1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
38 #include "diagnostic.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
45 #include "insn-attr.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
52 #include "optabs-tree.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-ssa-live.h"
58 #include "tree-outof-ssa.h"
59 #include "tree-ssa-address.h"
61 #include "tree-chkp.h"
64 #include "rtx-vector-builder.h"
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
77 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
78 unsigned HOST_WIDE_INT
);
79 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
80 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
81 static rtx_insn
*compress_float_constant (rtx
, rtx
);
82 static rtx
get_subtarget (rtx
);
83 static void store_constructor (tree
, rtx
, int, poly_int64
, bool);
84 static rtx
store_field (rtx
, poly_int64
, poly_int64
, poly_uint64
, poly_uint64
,
85 machine_mode
, tree
, alias_set_type
, bool, bool);
87 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
89 static int is_aligning_offset (const_tree
, const_tree
);
90 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
91 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
93 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
95 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
,
97 static rtx
const_vector_from_tree (tree
);
98 static rtx
const_scalar_mask_from_tree (scalar_int_mode
, tree
);
99 static tree
tree_expr_size (const_tree
);
100 static HOST_WIDE_INT
int_expr_size (tree
);
101 static void convert_mode_scalar (rtx
, rtx
, int);
104 /* This is run to set up which modes can be used
105 directly in memory and to initialize the block move optab. It is run
106 at the beginning of compilation and when the target is reinitialized. */
109 init_expr_target (void)
116 /* Try indexing by frame ptr and try by stack ptr.
117 It is known that on the Convex the stack ptr isn't a valid index.
118 With luck, one or the other is valid on any machine. */
119 mem
= gen_rtx_MEM (word_mode
, stack_pointer_rtx
);
120 mem1
= gen_rtx_MEM (word_mode
, frame_pointer_rtx
);
122 /* A scratch register we can modify in-place below to avoid
123 useless RTL allocations. */
124 reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
126 rtx_insn
*insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
127 pat
= gen_rtx_SET (NULL_RTX
, NULL_RTX
);
128 PATTERN (insn
) = pat
;
130 for (machine_mode mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
131 mode
= (machine_mode
) ((int) mode
+ 1))
135 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
136 PUT_MODE (mem
, mode
);
137 PUT_MODE (mem1
, mode
);
139 /* See if there is some register that can be used in this mode and
140 directly loaded or stored from memory. */
142 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
143 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
144 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
147 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
150 set_mode_and_regno (reg
, mode
, regno
);
153 SET_DEST (pat
) = reg
;
154 if (recog (pat
, insn
, &num_clobbers
) >= 0)
155 direct_load
[(int) mode
] = 1;
157 SET_SRC (pat
) = mem1
;
158 SET_DEST (pat
) = reg
;
159 if (recog (pat
, insn
, &num_clobbers
) >= 0)
160 direct_load
[(int) mode
] = 1;
163 SET_DEST (pat
) = mem
;
164 if (recog (pat
, insn
, &num_clobbers
) >= 0)
165 direct_store
[(int) mode
] = 1;
168 SET_DEST (pat
) = mem1
;
169 if (recog (pat
, insn
, &num_clobbers
) >= 0)
170 direct_store
[(int) mode
] = 1;
174 mem
= gen_rtx_MEM (VOIDmode
, gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 1));
176 opt_scalar_float_mode mode_iter
;
177 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_FLOAT
)
179 scalar_float_mode mode
= mode_iter
.require ();
180 scalar_float_mode srcmode
;
181 FOR_EACH_MODE_UNTIL (srcmode
, mode
)
185 ic
= can_extend_p (mode
, srcmode
, 0);
186 if (ic
== CODE_FOR_nothing
)
189 PUT_MODE (mem
, srcmode
);
191 if (insn_operand_matches (ic
, 1, mem
))
192 float_extend_from_mem
[mode
][srcmode
] = true;
197 /* This is run at the start of compiling a function. */
202 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
205 /* Copy data from FROM to TO, where the machine modes are not the same.
206 Both modes may be integer, or both may be floating, or both may be
208 UNSIGNEDP should be nonzero if FROM is an unsigned type.
209 This causes zero-extension instead of sign-extension. */
212 convert_move (rtx to
, rtx from
, int unsignedp
)
214 machine_mode to_mode
= GET_MODE (to
);
215 machine_mode from_mode
= GET_MODE (from
);
217 gcc_assert (to_mode
!= BLKmode
);
218 gcc_assert (from_mode
!= BLKmode
);
220 /* If the source and destination are already the same, then there's
225 /* If FROM is a SUBREG that indicates that we have already done at least
226 the required extension, strip it. We don't handle such SUBREGs as
229 scalar_int_mode to_int_mode
;
230 if (GET_CODE (from
) == SUBREG
231 && SUBREG_PROMOTED_VAR_P (from
)
232 && is_a
<scalar_int_mode
> (to_mode
, &to_int_mode
)
233 && (GET_MODE_PRECISION (subreg_promoted_mode (from
))
234 >= GET_MODE_PRECISION (to_int_mode
))
235 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
236 from
= gen_lowpart (to_int_mode
, from
), from_mode
= to_int_mode
;
238 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
240 if (to_mode
== from_mode
241 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
243 emit_move_insn (to
, from
);
247 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
249 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode
),
250 GET_MODE_BITSIZE (to_mode
)));
252 if (VECTOR_MODE_P (to_mode
))
253 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
255 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
257 emit_move_insn (to
, from
);
261 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
263 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
264 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
268 convert_mode_scalar (to
, from
, unsignedp
);
271 /* Like convert_move, but deals only with scalar modes. */
274 convert_mode_scalar (rtx to
, rtx from
, int unsignedp
)
276 /* Both modes should be scalar types. */
277 scalar_mode from_mode
= as_a
<scalar_mode
> (GET_MODE (from
));
278 scalar_mode to_mode
= as_a
<scalar_mode
> (GET_MODE (to
));
279 bool to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
280 bool from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
284 gcc_assert (to_real
== from_real
);
286 /* rtx code for making an equivalent value. */
287 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
288 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
296 gcc_assert ((GET_MODE_PRECISION (from_mode
)
297 != GET_MODE_PRECISION (to_mode
))
298 || (DECIMAL_FLOAT_MODE_P (from_mode
)
299 != DECIMAL_FLOAT_MODE_P (to_mode
)));
301 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
302 /* Conversion between decimal float and binary float, same size. */
303 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
304 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
309 /* Try converting directly if the insn is supported. */
311 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
312 if (code
!= CODE_FOR_nothing
)
314 emit_unop_insn (code
, to
, from
,
315 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
319 /* Otherwise use a libcall. */
320 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
322 /* Is this conversion implemented yet? */
323 gcc_assert (libcall
);
326 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
328 insns
= get_insns ();
330 emit_libcall_block (insns
, to
, value
,
331 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
333 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
337 /* Handle pointer conversion. */ /* SPEE 900220. */
338 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
342 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
349 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
352 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
358 /* Targets are expected to provide conversion insns between PxImode and
359 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
360 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
362 scalar_int_mode full_mode
363 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode
));
365 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
366 != CODE_FOR_nothing
);
368 if (full_mode
!= from_mode
)
369 from
= convert_to_mode (full_mode
, from
, unsignedp
);
370 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
374 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
377 scalar_int_mode full_mode
378 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode
));
379 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
380 enum insn_code icode
;
382 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
383 gcc_assert (icode
!= CODE_FOR_nothing
);
385 if (to_mode
== full_mode
)
387 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
391 new_from
= gen_reg_rtx (full_mode
);
392 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
394 /* else proceed to integer conversions below. */
395 from_mode
= full_mode
;
399 /* Make sure both are fixed-point modes or both are not. */
400 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
401 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
402 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
404 /* If we widen from_mode to to_mode and they are in the same class,
405 we won't saturate the result.
406 Otherwise, always saturate the result to play safe. */
407 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
408 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
409 expand_fixed_convert (to
, from
, 0, 0);
411 expand_fixed_convert (to
, from
, 0, 1);
415 /* Now both modes are integers. */
417 /* Handle expanding beyond a word. */
418 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
419 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
426 scalar_mode lowpart_mode
;
427 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
429 /* Try converting directly if the insn is supported. */
430 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
433 /* If FROM is a SUBREG, put it into a register. Do this
434 so that we always generate the same set of insns for
435 better cse'ing; if an intermediate assignment occurred,
436 we won't be doing the operation directly on the SUBREG. */
437 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
438 from
= force_reg (from_mode
, from
);
439 emit_unop_insn (code
, to
, from
, equiv_code
);
442 /* Next, try converting via full word. */
443 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
444 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
445 != CODE_FOR_nothing
))
447 rtx word_to
= gen_reg_rtx (word_mode
);
450 if (reg_overlap_mentioned_p (to
, from
))
451 from
= force_reg (from_mode
, from
);
454 convert_move (word_to
, from
, unsignedp
);
455 emit_unop_insn (code
, to
, word_to
, equiv_code
);
459 /* No special multiword conversion insn; do it by hand. */
462 /* Since we will turn this into a no conflict block, we must ensure
463 the source does not overlap the target so force it into an isolated
464 register when maybe so. Likewise for any MEM input, since the
465 conversion sequence might require several references to it and we
466 must ensure we're getting the same value every time. */
468 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
469 from
= force_reg (from_mode
, from
);
471 /* Get a copy of FROM widened to a word, if necessary. */
472 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
473 lowpart_mode
= word_mode
;
475 lowpart_mode
= from_mode
;
477 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
479 lowpart
= gen_lowpart (lowpart_mode
, to
);
480 emit_move_insn (lowpart
, lowfrom
);
482 /* Compute the value to put in each remaining word. */
484 fill_value
= const0_rtx
;
486 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
487 LT
, lowfrom
, const0_rtx
,
488 lowpart_mode
, 0, -1);
490 /* Fill the remaining words. */
491 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
493 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
494 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
496 gcc_assert (subword
);
498 if (fill_value
!= subword
)
499 emit_move_insn (subword
, fill_value
);
502 insns
= get_insns ();
509 /* Truncating multi-word to a word or less. */
510 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
511 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
514 && ! MEM_VOLATILE_P (from
)
515 && direct_load
[(int) to_mode
]
516 && ! mode_dependent_address_p (XEXP (from
, 0),
517 MEM_ADDR_SPACE (from
)))
519 || GET_CODE (from
) == SUBREG
))
520 from
= force_reg (from_mode
, from
);
521 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
525 /* Now follow all the conversions between integers
526 no more than a word long. */
528 /* For truncation, usually we can just refer to FROM in a narrower mode. */
529 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
530 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
533 && ! MEM_VOLATILE_P (from
)
534 && direct_load
[(int) to_mode
]
535 && ! mode_dependent_address_p (XEXP (from
, 0),
536 MEM_ADDR_SPACE (from
)))
538 || GET_CODE (from
) == SUBREG
))
539 from
= force_reg (from_mode
, from
);
540 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
541 && !targetm
.hard_regno_mode_ok (REGNO (from
), to_mode
))
542 from
= copy_to_reg (from
);
543 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
547 /* Handle extension. */
548 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
550 /* Convert directly if that works. */
551 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
554 emit_unop_insn (code
, to
, from
, equiv_code
);
559 scalar_mode intermediate
;
563 /* Search for a mode to convert via. */
564 opt_scalar_mode intermediate_iter
;
565 FOR_EACH_MODE_FROM (intermediate_iter
, from_mode
)
567 scalar_mode intermediate
= intermediate_iter
.require ();
568 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
570 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
571 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
,
573 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
574 != CODE_FOR_nothing
))
576 convert_move (to
, convert_to_mode (intermediate
, from
,
577 unsignedp
), unsignedp
);
582 /* No suitable intermediate mode.
583 Generate what we need with shifts. */
584 shift_amount
= (GET_MODE_PRECISION (to_mode
)
585 - GET_MODE_PRECISION (from_mode
));
586 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
587 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
589 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
592 emit_move_insn (to
, tmp
);
597 /* Support special truncate insns for certain modes. */
598 if (convert_optab_handler (trunc_optab
, to_mode
,
599 from_mode
) != CODE_FOR_nothing
)
601 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
606 /* Handle truncation of volatile memrefs, and so on;
607 the things that couldn't be truncated directly,
608 and for which there was no special instruction.
610 ??? Code above formerly short-circuited this, for most integer
611 mode pairs, with a force_reg in from_mode followed by a recursive
612 call to this routine. Appears always to have been wrong. */
613 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
615 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
616 emit_move_insn (to
, temp
);
620 /* Mode combination is not recognized. */
624 /* Return an rtx for a value that would result
625 from converting X to mode MODE.
626 Both X and MODE may be floating, or both integer.
627 UNSIGNEDP is nonzero if X is an unsigned value.
628 This can be done by referring to a part of X in place
629 or by copying to a new temporary with conversion. */
632 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
634 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
637 /* Return an rtx for a value that would result
638 from converting X from mode OLDMODE to mode MODE.
639 Both modes may be floating, or both integer.
640 UNSIGNEDP is nonzero if X is an unsigned value.
642 This can be done by referring to a part of X in place
643 or by copying to a new temporary with conversion.
645 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
648 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
651 scalar_int_mode int_mode
;
653 /* If FROM is a SUBREG that indicates that we have already done at least
654 the required extension, strip it. */
656 if (GET_CODE (x
) == SUBREG
657 && SUBREG_PROMOTED_VAR_P (x
)
658 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
659 && (GET_MODE_PRECISION (subreg_promoted_mode (x
))
660 >= GET_MODE_PRECISION (int_mode
))
661 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
662 x
= gen_lowpart (int_mode
, SUBREG_REG (x
));
664 if (GET_MODE (x
) != VOIDmode
)
665 oldmode
= GET_MODE (x
);
670 if (CONST_SCALAR_INT_P (x
)
671 && is_int_mode (mode
, &int_mode
))
673 /* If the caller did not tell us the old mode, then there is not
674 much to do with respect to canonicalization. We have to
675 assume that all the bits are significant. */
676 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
677 oldmode
= MAX_MODE_INT
;
678 wide_int w
= wide_int::from (rtx_mode_t (x
, oldmode
),
679 GET_MODE_PRECISION (int_mode
),
680 unsignedp
? UNSIGNED
: SIGNED
);
681 return immed_wide_int_const (w
, int_mode
);
684 /* We can do this with a gen_lowpart if both desired and current modes
685 are integer, and this is either a constant integer, a register, or a
687 scalar_int_mode int_oldmode
;
688 if (is_int_mode (mode
, &int_mode
)
689 && is_int_mode (oldmode
, &int_oldmode
)
690 && GET_MODE_PRECISION (int_mode
) <= GET_MODE_PRECISION (int_oldmode
)
691 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) int_mode
])
692 || CONST_POLY_INT_P (x
)
694 && (!HARD_REGISTER_P (x
)
695 || targetm
.hard_regno_mode_ok (REGNO (x
), int_mode
))
696 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode
, GET_MODE (x
)))))
697 return gen_lowpart (int_mode
, x
);
699 /* Converting from integer constant into mode is always equivalent to an
701 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
703 gcc_assert (known_eq (GET_MODE_BITSIZE (mode
),
704 GET_MODE_BITSIZE (oldmode
)));
705 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
708 temp
= gen_reg_rtx (mode
);
709 convert_move (temp
, x
, unsignedp
);
713 /* Return the largest alignment we can use for doing a move (or store)
714 of MAX_PIECES. ALIGN is the largest alignment we could use. */
717 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
719 scalar_int_mode tmode
720 = int_mode_for_size (max_pieces
* BITS_PER_UNIT
, 1).require ();
722 if (align
>= GET_MODE_ALIGNMENT (tmode
))
723 align
= GET_MODE_ALIGNMENT (tmode
);
726 scalar_int_mode xmode
= NARROWEST_INT_MODE
;
727 opt_scalar_int_mode mode_iter
;
728 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
730 tmode
= mode_iter
.require ();
731 if (GET_MODE_SIZE (tmode
) > max_pieces
732 || targetm
.slow_unaligned_access (tmode
, align
))
737 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
743 /* Return the widest integer mode that is narrower than SIZE bytes. */
745 static scalar_int_mode
746 widest_int_mode_for_size (unsigned int size
)
748 scalar_int_mode result
= NARROWEST_INT_MODE
;
750 gcc_checking_assert (size
> 1);
752 opt_scalar_int_mode tmode
;
753 FOR_EACH_MODE_IN_CLASS (tmode
, MODE_INT
)
754 if (GET_MODE_SIZE (tmode
.require ()) < size
)
755 result
= tmode
.require ();
760 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
761 and should be performed piecewise. */
764 can_do_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
,
765 enum by_pieces_operation op
)
767 return targetm
.use_by_pieces_infrastructure_p (len
, align
, op
,
768 optimize_insn_for_speed_p ());
771 /* Determine whether the LEN bytes can be moved by using several move
772 instructions. Return nonzero if a call to move_by_pieces should
776 can_move_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
)
778 return can_do_by_pieces (len
, align
, MOVE_BY_PIECES
);
781 /* Return number of insns required to perform operation OP by pieces
782 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
784 unsigned HOST_WIDE_INT
785 by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
786 unsigned int max_size
, by_pieces_operation op
)
788 unsigned HOST_WIDE_INT n_insns
= 0;
790 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
792 while (max_size
> 1 && l
> 0)
794 scalar_int_mode mode
= widest_int_mode_for_size (max_size
);
795 enum insn_code icode
;
797 unsigned int modesize
= GET_MODE_SIZE (mode
);
799 icode
= optab_handler (mov_optab
, mode
);
800 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
802 unsigned HOST_WIDE_INT n_pieces
= l
/ modesize
;
810 case COMPARE_BY_PIECES
:
811 int batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
812 int batch_ops
= 4 * batch
- 1;
813 unsigned HOST_WIDE_INT full
= n_pieces
/ batch
;
814 n_insns
+= full
* batch_ops
;
815 if (n_pieces
% batch
!= 0)
828 /* Used when performing piecewise block operations, holds information
829 about one of the memory objects involved. The member functions
830 can be used to generate code for loading from the object and
831 updating the address when iterating. */
835 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
838 /* The address of the object. Can differ from that seen in the
839 MEM rtx if we copied the address to a register. */
841 /* Nonzero if the address on the object has an autoincrement already,
842 signifies whether that was an increment or decrement. */
843 signed char m_addr_inc
;
844 /* Nonzero if we intend to use autoinc without the address already
845 having autoinc form. We will insert add insns around each memory
846 reference, expecting later passes to form autoinc addressing modes.
847 The only supported options are predecrement and postincrement. */
848 signed char m_explicit_inc
;
849 /* True if we have either of the two possible cases of using
852 /* True if this is an address to be used for load operations rather
856 /* Optionally, a function to obtain constants for any given offset into
857 the objects, and data associated with it. */
858 by_pieces_constfn m_constfn
;
861 pieces_addr (rtx
, bool, by_pieces_constfn
, void *);
862 rtx
adjust (scalar_int_mode
, HOST_WIDE_INT
);
863 void increment_address (HOST_WIDE_INT
);
864 void maybe_predec (HOST_WIDE_INT
);
865 void maybe_postinc (HOST_WIDE_INT
);
866 void decide_autoinc (machine_mode
, bool, HOST_WIDE_INT
);
873 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
874 true if the operation to be performed on this object is a load
875 rather than a store. For stores, OBJ can be NULL, in which case we
876 assume the operation is a stack push. For loads, the optional
877 CONSTFN and its associated CFNDATA can be used in place of the
880 pieces_addr::pieces_addr (rtx obj
, bool is_load
, by_pieces_constfn constfn
,
882 : m_obj (obj
), m_is_load (is_load
), m_constfn (constfn
), m_cfndata (cfndata
)
888 rtx addr
= XEXP (obj
, 0);
889 rtx_code code
= GET_CODE (addr
);
891 bool dec
= code
== PRE_DEC
|| code
== POST_DEC
;
892 bool inc
= code
== PRE_INC
|| code
== POST_INC
;
895 m_addr_inc
= dec
? -1 : 1;
897 /* While we have always looked for these codes here, the code
898 implementing the memory operation has never handled them.
899 Support could be added later if necessary or beneficial. */
900 gcc_assert (code
!= PRE_INC
&& code
!= POST_DEC
);
908 if (STACK_GROWS_DOWNWARD
)
914 gcc_assert (constfn
!= NULL
);
918 gcc_assert (is_load
);
921 /* Decide whether to use autoinc for an address involved in a memory op.
922 MODE is the mode of the accesses, REVERSE is true if we've decided to
923 perform the operation starting from the end, and LEN is the length of
924 the operation. Don't override an earlier decision to set m_auto. */
927 pieces_addr::decide_autoinc (machine_mode
ARG_UNUSED (mode
), bool reverse
,
930 if (m_auto
|| m_obj
== NULL_RTX
)
933 bool use_predec
= (m_is_load
934 ? USE_LOAD_PRE_DECREMENT (mode
)
935 : USE_STORE_PRE_DECREMENT (mode
));
936 bool use_postinc
= (m_is_load
937 ? USE_LOAD_POST_INCREMENT (mode
)
938 : USE_STORE_POST_INCREMENT (mode
));
939 machine_mode addr_mode
= get_address_mode (m_obj
);
941 if (use_predec
&& reverse
)
943 m_addr
= copy_to_mode_reg (addr_mode
,
944 plus_constant (addr_mode
,
949 else if (use_postinc
&& !reverse
)
951 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
955 else if (CONSTANT_P (m_addr
))
956 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
959 /* Adjust the address to refer to the data at OFFSET in MODE. If we
960 are using autoincrement for this address, we don't add the offset,
961 but we still modify the MEM's properties. */
964 pieces_addr::adjust (scalar_int_mode mode
, HOST_WIDE_INT offset
)
967 return m_constfn (m_cfndata
, offset
, mode
);
968 if (m_obj
== NULL_RTX
)
971 return adjust_automodify_address (m_obj
, mode
, m_addr
, offset
);
973 return adjust_address (m_obj
, mode
, offset
);
976 /* Emit an add instruction to increment the address by SIZE. */
979 pieces_addr::increment_address (HOST_WIDE_INT size
)
981 rtx amount
= gen_int_mode (size
, GET_MODE (m_addr
));
982 emit_insn (gen_add2_insn (m_addr
, amount
));
985 /* If we are supposed to decrement the address after each access, emit code
986 to do so now. Increment by SIZE (which has should have the correct sign
990 pieces_addr::maybe_predec (HOST_WIDE_INT size
)
992 if (m_explicit_inc
>= 0)
994 gcc_assert (HAVE_PRE_DECREMENT
);
995 increment_address (size
);
998 /* If we are supposed to decrement the address after each access, emit code
999 to do so now. Increment by SIZE. */
1002 pieces_addr::maybe_postinc (HOST_WIDE_INT size
)
1004 if (m_explicit_inc
<= 0)
1006 gcc_assert (HAVE_POST_INCREMENT
);
1007 increment_address (size
);
1010 /* This structure is used by do_op_by_pieces to describe the operation
1013 class op_by_pieces_d
1016 pieces_addr m_to
, m_from
;
1017 unsigned HOST_WIDE_INT m_len
;
1018 HOST_WIDE_INT m_offset
;
1019 unsigned int m_align
;
1020 unsigned int m_max_size
;
1023 /* Virtual functions, overriden by derived classes for the specific
1025 virtual void generate (rtx
, rtx
, machine_mode
) = 0;
1026 virtual bool prepare_mode (machine_mode
, unsigned int) = 0;
1027 virtual void finish_mode (machine_mode
)
1032 op_by_pieces_d (rtx
, bool, rtx
, bool, by_pieces_constfn
, void *,
1033 unsigned HOST_WIDE_INT
, unsigned int);
1037 /* The constructor for an op_by_pieces_d structure. We require two
1038 objects named TO and FROM, which are identified as loads or stores
1039 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1040 and its associated FROM_CFN_DATA can be used to replace loads with
1041 constant values. LEN describes the length of the operation. */
1043 op_by_pieces_d::op_by_pieces_d (rtx to
, bool to_load
,
1044 rtx from
, bool from_load
,
1045 by_pieces_constfn from_cfn
,
1046 void *from_cfn_data
,
1047 unsigned HOST_WIDE_INT len
,
1049 : m_to (to
, to_load
, NULL
, NULL
),
1050 m_from (from
, from_load
, from_cfn
, from_cfn_data
),
1051 m_len (len
), m_max_size (MOVE_MAX_PIECES
+ 1)
1053 int toi
= m_to
.get_addr_inc ();
1054 int fromi
= m_from
.get_addr_inc ();
1055 if (toi
>= 0 && fromi
>= 0)
1057 else if (toi
<= 0 && fromi
<= 0)
1062 m_offset
= m_reverse
? len
: 0;
1063 align
= MIN (to
? MEM_ALIGN (to
) : align
,
1064 from
? MEM_ALIGN (from
) : align
);
1066 /* If copying requires more than two move insns,
1067 copy addresses to registers (to make displacements shorter)
1068 and use post-increment if available. */
1069 if (by_pieces_ninsns (len
, align
, m_max_size
, MOVE_BY_PIECES
) > 2)
1071 /* Find the mode of the largest comparison. */
1072 scalar_int_mode mode
= widest_int_mode_for_size (m_max_size
);
1074 m_from
.decide_autoinc (mode
, m_reverse
, len
);
1075 m_to
.decide_autoinc (mode
, m_reverse
, len
);
1078 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1082 /* This function contains the main loop used for expanding a block
1083 operation. First move what we can in the largest integer mode,
1084 then go to successively smaller modes. For every access, call
1085 GENFUN with the two operands and the EXTRA_DATA. */
1088 op_by_pieces_d::run ()
1090 while (m_max_size
> 1 && m_len
> 0)
1092 scalar_int_mode mode
= widest_int_mode_for_size (m_max_size
);
1094 if (prepare_mode (mode
, m_align
))
1096 unsigned int size
= GET_MODE_SIZE (mode
);
1097 rtx to1
= NULL_RTX
, from1
;
1099 while (m_len
>= size
)
1104 to1
= m_to
.adjust (mode
, m_offset
);
1105 from1
= m_from
.adjust (mode
, m_offset
);
1107 m_to
.maybe_predec (-(HOST_WIDE_INT
)size
);
1108 m_from
.maybe_predec (-(HOST_WIDE_INT
)size
);
1110 generate (to1
, from1
, mode
);
1112 m_to
.maybe_postinc (size
);
1113 m_from
.maybe_postinc (size
);
1124 m_max_size
= GET_MODE_SIZE (mode
);
1127 /* The code above should have handled everything. */
1128 gcc_assert (!m_len
);
1131 /* Derived class from op_by_pieces_d, providing support for block move
1134 class move_by_pieces_d
: public op_by_pieces_d
1136 insn_gen_fn m_gen_fun
;
1137 void generate (rtx
, rtx
, machine_mode
);
1138 bool prepare_mode (machine_mode
, unsigned int);
1141 move_by_pieces_d (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1143 : op_by_pieces_d (to
, false, from
, true, NULL
, NULL
, len
, align
)
1146 rtx
finish_endp (int);
1149 /* Return true if MODE can be used for a set of copies, given an
1150 alignment ALIGN. Prepare whatever data is necessary for later
1151 calls to generate. */
1154 move_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1156 insn_code icode
= optab_handler (mov_optab
, mode
);
1157 m_gen_fun
= GEN_FCN (icode
);
1158 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1161 /* A callback used when iterating for a compare_by_pieces_operation.
1162 OP0 and OP1 are the values that have been loaded and should be
1163 compared in MODE. If OP0 is NULL, this means we should generate a
1164 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1165 gen function that should be used to generate the mode. */
1168 move_by_pieces_d::generate (rtx op0
, rtx op1
,
1169 machine_mode mode ATTRIBUTE_UNUSED
)
1171 #ifdef PUSH_ROUNDING
1172 if (op0
== NULL_RTX
)
1174 emit_single_push_insn (mode
, op1
, NULL
);
1178 emit_insn (m_gen_fun (op0
, op1
));
1181 /* Perform the final adjustment at the end of a string to obtain the
1182 correct return value for the block operation. If ENDP is 1 return
1183 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1184 end minus one byte ala stpcpy. */
1187 move_by_pieces_d::finish_endp (int endp
)
1189 gcc_assert (!m_reverse
);
1192 m_to
.maybe_postinc (-1);
1195 return m_to
.adjust (QImode
, m_offset
);
1198 /* Generate several move instructions to copy LEN bytes from block FROM to
1199 block TO. (These are MEM rtx's with BLKmode).
1201 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1202 used to push FROM to the stack.
1204 ALIGN is maximum stack alignment we can assume.
1206 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1207 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1211 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1212 unsigned int align
, int endp
)
1214 #ifndef PUSH_ROUNDING
1219 move_by_pieces_d
data (to
, from
, len
, align
);
1224 return data
.finish_endp (endp
);
1229 /* Derived class from op_by_pieces_d, providing support for block move
1232 class store_by_pieces_d
: public op_by_pieces_d
1234 insn_gen_fn m_gen_fun
;
1235 void generate (rtx
, rtx
, machine_mode
);
1236 bool prepare_mode (machine_mode
, unsigned int);
1239 store_by_pieces_d (rtx to
, by_pieces_constfn cfn
, void *cfn_data
,
1240 unsigned HOST_WIDE_INT len
, unsigned int align
)
1241 : op_by_pieces_d (to
, false, NULL_RTX
, true, cfn
, cfn_data
, len
, align
)
1244 rtx
finish_endp (int);
1247 /* Return true if MODE can be used for a set of stores, given an
1248 alignment ALIGN. Prepare whatever data is necessary for later
1249 calls to generate. */
1252 store_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1254 insn_code icode
= optab_handler (mov_optab
, mode
);
1255 m_gen_fun
= GEN_FCN (icode
);
1256 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1259 /* A callback used when iterating for a store_by_pieces_operation.
1260 OP0 and OP1 are the values that have been loaded and should be
1261 compared in MODE. If OP0 is NULL, this means we should generate a
1262 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1263 gen function that should be used to generate the mode. */
1266 store_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode
)
1268 emit_insn (m_gen_fun (op0
, op1
));
1271 /* Perform the final adjustment at the end of a string to obtain the
1272 correct return value for the block operation. If ENDP is 1 return
1273 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1274 end minus one byte ala stpcpy. */
1277 store_by_pieces_d::finish_endp (int endp
)
1279 gcc_assert (!m_reverse
);
1282 m_to
.maybe_postinc (-1);
1285 return m_to
.adjust (QImode
, m_offset
);
1288 /* Determine whether the LEN bytes generated by CONSTFUN can be
1289 stored to memory using several move instructions. CONSTFUNDATA is
1290 a pointer which will be passed as argument in every CONSTFUN call.
1291 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1292 a memset operation and false if it's a copy of a constant string.
1293 Return nonzero if a call to store_by_pieces should succeed. */
1296 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
1297 rtx (*constfun
) (void *, HOST_WIDE_INT
, scalar_int_mode
),
1298 void *constfundata
, unsigned int align
, bool memsetp
)
1300 unsigned HOST_WIDE_INT l
;
1301 unsigned int max_size
;
1302 HOST_WIDE_INT offset
= 0;
1303 enum insn_code icode
;
1305 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1306 rtx cst ATTRIBUTE_UNUSED
;
1311 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
1315 optimize_insn_for_speed_p ()))
1318 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
1320 /* We would first store what we can in the largest integer mode, then go to
1321 successively smaller modes. */
1324 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
1328 max_size
= STORE_MAX_PIECES
+ 1;
1329 while (max_size
> 1 && l
> 0)
1331 scalar_int_mode mode
= widest_int_mode_for_size (max_size
);
1333 icode
= optab_handler (mov_optab
, mode
);
1334 if (icode
!= CODE_FOR_nothing
1335 && align
>= GET_MODE_ALIGNMENT (mode
))
1337 unsigned int size
= GET_MODE_SIZE (mode
);
1344 cst
= (*constfun
) (constfundata
, offset
, mode
);
1345 if (!targetm
.legitimate_constant_p (mode
, cst
))
1355 max_size
= GET_MODE_SIZE (mode
);
1358 /* The code above should have handled everything. */
1365 /* Generate several move instructions to store LEN bytes generated by
1366 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1367 pointer which will be passed as argument in every CONSTFUN call.
1368 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1369 a memset operation and false if it's a copy of a constant string.
1370 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1371 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1375 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
1376 rtx (*constfun
) (void *, HOST_WIDE_INT
, scalar_int_mode
),
1377 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
1381 gcc_assert (endp
!= 2);
1385 gcc_assert (targetm
.use_by_pieces_infrastructure_p
1387 memsetp
? SET_BY_PIECES
: STORE_BY_PIECES
,
1388 optimize_insn_for_speed_p ()));
1390 store_by_pieces_d
data (to
, constfun
, constfundata
, len
, align
);
1394 return data
.finish_endp (endp
);
1399 /* Callback routine for clear_by_pieces.
1400 Return const0_rtx unconditionally. */
1403 clear_by_pieces_1 (void *, HOST_WIDE_INT
, scalar_int_mode
)
1408 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1409 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1412 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
1417 store_by_pieces_d
data (to
, clear_by_pieces_1
, NULL
, len
, align
);
1421 /* Context used by compare_by_pieces_genfn. It stores the fail label
1422 to jump to in case of miscomparison, and for branch ratios greater than 1,
1423 it stores an accumulator and the current and maximum counts before
1424 emitting another branch. */
1426 class compare_by_pieces_d
: public op_by_pieces_d
1428 rtx_code_label
*m_fail_label
;
1430 int m_count
, m_batch
;
1432 void generate (rtx
, rtx
, machine_mode
);
1433 bool prepare_mode (machine_mode
, unsigned int);
1434 void finish_mode (machine_mode
);
1436 compare_by_pieces_d (rtx op0
, rtx op1
, by_pieces_constfn op1_cfn
,
1437 void *op1_cfn_data
, HOST_WIDE_INT len
, int align
,
1438 rtx_code_label
*fail_label
)
1439 : op_by_pieces_d (op0
, true, op1
, true, op1_cfn
, op1_cfn_data
, len
, align
)
1441 m_fail_label
= fail_label
;
1445 /* A callback used when iterating for a compare_by_pieces_operation.
1446 OP0 and OP1 are the values that have been loaded and should be
1447 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1448 context structure. */
1451 compare_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode mode
)
1455 rtx temp
= expand_binop (mode
, sub_optab
, op0
, op1
, NULL_RTX
,
1456 true, OPTAB_LIB_WIDEN
);
1458 temp
= expand_binop (mode
, ior_optab
, m_accumulator
, temp
, temp
,
1459 true, OPTAB_LIB_WIDEN
);
1460 m_accumulator
= temp
;
1462 if (++m_count
< m_batch
)
1466 op0
= m_accumulator
;
1468 m_accumulator
= NULL_RTX
;
1470 do_compare_rtx_and_jump (op0
, op1
, NE
, true, mode
, NULL_RTX
, NULL
,
1471 m_fail_label
, profile_probability::uninitialized ());
1474 /* Return true if MODE can be used for a set of moves and comparisons,
1475 given an alignment ALIGN. Prepare whatever data is necessary for
1476 later calls to generate. */
1479 compare_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1481 insn_code icode
= optab_handler (mov_optab
, mode
);
1482 if (icode
== CODE_FOR_nothing
1483 || align
< GET_MODE_ALIGNMENT (mode
)
1484 || !can_compare_p (EQ
, mode
, ccp_jump
))
1486 m_batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
1489 m_accumulator
= NULL_RTX
;
1494 /* Called after expanding a series of comparisons in MODE. If we have
1495 accumulated results for which we haven't emitted a branch yet, do
1499 compare_by_pieces_d::finish_mode (machine_mode mode
)
1501 if (m_accumulator
!= NULL_RTX
)
1502 do_compare_rtx_and_jump (m_accumulator
, const0_rtx
, NE
, true, mode
,
1503 NULL_RTX
, NULL
, m_fail_label
,
1504 profile_probability::uninitialized ());
1507 /* Generate several move instructions to compare LEN bytes from blocks
1508 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1510 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1511 used to push FROM to the stack.
1513 ALIGN is maximum stack alignment we can assume.
1515 Optionally, the caller can pass a constfn and associated data in A1_CFN
1516 and A1_CFN_DATA. describing that the second operand being compared is a
1517 known constant and how to obtain its data. */
1520 compare_by_pieces (rtx arg0
, rtx arg1
, unsigned HOST_WIDE_INT len
,
1521 rtx target
, unsigned int align
,
1522 by_pieces_constfn a1_cfn
, void *a1_cfn_data
)
1524 rtx_code_label
*fail_label
= gen_label_rtx ();
1525 rtx_code_label
*end_label
= gen_label_rtx ();
1527 if (target
== NULL_RTX
1528 || !REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
1529 target
= gen_reg_rtx (TYPE_MODE (integer_type_node
));
1531 compare_by_pieces_d
data (arg0
, arg1
, a1_cfn
, a1_cfn_data
, len
, align
,
1536 emit_move_insn (target
, const0_rtx
);
1537 emit_jump (end_label
);
1539 emit_label (fail_label
);
1540 emit_move_insn (target
, const1_rtx
);
1541 emit_label (end_label
);
1546 /* Emit code to move a block Y to a block X. This may be done with
1547 string-move instructions, with multiple scalar move instructions,
1548 or with a library call.
1550 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1551 SIZE is an rtx that says how long they are.
1552 ALIGN is the maximum alignment we can assume they have.
1553 METHOD describes what kind of copy this is, and what mechanisms may be used.
1554 MIN_SIZE is the minimal size of block to move
1555 MAX_SIZE is the maximal size of block to move, if it can not be represented
1556 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1558 Return the address of the new block, if memcpy is called and returns it,
1562 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1563 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1564 unsigned HOST_WIDE_INT min_size
,
1565 unsigned HOST_WIDE_INT max_size
,
1566 unsigned HOST_WIDE_INT probable_max_size
)
1573 if (CONST_INT_P (size
) && INTVAL (size
) == 0)
1578 case BLOCK_OP_NORMAL
:
1579 case BLOCK_OP_TAILCALL
:
1580 may_use_call
= true;
1583 case BLOCK_OP_CALL_PARM
:
1584 may_use_call
= block_move_libcall_safe_for_call_parm ();
1586 /* Make inhibit_defer_pop nonzero around the library call
1587 to force it to pop the arguments right away. */
1591 case BLOCK_OP_NO_LIBCALL
:
1592 may_use_call
= false;
1599 gcc_assert (MEM_P (x
) && MEM_P (y
));
1600 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1601 gcc_assert (align
>= BITS_PER_UNIT
);
1603 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1604 block copy is more efficient for other large modes, e.g. DCmode. */
1605 x
= adjust_address (x
, BLKmode
, 0);
1606 y
= adjust_address (y
, BLKmode
, 0);
1608 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1609 can be incorrect is coming from __builtin_memcpy. */
1610 if (CONST_INT_P (size
))
1612 x
= shallow_copy_rtx (x
);
1613 y
= shallow_copy_rtx (y
);
1614 set_mem_size (x
, INTVAL (size
));
1615 set_mem_size (y
, INTVAL (size
));
1618 if (CONST_INT_P (size
) && can_move_by_pieces (INTVAL (size
), align
))
1619 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1620 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1621 expected_align
, expected_size
,
1622 min_size
, max_size
, probable_max_size
))
1624 else if (may_use_call
1625 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1626 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1628 /* Since x and y are passed to a libcall, mark the corresponding
1629 tree EXPR as addressable. */
1630 tree y_expr
= MEM_EXPR (y
);
1631 tree x_expr
= MEM_EXPR (x
);
1633 mark_addressable (y_expr
);
1635 mark_addressable (x_expr
);
1636 retval
= emit_block_copy_via_libcall (x
, y
, size
,
1637 method
== BLOCK_OP_TAILCALL
);
1641 emit_block_move_via_loop (x
, y
, size
, align
);
1643 if (method
== BLOCK_OP_CALL_PARM
)
1650 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1652 unsigned HOST_WIDE_INT max
, min
= 0;
1653 if (GET_CODE (size
) == CONST_INT
)
1654 min
= max
= UINTVAL (size
);
1656 max
= GET_MODE_MASK (GET_MODE (size
));
1657 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1661 /* A subroutine of emit_block_move. Returns true if calling the
1662 block move libcall will not clobber any parameters which may have
1663 already been placed on the stack. */
1666 block_move_libcall_safe_for_call_parm (void)
1668 #if defined (REG_PARM_STACK_SPACE)
1672 /* If arguments are pushed on the stack, then they're safe. */
1676 /* If registers go on the stack anyway, any argument is sure to clobber
1677 an outgoing argument. */
1678 #if defined (REG_PARM_STACK_SPACE)
1679 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
1680 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1681 depend on its argument. */
1683 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1684 && REG_PARM_STACK_SPACE (fn
) != 0)
1688 /* If any argument goes in memory, then it might clobber an outgoing
1691 CUMULATIVE_ARGS args_so_far_v
;
1692 cumulative_args_t args_so_far
;
1695 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
1696 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1697 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1699 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1700 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1702 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1703 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1705 if (!tmp
|| !REG_P (tmp
))
1707 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1709 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1716 /* A subroutine of emit_block_move. Expand a movmem pattern;
1717 return true if successful. */
1720 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1721 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1722 unsigned HOST_WIDE_INT min_size
,
1723 unsigned HOST_WIDE_INT max_size
,
1724 unsigned HOST_WIDE_INT probable_max_size
)
1726 int save_volatile_ok
= volatile_ok
;
1728 if (expected_align
< align
)
1729 expected_align
= align
;
1730 if (expected_size
!= -1)
1732 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1733 expected_size
= probable_max_size
;
1734 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1735 expected_size
= min_size
;
1738 /* Since this is a move insn, we don't care about volatility. */
1741 /* Try the most limited insn first, because there's no point
1742 including more than one in the machine description unless
1743 the more limited one has some advantage. */
1745 opt_scalar_int_mode mode_iter
;
1746 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
1748 scalar_int_mode mode
= mode_iter
.require ();
1749 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1751 if (code
!= CODE_FOR_nothing
1752 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1753 here because if SIZE is less than the mode mask, as it is
1754 returned by the macro, it will definitely be less than the
1755 actual mode mask. Since SIZE is within the Pmode address
1756 space, we limit MODE to Pmode. */
1757 && ((CONST_INT_P (size
)
1758 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1759 <= (GET_MODE_MASK (mode
) >> 1)))
1760 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1761 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1763 struct expand_operand ops
[9];
1766 /* ??? When called via emit_block_move_for_call, it'd be
1767 nice if there were some way to inform the backend, so
1768 that it doesn't fail the expansion because it thinks
1769 emitting the libcall would be more efficient. */
1770 nops
= insn_data
[(int) code
].n_generator_args
;
1771 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1773 create_fixed_operand (&ops
[0], x
);
1774 create_fixed_operand (&ops
[1], y
);
1775 /* The check above guarantees that this size conversion is valid. */
1776 create_convert_operand_to (&ops
[2], size
, mode
, true);
1777 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1780 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1781 create_integer_operand (&ops
[5], expected_size
);
1785 create_integer_operand (&ops
[6], min_size
);
1786 /* If we can not represent the maximal size,
1787 make parameter NULL. */
1788 if ((HOST_WIDE_INT
) max_size
!= -1)
1789 create_integer_operand (&ops
[7], max_size
);
1791 create_fixed_operand (&ops
[7], NULL
);
1795 /* If we can not represent the maximal size,
1796 make parameter NULL. */
1797 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1798 create_integer_operand (&ops
[8], probable_max_size
);
1800 create_fixed_operand (&ops
[8], NULL
);
1802 if (maybe_expand_insn (code
, nops
, ops
))
1804 volatile_ok
= save_volatile_ok
;
1810 volatile_ok
= save_volatile_ok
;
1814 /* A subroutine of emit_block_move. Copy the data via an explicit
1815 loop. This is used only when libcalls are forbidden. */
1816 /* ??? It'd be nice to copy in hunks larger than QImode. */
1819 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1820 unsigned int align ATTRIBUTE_UNUSED
)
1822 rtx_code_label
*cmp_label
, *top_label
;
1823 rtx iter
, x_addr
, y_addr
, tmp
;
1824 machine_mode x_addr_mode
= get_address_mode (x
);
1825 machine_mode y_addr_mode
= get_address_mode (y
);
1826 machine_mode iter_mode
;
1828 iter_mode
= GET_MODE (size
);
1829 if (iter_mode
== VOIDmode
)
1830 iter_mode
= word_mode
;
1832 top_label
= gen_label_rtx ();
1833 cmp_label
= gen_label_rtx ();
1834 iter
= gen_reg_rtx (iter_mode
);
1836 emit_move_insn (iter
, const0_rtx
);
1838 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1839 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1840 do_pending_stack_adjust ();
1842 emit_jump (cmp_label
);
1843 emit_label (top_label
);
1845 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1846 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1848 if (x_addr_mode
!= y_addr_mode
)
1849 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1850 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1852 x
= change_address (x
, QImode
, x_addr
);
1853 y
= change_address (y
, QImode
, y_addr
);
1855 emit_move_insn (x
, y
);
1857 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1858 true, OPTAB_LIB_WIDEN
);
1860 emit_move_insn (iter
, tmp
);
1862 emit_label (cmp_label
);
1864 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1866 profile_probability::guessed_always ()
1867 .apply_scale (9, 10));
1870 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1871 TAILCALL is true if this is a tail call. */
1874 emit_block_op_via_libcall (enum built_in_function fncode
, rtx dst
, rtx src
,
1875 rtx size
, bool tailcall
)
1877 rtx dst_addr
, src_addr
;
1878 tree call_expr
, dst_tree
, src_tree
, size_tree
;
1879 machine_mode size_mode
;
1881 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1882 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1883 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1885 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1886 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1887 src_tree
= make_tree (ptr_type_node
, src_addr
);
1889 size_mode
= TYPE_MODE (sizetype
);
1890 size
= convert_to_mode (size_mode
, size
, 1);
1891 size
= copy_to_mode_reg (size_mode
, size
);
1892 size_tree
= make_tree (sizetype
, size
);
1894 /* It is incorrect to use the libcall calling conventions for calls to
1895 memcpy/memmove/memcmp because they can be provided by the user. */
1896 tree fn
= builtin_decl_implicit (fncode
);
1897 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1898 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1900 return expand_call (call_expr
, NULL_RTX
, false);
1903 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1904 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1905 otherwise return null. */
1908 expand_cmpstrn_or_cmpmem (insn_code icode
, rtx target
, rtx arg1_rtx
,
1909 rtx arg2_rtx
, tree arg3_type
, rtx arg3_rtx
,
1910 HOST_WIDE_INT align
)
1912 machine_mode insn_mode
= insn_data
[icode
].operand
[0].mode
;
1914 if (target
&& (!REG_P (target
) || HARD_REGISTER_P (target
)))
1917 struct expand_operand ops
[5];
1918 create_output_operand (&ops
[0], target
, insn_mode
);
1919 create_fixed_operand (&ops
[1], arg1_rtx
);
1920 create_fixed_operand (&ops
[2], arg2_rtx
);
1921 create_convert_operand_from (&ops
[3], arg3_rtx
, TYPE_MODE (arg3_type
),
1922 TYPE_UNSIGNED (arg3_type
));
1923 create_integer_operand (&ops
[4], align
);
1924 if (maybe_expand_insn (icode
, 5, ops
))
1925 return ops
[0].value
;
1929 /* Expand a block compare between X and Y with length LEN using the
1930 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1931 of the expression that was used to calculate the length. ALIGN
1932 gives the known minimum common alignment. */
1935 emit_block_cmp_via_cmpmem (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
1938 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1939 implementing memcmp because it will stop if it encounters two
1941 insn_code icode
= direct_optab_handler (cmpmem_optab
, SImode
);
1943 if (icode
== CODE_FOR_nothing
)
1946 return expand_cmpstrn_or_cmpmem (icode
, target
, x
, y
, len_type
, len
, align
);
1949 /* Emit code to compare a block Y to a block X. This may be done with
1950 string-compare instructions, with multiple scalar instructions,
1951 or with a library call.
1953 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1954 they are. LEN_TYPE is the type of the expression that was used to
1957 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1958 value of a normal memcmp call, instead we can just compare for equality.
1959 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1962 Optionally, the caller can pass a constfn and associated data in Y_CFN
1963 and Y_CFN_DATA. describing that the second operand being compared is a
1964 known constant and how to obtain its data.
1965 Return the result of the comparison, or NULL_RTX if we failed to
1966 perform the operation. */
1969 emit_block_cmp_hints (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
1970 bool equality_only
, by_pieces_constfn y_cfn
,
1975 if (CONST_INT_P (len
) && INTVAL (len
) == 0)
1978 gcc_assert (MEM_P (x
) && MEM_P (y
));
1979 unsigned int align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1980 gcc_assert (align
>= BITS_PER_UNIT
);
1982 x
= adjust_address (x
, BLKmode
, 0);
1983 y
= adjust_address (y
, BLKmode
, 0);
1986 && CONST_INT_P (len
)
1987 && can_do_by_pieces (INTVAL (len
), align
, COMPARE_BY_PIECES
))
1988 result
= compare_by_pieces (x
, y
, INTVAL (len
), target
, align
,
1991 result
= emit_block_cmp_via_cmpmem (x
, y
, len
, len_type
, target
, align
);
1996 /* Copy all or part of a value X into registers starting at REGNO.
1997 The number of registers to be filled is NREGS. */
2000 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
2005 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
2006 x
= validize_mem (force_const_mem (mode
, x
));
2008 /* See if the machine can do this with a load multiple insn. */
2009 if (targetm
.have_load_multiple ())
2011 rtx_insn
*last
= get_last_insn ();
2012 rtx first
= gen_rtx_REG (word_mode
, regno
);
2013 if (rtx_insn
*pat
= targetm
.gen_load_multiple (first
, x
,
2020 delete_insns_since (last
);
2023 for (int i
= 0; i
< nregs
; i
++)
2024 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
2025 operand_subword_force (x
, i
, mode
));
2028 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2029 The number of registers to be filled is NREGS. */
2032 move_block_from_reg (int regno
, rtx x
, int nregs
)
2037 /* See if the machine can do this with a store multiple insn. */
2038 if (targetm
.have_store_multiple ())
2040 rtx_insn
*last
= get_last_insn ();
2041 rtx first
= gen_rtx_REG (word_mode
, regno
);
2042 if (rtx_insn
*pat
= targetm
.gen_store_multiple (x
, first
,
2049 delete_insns_since (last
);
2052 for (int i
= 0; i
< nregs
; i
++)
2054 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
2058 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
2062 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2063 ORIG, where ORIG is a non-consecutive group of registers represented by
2064 a PARALLEL. The clone is identical to the original except in that the
2065 original set of registers is replaced by a new set of pseudo registers.
2066 The new set has the same modes as the original set. */
2069 gen_group_rtx (rtx orig
)
2074 gcc_assert (GET_CODE (orig
) == PARALLEL
);
2076 length
= XVECLEN (orig
, 0);
2077 tmps
= XALLOCAVEC (rtx
, length
);
2079 /* Skip a NULL entry in first slot. */
2080 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
2085 for (; i
< length
; i
++)
2087 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
2088 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
2090 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
2093 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
2096 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2097 except that values are placed in TMPS[i], and must later be moved
2098 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2101 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
,
2106 machine_mode m
= GET_MODE (orig_src
);
2108 gcc_assert (GET_CODE (dst
) == PARALLEL
);
2111 && !SCALAR_INT_MODE_P (m
)
2112 && !MEM_P (orig_src
)
2113 && GET_CODE (orig_src
) != CONCAT
)
2115 scalar_int_mode imode
;
2116 if (int_mode_for_mode (GET_MODE (orig_src
)).exists (&imode
))
2118 src
= gen_reg_rtx (imode
);
2119 emit_move_insn (gen_lowpart (GET_MODE (orig_src
), src
), orig_src
);
2123 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
2124 emit_move_insn (src
, orig_src
);
2126 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2130 /* Check for a NULL entry, used to indicate that the parameter goes
2131 both on the stack and in registers. */
2132 if (XEXP (XVECEXP (dst
, 0, 0), 0))
2137 /* Process the pieces. */
2138 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
2140 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
2141 poly_int64 bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
2142 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2143 poly_int64 shift
= 0;
2145 /* Handle trailing fragments that run over the size of the struct.
2146 It's the target's responsibility to make sure that the fragment
2147 cannot be strictly smaller in some cases and strictly larger
2149 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2150 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2152 /* Arrange to shift the fragment to where it belongs.
2153 extract_bit_field loads to the lsb of the reg. */
2155 #ifdef BLOCK_REG_PADDING
2156 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
2157 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
2162 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2163 bytelen
= ssize
- bytepos
;
2164 gcc_assert (maybe_gt (bytelen
, 0));
2167 /* If we won't be loading directly from memory, protect the real source
2168 from strange tricks we might play; but make sure that the source can
2169 be loaded directly into the destination. */
2171 if (!MEM_P (orig_src
)
2172 && (!CONSTANT_P (orig_src
)
2173 || (GET_MODE (orig_src
) != mode
2174 && GET_MODE (orig_src
) != VOIDmode
)))
2176 if (GET_MODE (orig_src
) == VOIDmode
)
2177 src
= gen_reg_rtx (mode
);
2179 src
= gen_reg_rtx (GET_MODE (orig_src
));
2181 emit_move_insn (src
, orig_src
);
2184 /* Optimize the access just a bit. */
2186 && (! targetm
.slow_unaligned_access (mode
, MEM_ALIGN (src
))
2187 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
2188 && multiple_p (bytepos
* BITS_PER_UNIT
, GET_MODE_ALIGNMENT (mode
))
2189 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2191 tmps
[i
] = gen_reg_rtx (mode
);
2192 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
2194 else if (COMPLEX_MODE_P (mode
)
2195 && GET_MODE (src
) == mode
2196 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2197 /* Let emit_move_complex do the bulk of the work. */
2199 else if (GET_CODE (src
) == CONCAT
)
2201 poly_int64 slen
= GET_MODE_SIZE (GET_MODE (src
));
2202 poly_int64 slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
2206 if (can_div_trunc_p (bytepos
, slen0
, &elt
, &subpos
)
2207 && known_le (subpos
+ bytelen
, slen0
))
2209 /* The following assumes that the concatenated objects all
2210 have the same size. In this case, a simple calculation
2211 can be used to determine the object and the bit field
2213 tmps
[i
] = XEXP (src
, elt
);
2214 if (maybe_ne (subpos
, 0)
2215 || maybe_ne (subpos
+ bytelen
, slen0
)
2216 || (!CONSTANT_P (tmps
[i
])
2217 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
)))
2218 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
2219 subpos
* BITS_PER_UNIT
,
2220 1, NULL_RTX
, mode
, mode
, false,
2227 gcc_assert (known_eq (bytepos
, 0));
2228 mem
= assign_stack_temp (GET_MODE (src
), slen
);
2229 emit_move_insn (mem
, src
);
2230 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
2231 0, 1, NULL_RTX
, mode
, mode
, false,
2235 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2236 SIMD register, which is currently broken. While we get GCC
2237 to emit proper RTL for these cases, let's dump to memory. */
2238 else if (VECTOR_MODE_P (GET_MODE (dst
))
2241 poly_uint64 slen
= GET_MODE_SIZE (GET_MODE (src
));
2244 mem
= assign_stack_temp (GET_MODE (src
), slen
);
2245 emit_move_insn (mem
, src
);
2246 tmps
[i
] = adjust_address (mem
, mode
, bytepos
);
2248 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
2249 && XVECLEN (dst
, 0) > 1)
2250 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
2251 else if (CONSTANT_P (src
))
2253 if (known_eq (bytelen
, ssize
))
2259 /* TODO: const_wide_int can have sizes other than this... */
2260 gcc_assert (known_eq (2 * bytelen
, ssize
));
2261 split_double (src
, &first
, &second
);
2268 else if (REG_P (src
) && GET_MODE (src
) == mode
)
2271 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
2272 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
2273 mode
, mode
, false, NULL
);
2275 if (maybe_ne (shift
, 0))
2276 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
2281 /* Emit code to move a block SRC of type TYPE to a block DST,
2282 where DST is non-consecutive registers represented by a PARALLEL.
2283 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2287 emit_group_load (rtx dst
, rtx src
, tree type
, poly_int64 ssize
)
2292 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
2293 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2295 /* Copy the extracted pieces into the proper (probable) hard regs. */
2296 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
2298 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
2301 emit_move_insn (d
, tmps
[i
]);
2305 /* Similar, but load SRC into new pseudos in a format that looks like
2306 PARALLEL. This can later be fed to emit_group_move to get things
2307 in the right place. */
2310 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, poly_int64 ssize
)
2315 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
2316 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
2318 /* Convert the vector to look just like the original PARALLEL, except
2319 with the computed values. */
2320 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
2322 rtx e
= XVECEXP (parallel
, 0, i
);
2323 rtx d
= XEXP (e
, 0);
2327 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
2328 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
2330 RTVEC_ELT (vec
, i
) = e
;
2333 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
2336 /* Emit code to move a block SRC to block DST, where SRC and DST are
2337 non-consecutive groups of registers, each represented by a PARALLEL. */
2340 emit_group_move (rtx dst
, rtx src
)
2344 gcc_assert (GET_CODE (src
) == PARALLEL
2345 && GET_CODE (dst
) == PARALLEL
2346 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
2348 /* Skip first entry if NULL. */
2349 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
2350 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
2351 XEXP (XVECEXP (src
, 0, i
), 0));
2354 /* Move a group of registers represented by a PARALLEL into pseudos. */
2357 emit_group_move_into_temps (rtx src
)
2359 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
2362 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
2364 rtx e
= XVECEXP (src
, 0, i
);
2365 rtx d
= XEXP (e
, 0);
2368 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
2369 RTVEC_ELT (vec
, i
) = e
;
2372 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
2375 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2376 where SRC is non-consecutive registers represented by a PARALLEL.
2377 SSIZE represents the total size of block ORIG_DST, or -1 if not
2381 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
,
2385 int start
, finish
, i
;
2386 machine_mode m
= GET_MODE (orig_dst
);
2388 gcc_assert (GET_CODE (src
) == PARALLEL
);
2390 if (!SCALAR_INT_MODE_P (m
)
2391 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
2393 scalar_int_mode imode
;
2394 if (int_mode_for_mode (GET_MODE (orig_dst
)).exists (&imode
))
2396 dst
= gen_reg_rtx (imode
);
2397 emit_group_store (dst
, src
, type
, ssize
);
2398 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
2402 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
2403 emit_group_store (dst
, src
, type
, ssize
);
2405 emit_move_insn (orig_dst
, dst
);
2409 /* Check for a NULL entry, used to indicate that the parameter goes
2410 both on the stack and in registers. */
2411 if (XEXP (XVECEXP (src
, 0, 0), 0))
2415 finish
= XVECLEN (src
, 0);
2417 tmps
= XALLOCAVEC (rtx
, finish
);
2419 /* Copy the (probable) hard regs into pseudos. */
2420 for (i
= start
; i
< finish
; i
++)
2422 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
2423 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
2425 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
2426 emit_move_insn (tmps
[i
], reg
);
2432 /* If we won't be storing directly into memory, protect the real destination
2433 from strange tricks we might play. */
2435 if (GET_CODE (dst
) == PARALLEL
)
2439 /* We can get a PARALLEL dst if there is a conditional expression in
2440 a return statement. In that case, the dst and src are the same,
2441 so no action is necessary. */
2442 if (rtx_equal_p (dst
, src
))
2445 /* It is unclear if we can ever reach here, but we may as well handle
2446 it. Allocate a temporary, and split this into a store/load to/from
2448 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
2449 emit_group_store (temp
, src
, type
, ssize
);
2450 emit_group_load (dst
, temp
, type
, ssize
);
2453 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
2455 machine_mode outer
= GET_MODE (dst
);
2461 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
2462 dst
= gen_reg_rtx (outer
);
2464 /* Make life a bit easier for combine. */
2465 /* If the first element of the vector is the low part
2466 of the destination mode, use a paradoxical subreg to
2467 initialize the destination. */
2470 inner
= GET_MODE (tmps
[start
]);
2471 bytepos
= subreg_lowpart_offset (inner
, outer
);
2472 if (known_eq (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)), bytepos
))
2474 temp
= simplify_gen_subreg (outer
, tmps
[start
],
2478 emit_move_insn (dst
, temp
);
2485 /* If the first element wasn't the low part, try the last. */
2487 && start
< finish
- 1)
2489 inner
= GET_MODE (tmps
[finish
- 1]);
2490 bytepos
= subreg_lowpart_offset (inner
, outer
);
2491 if (known_eq (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)),
2494 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2498 emit_move_insn (dst
, temp
);
2505 /* Otherwise, simply initialize the result to zero. */
2507 emit_move_insn (dst
, CONST0_RTX (outer
));
2510 /* Process the pieces. */
2511 for (i
= start
; i
< finish
; i
++)
2513 poly_int64 bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2514 machine_mode mode
= GET_MODE (tmps
[i
]);
2515 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2516 poly_uint64 adj_bytelen
;
2519 /* Handle trailing fragments that run over the size of the struct.
2520 It's the target's responsibility to make sure that the fragment
2521 cannot be strictly smaller in some cases and strictly larger
2523 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2524 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2525 adj_bytelen
= ssize
- bytepos
;
2527 adj_bytelen
= bytelen
;
2529 if (GET_CODE (dst
) == CONCAT
)
2531 if (known_le (bytepos
+ adj_bytelen
,
2532 GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
2533 dest
= XEXP (dst
, 0);
2534 else if (known_ge (bytepos
, GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
2536 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2537 dest
= XEXP (dst
, 1);
2541 machine_mode dest_mode
= GET_MODE (dest
);
2542 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2544 gcc_assert (known_eq (bytepos
, 0) && XVECLEN (src
, 0));
2546 if (GET_MODE_ALIGNMENT (dest_mode
)
2547 >= GET_MODE_ALIGNMENT (tmp_mode
))
2549 dest
= assign_stack_temp (dest_mode
,
2550 GET_MODE_SIZE (dest_mode
));
2551 emit_move_insn (adjust_address (dest
,
2559 dest
= assign_stack_temp (tmp_mode
,
2560 GET_MODE_SIZE (tmp_mode
));
2561 emit_move_insn (dest
, tmps
[i
]);
2562 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2568 /* Handle trailing fragments that run over the size of the struct. */
2569 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2571 /* store_bit_field always takes its value from the lsb.
2572 Move the fragment to the lsb if it's not already there. */
2574 #ifdef BLOCK_REG_PADDING
2575 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2576 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
2582 poly_int64 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2583 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2587 /* Make sure not to write past the end of the struct. */
2588 store_bit_field (dest
,
2589 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2590 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2591 VOIDmode
, tmps
[i
], false);
2594 /* Optimize the access just a bit. */
2595 else if (MEM_P (dest
)
2596 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (dest
))
2597 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2598 && multiple_p (bytepos
* BITS_PER_UNIT
,
2599 GET_MODE_ALIGNMENT (mode
))
2600 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2601 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2604 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2605 0, 0, mode
, tmps
[i
], false);
2608 /* Copy from the pseudo into the (probable) hard reg. */
2609 if (orig_dst
!= dst
)
2610 emit_move_insn (orig_dst
, dst
);
2613 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2614 of the value stored in X. */
2617 maybe_emit_group_store (rtx x
, tree type
)
2619 machine_mode mode
= TYPE_MODE (type
);
2620 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2621 if (GET_CODE (x
) == PARALLEL
)
2623 rtx result
= gen_reg_rtx (mode
);
2624 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2630 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2632 This is used on targets that return BLKmode values in registers. */
2635 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2637 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2638 rtx src
= NULL
, dst
= NULL
;
2639 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2640 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2641 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2642 fixed_size_mode mode
= as_a
<fixed_size_mode
> (GET_MODE (srcreg
));
2643 fixed_size_mode tmode
= as_a
<fixed_size_mode
> (GET_MODE (target
));
2644 fixed_size_mode copy_mode
;
2646 /* BLKmode registers created in the back-end shouldn't have survived. */
2647 gcc_assert (mode
!= BLKmode
);
2649 /* If the structure doesn't take up a whole number of words, see whether
2650 SRCREG is padded on the left or on the right. If it's on the left,
2651 set PADDING_CORRECTION to the number of bits to skip.
2653 In most ABIs, the structure will be returned at the least end of
2654 the register, which translates to right padding on little-endian
2655 targets and left padding on big-endian targets. The opposite
2656 holds if the structure is returned at the most significant
2657 end of the register. */
2658 if (bytes
% UNITS_PER_WORD
!= 0
2659 && (targetm
.calls
.return_in_msb (type
)
2661 : BYTES_BIG_ENDIAN
))
2663 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2665 /* We can use a single move if we have an exact mode for the size. */
2666 else if (MEM_P (target
)
2667 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
))
2668 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2669 && bytes
== GET_MODE_SIZE (mode
))
2671 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2675 /* And if we additionally have the same mode for a register. */
2676 else if (REG_P (target
)
2677 && GET_MODE (target
) == mode
2678 && bytes
== GET_MODE_SIZE (mode
))
2680 emit_move_insn (target
, srcreg
);
2684 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2685 into a new pseudo which is a full word. */
2686 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2688 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2692 /* Copy the structure BITSIZE bits at a time. If the target lives in
2693 memory, take care of not reading/writing past its end by selecting
2694 a copy mode suited to BITSIZE. This should always be possible given
2697 If the target lives in register, make sure not to select a copy mode
2698 larger than the mode of the register.
2700 We could probably emit more efficient code for machines which do not use
2701 strict alignment, but it doesn't seem worth the effort at the current
2704 copy_mode
= word_mode
;
2707 opt_scalar_int_mode mem_mode
= int_mode_for_size (bitsize
, 1);
2708 if (mem_mode
.exists ())
2709 copy_mode
= mem_mode
.require ();
2711 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2714 for (bitpos
= 0, xbitpos
= padding_correction
;
2715 bitpos
< bytes
* BITS_PER_UNIT
;
2716 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2718 /* We need a new source operand each time xbitpos is on a
2719 word boundary and when xbitpos == padding_correction
2720 (the first time through). */
2721 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2722 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2724 /* We need a new destination operand each time bitpos is on
2726 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2728 else if (bitpos
% BITS_PER_WORD
== 0)
2729 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2731 /* Use xbitpos for the source extraction (right justified) and
2732 bitpos for the destination store (left justified). */
2733 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2734 extract_bit_field (src
, bitsize
,
2735 xbitpos
% BITS_PER_WORD
, 1,
2736 NULL_RTX
, copy_mode
, copy_mode
,
2742 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2743 register if it contains any data, otherwise return null.
2745 This is used on targets that return BLKmode values in registers. */
2748 copy_blkmode_to_reg (machine_mode mode_in
, tree src
)
2751 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2752 unsigned int bitsize
;
2753 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2754 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2755 fixed_size_mode mode
= as_a
<fixed_size_mode
> (mode_in
);
2756 fixed_size_mode dst_mode
;
2758 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2760 x
= expand_normal (src
);
2762 bytes
= arg_int_size_in_bytes (TREE_TYPE (src
));
2766 /* If the structure doesn't take up a whole number of words, see
2767 whether the register value should be padded on the left or on
2768 the right. Set PADDING_CORRECTION to the number of padding
2769 bits needed on the left side.
2771 In most ABIs, the structure will be returned at the least end of
2772 the register, which translates to right padding on little-endian
2773 targets and left padding on big-endian targets. The opposite
2774 holds if the structure is returned at the most significant
2775 end of the register. */
2776 if (bytes
% UNITS_PER_WORD
!= 0
2777 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2779 : BYTES_BIG_ENDIAN
))
2780 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2783 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2784 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2785 bitsize
= BITS_PER_WORD
;
2786 if (targetm
.slow_unaligned_access (word_mode
, TYPE_ALIGN (TREE_TYPE (src
))))
2787 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2789 /* Copy the structure BITSIZE bits at a time. */
2790 for (bitpos
= 0, xbitpos
= padding_correction
;
2791 bitpos
< bytes
* BITS_PER_UNIT
;
2792 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2794 /* We need a new destination pseudo each time xbitpos is
2795 on a word boundary and when xbitpos == padding_correction
2796 (the first time through). */
2797 if (xbitpos
% BITS_PER_WORD
== 0
2798 || xbitpos
== padding_correction
)
2800 /* Generate an appropriate register. */
2801 dst_word
= gen_reg_rtx (word_mode
);
2802 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2804 /* Clear the destination before we move anything into it. */
2805 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2808 /* We need a new source operand each time bitpos is on a word
2810 if (bitpos
% BITS_PER_WORD
== 0)
2811 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2813 /* Use bitpos for the source extraction (left justified) and
2814 xbitpos for the destination store (right justified). */
2815 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2817 extract_bit_field (src_word
, bitsize
,
2818 bitpos
% BITS_PER_WORD
, 1,
2819 NULL_RTX
, word_mode
, word_mode
,
2824 if (mode
== BLKmode
)
2826 /* Find the smallest integer mode large enough to hold the
2827 entire structure. */
2828 opt_scalar_int_mode mode_iter
;
2829 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2830 if (GET_MODE_SIZE (mode_iter
.require ()) >= bytes
)
2833 /* A suitable mode should have been found. */
2834 mode
= mode_iter
.require ();
2837 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2838 dst_mode
= word_mode
;
2841 dst
= gen_reg_rtx (dst_mode
);
2843 for (i
= 0; i
< n_regs
; i
++)
2844 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2846 if (mode
!= dst_mode
)
2847 dst
= gen_lowpart (mode
, dst
);
2852 /* Add a USE expression for REG to the (possibly empty) list pointed
2853 to by CALL_FUSAGE. REG must denote a hard register. */
2856 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2858 gcc_assert (REG_P (reg
));
2860 if (!HARD_REGISTER_P (reg
))
2864 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2867 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2868 to by CALL_FUSAGE. REG must denote a hard register. */
2871 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2873 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2876 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2879 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2880 starting at REGNO. All of these registers must be hard registers. */
2883 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2887 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2889 for (i
= 0; i
< nregs
; i
++)
2890 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2893 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2894 PARALLEL REGS. This is for calls that pass values in multiple
2895 non-contiguous locations. The Irix 6 ABI has examples of this. */
2898 use_group_regs (rtx
*call_fusage
, rtx regs
)
2902 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2904 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2906 /* A NULL entry means the parameter goes both on the stack and in
2907 registers. This can also be a MEM for targets that pass values
2908 partially on the stack and partially in registers. */
2909 if (reg
!= 0 && REG_P (reg
))
2910 use_reg (call_fusage
, reg
);
2914 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2915 assigment and the code of the expresion on the RHS is CODE. Return
2919 get_def_for_expr (tree name
, enum tree_code code
)
2923 if (TREE_CODE (name
) != SSA_NAME
)
2926 def_stmt
= get_gimple_for_ssa_name (name
);
2928 || gimple_assign_rhs_code (def_stmt
) != code
)
2934 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2935 assigment and the class of the expresion on the RHS is CLASS. Return
2939 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2943 if (TREE_CODE (name
) != SSA_NAME
)
2946 def_stmt
= get_gimple_for_ssa_name (name
);
2948 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2954 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2955 its length in bytes. */
2958 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2959 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2960 unsigned HOST_WIDE_INT min_size
,
2961 unsigned HOST_WIDE_INT max_size
,
2962 unsigned HOST_WIDE_INT probable_max_size
)
2964 machine_mode mode
= GET_MODE (object
);
2967 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2969 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2970 just move a zero. Otherwise, do this a piece at a time. */
2972 && CONST_INT_P (size
)
2973 && known_eq (INTVAL (size
), GET_MODE_SIZE (mode
)))
2975 rtx zero
= CONST0_RTX (mode
);
2978 emit_move_insn (object
, zero
);
2982 if (COMPLEX_MODE_P (mode
))
2984 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2987 write_complex_part (object
, zero
, 0);
2988 write_complex_part (object
, zero
, 1);
2994 if (size
== const0_rtx
)
2997 align
= MEM_ALIGN (object
);
2999 if (CONST_INT_P (size
)
3000 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
3002 optimize_insn_for_speed_p ()))
3003 clear_by_pieces (object
, INTVAL (size
), align
);
3004 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
3005 expected_align
, expected_size
,
3006 min_size
, max_size
, probable_max_size
))
3008 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
3009 return set_storage_via_libcall (object
, size
, const0_rtx
,
3010 method
== BLOCK_OP_TAILCALL
);
3018 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
3020 unsigned HOST_WIDE_INT max
, min
= 0;
3021 if (GET_CODE (size
) == CONST_INT
)
3022 min
= max
= UINTVAL (size
);
3024 max
= GET_MODE_MASK (GET_MODE (size
));
3025 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
3029 /* A subroutine of clear_storage. Expand a call to memset.
3030 Return the return value of memset, 0 otherwise. */
3033 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
3035 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
3036 machine_mode size_mode
;
3038 object
= copy_addr_to_reg (XEXP (object
, 0));
3039 object_tree
= make_tree (ptr_type_node
, object
);
3041 if (!CONST_INT_P (val
))
3042 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
3043 val_tree
= make_tree (integer_type_node
, val
);
3045 size_mode
= TYPE_MODE (sizetype
);
3046 size
= convert_to_mode (size_mode
, size
, 1);
3047 size
= copy_to_mode_reg (size_mode
, size
);
3048 size_tree
= make_tree (sizetype
, size
);
3050 /* It is incorrect to use the libcall calling conventions for calls to
3051 memset because it can be provided by the user. */
3052 fn
= builtin_decl_implicit (BUILT_IN_MEMSET
);
3053 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
3054 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
3056 return expand_call (call_expr
, NULL_RTX
, false);
3059 /* Expand a setmem pattern; return true if successful. */
3062 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
3063 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
3064 unsigned HOST_WIDE_INT min_size
,
3065 unsigned HOST_WIDE_INT max_size
,
3066 unsigned HOST_WIDE_INT probable_max_size
)
3068 /* Try the most limited insn first, because there's no point
3069 including more than one in the machine description unless
3070 the more limited one has some advantage. */
3072 if (expected_align
< align
)
3073 expected_align
= align
;
3074 if (expected_size
!= -1)
3076 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
3077 expected_size
= max_size
;
3078 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
3079 expected_size
= min_size
;
3082 opt_scalar_int_mode mode_iter
;
3083 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
3085 scalar_int_mode mode
= mode_iter
.require ();
3086 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
3088 if (code
!= CODE_FOR_nothing
3089 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3090 here because if SIZE is less than the mode mask, as it is
3091 returned by the macro, it will definitely be less than the
3092 actual mode mask. Since SIZE is within the Pmode address
3093 space, we limit MODE to Pmode. */
3094 && ((CONST_INT_P (size
)
3095 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
3096 <= (GET_MODE_MASK (mode
) >> 1)))
3097 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
3098 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
3100 struct expand_operand ops
[9];
3103 nops
= insn_data
[(int) code
].n_generator_args
;
3104 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
3106 create_fixed_operand (&ops
[0], object
);
3107 /* The check above guarantees that this size conversion is valid. */
3108 create_convert_operand_to (&ops
[1], size
, mode
, true);
3109 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
3110 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
3113 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
3114 create_integer_operand (&ops
[5], expected_size
);
3118 create_integer_operand (&ops
[6], min_size
);
3119 /* If we can not represent the maximal size,
3120 make parameter NULL. */
3121 if ((HOST_WIDE_INT
) max_size
!= -1)
3122 create_integer_operand (&ops
[7], max_size
);
3124 create_fixed_operand (&ops
[7], NULL
);
3128 /* If we can not represent the maximal size,
3129 make parameter NULL. */
3130 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
3131 create_integer_operand (&ops
[8], probable_max_size
);
3133 create_fixed_operand (&ops
[8], NULL
);
3135 if (maybe_expand_insn (code
, nops
, ops
))
3144 /* Write to one of the components of the complex value CPLX. Write VAL to
3145 the real part if IMAG_P is false, and the imaginary part if its true. */
3148 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3154 if (GET_CODE (cplx
) == CONCAT
)
3156 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3160 cmode
= GET_MODE (cplx
);
3161 imode
= GET_MODE_INNER (cmode
);
3162 ibitsize
= GET_MODE_BITSIZE (imode
);
3164 /* For MEMs simplify_gen_subreg may generate an invalid new address
3165 because, e.g., the original address is considered mode-dependent
3166 by the target, which restricts simplify_subreg from invoking
3167 adjust_address_nv. Instead of preparing fallback support for an
3168 invalid address, we call adjust_address_nv directly. */
3171 emit_move_insn (adjust_address_nv (cplx
, imode
,
3172 imag_p
? GET_MODE_SIZE (imode
) : 0),
3177 /* If the sub-object is at least word sized, then we know that subregging
3178 will work. This special case is important, since store_bit_field
3179 wants to operate on integer modes, and there's rarely an OImode to
3180 correspond to TCmode. */
3181 if (ibitsize
>= BITS_PER_WORD
3182 /* For hard regs we have exact predicates. Assume we can split
3183 the original object if it spans an even number of hard regs.
3184 This special case is important for SCmode on 64-bit platforms
3185 where the natural size of floating-point regs is 32-bit. */
3187 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3188 && REG_NREGS (cplx
) % 2 == 0))
3190 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3191 imag_p
? GET_MODE_SIZE (imode
) : 0);
3194 emit_move_insn (part
, val
);
3198 /* simplify_gen_subreg may fail for sub-word MEMs. */
3199 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3202 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
,
3206 /* Extract one of the components of the complex value CPLX. Extract the
3207 real part if IMAG_P is false, and the imaginary part if it's true. */
3210 read_complex_part (rtx cplx
, bool imag_p
)
3216 if (GET_CODE (cplx
) == CONCAT
)
3217 return XEXP (cplx
, imag_p
);
3219 cmode
= GET_MODE (cplx
);
3220 imode
= GET_MODE_INNER (cmode
);
3221 ibitsize
= GET_MODE_BITSIZE (imode
);
3223 /* Special case reads from complex constants that got spilled to memory. */
3224 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3226 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3227 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3229 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3230 if (CONSTANT_CLASS_P (part
))
3231 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3235 /* For MEMs simplify_gen_subreg may generate an invalid new address
3236 because, e.g., the original address is considered mode-dependent
3237 by the target, which restricts simplify_subreg from invoking
3238 adjust_address_nv. Instead of preparing fallback support for an
3239 invalid address, we call adjust_address_nv directly. */
3241 return adjust_address_nv (cplx
, imode
,
3242 imag_p
? GET_MODE_SIZE (imode
) : 0);
3244 /* If the sub-object is at least word sized, then we know that subregging
3245 will work. This special case is important, since extract_bit_field
3246 wants to operate on integer modes, and there's rarely an OImode to
3247 correspond to TCmode. */
3248 if (ibitsize
>= BITS_PER_WORD
3249 /* For hard regs we have exact predicates. Assume we can split
3250 the original object if it spans an even number of hard regs.
3251 This special case is important for SCmode on 64-bit platforms
3252 where the natural size of floating-point regs is 32-bit. */
3254 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3255 && REG_NREGS (cplx
) % 2 == 0))
3257 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3258 imag_p
? GET_MODE_SIZE (imode
) : 0);
3262 /* simplify_gen_subreg may fail for sub-word MEMs. */
3263 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3266 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3267 true, NULL_RTX
, imode
, imode
, false, NULL
);
3270 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3271 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3272 represented in NEW_MODE. If FORCE is true, this will never happen, as
3273 we'll force-create a SUBREG if needed. */
3276 emit_move_change_mode (machine_mode new_mode
,
3277 machine_mode old_mode
, rtx x
, bool force
)
3281 if (push_operand (x
, GET_MODE (x
)))
3283 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3284 MEM_COPY_ATTRIBUTES (ret
, x
);
3288 /* We don't have to worry about changing the address since the
3289 size in bytes is supposed to be the same. */
3290 if (reload_in_progress
)
3292 /* Copy the MEM to change the mode and move any
3293 substitutions from the old MEM to the new one. */
3294 ret
= adjust_address_nv (x
, new_mode
, 0);
3295 copy_replacements (x
, ret
);
3298 ret
= adjust_address (x
, new_mode
, 0);
3302 /* Note that we do want simplify_subreg's behavior of validating
3303 that the new mode is ok for a hard register. If we were to use
3304 simplify_gen_subreg, we would create the subreg, but would
3305 probably run into the target not being able to implement it. */
3306 /* Except, of course, when FORCE is true, when this is exactly what
3307 we want. Which is needed for CCmodes on some targets. */
3309 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3311 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3317 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3318 an integer mode of the same size as MODE. Returns the instruction
3319 emitted, or NULL if such a move could not be generated. */
3322 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3324 scalar_int_mode imode
;
3325 enum insn_code code
;
3327 /* There must exist a mode of the exact size we require. */
3328 if (!int_mode_for_mode (mode
).exists (&imode
))
3331 /* The target must support moves in this mode. */
3332 code
= optab_handler (mov_optab
, imode
);
3333 if (code
== CODE_FOR_nothing
)
3336 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3339 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3342 return emit_insn (GEN_FCN (code
) (x
, y
));
3345 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3346 Return an equivalent MEM that does not use an auto-increment. */
3349 emit_move_resolve_push (machine_mode mode
, rtx x
)
3351 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3354 poly_int64 adjust
= GET_MODE_SIZE (mode
);
3355 #ifdef PUSH_ROUNDING
3356 adjust
= PUSH_ROUNDING (adjust
);
3358 if (code
== PRE_DEC
|| code
== POST_DEC
)
3360 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3362 rtx expr
= XEXP (XEXP (x
, 0), 1);
3364 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3365 poly_int64 val
= rtx_to_poly_int64 (XEXP (expr
, 1));
3366 if (GET_CODE (expr
) == MINUS
)
3368 gcc_assert (known_eq (adjust
, val
) || known_eq (adjust
, -val
));
3372 /* Do not use anti_adjust_stack, since we don't want to update
3373 stack_pointer_delta. */
3374 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3375 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3376 0, OPTAB_LIB_WIDEN
);
3377 if (temp
!= stack_pointer_rtx
)
3378 emit_move_insn (stack_pointer_rtx
, temp
);
3385 temp
= stack_pointer_rtx
;
3390 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3396 return replace_equiv_address (x
, temp
);
3399 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3400 X is known to satisfy push_operand, and MODE is known to be complex.
3401 Returns the last instruction emitted. */
3404 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3406 scalar_mode submode
= GET_MODE_INNER (mode
);
3409 #ifdef PUSH_ROUNDING
3410 poly_int64 submodesize
= GET_MODE_SIZE (submode
);
3412 /* In case we output to the stack, but the size is smaller than the
3413 machine can push exactly, we need to use move instructions. */
3414 if (maybe_ne (PUSH_ROUNDING (submodesize
), submodesize
))
3416 x
= emit_move_resolve_push (mode
, x
);
3417 return emit_move_insn (x
, y
);
3421 /* Note that the real part always precedes the imag part in memory
3422 regardless of machine's endianness. */
3423 switch (GET_CODE (XEXP (x
, 0)))
3437 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3438 read_complex_part (y
, imag_first
));
3439 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3440 read_complex_part (y
, !imag_first
));
3443 /* A subroutine of emit_move_complex. Perform the move from Y to X
3444 via two moves of the parts. Returns the last instruction emitted. */
3447 emit_move_complex_parts (rtx x
, rtx y
)
3449 /* Show the output dies here. This is necessary for SUBREGs
3450 of pseudos since we cannot track their lifetimes correctly;
3451 hard regs shouldn't appear here except as return values. */
3452 if (!reload_completed
&& !reload_in_progress
3453 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3456 write_complex_part (x
, read_complex_part (y
, false), false);
3457 write_complex_part (x
, read_complex_part (y
, true), true);
3459 return get_last_insn ();
3462 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3463 MODE is known to be complex. Returns the last instruction emitted. */
3466 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3470 /* Need to take special care for pushes, to maintain proper ordering
3471 of the data, and possibly extra padding. */
3472 if (push_operand (x
, mode
))
3473 return emit_move_complex_push (mode
, x
, y
);
3475 /* See if we can coerce the target into moving both values at once, except
3476 for floating point where we favor moving as parts if this is easy. */
3477 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3478 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3480 && HARD_REGISTER_P (x
)
3481 && REG_NREGS (x
) == 1)
3483 && HARD_REGISTER_P (y
)
3484 && REG_NREGS (y
) == 1))
3486 /* Not possible if the values are inherently not adjacent. */
3487 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3489 /* Is possible if both are registers (or subregs of registers). */
3490 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3492 /* If one of the operands is a memory, and alignment constraints
3493 are friendly enough, we may be able to do combined memory operations.
3494 We do not attempt this if Y is a constant because that combination is
3495 usually better with the by-parts thing below. */
3496 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3497 && (!STRICT_ALIGNMENT
3498 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3507 /* For memory to memory moves, optimal behavior can be had with the
3508 existing block move logic. */
3509 if (MEM_P (x
) && MEM_P (y
))
3511 emit_block_move (x
, y
, gen_int_mode (GET_MODE_SIZE (mode
), Pmode
),
3512 BLOCK_OP_NO_LIBCALL
);
3513 return get_last_insn ();
3516 ret
= emit_move_via_integer (mode
, x
, y
, true);
3521 return emit_move_complex_parts (x
, y
);
3524 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3525 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3528 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3532 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3535 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3536 if (code
!= CODE_FOR_nothing
)
3538 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3539 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3540 return emit_insn (GEN_FCN (code
) (x
, y
));
3544 /* Otherwise, find the MODE_INT mode of the same width. */
3545 ret
= emit_move_via_integer (mode
, x
, y
, false);
3546 gcc_assert (ret
!= NULL
);
3550 /* Return true if word I of OP lies entirely in the
3551 undefined bits of a paradoxical subreg. */
3554 undefined_operand_subword_p (const_rtx op
, int i
)
3556 if (GET_CODE (op
) != SUBREG
)
3558 machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
3559 poly_int64 offset
= i
* UNITS_PER_WORD
+ subreg_memory_offset (op
);
3560 return (known_ge (offset
, GET_MODE_SIZE (innermostmode
))
3561 || known_le (offset
, -UNITS_PER_WORD
));
3564 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3565 MODE is any multi-word or full-word mode that lacks a move_insn
3566 pattern. Note that you will get better code if you define such
3567 patterns, even if they must turn into multiple assembler instructions. */
3570 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3572 rtx_insn
*last_insn
= 0;
3578 /* This function can only handle cases where the number of words is
3579 known at compile time. */
3580 mode_size
= GET_MODE_SIZE (mode
).to_constant ();
3581 gcc_assert (mode_size
>= UNITS_PER_WORD
);
3583 /* If X is a push on the stack, do the push now and replace
3584 X with a reference to the stack pointer. */
3585 if (push_operand (x
, mode
))
3586 x
= emit_move_resolve_push (mode
, x
);
3588 /* If we are in reload, see if either operand is a MEM whose address
3589 is scheduled for replacement. */
3590 if (reload_in_progress
&& MEM_P (x
)
3591 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3592 x
= replace_equiv_address_nv (x
, inner
);
3593 if (reload_in_progress
&& MEM_P (y
)
3594 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3595 y
= replace_equiv_address_nv (y
, inner
);
3599 need_clobber
= false;
3600 for (i
= 0; i
< CEIL (mode_size
, UNITS_PER_WORD
); i
++)
3602 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3605 /* Do not generate code for a move if it would come entirely
3606 from the undefined bits of a paradoxical subreg. */
3607 if (undefined_operand_subword_p (y
, i
))
3610 ypart
= operand_subword (y
, i
, 1, mode
);
3612 /* If we can't get a part of Y, put Y into memory if it is a
3613 constant. Otherwise, force it into a register. Then we must
3614 be able to get a part of Y. */
3615 if (ypart
== 0 && CONSTANT_P (y
))
3617 y
= use_anchored_address (force_const_mem (mode
, y
));
3618 ypart
= operand_subword (y
, i
, 1, mode
);
3620 else if (ypart
== 0)
3621 ypart
= operand_subword_force (y
, i
, mode
);
3623 gcc_assert (xpart
&& ypart
);
3625 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3627 last_insn
= emit_move_insn (xpart
, ypart
);
3633 /* Show the output dies here. This is necessary for SUBREGs
3634 of pseudos since we cannot track their lifetimes correctly;
3635 hard regs shouldn't appear here except as return values.
3636 We never want to emit such a clobber after reload. */
3638 && ! (reload_in_progress
|| reload_completed
)
3639 && need_clobber
!= 0)
3647 /* Low level part of emit_move_insn.
3648 Called just like emit_move_insn, but assumes X and Y
3649 are basically valid. */
3652 emit_move_insn_1 (rtx x
, rtx y
)
3654 machine_mode mode
= GET_MODE (x
);
3655 enum insn_code code
;
3657 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3659 code
= optab_handler (mov_optab
, mode
);
3660 if (code
!= CODE_FOR_nothing
)
3661 return emit_insn (GEN_FCN (code
) (x
, y
));
3663 /* Expand complex moves by moving real part and imag part. */
3664 if (COMPLEX_MODE_P (mode
))
3665 return emit_move_complex (mode
, x
, y
);
3667 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3668 || ALL_FIXED_POINT_MODE_P (mode
))
3670 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3672 /* If we can't find an integer mode, use multi words. */
3676 return emit_move_multi_word (mode
, x
, y
);
3679 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3680 return emit_move_ccmode (mode
, x
, y
);
3682 /* Try using a move pattern for the corresponding integer mode. This is
3683 only safe when simplify_subreg can convert MODE constants into integer
3684 constants. At present, it can only do this reliably if the value
3685 fits within a HOST_WIDE_INT. */
3687 || known_le (GET_MODE_BITSIZE (mode
), HOST_BITS_PER_WIDE_INT
))
3689 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3693 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3698 return emit_move_multi_word (mode
, x
, y
);
3701 /* Generate code to copy Y into X.
3702 Both Y and X must have the same mode, except that
3703 Y can be a constant with VOIDmode.
3704 This mode cannot be BLKmode; use emit_block_move for that.
3706 Return the last instruction emitted. */
3709 emit_move_insn (rtx x
, rtx y
)
3711 machine_mode mode
= GET_MODE (x
);
3712 rtx y_cst
= NULL_RTX
;
3713 rtx_insn
*last_insn
;
3716 gcc_assert (mode
!= BLKmode
3717 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3722 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3723 && (last_insn
= compress_float_constant (x
, y
)))
3728 if (!targetm
.legitimate_constant_p (mode
, y
))
3730 y
= force_const_mem (mode
, y
);
3732 /* If the target's cannot_force_const_mem prevented the spill,
3733 assume that the target's move expanders will also take care
3734 of the non-legitimate constant. */
3738 y
= use_anchored_address (y
);
3742 /* If X or Y are memory references, verify that their addresses are valid
3745 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3747 && ! push_operand (x
, GET_MODE (x
))))
3748 x
= validize_mem (x
);
3751 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3752 MEM_ADDR_SPACE (y
)))
3753 y
= validize_mem (y
);
3755 gcc_assert (mode
!= BLKmode
);
3757 last_insn
= emit_move_insn_1 (x
, y
);
3759 if (y_cst
&& REG_P (x
)
3760 && (set
= single_set (last_insn
)) != NULL_RTX
3761 && SET_DEST (set
) == x
3762 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3763 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3768 /* Generate the body of an instruction to copy Y into X.
3769 It may be a list of insns, if one insn isn't enough. */
3772 gen_move_insn (rtx x
, rtx y
)
3777 emit_move_insn_1 (x
, y
);
3783 /* If Y is representable exactly in a narrower mode, and the target can
3784 perform the extension directly from constant or memory, then emit the
3785 move as an extension. */
3788 compress_float_constant (rtx x
, rtx y
)
3790 machine_mode dstmode
= GET_MODE (x
);
3791 machine_mode orig_srcmode
= GET_MODE (y
);
3792 machine_mode srcmode
;
3793 const REAL_VALUE_TYPE
*r
;
3794 int oldcost
, newcost
;
3795 bool speed
= optimize_insn_for_speed_p ();
3797 r
= CONST_DOUBLE_REAL_VALUE (y
);
3799 if (targetm
.legitimate_constant_p (dstmode
, y
))
3800 oldcost
= set_src_cost (y
, orig_srcmode
, speed
);
3802 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), dstmode
, speed
);
3804 FOR_EACH_MODE_UNTIL (srcmode
, orig_srcmode
)
3808 rtx_insn
*last_insn
;
3810 /* Skip if the target can't extend this way. */
3811 ic
= can_extend_p (dstmode
, srcmode
, 0);
3812 if (ic
== CODE_FOR_nothing
)
3815 /* Skip if the narrowed value isn't exact. */
3816 if (! exact_real_truncate (srcmode
, r
))
3819 trunc_y
= const_double_from_real_value (*r
, srcmode
);
3821 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3823 /* Skip if the target needs extra instructions to perform
3825 if (!insn_operand_matches (ic
, 1, trunc_y
))
3827 /* This is valid, but may not be cheaper than the original. */
3828 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3830 if (oldcost
< newcost
)
3833 else if (float_extend_from_mem
[dstmode
][srcmode
])
3835 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3836 /* This is valid, but may not be cheaper than the original. */
3837 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3839 if (oldcost
< newcost
)
3841 trunc_y
= validize_mem (trunc_y
);
3846 /* For CSE's benefit, force the compressed constant pool entry
3847 into a new pseudo. This constant may be used in different modes,
3848 and if not, combine will put things back together for us. */
3849 trunc_y
= force_reg (srcmode
, trunc_y
);
3851 /* If x is a hard register, perform the extension into a pseudo,
3852 so that e.g. stack realignment code is aware of it. */
3854 if (REG_P (x
) && HARD_REGISTER_P (x
))
3855 target
= gen_reg_rtx (dstmode
);
3857 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3858 last_insn
= get_last_insn ();
3861 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3864 return emit_move_insn (x
, target
);
3871 /* Pushing data onto the stack. */
3873 /* Push a block of length SIZE (perhaps variable)
3874 and return an rtx to address the beginning of the block.
3875 The value may be virtual_outgoing_args_rtx.
3877 EXTRA is the number of bytes of padding to push in addition to SIZE.
3878 BELOW nonzero means this padding comes at low addresses;
3879 otherwise, the padding comes at high addresses. */
3882 push_block (rtx size
, poly_int64 extra
, int below
)
3886 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3887 if (CONSTANT_P (size
))
3888 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3889 else if (REG_P (size
) && known_eq (extra
, 0))
3890 anti_adjust_stack (size
);
3893 temp
= copy_to_mode_reg (Pmode
, size
);
3894 if (maybe_ne (extra
, 0))
3895 temp
= expand_binop (Pmode
, add_optab
, temp
,
3896 gen_int_mode (extra
, Pmode
),
3897 temp
, 0, OPTAB_LIB_WIDEN
);
3898 anti_adjust_stack (temp
);
3901 if (STACK_GROWS_DOWNWARD
)
3903 temp
= virtual_outgoing_args_rtx
;
3904 if (maybe_ne (extra
, 0) && below
)
3905 temp
= plus_constant (Pmode
, temp
, extra
);
3909 if (CONST_INT_P (size
))
3910 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3911 -INTVAL (size
) - (below
? 0 : extra
));
3912 else if (maybe_ne (extra
, 0) && !below
)
3913 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3914 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3917 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3918 negate_rtx (Pmode
, size
));
3921 return memory_address (NARROWEST_INT_MODE
, temp
);
3924 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3927 mem_autoinc_base (rtx mem
)
3931 rtx addr
= XEXP (mem
, 0);
3932 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3933 return XEXP (addr
, 0);
3938 /* A utility routine used here, in reload, and in try_split. The insns
3939 after PREV up to and including LAST are known to adjust the stack,
3940 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3941 placing notes as appropriate. PREV may be NULL, indicating the
3942 entire insn sequence prior to LAST should be scanned.
3944 The set of allowed stack pointer modifications is small:
3945 (1) One or more auto-inc style memory references (aka pushes),
3946 (2) One or more addition/subtraction with the SP as destination,
3947 (3) A single move insn with the SP as destination,
3948 (4) A call_pop insn,
3949 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3951 Insns in the sequence that do not modify the SP are ignored,
3952 except for noreturn calls.
3954 The return value is the amount of adjustment that can be trivially
3955 verified, via immediate operand or auto-inc. If the adjustment
3956 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
3959 find_args_size_adjust (rtx_insn
*insn
)
3964 pat
= PATTERN (insn
);
3967 /* Look for a call_pop pattern. */
3970 /* We have to allow non-call_pop patterns for the case
3971 of emit_single_push_insn of a TLS address. */
3972 if (GET_CODE (pat
) != PARALLEL
)
3975 /* All call_pop have a stack pointer adjust in the parallel.
3976 The call itself is always first, and the stack adjust is
3977 usually last, so search from the end. */
3978 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3980 set
= XVECEXP (pat
, 0, i
);
3981 if (GET_CODE (set
) != SET
)
3983 dest
= SET_DEST (set
);
3984 if (dest
== stack_pointer_rtx
)
3987 /* We'd better have found the stack pointer adjust. */
3990 /* Fall through to process the extracted SET and DEST
3991 as if it was a standalone insn. */
3993 else if (GET_CODE (pat
) == SET
)
3995 else if ((set
= single_set (insn
)) != NULL
)
3997 else if (GET_CODE (pat
) == PARALLEL
)
3999 /* ??? Some older ports use a parallel with a stack adjust
4000 and a store for a PUSH_ROUNDING pattern, rather than a
4001 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4002 /* ??? See h8300 and m68k, pushqi1. */
4003 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
4005 set
= XVECEXP (pat
, 0, i
);
4006 if (GET_CODE (set
) != SET
)
4008 dest
= SET_DEST (set
);
4009 if (dest
== stack_pointer_rtx
)
4012 /* We do not expect an auto-inc of the sp in the parallel. */
4013 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
4014 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4015 != stack_pointer_rtx
);
4023 dest
= SET_DEST (set
);
4025 /* Look for direct modifications of the stack pointer. */
4026 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
4028 /* Look for a trivial adjustment, otherwise assume nothing. */
4029 /* Note that the SPU restore_stack_block pattern refers to
4030 the stack pointer in V4SImode. Consider that non-trivial. */
4031 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
4032 && GET_CODE (SET_SRC (set
)) == PLUS
4033 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
4034 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
4035 return INTVAL (XEXP (SET_SRC (set
), 1));
4036 /* ??? Reload can generate no-op moves, which will be cleaned
4037 up later. Recognize it and continue searching. */
4038 else if (rtx_equal_p (dest
, SET_SRC (set
)))
4041 return HOST_WIDE_INT_MIN
;
4047 /* Otherwise only think about autoinc patterns. */
4048 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
4051 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4052 != stack_pointer_rtx
);
4054 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
4055 mem
= SET_SRC (set
);
4059 addr
= XEXP (mem
, 0);
4060 switch (GET_CODE (addr
))
4064 return GET_MODE_SIZE (GET_MODE (mem
));
4067 return -GET_MODE_SIZE (GET_MODE (mem
));
4070 addr
= XEXP (addr
, 1);
4071 gcc_assert (GET_CODE (addr
) == PLUS
);
4072 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
4073 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
4074 return INTVAL (XEXP (addr
, 1));
4082 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
,
4083 poly_int64 end_args_size
)
4085 poly_int64 args_size
= end_args_size
;
4086 bool saw_unknown
= false;
4089 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
4091 if (!NONDEBUG_INSN_P (insn
))
4094 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4095 a call argument containing a TLS address that itself requires
4096 a call to __tls_get_addr. The handling of stack_pointer_delta
4097 in emit_single_push_insn is supposed to ensure that any such
4098 notes are already correct. */
4099 rtx note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL_RTX
);
4100 gcc_assert (!note
|| known_eq (args_size
, get_args_size (note
)));
4102 poly_int64 this_delta
= find_args_size_adjust (insn
);
4103 if (known_eq (this_delta
, 0))
4106 || ACCUMULATE_OUTGOING_ARGS
4107 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
4111 gcc_assert (!saw_unknown
);
4112 if (known_eq (this_delta
, HOST_WIDE_INT_MIN
))
4116 add_args_size_note (insn
, args_size
);
4117 if (STACK_GROWS_DOWNWARD
)
4118 this_delta
= -poly_uint64 (this_delta
);
4121 args_size
= HOST_WIDE_INT_MIN
;
4123 args_size
-= this_delta
;
4129 #ifdef PUSH_ROUNDING
4130 /* Emit single push insn. */
4133 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4136 poly_int64 rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4138 enum insn_code icode
;
4140 /* If there is push pattern, use it. Otherwise try old way of throwing
4141 MEM representing push operation to move expander. */
4142 icode
= optab_handler (push_optab
, mode
);
4143 if (icode
!= CODE_FOR_nothing
)
4145 struct expand_operand ops
[1];
4147 create_input_operand (&ops
[0], x
, mode
);
4148 if (maybe_expand_insn (icode
, 1, ops
))
4151 if (known_eq (GET_MODE_SIZE (mode
), rounded_size
))
4152 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4153 /* If we are to pad downward, adjust the stack pointer first and
4154 then store X into the stack location using an offset. This is
4155 because emit_move_insn does not know how to pad; it does not have
4157 else if (targetm
.calls
.function_arg_padding (mode
, type
) == PAD_DOWNWARD
)
4159 emit_move_insn (stack_pointer_rtx
,
4160 expand_binop (Pmode
,
4161 STACK_GROWS_DOWNWARD
? sub_optab
4164 gen_int_mode (rounded_size
, Pmode
),
4165 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4167 poly_int64 offset
= rounded_size
- GET_MODE_SIZE (mode
);
4168 if (STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_DEC
)
4169 /* We have already decremented the stack pointer, so get the
4171 offset
+= rounded_size
;
4173 if (!STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_INC
)
4174 /* We have already incremented the stack pointer, so get the
4176 offset
-= rounded_size
;
4178 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, offset
);
4182 if (STACK_GROWS_DOWNWARD
)
4183 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4184 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, -rounded_size
);
4186 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4187 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, rounded_size
);
4189 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4192 dest
= gen_rtx_MEM (mode
, dest_addr
);
4196 set_mem_attributes (dest
, type
, 1);
4198 if (cfun
->tail_call_marked
)
4199 /* Function incoming arguments may overlap with sibling call
4200 outgoing arguments and we cannot allow reordering of reads
4201 from function arguments with stores to outgoing arguments
4202 of sibling calls. */
4203 set_mem_alias_set (dest
, 0);
4205 emit_move_insn (dest
, x
);
4208 /* Emit and annotate a single push insn. */
4211 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4213 poly_int64 delta
, old_delta
= stack_pointer_delta
;
4214 rtx_insn
*prev
= get_last_insn ();
4217 emit_single_push_insn_1 (mode
, x
, type
);
4219 /* Adjust stack_pointer_delta to describe the situation after the push
4220 we just performed. Note that we must do this after the push rather
4221 than before the push in case calculating X needs pushes and pops of
4222 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4223 for such pushes and pops must not include the effect of the future
4225 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4227 last
= get_last_insn ();
4229 /* Notice the common case where we emitted exactly one insn. */
4230 if (PREV_INSN (last
) == prev
)
4232 add_args_size_note (last
, stack_pointer_delta
);
4236 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4237 gcc_assert (known_eq (delta
, HOST_WIDE_INT_MIN
)
4238 || known_eq (delta
, old_delta
));
4242 /* If reading SIZE bytes from X will end up reading from
4243 Y return the number of bytes that overlap. Return -1
4244 if there is no overlap or -2 if we can't determine
4245 (for example when X and Y have different base registers). */
4248 memory_load_overlap (rtx x
, rtx y
, HOST_WIDE_INT size
)
4250 rtx tmp
= plus_constant (Pmode
, x
, size
);
4251 rtx sub
= simplify_gen_binary (MINUS
, Pmode
, tmp
, y
);
4253 if (!CONST_INT_P (sub
))
4256 HOST_WIDE_INT val
= INTVAL (sub
);
4258 return IN_RANGE (val
, 1, size
) ? val
: -1;
4261 /* Generate code to push X onto the stack, assuming it has mode MODE and
4263 MODE is redundant except when X is a CONST_INT (since they don't
4265 SIZE is an rtx for the size of data to be copied (in bytes),
4266 needed only if X is BLKmode.
4267 Return true if successful. May return false if asked to push a
4268 partial argument during a sibcall optimization (as specified by
4269 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4272 ALIGN (in bits) is maximum alignment we can assume.
4274 If PARTIAL and REG are both nonzero, then copy that many of the first
4275 bytes of X into registers starting with REG, and push the rest of X.
4276 The amount of space pushed is decreased by PARTIAL bytes.
4277 REG must be a hard register in this case.
4278 If REG is zero but PARTIAL is not, take any all others actions for an
4279 argument partially in registers, but do not actually load any
4282 EXTRA is the amount in bytes of extra space to leave next to this arg.
4283 This is ignored if an argument block has already been allocated.
4285 On a machine that lacks real push insns, ARGS_ADDR is the address of
4286 the bottom of the argument block for this call. We use indexing off there
4287 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4288 argument block has not been preallocated.
4290 ARGS_SO_FAR is the size of args previously pushed for this call.
4292 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4293 for arguments passed in registers. If nonzero, it will be the number
4294 of bytes required. */
4297 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4298 unsigned int align
, int partial
, rtx reg
, poly_int64 extra
,
4299 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4300 rtx alignment_pad
, bool sibcall_p
)
4303 pad_direction stack_direction
4304 = STACK_GROWS_DOWNWARD
? PAD_DOWNWARD
: PAD_UPWARD
;
4306 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4307 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4308 Default is below for small data on big-endian machines; else above. */
4309 pad_direction where_pad
= targetm
.calls
.function_arg_padding (mode
, type
);
4311 /* Invert direction if stack is post-decrement.
4313 if (STACK_PUSH_CODE
== POST_DEC
)
4314 if (where_pad
!= PAD_NONE
)
4315 where_pad
= (where_pad
== PAD_DOWNWARD
? PAD_UPWARD
: PAD_DOWNWARD
);
4319 int nregs
= partial
/ UNITS_PER_WORD
;
4320 rtx
*tmp_regs
= NULL
;
4321 int overlapping
= 0;
4324 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4326 /* Copy a block into the stack, entirely or partially. */
4333 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4334 used
= partial
- offset
;
4336 if (mode
!= BLKmode
)
4338 /* A value is to be stored in an insufficiently aligned
4339 stack slot; copy via a suitably aligned slot if
4341 size
= gen_int_mode (GET_MODE_SIZE (mode
), Pmode
);
4342 if (!MEM_P (xinner
))
4344 temp
= assign_temp (type
, 1, 1);
4345 emit_move_insn (temp
, xinner
);
4352 /* USED is now the # of bytes we need not copy to the stack
4353 because registers will take care of them. */
4356 xinner
= adjust_address (xinner
, BLKmode
, used
);
4358 /* If the partial register-part of the arg counts in its stack size,
4359 skip the part of stack space corresponding to the registers.
4360 Otherwise, start copying to the beginning of the stack space,
4361 by setting SKIP to 0. */
4362 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4364 #ifdef PUSH_ROUNDING
4365 /* Do it with several push insns if that doesn't take lots of insns
4366 and if there is no difficulty with push insns that skip bytes
4367 on the stack for alignment purposes. */
4370 && CONST_INT_P (size
)
4372 && MEM_ALIGN (xinner
) >= align
4373 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4374 /* Here we avoid the case of a structure whose weak alignment
4375 forces many pushes of a small amount of data,
4376 and such small pushes do rounding that causes trouble. */
4377 && ((!targetm
.slow_unaligned_access (word_mode
, align
))
4378 || align
>= BIGGEST_ALIGNMENT
4379 || known_eq (PUSH_ROUNDING (align
/ BITS_PER_UNIT
),
4380 align
/ BITS_PER_UNIT
))
4381 && known_eq (PUSH_ROUNDING (INTVAL (size
)), INTVAL (size
)))
4383 /* Push padding now if padding above and stack grows down,
4384 or if padding below and stack grows up.
4385 But if space already allocated, this has already been done. */
4386 if (maybe_ne (extra
, 0)
4388 && where_pad
!= PAD_NONE
4389 && where_pad
!= stack_direction
)
4390 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4392 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4395 #endif /* PUSH_ROUNDING */
4399 /* Otherwise make space on the stack and copy the data
4400 to the address of that space. */
4402 /* Deduct words put into registers from the size we must copy. */
4405 if (CONST_INT_P (size
))
4406 size
= GEN_INT (INTVAL (size
) - used
);
4408 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4409 gen_int_mode (used
, GET_MODE (size
)),
4410 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4413 /* Get the address of the stack space.
4414 In this case, we do not deal with EXTRA separately.
4415 A single stack adjust will do. */
4418 temp
= push_block (size
, extra
, where_pad
== PAD_DOWNWARD
);
4421 else if (CONST_INT_P (args_so_far
))
4422 temp
= memory_address (BLKmode
,
4423 plus_constant (Pmode
, args_addr
,
4424 skip
+ INTVAL (args_so_far
)));
4426 temp
= memory_address (BLKmode
,
4427 plus_constant (Pmode
,
4428 gen_rtx_PLUS (Pmode
,
4433 if (!ACCUMULATE_OUTGOING_ARGS
)
4435 /* If the source is referenced relative to the stack pointer,
4436 copy it to another register to stabilize it. We do not need
4437 to do this if we know that we won't be changing sp. */
4439 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4440 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4441 temp
= copy_to_reg (temp
);
4444 target
= gen_rtx_MEM (BLKmode
, temp
);
4446 /* We do *not* set_mem_attributes here, because incoming arguments
4447 may overlap with sibling call outgoing arguments and we cannot
4448 allow reordering of reads from function arguments with stores
4449 to outgoing arguments of sibling calls. We do, however, want
4450 to record the alignment of the stack slot. */
4451 /* ALIGN may well be better aligned than TYPE, e.g. due to
4452 PARM_BOUNDARY. Assume the caller isn't lying. */
4453 set_mem_align (target
, align
);
4455 /* If part should go in registers and pushing to that part would
4456 overwrite some of the values that need to go into regs, load the
4457 overlapping values into temporary pseudos to be moved into the hard
4458 regs at the end after the stack pushing has completed.
4459 We cannot load them directly into the hard regs here because
4460 they can be clobbered by the block move expansions.
4463 if (partial
> 0 && reg
!= 0 && mode
== BLKmode
4464 && GET_CODE (reg
) != PARALLEL
)
4466 overlapping
= memory_load_overlap (XEXP (x
, 0), temp
, partial
);
4467 if (overlapping
> 0)
4469 gcc_assert (overlapping
% UNITS_PER_WORD
== 0);
4470 overlapping
/= UNITS_PER_WORD
;
4472 tmp_regs
= XALLOCAVEC (rtx
, overlapping
);
4474 for (int i
= 0; i
< overlapping
; i
++)
4475 tmp_regs
[i
] = gen_reg_rtx (word_mode
);
4477 for (int i
= 0; i
< overlapping
; i
++)
4478 emit_move_insn (tmp_regs
[i
],
4479 operand_subword_force (target
, i
, mode
));
4481 else if (overlapping
== -1)
4483 /* Could not determine whether there is overlap.
4484 Fail the sibcall. */
4492 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4495 else if (partial
> 0)
4497 /* Scalar partly in registers. This case is only supported
4498 for fixed-wdth modes. */
4499 int size
= GET_MODE_SIZE (mode
).to_constant ();
4500 size
/= UNITS_PER_WORD
;
4503 /* # bytes of start of argument
4504 that we must make space for but need not store. */
4505 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4506 int args_offset
= INTVAL (args_so_far
);
4509 /* Push padding now if padding above and stack grows down,
4510 or if padding below and stack grows up.
4511 But if space already allocated, this has already been done. */
4512 if (maybe_ne (extra
, 0)
4514 && where_pad
!= PAD_NONE
4515 && where_pad
!= stack_direction
)
4516 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4518 /* If we make space by pushing it, we might as well push
4519 the real data. Otherwise, we can leave OFFSET nonzero
4520 and leave the space uninitialized. */
4524 /* Now NOT_STACK gets the number of words that we don't need to
4525 allocate on the stack. Convert OFFSET to words too. */
4526 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4527 offset
/= UNITS_PER_WORD
;
4529 /* If the partial register-part of the arg counts in its stack size,
4530 skip the part of stack space corresponding to the registers.
4531 Otherwise, start copying to the beginning of the stack space,
4532 by setting SKIP to 0. */
4533 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4535 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4536 x
= validize_mem (force_const_mem (mode
, x
));
4538 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4539 SUBREGs of such registers are not allowed. */
4540 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4541 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4542 x
= copy_to_reg (x
);
4544 /* Loop over all the words allocated on the stack for this arg. */
4545 /* We can do it by words, because any scalar bigger than a word
4546 has a size a multiple of a word. */
4547 for (i
= size
- 1; i
>= not_stack
; i
--)
4548 if (i
>= not_stack
+ offset
)
4549 if (!emit_push_insn (operand_subword_force (x
, i
, mode
),
4550 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4552 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4554 reg_parm_stack_space
, alignment_pad
, sibcall_p
))
4562 /* Push padding now if padding above and stack grows down,
4563 or if padding below and stack grows up.
4564 But if space already allocated, this has already been done. */
4565 if (maybe_ne (extra
, 0)
4567 && where_pad
!= PAD_NONE
4568 && where_pad
!= stack_direction
)
4569 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4571 #ifdef PUSH_ROUNDING
4572 if (args_addr
== 0 && PUSH_ARGS
)
4573 emit_single_push_insn (mode
, x
, type
);
4577 addr
= simplify_gen_binary (PLUS
, Pmode
, args_addr
, args_so_far
);
4578 dest
= gen_rtx_MEM (mode
, memory_address (mode
, addr
));
4580 /* We do *not* set_mem_attributes here, because incoming arguments
4581 may overlap with sibling call outgoing arguments and we cannot
4582 allow reordering of reads from function arguments with stores
4583 to outgoing arguments of sibling calls. We do, however, want
4584 to record the alignment of the stack slot. */
4585 /* ALIGN may well be better aligned than TYPE, e.g. due to
4586 PARM_BOUNDARY. Assume the caller isn't lying. */
4587 set_mem_align (dest
, align
);
4589 emit_move_insn (dest
, x
);
4593 /* Move the partial arguments into the registers and any overlapping
4594 values that we moved into the pseudos in tmp_regs. */
4595 if (partial
> 0 && reg
!= 0)
4597 /* Handle calls that pass values in multiple non-contiguous locations.
4598 The Irix 6 ABI has examples of this. */
4599 if (GET_CODE (reg
) == PARALLEL
)
4600 emit_group_load (reg
, x
, type
, -1);
4603 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4604 move_block_to_reg (REGNO (reg
), x
, nregs
- overlapping
, mode
);
4606 for (int i
= 0; i
< overlapping
; i
++)
4607 emit_move_insn (gen_rtx_REG (word_mode
, REGNO (reg
)
4608 + nregs
- overlapping
+ i
),
4614 if (maybe_ne (extra
, 0) && args_addr
== 0 && where_pad
== stack_direction
)
4615 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4617 if (alignment_pad
&& args_addr
== 0)
4618 anti_adjust_stack (alignment_pad
);
4623 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4627 get_subtarget (rtx x
)
4631 /* Only registers can be subtargets. */
4633 /* Don't use hard regs to avoid extending their life. */
4634 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4638 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4639 FIELD is a bitfield. Returns true if the optimization was successful,
4640 and there's nothing else to do. */
4643 optimize_bitfield_assignment_op (poly_uint64 pbitsize
,
4644 poly_uint64 pbitpos
,
4645 poly_uint64 pbitregion_start
,
4646 poly_uint64 pbitregion_end
,
4647 machine_mode mode1
, rtx str_rtx
,
4648 tree to
, tree src
, bool reverse
)
4650 /* str_mode is not guaranteed to be a scalar type. */
4651 machine_mode str_mode
= GET_MODE (str_rtx
);
4652 unsigned int str_bitsize
;
4657 enum tree_code code
;
4659 unsigned HOST_WIDE_INT bitsize
, bitpos
, bitregion_start
, bitregion_end
;
4660 if (mode1
!= VOIDmode
4661 || !pbitsize
.is_constant (&bitsize
)
4662 || !pbitpos
.is_constant (&bitpos
)
4663 || !pbitregion_start
.is_constant (&bitregion_start
)
4664 || !pbitregion_end
.is_constant (&bitregion_end
)
4665 || bitsize
>= BITS_PER_WORD
4666 || !GET_MODE_BITSIZE (str_mode
).is_constant (&str_bitsize
)
4667 || str_bitsize
> BITS_PER_WORD
4668 || TREE_SIDE_EFFECTS (to
)
4669 || TREE_THIS_VOLATILE (to
))
4673 if (TREE_CODE (src
) != SSA_NAME
)
4675 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4678 srcstmt
= get_gimple_for_ssa_name (src
);
4680 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4683 code
= gimple_assign_rhs_code (srcstmt
);
4685 op0
= gimple_assign_rhs1 (srcstmt
);
4687 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4688 to find its initialization. Hopefully the initialization will
4689 be from a bitfield load. */
4690 if (TREE_CODE (op0
) == SSA_NAME
)
4692 gimple
*op0stmt
= get_gimple_for_ssa_name (op0
);
4694 /* We want to eventually have OP0 be the same as TO, which
4695 should be a bitfield. */
4697 || !is_gimple_assign (op0stmt
)
4698 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4700 op0
= gimple_assign_rhs1 (op0stmt
);
4703 op1
= gimple_assign_rhs2 (srcstmt
);
4705 if (!operand_equal_p (to
, op0
, 0))
4708 if (MEM_P (str_rtx
))
4710 unsigned HOST_WIDE_INT offset1
;
4712 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4713 str_bitsize
= BITS_PER_WORD
;
4715 scalar_int_mode best_mode
;
4716 if (!get_best_mode (bitsize
, bitpos
, bitregion_start
, bitregion_end
,
4717 MEM_ALIGN (str_rtx
), str_bitsize
, false, &best_mode
))
4719 str_mode
= best_mode
;
4720 str_bitsize
= GET_MODE_BITSIZE (best_mode
);
4723 bitpos
%= str_bitsize
;
4724 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4725 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4727 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4730 gcc_assert (!reverse
);
4732 /* If the bit field covers the whole REG/MEM, store_field
4733 will likely generate better code. */
4734 if (bitsize
>= str_bitsize
)
4737 /* We can't handle fields split across multiple entities. */
4738 if (bitpos
+ bitsize
> str_bitsize
)
4741 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4742 bitpos
= str_bitsize
- bitpos
- bitsize
;
4748 /* For now, just optimize the case of the topmost bitfield
4749 where we don't need to do any masking and also
4750 1 bit bitfields where xor can be used.
4751 We might win by one instruction for the other bitfields
4752 too if insv/extv instructions aren't used, so that
4753 can be added later. */
4754 if ((reverse
|| bitpos
+ bitsize
!= str_bitsize
)
4755 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4758 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4759 value
= convert_modes (str_mode
,
4760 TYPE_MODE (TREE_TYPE (op1
)), value
,
4761 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4763 /* We may be accessing data outside the field, which means
4764 we can alias adjacent data. */
4765 if (MEM_P (str_rtx
))
4767 str_rtx
= shallow_copy_rtx (str_rtx
);
4768 set_mem_alias_set (str_rtx
, 0);
4769 set_mem_expr (str_rtx
, 0);
4772 if (bitsize
== 1 && (reverse
|| bitpos
+ bitsize
!= str_bitsize
))
4774 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4778 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4780 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4782 value
= flip_storage_order (str_mode
, value
);
4783 result
= expand_binop (str_mode
, binop
, str_rtx
,
4784 value
, str_rtx
, 1, OPTAB_WIDEN
);
4785 if (result
!= str_rtx
)
4786 emit_move_insn (str_rtx
, result
);
4791 if (TREE_CODE (op1
) != INTEGER_CST
)
4793 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4794 value
= convert_modes (str_mode
,
4795 TYPE_MODE (TREE_TYPE (op1
)), value
,
4796 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4798 /* We may be accessing data outside the field, which means
4799 we can alias adjacent data. */
4800 if (MEM_P (str_rtx
))
4802 str_rtx
= shallow_copy_rtx (str_rtx
);
4803 set_mem_alias_set (str_rtx
, 0);
4804 set_mem_expr (str_rtx
, 0);
4807 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4808 if (bitpos
+ bitsize
!= str_bitsize
)
4810 rtx mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< bitsize
) - 1,
4812 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4814 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4816 value
= flip_storage_order (str_mode
, value
);
4817 result
= expand_binop (str_mode
, binop
, str_rtx
,
4818 value
, str_rtx
, 1, OPTAB_WIDEN
);
4819 if (result
!= str_rtx
)
4820 emit_move_insn (str_rtx
, result
);
4830 /* In the C++ memory model, consecutive bit fields in a structure are
4831 considered one memory location.
4833 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4834 returns the bit range of consecutive bits in which this COMPONENT_REF
4835 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4836 and *OFFSET may be adjusted in the process.
4838 If the access does not need to be restricted, 0 is returned in both
4839 *BITSTART and *BITEND. */
4842 get_bit_range (poly_uint64_pod
*bitstart
, poly_uint64_pod
*bitend
, tree exp
,
4843 poly_int64_pod
*bitpos
, tree
*offset
)
4845 poly_int64 bitoffset
;
4848 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4850 field
= TREE_OPERAND (exp
, 1);
4851 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4852 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4853 need to limit the range we can access. */
4856 *bitstart
= *bitend
= 0;
4860 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4861 part of a larger bit field, then the representative does not serve any
4862 useful purpose. This can occur in Ada. */
4863 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4866 poly_int64 rbitsize
, rbitpos
;
4868 int unsignedp
, reversep
, volatilep
= 0;
4869 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4870 &roffset
, &rmode
, &unsignedp
, &reversep
,
4872 if (!multiple_p (rbitpos
, BITS_PER_UNIT
))
4874 *bitstart
= *bitend
= 0;
4879 /* Compute the adjustment to bitpos from the offset of the field
4880 relative to the representative. DECL_FIELD_OFFSET of field and
4881 repr are the same by construction if they are not constants,
4882 see finish_bitfield_layout. */
4883 poly_uint64 field_offset
, repr_offset
;
4884 if (poly_int_tree_p (DECL_FIELD_OFFSET (field
), &field_offset
)
4885 && poly_int_tree_p (DECL_FIELD_OFFSET (repr
), &repr_offset
))
4886 bitoffset
= (field_offset
- repr_offset
) * BITS_PER_UNIT
;
4889 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4890 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4892 /* If the adjustment is larger than bitpos, we would have a negative bit
4893 position for the lower bound and this may wreak havoc later. Adjust
4894 offset and bitpos to make the lower bound non-negative in that case. */
4895 if (maybe_gt (bitoffset
, *bitpos
))
4897 poly_int64 adjust_bits
= upper_bound (bitoffset
, *bitpos
) - *bitpos
;
4898 poly_int64 adjust_bytes
= exact_div (adjust_bits
, BITS_PER_UNIT
);
4900 *bitpos
+= adjust_bits
;
4901 if (*offset
== NULL_TREE
)
4902 *offset
= size_int (-adjust_bytes
);
4904 *offset
= size_binop (MINUS_EXPR
, *offset
, size_int (adjust_bytes
));
4908 *bitstart
= *bitpos
- bitoffset
;
4910 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4913 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4914 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4915 DECL_RTL was not set yet, return NORTL. */
4918 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4920 if (TREE_CODE (addr
) != ADDR_EXPR
)
4923 tree base
= TREE_OPERAND (addr
, 0);
4926 || TREE_ADDRESSABLE (base
)
4927 || DECL_MODE (base
) == BLKmode
)
4930 if (!DECL_RTL_SET_P (base
))
4933 return (!MEM_P (DECL_RTL (base
)));
4936 /* Returns true if the MEM_REF REF refers to an object that does not
4937 reside in memory and has non-BLKmode. */
4940 mem_ref_refers_to_non_mem_p (tree ref
)
4942 tree base
= TREE_OPERAND (ref
, 0);
4943 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4946 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4947 is true, try generating a nontemporal store. */
4950 expand_assignment (tree to
, tree from
, bool nontemporal
)
4956 enum insn_code icode
;
4958 /* Don't crash if the lhs of the assignment was erroneous. */
4959 if (TREE_CODE (to
) == ERROR_MARK
)
4961 expand_normal (from
);
4965 /* Optimize away no-op moves without side-effects. */
4966 if (operand_equal_p (to
, from
, 0))
4969 /* Handle misaligned stores. */
4970 mode
= TYPE_MODE (TREE_TYPE (to
));
4971 if ((TREE_CODE (to
) == MEM_REF
4972 || TREE_CODE (to
) == TARGET_MEM_REF
)
4974 && !mem_ref_refers_to_non_mem_p (to
)
4975 && ((align
= get_object_alignment (to
))
4976 < GET_MODE_ALIGNMENT (mode
))
4977 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4978 != CODE_FOR_nothing
)
4979 || targetm
.slow_unaligned_access (mode
, align
)))
4983 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4984 reg
= force_not_mem (reg
);
4985 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4986 if (TREE_CODE (to
) == MEM_REF
&& REF_REVERSE_STORAGE_ORDER (to
))
4987 reg
= flip_storage_order (mode
, reg
);
4989 if (icode
!= CODE_FOR_nothing
)
4991 struct expand_operand ops
[2];
4993 create_fixed_operand (&ops
[0], mem
);
4994 create_input_operand (&ops
[1], reg
, mode
);
4995 /* The movmisalign<mode> pattern cannot fail, else the assignment
4996 would silently be omitted. */
4997 expand_insn (icode
, 2, ops
);
5000 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
,
5005 /* Assignment of a structure component needs special treatment
5006 if the structure component's rtx is not simply a MEM.
5007 Assignment of an array element at a constant index, and assignment of
5008 an array element in an unaligned packed structure field, has the same
5009 problem. Same for (partially) storing into a non-memory object. */
5010 if (handled_component_p (to
)
5011 || (TREE_CODE (to
) == MEM_REF
5012 && (REF_REVERSE_STORAGE_ORDER (to
)
5013 || mem_ref_refers_to_non_mem_p (to
)))
5014 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
5017 poly_int64 bitsize
, bitpos
;
5018 poly_uint64 bitregion_start
= 0;
5019 poly_uint64 bitregion_end
= 0;
5021 int unsignedp
, reversep
, volatilep
= 0;
5025 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
5026 &unsignedp
, &reversep
, &volatilep
);
5028 /* Make sure bitpos is not negative, it can wreak havoc later. */
5029 if (maybe_lt (bitpos
, 0))
5031 gcc_assert (offset
== NULL_TREE
);
5032 offset
= size_int (bits_to_bytes_round_down (bitpos
));
5033 bitpos
= num_trailing_bits (bitpos
);
5036 if (TREE_CODE (to
) == COMPONENT_REF
5037 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
5038 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
5039 /* The C++ memory model naturally applies to byte-aligned fields.
5040 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5041 BITSIZE are not byte-aligned, there is no need to limit the range
5042 we can access. This can occur with packed structures in Ada. */
5043 else if (maybe_gt (bitsize
, 0)
5044 && multiple_p (bitsize
, BITS_PER_UNIT
)
5045 && multiple_p (bitpos
, BITS_PER_UNIT
))
5047 bitregion_start
= bitpos
;
5048 bitregion_end
= bitpos
+ bitsize
- 1;
5051 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5053 /* If the field has a mode, we want to access it in the
5054 field's mode, not the computed mode.
5055 If a MEM has VOIDmode (external with incomplete type),
5056 use BLKmode for it instead. */
5059 if (mode1
!= VOIDmode
)
5060 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
5061 else if (GET_MODE (to_rtx
) == VOIDmode
)
5062 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
5067 machine_mode address_mode
;
5070 if (!MEM_P (to_rtx
))
5072 /* We can get constant negative offsets into arrays with broken
5073 user code. Translate this to a trap instead of ICEing. */
5074 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
5075 expand_builtin_trap ();
5076 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
5079 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
5080 address_mode
= get_address_mode (to_rtx
);
5081 if (GET_MODE (offset_rtx
) != address_mode
)
5083 /* We cannot be sure that the RTL in offset_rtx is valid outside
5084 of a memory address context, so force it into a register
5085 before attempting to convert it to the desired mode. */
5086 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
5087 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5090 /* If we have an expression in OFFSET_RTX and a non-zero
5091 byte offset in BITPOS, adding the byte offset before the
5092 OFFSET_RTX results in better intermediate code, which makes
5093 later rtl optimization passes perform better.
5095 We prefer intermediate code like this:
5097 r124:DI=r123:DI+0x18
5102 r124:DI=r123:DI+0x10
5103 [r124:DI+0x8]=r121:DI
5105 This is only done for aligned data values, as these can
5106 be expected to result in single move instructions. */
5108 if (mode1
!= VOIDmode
5109 && maybe_ne (bitpos
, 0)
5110 && maybe_gt (bitsize
, 0)
5111 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
5112 && multiple_p (bitpos
, bitsize
)
5113 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
5114 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
5116 to_rtx
= adjust_address (to_rtx
, mode1
, bytepos
);
5117 bitregion_start
= 0;
5118 if (known_ge (bitregion_end
, poly_uint64 (bitpos
)))
5119 bitregion_end
-= bitpos
;
5123 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5124 highest_pow2_factor_for_target (to
,
5128 /* No action is needed if the target is not a memory and the field
5129 lies completely outside that target. This can occur if the source
5130 code contains an out-of-bounds access to a small array. */
5132 && GET_MODE (to_rtx
) != BLKmode
5133 && known_ge (bitpos
, GET_MODE_PRECISION (GET_MODE (to_rtx
))))
5135 expand_normal (from
);
5138 /* Handle expand_expr of a complex value returning a CONCAT. */
5139 else if (GET_CODE (to_rtx
) == CONCAT
)
5141 machine_mode to_mode
= GET_MODE (to_rtx
);
5142 gcc_checking_assert (COMPLEX_MODE_P (to_mode
));
5143 poly_int64 mode_bitsize
= GET_MODE_BITSIZE (to_mode
);
5144 unsigned short inner_bitsize
= GET_MODE_UNIT_BITSIZE (to_mode
);
5145 if (TYPE_MODE (TREE_TYPE (from
)) == GET_MODE (to_rtx
)
5146 && COMPLEX_MODE_P (GET_MODE (to_rtx
))
5147 && known_eq (bitpos
, 0)
5148 && known_eq (bitsize
, mode_bitsize
))
5149 result
= store_expr (from
, to_rtx
, false, nontemporal
, reversep
);
5150 else if (known_eq (bitsize
, inner_bitsize
)
5151 && (known_eq (bitpos
, 0)
5152 || known_eq (bitpos
, inner_bitsize
)))
5153 result
= store_expr (from
, XEXP (to_rtx
, maybe_ne (bitpos
, 0)),
5154 false, nontemporal
, reversep
);
5155 else if (known_le (bitpos
+ bitsize
, inner_bitsize
))
5156 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
5157 bitregion_start
, bitregion_end
,
5158 mode1
, from
, get_alias_set (to
),
5159 nontemporal
, reversep
);
5160 else if (known_ge (bitpos
, inner_bitsize
))
5161 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
5162 bitpos
- inner_bitsize
,
5163 bitregion_start
, bitregion_end
,
5164 mode1
, from
, get_alias_set (to
),
5165 nontemporal
, reversep
);
5166 else if (known_eq (bitpos
, 0) && known_eq (bitsize
, mode_bitsize
))
5168 result
= expand_normal (from
);
5169 if (GET_CODE (result
) == CONCAT
)
5171 to_mode
= GET_MODE_INNER (to_mode
);
5172 machine_mode from_mode
= GET_MODE_INNER (GET_MODE (result
));
5174 = simplify_gen_subreg (to_mode
, XEXP (result
, 0),
5177 = simplify_gen_subreg (to_mode
, XEXP (result
, 1),
5179 if (!from_real
|| !from_imag
)
5180 goto concat_store_slow
;
5181 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
5182 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
5187 = simplify_gen_subreg (to_mode
, result
,
5188 TYPE_MODE (TREE_TYPE (from
)), 0);
5191 emit_move_insn (XEXP (to_rtx
, 0),
5192 read_complex_part (from_rtx
, false));
5193 emit_move_insn (XEXP (to_rtx
, 1),
5194 read_complex_part (from_rtx
, true));
5198 machine_mode to_mode
5199 = GET_MODE_INNER (GET_MODE (to_rtx
));
5201 = simplify_gen_subreg (to_mode
, result
,
5202 TYPE_MODE (TREE_TYPE (from
)),
5205 = simplify_gen_subreg (to_mode
, result
,
5206 TYPE_MODE (TREE_TYPE (from
)),
5207 GET_MODE_SIZE (to_mode
));
5208 if (!from_real
|| !from_imag
)
5209 goto concat_store_slow
;
5210 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
5211 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
5218 rtx temp
= assign_stack_temp (to_mode
,
5219 GET_MODE_SIZE (GET_MODE (to_rtx
)));
5220 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
5221 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
5222 result
= store_field (temp
, bitsize
, bitpos
,
5223 bitregion_start
, bitregion_end
,
5224 mode1
, from
, get_alias_set (to
),
5225 nontemporal
, reversep
);
5226 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
5227 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
5234 /* If the field is at offset zero, we could have been given the
5235 DECL_RTX of the parent struct. Don't munge it. */
5236 to_rtx
= shallow_copy_rtx (to_rtx
);
5237 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
5239 MEM_VOLATILE_P (to_rtx
) = 1;
5242 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
5243 bitregion_start
, bitregion_end
,
5244 mode1
, to_rtx
, to
, from
,
5248 result
= store_field (to_rtx
, bitsize
, bitpos
,
5249 bitregion_start
, bitregion_end
,
5250 mode1
, from
, get_alias_set (to
),
5251 nontemporal
, reversep
);
5255 preserve_temp_slots (result
);
5260 /* If the rhs is a function call and its value is not an aggregate,
5261 call the function before we start to compute the lhs.
5262 This is needed for correct code for cases such as
5263 val = setjmp (buf) on machines where reference to val
5264 requires loading up part of an address in a separate insn.
5266 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5267 since it might be a promoted variable where the zero- or sign- extension
5268 needs to be done. Handling this in the normal way is safe because no
5269 computation is done before the call. The same is true for SSA names. */
5270 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5271 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5272 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5274 || TREE_CODE (to
) == PARM_DECL
5275 || TREE_CODE (to
) == RESULT_DECL
)
5276 && REG_P (DECL_RTL (to
)))
5277 || TREE_CODE (to
) == SSA_NAME
))
5283 value
= expand_normal (from
);
5285 /* Split value and bounds to store them separately. */
5286 chkp_split_slot (value
, &value
, &bounds
);
5289 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5291 /* Handle calls that return values in multiple non-contiguous locations.
5292 The Irix 6 ABI has examples of this. */
5293 if (GET_CODE (to_rtx
) == PARALLEL
)
5295 if (GET_CODE (value
) == PARALLEL
)
5296 emit_group_move (to_rtx
, value
);
5298 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5299 int_size_in_bytes (TREE_TYPE (from
)));
5301 else if (GET_CODE (value
) == PARALLEL
)
5302 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5303 int_size_in_bytes (TREE_TYPE (from
)));
5304 else if (GET_MODE (to_rtx
) == BLKmode
)
5306 /* Handle calls that return BLKmode values in registers. */
5308 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5310 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5314 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5315 value
= convert_memory_address_addr_space
5316 (as_a
<scalar_int_mode
> (GET_MODE (to_rtx
)), value
,
5317 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5319 emit_move_insn (to_rtx
, value
);
5322 /* Store bounds if required. */
5324 && (BOUNDED_P (to
) || chkp_type_has_pointer (TREE_TYPE (to
))))
5326 gcc_assert (MEM_P (to_rtx
));
5327 chkp_emit_bounds_store (bounds
, value
, to_rtx
);
5330 preserve_temp_slots (to_rtx
);
5335 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5336 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5338 /* Don't move directly into a return register. */
5339 if (TREE_CODE (to
) == RESULT_DECL
5340 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5346 /* If the source is itself a return value, it still is in a pseudo at
5347 this point so we can move it back to the return register directly. */
5349 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5350 && TREE_CODE (from
) != CALL_EXPR
)
5351 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5353 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5355 /* Handle calls that return values in multiple non-contiguous locations.
5356 The Irix 6 ABI has examples of this. */
5357 if (GET_CODE (to_rtx
) == PARALLEL
)
5359 if (GET_CODE (temp
) == PARALLEL
)
5360 emit_group_move (to_rtx
, temp
);
5362 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5363 int_size_in_bytes (TREE_TYPE (from
)));
5366 emit_move_insn (to_rtx
, temp
);
5368 preserve_temp_slots (to_rtx
);
5373 /* In case we are returning the contents of an object which overlaps
5374 the place the value is being stored, use a safe function when copying
5375 a value through a pointer into a structure value return block. */
5376 if (TREE_CODE (to
) == RESULT_DECL
5377 && TREE_CODE (from
) == INDIRECT_REF
5378 && ADDR_SPACE_GENERIC_P
5379 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5380 && refs_may_alias_p (to
, from
)
5381 && cfun
->returns_struct
5382 && !cfun
->returns_pcc_struct
)
5387 size
= expr_size (from
);
5388 from_rtx
= expand_normal (from
);
5390 emit_block_move_via_libcall (XEXP (to_rtx
, 0), XEXP (from_rtx
, 0), size
);
5392 preserve_temp_slots (to_rtx
);
5397 /* Compute FROM and store the value in the rtx we got. */
5400 result
= store_expr_with_bounds (from
, to_rtx
, 0, nontemporal
, false, to
);
5401 preserve_temp_slots (result
);
5406 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5407 succeeded, false otherwise. */
5410 emit_storent_insn (rtx to
, rtx from
)
5412 struct expand_operand ops
[2];
5413 machine_mode mode
= GET_MODE (to
);
5414 enum insn_code code
= optab_handler (storent_optab
, mode
);
5416 if (code
== CODE_FOR_nothing
)
5419 create_fixed_operand (&ops
[0], to
);
5420 create_input_operand (&ops
[1], from
, mode
);
5421 return maybe_expand_insn (code
, 2, ops
);
5424 /* Generate code for computing expression EXP,
5425 and storing the value into TARGET.
5427 If the mode is BLKmode then we may return TARGET itself.
5428 It turns out that in BLKmode it doesn't cause a problem.
5429 because C has no operators that could combine two different
5430 assignments into the same BLKmode object with different values
5431 with no sequence point. Will other languages need this to
5434 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5435 stack, and block moves may need to be treated specially.
5437 If NONTEMPORAL is true, try using a nontemporal store instruction.
5439 If REVERSE is true, the store is to be done in reverse order.
5441 If BTARGET is not NULL then computed bounds of EXP are
5442 associated with BTARGET. */
5445 store_expr_with_bounds (tree exp
, rtx target
, int call_param_p
,
5446 bool nontemporal
, bool reverse
, tree btarget
)
5449 rtx alt_rtl
= NULL_RTX
;
5450 location_t loc
= curr_insn_location ();
5452 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5454 /* C++ can generate ?: expressions with a throw expression in one
5455 branch and an rvalue in the other. Here, we resolve attempts to
5456 store the throw expression's nonexistent result. */
5457 gcc_assert (!call_param_p
);
5458 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5461 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5463 /* Perform first part of compound expression, then assign from second
5465 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5466 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5467 return store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
,
5468 call_param_p
, nontemporal
, reverse
,
5471 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5473 /* For conditional expression, get safe form of the target. Then
5474 test the condition, doing the appropriate assignment on either
5475 side. This avoids the creation of unnecessary temporaries.
5476 For non-BLKmode, it is more efficient not to do this. */
5478 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5480 do_pending_stack_adjust ();
5482 jumpifnot (TREE_OPERAND (exp
, 0), lab1
,
5483 profile_probability::uninitialized ());
5484 store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5485 nontemporal
, reverse
, btarget
);
5486 emit_jump_insn (targetm
.gen_jump (lab2
));
5489 store_expr_with_bounds (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5490 nontemporal
, reverse
, btarget
);
5496 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5497 /* If this is a scalar in a register that is stored in a wider mode
5498 than the declared mode, compute the result into its declared mode
5499 and then convert to the wider mode. Our value is the computed
5502 rtx inner_target
= 0;
5503 scalar_int_mode outer_mode
= subreg_unpromoted_mode (target
);
5504 scalar_int_mode inner_mode
= subreg_promoted_mode (target
);
5506 /* We can do the conversion inside EXP, which will often result
5507 in some optimizations. Do the conversion in two steps: first
5508 change the signedness, if needed, then the extend. But don't
5509 do this if the type of EXP is a subtype of something else
5510 since then the conversion might involve more than just
5511 converting modes. */
5512 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5513 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5514 && GET_MODE_PRECISION (outer_mode
)
5515 == TYPE_PRECISION (TREE_TYPE (exp
)))
5517 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5518 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5520 /* Some types, e.g. Fortran's logical*4, won't have a signed
5521 version, so use the mode instead. */
5523 = (signed_or_unsigned_type_for
5524 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5526 ntype
= lang_hooks
.types
.type_for_mode
5527 (TYPE_MODE (TREE_TYPE (exp
)),
5528 SUBREG_PROMOTED_SIGN (target
));
5530 exp
= fold_convert_loc (loc
, ntype
, exp
);
5533 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5534 (inner_mode
, SUBREG_PROMOTED_SIGN (target
)),
5537 inner_target
= SUBREG_REG (target
);
5540 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5541 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5543 /* Handle bounds returned by call. */
5544 if (TREE_CODE (exp
) == CALL_EXPR
)
5547 chkp_split_slot (temp
, &temp
, &bounds
);
5548 if (bounds
&& btarget
)
5550 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5551 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5552 chkp_set_rtl_bounds (btarget
, tmp
);
5556 /* If TEMP is a VOIDmode constant, use convert_modes to make
5557 sure that we properly convert it. */
5558 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5560 temp
= convert_modes (outer_mode
, TYPE_MODE (TREE_TYPE (exp
)),
5561 temp
, SUBREG_PROMOTED_SIGN (target
));
5562 temp
= convert_modes (inner_mode
, outer_mode
, temp
,
5563 SUBREG_PROMOTED_SIGN (target
));
5566 convert_move (SUBREG_REG (target
), temp
,
5567 SUBREG_PROMOTED_SIGN (target
));
5571 else if ((TREE_CODE (exp
) == STRING_CST
5572 || (TREE_CODE (exp
) == MEM_REF
5573 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5574 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5576 && integer_zerop (TREE_OPERAND (exp
, 1))))
5577 && !nontemporal
&& !call_param_p
5580 /* Optimize initialization of an array with a STRING_CST. */
5581 HOST_WIDE_INT exp_len
, str_copy_len
;
5583 tree str
= TREE_CODE (exp
) == STRING_CST
5584 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5586 exp_len
= int_expr_size (exp
);
5590 if (TREE_STRING_LENGTH (str
) <= 0)
5593 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5594 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5597 str_copy_len
= TREE_STRING_LENGTH (str
);
5598 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5599 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5601 str_copy_len
+= STORE_MAX_PIECES
- 1;
5602 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5604 str_copy_len
= MIN (str_copy_len
, exp_len
);
5605 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5606 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5607 MEM_ALIGN (target
), false))
5612 dest_mem
= store_by_pieces (dest_mem
,
5613 str_copy_len
, builtin_strncpy_read_str
,
5615 TREE_STRING_POINTER (str
)),
5616 MEM_ALIGN (target
), false,
5617 exp_len
> str_copy_len
? 1 : 0);
5618 if (exp_len
> str_copy_len
)
5619 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5620 GEN_INT (exp_len
- str_copy_len
),
5629 /* If we want to use a nontemporal or a reverse order store, force the
5630 value into a register first. */
5631 tmp_target
= nontemporal
|| reverse
? NULL_RTX
: target
;
5632 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5634 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5637 /* Handle bounds returned by call. */
5638 if (TREE_CODE (exp
) == CALL_EXPR
)
5641 chkp_split_slot (temp
, &temp
, &bounds
);
5642 if (bounds
&& btarget
)
5644 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5645 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5646 chkp_set_rtl_bounds (btarget
, tmp
);
5651 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5652 the same as that of TARGET, adjust the constant. This is needed, for
5653 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5654 only a word-sized value. */
5655 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5656 && TREE_CODE (exp
) != ERROR_MARK
5657 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5659 if (GET_MODE_CLASS (GET_MODE (target
))
5660 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
)))
5661 && known_eq (GET_MODE_BITSIZE (GET_MODE (target
)),
5662 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)))))
5664 rtx t
= simplify_gen_subreg (GET_MODE (target
), temp
,
5665 TYPE_MODE (TREE_TYPE (exp
)), 0);
5669 if (GET_MODE (temp
) == VOIDmode
)
5670 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5671 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5674 /* If value was not generated in the target, store it there.
5675 Convert the value to TARGET's type first if necessary and emit the
5676 pending incrementations that have been queued when expanding EXP.
5677 Note that we cannot emit the whole queue blindly because this will
5678 effectively disable the POST_INC optimization later.
5680 If TEMP and TARGET compare equal according to rtx_equal_p, but
5681 one or both of them are volatile memory refs, we have to distinguish
5683 - expand_expr has used TARGET. In this case, we must not generate
5684 another copy. This can be detected by TARGET being equal according
5686 - expand_expr has not used TARGET - that means that the source just
5687 happens to have the same RTX form. Since temp will have been created
5688 by expand_expr, it will compare unequal according to == .
5689 We must generate a copy in this case, to reach the correct number
5690 of volatile memory references. */
5692 if ((! rtx_equal_p (temp
, target
)
5693 || (temp
!= target
&& (side_effects_p (temp
)
5694 || side_effects_p (target
))))
5695 && TREE_CODE (exp
) != ERROR_MARK
5696 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5697 but TARGET is not valid memory reference, TEMP will differ
5698 from TARGET although it is really the same location. */
5700 && rtx_equal_p (alt_rtl
, target
)
5701 && !side_effects_p (alt_rtl
)
5702 && !side_effects_p (target
))
5703 /* If there's nothing to copy, don't bother. Don't call
5704 expr_size unless necessary, because some front-ends (C++)
5705 expr_size-hook must not be given objects that are not
5706 supposed to be bit-copied or bit-initialized. */
5707 && expr_size (exp
) != const0_rtx
)
5709 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5711 if (GET_MODE (target
) == BLKmode
)
5713 /* Handle calls that return BLKmode values in registers. */
5714 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5715 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5717 store_bit_field (target
,
5718 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5719 0, 0, 0, GET_MODE (temp
), temp
, reverse
);
5722 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5725 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5727 /* Handle copying a string constant into an array. The string
5728 constant may be shorter than the array. So copy just the string's
5729 actual length, and clear the rest. First get the size of the data
5730 type of the string, which is actually the size of the target. */
5731 rtx size
= expr_size (exp
);
5733 if (CONST_INT_P (size
)
5734 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5735 emit_block_move (target
, temp
, size
,
5737 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5740 machine_mode pointer_mode
5741 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5742 machine_mode address_mode
= get_address_mode (target
);
5744 /* Compute the size of the data to copy from the string. */
5746 = size_binop_loc (loc
, MIN_EXPR
,
5747 make_tree (sizetype
, size
),
5748 size_int (TREE_STRING_LENGTH (exp
)));
5750 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5752 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5753 rtx_code_label
*label
= 0;
5755 /* Copy that much. */
5756 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5757 TYPE_UNSIGNED (sizetype
));
5758 emit_block_move (target
, temp
, copy_size_rtx
,
5760 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5762 /* Figure out how much is left in TARGET that we have to clear.
5763 Do all calculations in pointer_mode. */
5764 if (CONST_INT_P (copy_size_rtx
))
5766 size
= plus_constant (address_mode
, size
,
5767 -INTVAL (copy_size_rtx
));
5768 target
= adjust_address (target
, BLKmode
,
5769 INTVAL (copy_size_rtx
));
5773 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5774 copy_size_rtx
, NULL_RTX
, 0,
5777 if (GET_MODE (copy_size_rtx
) != address_mode
)
5778 copy_size_rtx
= convert_to_mode (address_mode
,
5780 TYPE_UNSIGNED (sizetype
));
5782 target
= offset_address (target
, copy_size_rtx
,
5783 highest_pow2_factor (copy_size
));
5784 label
= gen_label_rtx ();
5785 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5786 GET_MODE (size
), 0, label
);
5789 if (size
!= const0_rtx
)
5790 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5796 /* Handle calls that return values in multiple non-contiguous locations.
5797 The Irix 6 ABI has examples of this. */
5798 else if (GET_CODE (target
) == PARALLEL
)
5800 if (GET_CODE (temp
) == PARALLEL
)
5801 emit_group_move (target
, temp
);
5803 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5804 int_size_in_bytes (TREE_TYPE (exp
)));
5806 else if (GET_CODE (temp
) == PARALLEL
)
5807 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5808 int_size_in_bytes (TREE_TYPE (exp
)));
5809 else if (GET_MODE (temp
) == BLKmode
)
5810 emit_block_move (target
, temp
, expr_size (exp
),
5812 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5813 /* If we emit a nontemporal store, there is nothing else to do. */
5814 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5819 temp
= flip_storage_order (GET_MODE (target
), temp
);
5820 temp
= force_operand (temp
, target
);
5822 emit_move_insn (target
, temp
);
5829 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5831 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
,
5834 return store_expr_with_bounds (exp
, target
, call_param_p
, nontemporal
,
5838 /* Return true if field F of structure TYPE is a flexible array. */
5841 flexible_array_member_p (const_tree f
, const_tree type
)
5846 return (DECL_CHAIN (f
) == NULL
5847 && TREE_CODE (tf
) == ARRAY_TYPE
5849 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5850 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5851 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5852 && int_size_in_bytes (type
) >= 0);
5855 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5856 must have in order for it to completely initialize a value of type TYPE.
5857 Return -1 if the number isn't known.
5859 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5861 static HOST_WIDE_INT
5862 count_type_elements (const_tree type
, bool for_ctor_p
)
5864 switch (TREE_CODE (type
))
5870 nelts
= array_type_nelts (type
);
5871 if (nelts
&& tree_fits_uhwi_p (nelts
))
5873 unsigned HOST_WIDE_INT n
;
5875 n
= tree_to_uhwi (nelts
) + 1;
5876 if (n
== 0 || for_ctor_p
)
5879 return n
* count_type_elements (TREE_TYPE (type
), false);
5881 return for_ctor_p
? -1 : 1;
5886 unsigned HOST_WIDE_INT n
;
5890 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5891 if (TREE_CODE (f
) == FIELD_DECL
)
5894 n
+= count_type_elements (TREE_TYPE (f
), false);
5895 else if (!flexible_array_member_p (f
, type
))
5896 /* Don't count flexible arrays, which are not supposed
5897 to be initialized. */
5905 case QUAL_UNION_TYPE
:
5910 gcc_assert (!for_ctor_p
);
5911 /* Estimate the number of scalars in each field and pick the
5912 maximum. Other estimates would do instead; the idea is simply
5913 to make sure that the estimate is not sensitive to the ordering
5916 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5917 if (TREE_CODE (f
) == FIELD_DECL
)
5919 m
= count_type_elements (TREE_TYPE (f
), false);
5920 /* If the field doesn't span the whole union, add an extra
5921 scalar for the rest. */
5922 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5923 TYPE_SIZE (type
)) != 1)
5936 unsigned HOST_WIDE_INT nelts
;
5937 if (TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
5945 case FIXED_POINT_TYPE
:
5950 case REFERENCE_TYPE
:
5966 /* Helper for categorize_ctor_elements. Identical interface. */
5969 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5970 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5972 unsigned HOST_WIDE_INT idx
;
5973 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5974 tree value
, purpose
, elt_type
;
5976 /* Whether CTOR is a valid constant initializer, in accordance with what
5977 initializer_constant_valid_p does. If inferred from the constructor
5978 elements, true until proven otherwise. */
5979 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5980 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5985 elt_type
= NULL_TREE
;
5987 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5989 HOST_WIDE_INT mult
= 1;
5991 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5993 tree lo_index
= TREE_OPERAND (purpose
, 0);
5994 tree hi_index
= TREE_OPERAND (purpose
, 1);
5996 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5997 mult
= (tree_to_uhwi (hi_index
)
5998 - tree_to_uhwi (lo_index
) + 1);
6001 elt_type
= TREE_TYPE (value
);
6003 switch (TREE_CODE (value
))
6007 HOST_WIDE_INT nz
= 0, ic
= 0;
6009 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
6012 nz_elts
+= mult
* nz
;
6013 init_elts
+= mult
* ic
;
6015 if (const_from_elts_p
&& const_p
)
6016 const_p
= const_elt_p
;
6023 if (!initializer_zerop (value
))
6029 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
6030 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
6034 if (!initializer_zerop (TREE_REALPART (value
)))
6036 if (!initializer_zerop (TREE_IMAGPART (value
)))
6043 /* We can only construct constant-length vectors using
6045 unsigned int nunits
= VECTOR_CST_NELTS (value
).to_constant ();
6046 for (unsigned int i
= 0; i
< nunits
; ++i
)
6048 tree v
= VECTOR_CST_ELT (value
, i
);
6049 if (!initializer_zerop (v
))
6058 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
6059 nz_elts
+= mult
* tc
;
6060 init_elts
+= mult
* tc
;
6062 if (const_from_elts_p
&& const_p
)
6064 = initializer_constant_valid_p (value
,
6066 TYPE_REVERSE_STORAGE_ORDER
6074 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
6075 num_fields
, elt_type
))
6076 *p_complete
= false;
6078 *p_nz_elts
+= nz_elts
;
6079 *p_init_elts
+= init_elts
;
6084 /* Examine CTOR to discover:
6085 * how many scalar fields are set to nonzero values,
6086 and place it in *P_NZ_ELTS;
6087 * how many scalar fields in total are in CTOR,
6088 and place it in *P_ELT_COUNT.
6089 * whether the constructor is complete -- in the sense that every
6090 meaningful byte is explicitly given a value --
6091 and place it in *P_COMPLETE.
6093 Return whether or not CTOR is a valid static constant initializer, the same
6094 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6097 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
6098 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
6104 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
6107 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6108 of which had type LAST_TYPE. Each element was itself a complete
6109 initializer, in the sense that every meaningful byte was explicitly
6110 given a value. Return true if the same is true for the constructor
6114 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
6115 const_tree last_type
)
6117 if (TREE_CODE (type
) == UNION_TYPE
6118 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
6123 gcc_assert (num_elts
== 1 && last_type
);
6125 /* ??? We could look at each element of the union, and find the
6126 largest element. Which would avoid comparing the size of the
6127 initialized element against any tail padding in the union.
6128 Doesn't seem worth the effort... */
6129 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
6132 return count_type_elements (type
, true) == num_elts
;
6135 /* Return 1 if EXP contains mostly (3/4) zeros. */
6138 mostly_zeros_p (const_tree exp
)
6140 if (TREE_CODE (exp
) == CONSTRUCTOR
)
6142 HOST_WIDE_INT nz_elts
, init_elts
;
6145 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
6146 return !complete_p
|| nz_elts
< init_elts
/ 4;
6149 return initializer_zerop (exp
);
6152 /* Return 1 if EXP contains all zeros. */
6155 all_zeros_p (const_tree exp
)
6157 if (TREE_CODE (exp
) == CONSTRUCTOR
)
6159 HOST_WIDE_INT nz_elts
, init_elts
;
6162 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
6163 return nz_elts
== 0;
6166 return initializer_zerop (exp
);
6169 /* Helper function for store_constructor.
6170 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6171 CLEARED is as for store_constructor.
6172 ALIAS_SET is the alias set to use for any stores.
6173 If REVERSE is true, the store is to be done in reverse order.
6175 This provides a recursive shortcut back to store_constructor when it isn't
6176 necessary to go through store_field. This is so that we can pass through
6177 the cleared field to let store_constructor know that we may not have to
6178 clear a substructure if the outer structure has already been cleared. */
6181 store_constructor_field (rtx target
, poly_uint64 bitsize
, poly_int64 bitpos
,
6182 poly_uint64 bitregion_start
,
6183 poly_uint64 bitregion_end
,
6185 tree exp
, int cleared
,
6186 alias_set_type alias_set
, bool reverse
)
6189 poly_uint64 bytesize
;
6190 if (TREE_CODE (exp
) == CONSTRUCTOR
6191 /* We can only call store_constructor recursively if the size and
6192 bit position are on a byte boundary. */
6193 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
6194 && maybe_ne (bitsize
, 0U)
6195 && multiple_p (bitsize
, BITS_PER_UNIT
, &bytesize
)
6196 /* If we have a nonzero bitpos for a register target, then we just
6197 let store_field do the bitfield handling. This is unlikely to
6198 generate unnecessary clear instructions anyways. */
6199 && (known_eq (bitpos
, 0) || MEM_P (target
)))
6203 machine_mode target_mode
= GET_MODE (target
);
6204 if (target_mode
!= BLKmode
6205 && !multiple_p (bitpos
, GET_MODE_ALIGNMENT (target_mode
)))
6206 target_mode
= BLKmode
;
6207 target
= adjust_address (target
, target_mode
, bytepos
);
6211 /* Update the alias set, if required. */
6212 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
6213 && MEM_ALIAS_SET (target
) != 0)
6215 target
= copy_rtx (target
);
6216 set_mem_alias_set (target
, alias_set
);
6219 store_constructor (exp
, target
, cleared
, bytesize
, reverse
);
6222 store_field (target
, bitsize
, bitpos
, bitregion_start
, bitregion_end
, mode
,
6223 exp
, alias_set
, false, reverse
);
6227 /* Returns the number of FIELD_DECLs in TYPE. */
6230 fields_length (const_tree type
)
6232 tree t
= TYPE_FIELDS (type
);
6235 for (; t
; t
= DECL_CHAIN (t
))
6236 if (TREE_CODE (t
) == FIELD_DECL
)
6243 /* Store the value of constructor EXP into the rtx TARGET.
6244 TARGET is either a REG or a MEM; we know it cannot conflict, since
6245 safe_from_p has been called.
6246 CLEARED is true if TARGET is known to have been zero'd.
6247 SIZE is the number of bytes of TARGET we are allowed to modify: this
6248 may not be the same as the size of EXP if we are assigning to a field
6249 which has been packed to exclude padding bits.
6250 If REVERSE is true, the store is to be done in reverse order. */
6253 store_constructor (tree exp
, rtx target
, int cleared
, poly_int64 size
,
6256 tree type
= TREE_TYPE (exp
);
6257 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
6258 poly_int64 bitregion_end
= known_gt (size
, 0) ? size
* BITS_PER_UNIT
- 1 : 0;
6260 switch (TREE_CODE (type
))
6264 case QUAL_UNION_TYPE
:
6266 unsigned HOST_WIDE_INT idx
;
6269 /* The storage order is specified for every aggregate type. */
6270 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
6272 /* If size is zero or the target is already cleared, do nothing. */
6273 if (known_eq (size
, 0) || cleared
)
6275 /* We either clear the aggregate or indicate the value is dead. */
6276 else if ((TREE_CODE (type
) == UNION_TYPE
6277 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
6278 && ! CONSTRUCTOR_ELTS (exp
))
6279 /* If the constructor is empty, clear the union. */
6281 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
6285 /* If we are building a static constructor into a register,
6286 set the initial value as zero so we can fold the value into
6287 a constant. But if more than one register is involved,
6288 this probably loses. */
6289 else if (REG_P (target
) && TREE_STATIC (exp
)
6290 && known_le (GET_MODE_SIZE (GET_MODE (target
)),
6291 REGMODE_NATURAL_SIZE (GET_MODE (target
))))
6293 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6297 /* If the constructor has fewer fields than the structure or
6298 if we are initializing the structure to mostly zeros, clear
6299 the whole structure first. Don't do this if TARGET is a
6300 register whose mode size isn't equal to SIZE since
6301 clear_storage can't handle this case. */
6302 else if (known_size_p (size
)
6303 && (((int) CONSTRUCTOR_NELTS (exp
) != fields_length (type
))
6304 || mostly_zeros_p (exp
))
6306 || known_eq (GET_MODE_SIZE (GET_MODE (target
)), size
)))
6308 clear_storage (target
, gen_int_mode (size
, Pmode
),
6313 if (REG_P (target
) && !cleared
)
6314 emit_clobber (target
);
6316 /* Store each element of the constructor into the
6317 corresponding field of TARGET. */
6318 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
6321 HOST_WIDE_INT bitsize
;
6322 HOST_WIDE_INT bitpos
= 0;
6324 rtx to_rtx
= target
;
6326 /* Just ignore missing fields. We cleared the whole
6327 structure, above, if any fields are missing. */
6331 if (cleared
&& initializer_zerop (value
))
6334 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
6335 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
6339 mode
= DECL_MODE (field
);
6340 if (DECL_BIT_FIELD (field
))
6343 offset
= DECL_FIELD_OFFSET (field
);
6344 if (tree_fits_shwi_p (offset
)
6345 && tree_fits_shwi_p (bit_position (field
)))
6347 bitpos
= int_bit_position (field
);
6353 /* If this initializes a field that is smaller than a
6354 word, at the start of a word, try to widen it to a full
6355 word. This special case allows us to output C++ member
6356 function initializations in a form that the optimizers
6358 if (WORD_REGISTER_OPERATIONS
6360 && bitsize
< BITS_PER_WORD
6361 && bitpos
% BITS_PER_WORD
== 0
6362 && GET_MODE_CLASS (mode
) == MODE_INT
6363 && TREE_CODE (value
) == INTEGER_CST
6365 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6367 tree type
= TREE_TYPE (value
);
6369 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6371 type
= lang_hooks
.types
.type_for_mode
6372 (word_mode
, TYPE_UNSIGNED (type
));
6373 value
= fold_convert (type
, value
);
6374 /* Make sure the bits beyond the original bitsize are zero
6375 so that we can correctly avoid extra zeroing stores in
6376 later constructor elements. */
6378 = wide_int_to_tree (type
, wi::mask (bitsize
, false,
6380 value
= fold_build2 (BIT_AND_EXPR
, type
, value
, bitsize_mask
);
6383 if (BYTES_BIG_ENDIAN
)
6385 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6386 build_int_cst (type
,
6387 BITS_PER_WORD
- bitsize
));
6388 bitsize
= BITS_PER_WORD
;
6392 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6393 && DECL_NONADDRESSABLE_P (field
))
6395 to_rtx
= copy_rtx (to_rtx
);
6396 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6399 store_constructor_field (to_rtx
, bitsize
, bitpos
,
6400 0, bitregion_end
, mode
,
6402 get_alias_set (TREE_TYPE (field
)),
6410 unsigned HOST_WIDE_INT i
;
6413 tree elttype
= TREE_TYPE (type
);
6415 HOST_WIDE_INT minelt
= 0;
6416 HOST_WIDE_INT maxelt
= 0;
6418 /* The storage order is specified for every aggregate type. */
6419 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
6421 domain
= TYPE_DOMAIN (type
);
6422 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6423 && TYPE_MAX_VALUE (domain
)
6424 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6425 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6427 /* If we have constant bounds for the range of the type, get them. */
6430 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6431 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6434 /* If the constructor has fewer elements than the array, clear
6435 the whole array first. Similarly if this is static
6436 constructor of a non-BLKmode object. */
6439 else if (REG_P (target
) && TREE_STATIC (exp
))
6443 unsigned HOST_WIDE_INT idx
;
6445 HOST_WIDE_INT count
= 0, zero_count
= 0;
6446 need_to_clear
= ! const_bounds_p
;
6448 /* This loop is a more accurate version of the loop in
6449 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6450 is also needed to check for missing elements. */
6451 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6453 HOST_WIDE_INT this_node_count
;
6458 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6460 tree lo_index
= TREE_OPERAND (index
, 0);
6461 tree hi_index
= TREE_OPERAND (index
, 1);
6463 if (! tree_fits_uhwi_p (lo_index
)
6464 || ! tree_fits_uhwi_p (hi_index
))
6470 this_node_count
= (tree_to_uhwi (hi_index
)
6471 - tree_to_uhwi (lo_index
) + 1);
6474 this_node_count
= 1;
6476 count
+= this_node_count
;
6477 if (mostly_zeros_p (value
))
6478 zero_count
+= this_node_count
;
6481 /* Clear the entire array first if there are any missing
6482 elements, or if the incidence of zero elements is >=
6485 && (count
< maxelt
- minelt
+ 1
6486 || 4 * zero_count
>= 3 * count
))
6490 if (need_to_clear
&& maybe_gt (size
, 0))
6493 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6495 clear_storage (target
, gen_int_mode (size
, Pmode
),
6500 if (!cleared
&& REG_P (target
))
6501 /* Inform later passes that the old value is dead. */
6502 emit_clobber (target
);
6504 /* Store each element of the constructor into the
6505 corresponding element of TARGET, determined by counting the
6507 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6511 HOST_WIDE_INT bitpos
;
6512 rtx xtarget
= target
;
6514 if (cleared
&& initializer_zerop (value
))
6517 mode
= TYPE_MODE (elttype
);
6518 if (mode
== BLKmode
)
6519 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6520 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6523 bitsize
= GET_MODE_BITSIZE (mode
);
6525 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6527 tree lo_index
= TREE_OPERAND (index
, 0);
6528 tree hi_index
= TREE_OPERAND (index
, 1);
6529 rtx index_r
, pos_rtx
;
6530 HOST_WIDE_INT lo
, hi
, count
;
6533 /* If the range is constant and "small", unroll the loop. */
6535 && tree_fits_shwi_p (lo_index
)
6536 && tree_fits_shwi_p (hi_index
)
6537 && (lo
= tree_to_shwi (lo_index
),
6538 hi
= tree_to_shwi (hi_index
),
6539 count
= hi
- lo
+ 1,
6542 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6543 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6546 lo
-= minelt
; hi
-= minelt
;
6547 for (; lo
<= hi
; lo
++)
6549 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6552 && !MEM_KEEP_ALIAS_SET_P (target
)
6553 && TREE_CODE (type
) == ARRAY_TYPE
6554 && TYPE_NONALIASED_COMPONENT (type
))
6556 target
= copy_rtx (target
);
6557 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6560 store_constructor_field
6561 (target
, bitsize
, bitpos
, 0, bitregion_end
,
6562 mode
, value
, cleared
,
6563 get_alias_set (elttype
), reverse
);
6568 rtx_code_label
*loop_start
= gen_label_rtx ();
6569 rtx_code_label
*loop_end
= gen_label_rtx ();
6572 expand_normal (hi_index
);
6574 index
= build_decl (EXPR_LOCATION (exp
),
6575 VAR_DECL
, NULL_TREE
, domain
);
6576 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6577 SET_DECL_RTL (index
, index_r
);
6578 store_expr (lo_index
, index_r
, 0, false, reverse
);
6580 /* Build the head of the loop. */
6581 do_pending_stack_adjust ();
6582 emit_label (loop_start
);
6584 /* Assign value to element index. */
6586 fold_convert (ssizetype
,
6587 fold_build2 (MINUS_EXPR
,
6590 TYPE_MIN_VALUE (domain
)));
6593 size_binop (MULT_EXPR
, position
,
6594 fold_convert (ssizetype
,
6595 TYPE_SIZE_UNIT (elttype
)));
6597 pos_rtx
= expand_normal (position
);
6598 xtarget
= offset_address (target
, pos_rtx
,
6599 highest_pow2_factor (position
));
6600 xtarget
= adjust_address (xtarget
, mode
, 0);
6601 if (TREE_CODE (value
) == CONSTRUCTOR
)
6602 store_constructor (value
, xtarget
, cleared
,
6603 exact_div (bitsize
, BITS_PER_UNIT
),
6606 store_expr (value
, xtarget
, 0, false, reverse
);
6608 /* Generate a conditional jump to exit the loop. */
6609 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6611 jumpif (exit_cond
, loop_end
,
6612 profile_probability::uninitialized ());
6614 /* Update the loop counter, and jump to the head of
6616 expand_assignment (index
,
6617 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6618 index
, integer_one_node
),
6621 emit_jump (loop_start
);
6623 /* Build the end of the loop. */
6624 emit_label (loop_end
);
6627 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6628 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6633 index
= ssize_int (1);
6636 index
= fold_convert (ssizetype
,
6637 fold_build2 (MINUS_EXPR
,
6640 TYPE_MIN_VALUE (domain
)));
6643 size_binop (MULT_EXPR
, index
,
6644 fold_convert (ssizetype
,
6645 TYPE_SIZE_UNIT (elttype
)));
6646 xtarget
= offset_address (target
,
6647 expand_normal (position
),
6648 highest_pow2_factor (position
));
6649 xtarget
= adjust_address (xtarget
, mode
, 0);
6650 store_expr (value
, xtarget
, 0, false, reverse
);
6655 bitpos
= ((tree_to_shwi (index
) - minelt
)
6656 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6658 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6660 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6661 && TREE_CODE (type
) == ARRAY_TYPE
6662 && TYPE_NONALIASED_COMPONENT (type
))
6664 target
= copy_rtx (target
);
6665 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6667 store_constructor_field (target
, bitsize
, bitpos
, 0,
6668 bitregion_end
, mode
, value
,
6669 cleared
, get_alias_set (elttype
),
6678 unsigned HOST_WIDE_INT idx
;
6679 constructor_elt
*ce
;
6682 insn_code icode
= CODE_FOR_nothing
;
6684 tree elttype
= TREE_TYPE (type
);
6685 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6686 machine_mode eltmode
= TYPE_MODE (elttype
);
6687 HOST_WIDE_INT bitsize
;
6688 HOST_WIDE_INT bitpos
;
6689 rtvec vector
= NULL
;
6691 unsigned HOST_WIDE_INT const_n_elts
;
6692 alias_set_type alias
;
6693 bool vec_vec_init_p
= false;
6694 machine_mode mode
= GET_MODE (target
);
6696 gcc_assert (eltmode
!= BLKmode
);
6698 /* Try using vec_duplicate_optab for uniform vectors. */
6699 if (!TREE_SIDE_EFFECTS (exp
)
6700 && VECTOR_MODE_P (mode
)
6701 && eltmode
== GET_MODE_INNER (mode
)
6702 && ((icode
= optab_handler (vec_duplicate_optab
, mode
))
6703 != CODE_FOR_nothing
)
6704 && (elt
= uniform_vector_p (exp
)))
6706 struct expand_operand ops
[2];
6707 create_output_operand (&ops
[0], target
, mode
);
6708 create_input_operand (&ops
[1], expand_normal (elt
), eltmode
);
6709 expand_insn (icode
, 2, ops
);
6710 if (!rtx_equal_p (target
, ops
[0].value
))
6711 emit_move_insn (target
, ops
[0].value
);
6715 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6717 && VECTOR_MODE_P (mode
)
6718 && n_elts
.is_constant (&const_n_elts
))
6720 machine_mode emode
= eltmode
;
6722 if (CONSTRUCTOR_NELTS (exp
)
6723 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
))
6726 tree etype
= TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
);
6727 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp
)
6728 * TYPE_VECTOR_SUBPARTS (etype
),
6730 emode
= TYPE_MODE (etype
);
6732 icode
= convert_optab_handler (vec_init_optab
, mode
, emode
);
6733 if (icode
!= CODE_FOR_nothing
)
6735 unsigned int i
, n
= const_n_elts
;
6737 if (emode
!= eltmode
)
6739 n
= CONSTRUCTOR_NELTS (exp
);
6740 vec_vec_init_p
= true;
6742 vector
= rtvec_alloc (n
);
6743 for (i
= 0; i
< n
; i
++)
6744 RTVEC_ELT (vector
, i
) = CONST0_RTX (emode
);
6748 /* If the constructor has fewer elements than the vector,
6749 clear the whole array first. Similarly if this is static
6750 constructor of a non-BLKmode object. */
6753 else if (REG_P (target
) && TREE_STATIC (exp
))
6757 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6760 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6762 tree sz
= TYPE_SIZE (TREE_TYPE (value
));
6764 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR
, sz
,
6765 TYPE_SIZE (elttype
)));
6767 count
+= n_elts_here
;
6768 if (mostly_zeros_p (value
))
6769 zero_count
+= n_elts_here
;
6772 /* Clear the entire vector first if there are any missing elements,
6773 or if the incidence of zero elements is >= 75%. */
6774 need_to_clear
= (maybe_lt (count
, n_elts
)
6775 || 4 * zero_count
>= 3 * count
);
6778 if (need_to_clear
&& maybe_gt (size
, 0) && !vector
)
6781 emit_move_insn (target
, CONST0_RTX (mode
));
6783 clear_storage (target
, gen_int_mode (size
, Pmode
),
6788 /* Inform later passes that the old value is dead. */
6789 if (!cleared
&& !vector
&& REG_P (target
))
6790 emit_move_insn (target
, CONST0_RTX (mode
));
6793 alias
= MEM_ALIAS_SET (target
);
6795 alias
= get_alias_set (elttype
);
6797 /* Store each element of the constructor into the corresponding
6798 element of TARGET, determined by counting the elements. */
6799 for (idx
= 0, i
= 0;
6800 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6801 idx
++, i
+= bitsize
/ elt_size
)
6803 HOST_WIDE_INT eltpos
;
6804 tree value
= ce
->value
;
6806 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6807 if (cleared
&& initializer_zerop (value
))
6811 eltpos
= tree_to_uhwi (ce
->index
);
6819 gcc_assert (ce
->index
== NULL_TREE
);
6820 gcc_assert (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
);
6824 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6825 RTVEC_ELT (vector
, eltpos
) = expand_normal (value
);
6829 machine_mode value_mode
6830 = (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6831 ? TYPE_MODE (TREE_TYPE (value
)) : eltmode
);
6832 bitpos
= eltpos
* elt_size
;
6833 store_constructor_field (target
, bitsize
, bitpos
, 0,
6834 bitregion_end
, value_mode
,
6835 value
, cleared
, alias
, reverse
);
6840 emit_insn (GEN_FCN (icode
) (target
,
6841 gen_rtx_PARALLEL (mode
, vector
)));
6850 /* Store the value of EXP (an expression tree)
6851 into a subfield of TARGET which has mode MODE and occupies
6852 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6853 If MODE is VOIDmode, it means that we are storing into a bit-field.
6855 BITREGION_START is bitpos of the first bitfield in this region.
6856 BITREGION_END is the bitpos of the ending bitfield in this region.
6857 These two fields are 0, if the C++ memory model does not apply,
6858 or we are not interested in keeping track of bitfield regions.
6860 Always return const0_rtx unless we have something particular to
6863 ALIAS_SET is the alias set for the destination. This value will
6864 (in general) be different from that for TARGET, since TARGET is a
6865 reference to the containing structure.
6867 If NONTEMPORAL is true, try generating a nontemporal store.
6869 If REVERSE is true, the store is to be done in reverse order. */
6872 store_field (rtx target
, poly_int64 bitsize
, poly_int64 bitpos
,
6873 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
6874 machine_mode mode
, tree exp
,
6875 alias_set_type alias_set
, bool nontemporal
, bool reverse
)
6877 if (TREE_CODE (exp
) == ERROR_MARK
)
6880 /* If we have nothing to store, do nothing unless the expression has
6881 side-effects. Don't do that for zero sized addressable lhs of
6883 if (known_eq (bitsize
, 0)
6884 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
6885 || TREE_CODE (exp
) != CALL_EXPR
))
6886 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6888 if (GET_CODE (target
) == CONCAT
)
6890 /* We're storing into a struct containing a single __complex. */
6892 gcc_assert (known_eq (bitpos
, 0));
6893 return store_expr (exp
, target
, 0, nontemporal
, reverse
);
6896 /* If the structure is in a register or if the component
6897 is a bit field, we cannot use addressing to access it.
6898 Use bit-field techniques or SUBREG to store in it. */
6900 poly_int64 decl_bitsize
;
6901 if (mode
== VOIDmode
6902 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6903 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6904 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6906 || GET_CODE (target
) == SUBREG
6907 /* If the field isn't aligned enough to store as an ordinary memref,
6908 store it as a bit field. */
6910 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6911 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
6912 && targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
)))
6913 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
6914 || (known_size_p (bitsize
)
6916 && maybe_gt (GET_MODE_BITSIZE (mode
), bitsize
))
6917 /* If the RHS and field are a constant size and the size of the
6918 RHS isn't the same size as the bitfield, we must use bitfield
6920 || (known_size_p (bitsize
)
6921 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
6922 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
6924 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6925 we will handle specially below. */
6926 && !(TREE_CODE (exp
) == CONSTRUCTOR
6927 && multiple_p (bitsize
, BITS_PER_UNIT
))
6928 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6929 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6930 includes some extra padding. store_expr / expand_expr will in
6931 that case call get_inner_reference that will have the bitsize
6932 we check here and thus the block move will not clobber the
6933 padding that shouldn't be clobbered. In the future we could
6934 replace the TREE_ADDRESSABLE check with a check that
6935 get_base_address needs to live in memory. */
6936 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
6937 || TREE_CODE (exp
) != COMPONENT_REF
6938 || !multiple_p (bitsize
, BITS_PER_UNIT
)
6939 || !multiple_p (bitpos
, BITS_PER_UNIT
)
6940 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp
, 1)),
6942 || maybe_ne (decl_bitsize
, bitsize
)))
6943 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6944 decl we must use bitfield operations. */
6945 || (known_size_p (bitsize
)
6946 && TREE_CODE (exp
) == MEM_REF
6947 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6948 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6949 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6950 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6955 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6956 implies a mask operation. If the precision is the same size as
6957 the field we're storing into, that mask is redundant. This is
6958 particularly common with bit field assignments generated by the
6960 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6963 tree type
= TREE_TYPE (exp
);
6964 if (INTEGRAL_TYPE_P (type
)
6965 && maybe_ne (TYPE_PRECISION (type
),
6966 GET_MODE_BITSIZE (TYPE_MODE (type
)))
6967 && known_eq (bitsize
, TYPE_PRECISION (type
)))
6969 tree op
= gimple_assign_rhs1 (nop_def
);
6970 type
= TREE_TYPE (op
);
6971 if (INTEGRAL_TYPE_P (type
)
6972 && known_ge (TYPE_PRECISION (type
), bitsize
))
6977 temp
= expand_normal (exp
);
6979 /* We don't support variable-sized BLKmode bitfields, since our
6980 handling of BLKmode is bound up with the ability to break
6981 things into words. */
6982 gcc_assert (mode
!= BLKmode
|| bitsize
.is_constant ());
6984 /* Handle calls that return values in multiple non-contiguous locations.
6985 The Irix 6 ABI has examples of this. */
6986 if (GET_CODE (temp
) == PARALLEL
)
6988 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6989 scalar_int_mode temp_mode
6990 = smallest_int_mode_for_size (size
* BITS_PER_UNIT
);
6991 rtx temp_target
= gen_reg_rtx (temp_mode
);
6992 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6996 /* Handle calls that return BLKmode values in registers. */
6997 else if (mode
== BLKmode
&& REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6999 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
7000 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
7004 /* If the value has aggregate type and an integral mode then, if BITSIZE
7005 is narrower than this mode and this is for big-endian data, we first
7006 need to put the value into the low-order bits for store_bit_field,
7007 except when MODE is BLKmode and BITSIZE larger than the word size
7008 (see the handling of fields larger than a word in store_bit_field).
7009 Moreover, the field may be not aligned on a byte boundary; in this
7010 case, if it has reverse storage order, it needs to be accessed as a
7011 scalar field with reverse storage order and we must first put the
7012 value into target order. */
7013 scalar_int_mode temp_mode
;
7014 if (AGGREGATE_TYPE_P (TREE_TYPE (exp
))
7015 && is_int_mode (GET_MODE (temp
), &temp_mode
))
7017 HOST_WIDE_INT size
= GET_MODE_BITSIZE (temp_mode
);
7019 reverse
= TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp
));
7022 temp
= flip_storage_order (temp_mode
, temp
);
7024 gcc_checking_assert (known_le (bitsize
, size
));
7025 if (maybe_lt (bitsize
, size
)
7026 && reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
7027 /* Use of to_constant for BLKmode was checked above. */
7028 && !(mode
== BLKmode
&& bitsize
.to_constant () > BITS_PER_WORD
))
7029 temp
= expand_shift (RSHIFT_EXPR
, temp_mode
, temp
,
7030 size
- bitsize
, NULL_RTX
, 1);
7033 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7034 if (mode
!= VOIDmode
&& mode
!= BLKmode
7035 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
7036 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
7038 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7039 and BITPOS must be aligned on a byte boundary. If so, we simply do
7040 a block copy. Likewise for a BLKmode-like TARGET. */
7041 if (GET_MODE (temp
) == BLKmode
7042 && (GET_MODE (target
) == BLKmode
7044 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
7045 && multiple_p (bitpos
, BITS_PER_UNIT
)
7046 && multiple_p (bitsize
, BITS_PER_UNIT
))))
7048 gcc_assert (MEM_P (target
) && MEM_P (temp
));
7049 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
7050 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
7052 target
= adjust_address (target
, VOIDmode
, bytepos
);
7053 emit_block_move (target
, temp
,
7054 gen_int_mode (bytesize
, Pmode
),
7060 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7061 word size, we need to load the value (see again store_bit_field). */
7062 if (GET_MODE (temp
) == BLKmode
&& known_le (bitsize
, BITS_PER_WORD
))
7064 scalar_int_mode temp_mode
= smallest_int_mode_for_size (bitsize
);
7065 temp
= extract_bit_field (temp
, bitsize
, 0, 1, NULL_RTX
, temp_mode
,
7066 temp_mode
, false, NULL
);
7069 /* Store the value in the bitfield. */
7070 store_bit_field (target
, bitsize
, bitpos
,
7071 bitregion_start
, bitregion_end
,
7072 mode
, temp
, reverse
);
7078 /* Now build a reference to just the desired component. */
7079 rtx to_rtx
= adjust_address (target
, mode
,
7080 exact_div (bitpos
, BITS_PER_UNIT
));
7082 if (to_rtx
== target
)
7083 to_rtx
= copy_rtx (to_rtx
);
7085 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
7086 set_mem_alias_set (to_rtx
, alias_set
);
7088 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7089 into a target smaller than its type; handle that case now. */
7090 if (TREE_CODE (exp
) == CONSTRUCTOR
&& known_size_p (bitsize
))
7092 poly_int64 bytesize
= exact_div (bitsize
, BITS_PER_UNIT
);
7093 store_constructor (exp
, to_rtx
, 0, bytesize
, reverse
);
7097 return store_expr (exp
, to_rtx
, 0, nontemporal
, reverse
);
7101 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7102 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7103 codes and find the ultimate containing object, which we return.
7105 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7106 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7107 storage order of the field.
7108 If the position of the field is variable, we store a tree
7109 giving the variable offset (in units) in *POFFSET.
7110 This offset is in addition to the bit position.
7111 If the position is not variable, we store 0 in *POFFSET.
7113 If any of the extraction expressions is volatile,
7114 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7116 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7117 Otherwise, it is a mode that can be used to access the field.
7119 If the field describes a variable-sized object, *PMODE is set to
7120 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7121 this case, but the address of the object can be found. */
7124 get_inner_reference (tree exp
, poly_int64_pod
*pbitsize
,
7125 poly_int64_pod
*pbitpos
, tree
*poffset
,
7126 machine_mode
*pmode
, int *punsignedp
,
7127 int *preversep
, int *pvolatilep
)
7130 machine_mode mode
= VOIDmode
;
7131 bool blkmode_bitfield
= false;
7132 tree offset
= size_zero_node
;
7133 poly_offset_int bit_offset
= 0;
7135 /* First get the mode, signedness, storage order and size. We do this from
7136 just the outermost expression. */
7138 if (TREE_CODE (exp
) == COMPONENT_REF
)
7140 tree field
= TREE_OPERAND (exp
, 1);
7141 size_tree
= DECL_SIZE (field
);
7142 if (flag_strict_volatile_bitfields
> 0
7143 && TREE_THIS_VOLATILE (exp
)
7144 && DECL_BIT_FIELD_TYPE (field
)
7145 && DECL_MODE (field
) != BLKmode
)
7146 /* Volatile bitfields should be accessed in the mode of the
7147 field's type, not the mode computed based on the bit
7149 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
7150 else if (!DECL_BIT_FIELD (field
))
7152 mode
= DECL_MODE (field
);
7153 /* For vector fields re-check the target flags, as DECL_MODE
7154 could have been set with different target flags than
7155 the current function has. */
7157 && VECTOR_TYPE_P (TREE_TYPE (field
))
7158 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field
))))
7159 mode
= TYPE_MODE (TREE_TYPE (field
));
7161 else if (DECL_MODE (field
) == BLKmode
)
7162 blkmode_bitfield
= true;
7164 *punsignedp
= DECL_UNSIGNED (field
);
7166 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
7168 size_tree
= TREE_OPERAND (exp
, 1);
7169 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
7170 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
7172 /* For vector types, with the correct size of access, use the mode of
7174 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
7175 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
7176 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
7177 mode
= TYPE_MODE (TREE_TYPE (exp
));
7181 mode
= TYPE_MODE (TREE_TYPE (exp
));
7182 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
7184 if (mode
== BLKmode
)
7185 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
7187 *pbitsize
= GET_MODE_BITSIZE (mode
);
7192 if (! tree_fits_uhwi_p (size_tree
))
7193 mode
= BLKmode
, *pbitsize
= -1;
7195 *pbitsize
= tree_to_uhwi (size_tree
);
7198 *preversep
= reverse_storage_order_for_component_p (exp
);
7200 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7201 and find the ultimate containing object. */
7204 switch (TREE_CODE (exp
))
7207 bit_offset
+= wi::to_poly_offset (TREE_OPERAND (exp
, 2));
7212 tree field
= TREE_OPERAND (exp
, 1);
7213 tree this_offset
= component_ref_field_offset (exp
);
7215 /* If this field hasn't been filled in yet, don't go past it.
7216 This should only happen when folding expressions made during
7217 type construction. */
7218 if (this_offset
== 0)
7221 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
7222 bit_offset
+= wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field
));
7224 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7229 case ARRAY_RANGE_REF
:
7231 tree index
= TREE_OPERAND (exp
, 1);
7232 tree low_bound
= array_ref_low_bound (exp
);
7233 tree unit_size
= array_ref_element_size (exp
);
7235 /* We assume all arrays have sizes that are a multiple of a byte.
7236 First subtract the lower bound, if any, in the type of the
7237 index, then convert to sizetype and multiply by the size of
7238 the array element. */
7239 if (! integer_zerop (low_bound
))
7240 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
7243 offset
= size_binop (PLUS_EXPR
, offset
,
7244 size_binop (MULT_EXPR
,
7245 fold_convert (sizetype
, index
),
7254 bit_offset
+= *pbitsize
;
7257 case VIEW_CONVERT_EXPR
:
7261 /* Hand back the decl for MEM[&decl, off]. */
7262 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
7264 tree off
= TREE_OPERAND (exp
, 1);
7265 if (!integer_zerop (off
))
7267 poly_offset_int boff
= mem_ref_offset (exp
);
7268 boff
<<= LOG2_BITS_PER_UNIT
;
7271 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7279 /* If any reference in the chain is volatile, the effect is volatile. */
7280 if (TREE_THIS_VOLATILE (exp
))
7283 exp
= TREE_OPERAND (exp
, 0);
7287 /* If OFFSET is constant, see if we can return the whole thing as a
7288 constant bit position. Make sure to handle overflow during
7290 if (poly_int_tree_p (offset
))
7292 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset
),
7293 TYPE_PRECISION (sizetype
));
7294 tem
<<= LOG2_BITS_PER_UNIT
;
7296 if (tem
.to_shwi (pbitpos
))
7297 *poffset
= offset
= NULL_TREE
;
7300 /* Otherwise, split it up. */
7303 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7304 if (!bit_offset
.to_shwi (pbitpos
) || maybe_lt (*pbitpos
, 0))
7306 *pbitpos
= num_trailing_bits (bit_offset
.force_shwi ());
7307 poly_offset_int bytes
= bits_to_bytes_round_down (bit_offset
);
7308 offset
= size_binop (PLUS_EXPR
, offset
,
7309 build_int_cst (sizetype
, bytes
.force_shwi ()));
7315 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7316 if (mode
== VOIDmode
7318 && multiple_p (*pbitpos
, BITS_PER_UNIT
)
7319 && multiple_p (*pbitsize
, BITS_PER_UNIT
))
7327 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7329 static unsigned HOST_WIDE_INT
7330 target_align (const_tree target
)
7332 /* We might have a chain of nested references with intermediate misaligning
7333 bitfields components, so need to recurse to find out. */
7335 unsigned HOST_WIDE_INT this_align
, outer_align
;
7337 switch (TREE_CODE (target
))
7343 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7344 outer_align
= target_align (TREE_OPERAND (target
, 0));
7345 return MIN (this_align
, outer_align
);
7348 case ARRAY_RANGE_REF
:
7349 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7350 outer_align
= target_align (TREE_OPERAND (target
, 0));
7351 return MIN (this_align
, outer_align
);
7354 case NON_LVALUE_EXPR
:
7355 case VIEW_CONVERT_EXPR
:
7356 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7357 outer_align
= target_align (TREE_OPERAND (target
, 0));
7358 return MAX (this_align
, outer_align
);
7361 return TYPE_ALIGN (TREE_TYPE (target
));
7366 /* Given an rtx VALUE that may contain additions and multiplications, return
7367 an equivalent value that just refers to a register, memory, or constant.
7368 This is done by generating instructions to perform the arithmetic and
7369 returning a pseudo-register containing the value.
7371 The returned value may be a REG, SUBREG, MEM or constant. */
7374 force_operand (rtx value
, rtx target
)
7377 /* Use subtarget as the target for operand 0 of a binary operation. */
7378 rtx subtarget
= get_subtarget (target
);
7379 enum rtx_code code
= GET_CODE (value
);
7381 /* Check for subreg applied to an expression produced by loop optimizer. */
7383 && !REG_P (SUBREG_REG (value
))
7384 && !MEM_P (SUBREG_REG (value
)))
7387 = simplify_gen_subreg (GET_MODE (value
),
7388 force_reg (GET_MODE (SUBREG_REG (value
)),
7389 force_operand (SUBREG_REG (value
),
7391 GET_MODE (SUBREG_REG (value
)),
7392 SUBREG_BYTE (value
));
7393 code
= GET_CODE (value
);
7396 /* Check for a PIC address load. */
7397 if ((code
== PLUS
|| code
== MINUS
)
7398 && XEXP (value
, 0) == pic_offset_table_rtx
7399 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7400 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7401 || GET_CODE (XEXP (value
, 1)) == CONST
))
7404 subtarget
= gen_reg_rtx (GET_MODE (value
));
7405 emit_move_insn (subtarget
, value
);
7409 if (ARITHMETIC_P (value
))
7411 op2
= XEXP (value
, 1);
7412 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7414 if (code
== MINUS
&& CONST_INT_P (op2
))
7417 op2
= negate_rtx (GET_MODE (value
), op2
);
7420 /* Check for an addition with OP2 a constant integer and our first
7421 operand a PLUS of a virtual register and something else. In that
7422 case, we want to emit the sum of the virtual register and the
7423 constant first and then add the other value. This allows virtual
7424 register instantiation to simply modify the constant rather than
7425 creating another one around this addition. */
7426 if (code
== PLUS
&& CONST_INT_P (op2
)
7427 && GET_CODE (XEXP (value
, 0)) == PLUS
7428 && REG_P (XEXP (XEXP (value
, 0), 0))
7429 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7430 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7432 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7433 XEXP (XEXP (value
, 0), 0), op2
,
7434 subtarget
, 0, OPTAB_LIB_WIDEN
);
7435 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7436 force_operand (XEXP (XEXP (value
,
7438 target
, 0, OPTAB_LIB_WIDEN
);
7441 op1
= force_operand (XEXP (value
, 0), subtarget
);
7442 op2
= force_operand (op2
, NULL_RTX
);
7446 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7448 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7449 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7450 target
, 1, OPTAB_LIB_WIDEN
);
7452 return expand_divmod (0,
7453 FLOAT_MODE_P (GET_MODE (value
))
7454 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7455 GET_MODE (value
), op1
, op2
, target
, 0);
7457 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7460 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7463 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7466 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7467 target
, 0, OPTAB_LIB_WIDEN
);
7469 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7470 target
, 1, OPTAB_LIB_WIDEN
);
7473 if (UNARY_P (value
))
7476 target
= gen_reg_rtx (GET_MODE (value
));
7477 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7484 case FLOAT_TRUNCATE
:
7485 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7490 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7494 case UNSIGNED_FLOAT
:
7495 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7499 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7503 #ifdef INSN_SCHEDULING
7504 /* On machines that have insn scheduling, we want all memory reference to be
7505 explicit, so we need to deal with such paradoxical SUBREGs. */
7506 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7508 = simplify_gen_subreg (GET_MODE (value
),
7509 force_reg (GET_MODE (SUBREG_REG (value
)),
7510 force_operand (SUBREG_REG (value
),
7512 GET_MODE (SUBREG_REG (value
)),
7513 SUBREG_BYTE (value
));
7519 /* Subroutine of expand_expr: return nonzero iff there is no way that
7520 EXP can reference X, which is being modified. TOP_P is nonzero if this
7521 call is going to be used to determine whether we need a temporary
7522 for EXP, as opposed to a recursive call to this function.
7524 It is always safe for this routine to return zero since it merely
7525 searches for optimization opportunities. */
7528 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7534 /* If EXP has varying size, we MUST use a target since we currently
7535 have no way of allocating temporaries of variable size
7536 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7537 So we assume here that something at a higher level has prevented a
7538 clash. This is somewhat bogus, but the best we can do. Only
7539 do this when X is BLKmode and when we are at the top level. */
7540 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7541 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7542 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7543 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7544 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7546 && GET_MODE (x
) == BLKmode
)
7547 /* If X is in the outgoing argument area, it is always safe. */
7549 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7550 || (GET_CODE (XEXP (x
, 0)) == PLUS
7551 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7554 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7555 find the underlying pseudo. */
7556 if (GET_CODE (x
) == SUBREG
)
7559 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7563 /* Now look at our tree code and possibly recurse. */
7564 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7566 case tcc_declaration
:
7567 exp_rtl
= DECL_RTL_IF_SET (exp
);
7573 case tcc_exceptional
:
7574 if (TREE_CODE (exp
) == TREE_LIST
)
7578 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7580 exp
= TREE_CHAIN (exp
);
7583 if (TREE_CODE (exp
) != TREE_LIST
)
7584 return safe_from_p (x
, exp
, 0);
7587 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7589 constructor_elt
*ce
;
7590 unsigned HOST_WIDE_INT idx
;
7592 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7593 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7594 || !safe_from_p (x
, ce
->value
, 0))
7598 else if (TREE_CODE (exp
) == ERROR_MARK
)
7599 return 1; /* An already-visited SAVE_EXPR? */
7604 /* The only case we look at here is the DECL_INITIAL inside a
7606 return (TREE_CODE (exp
) != DECL_EXPR
7607 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7608 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7609 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7612 case tcc_comparison
:
7613 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7618 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7620 case tcc_expression
:
7623 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7624 the expression. If it is set, we conflict iff we are that rtx or
7625 both are in memory. Otherwise, we check all operands of the
7626 expression recursively. */
7628 switch (TREE_CODE (exp
))
7631 /* If the operand is static or we are static, we can't conflict.
7632 Likewise if we don't conflict with the operand at all. */
7633 if (staticp (TREE_OPERAND (exp
, 0))
7634 || TREE_STATIC (exp
)
7635 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7638 /* Otherwise, the only way this can conflict is if we are taking
7639 the address of a DECL a that address if part of X, which is
7641 exp
= TREE_OPERAND (exp
, 0);
7644 if (!DECL_RTL_SET_P (exp
)
7645 || !MEM_P (DECL_RTL (exp
)))
7648 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7654 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7655 get_alias_set (exp
)))
7660 /* Assume that the call will clobber all hard registers and
7662 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7667 case WITH_CLEANUP_EXPR
:
7668 case CLEANUP_POINT_EXPR
:
7669 /* Lowered by gimplify.c. */
7673 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7679 /* If we have an rtx, we do not need to scan our operands. */
7683 nops
= TREE_OPERAND_LENGTH (exp
);
7684 for (i
= 0; i
< nops
; i
++)
7685 if (TREE_OPERAND (exp
, i
) != 0
7686 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7692 /* Should never get a type here. */
7696 /* If we have an rtl, find any enclosed object. Then see if we conflict
7700 if (GET_CODE (exp_rtl
) == SUBREG
)
7702 exp_rtl
= SUBREG_REG (exp_rtl
);
7704 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7708 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7709 are memory and they conflict. */
7710 return ! (rtx_equal_p (x
, exp_rtl
)
7711 || (MEM_P (x
) && MEM_P (exp_rtl
)
7712 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7715 /* If we reach here, it is safe. */
7720 /* Return the highest power of two that EXP is known to be a multiple of.
7721 This is used in updating alignment of MEMs in array references. */
7723 unsigned HOST_WIDE_INT
7724 highest_pow2_factor (const_tree exp
)
7726 unsigned HOST_WIDE_INT ret
;
7727 int trailing_zeros
= tree_ctz (exp
);
7728 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7729 return BIGGEST_ALIGNMENT
;
7730 ret
= HOST_WIDE_INT_1U
<< trailing_zeros
;
7731 if (ret
> BIGGEST_ALIGNMENT
)
7732 return BIGGEST_ALIGNMENT
;
7736 /* Similar, except that the alignment requirements of TARGET are
7737 taken into account. Assume it is at least as aligned as its
7738 type, unless it is a COMPONENT_REF in which case the layout of
7739 the structure gives the alignment. */
7741 static unsigned HOST_WIDE_INT
7742 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7744 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7745 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7747 return MAX (factor
, talign
);
7750 /* Convert the tree comparison code TCODE to the rtl one where the
7751 signedness is UNSIGNEDP. */
7753 static enum rtx_code
7754 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7766 code
= unsignedp
? LTU
: LT
;
7769 code
= unsignedp
? LEU
: LE
;
7772 code
= unsignedp
? GTU
: GT
;
7775 code
= unsignedp
? GEU
: GE
;
7777 case UNORDERED_EXPR
:
7808 /* Subroutine of expand_expr. Expand the two operands of a binary
7809 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7810 The value may be stored in TARGET if TARGET is nonzero. The
7811 MODIFIER argument is as documented by expand_expr. */
7814 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7815 enum expand_modifier modifier
)
7817 if (! safe_from_p (target
, exp1
, 1))
7819 if (operand_equal_p (exp0
, exp1
, 0))
7821 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7822 *op1
= copy_rtx (*op0
);
7826 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7827 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7832 /* Return a MEM that contains constant EXP. DEFER is as for
7833 output_constant_def and MODIFIER is as for expand_expr. */
7836 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7840 mem
= output_constant_def (exp
, defer
);
7841 if (modifier
!= EXPAND_INITIALIZER
)
7842 mem
= use_anchored_address (mem
);
7846 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7847 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7850 expand_expr_addr_expr_1 (tree exp
, rtx target
, scalar_int_mode tmode
,
7851 enum expand_modifier modifier
, addr_space_t as
)
7853 rtx result
, subtarget
;
7855 poly_int64 bitsize
, bitpos
;
7856 int unsignedp
, reversep
, volatilep
= 0;
7859 /* If we are taking the address of a constant and are at the top level,
7860 we have to use output_constant_def since we can't call force_const_mem
7862 /* ??? This should be considered a front-end bug. We should not be
7863 generating ADDR_EXPR of something that isn't an LVALUE. The only
7864 exception here is STRING_CST. */
7865 if (CONSTANT_CLASS_P (exp
))
7867 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7868 if (modifier
< EXPAND_SUM
)
7869 result
= force_operand (result
, target
);
7873 /* Everything must be something allowed by is_gimple_addressable. */
7874 switch (TREE_CODE (exp
))
7877 /* This case will happen via recursion for &a->b. */
7878 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7882 tree tem
= TREE_OPERAND (exp
, 0);
7883 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7884 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7885 return expand_expr (tem
, target
, tmode
, modifier
);
7889 /* Expand the initializer like constants above. */
7890 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7892 if (modifier
< EXPAND_SUM
)
7893 result
= force_operand (result
, target
);
7897 /* The real part of the complex number is always first, therefore
7898 the address is the same as the address of the parent object. */
7901 inner
= TREE_OPERAND (exp
, 0);
7905 /* The imaginary part of the complex number is always second.
7906 The expression is therefore always offset by the size of the
7909 bitpos
= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp
)));
7910 inner
= TREE_OPERAND (exp
, 0);
7913 case COMPOUND_LITERAL_EXPR
:
7914 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7915 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7916 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7917 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7918 the initializers aren't gimplified. */
7919 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
7920 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp
)))
7921 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7922 target
, tmode
, modifier
, as
);
7925 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7926 expand_expr, as that can have various side effects; LABEL_DECLs for
7927 example, may not have their DECL_RTL set yet. Expand the rtl of
7928 CONSTRUCTORs too, which should yield a memory reference for the
7929 constructor's contents. Assume language specific tree nodes can
7930 be expanded in some interesting way. */
7931 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7933 || TREE_CODE (exp
) == CONSTRUCTOR
7934 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7936 result
= expand_expr (exp
, target
, tmode
,
7937 modifier
== EXPAND_INITIALIZER
7938 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7940 /* If the DECL isn't in memory, then the DECL wasn't properly
7941 marked TREE_ADDRESSABLE, which will be either a front-end
7942 or a tree optimizer bug. */
7944 gcc_assert (MEM_P (result
));
7945 result
= XEXP (result
, 0);
7947 /* ??? Is this needed anymore? */
7949 TREE_USED (exp
) = 1;
7951 if (modifier
!= EXPAND_INITIALIZER
7952 && modifier
!= EXPAND_CONST_ADDRESS
7953 && modifier
!= EXPAND_SUM
)
7954 result
= force_operand (result
, target
);
7958 /* Pass FALSE as the last argument to get_inner_reference although
7959 we are expanding to RTL. The rationale is that we know how to
7960 handle "aligning nodes" here: we can just bypass them because
7961 they won't change the final object whose address will be returned
7962 (they actually exist only for that purpose). */
7963 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
7964 &unsignedp
, &reversep
, &volatilep
);
7968 /* We must have made progress. */
7969 gcc_assert (inner
!= exp
);
7971 subtarget
= offset
|| maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
7972 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7973 inner alignment, force the inner to be sufficiently aligned. */
7974 if (CONSTANT_CLASS_P (inner
)
7975 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7977 inner
= copy_node (inner
);
7978 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7979 SET_TYPE_ALIGN (TREE_TYPE (inner
), TYPE_ALIGN (TREE_TYPE (exp
)));
7980 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7982 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7988 if (modifier
!= EXPAND_NORMAL
)
7989 result
= force_operand (result
, NULL
);
7990 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7991 modifier
== EXPAND_INITIALIZER
7992 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7994 /* expand_expr is allowed to return an object in a mode other
7995 than TMODE. If it did, we need to convert. */
7996 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
7997 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
7998 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
7999 result
= convert_memory_address_addr_space (tmode
, result
, as
);
8000 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
8002 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8003 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
8006 subtarget
= maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
8007 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
8008 1, OPTAB_LIB_WIDEN
);
8012 if (maybe_ne (bitpos
, 0))
8014 /* Someone beforehand should have rejected taking the address
8015 of an object that isn't byte-aligned. */
8016 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
8017 result
= convert_memory_address_addr_space (tmode
, result
, as
);
8018 result
= plus_constant (tmode
, result
, bytepos
);
8019 if (modifier
< EXPAND_SUM
)
8020 result
= force_operand (result
, target
);
8026 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8027 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8030 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
8031 enum expand_modifier modifier
)
8033 addr_space_t as
= ADDR_SPACE_GENERIC
;
8034 scalar_int_mode address_mode
= Pmode
;
8035 scalar_int_mode pointer_mode
= ptr_mode
;
8039 /* Target mode of VOIDmode says "whatever's natural". */
8040 if (tmode
== VOIDmode
)
8041 tmode
= TYPE_MODE (TREE_TYPE (exp
));
8043 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
8045 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
8046 address_mode
= targetm
.addr_space
.address_mode (as
);
8047 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
8050 /* We can get called with some Weird Things if the user does silliness
8051 like "(short) &a". In that case, convert_memory_address won't do
8052 the right thing, so ignore the given target mode. */
8053 scalar_int_mode new_tmode
= (tmode
== pointer_mode
8057 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
8058 new_tmode
, modifier
, as
);
8060 /* Despite expand_expr claims concerning ignoring TMODE when not
8061 strictly convenient, stuff breaks if we don't honor it. Note
8062 that combined with the above, we only do this for pointer modes. */
8063 rmode
= GET_MODE (result
);
8064 if (rmode
== VOIDmode
)
8066 if (rmode
!= new_tmode
)
8067 result
= convert_memory_address_addr_space (new_tmode
, result
, as
);
8072 /* Generate code for computing CONSTRUCTOR EXP.
8073 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8074 is TRUE, instead of creating a temporary variable in memory
8075 NULL is returned and the caller needs to handle it differently. */
8078 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
8079 bool avoid_temp_mem
)
8081 tree type
= TREE_TYPE (exp
);
8082 machine_mode mode
= TYPE_MODE (type
);
8084 /* Try to avoid creating a temporary at all. This is possible
8085 if all of the initializer is zero.
8086 FIXME: try to handle all [0..255] initializers we can handle
8088 if (TREE_STATIC (exp
)
8089 && !TREE_ADDRESSABLE (exp
)
8090 && target
!= 0 && mode
== BLKmode
8091 && all_zeros_p (exp
))
8093 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
8097 /* All elts simple constants => refer to a constant in memory. But
8098 if this is a non-BLKmode mode, let it store a field at a time
8099 since that should make a CONST_INT, CONST_WIDE_INT or
8100 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8101 use, it is best to store directly into the target unless the type
8102 is large enough that memcpy will be used. If we are making an
8103 initializer and all operands are constant, put it in memory as
8106 FIXME: Avoid trying to fill vector constructors piece-meal.
8107 Output them with output_constant_def below unless we're sure
8108 they're zeros. This should go away when vector initializers
8109 are treated like VECTOR_CST instead of arrays. */
8110 if ((TREE_STATIC (exp
)
8111 && ((mode
== BLKmode
8112 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
8113 || TREE_ADDRESSABLE (exp
)
8114 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
8115 && (! can_move_by_pieces
8116 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
8118 && ! mostly_zeros_p (exp
))))
8119 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
8120 && TREE_CONSTANT (exp
)))
8127 constructor
= expand_expr_constant (exp
, 1, modifier
);
8129 if (modifier
!= EXPAND_CONST_ADDRESS
8130 && modifier
!= EXPAND_INITIALIZER
8131 && modifier
!= EXPAND_SUM
)
8132 constructor
= validize_mem (constructor
);
8137 /* Handle calls that pass values in multiple non-contiguous
8138 locations. The Irix 6 ABI has examples of this. */
8139 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
8140 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
8145 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
8148 store_constructor (exp
, target
, 0, int_expr_size (exp
), false);
8153 /* expand_expr: generate code for computing expression EXP.
8154 An rtx for the computed value is returned. The value is never null.
8155 In the case of a void EXP, const0_rtx is returned.
8157 The value may be stored in TARGET if TARGET is nonzero.
8158 TARGET is just a suggestion; callers must assume that
8159 the rtx returned may not be the same as TARGET.
8161 If TARGET is CONST0_RTX, it means that the value will be ignored.
8163 If TMODE is not VOIDmode, it suggests generating the
8164 result in mode TMODE. But this is done only when convenient.
8165 Otherwise, TMODE is ignored and the value generated in its natural mode.
8166 TMODE is just a suggestion; callers must assume that
8167 the rtx returned may not have mode TMODE.
8169 Note that TARGET may have neither TMODE nor MODE. In that case, it
8170 probably will not be used.
8172 If MODIFIER is EXPAND_SUM then when EXP is an addition
8173 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8174 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8175 products as above, or REG or MEM, or constant.
8176 Ordinarily in such cases we would output mul or add instructions
8177 and then return a pseudo reg containing the sum.
8179 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8180 it also marks a label as absolutely required (it can't be dead).
8181 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8182 This is used for outputting expressions used in initializers.
8184 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8185 with a constant address even if that address is not normally legitimate.
8186 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8188 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8189 a call parameter. Such targets require special care as we haven't yet
8190 marked TARGET so that it's safe from being trashed by libcalls. We
8191 don't want to use TARGET for anything but the final result;
8192 Intermediate values must go elsewhere. Additionally, calls to
8193 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8195 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8196 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8197 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8198 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8201 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8202 In this case, we don't adjust a returned MEM rtx that wouldn't be
8203 sufficiently aligned for its mode; instead, it's up to the caller
8204 to deal with it afterwards. This is used to make sure that unaligned
8205 base objects for which out-of-bounds accesses are supported, for
8206 example record types with trailing arrays, aren't realigned behind
8207 the back of the caller.
8208 The normal operating mode is to pass FALSE for this parameter. */
8211 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
8212 enum expand_modifier modifier
, rtx
*alt_rtl
,
8213 bool inner_reference_p
)
8217 /* Handle ERROR_MARK before anybody tries to access its type. */
8218 if (TREE_CODE (exp
) == ERROR_MARK
8219 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
8221 ret
= CONST0_RTX (tmode
);
8222 return ret
? ret
: const0_rtx
;
8225 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
8230 /* Try to expand the conditional expression which is represented by
8231 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8232 return the rtl reg which represents the result. Otherwise return
8236 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
8237 tree treeop1 ATTRIBUTE_UNUSED
,
8238 tree treeop2 ATTRIBUTE_UNUSED
)
8241 rtx op00
, op01
, op1
, op2
;
8242 enum rtx_code comparison_code
;
8243 machine_mode comparison_mode
;
8246 tree type
= TREE_TYPE (treeop1
);
8247 int unsignedp
= TYPE_UNSIGNED (type
);
8248 machine_mode mode
= TYPE_MODE (type
);
8249 machine_mode orig_mode
= mode
;
8250 static bool expanding_cond_expr_using_cmove
= false;
8252 /* Conditional move expansion can end up TERing two operands which,
8253 when recursively hitting conditional expressions can result in
8254 exponential behavior if the cmove expansion ultimatively fails.
8255 It's hardly profitable to TER a cmove into a cmove so avoid doing
8256 that by failing early if we end up recursing. */
8257 if (expanding_cond_expr_using_cmove
)
8260 /* If we cannot do a conditional move on the mode, try doing it
8261 with the promoted mode. */
8262 if (!can_conditionally_move_p (mode
))
8264 mode
= promote_mode (type
, mode
, &unsignedp
);
8265 if (!can_conditionally_move_p (mode
))
8267 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
8270 temp
= assign_temp (type
, 0, 1);
8272 expanding_cond_expr_using_cmove
= true;
8274 expand_operands (treeop1
, treeop2
,
8275 temp
, &op1
, &op2
, EXPAND_NORMAL
);
8277 if (TREE_CODE (treeop0
) == SSA_NAME
8278 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8280 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8281 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8282 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8283 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8284 comparison_mode
= TYPE_MODE (type
);
8285 unsignedp
= TYPE_UNSIGNED (type
);
8286 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8288 else if (COMPARISON_CLASS_P (treeop0
))
8290 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8291 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8292 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8293 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8294 unsignedp
= TYPE_UNSIGNED (type
);
8295 comparison_mode
= TYPE_MODE (type
);
8296 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8300 op00
= expand_normal (treeop0
);
8302 comparison_code
= NE
;
8303 comparison_mode
= GET_MODE (op00
);
8304 if (comparison_mode
== VOIDmode
)
8305 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8307 expanding_cond_expr_using_cmove
= false;
8309 if (GET_MODE (op1
) != mode
)
8310 op1
= gen_lowpart (mode
, op1
);
8312 if (GET_MODE (op2
) != mode
)
8313 op2
= gen_lowpart (mode
, op2
);
8315 /* Try to emit the conditional move. */
8316 insn
= emit_conditional_move (temp
, comparison_code
,
8317 op00
, op01
, comparison_mode
,
8321 /* If we could do the conditional move, emit the sequence,
8325 rtx_insn
*seq
= get_insns ();
8328 return convert_modes (orig_mode
, mode
, temp
, 0);
8331 /* Otherwise discard the sequence and fall back to code with
8338 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8339 enum expand_modifier modifier
)
8341 rtx op0
, op1
, op2
, temp
;
8342 rtx_code_label
*lab
;
8346 scalar_int_mode int_mode
;
8347 enum tree_code code
= ops
->code
;
8349 rtx subtarget
, original_target
;
8351 bool reduce_bit_field
;
8352 location_t loc
= ops
->location
;
8353 tree treeop0
, treeop1
, treeop2
;
8354 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8355 ? reduce_to_bit_field_precision ((expr), \
8361 mode
= TYPE_MODE (type
);
8362 unsignedp
= TYPE_UNSIGNED (type
);
8368 /* We should be called only on simple (binary or unary) expressions,
8369 exactly those that are valid in gimple expressions that aren't
8370 GIMPLE_SINGLE_RHS (or invalid). */
8371 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8372 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8373 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8375 ignore
= (target
== const0_rtx
8376 || ((CONVERT_EXPR_CODE_P (code
)
8377 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8378 && TREE_CODE (type
) == VOID_TYPE
));
8380 /* We should be called only if we need the result. */
8381 gcc_assert (!ignore
);
8383 /* An operation in what may be a bit-field type needs the
8384 result to be reduced to the precision of the bit-field type,
8385 which is narrower than that of the type's mode. */
8386 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8387 && !type_has_mode_precision_p (type
));
8389 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8392 /* Use subtarget as the target for operand 0 of a binary operation. */
8393 subtarget
= get_subtarget (target
);
8394 original_target
= target
;
8398 case NON_LVALUE_EXPR
:
8401 if (treeop0
== error_mark_node
)
8404 if (TREE_CODE (type
) == UNION_TYPE
)
8406 tree valtype
= TREE_TYPE (treeop0
);
8408 /* If both input and output are BLKmode, this conversion isn't doing
8409 anything except possibly changing memory attribute. */
8410 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8412 rtx result
= expand_expr (treeop0
, target
, tmode
,
8415 result
= copy_rtx (result
);
8416 set_mem_attributes (result
, type
, 0);
8422 if (TYPE_MODE (type
) != BLKmode
)
8423 target
= gen_reg_rtx (TYPE_MODE (type
));
8425 target
= assign_temp (type
, 1, 1);
8429 /* Store data into beginning of memory target. */
8430 store_expr (treeop0
,
8431 adjust_address (target
, TYPE_MODE (valtype
), 0),
8432 modifier
== EXPAND_STACK_PARM
,
8433 false, TYPE_REVERSE_STORAGE_ORDER (type
));
8437 gcc_assert (REG_P (target
)
8438 && !TYPE_REVERSE_STORAGE_ORDER (type
));
8440 /* Store this field into a union of the proper type. */
8441 poly_uint64 op0_size
8442 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0
)));
8443 poly_uint64 union_size
= GET_MODE_BITSIZE (mode
);
8444 store_field (target
,
8445 /* The conversion must be constructed so that
8446 we know at compile time how many bits
8448 ordered_min (op0_size
, union_size
),
8449 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0,
8453 /* Return the entire union. */
8457 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8459 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8462 /* If the signedness of the conversion differs and OP0 is
8463 a promoted SUBREG, clear that indication since we now
8464 have to do the proper extension. */
8465 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8466 && GET_CODE (op0
) == SUBREG
)
8467 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8469 return REDUCE_BIT_FIELD (op0
);
8472 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8473 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8474 if (GET_MODE (op0
) == mode
)
8477 /* If OP0 is a constant, just convert it into the proper mode. */
8478 else if (CONSTANT_P (op0
))
8480 tree inner_type
= TREE_TYPE (treeop0
);
8481 machine_mode inner_mode
= GET_MODE (op0
);
8483 if (inner_mode
== VOIDmode
)
8484 inner_mode
= TYPE_MODE (inner_type
);
8486 if (modifier
== EXPAND_INITIALIZER
)
8487 op0
= lowpart_subreg (mode
, op0
, inner_mode
);
8489 op0
= convert_modes (mode
, inner_mode
, op0
,
8490 TYPE_UNSIGNED (inner_type
));
8493 else if (modifier
== EXPAND_INITIALIZER
)
8494 op0
= gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8495 ? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8497 else if (target
== 0)
8498 op0
= convert_to_mode (mode
, op0
,
8499 TYPE_UNSIGNED (TREE_TYPE
8503 convert_move (target
, op0
,
8504 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8508 return REDUCE_BIT_FIELD (op0
);
8510 case ADDR_SPACE_CONVERT_EXPR
:
8512 tree treeop0_type
= TREE_TYPE (treeop0
);
8514 gcc_assert (POINTER_TYPE_P (type
));
8515 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8517 addr_space_t as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8518 addr_space_t as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8520 /* Conversions between pointers to the same address space should
8521 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8522 gcc_assert (as_to
!= as_from
);
8524 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8526 /* Ask target code to handle conversion between pointers
8527 to overlapping address spaces. */
8528 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8529 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8531 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8535 /* For disjoint address spaces, converting anything but a null
8536 pointer invokes undefined behavior. We truncate or extend the
8537 value as if we'd converted via integers, which handles 0 as
8538 required, and all others as the programmer likely expects. */
8539 #ifndef POINTERS_EXTEND_UNSIGNED
8540 const int POINTERS_EXTEND_UNSIGNED
= 1;
8542 op0
= convert_modes (mode
, TYPE_MODE (treeop0_type
),
8543 op0
, POINTERS_EXTEND_UNSIGNED
);
8549 case POINTER_PLUS_EXPR
:
8550 /* Even though the sizetype mode and the pointer's mode can be different
8551 expand is able to handle this correctly and get the correct result out
8552 of the PLUS_EXPR code. */
8553 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8554 if sizetype precision is smaller than pointer precision. */
8555 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8556 treeop1
= fold_convert_loc (loc
, type
,
8557 fold_convert_loc (loc
, ssizetype
,
8559 /* If sizetype precision is larger than pointer precision, truncate the
8560 offset to have matching modes. */
8561 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8562 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8566 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8567 something else, make sure we add the register to the constant and
8568 then to the other thing. This case can occur during strength
8569 reduction and doing it this way will produce better code if the
8570 frame pointer or argument pointer is eliminated.
8572 fold-const.c will ensure that the constant is always in the inner
8573 PLUS_EXPR, so the only case we need to do anything about is if
8574 sp, ap, or fp is our second argument, in which case we must swap
8575 the innermost first argument and our second argument. */
8577 if (TREE_CODE (treeop0
) == PLUS_EXPR
8578 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8580 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8581 || DECL_RTL (treeop1
) == stack_pointer_rtx
8582 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8587 /* If the result is to be ptr_mode and we are adding an integer to
8588 something, we might be forming a constant. So try to use
8589 plus_constant. If it produces a sum and we can't accept it,
8590 use force_operand. This allows P = &ARR[const] to generate
8591 efficient code on machines where a SYMBOL_REF is not a valid
8594 If this is an EXPAND_SUM call, always return the sum. */
8595 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8596 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8598 if (modifier
== EXPAND_STACK_PARM
)
8600 if (TREE_CODE (treeop0
) == INTEGER_CST
8601 && HWI_COMPUTABLE_MODE_P (mode
)
8602 && TREE_CONSTANT (treeop1
))
8606 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8608 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8610 /* Use wi::shwi to ensure that the constant is
8611 truncated according to the mode of OP1, then sign extended
8612 to a HOST_WIDE_INT. Using the constant directly can result
8613 in non-canonical RTL in a 64x32 cross compile. */
8614 wc
= TREE_INT_CST_LOW (treeop0
);
8616 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8617 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8618 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8619 op1
= force_operand (op1
, target
);
8620 return REDUCE_BIT_FIELD (op1
);
8623 else if (TREE_CODE (treeop1
) == INTEGER_CST
8624 && HWI_COMPUTABLE_MODE_P (mode
)
8625 && TREE_CONSTANT (treeop0
))
8629 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8631 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8632 (modifier
== EXPAND_INITIALIZER
8633 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8634 if (! CONSTANT_P (op0
))
8636 op1
= expand_expr (treeop1
, NULL_RTX
,
8637 VOIDmode
, modifier
);
8638 /* Return a PLUS if modifier says it's OK. */
8639 if (modifier
== EXPAND_SUM
8640 || modifier
== EXPAND_INITIALIZER
)
8641 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8644 /* Use wi::shwi to ensure that the constant is
8645 truncated according to the mode of OP1, then sign extended
8646 to a HOST_WIDE_INT. Using the constant directly can result
8647 in non-canonical RTL in a 64x32 cross compile. */
8648 wc
= TREE_INT_CST_LOW (treeop1
);
8650 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8651 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8652 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8653 op0
= force_operand (op0
, target
);
8654 return REDUCE_BIT_FIELD (op0
);
8658 /* Use TER to expand pointer addition of a negated value
8659 as pointer subtraction. */
8660 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8661 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8662 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8663 && TREE_CODE (treeop1
) == SSA_NAME
8664 && TYPE_MODE (TREE_TYPE (treeop0
))
8665 == TYPE_MODE (TREE_TYPE (treeop1
)))
8667 gimple
*def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8670 treeop1
= gimple_assign_rhs1 (def
);
8676 /* No sense saving up arithmetic to be done
8677 if it's all in the wrong mode to form part of an address.
8678 And force_operand won't know whether to sign-extend or
8680 if (modifier
!= EXPAND_INITIALIZER
8681 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
8683 expand_operands (treeop0
, treeop1
,
8684 subtarget
, &op0
, &op1
, modifier
);
8685 if (op0
== const0_rtx
)
8687 if (op1
== const0_rtx
)
8692 expand_operands (treeop0
, treeop1
,
8693 subtarget
, &op0
, &op1
, modifier
);
8694 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8697 case POINTER_DIFF_EXPR
:
8699 /* For initializers, we are allowed to return a MINUS of two
8700 symbolic constants. Here we handle all cases when both operands
8702 /* Handle difference of two symbolic constants,
8703 for the sake of an initializer. */
8704 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8705 && really_constant_p (treeop0
)
8706 && really_constant_p (treeop1
))
8708 expand_operands (treeop0
, treeop1
,
8709 NULL_RTX
, &op0
, &op1
, modifier
);
8710 return simplify_gen_binary (MINUS
, mode
, op0
, op1
);
8713 /* No sense saving up arithmetic to be done
8714 if it's all in the wrong mode to form part of an address.
8715 And force_operand won't know whether to sign-extend or
8717 if (modifier
!= EXPAND_INITIALIZER
8718 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
8721 expand_operands (treeop0
, treeop1
,
8722 subtarget
, &op0
, &op1
, modifier
);
8724 /* Convert A - const to A + (-const). */
8725 if (CONST_INT_P (op1
))
8727 op1
= negate_rtx (mode
, op1
);
8728 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8733 case WIDEN_MULT_PLUS_EXPR
:
8734 case WIDEN_MULT_MINUS_EXPR
:
8735 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8736 op2
= expand_normal (treeop2
);
8737 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8741 case WIDEN_MULT_EXPR
:
8742 /* If first operand is constant, swap them.
8743 Thus the following special case checks need only
8744 check the second operand. */
8745 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8746 std::swap (treeop0
, treeop1
);
8748 /* First, check if we have a multiplication of one signed and one
8749 unsigned operand. */
8750 if (TREE_CODE (treeop1
) != INTEGER_CST
8751 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8752 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8754 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8755 this_optab
= usmul_widen_optab
;
8756 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
8757 != CODE_FOR_nothing
)
8759 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8760 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8763 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8765 /* op0 and op1 might still be constant, despite the above
8766 != INTEGER_CST check. Handle it. */
8767 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8769 op0
= convert_modes (innermode
, mode
, op0
, true);
8770 op1
= convert_modes (innermode
, mode
, op1
, false);
8771 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8772 target
, unsignedp
));
8777 /* Check for a multiplication with matching signedness. */
8778 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8779 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8780 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8781 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8783 tree op0type
= TREE_TYPE (treeop0
);
8784 machine_mode innermode
= TYPE_MODE (op0type
);
8785 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8786 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8787 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8789 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8791 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
8792 != CODE_FOR_nothing
)
8794 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8796 /* op0 and op1 might still be constant, despite the above
8797 != INTEGER_CST check. Handle it. */
8798 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8801 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8803 = convert_modes (innermode
, mode
, op1
,
8804 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8805 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8809 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8810 unsignedp
, this_optab
);
8811 return REDUCE_BIT_FIELD (temp
);
8813 if (find_widening_optab_handler (other_optab
, mode
, innermode
)
8815 && innermode
== word_mode
)
8818 op0
= expand_normal (treeop0
);
8819 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8820 op1
= convert_modes (word_mode
, mode
,
8821 expand_normal (treeop1
),
8822 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8824 op1
= expand_normal (treeop1
);
8825 /* op0 and op1 might still be constant, despite the above
8826 != INTEGER_CST check. Handle it. */
8827 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8828 goto widen_mult_const
;
8829 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8830 unsignedp
, OPTAB_LIB_WIDEN
);
8831 hipart
= gen_highpart (word_mode
, temp
);
8832 htem
= expand_mult_highpart_adjust (word_mode
, hipart
,
8836 emit_move_insn (hipart
, htem
);
8837 return REDUCE_BIT_FIELD (temp
);
8841 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8842 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8843 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8844 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8848 optab opt
= fma_optab
;
8849 gimple
*def0
, *def2
;
8851 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8853 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8855 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8858 gcc_assert (fn
!= NULL_TREE
);
8859 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8860 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8863 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8864 /* The multiplication is commutative - look at its 2nd operand
8865 if the first isn't fed by a negate. */
8868 def0
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8869 /* Swap operands if the 2nd operand is fed by a negate. */
8871 std::swap (treeop0
, treeop1
);
8873 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8878 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8881 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8882 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8885 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8888 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8891 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8894 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8898 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8900 op2
= expand_normal (treeop2
);
8901 op1
= expand_normal (treeop1
);
8903 return expand_ternary_op (TYPE_MODE (type
), opt
,
8904 op0
, op1
, op2
, target
, 0);
8908 /* If this is a fixed-point operation, then we cannot use the code
8909 below because "expand_mult" doesn't support sat/no-sat fixed-point
8911 if (ALL_FIXED_POINT_MODE_P (mode
))
8914 /* If first operand is constant, swap them.
8915 Thus the following special case checks need only
8916 check the second operand. */
8917 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8918 std::swap (treeop0
, treeop1
);
8920 /* Attempt to return something suitable for generating an
8921 indexed address, for machines that support that. */
8923 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8924 && tree_fits_shwi_p (treeop1
))
8926 tree exp1
= treeop1
;
8928 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8932 op0
= force_operand (op0
, NULL_RTX
);
8934 op0
= copy_to_mode_reg (mode
, op0
);
8936 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8937 gen_int_mode (tree_to_shwi (exp1
),
8938 TYPE_MODE (TREE_TYPE (exp1
)))));
8941 if (modifier
== EXPAND_STACK_PARM
)
8944 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8945 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8947 case TRUNC_MOD_EXPR
:
8948 case FLOOR_MOD_EXPR
:
8950 case ROUND_MOD_EXPR
:
8952 case TRUNC_DIV_EXPR
:
8953 case FLOOR_DIV_EXPR
:
8955 case ROUND_DIV_EXPR
:
8956 case EXACT_DIV_EXPR
:
8958 /* If this is a fixed-point operation, then we cannot use the code
8959 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8961 if (ALL_FIXED_POINT_MODE_P (mode
))
8964 if (modifier
== EXPAND_STACK_PARM
)
8966 /* Possible optimization: compute the dividend with EXPAND_SUM
8967 then if the divisor is constant can optimize the case
8968 where some terms of the dividend have coeffs divisible by it. */
8969 expand_operands (treeop0
, treeop1
,
8970 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8971 bool mod_p
= code
== TRUNC_MOD_EXPR
|| code
== FLOOR_MOD_EXPR
8972 || code
== CEIL_MOD_EXPR
|| code
== ROUND_MOD_EXPR
;
8973 if (SCALAR_INT_MODE_P (mode
)
8975 && get_range_pos_neg (treeop0
) == 1
8976 && get_range_pos_neg (treeop1
) == 1)
8978 /* If both arguments are known to be positive when interpreted
8979 as signed, we can expand it as both signed and unsigned
8980 division or modulo. Choose the cheaper sequence in that case. */
8981 bool speed_p
= optimize_insn_for_speed_p ();
8982 do_pending_stack_adjust ();
8984 rtx uns_ret
= expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, 1);
8985 rtx_insn
*uns_insns
= get_insns ();
8988 rtx sgn_ret
= expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, 0);
8989 rtx_insn
*sgn_insns
= get_insns ();
8991 unsigned uns_cost
= seq_cost (uns_insns
, speed_p
);
8992 unsigned sgn_cost
= seq_cost (sgn_insns
, speed_p
);
8994 /* If costs are the same then use as tie breaker the other
8996 if (uns_cost
== sgn_cost
)
8998 uns_cost
= seq_cost (uns_insns
, !speed_p
);
8999 sgn_cost
= seq_cost (sgn_insns
, !speed_p
);
9002 if (uns_cost
< sgn_cost
|| (uns_cost
== sgn_cost
&& unsignedp
))
9004 emit_insn (uns_insns
);
9007 emit_insn (sgn_insns
);
9010 return expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, unsignedp
);
9015 case MULT_HIGHPART_EXPR
:
9016 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9017 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
9021 case FIXED_CONVERT_EXPR
:
9022 op0
= expand_normal (treeop0
);
9023 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9024 target
= gen_reg_rtx (mode
);
9026 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
9027 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
9028 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
9029 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
9031 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
9034 case FIX_TRUNC_EXPR
:
9035 op0
= expand_normal (treeop0
);
9036 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9037 target
= gen_reg_rtx (mode
);
9038 expand_fix (target
, op0
, unsignedp
);
9042 op0
= expand_normal (treeop0
);
9043 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9044 target
= gen_reg_rtx (mode
);
9045 /* expand_float can't figure out what to do if FROM has VOIDmode.
9046 So give it the correct mode. With -O, cse will optimize this. */
9047 if (GET_MODE (op0
) == VOIDmode
)
9048 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
9050 expand_float (target
, op0
,
9051 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9055 op0
= expand_expr (treeop0
, subtarget
,
9056 VOIDmode
, EXPAND_NORMAL
);
9057 if (modifier
== EXPAND_STACK_PARM
)
9059 temp
= expand_unop (mode
,
9060 optab_for_tree_code (NEGATE_EXPR
, type
,
9064 return REDUCE_BIT_FIELD (temp
);
9067 op0
= expand_expr (treeop0
, subtarget
,
9068 VOIDmode
, EXPAND_NORMAL
);
9069 if (modifier
== EXPAND_STACK_PARM
)
9072 /* ABS_EXPR is not valid for complex arguments. */
9073 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
9074 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
9076 /* Unsigned abs is simply the operand. Testing here means we don't
9077 risk generating incorrect code below. */
9078 if (TYPE_UNSIGNED (type
))
9081 return expand_abs (mode
, op0
, target
, unsignedp
,
9082 safe_from_p (target
, treeop0
, 1));
9086 target
= original_target
;
9088 || modifier
== EXPAND_STACK_PARM
9089 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
9090 || GET_MODE (target
) != mode
9092 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
9093 target
= gen_reg_rtx (mode
);
9094 expand_operands (treeop0
, treeop1
,
9095 target
, &op0
, &op1
, EXPAND_NORMAL
);
9097 /* First try to do it with a special MIN or MAX instruction.
9098 If that does not win, use a conditional jump to select the proper
9100 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9101 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9106 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9107 and similarly for MAX <x, y>. */
9108 if (VECTOR_TYPE_P (type
))
9110 tree t0
= make_tree (type
, op0
);
9111 tree t1
= make_tree (type
, op1
);
9112 tree comparison
= build2 (code
== MIN_EXPR
? LE_EXPR
: GE_EXPR
,
9114 return expand_vec_cond_expr (type
, comparison
, t0
, t1
,
9118 /* At this point, a MEM target is no longer useful; we will get better
9121 if (! REG_P (target
))
9122 target
= gen_reg_rtx (mode
);
9124 /* If op1 was placed in target, swap op0 and op1. */
9125 if (target
!= op0
&& target
== op1
)
9126 std::swap (op0
, op1
);
9128 /* We generate better code and avoid problems with op1 mentioning
9129 target by forcing op1 into a pseudo if it isn't a constant. */
9130 if (! CONSTANT_P (op1
))
9131 op1
= force_reg (mode
, op1
);
9134 enum rtx_code comparison_code
;
9137 if (code
== MAX_EXPR
)
9138 comparison_code
= unsignedp
? GEU
: GE
;
9140 comparison_code
= unsignedp
? LEU
: LE
;
9142 /* Canonicalize to comparisons against 0. */
9143 if (op1
== const1_rtx
)
9145 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9146 or (a != 0 ? a : 1) for unsigned.
9147 For MIN we are safe converting (a <= 1 ? a : 1)
9148 into (a <= 0 ? a : 1) */
9149 cmpop1
= const0_rtx
;
9150 if (code
== MAX_EXPR
)
9151 comparison_code
= unsignedp
? NE
: GT
;
9153 if (op1
== constm1_rtx
&& !unsignedp
)
9155 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9156 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9157 cmpop1
= const0_rtx
;
9158 if (code
== MIN_EXPR
)
9159 comparison_code
= LT
;
9162 /* Use a conditional move if possible. */
9163 if (can_conditionally_move_p (mode
))
9169 /* Try to emit the conditional move. */
9170 insn
= emit_conditional_move (target
, comparison_code
,
9175 /* If we could do the conditional move, emit the sequence,
9179 rtx_insn
*seq
= get_insns ();
9185 /* Otherwise discard the sequence and fall back to code with
9191 emit_move_insn (target
, op0
);
9193 lab
= gen_label_rtx ();
9194 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
9195 unsignedp
, mode
, NULL_RTX
, NULL
, lab
,
9196 profile_probability::uninitialized ());
9198 emit_move_insn (target
, op1
);
9203 op0
= expand_expr (treeop0
, subtarget
,
9204 VOIDmode
, EXPAND_NORMAL
);
9205 if (modifier
== EXPAND_STACK_PARM
)
9207 /* In case we have to reduce the result to bitfield precision
9208 for unsigned bitfield expand this as XOR with a proper constant
9210 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
9212 int_mode
= SCALAR_INT_TYPE_MODE (type
);
9213 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
9214 false, GET_MODE_PRECISION (int_mode
));
9216 temp
= expand_binop (int_mode
, xor_optab
, op0
,
9217 immed_wide_int_const (mask
, int_mode
),
9218 target
, 1, OPTAB_LIB_WIDEN
);
9221 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
9225 /* ??? Can optimize bitwise operations with one arg constant.
9226 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9227 and (a bitwise1 b) bitwise2 b (etc)
9228 but that is probably not worth while. */
9237 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
9238 || type_has_mode_precision_p (type
));
9244 /* If this is a fixed-point operation, then we cannot use the code
9245 below because "expand_shift" doesn't support sat/no-sat fixed-point
9247 if (ALL_FIXED_POINT_MODE_P (mode
))
9250 if (! safe_from_p (subtarget
, treeop1
, 1))
9252 if (modifier
== EXPAND_STACK_PARM
)
9254 op0
= expand_expr (treeop0
, subtarget
,
9255 VOIDmode
, EXPAND_NORMAL
);
9257 /* Left shift optimization when shifting across word_size boundary.
9259 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9260 there isn't native instruction to support this wide mode
9261 left shift. Given below scenario:
9263 Type A = (Type) B << C
9266 | dest_high | dest_low |
9270 If the shift amount C caused we shift B to across the word
9271 size boundary, i.e part of B shifted into high half of
9272 destination register, and part of B remains in the low
9273 half, then GCC will use the following left shift expand
9276 1. Initialize dest_low to B.
9277 2. Initialize every bit of dest_high to the sign bit of B.
9278 3. Logic left shift dest_low by C bit to finalize dest_low.
9279 The value of dest_low before this shift is kept in a temp D.
9280 4. Logic left shift dest_high by C.
9281 5. Logic right shift D by (word_size - C).
9282 6. Or the result of 4 and 5 to finalize dest_high.
9284 While, by checking gimple statements, if operand B is
9285 coming from signed extension, then we can simplify above
9288 1. dest_high = src_low >> (word_size - C).
9289 2. dest_low = src_low << C.
9291 We can use one arithmetic right shift to finish all the
9292 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9293 needed from 6 into 2.
9295 The case is similar for zero extension, except that we
9296 initialize dest_high to zero rather than copies of the sign
9297 bit from B. Furthermore, we need to use a logical right shift
9300 The choice of sign-extension versus zero-extension is
9301 determined entirely by whether or not B is signed and is
9302 independent of the current setting of unsignedp. */
9305 if (code
== LSHIFT_EXPR
9308 && GET_MODE_2XWIDER_MODE (word_mode
).exists (&int_mode
)
9310 && TREE_CONSTANT (treeop1
)
9311 && TREE_CODE (treeop0
) == SSA_NAME
)
9313 gimple
*def
= SSA_NAME_DEF_STMT (treeop0
);
9314 if (is_gimple_assign (def
)
9315 && gimple_assign_rhs_code (def
) == NOP_EXPR
)
9317 scalar_int_mode rmode
= SCALAR_INT_TYPE_MODE
9318 (TREE_TYPE (gimple_assign_rhs1 (def
)));
9320 if (GET_MODE_SIZE (rmode
) < GET_MODE_SIZE (int_mode
)
9321 && TREE_INT_CST_LOW (treeop1
) < GET_MODE_BITSIZE (word_mode
)
9322 && ((TREE_INT_CST_LOW (treeop1
) + GET_MODE_BITSIZE (rmode
))
9323 >= GET_MODE_BITSIZE (word_mode
)))
9325 rtx_insn
*seq
, *seq_old
;
9326 poly_uint64 high_off
= subreg_highpart_offset (word_mode
,
9328 bool extend_unsigned
9329 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def
)));
9330 rtx low
= lowpart_subreg (word_mode
, op0
, int_mode
);
9331 rtx dest_low
= lowpart_subreg (word_mode
, target
, int_mode
);
9332 rtx dest_high
= simplify_gen_subreg (word_mode
, target
,
9333 int_mode
, high_off
);
9334 HOST_WIDE_INT ramount
= (BITS_PER_WORD
9335 - TREE_INT_CST_LOW (treeop1
));
9336 tree rshift
= build_int_cst (TREE_TYPE (treeop1
), ramount
);
9339 /* dest_high = src_low >> (word_size - C). */
9340 temp
= expand_variable_shift (RSHIFT_EXPR
, word_mode
, low
,
9343 if (temp
!= dest_high
)
9344 emit_move_insn (dest_high
, temp
);
9346 /* dest_low = src_low << C. */
9347 temp
= expand_variable_shift (LSHIFT_EXPR
, word_mode
, low
,
9348 treeop1
, dest_low
, unsignedp
);
9349 if (temp
!= dest_low
)
9350 emit_move_insn (dest_low
, temp
);
9356 if (have_insn_for (ASHIFT
, int_mode
))
9358 bool speed_p
= optimize_insn_for_speed_p ();
9360 rtx ret_old
= expand_variable_shift (code
, int_mode
,
9365 seq_old
= get_insns ();
9367 if (seq_cost (seq
, speed_p
)
9368 >= seq_cost (seq_old
, speed_p
))
9379 if (temp
== NULL_RTX
)
9380 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
9382 if (code
== LSHIFT_EXPR
)
9383 temp
= REDUCE_BIT_FIELD (temp
);
9387 /* Could determine the answer when only additive constants differ. Also,
9388 the addition of one can be handled by changing the condition. */
9395 case UNORDERED_EXPR
:
9404 temp
= do_store_flag (ops
,
9405 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9406 tmode
!= VOIDmode
? tmode
: mode
);
9410 /* Use a compare and a jump for BLKmode comparisons, or for function
9411 type comparisons is have_canonicalize_funcptr_for_compare. */
9414 || modifier
== EXPAND_STACK_PARM
9415 || ! safe_from_p (target
, treeop0
, 1)
9416 || ! safe_from_p (target
, treeop1
, 1)
9417 /* Make sure we don't have a hard reg (such as function's return
9418 value) live across basic blocks, if not optimizing. */
9419 || (!optimize
&& REG_P (target
)
9420 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9421 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9423 emit_move_insn (target
, const0_rtx
);
9425 rtx_code_label
*lab1
= gen_label_rtx ();
9426 jumpifnot_1 (code
, treeop0
, treeop1
, lab1
,
9427 profile_probability::uninitialized ());
9429 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
9430 emit_move_insn (target
, constm1_rtx
);
9432 emit_move_insn (target
, const1_rtx
);
9438 /* Get the rtx code of the operands. */
9439 op0
= expand_normal (treeop0
);
9440 op1
= expand_normal (treeop1
);
9443 target
= gen_reg_rtx (TYPE_MODE (type
));
9445 /* If target overlaps with op1, then either we need to force
9446 op1 into a pseudo (if target also overlaps with op0),
9447 or write the complex parts in reverse order. */
9448 switch (GET_CODE (target
))
9451 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
9453 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
9455 complex_expr_force_op1
:
9456 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
9457 emit_move_insn (temp
, op1
);
9461 complex_expr_swap_order
:
9462 /* Move the imaginary (op1) and real (op0) parts to their
9464 write_complex_part (target
, op1
, true);
9465 write_complex_part (target
, op0
, false);
9471 temp
= adjust_address_nv (target
,
9472 GET_MODE_INNER (GET_MODE (target
)), 0);
9473 if (reg_overlap_mentioned_p (temp
, op1
))
9475 scalar_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9476 temp
= adjust_address_nv (target
, imode
,
9477 GET_MODE_SIZE (imode
));
9478 if (reg_overlap_mentioned_p (temp
, op0
))
9479 goto complex_expr_force_op1
;
9480 goto complex_expr_swap_order
;
9484 if (reg_overlap_mentioned_p (target
, op1
))
9486 if (reg_overlap_mentioned_p (target
, op0
))
9487 goto complex_expr_force_op1
;
9488 goto complex_expr_swap_order
;
9493 /* Move the real (op0) and imaginary (op1) parts to their location. */
9494 write_complex_part (target
, op0
, false);
9495 write_complex_part (target
, op1
, true);
9499 case WIDEN_SUM_EXPR
:
9501 tree oprnd0
= treeop0
;
9502 tree oprnd1
= treeop1
;
9504 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9505 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9510 case VEC_UNPACK_HI_EXPR
:
9511 case VEC_UNPACK_LO_EXPR
:
9513 op0
= expand_normal (treeop0
);
9514 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9520 case VEC_UNPACK_FLOAT_HI_EXPR
:
9521 case VEC_UNPACK_FLOAT_LO_EXPR
:
9523 op0
= expand_normal (treeop0
);
9524 /* The signedness is determined from input operand. */
9525 temp
= expand_widen_pattern_expr
9526 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9527 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9533 case VEC_WIDEN_MULT_HI_EXPR
:
9534 case VEC_WIDEN_MULT_LO_EXPR
:
9535 case VEC_WIDEN_MULT_EVEN_EXPR
:
9536 case VEC_WIDEN_MULT_ODD_EXPR
:
9537 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9538 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9539 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9540 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9542 gcc_assert (target
);
9545 case VEC_PACK_TRUNC_EXPR
:
9546 case VEC_PACK_SAT_EXPR
:
9547 case VEC_PACK_FIX_TRUNC_EXPR
:
9548 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9553 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9554 vec_perm_builder sel
;
9555 if (TREE_CODE (treeop2
) == VECTOR_CST
9556 && tree_to_vec_perm_builder (&sel
, treeop2
))
9558 machine_mode sel_mode
= TYPE_MODE (TREE_TYPE (treeop2
));
9559 temp
= expand_vec_perm_const (mode
, op0
, op1
, sel
,
9564 op2
= expand_normal (treeop2
);
9565 temp
= expand_vec_perm_var (mode
, op0
, op1
, op2
, target
);
9573 tree oprnd0
= treeop0
;
9574 tree oprnd1
= treeop1
;
9575 tree oprnd2
= treeop2
;
9578 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9579 op2
= expand_normal (oprnd2
);
9580 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9587 tree oprnd0
= treeop0
;
9588 tree oprnd1
= treeop1
;
9589 tree oprnd2
= treeop2
;
9592 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9593 op2
= expand_normal (oprnd2
);
9594 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9599 case REALIGN_LOAD_EXPR
:
9601 tree oprnd0
= treeop0
;
9602 tree oprnd1
= treeop1
;
9603 tree oprnd2
= treeop2
;
9606 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9607 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9608 op2
= expand_normal (oprnd2
);
9609 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9617 /* A COND_EXPR with its type being VOID_TYPE represents a
9618 conditional jump and is handled in
9619 expand_gimple_cond_expr. */
9620 gcc_assert (!VOID_TYPE_P (type
));
9622 /* Note that COND_EXPRs whose type is a structure or union
9623 are required to be constructed to contain assignments of
9624 a temporary variable, so that we can evaluate them here
9625 for side effect only. If type is void, we must do likewise. */
9627 gcc_assert (!TREE_ADDRESSABLE (type
)
9629 && TREE_TYPE (treeop1
) != void_type_node
9630 && TREE_TYPE (treeop2
) != void_type_node
);
9632 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9636 /* If we are not to produce a result, we have no target. Otherwise,
9637 if a target was specified use it; it will not be used as an
9638 intermediate target unless it is safe. If no target, use a
9641 if (modifier
!= EXPAND_STACK_PARM
9643 && safe_from_p (original_target
, treeop0
, 1)
9644 && GET_MODE (original_target
) == mode
9645 && !MEM_P (original_target
))
9646 temp
= original_target
;
9648 temp
= assign_temp (type
, 0, 1);
9650 do_pending_stack_adjust ();
9652 rtx_code_label
*lab0
= gen_label_rtx ();
9653 rtx_code_label
*lab1
= gen_label_rtx ();
9654 jumpifnot (treeop0
, lab0
,
9655 profile_probability::uninitialized ());
9656 store_expr (treeop1
, temp
,
9657 modifier
== EXPAND_STACK_PARM
,
9660 emit_jump_insn (targetm
.gen_jump (lab1
));
9663 store_expr (treeop2
, temp
,
9664 modifier
== EXPAND_STACK_PARM
,
9673 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9676 case VEC_DUPLICATE_EXPR
:
9677 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
9678 target
= expand_vector_broadcast (mode
, op0
);
9679 gcc_assert (target
);
9682 case VEC_SERIES_EXPR
:
9683 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, modifier
);
9684 return expand_vec_series_expr (mode
, op0
, op1
, target
);
9686 case BIT_INSERT_EXPR
:
9688 unsigned bitpos
= tree_to_uhwi (treeop2
);
9690 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1
)))
9691 bitsize
= TYPE_PRECISION (TREE_TYPE (treeop1
));
9693 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1
)));
9694 rtx op0
= expand_normal (treeop0
);
9695 rtx op1
= expand_normal (treeop1
);
9696 rtx dst
= gen_reg_rtx (mode
);
9697 emit_move_insn (dst
, op0
);
9698 store_bit_field (dst
, bitsize
, bitpos
, 0, 0,
9699 TYPE_MODE (TREE_TYPE (treeop1
)), op1
, false);
9707 /* Here to do an ordinary binary operator. */
9709 expand_operands (treeop0
, treeop1
,
9710 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9712 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9714 if (modifier
== EXPAND_STACK_PARM
)
9716 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9717 unsignedp
, OPTAB_LIB_WIDEN
);
9719 /* Bitwise operations do not need bitfield reduction as we expect their
9720 operands being properly truncated. */
9721 if (code
== BIT_XOR_EXPR
9722 || code
== BIT_AND_EXPR
9723 || code
== BIT_IOR_EXPR
)
9725 return REDUCE_BIT_FIELD (temp
);
9727 #undef REDUCE_BIT_FIELD
9730 /* Return TRUE if expression STMT is suitable for replacement.
9731 Never consider memory loads as replaceable, because those don't ever lead
9732 into constant expressions. */
9735 stmt_is_replaceable_p (gimple
*stmt
)
9737 if (ssa_is_replaceable_p (stmt
))
9739 /* Don't move around loads. */
9740 if (!gimple_assign_single_p (stmt
)
9741 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9748 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9749 enum expand_modifier modifier
, rtx
*alt_rtl
,
9750 bool inner_reference_p
)
9752 rtx op0
, op1
, temp
, decl_rtl
;
9755 machine_mode mode
, dmode
;
9756 enum tree_code code
= TREE_CODE (exp
);
9757 rtx subtarget
, original_target
;
9760 bool reduce_bit_field
;
9761 location_t loc
= EXPR_LOCATION (exp
);
9762 struct separate_ops ops
;
9763 tree treeop0
, treeop1
, treeop2
;
9764 tree ssa_name
= NULL_TREE
;
9767 type
= TREE_TYPE (exp
);
9768 mode
= TYPE_MODE (type
);
9769 unsignedp
= TYPE_UNSIGNED (type
);
9771 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9772 if (!VL_EXP_CLASS_P (exp
))
9773 switch (TREE_CODE_LENGTH (code
))
9776 case 3: treeop2
= TREE_OPERAND (exp
, 2); /* FALLTHRU */
9777 case 2: treeop1
= TREE_OPERAND (exp
, 1); /* FALLTHRU */
9778 case 1: treeop0
= TREE_OPERAND (exp
, 0); /* FALLTHRU */
9788 ignore
= (target
== const0_rtx
9789 || ((CONVERT_EXPR_CODE_P (code
)
9790 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9791 && TREE_CODE (type
) == VOID_TYPE
));
9793 /* An operation in what may be a bit-field type needs the
9794 result to be reduced to the precision of the bit-field type,
9795 which is narrower than that of the type's mode. */
9796 reduce_bit_field
= (!ignore
9797 && INTEGRAL_TYPE_P (type
)
9798 && !type_has_mode_precision_p (type
));
9800 /* If we are going to ignore this result, we need only do something
9801 if there is a side-effect somewhere in the expression. If there
9802 is, short-circuit the most common cases here. Note that we must
9803 not call expand_expr with anything but const0_rtx in case this
9804 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9808 if (! TREE_SIDE_EFFECTS (exp
))
9811 /* Ensure we reference a volatile object even if value is ignored, but
9812 don't do this if all we are doing is taking its address. */
9813 if (TREE_THIS_VOLATILE (exp
)
9814 && TREE_CODE (exp
) != FUNCTION_DECL
9815 && mode
!= VOIDmode
&& mode
!= BLKmode
9816 && modifier
!= EXPAND_CONST_ADDRESS
)
9818 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9824 if (TREE_CODE_CLASS (code
) == tcc_unary
9825 || code
== BIT_FIELD_REF
9826 || code
== COMPONENT_REF
9827 || code
== INDIRECT_REF
)
9828 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9831 else if (TREE_CODE_CLASS (code
) == tcc_binary
9832 || TREE_CODE_CLASS (code
) == tcc_comparison
9833 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9835 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9836 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9843 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9846 /* Use subtarget as the target for operand 0 of a binary operation. */
9847 subtarget
= get_subtarget (target
);
9848 original_target
= target
;
9854 tree function
= decl_function_context (exp
);
9856 temp
= label_rtx (exp
);
9857 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9859 if (function
!= current_function_decl
9861 LABEL_REF_NONLOCAL_P (temp
) = 1;
9863 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9868 /* ??? ivopts calls expander, without any preparation from
9869 out-of-ssa. So fake instructions as if this was an access to the
9870 base variable. This unnecessarily allocates a pseudo, see how we can
9871 reuse it, if partition base vars have it set already. */
9872 if (!currently_expanding_to_rtl
)
9874 tree var
= SSA_NAME_VAR (exp
);
9875 if (var
&& DECL_RTL_SET_P (var
))
9876 return DECL_RTL (var
);
9877 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9878 LAST_VIRTUAL_REGISTER
+ 1);
9881 g
= get_gimple_for_ssa_name (exp
);
9882 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9884 && modifier
== EXPAND_INITIALIZER
9885 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9886 && (optimize
|| !SSA_NAME_VAR (exp
)
9887 || DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9888 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9889 g
= SSA_NAME_DEF_STMT (exp
);
9893 location_t saved_loc
= curr_insn_location ();
9894 location_t loc
= gimple_location (g
);
9895 if (loc
!= UNKNOWN_LOCATION
)
9896 set_curr_insn_location (loc
);
9897 ops
.code
= gimple_assign_rhs_code (g
);
9898 switch (get_gimple_rhs_class (ops
.code
))
9900 case GIMPLE_TERNARY_RHS
:
9901 ops
.op2
= gimple_assign_rhs3 (g
);
9903 case GIMPLE_BINARY_RHS
:
9904 ops
.op1
= gimple_assign_rhs2 (g
);
9906 /* Try to expand conditonal compare. */
9907 if (targetm
.gen_ccmp_first
)
9909 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
9910 r
= expand_ccmp_expr (g
, mode
);
9915 case GIMPLE_UNARY_RHS
:
9916 ops
.op0
= gimple_assign_rhs1 (g
);
9917 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
9919 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
9921 case GIMPLE_SINGLE_RHS
:
9923 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
9924 tmode
, modifier
, alt_rtl
,
9931 set_curr_insn_location (saved_loc
);
9932 if (REG_P (r
) && !REG_EXPR (r
))
9933 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9938 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9939 exp
= SSA_NAME_VAR (ssa_name
);
9940 goto expand_decl_rtl
;
9944 /* If a static var's type was incomplete when the decl was written,
9945 but the type is complete now, lay out the decl now. */
9946 if (DECL_SIZE (exp
) == 0
9947 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9948 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9949 layout_decl (exp
, 0);
9955 decl_rtl
= DECL_RTL (exp
);
9957 gcc_assert (decl_rtl
);
9959 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9960 settings for VECTOR_TYPE_P that might switch for the function. */
9961 if (currently_expanding_to_rtl
9962 && code
== VAR_DECL
&& MEM_P (decl_rtl
)
9963 && VECTOR_TYPE_P (type
) && exp
&& DECL_MODE (exp
) != mode
)
9964 decl_rtl
= change_address (decl_rtl
, TYPE_MODE (type
), 0);
9966 decl_rtl
= copy_rtx (decl_rtl
);
9968 /* Record writes to register variables. */
9969 if (modifier
== EXPAND_WRITE
9971 && HARD_REGISTER_P (decl_rtl
))
9972 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9973 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9975 /* Ensure variable marked as used even if it doesn't go through
9976 a parser. If it hasn't be used yet, write out an external
9979 TREE_USED (exp
) = 1;
9981 /* Show we haven't gotten RTL for this yet. */
9984 /* Variables inherited from containing functions should have
9985 been lowered by this point. */
9987 context
= decl_function_context (exp
);
9989 || SCOPE_FILE_SCOPE_P (context
)
9990 || context
== current_function_decl
9991 || TREE_STATIC (exp
)
9992 || DECL_EXTERNAL (exp
)
9993 /* ??? C++ creates functions that are not TREE_STATIC. */
9994 || TREE_CODE (exp
) == FUNCTION_DECL
);
9996 /* This is the case of an array whose size is to be determined
9997 from its initializer, while the initializer is still being parsed.
9998 ??? We aren't parsing while expanding anymore. */
10000 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
10001 temp
= validize_mem (decl_rtl
);
10003 /* If DECL_RTL is memory, we are in the normal case and the
10004 address is not valid, get the address into a register. */
10006 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
10009 *alt_rtl
= decl_rtl
;
10010 decl_rtl
= use_anchored_address (decl_rtl
);
10011 if (modifier
!= EXPAND_CONST_ADDRESS
10012 && modifier
!= EXPAND_SUM
10013 && !memory_address_addr_space_p (exp
? DECL_MODE (exp
)
10014 : GET_MODE (decl_rtl
),
10015 XEXP (decl_rtl
, 0),
10016 MEM_ADDR_SPACE (decl_rtl
)))
10017 temp
= replace_equiv_address (decl_rtl
,
10018 copy_rtx (XEXP (decl_rtl
, 0)));
10021 /* If we got something, return it. But first, set the alignment
10022 if the address is a register. */
10025 if (exp
&& MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
10026 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
10032 dmode
= DECL_MODE (exp
);
10034 dmode
= TYPE_MODE (TREE_TYPE (ssa_name
));
10036 /* If the mode of DECL_RTL does not match that of the decl,
10037 there are two cases: we are dealing with a BLKmode value
10038 that is returned in a register, or we are dealing with
10039 a promoted value. In the latter case, return a SUBREG
10040 of the wanted mode, but mark it so that we know that it
10041 was already extended. */
10042 if (REG_P (decl_rtl
)
10043 && dmode
!= BLKmode
10044 && GET_MODE (decl_rtl
) != dmode
)
10046 machine_mode pmode
;
10048 /* Get the signedness to be used for this variable. Ensure we get
10049 the same mode we got when the variable was declared. */
10050 if (code
!= SSA_NAME
)
10051 pmode
= promote_decl_mode (exp
, &unsignedp
);
10052 else if ((g
= SSA_NAME_DEF_STMT (ssa_name
))
10053 && gimple_code (g
) == GIMPLE_CALL
10054 && !gimple_call_internal_p (g
))
10055 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
10056 gimple_call_fntype (g
),
10059 pmode
= promote_ssa_mode (ssa_name
, &unsignedp
);
10060 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
10062 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
10063 SUBREG_PROMOTED_VAR_P (temp
) = 1;
10064 SUBREG_PROMOTED_SET (temp
, unsignedp
);
10072 /* Given that TYPE_PRECISION (type) is not always equal to
10073 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10074 the former to the latter according to the signedness of the
10076 scalar_int_mode mode
= SCALAR_INT_TYPE_MODE (type
);
10077 temp
= immed_wide_int_const
10078 (wi::to_wide (exp
, GET_MODE_PRECISION (mode
)), mode
);
10084 tree tmp
= NULL_TREE
;
10085 if (VECTOR_MODE_P (mode
))
10086 return const_vector_from_tree (exp
);
10087 scalar_int_mode int_mode
;
10088 if (is_int_mode (mode
, &int_mode
))
10090 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp
)))
10091 return const_scalar_mask_from_tree (int_mode
, exp
);
10095 = lang_hooks
.types
.type_for_mode (int_mode
, 1);
10097 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
,
10098 type_for_mode
, exp
);
10103 vec
<constructor_elt
, va_gc
> *v
;
10104 /* Constructors need to be fixed-length. FIXME. */
10105 unsigned int nunits
= VECTOR_CST_NELTS (exp
).to_constant ();
10106 vec_alloc (v
, nunits
);
10107 for (unsigned int i
= 0; i
< nunits
; ++i
)
10108 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
10109 tmp
= build_constructor (type
, v
);
10111 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
10116 if (modifier
== EXPAND_WRITE
)
10118 /* Writing into CONST_DECL is always invalid, but handle it
10120 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (exp
));
10121 scalar_int_mode address_mode
= targetm
.addr_space
.address_mode (as
);
10122 op0
= expand_expr_addr_expr_1 (exp
, NULL_RTX
, address_mode
,
10123 EXPAND_NORMAL
, as
);
10124 op0
= memory_address_addr_space (mode
, op0
, as
);
10125 temp
= gen_rtx_MEM (mode
, op0
);
10126 set_mem_addr_space (temp
, as
);
10129 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
10132 /* If optimized, generate immediate CONST_DOUBLE
10133 which will be turned into memory by reload if necessary.
10135 We used to force a register so that loop.c could see it. But
10136 this does not allow gen_* patterns to perform optimizations with
10137 the constants. It also produces two insns in cases like "x = 1.0;".
10138 On most machines, floating-point constants are not permitted in
10139 many insns, so we'd end up copying it to a register in any case.
10141 Now, we do the copying in expand_binop, if appropriate. */
10142 return const_double_from_real_value (TREE_REAL_CST (exp
),
10143 TYPE_MODE (TREE_TYPE (exp
)));
10146 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
10147 TYPE_MODE (TREE_TYPE (exp
)));
10150 /* Handle evaluating a complex constant in a CONCAT target. */
10151 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
10153 machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
10156 rtarg
= XEXP (original_target
, 0);
10157 itarg
= XEXP (original_target
, 1);
10159 /* Move the real and imaginary parts separately. */
10160 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
10161 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
10164 emit_move_insn (rtarg
, op0
);
10166 emit_move_insn (itarg
, op1
);
10168 return original_target
;
10174 temp
= expand_expr_constant (exp
, 1, modifier
);
10176 /* temp contains a constant address.
10177 On RISC machines where a constant address isn't valid,
10178 make some insns to get that address into a register. */
10179 if (modifier
!= EXPAND_CONST_ADDRESS
10180 && modifier
!= EXPAND_INITIALIZER
10181 && modifier
!= EXPAND_SUM
10182 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
10183 MEM_ADDR_SPACE (temp
)))
10184 return replace_equiv_address (temp
,
10185 copy_rtx (XEXP (temp
, 0)));
10189 return immed_wide_int_const (poly_int_cst_value (exp
), mode
);
10193 tree val
= treeop0
;
10194 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
10195 inner_reference_p
);
10197 if (!SAVE_EXPR_RESOLVED_P (exp
))
10199 /* We can indeed still hit this case, typically via builtin
10200 expanders calling save_expr immediately before expanding
10201 something. Assume this means that we only have to deal
10202 with non-BLKmode values. */
10203 gcc_assert (GET_MODE (ret
) != BLKmode
);
10205 val
= build_decl (curr_insn_location (),
10206 VAR_DECL
, NULL
, TREE_TYPE (exp
));
10207 DECL_ARTIFICIAL (val
) = 1;
10208 DECL_IGNORED_P (val
) = 1;
10210 TREE_OPERAND (exp
, 0) = treeop0
;
10211 SAVE_EXPR_RESOLVED_P (exp
) = 1;
10213 if (!CONSTANT_P (ret
))
10214 ret
= copy_to_reg (ret
);
10215 SET_DECL_RTL (val
, ret
);
10223 /* If we don't need the result, just ensure we evaluate any
10227 unsigned HOST_WIDE_INT idx
;
10230 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
10231 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
10236 return expand_constructor (exp
, target
, modifier
, false);
10238 case TARGET_MEM_REF
:
10241 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
10242 enum insn_code icode
;
10243 unsigned int align
;
10245 op0
= addr_for_mem_ref (exp
, as
, true);
10246 op0
= memory_address_addr_space (mode
, op0
, as
);
10247 temp
= gen_rtx_MEM (mode
, op0
);
10248 set_mem_attributes (temp
, exp
, 0);
10249 set_mem_addr_space (temp
, as
);
10250 align
= get_object_alignment (exp
);
10251 if (modifier
!= EXPAND_WRITE
10252 && modifier
!= EXPAND_MEMORY
10254 && align
< GET_MODE_ALIGNMENT (mode
)
10255 /* If the target does not have special handling for unaligned
10256 loads of mode then it can use regular moves for them. */
10257 && ((icode
= optab_handler (movmisalign_optab
, mode
))
10258 != CODE_FOR_nothing
))
10260 struct expand_operand ops
[2];
10262 /* We've already validated the memory, and we're creating a
10263 new pseudo destination. The predicates really can't fail,
10264 nor can the generator. */
10265 create_output_operand (&ops
[0], NULL_RTX
, mode
);
10266 create_fixed_operand (&ops
[1], temp
);
10267 expand_insn (icode
, 2, ops
);
10268 temp
= ops
[0].value
;
10275 const bool reverse
= REF_REVERSE_STORAGE_ORDER (exp
);
10277 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
10278 machine_mode address_mode
;
10279 tree base
= TREE_OPERAND (exp
, 0);
10281 enum insn_code icode
;
10283 /* Handle expansion of non-aliased memory with non-BLKmode. That
10284 might end up in a register. */
10285 if (mem_ref_refers_to_non_mem_p (exp
))
10287 poly_int64 offset
= mem_ref_offset (exp
).force_shwi ();
10288 base
= TREE_OPERAND (base
, 0);
10289 if (known_eq (offset
, 0)
10291 && tree_fits_uhwi_p (TYPE_SIZE (type
))
10292 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base
)),
10293 tree_to_uhwi (TYPE_SIZE (type
))))
10294 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
10295 target
, tmode
, modifier
);
10296 if (TYPE_MODE (type
) == BLKmode
)
10298 temp
= assign_stack_temp (DECL_MODE (base
),
10299 GET_MODE_SIZE (DECL_MODE (base
)));
10300 store_expr (base
, temp
, 0, false, false);
10301 temp
= adjust_address (temp
, BLKmode
, offset
);
10302 set_mem_size (temp
, int_size_in_bytes (type
));
10305 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
10306 bitsize_int (offset
* BITS_PER_UNIT
));
10307 REF_REVERSE_STORAGE_ORDER (exp
) = reverse
;
10308 return expand_expr (exp
, target
, tmode
, modifier
);
10310 address_mode
= targetm
.addr_space
.address_mode (as
);
10311 base
= TREE_OPERAND (exp
, 0);
10312 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
10314 tree mask
= gimple_assign_rhs2 (def_stmt
);
10315 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
10316 gimple_assign_rhs1 (def_stmt
), mask
);
10317 TREE_OPERAND (exp
, 0) = base
;
10319 align
= get_object_alignment (exp
);
10320 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
10321 op0
= memory_address_addr_space (mode
, op0
, as
);
10322 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
10324 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
10325 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
10326 op0
= memory_address_addr_space (mode
, op0
, as
);
10328 temp
= gen_rtx_MEM (mode
, op0
);
10329 set_mem_attributes (temp
, exp
, 0);
10330 set_mem_addr_space (temp
, as
);
10331 if (TREE_THIS_VOLATILE (exp
))
10332 MEM_VOLATILE_P (temp
) = 1;
10333 if (modifier
!= EXPAND_WRITE
10334 && modifier
!= EXPAND_MEMORY
10335 && !inner_reference_p
10337 && align
< GET_MODE_ALIGNMENT (mode
))
10339 if ((icode
= optab_handler (movmisalign_optab
, mode
))
10340 != CODE_FOR_nothing
)
10342 struct expand_operand ops
[2];
10344 /* We've already validated the memory, and we're creating a
10345 new pseudo destination. The predicates really can't fail,
10346 nor can the generator. */
10347 create_output_operand (&ops
[0], NULL_RTX
, mode
);
10348 create_fixed_operand (&ops
[1], temp
);
10349 expand_insn (icode
, 2, ops
);
10350 temp
= ops
[0].value
;
10352 else if (targetm
.slow_unaligned_access (mode
, align
))
10353 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
10354 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
10355 (modifier
== EXPAND_STACK_PARM
10356 ? NULL_RTX
: target
),
10357 mode
, mode
, false, alt_rtl
);
10360 && modifier
!= EXPAND_MEMORY
10361 && modifier
!= EXPAND_WRITE
)
10362 temp
= flip_storage_order (mode
, temp
);
10369 tree array
= treeop0
;
10370 tree index
= treeop1
;
10373 /* Fold an expression like: "foo"[2].
10374 This is not done in fold so it won't happen inside &.
10375 Don't fold if this is for wide characters since it's too
10376 difficult to do correctly and this is a very rare case. */
10378 if (modifier
!= EXPAND_CONST_ADDRESS
10379 && modifier
!= EXPAND_INITIALIZER
10380 && modifier
!= EXPAND_MEMORY
)
10382 tree t
= fold_read_from_constant_string (exp
);
10385 return expand_expr (t
, target
, tmode
, modifier
);
10388 /* If this is a constant index into a constant array,
10389 just get the value from the array. Handle both the cases when
10390 we have an explicit constructor and when our operand is a variable
10391 that was declared const. */
10393 if (modifier
!= EXPAND_CONST_ADDRESS
10394 && modifier
!= EXPAND_INITIALIZER
10395 && modifier
!= EXPAND_MEMORY
10396 && TREE_CODE (array
) == CONSTRUCTOR
10397 && ! TREE_SIDE_EFFECTS (array
)
10398 && TREE_CODE (index
) == INTEGER_CST
)
10400 unsigned HOST_WIDE_INT ix
;
10403 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
10405 if (tree_int_cst_equal (field
, index
))
10407 if (!TREE_SIDE_EFFECTS (value
))
10408 return expand_expr (fold (value
), target
, tmode
, modifier
);
10413 else if (optimize
>= 1
10414 && modifier
!= EXPAND_CONST_ADDRESS
10415 && modifier
!= EXPAND_INITIALIZER
10416 && modifier
!= EXPAND_MEMORY
10417 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
10418 && TREE_CODE (index
) == INTEGER_CST
10419 && (VAR_P (array
) || TREE_CODE (array
) == CONST_DECL
)
10420 && (init
= ctor_for_folding (array
)) != error_mark_node
)
10422 if (init
== NULL_TREE
)
10424 tree value
= build_zero_cst (type
);
10425 if (TREE_CODE (value
) == CONSTRUCTOR
)
10427 /* If VALUE is a CONSTRUCTOR, this optimization is only
10428 useful if this doesn't store the CONSTRUCTOR into
10429 memory. If it does, it is more efficient to just
10430 load the data from the array directly. */
10431 rtx ret
= expand_constructor (value
, target
,
10433 if (ret
== NULL_RTX
)
10438 return expand_expr (value
, target
, tmode
, modifier
);
10440 else if (TREE_CODE (init
) == CONSTRUCTOR
)
10442 unsigned HOST_WIDE_INT ix
;
10445 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
10447 if (tree_int_cst_equal (field
, index
))
10449 if (TREE_SIDE_EFFECTS (value
))
10452 if (TREE_CODE (value
) == CONSTRUCTOR
)
10454 /* If VALUE is a CONSTRUCTOR, this
10455 optimization is only useful if
10456 this doesn't store the CONSTRUCTOR
10457 into memory. If it does, it is more
10458 efficient to just load the data from
10459 the array directly. */
10460 rtx ret
= expand_constructor (value
, target
,
10462 if (ret
== NULL_RTX
)
10467 expand_expr (fold (value
), target
, tmode
, modifier
);
10470 else if (TREE_CODE (init
) == STRING_CST
)
10472 tree low_bound
= array_ref_low_bound (exp
);
10473 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
10475 /* Optimize the special case of a zero lower bound.
10477 We convert the lower bound to sizetype to avoid problems
10478 with constant folding. E.g. suppose the lower bound is
10479 1 and its mode is QI. Without the conversion
10480 (ARRAY + (INDEX - (unsigned char)1))
10482 (ARRAY + (-(unsigned char)1) + INDEX)
10484 (ARRAY + 255 + INDEX). Oops! */
10485 if (!integer_zerop (low_bound
))
10486 index1
= size_diffop_loc (loc
, index1
,
10487 fold_convert_loc (loc
, sizetype
,
10490 if (tree_fits_uhwi_p (index1
)
10491 && compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
10493 tree type
= TREE_TYPE (TREE_TYPE (init
));
10494 scalar_int_mode mode
;
10496 if (is_int_mode (TYPE_MODE (type
), &mode
)
10497 && GET_MODE_SIZE (mode
) == 1)
10498 return gen_int_mode (TREE_STRING_POINTER (init
)
10499 [TREE_INT_CST_LOW (index1
)],
10505 goto normal_inner_ref
;
10507 case COMPONENT_REF
:
10508 /* If the operand is a CONSTRUCTOR, we can just extract the
10509 appropriate field if it is present. */
10510 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
10512 unsigned HOST_WIDE_INT idx
;
10514 scalar_int_mode field_mode
;
10516 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
10518 if (field
== treeop1
10519 /* We can normally use the value of the field in the
10520 CONSTRUCTOR. However, if this is a bitfield in
10521 an integral mode that we can fit in a HOST_WIDE_INT,
10522 we must mask only the number of bits in the bitfield,
10523 since this is done implicitly by the constructor. If
10524 the bitfield does not meet either of those conditions,
10525 we can't do this optimization. */
10526 && (! DECL_BIT_FIELD (field
)
10527 || (is_int_mode (DECL_MODE (field
), &field_mode
)
10528 && (GET_MODE_PRECISION (field_mode
)
10529 <= HOST_BITS_PER_WIDE_INT
))))
10531 if (DECL_BIT_FIELD (field
)
10532 && modifier
== EXPAND_STACK_PARM
)
10534 op0
= expand_expr (value
, target
, tmode
, modifier
);
10535 if (DECL_BIT_FIELD (field
))
10537 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10538 scalar_int_mode imode
10539 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field
));
10541 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10543 op1
= gen_int_mode ((HOST_WIDE_INT_1
<< bitsize
) - 1,
10545 op0
= expand_and (imode
, op0
, op1
, target
);
10549 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10551 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10553 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10561 goto normal_inner_ref
;
10563 case BIT_FIELD_REF
:
10564 case ARRAY_RANGE_REF
:
10567 machine_mode mode1
, mode2
;
10568 poly_int64 bitsize
, bitpos
, bytepos
;
10570 int reversep
, volatilep
= 0, must_force_mem
;
10572 = get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
10573 &unsignedp
, &reversep
, &volatilep
);
10574 rtx orig_op0
, memloc
;
10575 bool clear_mem_expr
= false;
10577 /* If we got back the original object, something is wrong. Perhaps
10578 we are evaluating an expression too early. In any event, don't
10579 infinitely recurse. */
10580 gcc_assert (tem
!= exp
);
10582 /* If TEM's type is a union of variable size, pass TARGET to the inner
10583 computation, since it will need a temporary and TARGET is known
10584 to have to do. This occurs in unchecked conversion in Ada. */
10586 = expand_expr_real (tem
,
10587 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10588 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10589 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10591 && modifier
!= EXPAND_STACK_PARM
10592 ? target
: NULL_RTX
),
10594 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10597 /* If the field has a mode, we want to access it in the
10598 field's mode, not the computed mode.
10599 If a MEM has VOIDmode (external with incomplete type),
10600 use BLKmode for it instead. */
10603 if (mode1
!= VOIDmode
)
10604 op0
= adjust_address (op0
, mode1
, 0);
10605 else if (GET_MODE (op0
) == VOIDmode
)
10606 op0
= adjust_address (op0
, BLKmode
, 0);
10610 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10612 /* If we have either an offset, a BLKmode result, or a reference
10613 outside the underlying object, we must force it to memory.
10614 Such a case can occur in Ada if we have unchecked conversion
10615 of an expression from a scalar type to an aggregate type or
10616 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10617 passed a partially uninitialized object or a view-conversion
10618 to a larger size. */
10619 must_force_mem
= (offset
10620 || mode1
== BLKmode
10621 || maybe_gt (bitpos
+ bitsize
,
10622 GET_MODE_BITSIZE (mode2
)));
10624 /* Handle CONCAT first. */
10625 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10627 if (known_eq (bitpos
, 0)
10628 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
)))
10629 && COMPLEX_MODE_P (mode1
)
10630 && COMPLEX_MODE_P (GET_MODE (op0
))
10631 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1
))
10632 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0
)))))
10635 op0
= flip_storage_order (GET_MODE (op0
), op0
);
10636 if (mode1
!= GET_MODE (op0
))
10639 for (int i
= 0; i
< 2; i
++)
10641 rtx op
= read_complex_part (op0
, i
!= 0);
10642 if (GET_CODE (op
) == SUBREG
)
10643 op
= force_reg (GET_MODE (op
), op
);
10644 rtx temp
= gen_lowpart_common (GET_MODE_INNER (mode1
),
10650 if (!REG_P (op
) && !MEM_P (op
))
10651 op
= force_reg (GET_MODE (op
), op
);
10652 op
= gen_lowpart (GET_MODE_INNER (mode1
), op
);
10656 op0
= gen_rtx_CONCAT (mode1
, parts
[0], parts
[1]);
10660 if (known_eq (bitpos
, 0)
10661 && known_eq (bitsize
,
10662 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
10663 && maybe_ne (bitsize
, 0))
10665 op0
= XEXP (op0
, 0);
10666 mode2
= GET_MODE (op0
);
10668 else if (known_eq (bitpos
,
10669 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
10670 && known_eq (bitsize
,
10671 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1))))
10672 && maybe_ne (bitpos
, 0)
10673 && maybe_ne (bitsize
, 0))
10675 op0
= XEXP (op0
, 1);
10677 mode2
= GET_MODE (op0
);
10680 /* Otherwise force into memory. */
10681 must_force_mem
= 1;
10684 /* If this is a constant, put it in a register if it is a legitimate
10685 constant and we don't need a memory reference. */
10686 if (CONSTANT_P (op0
)
10687 && mode2
!= BLKmode
10688 && targetm
.legitimate_constant_p (mode2
, op0
)
10689 && !must_force_mem
)
10690 op0
= force_reg (mode2
, op0
);
10692 /* Otherwise, if this is a constant, try to force it to the constant
10693 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10694 is a legitimate constant. */
10695 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10696 op0
= validize_mem (memloc
);
10698 /* Otherwise, if this is a constant or the object is not in memory
10699 and need be, put it there. */
10700 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10702 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10703 emit_move_insn (memloc
, op0
);
10705 clear_mem_expr
= true;
10710 machine_mode address_mode
;
10711 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10714 gcc_assert (MEM_P (op0
));
10716 address_mode
= get_address_mode (op0
);
10717 if (GET_MODE (offset_rtx
) != address_mode
)
10719 /* We cannot be sure that the RTL in offset_rtx is valid outside
10720 of a memory address context, so force it into a register
10721 before attempting to convert it to the desired mode. */
10722 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
10723 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10726 /* See the comment in expand_assignment for the rationale. */
10727 if (mode1
!= VOIDmode
10728 && maybe_ne (bitpos
, 0)
10729 && maybe_gt (bitsize
, 0)
10730 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
10731 && multiple_p (bitpos
, bitsize
)
10732 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
10733 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10735 op0
= adjust_address (op0
, mode1
, bytepos
);
10739 op0
= offset_address (op0
, offset_rtx
,
10740 highest_pow2_factor (offset
));
10743 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10744 record its alignment as BIGGEST_ALIGNMENT. */
10746 && known_eq (bitpos
, 0)
10748 && is_aligning_offset (offset
, tem
))
10749 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10751 /* Don't forget about volatility even if this is a bitfield. */
10752 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10754 if (op0
== orig_op0
)
10755 op0
= copy_rtx (op0
);
10757 MEM_VOLATILE_P (op0
) = 1;
10760 /* In cases where an aligned union has an unaligned object
10761 as a field, we might be extracting a BLKmode value from
10762 an integer-mode (e.g., SImode) object. Handle this case
10763 by doing the extract into an object as wide as the field
10764 (which we know to be the width of a basic mode), then
10765 storing into memory, and changing the mode to BLKmode. */
10766 if (mode1
== VOIDmode
10767 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10768 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10769 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10770 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10771 && modifier
!= EXPAND_CONST_ADDRESS
10772 && modifier
!= EXPAND_INITIALIZER
10773 && modifier
!= EXPAND_MEMORY
)
10774 /* If the bitfield is volatile and the bitsize
10775 is narrower than the access size of the bitfield,
10776 we need to extract bitfields from the access. */
10777 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10778 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10779 && mode1
!= BLKmode
10780 && maybe_lt (bitsize
, GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
))
10781 /* If the field isn't aligned enough to fetch as a memref,
10782 fetch it as a bit field. */
10783 || (mode1
!= BLKmode
10785 ? MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10786 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode1
))
10787 : TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10788 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
10789 && modifier
!= EXPAND_MEMORY
10790 && ((modifier
== EXPAND_CONST_ADDRESS
10791 || modifier
== EXPAND_INITIALIZER
)
10793 : targetm
.slow_unaligned_access (mode1
,
10795 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
10796 /* If the type and the field are a constant size and the
10797 size of the type isn't the same size as the bitfield,
10798 we must use bitfield operations. */
10799 || (known_size_p (bitsize
)
10800 && TYPE_SIZE (TREE_TYPE (exp
))
10801 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
10802 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
10805 machine_mode ext_mode
= mode
;
10807 if (ext_mode
== BLKmode
10808 && ! (target
!= 0 && MEM_P (op0
)
10810 && multiple_p (bitpos
, BITS_PER_UNIT
)))
10811 ext_mode
= int_mode_for_size (bitsize
, 1).else_blk ();
10813 if (ext_mode
== BLKmode
)
10816 target
= assign_temp (type
, 1, 1);
10818 /* ??? Unlike the similar test a few lines below, this one is
10819 very likely obsolete. */
10820 if (known_eq (bitsize
, 0))
10823 /* In this case, BITPOS must start at a byte boundary and
10824 TARGET, if specified, must be a MEM. */
10825 gcc_assert (MEM_P (op0
)
10826 && (!target
|| MEM_P (target
)));
10828 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
10829 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
10830 emit_block_move (target
,
10831 adjust_address (op0
, VOIDmode
, bytepos
),
10832 gen_int_mode (bytesize
, Pmode
),
10833 (modifier
== EXPAND_STACK_PARM
10834 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10839 /* If we have nothing to extract, the result will be 0 for targets
10840 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10841 return 0 for the sake of consistency, as reading a zero-sized
10842 bitfield is valid in Ada and the value is fully specified. */
10843 if (known_eq (bitsize
, 0))
10846 op0
= validize_mem (op0
);
10848 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10849 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10851 /* If the result has a record type and the extraction is done in
10852 an integral mode, then the field may be not aligned on a byte
10853 boundary; in this case, if it has reverse storage order, it
10854 needs to be extracted as a scalar field with reverse storage
10855 order and put back into memory order afterwards. */
10856 if (TREE_CODE (type
) == RECORD_TYPE
10857 && GET_MODE_CLASS (ext_mode
) == MODE_INT
)
10858 reversep
= TYPE_REVERSE_STORAGE_ORDER (type
);
10860 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10861 (modifier
== EXPAND_STACK_PARM
10862 ? NULL_RTX
: target
),
10863 ext_mode
, ext_mode
, reversep
, alt_rtl
);
10865 /* If the result has a record type and the mode of OP0 is an
10866 integral mode then, if BITSIZE is narrower than this mode
10867 and this is for big-endian data, we must put the field
10868 into the high-order bits. And we must also put it back
10869 into memory order if it has been previously reversed. */
10870 scalar_int_mode op0_mode
;
10871 if (TREE_CODE (type
) == RECORD_TYPE
10872 && is_int_mode (GET_MODE (op0
), &op0_mode
))
10874 HOST_WIDE_INT size
= GET_MODE_BITSIZE (op0_mode
);
10876 gcc_checking_assert (known_le (bitsize
, size
));
10877 if (maybe_lt (bitsize
, size
)
10878 && reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
10879 op0
= expand_shift (LSHIFT_EXPR
, op0_mode
, op0
,
10880 size
- bitsize
, op0
, 1);
10883 op0
= flip_storage_order (op0_mode
, op0
);
10886 /* If the result type is BLKmode, store the data into a temporary
10887 of the appropriate type, but with the mode corresponding to the
10888 mode for the data we have (op0's mode). */
10889 if (mode
== BLKmode
)
10892 = assign_stack_temp_for_type (ext_mode
,
10893 GET_MODE_BITSIZE (ext_mode
),
10895 emit_move_insn (new_rtx
, op0
);
10896 op0
= copy_rtx (new_rtx
);
10897 PUT_MODE (op0
, BLKmode
);
10903 /* If the result is BLKmode, use that to access the object
10905 if (mode
== BLKmode
)
10908 /* Get a reference to just this component. */
10909 bytepos
= bits_to_bytes_round_down (bitpos
);
10910 if (modifier
== EXPAND_CONST_ADDRESS
10911 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10912 op0
= adjust_address_nv (op0
, mode1
, bytepos
);
10914 op0
= adjust_address (op0
, mode1
, bytepos
);
10916 if (op0
== orig_op0
)
10917 op0
= copy_rtx (op0
);
10919 /* Don't set memory attributes if the base expression is
10920 SSA_NAME that got expanded as a MEM. In that case, we should
10921 just honor its original memory attributes. */
10922 if (TREE_CODE (tem
) != SSA_NAME
|| !MEM_P (orig_op0
))
10923 set_mem_attributes (op0
, exp
, 0);
10925 if (REG_P (XEXP (op0
, 0)))
10926 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10928 /* If op0 is a temporary because the original expressions was forced
10929 to memory, clear MEM_EXPR so that the original expression cannot
10930 be marked as addressable through MEM_EXPR of the temporary. */
10931 if (clear_mem_expr
)
10932 set_mem_expr (op0
, NULL_TREE
);
10934 MEM_VOLATILE_P (op0
) |= volatilep
;
10937 && modifier
!= EXPAND_MEMORY
10938 && modifier
!= EXPAND_WRITE
)
10939 op0
= flip_storage_order (mode1
, op0
);
10941 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10942 || modifier
== EXPAND_CONST_ADDRESS
10943 || modifier
== EXPAND_INITIALIZER
)
10947 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10949 convert_move (target
, op0
, unsignedp
);
10954 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10957 /* All valid uses of __builtin_va_arg_pack () are removed during
10959 if (CALL_EXPR_VA_ARG_PACK (exp
))
10960 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10962 tree fndecl
= get_callee_fndecl (exp
), attr
;
10965 && (attr
= lookup_attribute ("error",
10966 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10967 error ("%Kcall to %qs declared with attribute error: %s",
10968 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10969 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10971 && (attr
= lookup_attribute ("warning",
10972 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10973 warning_at (tree_nonartificial_location (exp
),
10974 0, "%Kcall to %qs declared with attribute warning: %s",
10975 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10976 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10978 /* Check for a built-in function. */
10979 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10981 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10982 if (CALL_WITH_BOUNDS_P (exp
))
10983 return expand_builtin_with_bounds (exp
, target
, subtarget
,
10986 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10989 return expand_call (exp
, target
, ignore
);
10991 case VIEW_CONVERT_EXPR
:
10994 /* If we are converting to BLKmode, try to avoid an intermediate
10995 temporary by fetching an inner memory reference. */
10996 if (mode
== BLKmode
10997 && poly_int_tree_p (TYPE_SIZE (type
))
10998 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10999 && handled_component_p (treeop0
))
11001 machine_mode mode1
;
11002 poly_int64 bitsize
, bitpos
, bytepos
;
11004 int unsignedp
, reversep
, volatilep
= 0;
11006 = get_inner_reference (treeop0
, &bitsize
, &bitpos
, &offset
, &mode1
,
11007 &unsignedp
, &reversep
, &volatilep
);
11010 /* ??? We should work harder and deal with non-zero offsets. */
11012 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
11014 && known_size_p (bitsize
)
11015 && known_eq (wi::to_poly_offset (TYPE_SIZE (type
)), bitsize
))
11017 /* See the normal_inner_ref case for the rationale. */
11019 = expand_expr_real (tem
,
11020 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
11021 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
11023 && modifier
!= EXPAND_STACK_PARM
11024 ? target
: NULL_RTX
),
11026 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
11029 if (MEM_P (orig_op0
))
11033 /* Get a reference to just this component. */
11034 if (modifier
== EXPAND_CONST_ADDRESS
11035 || modifier
== EXPAND_SUM
11036 || modifier
== EXPAND_INITIALIZER
)
11037 op0
= adjust_address_nv (op0
, mode
, bytepos
);
11039 op0
= adjust_address (op0
, mode
, bytepos
);
11041 if (op0
== orig_op0
)
11042 op0
= copy_rtx (op0
);
11044 set_mem_attributes (op0
, treeop0
, 0);
11045 if (REG_P (XEXP (op0
, 0)))
11046 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
11048 MEM_VOLATILE_P (op0
) |= volatilep
;
11054 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
11055 NULL
, inner_reference_p
);
11057 /* If the input and output modes are both the same, we are done. */
11058 if (mode
== GET_MODE (op0
))
11060 /* If neither mode is BLKmode, and both modes are the same size
11061 then we can use gen_lowpart. */
11062 else if (mode
!= BLKmode
11063 && GET_MODE (op0
) != BLKmode
11064 && known_eq (GET_MODE_PRECISION (mode
),
11065 GET_MODE_PRECISION (GET_MODE (op0
)))
11066 && !COMPLEX_MODE_P (GET_MODE (op0
)))
11068 if (GET_CODE (op0
) == SUBREG
)
11069 op0
= force_reg (GET_MODE (op0
), op0
);
11070 temp
= gen_lowpart_common (mode
, op0
);
11075 if (!REG_P (op0
) && !MEM_P (op0
))
11076 op0
= force_reg (GET_MODE (op0
), op0
);
11077 op0
= gen_lowpart (mode
, op0
);
11080 /* If both types are integral, convert from one mode to the other. */
11081 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
11082 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
11083 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
11084 /* If the output type is a bit-field type, do an extraction. */
11085 else if (reduce_bit_field
)
11086 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
11087 TYPE_UNSIGNED (type
), NULL_RTX
,
11088 mode
, mode
, false, NULL
);
11089 /* As a last resort, spill op0 to memory, and reload it in a
11091 else if (!MEM_P (op0
))
11093 /* If the operand is not a MEM, force it into memory. Since we
11094 are going to be changing the mode of the MEM, don't call
11095 force_const_mem for constants because we don't allow pool
11096 constants to change mode. */
11097 tree inner_type
= TREE_TYPE (treeop0
);
11099 gcc_assert (!TREE_ADDRESSABLE (exp
));
11101 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
11103 = assign_stack_temp_for_type
11104 (TYPE_MODE (inner_type
),
11105 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
11107 emit_move_insn (target
, op0
);
11111 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11112 output type is such that the operand is known to be aligned, indicate
11113 that it is. Otherwise, we need only be concerned about alignment for
11114 non-BLKmode results. */
11117 enum insn_code icode
;
11119 if (modifier
!= EXPAND_WRITE
11120 && modifier
!= EXPAND_MEMORY
11121 && !inner_reference_p
11123 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
11125 /* If the target does have special handling for unaligned
11126 loads of mode then use them. */
11127 if ((icode
= optab_handler (movmisalign_optab
, mode
))
11128 != CODE_FOR_nothing
)
11132 op0
= adjust_address (op0
, mode
, 0);
11133 /* We've already validated the memory, and we're creating a
11134 new pseudo destination. The predicates really can't
11136 reg
= gen_reg_rtx (mode
);
11138 /* Nor can the insn generator. */
11139 rtx_insn
*insn
= GEN_FCN (icode
) (reg
, op0
);
11143 else if (STRICT_ALIGNMENT
)
11145 tree inner_type
= TREE_TYPE (treeop0
);
11146 poly_uint64 mode_size
= GET_MODE_SIZE (mode
);
11147 poly_uint64 op0_size
11148 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (inner_type
));
11149 poly_int64 temp_size
= upper_bound (op0_size
, mode_size
);
11151 = assign_stack_temp_for_type (mode
, temp_size
, type
);
11152 rtx new_with_op0_mode
11153 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
11155 gcc_assert (!TREE_ADDRESSABLE (exp
));
11157 if (GET_MODE (op0
) == BLKmode
)
11159 rtx size_rtx
= gen_int_mode (mode_size
, Pmode
);
11160 emit_block_move (new_with_op0_mode
, op0
, size_rtx
,
11161 (modifier
== EXPAND_STACK_PARM
11162 ? BLOCK_OP_CALL_PARM
11163 : BLOCK_OP_NORMAL
));
11166 emit_move_insn (new_with_op0_mode
, op0
);
11172 op0
= adjust_address (op0
, mode
, 0);
11179 tree lhs
= treeop0
;
11180 tree rhs
= treeop1
;
11181 gcc_assert (ignore
);
11183 /* Check for |= or &= of a bitfield of size one into another bitfield
11184 of size 1. In this case, (unless we need the result of the
11185 assignment) we can do this more efficiently with a
11186 test followed by an assignment, if necessary.
11188 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11189 things change so we do, this code should be enhanced to
11191 if (TREE_CODE (lhs
) == COMPONENT_REF
11192 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
11193 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
11194 && TREE_OPERAND (rhs
, 0) == lhs
11195 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
11196 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
11197 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
11199 rtx_code_label
*label
= gen_label_rtx ();
11200 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
11201 do_jump (TREE_OPERAND (rhs
, 1),
11204 profile_probability::uninitialized ());
11205 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
11207 do_pending_stack_adjust ();
11208 emit_label (label
);
11212 expand_assignment (lhs
, rhs
, false);
11217 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
11219 case REALPART_EXPR
:
11220 op0
= expand_normal (treeop0
);
11221 return read_complex_part (op0
, false);
11223 case IMAGPART_EXPR
:
11224 op0
= expand_normal (treeop0
);
11225 return read_complex_part (op0
, true);
11232 /* Expanded in cfgexpand.c. */
11233 gcc_unreachable ();
11235 case TRY_CATCH_EXPR
:
11237 case EH_FILTER_EXPR
:
11238 case TRY_FINALLY_EXPR
:
11239 /* Lowered by tree-eh.c. */
11240 gcc_unreachable ();
11242 case WITH_CLEANUP_EXPR
:
11243 case CLEANUP_POINT_EXPR
:
11245 case CASE_LABEL_EXPR
:
11250 case COMPOUND_EXPR
:
11251 case PREINCREMENT_EXPR
:
11252 case PREDECREMENT_EXPR
:
11253 case POSTINCREMENT_EXPR
:
11254 case POSTDECREMENT_EXPR
:
11257 case COMPOUND_LITERAL_EXPR
:
11258 /* Lowered by gimplify.c. */
11259 gcc_unreachable ();
11262 /* Function descriptors are not valid except for as
11263 initialization constants, and should not be expanded. */
11264 gcc_unreachable ();
11266 case WITH_SIZE_EXPR
:
11267 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11268 have pulled out the size to use in whatever context it needed. */
11269 return expand_expr_real (treeop0
, original_target
, tmode
,
11270 modifier
, alt_rtl
, inner_reference_p
);
11273 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
11277 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11278 signedness of TYPE), possibly returning the result in TARGET.
11279 TYPE is known to be a partial integer type. */
11281 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
11283 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
11284 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
11286 /* For constant values, reduce using build_int_cst_type. */
11287 if (CONST_INT_P (exp
))
11289 HOST_WIDE_INT value
= INTVAL (exp
);
11290 tree t
= build_int_cst_type (type
, value
);
11291 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
11293 else if (TYPE_UNSIGNED (type
))
11295 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (exp
));
11296 rtx mask
= immed_wide_int_const
11297 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
11298 return expand_and (mode
, exp
, mask
, target
);
11302 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (exp
));
11303 int count
= GET_MODE_PRECISION (mode
) - prec
;
11304 exp
= expand_shift (LSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
11305 return expand_shift (RSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
11309 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11310 when applied to the address of EXP produces an address known to be
11311 aligned more than BIGGEST_ALIGNMENT. */
11314 is_aligning_offset (const_tree offset
, const_tree exp
)
11316 /* Strip off any conversions. */
11317 while (CONVERT_EXPR_P (offset
))
11318 offset
= TREE_OPERAND (offset
, 0);
11320 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11321 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11322 if (TREE_CODE (offset
) != BIT_AND_EXPR
11323 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
11324 || compare_tree_int (TREE_OPERAND (offset
, 1),
11325 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
11326 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1))
11329 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11330 It must be NEGATE_EXPR. Then strip any more conversions. */
11331 offset
= TREE_OPERAND (offset
, 0);
11332 while (CONVERT_EXPR_P (offset
))
11333 offset
= TREE_OPERAND (offset
, 0);
11335 if (TREE_CODE (offset
) != NEGATE_EXPR
)
11338 offset
= TREE_OPERAND (offset
, 0);
11339 while (CONVERT_EXPR_P (offset
))
11340 offset
= TREE_OPERAND (offset
, 0);
11342 /* This must now be the address of EXP. */
11343 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
11346 /* Return the tree node if an ARG corresponds to a string constant or zero
11347 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
11348 in bytes within the string that ARG is accessing. The type of the
11349 offset will be `sizetype'. */
11352 string_constant (tree arg
, tree
*ptr_offset
)
11354 tree array
, offset
, lower_bound
;
11357 if (TREE_CODE (arg
) == ADDR_EXPR
)
11359 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
11361 *ptr_offset
= size_zero_node
;
11362 return TREE_OPERAND (arg
, 0);
11364 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
11366 array
= TREE_OPERAND (arg
, 0);
11367 offset
= size_zero_node
;
11369 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
11371 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
11372 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
11373 if (TREE_CODE (array
) != STRING_CST
&& !VAR_P (array
))
11376 /* Check if the array has a nonzero lower bound. */
11377 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
11378 if (!integer_zerop (lower_bound
))
11380 /* If the offset and base aren't both constants, return 0. */
11381 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
11383 if (TREE_CODE (offset
) != INTEGER_CST
)
11385 /* Adjust offset by the lower bound. */
11386 offset
= size_diffop (fold_convert (sizetype
, offset
),
11387 fold_convert (sizetype
, lower_bound
));
11390 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
11392 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
11393 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
11394 if (TREE_CODE (array
) != ADDR_EXPR
)
11396 array
= TREE_OPERAND (array
, 0);
11397 if (TREE_CODE (array
) != STRING_CST
&& !VAR_P (array
))
11403 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
11405 tree arg0
= TREE_OPERAND (arg
, 0);
11406 tree arg1
= TREE_OPERAND (arg
, 1);
11411 if (TREE_CODE (arg0
) == ADDR_EXPR
11412 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
11413 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
11415 array
= TREE_OPERAND (arg0
, 0);
11418 else if (TREE_CODE (arg1
) == ADDR_EXPR
11419 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
11420 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
11422 array
= TREE_OPERAND (arg1
, 0);
11431 if (TREE_CODE (array
) == STRING_CST
)
11433 *ptr_offset
= fold_convert (sizetype
, offset
);
11436 else if (VAR_P (array
) || TREE_CODE (array
) == CONST_DECL
)
11439 tree init
= ctor_for_folding (array
);
11441 /* Variables initialized to string literals can be handled too. */
11442 if (init
== error_mark_node
11444 || TREE_CODE (init
) != STRING_CST
)
11447 /* Avoid const char foo[4] = "abcde"; */
11448 if (DECL_SIZE_UNIT (array
) == NULL_TREE
11449 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
11450 || (length
= TREE_STRING_LENGTH (init
)) <= 0
11451 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
11454 /* If variable is bigger than the string literal, OFFSET must be constant
11455 and inside of the bounds of the string literal. */
11456 offset
= fold_convert (sizetype
, offset
);
11457 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
11458 && (! tree_fits_uhwi_p (offset
)
11459 || compare_tree_int (offset
, length
) >= 0))
11462 *ptr_offset
= offset
;
11469 /* Generate code to calculate OPS, and exploded expression
11470 using a store-flag instruction and return an rtx for the result.
11471 OPS reflects a comparison.
11473 If TARGET is nonzero, store the result there if convenient.
11475 Return zero if there is no suitable set-flag instruction
11476 available on this machine.
11478 Once expand_expr has been called on the arguments of the comparison,
11479 we are committed to doing the store flag, since it is not safe to
11480 re-evaluate the expression. We emit the store-flag insn by calling
11481 emit_store_flag, but only expand the arguments if we have a reason
11482 to believe that emit_store_flag will be successful. If we think that
11483 it will, but it isn't, we have to simulate the store-flag with a
11484 set/jump/set sequence. */
11487 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
11489 enum rtx_code code
;
11490 tree arg0
, arg1
, type
;
11491 machine_mode operand_mode
;
11494 rtx subtarget
= target
;
11495 location_t loc
= ops
->location
;
11500 /* Don't crash if the comparison was erroneous. */
11501 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
11504 type
= TREE_TYPE (arg0
);
11505 operand_mode
= TYPE_MODE (type
);
11506 unsignedp
= TYPE_UNSIGNED (type
);
11508 /* We won't bother with BLKmode store-flag operations because it would mean
11509 passing a lot of information to emit_store_flag. */
11510 if (operand_mode
== BLKmode
)
11513 /* We won't bother with store-flag operations involving function pointers
11514 when function pointers must be canonicalized before comparisons. */
11515 if (targetm
.have_canonicalize_funcptr_for_compare ()
11516 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
11517 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
11519 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
11520 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
11521 == FUNCTION_TYPE
))))
11527 /* For vector typed comparisons emit code to generate the desired
11528 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11529 expander for this. */
11530 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
11532 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
11533 if (VECTOR_BOOLEAN_TYPE_P (ops
->type
)
11534 && expand_vec_cmp_expr_p (TREE_TYPE (arg0
), ops
->type
, ops
->code
))
11535 return expand_vec_cmp_expr (ops
->type
, ifexp
, target
);
11538 tree if_true
= constant_boolean_node (true, ops
->type
);
11539 tree if_false
= constant_boolean_node (false, ops
->type
);
11540 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
,
11545 /* Get the rtx comparison code to use. We know that EXP is a comparison
11546 operation of some type. Some comparisons against 1 and -1 can be
11547 converted to comparisons with zero. Do so here so that the tests
11548 below will be aware that we have a comparison with zero. These
11549 tests will not catch constants in the first operand, but constants
11550 are rarely passed as the first operand. */
11561 if (integer_onep (arg1
))
11562 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
11564 code
= unsignedp
? LTU
: LT
;
11567 if (! unsignedp
&& integer_all_onesp (arg1
))
11568 arg1
= integer_zero_node
, code
= LT
;
11570 code
= unsignedp
? LEU
: LE
;
11573 if (! unsignedp
&& integer_all_onesp (arg1
))
11574 arg1
= integer_zero_node
, code
= GE
;
11576 code
= unsignedp
? GTU
: GT
;
11579 if (integer_onep (arg1
))
11580 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
11582 code
= unsignedp
? GEU
: GE
;
11585 case UNORDERED_EXPR
:
11611 gcc_unreachable ();
11614 /* Put a constant second. */
11615 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
11616 || TREE_CODE (arg0
) == FIXED_CST
)
11618 std::swap (arg0
, arg1
);
11619 code
= swap_condition (code
);
11622 /* If this is an equality or inequality test of a single bit, we can
11623 do this by shifting the bit being tested to the low-order bit and
11624 masking the result with the constant 1. If the condition was EQ,
11625 we xor it with 1. This does not require an scc insn and is faster
11626 than an scc insn even if we have it.
11628 The code to make this transformation was moved into fold_single_bit_test,
11629 so we just call into the folder and expand its result. */
11631 if ((code
== NE
|| code
== EQ
)
11632 && integer_zerop (arg1
)
11633 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
11635 gimple
*srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
11637 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
11639 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
11640 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
11641 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
11642 gimple_assign_rhs1 (srcstmt
),
11643 gimple_assign_rhs2 (srcstmt
));
11644 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
11646 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
11650 if (! get_subtarget (target
)
11651 || GET_MODE (subtarget
) != operand_mode
)
11654 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
11657 target
= gen_reg_rtx (mode
);
11659 /* Try a cstore if possible. */
11660 return emit_store_flag_force (target
, code
, op0
, op1
,
11661 operand_mode
, unsignedp
,
11662 (TYPE_PRECISION (ops
->type
) == 1
11663 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
11666 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11667 0 otherwise (i.e. if there is no casesi instruction).
11669 DEFAULT_PROBABILITY is the probability of jumping to the default
11672 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
11673 rtx table_label
, rtx default_label
, rtx fallback_label
,
11674 profile_probability default_probability
)
11676 struct expand_operand ops
[5];
11677 scalar_int_mode index_mode
= SImode
;
11678 rtx op1
, op2
, index
;
11680 if (! targetm
.have_casesi ())
11683 /* The index must be some form of integer. Convert it to SImode. */
11684 scalar_int_mode omode
= SCALAR_INT_TYPE_MODE (index_type
);
11685 if (GET_MODE_BITSIZE (omode
) > GET_MODE_BITSIZE (index_mode
))
11687 rtx rangertx
= expand_normal (range
);
11689 /* We must handle the endpoints in the original mode. */
11690 index_expr
= build2 (MINUS_EXPR
, index_type
,
11691 index_expr
, minval
);
11692 minval
= integer_zero_node
;
11693 index
= expand_normal (index_expr
);
11695 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
11696 omode
, 1, default_label
,
11697 default_probability
);
11698 /* Now we can safely truncate. */
11699 index
= convert_to_mode (index_mode
, index
, 0);
11703 if (omode
!= index_mode
)
11705 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11706 index_expr
= fold_convert (index_type
, index_expr
);
11709 index
= expand_normal (index_expr
);
11712 do_pending_stack_adjust ();
11714 op1
= expand_normal (minval
);
11715 op2
= expand_normal (range
);
11717 create_input_operand (&ops
[0], index
, index_mode
);
11718 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11719 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11720 create_fixed_operand (&ops
[3], table_label
);
11721 create_fixed_operand (&ops
[4], (default_label
11723 : fallback_label
));
11724 expand_jump_insn (targetm
.code_for_casesi
, 5, ops
);
11728 /* Attempt to generate a tablejump instruction; same concept. */
11729 /* Subroutine of the next function.
11731 INDEX is the value being switched on, with the lowest value
11732 in the table already subtracted.
11733 MODE is its expected mode (needed if INDEX is constant).
11734 RANGE is the length of the jump table.
11735 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11737 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11738 index value is out of range.
11739 DEFAULT_PROBABILITY is the probability of jumping to
11740 the default label. */
11743 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
11744 rtx default_label
, profile_probability default_probability
)
11748 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11749 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11751 /* Do an unsigned comparison (in the proper mode) between the index
11752 expression and the value which represents the length of the range.
11753 Since we just finished subtracting the lower bound of the range
11754 from the index expression, this comparison allows us to simultaneously
11755 check that the original index expression value is both greater than
11756 or equal to the minimum value of the range and less than or equal to
11757 the maximum value of the range. */
11760 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11761 default_label
, default_probability
);
11764 /* If index is in range, it must fit in Pmode.
11765 Convert to Pmode so we can index with it. */
11767 index
= convert_to_mode (Pmode
, index
, 1);
11769 /* Don't let a MEM slip through, because then INDEX that comes
11770 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11771 and break_out_memory_refs will go to work on it and mess it up. */
11772 #ifdef PIC_CASE_VECTOR_ADDRESS
11773 if (flag_pic
&& !REG_P (index
))
11774 index
= copy_to_mode_reg (Pmode
, index
);
11777 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11778 GET_MODE_SIZE, because this indicates how large insns are. The other
11779 uses should all be Pmode, because they are addresses. This code
11780 could fail if addresses and insns are not the same size. */
11781 index
= simplify_gen_binary (MULT
, Pmode
, index
,
11782 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
11784 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
11785 gen_rtx_LABEL_REF (Pmode
, table_label
));
11787 #ifdef PIC_CASE_VECTOR_ADDRESS
11789 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11792 index
= memory_address (CASE_VECTOR_MODE
, index
);
11793 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11794 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11795 convert_move (temp
, vector
, 0);
11797 emit_jump_insn (targetm
.gen_tablejump (temp
, table_label
));
11799 /* If we are generating PIC code or if the table is PC-relative, the
11800 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11801 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11806 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11807 rtx table_label
, rtx default_label
,
11808 profile_probability default_probability
)
11812 if (! targetm
.have_tablejump ())
11815 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11816 fold_convert (index_type
, index_expr
),
11817 fold_convert (index_type
, minval
));
11818 index
= expand_normal (index_expr
);
11819 do_pending_stack_adjust ();
11821 do_tablejump (index
, TYPE_MODE (index_type
),
11822 convert_modes (TYPE_MODE (index_type
),
11823 TYPE_MODE (TREE_TYPE (range
)),
11824 expand_normal (range
),
11825 TYPE_UNSIGNED (TREE_TYPE (range
))),
11826 table_label
, default_label
, default_probability
);
11830 /* Return a CONST_VECTOR rtx representing vector mask for
11831 a VECTOR_CST of booleans. */
11833 const_vector_mask_from_tree (tree exp
)
11835 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
11836 machine_mode inner
= GET_MODE_INNER (mode
);
11838 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
11839 VECTOR_CST_NELTS_PER_PATTERN (exp
));
11840 unsigned int count
= builder
.encoded_nelts ();
11841 for (unsigned int i
= 0; i
< count
; ++i
)
11843 tree elt
= VECTOR_CST_ELT (exp
, i
);
11844 gcc_assert (TREE_CODE (elt
) == INTEGER_CST
);
11845 if (integer_zerop (elt
))
11846 builder
.quick_push (CONST0_RTX (inner
));
11847 else if (integer_onep (elt
)
11848 || integer_minus_onep (elt
))
11849 builder
.quick_push (CONSTM1_RTX (inner
));
11851 gcc_unreachable ();
11853 return builder
.build ();
11856 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
11857 Return a constant scalar rtx of mode MODE in which bit X is set if element
11858 X of EXP is nonzero. */
11860 const_scalar_mask_from_tree (scalar_int_mode mode
, tree exp
)
11862 wide_int res
= wi::zero (GET_MODE_PRECISION (mode
));
11865 /* The result has a fixed number of bits so the input must too. */
11866 unsigned int nunits
= VECTOR_CST_NELTS (exp
).to_constant ();
11867 for (unsigned int i
= 0; i
< nunits
; ++i
)
11869 elt
= VECTOR_CST_ELT (exp
, i
);
11870 gcc_assert (TREE_CODE (elt
) == INTEGER_CST
);
11871 if (integer_all_onesp (elt
))
11872 res
= wi::set_bit (res
, i
);
11874 gcc_assert (integer_zerop (elt
));
11877 return immed_wide_int_const (res
, mode
);
11880 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11882 const_vector_from_tree (tree exp
)
11884 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
11886 if (initializer_zerop (exp
))
11887 return CONST0_RTX (mode
);
11889 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp
)))
11890 return const_vector_mask_from_tree (exp
);
11892 machine_mode inner
= GET_MODE_INNER (mode
);
11894 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
11895 VECTOR_CST_NELTS_PER_PATTERN (exp
));
11896 unsigned int count
= builder
.encoded_nelts ();
11897 for (unsigned int i
= 0; i
< count
; ++i
)
11899 tree elt
= VECTOR_CST_ELT (exp
, i
);
11900 if (TREE_CODE (elt
) == REAL_CST
)
11901 builder
.quick_push (const_double_from_real_value (TREE_REAL_CST (elt
),
11903 else if (TREE_CODE (elt
) == FIXED_CST
)
11904 builder
.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11907 builder
.quick_push (immed_wide_int_const (wi::to_poly_wide (elt
),
11910 return builder
.build ();
11913 /* Build a decl for a personality function given a language prefix. */
11916 build_personality_function (const char *lang
)
11918 const char *unwind_and_version
;
11922 switch (targetm_common
.except_unwind_info (&global_options
))
11927 unwind_and_version
= "_sj0";
11931 unwind_and_version
= "_v0";
11934 unwind_and_version
= "_seh0";
11937 gcc_unreachable ();
11940 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11942 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11943 long_long_unsigned_type_node
,
11944 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11945 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11946 get_identifier (name
), type
);
11947 DECL_ARTIFICIAL (decl
) = 1;
11948 DECL_EXTERNAL (decl
) = 1;
11949 TREE_PUBLIC (decl
) = 1;
11951 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11952 are the flags assigned by targetm.encode_section_info. */
11953 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11958 /* Extracts the personality function of DECL and returns the corresponding
11962 get_personality_function (tree decl
)
11964 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11965 enum eh_personality_kind pk
;
11967 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11968 if (pk
== eh_personality_none
)
11972 && pk
== eh_personality_any
)
11973 personality
= lang_hooks
.eh_personality ();
11975 if (pk
== eh_personality_lang
)
11976 gcc_assert (personality
!= NULL_TREE
);
11978 return XEXP (DECL_RTL (personality
), 0);
11981 /* Returns a tree for the size of EXP in bytes. */
11984 tree_expr_size (const_tree exp
)
11987 && DECL_SIZE_UNIT (exp
) != 0)
11988 return DECL_SIZE_UNIT (exp
);
11990 return size_in_bytes (TREE_TYPE (exp
));
11993 /* Return an rtx for the size in bytes of the value of EXP. */
11996 expr_size (tree exp
)
12000 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
12001 size
= TREE_OPERAND (exp
, 1);
12004 size
= tree_expr_size (exp
);
12006 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
12009 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
12012 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12013 if the size can vary or is larger than an integer. */
12015 static HOST_WIDE_INT
12016 int_expr_size (tree exp
)
12020 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
12021 size
= TREE_OPERAND (exp
, 1);
12024 size
= tree_expr_size (exp
);
12028 if (size
== 0 || !tree_fits_shwi_p (size
))
12031 return tree_to_shwi (size
);