equal_p (XEXP (note, 0), elim_i1)
13538 || rtx_equal_p (XEXP (note, 0), elim_i0))
13539 break;
13540 tem = i3;
13543 if (place == 0)
13545 basic_block bb = this_basic_block;
13547 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13549 if (!NONDEBUG_INSN_P (tem))
13551 if (tem == BB_HEAD (bb))
13552 break;
13553 continue;
13556 /* If the register is being set at TEM, see if that is all
13557 TEM is doing. If so, delete TEM. Otherwise, make this
13558 into a REG_UNUSED note instead. Don't delete sets to
13559 global register vars. */
13560 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13561 || !global_regs[REGNO (XEXP (note, 0))])
13562 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13564 rtx set = single_set (tem);
13565 rtx inner_dest = 0;
13566 #ifdef HAVE_cc0
13567 rtx cc0_setter = NULL_RTX;
13568 #endif
13570 if (set != 0)
13571 for (inner_dest = SET_DEST (set);
13572 (GET_CODE (inner_dest) == STRICT_LOW_PART
13573 || GET_CODE (inner_dest) == SUBREG
13574 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13575 inner_dest = XEXP (inner_dest, 0))
13578 /* Verify that it was the set, and not a clobber that
13579 modified the register.
13581 CC0 targets must be careful to maintain setter/user
13582 pairs. If we cannot delete the setter due to side
13583 effects, mark the user with an UNUSED note instead
13584 of deleting it. */
13586 if (set != 0 && ! side_effects_p (SET_SRC (set))
13587 && rtx_equal_p (XEXP (note, 0), inner_dest)
13588 #ifdef HAVE_cc0
13589 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13590 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13591 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13592 #endif
13595 /* Move the notes and links of TEM elsewhere.
13596 This might delete other dead insns recursively.
13597 First set the pattern to something that won't use
13598 any register. */
13599 rtx old_notes = REG_NOTES (tem);
13601 PATTERN (tem) = pc_rtx;
13602 REG_NOTES (tem) = NULL;
13604 distribute_notes (old_notes, tem, tem, NULL_RTX,
13605 NULL_RTX, NULL_RTX, NULL_RTX);
13606 distribute_links (LOG_LINKS (tem));
13608 SET_INSN_DELETED (tem);
13609 if (tem == i2)
13610 i2 = NULL_RTX;
13612 #ifdef HAVE_cc0
13613 /* Delete the setter too. */
13614 if (cc0_setter)
13616 PATTERN (cc0_setter) = pc_rtx;
13617 old_notes = REG_NOTES (cc0_setter);
13618 REG_NOTES (cc0_setter) = NULL;
13620 distribute_notes (old_notes, cc0_setter,
13621 cc0_setter, NULL_RTX,
13622 NULL_RTX, NULL_RTX, NULL_RTX);
13623 distribute_links (LOG_LINKS (cc0_setter));
13625 SET_INSN_DELETED (cc0_setter);
13626 if (cc0_setter == i2)
13627 i2 = NULL_RTX;
13629 #endif
13631 else
13633 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13635 /* If there isn't already a REG_UNUSED note, put one
13636 here. Do not place a REG_DEAD note, even if
13637 the register is also used here; that would not
13638 match the algorithm used in lifetime analysis
13639 and can cause the consistency check in the
13640 scheduler to fail. */
13641 if (! find_regno_note (tem, REG_UNUSED,
13642 REGNO (XEXP (note, 0))))
13643 place = tem;
13644 break;
13647 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13648 || (CALL_P (tem)
13649 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13651 place = tem;
13653 /* If we are doing a 3->2 combination, and we have a
13654 register which formerly died in i3 and was not used
13655 by i2, which now no longer dies in i3 and is used in
13656 i2 but does not die in i2, and place is between i2
13657 and i3, then we may need to move a link from place to
13658 i2. */
13659 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13660 && from_insn
13661 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13662 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13664 struct insn_link *links = LOG_LINKS (place);
13665 LOG_LINKS (place) = NULL;
13666 distribute_links (links);
13668 break;
13671 if (tem == BB_HEAD (bb))
13672 break;
13677 /* If the register is set or already dead at PLACE, we needn't do
13678 anything with this note if it is still a REG_DEAD note.
13679 We check here if it is set at all, not if is it totally replaced,
13680 which is what `dead_or_set_p' checks, so also check for it being
13681 set partially. */
13683 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13685 unsigned int regno = REGNO (XEXP (note, 0));
13686 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13688 if (dead_or_set_p (place, XEXP (note, 0))
13689 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13691 /* Unless the register previously died in PLACE, clear
13692 last_death. [I no longer understand why this is
13693 being done.] */
13694 if (rsp->last_death != place)
13695 rsp->last_death = 0;
13696 place = 0;
13698 else
13699 rsp->last_death = place;
13701 /* If this is a death note for a hard reg that is occupying
13702 multiple registers, ensure that we are still using all
13703 parts of the object. If we find a piece of the object
13704 that is unused, we must arrange for an appropriate REG_DEAD
13705 note to be added for it. However, we can't just emit a USE
13706 and tag the note to it, since the register might actually
13707 be dead; so we recourse, and the recursive call then finds
13708 the previous insn that used this register. */
13710 if (place && regno < FIRST_PSEUDO_REGISTER
13711 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13713 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13714 int all_used = 1;
13715 unsigned int i;
13717 for (i = regno; i < endregno; i++)
13718 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13719 && ! find_regno_fusage (place, USE, i))
13720 || dead_or_set_regno_p (place, i))
13721 all_used = 0;
13723 if (! all_used)
13725 /* Put only REG_DEAD notes for pieces that are
13726 not already dead or set. */
13728 for (i = regno; i < endregno;
13729 i += hard_regno_nregs[i][reg_raw_mode[i]])
13731 rtx piece = regno_reg_rtx[i];
13732 basic_block bb = this_basic_block;
13734 if (! dead_or_set_p (place, piece)
13735 && ! reg_bitfield_target_p (piece,
13736 PATTERN (place)))
13738 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13739 NULL_RTX);
13741 distribute_notes (new_note, place, place,
13742 NULL_RTX, NULL_RTX, NULL_RTX,
13743 NULL_RTX);
13745 else if (! refers_to_regno_p (i, i + 1,
13746 PATTERN (place), 0)
13747 && ! find_regno_fusage (place, USE, i))
13748 for (tem = PREV_INSN (place); ;
13749 tem = PREV_INSN (tem))
13751 if (!NONDEBUG_INSN_P (tem))
13753 if (tem == BB_HEAD (bb))
13754 break;
13755 continue;
13757 if (dead_or_set_p (tem, piece)
13758 || reg_bitfield_target_p (piece,
13759 PATTERN (tem)))
13761 add_reg_note (tem, REG_UNUSED, piece);
13762 break;
13768 place = 0;
13772 break;
13774 default:
13775 /* Any other notes should not be present at this point in the
13776 compilation. */
13777 gcc_unreachable ();
13780 if (place)
13782 XEXP (note, 1) = REG_NOTES (place);
13783 REG_NOTES (place) = note;
13786 if (place2)
13787 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13791 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13792 I3, I2, and I1 to new locations. This is also called to add a link
13793 pointing at I3 when I3's destination is changed. */
13795 static void
13796 distribute_links (struct insn_link *links)
13798 struct insn_link *link, *next_link;
13800 for (link = links; link; link = next_link)
13802 rtx place = 0;
13803 rtx insn;
13804 rtx set, reg;
13806 next_link = link->next;
13808 /* If the insn that this link points to is a NOTE or isn't a single
13809 set, ignore it. In the latter case, it isn't clear what we
13810 can do other than ignore the link, since we can't tell which
13811 register it was for. Such links wouldn't be used by combine
13812 anyway.
13814 It is not possible for the destination of the target of the link to
13815 have been changed by combine. The only potential of this is if we
13816 replace I3, I2, and I1 by I3 and I2. But in that case the
13817 destination of I2 also remains unchanged. */
13819 if (NOTE_P (link->insn)
13820 || (set = single_set (link->insn)) == 0)
13821 continue;
13823 reg = SET_DEST (set);
13824 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13825 || GET_CODE (reg) == STRICT_LOW_PART)
13826 reg = XEXP (reg, 0);
13828 /* A LOG_LINK is defined as being placed on the first insn that uses
13829 a register and points to the insn that sets the register. Start
13830 searching at the next insn after the target of the link and stop
13831 when we reach a set of the register or the end of the basic block.
13833 Note that this correctly handles the link that used to point from
13834 I3 to I2. Also note that not much searching is typically done here
13835 since most links don't point very far away. */
13837 for (insn = NEXT_INSN (link->insn);
13838 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13839 || BB_HEAD (this_basic_block->next_bb) != insn));
13840 insn = NEXT_INSN (insn))
13841 if (DEBUG_INSN_P (insn))
13842 continue;
13843 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13845 if (reg_referenced_p (reg, PATTERN (insn)))
13846 place = insn;
13847 break;
13849 else if (CALL_P (insn)
13850 && find_reg_fusage (insn, USE, reg))
13852 place = insn;
13853 break;
13855 else if (INSN_P (insn) && reg_set_p (reg, insn))
13856 break;
13858 /* If we found a place to put the link, place it there unless there
13859 is already a link to the same insn as LINK at that point. */
13861 if (place)
13863 struct insn_link *link2;
13865 FOR_EACH_LOG_LINK (link2, place)
13866 if (link2->insn == link->insn)
13867 break;
13869 if (link2 == NULL)
13871 link->next = LOG_LINKS (place);
13872 LOG_LINKS (place) = link;
13874 /* Set added_links_insn to the earliest insn we added a
13875 link to. */
13876 if (added_links_insn == 0
13877 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13878 added_links_insn = place;
13884 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13885 Check whether the expression pointer to by LOC is a register or
13886 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13887 Otherwise return zero. */
13889 static int
13890 unmentioned_reg_p_1 (rtx *loc, void *expr)
13892 rtx x = *loc;
13894 if (x != NULL_RTX
13895 && (REG_P (x) || MEM_P (x))
13896 && ! reg_mentioned_p (x, (rtx) expr))
13897 return 1;
13898 return 0;
13901 /* Check for any register or memory mentioned in EQUIV that is not
13902 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13903 of EXPR where some registers may have been replaced by constants. */
13905 static bool
13906 unmentioned_reg_p (rtx equiv, rtx expr)
13908 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13911 DEBUG_FUNCTION void
13912 dump_combine_stats (FILE *file)
13914 fprintf
13915 (file,
13916 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13917 combine_attempts, combine_merges, combine_extras, combine_successes);
13920 void
13921 dump_combine_total_stats (FILE *file)
13923 fprintf
13924 (file,
13925 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13926 total_attempts, total_merges, total_extras, total_successes);
13929 static bool
13930 gate_handle_combine (void)
13932 return (optimize > 0);
13935 /* Try combining insns through substitution. */
13936 static unsigned int
13937 rest_of_handle_combine (void)
13939 int rebuild_jump_labels_after_combine;
13941 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13942 df_note_add_problem ();
13943 df_analyze ();
13945 regstat_init_n_sets_and_refs ();
13947 rebuild_jump_labels_after_combine
13948 = combine_instructions (get_insns (), max_reg_num ());
13950 /* Combining insns may have turned an indirect jump into a
13951 direct jump. Rebuild the JUMP_LABEL fields of jumping
13952 instructions. */
13953 if (rebuild_jump_labels_after_combine)
13955 timevar_push (TV_JUMP);
13956 rebuild_jump_labels (get_insns ());
13957 cleanup_cfg (0);
13958 timevar_pop (TV_JUMP);
13961 regstat_free_n_sets_and_refs ();
13962 return 0;
13965 struct rtl_opt_pass pass_combine =
13968 RTL_PASS,
13969 "combine", /* name */
13970 gate_handle_combine, /* gate */
13971 rest_of_handle_combine, /* execute */
13972 NULL, /* sub */
13973 NULL, /* next */
13974 0, /* static_pass_number */
13975 TV_COMBINE, /* tv_id */
13976 PROP_cfglayout, /* properties_required */
13977 0, /* properties_provided */
13978 0, /* properties_destroyed */
13979 0, /* todo_flags_start */
13980 TODO_df_finish | TODO_verify_rtl_sharing |
13981 TODO_ggc_collect, /* todo_flags_finish */