[ARM][committed] Sort ARMv8 processors by alphabetic order
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob63738d07e2e77fb3a5670b6fc3f530b6547e8103
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
49 static unsigned int tree_ssa_phiopt_worker (bool, bool);
50 static bool conditional_replacement (basic_block, basic_block,
51 edge, edge, gphi *, tree, tree);
52 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree);
53 static int value_replacement (basic_block, basic_block,
54 edge, edge, gimple *, tree, tree);
55 static bool minmax_replacement (basic_block, basic_block,
56 edge, edge, gimple *, tree, tree);
57 static bool abs_replacement (basic_block, basic_block,
58 edge, edge, gimple *, tree, tree);
59 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
60 hash_set<tree> *);
61 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
62 static hash_set<tree> * get_non_trapping ();
63 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
64 static void hoist_adjacent_loads (basic_block, basic_block,
65 basic_block, basic_block);
66 static bool gate_hoist_loads (void);
68 /* This pass tries to transform conditional stores into unconditional
69 ones, enabling further simplifications with the simpler then and else
70 blocks. In particular it replaces this:
72 bb0:
73 if (cond) goto bb2; else goto bb1;
74 bb1:
75 *p = RHS;
76 bb2:
78 with
80 bb0:
81 if (cond) goto bb1; else goto bb2;
82 bb1:
83 condtmp' = *p;
84 bb2:
85 condtmp = PHI <RHS, condtmp'>
86 *p = condtmp;
88 This transformation can only be done under several constraints,
89 documented below. It also replaces:
91 bb0:
92 if (cond) goto bb2; else goto bb1;
93 bb1:
94 *p = RHS1;
95 goto bb3;
96 bb2:
97 *p = RHS2;
98 bb3:
100 with
102 bb0:
103 if (cond) goto bb3; else goto bb1;
104 bb1:
105 bb3:
106 condtmp = PHI <RHS1, RHS2>
107 *p = condtmp; */
109 static unsigned int
110 tree_ssa_cs_elim (void)
112 unsigned todo;
113 /* ??? We are not interested in loop related info, but the following
114 will create it, ICEing as we didn't init loops with pre-headers.
115 An interfacing issue of find_data_references_in_bb. */
116 loop_optimizer_init (LOOPS_NORMAL);
117 scev_initialize ();
118 todo = tree_ssa_phiopt_worker (true, false);
119 scev_finalize ();
120 loop_optimizer_finalize ();
121 return todo;
124 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
126 static gphi *
127 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
129 gimple_stmt_iterator i;
130 gphi *phi = NULL;
131 if (gimple_seq_singleton_p (seq))
132 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
133 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
135 gphi *p = as_a <gphi *> (gsi_stmt (i));
136 /* If the PHI arguments are equal then we can skip this PHI. */
137 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
138 gimple_phi_arg_def (p, e1->dest_idx)))
139 continue;
141 /* If we already have a PHI that has the two edge arguments are
142 different, then return it is not a singleton for these PHIs. */
143 if (phi)
144 return NULL;
146 phi = p;
148 return phi;
151 /* The core routine of conditional store replacement and normal
152 phi optimizations. Both share much of the infrastructure in how
153 to match applicable basic block patterns. DO_STORE_ELIM is true
154 when we want to do conditional store replacement, false otherwise.
155 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
156 of diamond control flow patterns, false otherwise. */
157 static unsigned int
158 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
160 basic_block bb;
161 basic_block *bb_order;
162 unsigned n, i;
163 bool cfgchanged = false;
164 hash_set<tree> *nontrap = 0;
166 if (do_store_elim)
167 /* Calculate the set of non-trapping memory accesses. */
168 nontrap = get_non_trapping ();
170 /* Search every basic block for COND_EXPR we may be able to optimize.
172 We walk the blocks in order that guarantees that a block with
173 a single predecessor is processed before the predecessor.
174 This ensures that we collapse inner ifs before visiting the
175 outer ones, and also that we do not try to visit a removed
176 block. */
177 bb_order = single_pred_before_succ_order ();
178 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
180 for (i = 0; i < n; i++)
182 gimple *cond_stmt;
183 gphi *phi;
184 basic_block bb1, bb2;
185 edge e1, e2;
186 tree arg0, arg1;
188 bb = bb_order[i];
190 cond_stmt = last_stmt (bb);
191 /* Check to see if the last statement is a GIMPLE_COND. */
192 if (!cond_stmt
193 || gimple_code (cond_stmt) != GIMPLE_COND)
194 continue;
196 e1 = EDGE_SUCC (bb, 0);
197 bb1 = e1->dest;
198 e2 = EDGE_SUCC (bb, 1);
199 bb2 = e2->dest;
201 /* We cannot do the optimization on abnormal edges. */
202 if ((e1->flags & EDGE_ABNORMAL) != 0
203 || (e2->flags & EDGE_ABNORMAL) != 0)
204 continue;
206 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
207 if (EDGE_COUNT (bb1->succs) == 0
208 || bb2 == NULL
209 || EDGE_COUNT (bb2->succs) == 0)
210 continue;
212 /* Find the bb which is the fall through to the other. */
213 if (EDGE_SUCC (bb1, 0)->dest == bb2)
215 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
217 std::swap (bb1, bb2);
218 std::swap (e1, e2);
220 else if (do_store_elim
221 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
223 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
225 if (!single_succ_p (bb1)
226 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
227 || !single_succ_p (bb2)
228 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
229 || EDGE_COUNT (bb3->preds) != 2)
230 continue;
231 if (cond_if_else_store_replacement (bb1, bb2, bb3))
232 cfgchanged = true;
233 continue;
235 else if (do_hoist_loads
236 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
238 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
240 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
241 && single_succ_p (bb1)
242 && single_succ_p (bb2)
243 && single_pred_p (bb1)
244 && single_pred_p (bb2)
245 && EDGE_COUNT (bb->succs) == 2
246 && EDGE_COUNT (bb3->preds) == 2
247 /* If one edge or the other is dominant, a conditional move
248 is likely to perform worse than the well-predicted branch. */
249 && !predictable_edge_p (EDGE_SUCC (bb, 0))
250 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
251 hoist_adjacent_loads (bb, bb1, bb2, bb3);
252 continue;
254 else
255 continue;
257 e1 = EDGE_SUCC (bb1, 0);
259 /* Make sure that bb1 is just a fall through. */
260 if (!single_succ_p (bb1)
261 || (e1->flags & EDGE_FALLTHRU) == 0)
262 continue;
264 /* Also make sure that bb1 only have one predecessor and that it
265 is bb. */
266 if (!single_pred_p (bb1)
267 || single_pred (bb1) != bb)
268 continue;
270 if (do_store_elim)
272 /* bb1 is the middle block, bb2 the join block, bb the split block,
273 e1 the fallthrough edge from bb1 to bb2. We can't do the
274 optimization if the join block has more than two predecessors. */
275 if (EDGE_COUNT (bb2->preds) > 2)
276 continue;
277 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
278 cfgchanged = true;
280 else
282 gimple_seq phis = phi_nodes (bb2);
283 gimple_stmt_iterator gsi;
284 bool candorest = true;
286 /* Value replacement can work with more than one PHI
287 so try that first. */
288 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
290 phi = as_a <gphi *> (gsi_stmt (gsi));
291 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
292 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
293 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
295 candorest = false;
296 cfgchanged = true;
297 break;
301 if (!candorest)
302 continue;
304 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
305 if (!phi)
306 continue;
308 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
309 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
311 /* Something is wrong if we cannot find the arguments in the PHI
312 node. */
313 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
315 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
316 arg0, arg1);
317 if (newphi != NULL)
319 phi = newphi;
320 /* factor_out_conditional_conversion may create a new PHI in
321 BB2 and eliminate an existing PHI in BB2. Recompute values
322 that may be affected by that change. */
323 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
324 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
325 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
328 /* Do the replacement of conditional if it can be done. */
329 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
330 cfgchanged = true;
331 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
332 cfgchanged = true;
333 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
334 cfgchanged = true;
338 free (bb_order);
340 if (do_store_elim)
341 delete nontrap;
342 /* If the CFG has changed, we should cleanup the CFG. */
343 if (cfgchanged && do_store_elim)
345 /* In cond-store replacement we have added some loads on edges
346 and new VOPS (as we moved the store, and created a load). */
347 gsi_commit_edge_inserts ();
348 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
350 else if (cfgchanged)
351 return TODO_cleanup_cfg;
352 return 0;
355 /* Replace PHI node element whose edge is E in block BB with variable NEW.
356 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
357 is known to have two edges, one of which must reach BB). */
359 static void
360 replace_phi_edge_with_variable (basic_block cond_block,
361 edge e, gimple *phi, tree new_tree)
363 basic_block bb = gimple_bb (phi);
364 basic_block block_to_remove;
365 gimple_stmt_iterator gsi;
367 /* Change the PHI argument to new. */
368 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
370 /* Remove the empty basic block. */
371 if (EDGE_SUCC (cond_block, 0)->dest == bb)
373 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
374 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
375 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
376 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
378 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
380 else
382 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
383 EDGE_SUCC (cond_block, 1)->flags
384 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
385 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
386 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
388 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
390 delete_basic_block (block_to_remove);
392 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
393 gsi = gsi_last_bb (cond_block);
394 gsi_remove (&gsi, true);
396 if (dump_file && (dump_flags & TDF_DETAILS))
397 fprintf (dump_file,
398 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
399 cond_block->index,
400 bb->index);
403 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
404 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
405 to the result of PHI stmt. Return the newly-created PHI, if any. */
407 static gphi *
408 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
409 tree arg0, tree arg1)
411 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
412 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
413 tree temp, result;
414 gphi *newphi;
415 gimple_stmt_iterator gsi, gsi_for_def;
416 source_location locus = gimple_location (phi);
417 enum tree_code convert_code;
419 /* Handle only PHI statements with two arguments. TODO: If all
420 other arguments to PHI are INTEGER_CST or if their defining
421 statement have the same unary operation, we can handle more
422 than two arguments too. */
423 if (gimple_phi_num_args (phi) != 2)
424 return NULL;
426 /* First canonicalize to simplify tests. */
427 if (TREE_CODE (arg0) != SSA_NAME)
429 std::swap (arg0, arg1);
430 std::swap (e0, e1);
433 if (TREE_CODE (arg0) != SSA_NAME
434 || (TREE_CODE (arg1) != SSA_NAME
435 && TREE_CODE (arg1) != INTEGER_CST))
436 return NULL;
438 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
439 a conversion. */
440 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
441 if (!gimple_assign_cast_p (arg0_def_stmt))
442 return NULL;
444 /* Use the RHS as new_arg0. */
445 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
446 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
447 if (convert_code == VIEW_CONVERT_EXPR)
449 new_arg0 = TREE_OPERAND (new_arg0, 0);
450 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
451 return NULL;
454 if (TREE_CODE (arg1) == SSA_NAME)
456 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
457 is a conversion. */
458 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
459 if (!is_gimple_assign (arg1_def_stmt)
460 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
461 return NULL;
463 /* Use the RHS as new_arg1. */
464 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
465 if (convert_code == VIEW_CONVERT_EXPR)
466 new_arg1 = TREE_OPERAND (new_arg1, 0);
468 else
470 /* If arg1 is an INTEGER_CST, fold it to new type. */
471 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
472 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
474 if (gimple_assign_cast_p (arg0_def_stmt))
475 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
476 else
477 return NULL;
479 else
480 return NULL;
483 /* If arg0/arg1 have > 1 use, then this transformation actually increases
484 the number of expressions evaluated at runtime. */
485 if (!has_single_use (arg0)
486 || (arg1_def_stmt && !has_single_use (arg1)))
487 return NULL;
489 /* If types of new_arg0 and new_arg1 are different bailout. */
490 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
491 return NULL;
493 /* Create a new PHI stmt. */
494 result = PHI_RESULT (phi);
495 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
496 newphi = create_phi_node (temp, gimple_bb (phi));
498 if (dump_file && (dump_flags & TDF_DETAILS))
500 fprintf (dump_file, "PHI ");
501 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
502 fprintf (dump_file,
503 " changed to factor conversion out from COND_EXPR.\n");
504 fprintf (dump_file, "New stmt with CAST that defines ");
505 print_generic_expr (dump_file, result, 0);
506 fprintf (dump_file, ".\n");
509 /* Remove the old cast(s) that has single use. */
510 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
511 gsi_remove (&gsi_for_def, true);
512 release_defs (arg0_def_stmt);
514 if (arg1_def_stmt)
516 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
517 gsi_remove (&gsi_for_def, true);
518 release_defs (arg1_def_stmt);
521 add_phi_arg (newphi, new_arg0, e0, locus);
522 add_phi_arg (newphi, new_arg1, e1, locus);
524 /* Create the conversion stmt and insert it. */
525 if (convert_code == VIEW_CONVERT_EXPR)
526 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
527 new_stmt = gimple_build_assign (result, convert_code, temp);
528 gsi = gsi_after_labels (gimple_bb (phi));
529 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
531 /* Remove the original PHI stmt. */
532 gsi = gsi_for_stmt (phi);
533 gsi_remove (&gsi, true);
534 return newphi;
537 /* The function conditional_replacement does the main work of doing the
538 conditional replacement. Return true if the replacement is done.
539 Otherwise return false.
540 BB is the basic block where the replacement is going to be done on. ARG0
541 is argument 0 from PHI. Likewise for ARG1. */
543 static bool
544 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
545 edge e0, edge e1, gphi *phi,
546 tree arg0, tree arg1)
548 tree result;
549 gimple *stmt;
550 gassign *new_stmt;
551 tree cond;
552 gimple_stmt_iterator gsi;
553 edge true_edge, false_edge;
554 tree new_var, new_var2;
555 bool neg;
557 /* FIXME: Gimplification of complex type is too hard for now. */
558 /* We aren't prepared to handle vectors either (and it is a question
559 if it would be worthwhile anyway). */
560 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
561 || POINTER_TYPE_P (TREE_TYPE (arg0)))
562 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
563 || POINTER_TYPE_P (TREE_TYPE (arg1))))
564 return false;
566 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
567 convert it to the conditional. */
568 if ((integer_zerop (arg0) && integer_onep (arg1))
569 || (integer_zerop (arg1) && integer_onep (arg0)))
570 neg = false;
571 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
572 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
573 neg = true;
574 else
575 return false;
577 if (!empty_block_p (middle_bb))
578 return false;
580 /* At this point we know we have a GIMPLE_COND with two successors.
581 One successor is BB, the other successor is an empty block which
582 falls through into BB.
584 There is a single PHI node at the join point (BB) and its arguments
585 are constants (0, 1) or (0, -1).
587 So, given the condition COND, and the two PHI arguments, we can
588 rewrite this PHI into non-branching code:
590 dest = (COND) or dest = COND'
592 We use the condition as-is if the argument associated with the
593 true edge has the value one or the argument associated with the
594 false edge as the value zero. Note that those conditions are not
595 the same since only one of the outgoing edges from the GIMPLE_COND
596 will directly reach BB and thus be associated with an argument. */
598 stmt = last_stmt (cond_bb);
599 result = PHI_RESULT (phi);
601 /* To handle special cases like floating point comparison, it is easier and
602 less error-prone to build a tree and gimplify it on the fly though it is
603 less efficient. */
604 cond = fold_build2_loc (gimple_location (stmt),
605 gimple_cond_code (stmt), boolean_type_node,
606 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
608 /* We need to know which is the true edge and which is the false
609 edge so that we know when to invert the condition below. */
610 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
611 if ((e0 == true_edge && integer_zerop (arg0))
612 || (e0 == false_edge && !integer_zerop (arg0))
613 || (e1 == true_edge && integer_zerop (arg1))
614 || (e1 == false_edge && !integer_zerop (arg1)))
615 cond = fold_build1_loc (gimple_location (stmt),
616 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
618 if (neg)
620 cond = fold_convert_loc (gimple_location (stmt),
621 TREE_TYPE (result), cond);
622 cond = fold_build1_loc (gimple_location (stmt),
623 NEGATE_EXPR, TREE_TYPE (cond), cond);
626 /* Insert our new statements at the end of conditional block before the
627 COND_STMT. */
628 gsi = gsi_for_stmt (stmt);
629 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
630 GSI_SAME_STMT);
632 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
634 source_location locus_0, locus_1;
636 new_var2 = make_ssa_name (TREE_TYPE (result));
637 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
638 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
639 new_var = new_var2;
641 /* Set the locus to the first argument, unless is doesn't have one. */
642 locus_0 = gimple_phi_arg_location (phi, 0);
643 locus_1 = gimple_phi_arg_location (phi, 1);
644 if (locus_0 == UNKNOWN_LOCATION)
645 locus_0 = locus_1;
646 gimple_set_location (new_stmt, locus_0);
649 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
650 reset_flow_sensitive_info_in_bb (cond_bb);
652 /* Note that we optimized this PHI. */
653 return true;
656 /* Update *ARG which is defined in STMT so that it contains the
657 computed value if that seems profitable. Return true if the
658 statement is made dead by that rewriting. */
660 static bool
661 jump_function_from_stmt (tree *arg, gimple *stmt)
663 enum tree_code code = gimple_assign_rhs_code (stmt);
664 if (code == ADDR_EXPR)
666 /* For arg = &p->i transform it to p, if possible. */
667 tree rhs1 = gimple_assign_rhs1 (stmt);
668 HOST_WIDE_INT offset;
669 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
670 &offset);
671 if (tem
672 && TREE_CODE (tem) == MEM_REF
673 && (mem_ref_offset (tem) + offset) == 0)
675 *arg = TREE_OPERAND (tem, 0);
676 return true;
679 /* TODO: Much like IPA-CP jump-functions we want to handle constant
680 additions symbolically here, and we'd need to update the comparison
681 code that compares the arg + cst tuples in our caller. For now the
682 code above exactly handles the VEC_BASE pattern from vec.h. */
683 return false;
686 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
687 of the form SSA_NAME NE 0.
689 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
690 the two input values of the EQ_EXPR match arg0 and arg1.
692 If so update *code and return TRUE. Otherwise return FALSE. */
694 static bool
695 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
696 enum tree_code *code, const_tree rhs)
698 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
699 statement. */
700 if (TREE_CODE (rhs) == SSA_NAME)
702 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
704 /* Verify the defining statement has an EQ_EXPR on the RHS. */
705 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
707 /* Finally verify the source operands of the EQ_EXPR are equal
708 to arg0 and arg1. */
709 tree op0 = gimple_assign_rhs1 (def1);
710 tree op1 = gimple_assign_rhs2 (def1);
711 if ((operand_equal_for_phi_arg_p (arg0, op0)
712 && operand_equal_for_phi_arg_p (arg1, op1))
713 || (operand_equal_for_phi_arg_p (arg0, op1)
714 && operand_equal_for_phi_arg_p (arg1, op0)))
716 /* We will perform the optimization. */
717 *code = gimple_assign_rhs_code (def1);
718 return true;
722 return false;
725 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
727 Also return TRUE if arg0/arg1 are equal to the source arguments of a
728 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
730 Return FALSE otherwise. */
732 static bool
733 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
734 enum tree_code *code, gimple *cond)
736 gimple *def;
737 tree lhs = gimple_cond_lhs (cond);
738 tree rhs = gimple_cond_rhs (cond);
740 if ((operand_equal_for_phi_arg_p (arg0, lhs)
741 && operand_equal_for_phi_arg_p (arg1, rhs))
742 || (operand_equal_for_phi_arg_p (arg1, lhs)
743 && operand_equal_for_phi_arg_p (arg0, rhs)))
744 return true;
746 /* Now handle more complex case where we have an EQ comparison
747 which feeds a BIT_AND_EXPR which feeds COND.
749 First verify that COND is of the form SSA_NAME NE 0. */
750 if (*code != NE_EXPR || !integer_zerop (rhs)
751 || TREE_CODE (lhs) != SSA_NAME)
752 return false;
754 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
755 def = SSA_NAME_DEF_STMT (lhs);
756 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
757 return false;
759 /* Now verify arg0/arg1 correspond to the source arguments of an
760 EQ comparison feeding the BIT_AND_EXPR. */
762 tree tmp = gimple_assign_rhs1 (def);
763 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
764 return true;
766 tmp = gimple_assign_rhs2 (def);
767 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
768 return true;
770 return false;
773 /* Returns true if ARG is a neutral element for operation CODE
774 on the RIGHT side. */
776 static bool
777 neutral_element_p (tree_code code, tree arg, bool right)
779 switch (code)
781 case PLUS_EXPR:
782 case BIT_IOR_EXPR:
783 case BIT_XOR_EXPR:
784 return integer_zerop (arg);
786 case LROTATE_EXPR:
787 case RROTATE_EXPR:
788 case LSHIFT_EXPR:
789 case RSHIFT_EXPR:
790 case MINUS_EXPR:
791 case POINTER_PLUS_EXPR:
792 return right && integer_zerop (arg);
794 case MULT_EXPR:
795 return integer_onep (arg);
797 case TRUNC_DIV_EXPR:
798 case CEIL_DIV_EXPR:
799 case FLOOR_DIV_EXPR:
800 case ROUND_DIV_EXPR:
801 case EXACT_DIV_EXPR:
802 return right && integer_onep (arg);
804 case BIT_AND_EXPR:
805 return integer_all_onesp (arg);
807 default:
808 return false;
812 /* Returns true if ARG is an absorbing element for operation CODE. */
814 static bool
815 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
817 switch (code)
819 case BIT_IOR_EXPR:
820 return integer_all_onesp (arg);
822 case MULT_EXPR:
823 case BIT_AND_EXPR:
824 return integer_zerop (arg);
826 case LSHIFT_EXPR:
827 case RSHIFT_EXPR:
828 case LROTATE_EXPR:
829 case RROTATE_EXPR:
830 return !right && integer_zerop (arg);
832 case TRUNC_DIV_EXPR:
833 case CEIL_DIV_EXPR:
834 case FLOOR_DIV_EXPR:
835 case ROUND_DIV_EXPR:
836 case EXACT_DIV_EXPR:
837 case TRUNC_MOD_EXPR:
838 case CEIL_MOD_EXPR:
839 case FLOOR_MOD_EXPR:
840 case ROUND_MOD_EXPR:
841 return (!right
842 && integer_zerop (arg)
843 && tree_single_nonzero_warnv_p (rval, NULL));
845 default:
846 return false;
850 /* The function value_replacement does the main work of doing the value
851 replacement. Return non-zero if the replacement is done. Otherwise return
852 0. If we remove the middle basic block, return 2.
853 BB is the basic block where the replacement is going to be done on. ARG0
854 is argument 0 from the PHI. Likewise for ARG1. */
856 static int
857 value_replacement (basic_block cond_bb, basic_block middle_bb,
858 edge e0, edge e1, gimple *phi,
859 tree arg0, tree arg1)
861 gimple_stmt_iterator gsi;
862 gimple *cond;
863 edge true_edge, false_edge;
864 enum tree_code code;
865 bool emtpy_or_with_defined_p = true;
867 /* If the type says honor signed zeros we cannot do this
868 optimization. */
869 if (HONOR_SIGNED_ZEROS (arg1))
870 return 0;
872 /* If there is a statement in MIDDLE_BB that defines one of the PHI
873 arguments, then adjust arg0 or arg1. */
874 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
875 while (!gsi_end_p (gsi))
877 gimple *stmt = gsi_stmt (gsi);
878 tree lhs;
879 gsi_next_nondebug (&gsi);
880 if (!is_gimple_assign (stmt))
882 emtpy_or_with_defined_p = false;
883 continue;
885 /* Now try to adjust arg0 or arg1 according to the computation
886 in the statement. */
887 lhs = gimple_assign_lhs (stmt);
888 if (!(lhs == arg0
889 && jump_function_from_stmt (&arg0, stmt))
890 || (lhs == arg1
891 && jump_function_from_stmt (&arg1, stmt)))
892 emtpy_or_with_defined_p = false;
895 cond = last_stmt (cond_bb);
896 code = gimple_cond_code (cond);
898 /* This transformation is only valid for equality comparisons. */
899 if (code != NE_EXPR && code != EQ_EXPR)
900 return 0;
902 /* We need to know which is the true edge and which is the false
903 edge so that we know if have abs or negative abs. */
904 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
906 /* At this point we know we have a COND_EXPR with two successors.
907 One successor is BB, the other successor is an empty block which
908 falls through into BB.
910 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
912 There is a single PHI node at the join point (BB) with two arguments.
914 We now need to verify that the two arguments in the PHI node match
915 the two arguments to the equality comparison. */
917 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
919 edge e;
920 tree arg;
922 /* For NE_EXPR, we want to build an assignment result = arg where
923 arg is the PHI argument associated with the true edge. For
924 EQ_EXPR we want the PHI argument associated with the false edge. */
925 e = (code == NE_EXPR ? true_edge : false_edge);
927 /* Unfortunately, E may not reach BB (it may instead have gone to
928 OTHER_BLOCK). If that is the case, then we want the single outgoing
929 edge from OTHER_BLOCK which reaches BB and represents the desired
930 path from COND_BLOCK. */
931 if (e->dest == middle_bb)
932 e = single_succ_edge (e->dest);
934 /* Now we know the incoming edge to BB that has the argument for the
935 RHS of our new assignment statement. */
936 if (e0 == e)
937 arg = arg0;
938 else
939 arg = arg1;
941 /* If the middle basic block was empty or is defining the
942 PHI arguments and this is a single phi where the args are different
943 for the edges e0 and e1 then we can remove the middle basic block. */
944 if (emtpy_or_with_defined_p
945 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
946 e0, e1) == phi)
948 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
949 /* Note that we optimized this PHI. */
950 return 2;
952 else
954 /* Replace the PHI arguments with arg. */
955 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
956 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
957 if (dump_file && (dump_flags & TDF_DETAILS))
959 fprintf (dump_file, "PHI ");
960 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
961 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
962 cond_bb->index);
963 print_generic_expr (dump_file, arg, 0);
964 fprintf (dump_file, ".\n");
966 return 1;
971 /* Now optimize (x != 0) ? x + y : y to just y.
972 The following condition is too restrictive, there can easily be another
973 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
974 gimple *assign = last_and_only_stmt (middle_bb);
975 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
976 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
977 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
978 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
979 return 0;
981 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
982 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
983 return 0;
985 /* Only transform if it removes the condition. */
986 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
987 return 0;
989 /* Size-wise, this is always profitable. */
990 if (optimize_bb_for_speed_p (cond_bb)
991 /* The special case is useless if it has a low probability. */
992 && profile_status_for_fn (cfun) != PROFILE_ABSENT
993 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
994 /* If assign is cheap, there is no point avoiding it. */
995 && estimate_num_insns (assign, &eni_time_weights)
996 >= 3 * estimate_num_insns (cond, &eni_time_weights))
997 return 0;
999 tree lhs = gimple_assign_lhs (assign);
1000 tree rhs1 = gimple_assign_rhs1 (assign);
1001 tree rhs2 = gimple_assign_rhs2 (assign);
1002 enum tree_code code_def = gimple_assign_rhs_code (assign);
1003 tree cond_lhs = gimple_cond_lhs (cond);
1004 tree cond_rhs = gimple_cond_rhs (cond);
1006 if (((code == NE_EXPR && e1 == false_edge)
1007 || (code == EQ_EXPR && e1 == true_edge))
1008 && arg0 == lhs
1009 && ((arg1 == rhs1
1010 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1011 && neutral_element_p (code_def, cond_rhs, true))
1012 || (arg1 == rhs2
1013 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1014 && neutral_element_p (code_def, cond_rhs, false))
1015 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1016 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1017 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1018 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1019 && absorbing_element_p (code_def,
1020 cond_rhs, false, rhs2))))))
1022 gsi = gsi_for_stmt (cond);
1023 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1025 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1026 def-stmt in:
1027 if (n_5 != 0)
1028 goto <bb 3>;
1029 else
1030 goto <bb 4>;
1032 <bb 3>:
1033 # RANGE [0, 4294967294]
1034 u_6 = n_5 + 4294967295;
1036 <bb 4>:
1037 # u_3 = PHI <u_6(3), 4294967295(2)> */
1038 SSA_NAME_RANGE_INFO (lhs) = NULL;
1039 /* If available, we can use VR of phi result at least. */
1040 tree phires = gimple_phi_result (phi);
1041 struct range_info_def *phires_range_info
1042 = SSA_NAME_RANGE_INFO (phires);
1043 if (phires_range_info)
1044 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1045 phires_range_info);
1047 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
1048 gsi_move_before (&gsi_from, &gsi);
1049 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1050 return 2;
1053 return 0;
1056 /* The function minmax_replacement does the main work of doing the minmax
1057 replacement. Return true if the replacement is done. Otherwise return
1058 false.
1059 BB is the basic block where the replacement is going to be done on. ARG0
1060 is argument 0 from the PHI. Likewise for ARG1. */
1062 static bool
1063 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1064 edge e0, edge e1, gimple *phi,
1065 tree arg0, tree arg1)
1067 tree result, type;
1068 gcond *cond;
1069 gassign *new_stmt;
1070 edge true_edge, false_edge;
1071 enum tree_code cmp, minmax, ass_code;
1072 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1073 gimple_stmt_iterator gsi, gsi_from;
1075 type = TREE_TYPE (PHI_RESULT (phi));
1077 /* The optimization may be unsafe due to NaNs. */
1078 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1079 return false;
1081 cond = as_a <gcond *> (last_stmt (cond_bb));
1082 cmp = gimple_cond_code (cond);
1084 /* This transformation is only valid for order comparisons. Record which
1085 operand is smaller/larger if the result of the comparison is true. */
1086 alt_smaller = NULL_TREE;
1087 alt_larger = NULL_TREE;
1088 if (cmp == LT_EXPR || cmp == LE_EXPR)
1090 smaller = gimple_cond_lhs (cond);
1091 larger = gimple_cond_rhs (cond);
1092 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1093 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1094 if (TREE_CODE (larger) == INTEGER_CST)
1096 if (cmp == LT_EXPR)
1098 bool overflow;
1099 wide_int alt = wi::sub (larger, 1, TYPE_SIGN (TREE_TYPE (larger)),
1100 &overflow);
1101 if (! overflow)
1102 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1104 else
1106 bool overflow;
1107 wide_int alt = wi::add (larger, 1, TYPE_SIGN (TREE_TYPE (larger)),
1108 &overflow);
1109 if (! overflow)
1110 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1114 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1116 smaller = gimple_cond_rhs (cond);
1117 larger = gimple_cond_lhs (cond);
1118 /* If we have larger > CST it is equivalent to larger >= CST+1.
1119 Likewise larger >= CST is equivalent to larger > CST-1. */
1120 if (TREE_CODE (smaller) == INTEGER_CST)
1122 if (cmp == GT_EXPR)
1124 bool overflow;
1125 wide_int alt = wi::add (smaller, 1, TYPE_SIGN (TREE_TYPE (smaller)),
1126 &overflow);
1127 if (! overflow)
1128 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1130 else
1132 bool overflow;
1133 wide_int alt = wi::sub (smaller, 1, TYPE_SIGN (TREE_TYPE (smaller)),
1134 &overflow);
1135 if (! overflow)
1136 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1140 else
1141 return false;
1143 /* We need to know which is the true edge and which is the false
1144 edge so that we know if have abs or negative abs. */
1145 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1147 /* Forward the edges over the middle basic block. */
1148 if (true_edge->dest == middle_bb)
1149 true_edge = EDGE_SUCC (true_edge->dest, 0);
1150 if (false_edge->dest == middle_bb)
1151 false_edge = EDGE_SUCC (false_edge->dest, 0);
1153 if (true_edge == e0)
1155 gcc_assert (false_edge == e1);
1156 arg_true = arg0;
1157 arg_false = arg1;
1159 else
1161 gcc_assert (false_edge == e0);
1162 gcc_assert (true_edge == e1);
1163 arg_true = arg1;
1164 arg_false = arg0;
1167 if (empty_block_p (middle_bb))
1169 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1170 || (alt_smaller
1171 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1172 && (operand_equal_for_phi_arg_p (arg_false, larger)
1173 || (alt_larger
1174 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1176 /* Case
1178 if (smaller < larger)
1179 rslt = smaller;
1180 else
1181 rslt = larger; */
1182 minmax = MIN_EXPR;
1184 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1185 || (alt_smaller
1186 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1187 && (operand_equal_for_phi_arg_p (arg_true, larger)
1188 || (alt_larger
1189 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1190 minmax = MAX_EXPR;
1191 else
1192 return false;
1194 else
1196 /* Recognize the following case, assuming d <= u:
1198 if (a <= u)
1199 b = MAX (a, d);
1200 x = PHI <b, u>
1202 This is equivalent to
1204 b = MAX (a, d);
1205 x = MIN (b, u); */
1207 gimple *assign = last_and_only_stmt (middle_bb);
1208 tree lhs, op0, op1, bound;
1210 if (!assign
1211 || gimple_code (assign) != GIMPLE_ASSIGN)
1212 return false;
1214 lhs = gimple_assign_lhs (assign);
1215 ass_code = gimple_assign_rhs_code (assign);
1216 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1217 return false;
1218 op0 = gimple_assign_rhs1 (assign);
1219 op1 = gimple_assign_rhs2 (assign);
1221 if (true_edge->src == middle_bb)
1223 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1224 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1225 return false;
1227 if (operand_equal_for_phi_arg_p (arg_false, larger)
1228 || (alt_larger
1229 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1231 /* Case
1233 if (smaller < larger)
1235 r' = MAX_EXPR (smaller, bound)
1237 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1238 if (ass_code != MAX_EXPR)
1239 return false;
1241 minmax = MIN_EXPR;
1242 if (operand_equal_for_phi_arg_p (op0, smaller)
1243 || (alt_smaller
1244 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1245 bound = op1;
1246 else if (operand_equal_for_phi_arg_p (op1, smaller)
1247 || (alt_smaller
1248 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1249 bound = op0;
1250 else
1251 return false;
1253 /* We need BOUND <= LARGER. */
1254 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1255 bound, larger)))
1256 return false;
1258 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1259 || (alt_smaller
1260 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1262 /* Case
1264 if (smaller < larger)
1266 r' = MIN_EXPR (larger, bound)
1268 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1269 if (ass_code != MIN_EXPR)
1270 return false;
1272 minmax = MAX_EXPR;
1273 if (operand_equal_for_phi_arg_p (op0, larger)
1274 || (alt_larger
1275 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1276 bound = op1;
1277 else if (operand_equal_for_phi_arg_p (op1, larger)
1278 || (alt_larger
1279 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1280 bound = op0;
1281 else
1282 return false;
1284 /* We need BOUND >= SMALLER. */
1285 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1286 bound, smaller)))
1287 return false;
1289 else
1290 return false;
1292 else
1294 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1295 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1296 return false;
1298 if (operand_equal_for_phi_arg_p (arg_true, larger)
1299 || (alt_larger
1300 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1302 /* Case
1304 if (smaller > larger)
1306 r' = MIN_EXPR (smaller, bound)
1308 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1309 if (ass_code != MIN_EXPR)
1310 return false;
1312 minmax = MAX_EXPR;
1313 if (operand_equal_for_phi_arg_p (op0, smaller)
1314 || (alt_smaller
1315 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1316 bound = op1;
1317 else if (operand_equal_for_phi_arg_p (op1, smaller)
1318 || (alt_smaller
1319 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1320 bound = op0;
1321 else
1322 return false;
1324 /* We need BOUND >= LARGER. */
1325 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1326 bound, larger)))
1327 return false;
1329 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1330 || (alt_smaller
1331 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1333 /* Case
1335 if (smaller > larger)
1337 r' = MAX_EXPR (larger, bound)
1339 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1340 if (ass_code != MAX_EXPR)
1341 return false;
1343 minmax = MIN_EXPR;
1344 if (operand_equal_for_phi_arg_p (op0, larger))
1345 bound = op1;
1346 else if (operand_equal_for_phi_arg_p (op1, larger))
1347 bound = op0;
1348 else
1349 return false;
1351 /* We need BOUND <= SMALLER. */
1352 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1353 bound, smaller)))
1354 return false;
1356 else
1357 return false;
1360 /* Move the statement from the middle block. */
1361 gsi = gsi_last_bb (cond_bb);
1362 gsi_from = gsi_last_nondebug_bb (middle_bb);
1363 gsi_move_before (&gsi_from, &gsi);
1366 /* Create an SSA var to hold the min/max result. If we're the only
1367 things setting the target PHI, then we can clone the PHI
1368 variable. Otherwise we must create a new one. */
1369 result = PHI_RESULT (phi);
1370 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1371 result = duplicate_ssa_name (result, NULL);
1372 else
1373 result = make_ssa_name (TREE_TYPE (result));
1375 /* Emit the statement to compute min/max. */
1376 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1377 gsi = gsi_last_bb (cond_bb);
1378 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1380 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1381 reset_flow_sensitive_info_in_bb (cond_bb);
1383 return true;
1386 /* The function absolute_replacement does the main work of doing the absolute
1387 replacement. Return true if the replacement is done. Otherwise return
1388 false.
1389 bb is the basic block where the replacement is going to be done on. arg0
1390 is argument 0 from the phi. Likewise for arg1. */
1392 static bool
1393 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1394 edge e0 ATTRIBUTE_UNUSED, edge e1,
1395 gimple *phi, tree arg0, tree arg1)
1397 tree result;
1398 gassign *new_stmt;
1399 gimple *cond;
1400 gimple_stmt_iterator gsi;
1401 edge true_edge, false_edge;
1402 gimple *assign;
1403 edge e;
1404 tree rhs, lhs;
1405 bool negate;
1406 enum tree_code cond_code;
1408 /* If the type says honor signed zeros we cannot do this
1409 optimization. */
1410 if (HONOR_SIGNED_ZEROS (arg1))
1411 return false;
1413 /* OTHER_BLOCK must have only one executable statement which must have the
1414 form arg0 = -arg1 or arg1 = -arg0. */
1416 assign = last_and_only_stmt (middle_bb);
1417 /* If we did not find the proper negation assignment, then we can not
1418 optimize. */
1419 if (assign == NULL)
1420 return false;
1422 /* If we got here, then we have found the only executable statement
1423 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1424 arg1 = -arg0, then we can not optimize. */
1425 if (gimple_code (assign) != GIMPLE_ASSIGN)
1426 return false;
1428 lhs = gimple_assign_lhs (assign);
1430 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1431 return false;
1433 rhs = gimple_assign_rhs1 (assign);
1435 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1436 if (!(lhs == arg0 && rhs == arg1)
1437 && !(lhs == arg1 && rhs == arg0))
1438 return false;
1440 cond = last_stmt (cond_bb);
1441 result = PHI_RESULT (phi);
1443 /* Only relationals comparing arg[01] against zero are interesting. */
1444 cond_code = gimple_cond_code (cond);
1445 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1446 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1447 return false;
1449 /* Make sure the conditional is arg[01] OP y. */
1450 if (gimple_cond_lhs (cond) != rhs)
1451 return false;
1453 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1454 ? real_zerop (gimple_cond_rhs (cond))
1455 : integer_zerop (gimple_cond_rhs (cond)))
1457 else
1458 return false;
1460 /* We need to know which is the true edge and which is the false
1461 edge so that we know if have abs or negative abs. */
1462 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1464 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1465 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1466 the false edge goes to OTHER_BLOCK. */
1467 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1468 e = true_edge;
1469 else
1470 e = false_edge;
1472 if (e->dest == middle_bb)
1473 negate = true;
1474 else
1475 negate = false;
1477 /* If the code negates only iff positive then make sure to not
1478 introduce undefined behavior when negating or computing the absolute.
1479 ??? We could use range info if present to check for arg1 == INT_MIN. */
1480 if (negate
1481 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1482 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1483 return false;
1485 result = duplicate_ssa_name (result, NULL);
1487 if (negate)
1488 lhs = make_ssa_name (TREE_TYPE (result));
1489 else
1490 lhs = result;
1492 /* Build the modify expression with abs expression. */
1493 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1495 gsi = gsi_last_bb (cond_bb);
1496 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1498 if (negate)
1500 /* Get the right GSI. We want to insert after the recently
1501 added ABS_EXPR statement (which we know is the first statement
1502 in the block. */
1503 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1505 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1508 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1509 reset_flow_sensitive_info_in_bb (cond_bb);
1511 /* Note that we optimized this PHI. */
1512 return true;
1515 /* Auxiliary functions to determine the set of memory accesses which
1516 can't trap because they are preceded by accesses to the same memory
1517 portion. We do that for MEM_REFs, so we only need to track
1518 the SSA_NAME of the pointer indirectly referenced. The algorithm
1519 simply is a walk over all instructions in dominator order. When
1520 we see an MEM_REF we determine if we've already seen a same
1521 ref anywhere up to the root of the dominator tree. If we do the
1522 current access can't trap. If we don't see any dominating access
1523 the current access might trap, but might also make later accesses
1524 non-trapping, so we remember it. We need to be careful with loads
1525 or stores, for instance a load might not trap, while a store would,
1526 so if we see a dominating read access this doesn't mean that a later
1527 write access would not trap. Hence we also need to differentiate the
1528 type of access(es) seen.
1530 ??? We currently are very conservative and assume that a load might
1531 trap even if a store doesn't (write-only memory). This probably is
1532 overly conservative. */
1534 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1535 through it was seen, which would constitute a no-trap region for
1536 same accesses. */
1537 struct name_to_bb
1539 unsigned int ssa_name_ver;
1540 unsigned int phase;
1541 bool store;
1542 HOST_WIDE_INT offset, size;
1543 basic_block bb;
1546 /* Hashtable helpers. */
1548 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1550 static inline hashval_t hash (const name_to_bb *);
1551 static inline bool equal (const name_to_bb *, const name_to_bb *);
1554 /* Used for quick clearing of the hash-table when we see calls.
1555 Hash entries with phase < nt_call_phase are invalid. */
1556 static unsigned int nt_call_phase;
1558 /* The hash function. */
1560 inline hashval_t
1561 ssa_names_hasher::hash (const name_to_bb *n)
1563 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1564 ^ (n->offset << 6) ^ (n->size << 3);
1567 /* The equality function of *P1 and *P2. */
1569 inline bool
1570 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1572 return n1->ssa_name_ver == n2->ssa_name_ver
1573 && n1->store == n2->store
1574 && n1->offset == n2->offset
1575 && n1->size == n2->size;
1578 class nontrapping_dom_walker : public dom_walker
1580 public:
1581 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1582 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1584 virtual edge before_dom_children (basic_block);
1585 virtual void after_dom_children (basic_block);
1587 private:
1589 /* We see the expression EXP in basic block BB. If it's an interesting
1590 expression (an MEM_REF through an SSA_NAME) possibly insert the
1591 expression into the set NONTRAP or the hash table of seen expressions.
1592 STORE is true if this expression is on the LHS, otherwise it's on
1593 the RHS. */
1594 void add_or_mark_expr (basic_block, tree, bool);
1596 hash_set<tree> *m_nontrapping;
1598 /* The hash table for remembering what we've seen. */
1599 hash_table<ssa_names_hasher> m_seen_ssa_names;
1602 /* Called by walk_dominator_tree, when entering the block BB. */
1603 edge
1604 nontrapping_dom_walker::before_dom_children (basic_block bb)
1606 edge e;
1607 edge_iterator ei;
1608 gimple_stmt_iterator gsi;
1610 /* If we haven't seen all our predecessors, clear the hash-table. */
1611 FOR_EACH_EDGE (e, ei, bb->preds)
1612 if ((((size_t)e->src->aux) & 2) == 0)
1614 nt_call_phase++;
1615 break;
1618 /* Mark this BB as being on the path to dominator root and as visited. */
1619 bb->aux = (void*)(1 | 2);
1621 /* And walk the statements in order. */
1622 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1624 gimple *stmt = gsi_stmt (gsi);
1626 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
1627 || (is_gimple_call (stmt)
1628 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
1629 nt_call_phase++;
1630 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1632 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1633 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1636 return NULL;
1639 /* Called by walk_dominator_tree, when basic block BB is exited. */
1640 void
1641 nontrapping_dom_walker::after_dom_children (basic_block bb)
1643 /* This BB isn't on the path to dominator root anymore. */
1644 bb->aux = (void*)2;
1647 /* We see the expression EXP in basic block BB. If it's an interesting
1648 expression (an MEM_REF through an SSA_NAME) possibly insert the
1649 expression into the set NONTRAP or the hash table of seen expressions.
1650 STORE is true if this expression is on the LHS, otherwise it's on
1651 the RHS. */
1652 void
1653 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1655 HOST_WIDE_INT size;
1657 if (TREE_CODE (exp) == MEM_REF
1658 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1659 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1660 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1662 tree name = TREE_OPERAND (exp, 0);
1663 struct name_to_bb map;
1664 name_to_bb **slot;
1665 struct name_to_bb *n2bb;
1666 basic_block found_bb = 0;
1668 /* Try to find the last seen MEM_REF through the same
1669 SSA_NAME, which can trap. */
1670 map.ssa_name_ver = SSA_NAME_VERSION (name);
1671 map.phase = 0;
1672 map.bb = 0;
1673 map.store = store;
1674 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1675 map.size = size;
1677 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1678 n2bb = *slot;
1679 if (n2bb && n2bb->phase >= nt_call_phase)
1680 found_bb = n2bb->bb;
1682 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1683 (it's in a basic block on the path from us to the dominator root)
1684 then we can't trap. */
1685 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1687 m_nontrapping->add (exp);
1689 else
1691 /* EXP might trap, so insert it into the hash table. */
1692 if (n2bb)
1694 n2bb->phase = nt_call_phase;
1695 n2bb->bb = bb;
1697 else
1699 n2bb = XNEW (struct name_to_bb);
1700 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1701 n2bb->phase = nt_call_phase;
1702 n2bb->bb = bb;
1703 n2bb->store = store;
1704 n2bb->offset = map.offset;
1705 n2bb->size = size;
1706 *slot = n2bb;
1712 /* This is the entry point of gathering non trapping memory accesses.
1713 It will do a dominator walk over the whole function, and it will
1714 make use of the bb->aux pointers. It returns a set of trees
1715 (the MEM_REFs itself) which can't trap. */
1716 static hash_set<tree> *
1717 get_non_trapping (void)
1719 nt_call_phase = 0;
1720 hash_set<tree> *nontrap = new hash_set<tree>;
1721 /* We're going to do a dominator walk, so ensure that we have
1722 dominance information. */
1723 calculate_dominance_info (CDI_DOMINATORS);
1725 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1726 .walk (cfun->cfg->x_entry_block_ptr);
1728 clear_aux_for_blocks ();
1729 return nontrap;
1732 /* Do the main work of conditional store replacement. We already know
1733 that the recognized pattern looks like so:
1735 split:
1736 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1737 MIDDLE_BB:
1738 something
1739 fallthrough (edge E0)
1740 JOIN_BB:
1741 some more
1743 We check that MIDDLE_BB contains only one store, that that store
1744 doesn't trap (not via NOTRAP, but via checking if an access to the same
1745 memory location dominates us) and that the store has a "simple" RHS. */
1747 static bool
1748 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1749 edge e0, edge e1, hash_set<tree> *nontrap)
1751 gimple *assign = last_and_only_stmt (middle_bb);
1752 tree lhs, rhs, name, name2;
1753 gphi *newphi;
1754 gassign *new_stmt;
1755 gimple_stmt_iterator gsi;
1756 source_location locus;
1758 /* Check if middle_bb contains of only one store. */
1759 if (!assign
1760 || !gimple_assign_single_p (assign)
1761 || gimple_has_volatile_ops (assign))
1762 return false;
1764 locus = gimple_location (assign);
1765 lhs = gimple_assign_lhs (assign);
1766 rhs = gimple_assign_rhs1 (assign);
1767 if (TREE_CODE (lhs) != MEM_REF
1768 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1769 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1770 return false;
1772 /* Prove that we can move the store down. We could also check
1773 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1774 whose value is not available readily, which we want to avoid. */
1775 if (!nontrap->contains (lhs))
1776 return false;
1778 /* Now we've checked the constraints, so do the transformation:
1779 1) Remove the single store. */
1780 gsi = gsi_for_stmt (assign);
1781 unlink_stmt_vdef (assign);
1782 gsi_remove (&gsi, true);
1783 release_defs (assign);
1785 /* 2) Insert a load from the memory of the store to the temporary
1786 on the edge which did not contain the store. */
1787 lhs = unshare_expr (lhs);
1788 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1789 new_stmt = gimple_build_assign (name, lhs);
1790 gimple_set_location (new_stmt, locus);
1791 gsi_insert_on_edge (e1, new_stmt);
1793 /* 3) Create a PHI node at the join block, with one argument
1794 holding the old RHS, and the other holding the temporary
1795 where we stored the old memory contents. */
1796 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1797 newphi = create_phi_node (name2, join_bb);
1798 add_phi_arg (newphi, rhs, e0, locus);
1799 add_phi_arg (newphi, name, e1, locus);
1801 lhs = unshare_expr (lhs);
1802 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1804 /* 4) Insert that PHI node. */
1805 gsi = gsi_after_labels (join_bb);
1806 if (gsi_end_p (gsi))
1808 gsi = gsi_last_bb (join_bb);
1809 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1811 else
1812 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1814 return true;
1817 /* Do the main work of conditional store replacement. */
1819 static bool
1820 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1821 basic_block join_bb, gimple *then_assign,
1822 gimple *else_assign)
1824 tree lhs_base, lhs, then_rhs, else_rhs, name;
1825 source_location then_locus, else_locus;
1826 gimple_stmt_iterator gsi;
1827 gphi *newphi;
1828 gassign *new_stmt;
1830 if (then_assign == NULL
1831 || !gimple_assign_single_p (then_assign)
1832 || gimple_clobber_p (then_assign)
1833 || gimple_has_volatile_ops (then_assign)
1834 || else_assign == NULL
1835 || !gimple_assign_single_p (else_assign)
1836 || gimple_clobber_p (else_assign)
1837 || gimple_has_volatile_ops (else_assign))
1838 return false;
1840 lhs = gimple_assign_lhs (then_assign);
1841 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1842 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1843 return false;
1845 lhs_base = get_base_address (lhs);
1846 if (lhs_base == NULL_TREE
1847 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1848 return false;
1850 then_rhs = gimple_assign_rhs1 (then_assign);
1851 else_rhs = gimple_assign_rhs1 (else_assign);
1852 then_locus = gimple_location (then_assign);
1853 else_locus = gimple_location (else_assign);
1855 /* Now we've checked the constraints, so do the transformation:
1856 1) Remove the stores. */
1857 gsi = gsi_for_stmt (then_assign);
1858 unlink_stmt_vdef (then_assign);
1859 gsi_remove (&gsi, true);
1860 release_defs (then_assign);
1862 gsi = gsi_for_stmt (else_assign);
1863 unlink_stmt_vdef (else_assign);
1864 gsi_remove (&gsi, true);
1865 release_defs (else_assign);
1867 /* 2) Create a PHI node at the join block, with one argument
1868 holding the old RHS, and the other holding the temporary
1869 where we stored the old memory contents. */
1870 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1871 newphi = create_phi_node (name, join_bb);
1872 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1873 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1875 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1877 /* 3) Insert that PHI node. */
1878 gsi = gsi_after_labels (join_bb);
1879 if (gsi_end_p (gsi))
1881 gsi = gsi_last_bb (join_bb);
1882 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1884 else
1885 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1887 return true;
1890 /* Conditional store replacement. We already know
1891 that the recognized pattern looks like so:
1893 split:
1894 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1895 THEN_BB:
1897 X = Y;
1899 goto JOIN_BB;
1900 ELSE_BB:
1902 X = Z;
1904 fallthrough (edge E0)
1905 JOIN_BB:
1906 some more
1908 We check that it is safe to sink the store to JOIN_BB by verifying that
1909 there are no read-after-write or write-after-write dependencies in
1910 THEN_BB and ELSE_BB. */
1912 static bool
1913 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1914 basic_block join_bb)
1916 gimple *then_assign = last_and_only_stmt (then_bb);
1917 gimple *else_assign = last_and_only_stmt (else_bb);
1918 vec<data_reference_p> then_datarefs, else_datarefs;
1919 vec<ddr_p> then_ddrs, else_ddrs;
1920 gimple *then_store, *else_store;
1921 bool found, ok = false, res;
1922 struct data_dependence_relation *ddr;
1923 data_reference_p then_dr, else_dr;
1924 int i, j;
1925 tree then_lhs, else_lhs;
1926 basic_block blocks[3];
1928 if (MAX_STORES_TO_SINK == 0)
1929 return false;
1931 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1932 if (then_assign && else_assign)
1933 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1934 then_assign, else_assign);
1936 /* Find data references. */
1937 then_datarefs.create (1);
1938 else_datarefs.create (1);
1939 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1940 == chrec_dont_know)
1941 || !then_datarefs.length ()
1942 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1943 == chrec_dont_know)
1944 || !else_datarefs.length ())
1946 free_data_refs (then_datarefs);
1947 free_data_refs (else_datarefs);
1948 return false;
1951 /* Find pairs of stores with equal LHS. */
1952 auto_vec<gimple *, 1> then_stores, else_stores;
1953 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1955 if (DR_IS_READ (then_dr))
1956 continue;
1958 then_store = DR_STMT (then_dr);
1959 then_lhs = gimple_get_lhs (then_store);
1960 if (then_lhs == NULL_TREE)
1961 continue;
1962 found = false;
1964 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1966 if (DR_IS_READ (else_dr))
1967 continue;
1969 else_store = DR_STMT (else_dr);
1970 else_lhs = gimple_get_lhs (else_store);
1971 if (else_lhs == NULL_TREE)
1972 continue;
1974 if (operand_equal_p (then_lhs, else_lhs, 0))
1976 found = true;
1977 break;
1981 if (!found)
1982 continue;
1984 then_stores.safe_push (then_store);
1985 else_stores.safe_push (else_store);
1988 /* No pairs of stores found. */
1989 if (!then_stores.length ()
1990 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1992 free_data_refs (then_datarefs);
1993 free_data_refs (else_datarefs);
1994 return false;
1997 /* Compute and check data dependencies in both basic blocks. */
1998 then_ddrs.create (1);
1999 else_ddrs.create (1);
2000 if (!compute_all_dependences (then_datarefs, &then_ddrs,
2001 vNULL, false)
2002 || !compute_all_dependences (else_datarefs, &else_ddrs,
2003 vNULL, false))
2005 free_dependence_relations (then_ddrs);
2006 free_dependence_relations (else_ddrs);
2007 free_data_refs (then_datarefs);
2008 free_data_refs (else_datarefs);
2009 return false;
2011 blocks[0] = then_bb;
2012 blocks[1] = else_bb;
2013 blocks[2] = join_bb;
2014 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2016 /* Check that there are no read-after-write or write-after-write dependencies
2017 in THEN_BB. */
2018 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2020 struct data_reference *dra = DDR_A (ddr);
2021 struct data_reference *drb = DDR_B (ddr);
2023 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2024 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2025 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2026 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2027 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2028 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2030 free_dependence_relations (then_ddrs);
2031 free_dependence_relations (else_ddrs);
2032 free_data_refs (then_datarefs);
2033 free_data_refs (else_datarefs);
2034 return false;
2038 /* Check that there are no read-after-write or write-after-write dependencies
2039 in ELSE_BB. */
2040 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2042 struct data_reference *dra = DDR_A (ddr);
2043 struct data_reference *drb = DDR_B (ddr);
2045 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2046 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2047 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2048 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2049 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2050 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2052 free_dependence_relations (then_ddrs);
2053 free_dependence_relations (else_ddrs);
2054 free_data_refs (then_datarefs);
2055 free_data_refs (else_datarefs);
2056 return false;
2060 /* Sink stores with same LHS. */
2061 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2063 else_store = else_stores[i];
2064 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2065 then_store, else_store);
2066 ok = ok || res;
2069 free_dependence_relations (then_ddrs);
2070 free_dependence_relations (else_ddrs);
2071 free_data_refs (then_datarefs);
2072 free_data_refs (else_datarefs);
2074 return ok;
2077 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2079 static bool
2080 local_mem_dependence (gimple *stmt, basic_block bb)
2082 tree vuse = gimple_vuse (stmt);
2083 gimple *def;
2085 if (!vuse)
2086 return false;
2088 def = SSA_NAME_DEF_STMT (vuse);
2089 return (def && gimple_bb (def) == bb);
2092 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2093 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2094 and BB3 rejoins control flow following BB1 and BB2, look for
2095 opportunities to hoist loads as follows. If BB3 contains a PHI of
2096 two loads, one each occurring in BB1 and BB2, and the loads are
2097 provably of adjacent fields in the same structure, then move both
2098 loads into BB0. Of course this can only be done if there are no
2099 dependencies preventing such motion.
2101 One of the hoisted loads will always be speculative, so the
2102 transformation is currently conservative:
2104 - The fields must be strictly adjacent.
2105 - The two fields must occupy a single memory block that is
2106 guaranteed to not cross a page boundary.
2108 The last is difficult to prove, as such memory blocks should be
2109 aligned on the minimum of the stack alignment boundary and the
2110 alignment guaranteed by heap allocation interfaces. Thus we rely
2111 on a parameter for the alignment value.
2113 Provided a good value is used for the last case, the first
2114 restriction could possibly be relaxed. */
2116 static void
2117 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2118 basic_block bb2, basic_block bb3)
2120 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2121 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2122 gphi_iterator gsi;
2124 /* Walk the phis in bb3 looking for an opportunity. We are looking
2125 for phis of two SSA names, one each of which is defined in bb1 and
2126 bb2. */
2127 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2129 gphi *phi_stmt = gsi.phi ();
2130 gimple *def1, *def2;
2131 tree arg1, arg2, ref1, ref2, field1, field2;
2132 tree tree_offset1, tree_offset2, tree_size2, next;
2133 int offset1, offset2, size2;
2134 unsigned align1;
2135 gimple_stmt_iterator gsi2;
2136 basic_block bb_for_def1, bb_for_def2;
2138 if (gimple_phi_num_args (phi_stmt) != 2
2139 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2140 continue;
2142 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2143 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2145 if (TREE_CODE (arg1) != SSA_NAME
2146 || TREE_CODE (arg2) != SSA_NAME
2147 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2148 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2149 continue;
2151 def1 = SSA_NAME_DEF_STMT (arg1);
2152 def2 = SSA_NAME_DEF_STMT (arg2);
2154 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2155 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2156 continue;
2158 /* Check the mode of the arguments to be sure a conditional move
2159 can be generated for it. */
2160 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2161 == CODE_FOR_nothing)
2162 continue;
2164 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2165 if (!gimple_assign_single_p (def1)
2166 || !gimple_assign_single_p (def2)
2167 || gimple_has_volatile_ops (def1)
2168 || gimple_has_volatile_ops (def2))
2169 continue;
2171 ref1 = gimple_assign_rhs1 (def1);
2172 ref2 = gimple_assign_rhs1 (def2);
2174 if (TREE_CODE (ref1) != COMPONENT_REF
2175 || TREE_CODE (ref2) != COMPONENT_REF)
2176 continue;
2178 /* The zeroth operand of the two component references must be
2179 identical. It is not sufficient to compare get_base_address of
2180 the two references, because this could allow for different
2181 elements of the same array in the two trees. It is not safe to
2182 assume that the existence of one array element implies the
2183 existence of a different one. */
2184 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2185 continue;
2187 field1 = TREE_OPERAND (ref1, 1);
2188 field2 = TREE_OPERAND (ref2, 1);
2190 /* Check for field adjacency, and ensure field1 comes first. */
2191 for (next = DECL_CHAIN (field1);
2192 next && TREE_CODE (next) != FIELD_DECL;
2193 next = DECL_CHAIN (next))
2196 if (next != field2)
2198 for (next = DECL_CHAIN (field2);
2199 next && TREE_CODE (next) != FIELD_DECL;
2200 next = DECL_CHAIN (next))
2203 if (next != field1)
2204 continue;
2206 std::swap (field1, field2);
2207 std::swap (def1, def2);
2210 bb_for_def1 = gimple_bb (def1);
2211 bb_for_def2 = gimple_bb (def2);
2213 /* Check for proper alignment of the first field. */
2214 tree_offset1 = bit_position (field1);
2215 tree_offset2 = bit_position (field2);
2216 tree_size2 = DECL_SIZE (field2);
2218 if (!tree_fits_uhwi_p (tree_offset1)
2219 || !tree_fits_uhwi_p (tree_offset2)
2220 || !tree_fits_uhwi_p (tree_size2))
2221 continue;
2223 offset1 = tree_to_uhwi (tree_offset1);
2224 offset2 = tree_to_uhwi (tree_offset2);
2225 size2 = tree_to_uhwi (tree_size2);
2226 align1 = DECL_ALIGN (field1) % param_align_bits;
2228 if (offset1 % BITS_PER_UNIT != 0)
2229 continue;
2231 /* For profitability, the two field references should fit within
2232 a single cache line. */
2233 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2234 continue;
2236 /* The two expressions cannot be dependent upon vdefs defined
2237 in bb1/bb2. */
2238 if (local_mem_dependence (def1, bb_for_def1)
2239 || local_mem_dependence (def2, bb_for_def2))
2240 continue;
2242 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2243 bb0. We hoist the first one first so that a cache miss is handled
2244 efficiently regardless of hardware cache-fill policy. */
2245 gsi2 = gsi_for_stmt (def1);
2246 gsi_move_to_bb_end (&gsi2, bb0);
2247 gsi2 = gsi_for_stmt (def2);
2248 gsi_move_to_bb_end (&gsi2, bb0);
2250 if (dump_file && (dump_flags & TDF_DETAILS))
2252 fprintf (dump_file,
2253 "\nHoisting adjacent loads from %d and %d into %d: \n",
2254 bb_for_def1->index, bb_for_def2->index, bb0->index);
2255 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2256 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2261 /* Determine whether we should attempt to hoist adjacent loads out of
2262 diamond patterns in pass_phiopt. Always hoist loads if
2263 -fhoist-adjacent-loads is specified and the target machine has
2264 both a conditional move instruction and a defined cache line size. */
2266 static bool
2267 gate_hoist_loads (void)
2269 return (flag_hoist_adjacent_loads == 1
2270 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2271 && HAVE_conditional_move);
2274 /* This pass tries to replaces an if-then-else block with an
2275 assignment. We have four kinds of transformations. Some of these
2276 transformations are also performed by the ifcvt RTL optimizer.
2278 Conditional Replacement
2279 -----------------------
2281 This transformation, implemented in conditional_replacement,
2282 replaces
2284 bb0:
2285 if (cond) goto bb2; else goto bb1;
2286 bb1:
2287 bb2:
2288 x = PHI <0 (bb1), 1 (bb0), ...>;
2290 with
2292 bb0:
2293 x' = cond;
2294 goto bb2;
2295 bb2:
2296 x = PHI <x' (bb0), ...>;
2298 We remove bb1 as it becomes unreachable. This occurs often due to
2299 gimplification of conditionals.
2301 Value Replacement
2302 -----------------
2304 This transformation, implemented in value_replacement, replaces
2306 bb0:
2307 if (a != b) goto bb2; else goto bb1;
2308 bb1:
2309 bb2:
2310 x = PHI <a (bb1), b (bb0), ...>;
2312 with
2314 bb0:
2315 bb2:
2316 x = PHI <b (bb0), ...>;
2318 This opportunity can sometimes occur as a result of other
2319 optimizations.
2322 Another case caught by value replacement looks like this:
2324 bb0:
2325 t1 = a == CONST;
2326 t2 = b > c;
2327 t3 = t1 & t2;
2328 if (t3 != 0) goto bb1; else goto bb2;
2329 bb1:
2330 bb2:
2331 x = PHI (CONST, a)
2333 Gets replaced with:
2334 bb0:
2335 bb2:
2336 t1 = a == CONST;
2337 t2 = b > c;
2338 t3 = t1 & t2;
2339 x = a;
2341 ABS Replacement
2342 ---------------
2344 This transformation, implemented in abs_replacement, replaces
2346 bb0:
2347 if (a >= 0) goto bb2; else goto bb1;
2348 bb1:
2349 x = -a;
2350 bb2:
2351 x = PHI <x (bb1), a (bb0), ...>;
2353 with
2355 bb0:
2356 x' = ABS_EXPR< a >;
2357 bb2:
2358 x = PHI <x' (bb0), ...>;
2360 MIN/MAX Replacement
2361 -------------------
2363 This transformation, minmax_replacement replaces
2365 bb0:
2366 if (a <= b) goto bb2; else goto bb1;
2367 bb1:
2368 bb2:
2369 x = PHI <b (bb1), a (bb0), ...>;
2371 with
2373 bb0:
2374 x' = MIN_EXPR (a, b)
2375 bb2:
2376 x = PHI <x' (bb0), ...>;
2378 A similar transformation is done for MAX_EXPR.
2381 This pass also performs a fifth transformation of a slightly different
2382 flavor.
2384 Factor conversion in COND_EXPR
2385 ------------------------------
2387 This transformation factors the conversion out of COND_EXPR with
2388 factor_out_conditional_conversion.
2390 For example:
2391 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2392 <bb 3>:
2393 tmp = (int) a;
2394 <bb 4>:
2395 tmp = PHI <tmp, CST>
2397 Into:
2398 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2399 <bb 3>:
2400 <bb 4>:
2401 a = PHI <a, CST>
2402 tmp = (int) a;
2404 Adjacent Load Hoisting
2405 ----------------------
2407 This transformation replaces
2409 bb0:
2410 if (...) goto bb2; else goto bb1;
2411 bb1:
2412 x1 = (<expr>).field1;
2413 goto bb3;
2414 bb2:
2415 x2 = (<expr>).field2;
2416 bb3:
2417 # x = PHI <x1, x2>;
2419 with
2421 bb0:
2422 x1 = (<expr>).field1;
2423 x2 = (<expr>).field2;
2424 if (...) goto bb2; else goto bb1;
2425 bb1:
2426 goto bb3;
2427 bb2:
2428 bb3:
2429 # x = PHI <x1, x2>;
2431 The purpose of this transformation is to enable generation of conditional
2432 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2433 the loads is speculative, the transformation is restricted to very
2434 specific cases to avoid introducing a page fault. We are looking for
2435 the common idiom:
2437 if (...)
2438 x = y->left;
2439 else
2440 x = y->right;
2442 where left and right are typically adjacent pointers in a tree structure. */
2444 namespace {
2446 const pass_data pass_data_phiopt =
2448 GIMPLE_PASS, /* type */
2449 "phiopt", /* name */
2450 OPTGROUP_NONE, /* optinfo_flags */
2451 TV_TREE_PHIOPT, /* tv_id */
2452 ( PROP_cfg | PROP_ssa ), /* properties_required */
2453 0, /* properties_provided */
2454 0, /* properties_destroyed */
2455 0, /* todo_flags_start */
2456 0, /* todo_flags_finish */
2459 class pass_phiopt : public gimple_opt_pass
2461 public:
2462 pass_phiopt (gcc::context *ctxt)
2463 : gimple_opt_pass (pass_data_phiopt, ctxt)
2466 /* opt_pass methods: */
2467 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2468 virtual bool gate (function *) { return flag_ssa_phiopt; }
2469 virtual unsigned int execute (function *)
2471 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2474 }; // class pass_phiopt
2476 } // anon namespace
2478 gimple_opt_pass *
2479 make_pass_phiopt (gcc::context *ctxt)
2481 return new pass_phiopt (ctxt);
2484 namespace {
2486 const pass_data pass_data_cselim =
2488 GIMPLE_PASS, /* type */
2489 "cselim", /* name */
2490 OPTGROUP_NONE, /* optinfo_flags */
2491 TV_TREE_PHIOPT, /* tv_id */
2492 ( PROP_cfg | PROP_ssa ), /* properties_required */
2493 0, /* properties_provided */
2494 0, /* properties_destroyed */
2495 0, /* todo_flags_start */
2496 0, /* todo_flags_finish */
2499 class pass_cselim : public gimple_opt_pass
2501 public:
2502 pass_cselim (gcc::context *ctxt)
2503 : gimple_opt_pass (pass_data_cselim, ctxt)
2506 /* opt_pass methods: */
2507 virtual bool gate (function *) { return flag_tree_cselim; }
2508 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2510 }; // class pass_cselim
2512 } // anon namespace
2514 gimple_opt_pass *
2515 make_pass_cselim (gcc::context *ctxt)
2517 return new pass_cselim (ctxt);