[ARM][committed] Sort ARMv8 processors by alphabetic order
[official-gcc.git] / gcc / tree-parloops.c
blob4779441b0cff33f235be5508e9d30123f4704a8a
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-low.h"
53 #include "tree-ssa.h"
54 #include "params.h"
55 #include "params-enum.h"
56 #include "tree-ssa-alias.h"
57 #include "tree-eh.h"
58 #include "gomp-constants.h"
59 #include "tree-dfa.h"
61 /* This pass tries to distribute iterations of loops into several threads.
62 The implementation is straightforward -- for each loop we test whether its
63 iterations are independent, and if it is the case (and some additional
64 conditions regarding profitability and correctness are satisfied), we
65 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
66 machinery do its job.
68 The most of the complexity is in bringing the code into shape expected
69 by the omp expanders:
70 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
71 variable and that the exit test is at the start of the loop body
72 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
73 variables by accesses through pointers, and breaking up ssa chains
74 by storing the values incoming to the parallelized loop to a structure
75 passed to the new function as an argument (something similar is done
76 in omp gimplification, unfortunately only a small part of the code
77 can be shared).
79 TODO:
80 -- if there are several parallelizable loops in a function, it may be
81 possible to generate the threads just once (using synchronization to
82 ensure that cross-loop dependences are obeyed).
83 -- handling of common reduction patterns for outer loops.
85 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
87 Reduction handling:
88 currently we use vect_force_simple_reduction() to detect reduction patterns.
89 The code transformation will be introduced by an example.
92 parloop
94 int sum=1;
96 for (i = 0; i < N; i++)
98 x[i] = i + 3;
99 sum+=x[i];
103 gimple-like code:
104 header_bb:
106 # sum_29 = PHI <sum_11(5), 1(3)>
107 # i_28 = PHI <i_12(5), 0(3)>
108 D.1795_8 = i_28 + 3;
109 x[i_28] = D.1795_8;
110 sum_11 = D.1795_8 + sum_29;
111 i_12 = i_28 + 1;
112 if (N_6(D) > i_12)
113 goto header_bb;
116 exit_bb:
118 # sum_21 = PHI <sum_11(4)>
119 printf (&"%d"[0], sum_21);
122 after reduction transformation (only relevant parts):
124 parloop
127 ....
130 # Storing the initial value given by the user. #
132 .paral_data_store.32.sum.27 = 1;
134 #pragma omp parallel num_threads(4)
136 #pragma omp for schedule(static)
138 # The neutral element corresponding to the particular
139 reduction's operation, e.g. 0 for PLUS_EXPR,
140 1 for MULT_EXPR, etc. replaces the user's initial value. #
142 # sum.27_29 = PHI <sum.27_11, 0>
144 sum.27_11 = D.1827_8 + sum.27_29;
146 GIMPLE_OMP_CONTINUE
148 # Adding this reduction phi is done at create_phi_for_local_result() #
149 # sum.27_56 = PHI <sum.27_11, 0>
150 GIMPLE_OMP_RETURN
152 # Creating the atomic operation is done at
153 create_call_for_reduction_1() #
155 #pragma omp atomic_load
156 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
157 D.1840_60 = sum.27_56 + D.1839_59;
158 #pragma omp atomic_store (D.1840_60);
160 GIMPLE_OMP_RETURN
162 # collecting the result after the join of the threads is done at
163 create_loads_for_reductions().
164 The value computed by the threads is loaded from the
165 shared struct. #
168 .paral_data_load.33_52 = &.paral_data_store.32;
169 sum_37 = .paral_data_load.33_52->sum.27;
170 sum_43 = D.1795_41 + sum_37;
172 exit bb:
173 # sum_21 = PHI <sum_43, sum_26>
174 printf (&"%d"[0], sum_21);
182 /* Minimal number of iterations of a loop that should be executed in each
183 thread. */
184 #define MIN_PER_THREAD 100
186 /* Element of the hashtable, representing a
187 reduction in the current loop. */
188 struct reduction_info
190 gimple *reduc_stmt; /* reduction statement. */
191 gimple *reduc_phi; /* The phi node defining the reduction. */
192 enum tree_code reduction_code;/* code for the reduction operation. */
193 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
194 result. */
195 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
196 of the reduction variable when existing the loop. */
197 tree initial_value; /* The initial value of the reduction var before entering the loop. */
198 tree field; /* the name of the field in the parloop data structure intended for reduction. */
199 tree reduc_addr; /* The address of the reduction variable for
200 openacc reductions. */
201 tree init; /* reduction initialization value. */
202 gphi *new_phi; /* (helper field) Newly created phi node whose result
203 will be passed to the atomic operation. Represents
204 the local result each thread computed for the reduction
205 operation. */
208 /* Reduction info hashtable helpers. */
210 struct reduction_hasher : free_ptr_hash <reduction_info>
212 static inline hashval_t hash (const reduction_info *);
213 static inline bool equal (const reduction_info *, const reduction_info *);
216 /* Equality and hash functions for hashtab code. */
218 inline bool
219 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
221 return (a->reduc_phi == b->reduc_phi);
224 inline hashval_t
225 reduction_hasher::hash (const reduction_info *a)
227 return a->reduc_version;
230 typedef hash_table<reduction_hasher> reduction_info_table_type;
233 static struct reduction_info *
234 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
236 struct reduction_info tmpred, *red;
238 if (reduction_list->elements () == 0 || phi == NULL)
239 return NULL;
241 if (gimple_uid (phi) == (unsigned int)-1
242 || gimple_uid (phi) == 0)
243 return NULL;
245 tmpred.reduc_phi = phi;
246 tmpred.reduc_version = gimple_uid (phi);
247 red = reduction_list->find (&tmpred);
248 gcc_assert (red == NULL || red->reduc_phi == phi);
250 return red;
253 /* Element of hashtable of names to copy. */
255 struct name_to_copy_elt
257 unsigned version; /* The version of the name to copy. */
258 tree new_name; /* The new name used in the copy. */
259 tree field; /* The field of the structure used to pass the
260 value. */
263 /* Name copies hashtable helpers. */
265 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
267 static inline hashval_t hash (const name_to_copy_elt *);
268 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
271 /* Equality and hash functions for hashtab code. */
273 inline bool
274 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
276 return a->version == b->version;
279 inline hashval_t
280 name_to_copy_hasher::hash (const name_to_copy_elt *a)
282 return (hashval_t) a->version;
285 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
287 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
288 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
289 represents the denominator for every element in the matrix. */
290 typedef struct lambda_trans_matrix_s
292 lambda_matrix matrix;
293 int rowsize;
294 int colsize;
295 int denominator;
296 } *lambda_trans_matrix;
297 #define LTM_MATRIX(T) ((T)->matrix)
298 #define LTM_ROWSIZE(T) ((T)->rowsize)
299 #define LTM_COLSIZE(T) ((T)->colsize)
300 #define LTM_DENOMINATOR(T) ((T)->denominator)
302 /* Allocate a new transformation matrix. */
304 static lambda_trans_matrix
305 lambda_trans_matrix_new (int colsize, int rowsize,
306 struct obstack * lambda_obstack)
308 lambda_trans_matrix ret;
310 ret = (lambda_trans_matrix)
311 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
312 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
313 LTM_ROWSIZE (ret) = rowsize;
314 LTM_COLSIZE (ret) = colsize;
315 LTM_DENOMINATOR (ret) = 1;
316 return ret;
319 /* Multiply a vector VEC by a matrix MAT.
320 MAT is an M*N matrix, and VEC is a vector with length N. The result
321 is stored in DEST which must be a vector of length M. */
323 static void
324 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
325 lambda_vector vec, lambda_vector dest)
327 int i, j;
329 lambda_vector_clear (dest, m);
330 for (i = 0; i < m; i++)
331 for (j = 0; j < n; j++)
332 dest[i] += matrix[i][j] * vec[j];
335 /* Return true if TRANS is a legal transformation matrix that respects
336 the dependence vectors in DISTS and DIRS. The conservative answer
337 is false.
339 "Wolfe proves that a unimodular transformation represented by the
340 matrix T is legal when applied to a loop nest with a set of
341 lexicographically non-negative distance vectors RDG if and only if
342 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
343 i.e.: if and only if it transforms the lexicographically positive
344 distance vectors to lexicographically positive vectors. Note that
345 a unimodular matrix must transform the zero vector (and only it) to
346 the zero vector." S.Muchnick. */
348 static bool
349 lambda_transform_legal_p (lambda_trans_matrix trans,
350 int nb_loops,
351 vec<ddr_p> dependence_relations)
353 unsigned int i, j;
354 lambda_vector distres;
355 struct data_dependence_relation *ddr;
357 gcc_assert (LTM_COLSIZE (trans) == nb_loops
358 && LTM_ROWSIZE (trans) == nb_loops);
360 /* When there are no dependences, the transformation is correct. */
361 if (dependence_relations.length () == 0)
362 return true;
364 ddr = dependence_relations[0];
365 if (ddr == NULL)
366 return true;
368 /* When there is an unknown relation in the dependence_relations, we
369 know that it is no worth looking at this loop nest: give up. */
370 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
371 return false;
373 distres = lambda_vector_new (nb_loops);
375 /* For each distance vector in the dependence graph. */
376 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
378 /* Don't care about relations for which we know that there is no
379 dependence, nor about read-read (aka. output-dependences):
380 these data accesses can happen in any order. */
381 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
382 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
383 continue;
385 /* Conservatively answer: "this transformation is not valid". */
386 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
387 return false;
389 /* If the dependence could not be captured by a distance vector,
390 conservatively answer that the transform is not valid. */
391 if (DDR_NUM_DIST_VECTS (ddr) == 0)
392 return false;
394 /* Compute trans.dist_vect */
395 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
397 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
398 DDR_DIST_VECT (ddr, j), distres);
400 if (!lambda_vector_lexico_pos (distres, nb_loops))
401 return false;
404 return true;
407 /* Data dependency analysis. Returns true if the iterations of LOOP
408 are independent on each other (that is, if we can execute them
409 in parallel). */
411 static bool
412 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
414 vec<ddr_p> dependence_relations;
415 vec<data_reference_p> datarefs;
416 lambda_trans_matrix trans;
417 bool ret = false;
419 if (dump_file && (dump_flags & TDF_DETAILS))
421 fprintf (dump_file, "Considering loop %d\n", loop->num);
422 if (!loop->inner)
423 fprintf (dump_file, "loop is innermost\n");
424 else
425 fprintf (dump_file, "loop NOT innermost\n");
428 /* Check for problems with dependences. If the loop can be reversed,
429 the iterations are independent. */
430 auto_vec<loop_p, 3> loop_nest;
431 datarefs.create (10);
432 dependence_relations.create (100);
433 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
434 &dependence_relations))
436 if (dump_file && (dump_flags & TDF_DETAILS))
437 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
438 ret = false;
439 goto end;
441 if (dump_file && (dump_flags & TDF_DETAILS))
442 dump_data_dependence_relations (dump_file, dependence_relations);
444 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
445 LTM_MATRIX (trans)[0][0] = -1;
447 if (lambda_transform_legal_p (trans, 1, dependence_relations))
449 ret = true;
450 if (dump_file && (dump_flags & TDF_DETAILS))
451 fprintf (dump_file, " SUCCESS: may be parallelized\n");
453 else if (dump_file && (dump_flags & TDF_DETAILS))
454 fprintf (dump_file,
455 " FAILED: data dependencies exist across iterations\n");
457 end:
458 free_dependence_relations (dependence_relations);
459 free_data_refs (datarefs);
461 return ret;
464 /* Return true when LOOP contains basic blocks marked with the
465 BB_IRREDUCIBLE_LOOP flag. */
467 static inline bool
468 loop_has_blocks_with_irreducible_flag (struct loop *loop)
470 unsigned i;
471 basic_block *bbs = get_loop_body_in_dom_order (loop);
472 bool res = true;
474 for (i = 0; i < loop->num_nodes; i++)
475 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
476 goto end;
478 res = false;
479 end:
480 free (bbs);
481 return res;
484 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
485 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
486 to their addresses that can be reused. The address of OBJ is known to
487 be invariant in the whole function. Other needed statements are placed
488 right before GSI. */
490 static tree
491 take_address_of (tree obj, tree type, edge entry,
492 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
494 int uid;
495 tree *var_p, name, addr;
496 gassign *stmt;
497 gimple_seq stmts;
499 /* Since the address of OBJ is invariant, the trees may be shared.
500 Avoid rewriting unrelated parts of the code. */
501 obj = unshare_expr (obj);
502 for (var_p = &obj;
503 handled_component_p (*var_p);
504 var_p = &TREE_OPERAND (*var_p, 0))
505 continue;
507 /* Canonicalize the access to base on a MEM_REF. */
508 if (DECL_P (*var_p))
509 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
511 /* Assign a canonical SSA name to the address of the base decl used
512 in the address and share it for all accesses and addresses based
513 on it. */
514 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
515 int_tree_map elt;
516 elt.uid = uid;
517 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
518 if (!slot->to)
520 if (gsi == NULL)
521 return NULL;
522 addr = TREE_OPERAND (*var_p, 0);
523 const char *obj_name
524 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
525 if (obj_name)
526 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
527 else
528 name = make_ssa_name (TREE_TYPE (addr));
529 stmt = gimple_build_assign (name, addr);
530 gsi_insert_on_edge_immediate (entry, stmt);
532 slot->uid = uid;
533 slot->to = name;
535 else
536 name = slot->to;
538 /* Express the address in terms of the canonical SSA name. */
539 TREE_OPERAND (*var_p, 0) = name;
540 if (gsi == NULL)
541 return build_fold_addr_expr_with_type (obj, type);
543 name = force_gimple_operand (build_addr (obj),
544 &stmts, true, NULL_TREE);
545 if (!gimple_seq_empty_p (stmts))
546 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
548 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
550 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
551 NULL_TREE);
552 if (!gimple_seq_empty_p (stmts))
553 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
556 return name;
559 static tree
560 reduc_stmt_res (gimple *stmt)
562 return (gimple_code (stmt) == GIMPLE_PHI
563 ? gimple_phi_result (stmt)
564 : gimple_assign_lhs (stmt));
567 /* Callback for htab_traverse. Create the initialization statement
568 for reduction described in SLOT, and place it at the preheader of
569 the loop described in DATA. */
572 initialize_reductions (reduction_info **slot, struct loop *loop)
574 tree init;
575 tree type, arg;
576 edge e;
578 struct reduction_info *const reduc = *slot;
580 /* Create initialization in preheader:
581 reduction_variable = initialization value of reduction. */
583 /* In the phi node at the header, replace the argument coming
584 from the preheader with the reduction initialization value. */
586 /* Initialize the reduction. */
587 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
588 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
589 reduc->reduction_code, type);
590 reduc->init = init;
592 /* Replace the argument representing the initialization value
593 with the initialization value for the reduction (neutral
594 element for the particular operation, e.g. 0 for PLUS_EXPR,
595 1 for MULT_EXPR, etc).
596 Keep the old value in a new variable "reduction_initial",
597 that will be taken in consideration after the parallel
598 computing is done. */
600 e = loop_preheader_edge (loop);
601 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
602 /* Create new variable to hold the initial value. */
604 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
605 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
606 reduc->initial_value = arg;
607 return 1;
610 struct elv_data
612 struct walk_stmt_info info;
613 edge entry;
614 int_tree_htab_type *decl_address;
615 gimple_stmt_iterator *gsi;
616 bool changed;
617 bool reset;
620 /* Eliminates references to local variables in *TP out of the single
621 entry single exit region starting at DTA->ENTRY.
622 DECL_ADDRESS contains addresses of the references that had their
623 address taken already. If the expression is changed, CHANGED is
624 set to true. Callback for walk_tree. */
626 static tree
627 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
629 struct elv_data *const dta = (struct elv_data *) data;
630 tree t = *tp, var, addr, addr_type, type, obj;
632 if (DECL_P (t))
634 *walk_subtrees = 0;
636 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
637 return NULL_TREE;
639 type = TREE_TYPE (t);
640 addr_type = build_pointer_type (type);
641 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
642 dta->gsi);
643 if (dta->gsi == NULL && addr == NULL_TREE)
645 dta->reset = true;
646 return NULL_TREE;
649 *tp = build_simple_mem_ref (addr);
651 dta->changed = true;
652 return NULL_TREE;
655 if (TREE_CODE (t) == ADDR_EXPR)
657 /* ADDR_EXPR may appear in two contexts:
658 -- as a gimple operand, when the address taken is a function invariant
659 -- as gimple rhs, when the resulting address in not a function
660 invariant
661 We do not need to do anything special in the latter case (the base of
662 the memory reference whose address is taken may be replaced in the
663 DECL_P case). The former case is more complicated, as we need to
664 ensure that the new address is still a gimple operand. Thus, it
665 is not sufficient to replace just the base of the memory reference --
666 we need to move the whole computation of the address out of the
667 loop. */
668 if (!is_gimple_val (t))
669 return NULL_TREE;
671 *walk_subtrees = 0;
672 obj = TREE_OPERAND (t, 0);
673 var = get_base_address (obj);
674 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
675 return NULL_TREE;
677 addr_type = TREE_TYPE (t);
678 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
679 dta->gsi);
680 if (dta->gsi == NULL && addr == NULL_TREE)
682 dta->reset = true;
683 return NULL_TREE;
685 *tp = addr;
687 dta->changed = true;
688 return NULL_TREE;
691 if (!EXPR_P (t))
692 *walk_subtrees = 0;
694 return NULL_TREE;
697 /* Moves the references to local variables in STMT at *GSI out of the single
698 entry single exit region starting at ENTRY. DECL_ADDRESS contains
699 addresses of the references that had their address taken
700 already. */
702 static void
703 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
704 int_tree_htab_type *decl_address)
706 struct elv_data dta;
707 gimple *stmt = gsi_stmt (*gsi);
709 memset (&dta.info, '\0', sizeof (dta.info));
710 dta.entry = entry;
711 dta.decl_address = decl_address;
712 dta.changed = false;
713 dta.reset = false;
715 if (gimple_debug_bind_p (stmt))
717 dta.gsi = NULL;
718 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
719 eliminate_local_variables_1, &dta.info, NULL);
720 if (dta.reset)
722 gimple_debug_bind_reset_value (stmt);
723 dta.changed = true;
726 else if (gimple_clobber_p (stmt))
728 unlink_stmt_vdef (stmt);
729 stmt = gimple_build_nop ();
730 gsi_replace (gsi, stmt, false);
731 dta.changed = true;
733 else
735 dta.gsi = gsi;
736 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
739 if (dta.changed)
740 update_stmt (stmt);
743 /* Eliminates the references to local variables from the single entry
744 single exit region between the ENTRY and EXIT edges.
746 This includes:
747 1) Taking address of a local variable -- these are moved out of the
748 region (and temporary variable is created to hold the address if
749 necessary).
751 2) Dereferencing a local variable -- these are replaced with indirect
752 references. */
754 static void
755 eliminate_local_variables (edge entry, edge exit)
757 basic_block bb;
758 auto_vec<basic_block, 3> body;
759 unsigned i;
760 gimple_stmt_iterator gsi;
761 bool has_debug_stmt = false;
762 int_tree_htab_type decl_address (10);
763 basic_block entry_bb = entry->src;
764 basic_block exit_bb = exit->dest;
766 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
768 FOR_EACH_VEC_ELT (body, i, bb)
769 if (bb != entry_bb && bb != exit_bb)
771 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
772 if (is_gimple_debug (gsi_stmt (gsi)))
774 if (gimple_debug_bind_p (gsi_stmt (gsi)))
775 has_debug_stmt = true;
777 else
778 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
781 if (has_debug_stmt)
782 FOR_EACH_VEC_ELT (body, i, bb)
783 if (bb != entry_bb && bb != exit_bb)
784 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 if (gimple_debug_bind_p (gsi_stmt (gsi)))
786 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
789 /* Returns true if expression EXPR is not defined between ENTRY and
790 EXIT, i.e. if all its operands are defined outside of the region. */
792 static bool
793 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
795 basic_block entry_bb = entry->src;
796 basic_block exit_bb = exit->dest;
797 basic_block def_bb;
799 if (is_gimple_min_invariant (expr))
800 return true;
802 if (TREE_CODE (expr) == SSA_NAME)
804 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
805 if (def_bb
806 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
807 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
808 return false;
810 return true;
813 return false;
816 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
817 The copies are stored to NAME_COPIES, if NAME was already duplicated,
818 its duplicate stored in NAME_COPIES is returned.
820 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
821 duplicated, storing the copies in DECL_COPIES. */
823 static tree
824 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
825 int_tree_htab_type *decl_copies,
826 bool copy_name_p)
828 tree copy, var, var_copy;
829 unsigned idx, uid, nuid;
830 struct int_tree_map ielt;
831 struct name_to_copy_elt elt, *nelt;
832 name_to_copy_elt **slot;
833 int_tree_map *dslot;
835 if (TREE_CODE (name) != SSA_NAME)
836 return name;
838 idx = SSA_NAME_VERSION (name);
839 elt.version = idx;
840 slot = name_copies->find_slot_with_hash (&elt, idx,
841 copy_name_p ? INSERT : NO_INSERT);
842 if (slot && *slot)
843 return (*slot)->new_name;
845 if (copy_name_p)
847 copy = duplicate_ssa_name (name, NULL);
848 nelt = XNEW (struct name_to_copy_elt);
849 nelt->version = idx;
850 nelt->new_name = copy;
851 nelt->field = NULL_TREE;
852 *slot = nelt;
854 else
856 gcc_assert (!slot);
857 copy = name;
860 var = SSA_NAME_VAR (name);
861 if (!var)
862 return copy;
864 uid = DECL_UID (var);
865 ielt.uid = uid;
866 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
867 if (!dslot->to)
869 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
870 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
871 dslot->uid = uid;
872 dslot->to = var_copy;
874 /* Ensure that when we meet this decl next time, we won't duplicate
875 it again. */
876 nuid = DECL_UID (var_copy);
877 ielt.uid = nuid;
878 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
879 gcc_assert (!dslot->to);
880 dslot->uid = nuid;
881 dslot->to = var_copy;
883 else
884 var_copy = dslot->to;
886 replace_ssa_name_symbol (copy, var_copy);
887 return copy;
890 /* Finds the ssa names used in STMT that are defined outside the
891 region between ENTRY and EXIT and replaces such ssa names with
892 their duplicates. The duplicates are stored to NAME_COPIES. Base
893 decls of all ssa names used in STMT (including those defined in
894 LOOP) are replaced with the new temporary variables; the
895 replacement decls are stored in DECL_COPIES. */
897 static void
898 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
899 name_to_copy_table_type *name_copies,
900 int_tree_htab_type *decl_copies)
902 use_operand_p use;
903 def_operand_p def;
904 ssa_op_iter oi;
905 tree name, copy;
906 bool copy_name_p;
908 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
910 name = DEF_FROM_PTR (def);
911 gcc_assert (TREE_CODE (name) == SSA_NAME);
912 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
913 false);
914 gcc_assert (copy == name);
917 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
919 name = USE_FROM_PTR (use);
920 if (TREE_CODE (name) != SSA_NAME)
921 continue;
923 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
924 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
925 copy_name_p);
926 SET_USE (use, copy);
930 /* Finds the ssa names used in STMT that are defined outside the
931 region between ENTRY and EXIT and replaces such ssa names with
932 their duplicates. The duplicates are stored to NAME_COPIES. Base
933 decls of all ssa names used in STMT (including those defined in
934 LOOP) are replaced with the new temporary variables; the
935 replacement decls are stored in DECL_COPIES. */
937 static bool
938 separate_decls_in_region_debug (gimple *stmt,
939 name_to_copy_table_type *name_copies,
940 int_tree_htab_type *decl_copies)
942 use_operand_p use;
943 ssa_op_iter oi;
944 tree var, name;
945 struct int_tree_map ielt;
946 struct name_to_copy_elt elt;
947 name_to_copy_elt **slot;
948 int_tree_map *dslot;
950 if (gimple_debug_bind_p (stmt))
951 var = gimple_debug_bind_get_var (stmt);
952 else if (gimple_debug_source_bind_p (stmt))
953 var = gimple_debug_source_bind_get_var (stmt);
954 else
955 return true;
956 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
957 return true;
958 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
959 ielt.uid = DECL_UID (var);
960 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
961 if (!dslot)
962 return true;
963 if (gimple_debug_bind_p (stmt))
964 gimple_debug_bind_set_var (stmt, dslot->to);
965 else if (gimple_debug_source_bind_p (stmt))
966 gimple_debug_source_bind_set_var (stmt, dslot->to);
968 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
970 name = USE_FROM_PTR (use);
971 if (TREE_CODE (name) != SSA_NAME)
972 continue;
974 elt.version = SSA_NAME_VERSION (name);
975 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
976 if (!slot)
978 gimple_debug_bind_reset_value (stmt);
979 update_stmt (stmt);
980 break;
983 SET_USE (use, (*slot)->new_name);
986 return false;
989 /* Callback for htab_traverse. Adds a field corresponding to the reduction
990 specified in SLOT. The type is passed in DATA. */
993 add_field_for_reduction (reduction_info **slot, tree type)
996 struct reduction_info *const red = *slot;
997 tree var = reduc_stmt_res (red->reduc_stmt);
998 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
999 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1001 insert_field_into_struct (type, field);
1003 red->field = field;
1005 return 1;
1008 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1009 described in SLOT. The type is passed in DATA. */
1012 add_field_for_name (name_to_copy_elt **slot, tree type)
1014 struct name_to_copy_elt *const elt = *slot;
1015 tree name = ssa_name (elt->version);
1016 tree field = build_decl (UNKNOWN_LOCATION,
1017 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1018 TREE_TYPE (name));
1020 insert_field_into_struct (type, field);
1021 elt->field = field;
1023 return 1;
1026 /* Callback for htab_traverse. A local result is the intermediate result
1027 computed by a single
1028 thread, or the initial value in case no iteration was executed.
1029 This function creates a phi node reflecting these values.
1030 The phi's result will be stored in NEW_PHI field of the
1031 reduction's data structure. */
1034 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1036 struct reduction_info *const reduc = *slot;
1037 edge e;
1038 gphi *new_phi;
1039 basic_block store_bb, continue_bb;
1040 tree local_res;
1041 source_location locus;
1043 /* STORE_BB is the block where the phi
1044 should be stored. It is the destination of the loop exit.
1045 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1046 continue_bb = single_pred (loop->latch);
1047 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1049 /* STORE_BB has two predecessors. One coming from the loop
1050 (the reduction's result is computed at the loop),
1051 and another coming from a block preceding the loop,
1052 when no iterations
1053 are executed (the initial value should be taken). */
1054 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1055 e = EDGE_PRED (store_bb, 1);
1056 else
1057 e = EDGE_PRED (store_bb, 0);
1058 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1059 local_res = copy_ssa_name (lhs);
1060 locus = gimple_location (reduc->reduc_stmt);
1061 new_phi = create_phi_node (local_res, store_bb);
1062 add_phi_arg (new_phi, reduc->init, e, locus);
1063 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1064 reduc->new_phi = new_phi;
1066 return 1;
1069 struct clsn_data
1071 tree store;
1072 tree load;
1074 basic_block store_bb;
1075 basic_block load_bb;
1078 /* Callback for htab_traverse. Create an atomic instruction for the
1079 reduction described in SLOT.
1080 DATA annotates the place in memory the atomic operation relates to,
1081 and the basic block it needs to be generated in. */
1084 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1086 struct reduction_info *const reduc = *slot;
1087 gimple_stmt_iterator gsi;
1088 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1089 tree load_struct;
1090 basic_block bb;
1091 basic_block new_bb;
1092 edge e;
1093 tree t, addr, ref, x;
1094 tree tmp_load, name;
1095 gimple *load;
1097 if (reduc->reduc_addr == NULL_TREE)
1099 load_struct = build_simple_mem_ref (clsn_data->load);
1100 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1102 addr = build_addr (t);
1104 else
1106 /* Set the address for the atomic store. */
1107 addr = reduc->reduc_addr;
1109 /* Remove the non-atomic store '*addr = sum'. */
1110 tree res = PHI_RESULT (reduc->keep_res);
1111 use_operand_p use_p;
1112 gimple *stmt;
1113 bool single_use_p = single_imm_use (res, &use_p, &stmt);
1114 gcc_assert (single_use_p);
1115 replace_uses_by (gimple_vdef (stmt),
1116 gimple_vuse (stmt));
1117 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1118 gsi_remove (&gsi, true);
1121 /* Create phi node. */
1122 bb = clsn_data->load_bb;
1124 gsi = gsi_last_bb (bb);
1125 e = split_block (bb, gsi_stmt (gsi));
1126 new_bb = e->dest;
1128 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1129 tmp_load = make_ssa_name (tmp_load);
1130 load = gimple_build_omp_atomic_load (tmp_load, addr);
1131 SSA_NAME_DEF_STMT (tmp_load) = load;
1132 gsi = gsi_start_bb (new_bb);
1133 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1135 e = split_block (new_bb, load);
1136 new_bb = e->dest;
1137 gsi = gsi_start_bb (new_bb);
1138 ref = tmp_load;
1139 x = fold_build2 (reduc->reduction_code,
1140 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1141 PHI_RESULT (reduc->new_phi));
1143 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1144 GSI_CONTINUE_LINKING);
1146 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1147 return 1;
1150 /* Create the atomic operation at the join point of the threads.
1151 REDUCTION_LIST describes the reductions in the LOOP.
1152 LD_ST_DATA describes the shared data structure where
1153 shared data is stored in and loaded from. */
1154 static void
1155 create_call_for_reduction (struct loop *loop,
1156 reduction_info_table_type *reduction_list,
1157 struct clsn_data *ld_st_data)
1159 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1160 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1161 basic_block continue_bb = single_pred (loop->latch);
1162 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1163 reduction_list
1164 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1167 /* Callback for htab_traverse. Loads the final reduction value at the
1168 join point of all threads, and inserts it in the right place. */
1171 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1173 struct reduction_info *const red = *slot;
1174 gimple *stmt;
1175 gimple_stmt_iterator gsi;
1176 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1177 tree load_struct;
1178 tree name;
1179 tree x;
1181 /* If there's no exit phi, the result of the reduction is unused. */
1182 if (red->keep_res == NULL)
1183 return 1;
1185 gsi = gsi_after_labels (clsn_data->load_bb);
1186 load_struct = build_simple_mem_ref (clsn_data->load);
1187 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1188 NULL_TREE);
1190 x = load_struct;
1191 name = PHI_RESULT (red->keep_res);
1192 stmt = gimple_build_assign (name, x);
1194 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1196 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1197 !gsi_end_p (gsi); gsi_next (&gsi))
1198 if (gsi_stmt (gsi) == red->keep_res)
1200 remove_phi_node (&gsi, false);
1201 return 1;
1203 gcc_unreachable ();
1206 /* Load the reduction result that was stored in LD_ST_DATA.
1207 REDUCTION_LIST describes the list of reductions that the
1208 loads should be generated for. */
1209 static void
1210 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1211 struct clsn_data *ld_st_data)
1213 gimple_stmt_iterator gsi;
1214 tree t;
1215 gimple *stmt;
1217 gsi = gsi_after_labels (ld_st_data->load_bb);
1218 t = build_fold_addr_expr (ld_st_data->store);
1219 stmt = gimple_build_assign (ld_st_data->load, t);
1221 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1223 reduction_list
1224 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1228 /* Callback for htab_traverse. Store the neutral value for the
1229 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1230 1 for MULT_EXPR, etc. into the reduction field.
1231 The reduction is specified in SLOT. The store information is
1232 passed in DATA. */
1235 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1237 struct reduction_info *const red = *slot;
1238 tree t;
1239 gimple *stmt;
1240 gimple_stmt_iterator gsi;
1241 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1243 gsi = gsi_last_bb (clsn_data->store_bb);
1244 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1245 stmt = gimple_build_assign (t, red->initial_value);
1246 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1248 return 1;
1251 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1252 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1253 specified in SLOT. */
1256 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1257 struct clsn_data *clsn_data)
1259 struct name_to_copy_elt *const elt = *slot;
1260 tree t;
1261 gimple *stmt;
1262 gimple_stmt_iterator gsi;
1263 tree type = TREE_TYPE (elt->new_name);
1264 tree load_struct;
1266 gsi = gsi_last_bb (clsn_data->store_bb);
1267 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1268 stmt = gimple_build_assign (t, ssa_name (elt->version));
1269 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1271 gsi = gsi_last_bb (clsn_data->load_bb);
1272 load_struct = build_simple_mem_ref (clsn_data->load);
1273 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1274 stmt = gimple_build_assign (elt->new_name, t);
1275 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1277 return 1;
1280 /* Moves all the variables used in LOOP and defined outside of it (including
1281 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1282 name) to a structure created for this purpose. The code
1284 while (1)
1286 use (a);
1287 use (b);
1290 is transformed this way:
1292 bb0:
1293 old.a = a;
1294 old.b = b;
1296 bb1:
1297 a' = new->a;
1298 b' = new->b;
1299 while (1)
1301 use (a');
1302 use (b');
1305 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1306 pointer `new' is intentionally not initialized (the loop will be split to a
1307 separate function later, and `new' will be initialized from its arguments).
1308 LD_ST_DATA holds information about the shared data structure used to pass
1309 information among the threads. It is initialized here, and
1310 gen_parallel_loop will pass it to create_call_for_reduction that
1311 needs this information. REDUCTION_LIST describes the reductions
1312 in LOOP. */
1314 static void
1315 separate_decls_in_region (edge entry, edge exit,
1316 reduction_info_table_type *reduction_list,
1317 tree *arg_struct, tree *new_arg_struct,
1318 struct clsn_data *ld_st_data)
1321 basic_block bb1 = split_edge (entry);
1322 basic_block bb0 = single_pred (bb1);
1323 name_to_copy_table_type name_copies (10);
1324 int_tree_htab_type decl_copies (10);
1325 unsigned i;
1326 tree type, type_name, nvar;
1327 gimple_stmt_iterator gsi;
1328 struct clsn_data clsn_data;
1329 auto_vec<basic_block, 3> body;
1330 basic_block bb;
1331 basic_block entry_bb = bb1;
1332 basic_block exit_bb = exit->dest;
1333 bool has_debug_stmt = false;
1335 entry = single_succ_edge (entry_bb);
1336 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1338 FOR_EACH_VEC_ELT (body, i, bb)
1340 if (bb != entry_bb && bb != exit_bb)
1342 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1343 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1344 &name_copies, &decl_copies);
1346 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1348 gimple *stmt = gsi_stmt (gsi);
1350 if (is_gimple_debug (stmt))
1351 has_debug_stmt = true;
1352 else
1353 separate_decls_in_region_stmt (entry, exit, stmt,
1354 &name_copies, &decl_copies);
1359 /* Now process debug bind stmts. We must not create decls while
1360 processing debug stmts, so we defer their processing so as to
1361 make sure we will have debug info for as many variables as
1362 possible (all of those that were dealt with in the loop above),
1363 and discard those for which we know there's nothing we can
1364 do. */
1365 if (has_debug_stmt)
1366 FOR_EACH_VEC_ELT (body, i, bb)
1367 if (bb != entry_bb && bb != exit_bb)
1369 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1371 gimple *stmt = gsi_stmt (gsi);
1373 if (is_gimple_debug (stmt))
1375 if (separate_decls_in_region_debug (stmt, &name_copies,
1376 &decl_copies))
1378 gsi_remove (&gsi, true);
1379 continue;
1383 gsi_next (&gsi);
1387 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1389 /* It may happen that there is nothing to copy (if there are only
1390 loop carried and external variables in the loop). */
1391 *arg_struct = NULL;
1392 *new_arg_struct = NULL;
1394 else
1396 /* Create the type for the structure to store the ssa names to. */
1397 type = lang_hooks.types.make_type (RECORD_TYPE);
1398 type_name = build_decl (UNKNOWN_LOCATION,
1399 TYPE_DECL, create_tmp_var_name (".paral_data"),
1400 type);
1401 TYPE_NAME (type) = type_name;
1403 name_copies.traverse <tree, add_field_for_name> (type);
1404 if (reduction_list && reduction_list->elements () > 0)
1406 /* Create the fields for reductions. */
1407 reduction_list->traverse <tree, add_field_for_reduction> (type);
1409 layout_type (type);
1411 /* Create the loads and stores. */
1412 *arg_struct = create_tmp_var (type, ".paral_data_store");
1413 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1414 *new_arg_struct = make_ssa_name (nvar);
1416 ld_st_data->store = *arg_struct;
1417 ld_st_data->load = *new_arg_struct;
1418 ld_st_data->store_bb = bb0;
1419 ld_st_data->load_bb = bb1;
1421 name_copies
1422 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1423 (ld_st_data);
1425 /* Load the calculation from memory (after the join of the threads). */
1427 if (reduction_list && reduction_list->elements () > 0)
1429 reduction_list
1430 ->traverse <struct clsn_data *, create_stores_for_reduction>
1431 (ld_st_data);
1432 clsn_data.load = make_ssa_name (nvar);
1433 clsn_data.load_bb = exit->dest;
1434 clsn_data.store = ld_st_data->store;
1435 create_final_loads_for_reduction (reduction_list, &clsn_data);
1440 /* Returns true if FN was created to run in parallel. */
1442 bool
1443 parallelized_function_p (tree fndecl)
1445 cgraph_node *node = cgraph_node::get (fndecl);
1446 gcc_assert (node != NULL);
1447 return node->parallelized_function;
1450 /* Creates and returns an empty function that will receive the body of
1451 a parallelized loop. */
1453 static tree
1454 create_loop_fn (location_t loc)
1456 char buf[100];
1457 char *tname;
1458 tree decl, type, name, t;
1459 struct function *act_cfun = cfun;
1460 static unsigned loopfn_num;
1462 loc = LOCATION_LOCUS (loc);
1463 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1464 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1465 clean_symbol_name (tname);
1466 name = get_identifier (tname);
1467 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1469 decl = build_decl (loc, FUNCTION_DECL, name, type);
1470 TREE_STATIC (decl) = 1;
1471 TREE_USED (decl) = 1;
1472 DECL_ARTIFICIAL (decl) = 1;
1473 DECL_IGNORED_P (decl) = 0;
1474 TREE_PUBLIC (decl) = 0;
1475 DECL_UNINLINABLE (decl) = 1;
1476 DECL_EXTERNAL (decl) = 0;
1477 DECL_CONTEXT (decl) = NULL_TREE;
1478 DECL_INITIAL (decl) = make_node (BLOCK);
1479 BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl;
1481 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1482 DECL_ARTIFICIAL (t) = 1;
1483 DECL_IGNORED_P (t) = 1;
1484 DECL_RESULT (decl) = t;
1486 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1487 ptr_type_node);
1488 DECL_ARTIFICIAL (t) = 1;
1489 DECL_ARG_TYPE (t) = ptr_type_node;
1490 DECL_CONTEXT (t) = decl;
1491 TREE_USED (t) = 1;
1492 DECL_ARGUMENTS (decl) = t;
1494 allocate_struct_function (decl, false);
1496 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1497 it. */
1498 set_cfun (act_cfun);
1500 return decl;
1503 /* Replace uses of NAME by VAL in block BB. */
1505 static void
1506 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1508 gimple *use_stmt;
1509 imm_use_iterator imm_iter;
1511 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1513 if (gimple_bb (use_stmt) != bb)
1514 continue;
1516 use_operand_p use_p;
1517 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1518 SET_USE (use_p, val);
1522 /* Do transformation from:
1524 <bb preheader>:
1526 goto <bb header>
1528 <bb header>:
1529 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1530 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1532 use (ivtmp_a)
1534 sum_b = sum_a + sum_update
1536 if (ivtmp_a < n)
1537 goto <bb latch>;
1538 else
1539 goto <bb exit>;
1541 <bb latch>:
1542 ivtmp_b = ivtmp_a + 1;
1543 goto <bb header>
1545 <bb exit>:
1546 sum_z = PHI <sum_b (cond[1]), ...>
1548 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1549 that's <bb header>.
1553 <bb preheader>:
1555 goto <bb newheader>
1557 <bb header>:
1558 ivtmp_a = PHI <ivtmp_c (latch)>
1559 sum_a = PHI <sum_c (latch)>
1561 use (ivtmp_a)
1563 sum_b = sum_a + sum_update
1565 goto <bb latch>;
1567 <bb newheader>:
1568 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1569 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1570 if (ivtmp_c < n + 1)
1571 goto <bb header>;
1572 else
1573 goto <bb newexit>;
1575 <bb latch>:
1576 ivtmp_b = ivtmp_a + 1;
1577 goto <bb newheader>
1579 <bb newexit>:
1580 sum_y = PHI <sum_c (newheader)>
1582 <bb exit>:
1583 sum_z = PHI <sum_y (newexit), ...>
1586 In unified diff format:
1588 <bb preheader>:
1590 - goto <bb header>
1591 + goto <bb newheader>
1593 <bb header>:
1594 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1595 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1596 + ivtmp_a = PHI <ivtmp_c (latch)>
1597 + sum_a = PHI <sum_c (latch)>
1599 use (ivtmp_a)
1601 sum_b = sum_a + sum_update
1603 - if (ivtmp_a < n)
1604 - goto <bb latch>;
1605 + goto <bb latch>;
1607 + <bb newheader>:
1608 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1609 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1610 + if (ivtmp_c < n + 1)
1611 + goto <bb header>;
1612 else
1613 goto <bb exit>;
1615 <bb latch>:
1616 ivtmp_b = ivtmp_a + 1;
1617 - goto <bb header>
1618 + goto <bb newheader>
1620 + <bb newexit>:
1621 + sum_y = PHI <sum_c (newheader)>
1623 <bb exit>:
1624 - sum_z = PHI <sum_b (cond[1]), ...>
1625 + sum_z = PHI <sum_y (newexit), ...>
1627 Note: the example does not show any virtual phis, but these are handled more
1628 or less as reductions.
1631 Moves the exit condition of LOOP to the beginning of its header.
1632 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1633 bound. */
1635 static void
1636 transform_to_exit_first_loop_alt (struct loop *loop,
1637 reduction_info_table_type *reduction_list,
1638 tree bound)
1640 basic_block header = loop->header;
1641 basic_block latch = loop->latch;
1642 edge exit = single_dom_exit (loop);
1643 basic_block exit_block = exit->dest;
1644 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1645 tree control = gimple_cond_lhs (cond_stmt);
1646 edge e;
1648 /* Rewriting virtuals into loop-closed ssa normal form makes this
1649 transformation simpler. It also ensures that the virtuals are in
1650 loop-closed ssa normal from after the transformation, which is required by
1651 create_parallel_loop. */
1652 rewrite_virtuals_into_loop_closed_ssa (loop);
1654 /* Create the new_header block. */
1655 basic_block new_header = split_block_before_cond_jump (exit->src);
1656 edge edge_at_split = single_pred_edge (new_header);
1658 /* Redirect entry edge to new_header. */
1659 edge entry = loop_preheader_edge (loop);
1660 e = redirect_edge_and_branch (entry, new_header);
1661 gcc_assert (e == entry);
1663 /* Redirect post_inc_edge to new_header. */
1664 edge post_inc_edge = single_succ_edge (latch);
1665 e = redirect_edge_and_branch (post_inc_edge, new_header);
1666 gcc_assert (e == post_inc_edge);
1668 /* Redirect post_cond_edge to header. */
1669 edge post_cond_edge = single_pred_edge (latch);
1670 e = redirect_edge_and_branch (post_cond_edge, header);
1671 gcc_assert (e == post_cond_edge);
1673 /* Redirect edge_at_split to latch. */
1674 e = redirect_edge_and_branch (edge_at_split, latch);
1675 gcc_assert (e == edge_at_split);
1677 /* Set the new loop bound. */
1678 gimple_cond_set_rhs (cond_stmt, bound);
1679 update_stmt (cond_stmt);
1681 /* Repair the ssa. */
1682 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1683 edge_var_map *vm;
1684 gphi_iterator gsi;
1685 int i;
1686 for (gsi = gsi_start_phis (header), i = 0;
1687 !gsi_end_p (gsi) && v->iterate (i, &vm);
1688 gsi_next (&gsi), i++)
1690 gphi *phi = gsi.phi ();
1691 tree res_a = PHI_RESULT (phi);
1693 /* Create new phi. */
1694 tree res_c = copy_ssa_name (res_a, phi);
1695 gphi *nphi = create_phi_node (res_c, new_header);
1697 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1698 replace_uses_in_bb_by (res_a, res_c, new_header);
1700 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1701 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1703 /* Replace sum_b with sum_c in exit phi. */
1704 tree res_b = redirect_edge_var_map_def (vm);
1705 replace_uses_in_bb_by (res_b, res_c, exit_block);
1707 struct reduction_info *red = reduction_phi (reduction_list, phi);
1708 gcc_assert (virtual_operand_p (res_a)
1709 || res_a == control
1710 || red != NULL);
1712 if (red)
1714 /* Register the new reduction phi. */
1715 red->reduc_phi = nphi;
1716 gimple_set_uid (red->reduc_phi, red->reduc_version);
1719 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1721 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1722 flush_pending_stmts (entry);
1724 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1725 flush_pending_stmts (post_inc_edge);
1728 basic_block new_exit_block = NULL;
1729 if (!single_pred_p (exit->dest))
1731 /* Create a new empty exit block, inbetween the new loop header and the
1732 old exit block. The function separate_decls_in_region needs this block
1733 to insert code that is active on loop exit, but not any other path. */
1734 new_exit_block = split_edge (exit);
1737 /* Insert and register the reduction exit phis. */
1738 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1739 !gsi_end_p (gsi);
1740 gsi_next (&gsi))
1742 gphi *phi = gsi.phi ();
1743 gphi *nphi = NULL;
1744 tree res_z = PHI_RESULT (phi);
1745 tree res_c;
1747 if (new_exit_block != NULL)
1749 /* Now that we have a new exit block, duplicate the phi of the old
1750 exit block in the new exit block to preserve loop-closed ssa. */
1751 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1752 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1753 tree res_y = copy_ssa_name (res_z, phi);
1754 nphi = create_phi_node (res_y, new_exit_block);
1755 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1756 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1757 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1759 else
1760 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1762 if (virtual_operand_p (res_z))
1763 continue;
1765 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
1766 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1767 if (red != NULL)
1768 red->keep_res = (nphi != NULL
1769 ? nphi
1770 : phi);
1773 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1774 then we're still using some fields, so only bother about fields that are
1775 still used: header and latch.
1776 The loop has a new header bb, so we update it. The latch bb stays the
1777 same. */
1778 loop->header = new_header;
1780 /* Recalculate dominance info. */
1781 free_dominance_info (CDI_DOMINATORS);
1782 calculate_dominance_info (CDI_DOMINATORS);
1784 checking_verify_ssa (true, true);
1787 /* Tries to moves the exit condition of LOOP to the beginning of its header
1788 without duplication of the loop body. NIT is the number of iterations of the
1789 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1790 transformation is successful. */
1792 static bool
1793 try_transform_to_exit_first_loop_alt (struct loop *loop,
1794 reduction_info_table_type *reduction_list,
1795 tree nit)
1797 /* Check whether the latch contains a single statement. */
1798 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1799 return false;
1801 /* Check whether the latch contains no phis. */
1802 if (phi_nodes (loop->latch) != NULL)
1803 return false;
1805 /* Check whether the latch contains the loop iv increment. */
1806 edge back = single_succ_edge (loop->latch);
1807 edge exit = single_dom_exit (loop);
1808 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1809 tree control = gimple_cond_lhs (cond_stmt);
1810 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1811 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1812 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1813 return false;
1815 /* Check whether there's no code between the loop condition and the latch. */
1816 if (!single_pred_p (loop->latch)
1817 || single_pred (loop->latch) != exit->src)
1818 return false;
1820 tree alt_bound = NULL_TREE;
1821 tree nit_type = TREE_TYPE (nit);
1823 /* Figure out whether nit + 1 overflows. */
1824 if (TREE_CODE (nit) == INTEGER_CST)
1826 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1828 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1829 nit, build_one_cst (nit_type));
1831 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1832 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1833 return true;
1835 else
1837 /* Todo: Figure out if we can trigger this, if it's worth to handle
1838 optimally, and if we can handle it optimally. */
1839 return false;
1843 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1845 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1846 iv with base 0 and step 1 that is incremented in the latch, like this:
1848 <bb header>:
1849 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1851 if (iv_1 < nit)
1852 goto <bb latch>;
1853 else
1854 goto <bb exit>;
1856 <bb latch>:
1857 iv_2 = iv_1 + 1;
1858 goto <bb header>;
1860 The range of iv_1 is [0, nit]. The latch edge is taken for
1861 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1862 number of latch executions is equal to nit.
1864 The function max_loop_iterations gives us the maximum number of latch
1865 executions, so it gives us the maximum value of nit. */
1866 widest_int nit_max;
1867 if (!max_loop_iterations (loop, &nit_max))
1868 return false;
1870 /* Check if nit + 1 overflows. */
1871 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1872 if (nit_max >= type_max)
1873 return false;
1875 gimple *def = SSA_NAME_DEF_STMT (nit);
1877 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1878 if (def
1879 && is_gimple_assign (def)
1880 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1882 tree op1 = gimple_assign_rhs1 (def);
1883 tree op2 = gimple_assign_rhs2 (def);
1884 if (integer_minus_onep (op1))
1885 alt_bound = op2;
1886 else if (integer_minus_onep (op2))
1887 alt_bound = op1;
1890 /* If not found, insert nit + 1. */
1891 if (alt_bound == NULL_TREE)
1893 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1894 build_int_cst_type (nit_type, 1));
1896 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1898 alt_bound
1899 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1900 GSI_CONTINUE_LINKING);
1903 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1904 return true;
1907 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1908 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1909 LOOP. */
1911 static void
1912 transform_to_exit_first_loop (struct loop *loop,
1913 reduction_info_table_type *reduction_list,
1914 tree nit)
1916 basic_block *bbs, *nbbs, ex_bb, orig_header;
1917 unsigned n;
1918 bool ok;
1919 edge exit = single_dom_exit (loop), hpred;
1920 tree control, control_name, res, t;
1921 gphi *phi, *nphi;
1922 gassign *stmt;
1923 gcond *cond_stmt, *cond_nit;
1924 tree nit_1;
1926 split_block_after_labels (loop->header);
1927 orig_header = single_succ (loop->header);
1928 hpred = single_succ_edge (loop->header);
1930 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1931 control = gimple_cond_lhs (cond_stmt);
1932 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1934 /* Make sure that we have phi nodes on exit for all loop header phis
1935 (create_parallel_loop requires that). */
1936 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1937 !gsi_end_p (gsi);
1938 gsi_next (&gsi))
1940 phi = gsi.phi ();
1941 res = PHI_RESULT (phi);
1942 t = copy_ssa_name (res, phi);
1943 SET_PHI_RESULT (phi, t);
1944 nphi = create_phi_node (res, orig_header);
1945 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1947 if (res == control)
1949 gimple_cond_set_lhs (cond_stmt, t);
1950 update_stmt (cond_stmt);
1951 control = t;
1955 bbs = get_loop_body_in_dom_order (loop);
1957 for (n = 0; bbs[n] != exit->src; n++)
1958 continue;
1959 nbbs = XNEWVEC (basic_block, n);
1960 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1961 bbs + 1, n, nbbs);
1962 gcc_assert (ok);
1963 free (bbs);
1964 ex_bb = nbbs[0];
1965 free (nbbs);
1967 /* Other than reductions, the only gimple reg that should be copied
1968 out of the loop is the control variable. */
1969 exit = single_dom_exit (loop);
1970 control_name = NULL_TREE;
1971 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1972 !gsi_end_p (gsi); )
1974 phi = gsi.phi ();
1975 res = PHI_RESULT (phi);
1976 if (virtual_operand_p (res))
1978 gsi_next (&gsi);
1979 continue;
1982 /* Check if it is a part of reduction. If it is,
1983 keep the phi at the reduction's keep_res field. The
1984 PHI_RESULT of this phi is the resulting value of the reduction
1985 variable when exiting the loop. */
1987 if (reduction_list->elements () > 0)
1989 struct reduction_info *red;
1991 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1992 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1993 if (red)
1995 red->keep_res = phi;
1996 gsi_next (&gsi);
1997 continue;
2000 gcc_assert (control_name == NULL_TREE
2001 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
2002 control_name = res;
2003 remove_phi_node (&gsi, false);
2005 gcc_assert (control_name != NULL_TREE);
2007 /* Initialize the control variable to number of iterations
2008 according to the rhs of the exit condition. */
2009 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
2010 cond_nit = as_a <gcond *> (last_stmt (exit->src));
2011 nit_1 = gimple_cond_rhs (cond_nit);
2012 nit_1 = force_gimple_operand_gsi (&gsi,
2013 fold_convert (TREE_TYPE (control_name), nit_1),
2014 false, NULL_TREE, false, GSI_SAME_STMT);
2015 stmt = gimple_build_assign (control_name, nit_1);
2016 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2019 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
2020 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
2021 NEW_DATA is the variable that should be initialized from the argument
2022 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2023 that number is to be determined later. */
2025 static void
2026 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
2027 tree new_data, unsigned n_threads, location_t loc,
2028 bool oacc_kernels_p)
2030 gimple_stmt_iterator gsi;
2031 basic_block for_bb, ex_bb, continue_bb;
2032 tree t, param;
2033 gomp_parallel *omp_par_stmt;
2034 gimple *omp_return_stmt1, *omp_return_stmt2;
2035 gimple *phi;
2036 gcond *cond_stmt;
2037 gomp_for *for_stmt;
2038 gomp_continue *omp_cont_stmt;
2039 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
2040 edge exit, nexit, guard, end, e;
2042 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2043 if (oacc_kernels_p)
2045 tree clause = build_omp_clause (loc, OMP_CLAUSE_NUM_GANGS);
2046 OMP_CLAUSE_NUM_GANGS_EXPR (clause)
2047 = build_int_cst (integer_type_node, n_threads);
2048 set_oacc_fn_attrib (cfun->decl, clause, true, NULL);
2050 else
2052 basic_block bb = loop_preheader_edge (loop)->src;
2053 basic_block paral_bb = single_pred (bb);
2054 gsi = gsi_last_bb (paral_bb);
2056 gcc_checking_assert (n_threads != 0);
2057 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2058 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2059 = build_int_cst (integer_type_node, n_threads);
2060 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2061 gimple_set_location (omp_par_stmt, loc);
2063 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2065 /* Initialize NEW_DATA. */
2066 if (data)
2068 gassign *assign_stmt;
2070 gsi = gsi_after_labels (bb);
2072 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2073 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2074 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2076 assign_stmt = gimple_build_assign (new_data,
2077 fold_convert (TREE_TYPE (new_data), param));
2078 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2081 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2082 bb = split_loop_exit_edge (single_dom_exit (loop));
2083 gsi = gsi_last_bb (bb);
2084 omp_return_stmt1 = gimple_build_omp_return (false);
2085 gimple_set_location (omp_return_stmt1, loc);
2086 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2089 /* Extract data for GIMPLE_OMP_FOR. */
2090 gcc_assert (loop->header == single_dom_exit (loop)->src);
2091 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2093 cvar = gimple_cond_lhs (cond_stmt);
2094 cvar_base = SSA_NAME_VAR (cvar);
2095 phi = SSA_NAME_DEF_STMT (cvar);
2096 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2097 initvar = copy_ssa_name (cvar);
2098 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2099 initvar);
2100 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2102 gsi = gsi_last_nondebug_bb (loop->latch);
2103 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2104 gsi_remove (&gsi, true);
2106 /* Prepare cfg. */
2107 for_bb = split_edge (loop_preheader_edge (loop));
2108 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2109 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2110 gcc_assert (exit == single_dom_exit (loop));
2112 guard = make_edge (for_bb, ex_bb, 0);
2113 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2114 loop->latch = split_edge (single_succ_edge (loop->latch));
2115 single_pred_edge (loop->latch)->flags = 0;
2116 end = make_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2117 rescan_loop_exit (end, true, false);
2119 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2120 !gsi_end_p (gpi); gsi_next (&gpi))
2122 source_location locus;
2123 gphi *phi = gpi.phi ();
2124 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2125 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2127 /* If the exit phi is not connected to a header phi in the same loop, this
2128 value is not modified in the loop, and we're done with this phi. */
2129 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2130 && gimple_bb (def_stmt) == loop->header))
2132 locus = gimple_phi_arg_location_from_edge (phi, exit);
2133 add_phi_arg (phi, def, guard, locus);
2134 add_phi_arg (phi, def, end, locus);
2135 continue;
2138 gphi *stmt = as_a <gphi *> (def_stmt);
2139 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2140 locus = gimple_phi_arg_location_from_edge (stmt,
2141 loop_preheader_edge (loop));
2142 add_phi_arg (phi, def, guard, locus);
2144 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2145 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2146 add_phi_arg (phi, def, end, locus);
2148 e = redirect_edge_and_branch (exit, nexit->dest);
2149 PENDING_STMT (e) = NULL;
2151 /* Emit GIMPLE_OMP_FOR. */
2152 if (oacc_kernels_p)
2153 /* In combination with the NUM_GANGS on the parallel. */
2154 t = build_omp_clause (loc, OMP_CLAUSE_GANG);
2155 else
2157 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2158 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2159 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2160 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE);
2161 switch (schedule_type)
2163 case PARAM_PARLOOPS_SCHEDULE_KIND_static:
2164 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2165 break;
2166 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic:
2167 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2168 break;
2169 case PARAM_PARLOOPS_SCHEDULE_KIND_guided:
2170 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2171 break;
2172 case PARAM_PARLOOPS_SCHEDULE_KIND_auto:
2173 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2174 chunk_size = 0;
2175 break;
2176 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime:
2177 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2178 chunk_size = 0;
2179 break;
2180 default:
2181 gcc_unreachable ();
2183 if (chunk_size != 0)
2184 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2185 = build_int_cst (integer_type_node, chunk_size);
2188 for_stmt = gimple_build_omp_for (NULL,
2189 (oacc_kernels_p
2190 ? GF_OMP_FOR_KIND_OACC_LOOP
2191 : GF_OMP_FOR_KIND_FOR),
2192 t, 1, NULL);
2194 gimple_cond_set_lhs (cond_stmt, cvar_base);
2195 type = TREE_TYPE (cvar);
2196 gimple_set_location (for_stmt, loc);
2197 gimple_omp_for_set_index (for_stmt, 0, initvar);
2198 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2199 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2200 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2201 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2202 cvar_base,
2203 build_int_cst (type, 1)));
2205 gsi = gsi_last_bb (for_bb);
2206 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2207 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2209 /* Emit GIMPLE_OMP_CONTINUE. */
2210 continue_bb = single_pred (loop->latch);
2211 gsi = gsi_last_bb (continue_bb);
2212 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2213 gimple_set_location (omp_cont_stmt, loc);
2214 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2215 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2217 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2218 gsi = gsi_last_bb (ex_bb);
2219 omp_return_stmt2 = gimple_build_omp_return (true);
2220 gimple_set_location (omp_return_stmt2, loc);
2221 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2223 /* After the above dom info is hosed. Re-compute it. */
2224 free_dominance_info (CDI_DOMINATORS);
2225 calculate_dominance_info (CDI_DOMINATORS);
2228 /* Generates code to execute the iterations of LOOP in N_THREADS
2229 threads in parallel, which can be 0 if that number is to be determined
2230 later.
2232 NITER describes number of iterations of LOOP.
2233 REDUCTION_LIST describes the reductions existent in the LOOP. */
2235 static void
2236 gen_parallel_loop (struct loop *loop,
2237 reduction_info_table_type *reduction_list,
2238 unsigned n_threads, struct tree_niter_desc *niter,
2239 bool oacc_kernels_p)
2241 tree many_iterations_cond, type, nit;
2242 tree arg_struct, new_arg_struct;
2243 gimple_seq stmts;
2244 edge entry, exit;
2245 struct clsn_data clsn_data;
2246 unsigned prob;
2247 location_t loc;
2248 gimple *cond_stmt;
2249 unsigned int m_p_thread=2;
2251 /* From
2253 ---------------------------------------------------------------------
2254 loop
2256 IV = phi (INIT, IV + STEP)
2257 BODY1;
2258 if (COND)
2259 break;
2260 BODY2;
2262 ---------------------------------------------------------------------
2264 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2265 we generate the following code:
2267 ---------------------------------------------------------------------
2269 if (MAY_BE_ZERO
2270 || NITER < MIN_PER_THREAD * N_THREADS)
2271 goto original;
2273 BODY1;
2274 store all local loop-invariant variables used in body of the loop to DATA.
2275 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2276 load the variables from DATA.
2277 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2278 BODY2;
2279 BODY1;
2280 GIMPLE_OMP_CONTINUE;
2281 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2282 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2283 goto end;
2285 original:
2286 loop
2288 IV = phi (INIT, IV + STEP)
2289 BODY1;
2290 if (COND)
2291 break;
2292 BODY2;
2295 end:
2299 /* Create two versions of the loop -- in the old one, we know that the
2300 number of iterations is large enough, and we will transform it into the
2301 loop that will be split to loop_fn, the new one will be used for the
2302 remaining iterations. */
2304 /* We should compute a better number-of-iterations value for outer loops.
2305 That is, if we have
2307 for (i = 0; i < n; ++i)
2308 for (j = 0; j < m; ++j)
2311 we should compute nit = n * m, not nit = n.
2312 Also may_be_zero handling would need to be adjusted. */
2314 type = TREE_TYPE (niter->niter);
2315 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2316 NULL_TREE);
2317 if (stmts)
2318 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2320 if (!oacc_kernels_p)
2322 if (loop->inner)
2323 m_p_thread=2;
2324 else
2325 m_p_thread=MIN_PER_THREAD;
2327 gcc_checking_assert (n_threads != 0);
2328 many_iterations_cond =
2329 fold_build2 (GE_EXPR, boolean_type_node,
2330 nit, build_int_cst (type, m_p_thread * n_threads));
2332 many_iterations_cond
2333 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2334 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2335 many_iterations_cond);
2336 many_iterations_cond
2337 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2338 if (stmts)
2339 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2340 if (!is_gimple_condexpr (many_iterations_cond))
2342 many_iterations_cond
2343 = force_gimple_operand (many_iterations_cond, &stmts,
2344 true, NULL_TREE);
2345 if (stmts)
2346 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
2347 stmts);
2350 initialize_original_copy_tables ();
2352 /* We assume that the loop usually iterates a lot. */
2353 prob = 4 * REG_BR_PROB_BASE / 5;
2354 loop_version (loop, many_iterations_cond, NULL,
2355 prob, prob, REG_BR_PROB_BASE - prob, true);
2356 update_ssa (TODO_update_ssa);
2357 free_original_copy_tables ();
2360 /* Base all the induction variables in LOOP on a single control one. */
2361 canonicalize_loop_ivs (loop, &nit, true);
2363 /* Ensure that the exit condition is the first statement in the loop.
2364 The common case is that latch of the loop is empty (apart from the
2365 increment) and immediately follows the loop exit test. Attempt to move the
2366 entry of the loop directly before the exit check and increase the number of
2367 iterations of the loop by one. */
2368 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2370 if (dump_file
2371 && (dump_flags & TDF_DETAILS))
2372 fprintf (dump_file,
2373 "alternative exit-first loop transform succeeded"
2374 " for loop %d\n", loop->num);
2376 else
2378 if (oacc_kernels_p)
2379 n_threads = 1;
2381 /* Fall back on the method that handles more cases, but duplicates the
2382 loop body: move the exit condition of LOOP to the beginning of its
2383 header, and duplicate the part of the last iteration that gets disabled
2384 to the exit of the loop. */
2385 transform_to_exit_first_loop (loop, reduction_list, nit);
2388 /* Generate initializations for reductions. */
2389 if (reduction_list->elements () > 0)
2390 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2392 /* Eliminate the references to local variables from the loop. */
2393 gcc_assert (single_exit (loop));
2394 entry = loop_preheader_edge (loop);
2395 exit = single_dom_exit (loop);
2397 /* This rewrites the body in terms of new variables. This has already
2398 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
2399 if (!oacc_kernels_p)
2401 eliminate_local_variables (entry, exit);
2402 /* In the old loop, move all variables non-local to the loop to a
2403 structure and back, and create separate decls for the variables used in
2404 loop. */
2405 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2406 &new_arg_struct, &clsn_data);
2408 else
2410 arg_struct = NULL_TREE;
2411 new_arg_struct = NULL_TREE;
2412 clsn_data.load = NULL_TREE;
2413 clsn_data.load_bb = exit->dest;
2414 clsn_data.store = NULL_TREE;
2415 clsn_data.store_bb = NULL;
2418 /* Create the parallel constructs. */
2419 loc = UNKNOWN_LOCATION;
2420 cond_stmt = last_stmt (loop->header);
2421 if (cond_stmt)
2422 loc = gimple_location (cond_stmt);
2423 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
2424 n_threads, loc, oacc_kernels_p);
2425 if (reduction_list->elements () > 0)
2426 create_call_for_reduction (loop, reduction_list, &clsn_data);
2428 scev_reset ();
2430 /* Free loop bound estimations that could contain references to
2431 removed statements. */
2432 FOR_EACH_LOOP (loop, 0)
2433 free_numbers_of_iterations_estimates_loop (loop);
2436 /* Returns true when LOOP contains vector phi nodes. */
2438 static bool
2439 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2441 unsigned i;
2442 basic_block *bbs = get_loop_body_in_dom_order (loop);
2443 gphi_iterator gsi;
2444 bool res = true;
2446 for (i = 0; i < loop->num_nodes; i++)
2447 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2448 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2449 goto end;
2451 res = false;
2452 end:
2453 free (bbs);
2454 return res;
2457 /* Create a reduction_info struct, initialize it with REDUC_STMT
2458 and PHI, insert it to the REDUCTION_LIST. */
2460 static void
2461 build_new_reduction (reduction_info_table_type *reduction_list,
2462 gimple *reduc_stmt, gphi *phi)
2464 reduction_info **slot;
2465 struct reduction_info *new_reduction;
2466 enum tree_code reduction_code;
2468 gcc_assert (reduc_stmt);
2470 if (dump_file && (dump_flags & TDF_DETAILS))
2472 fprintf (dump_file,
2473 "Detected reduction. reduction stmt is:\n");
2474 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2475 fprintf (dump_file, "\n");
2478 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2480 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2481 gimple *def1 = SSA_NAME_DEF_STMT (op1);
2482 reduction_code = gimple_assign_rhs_code (def1);
2485 else
2486 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2488 new_reduction = XCNEW (struct reduction_info);
2490 new_reduction->reduc_stmt = reduc_stmt;
2491 new_reduction->reduc_phi = phi;
2492 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2493 new_reduction->reduction_code = reduction_code;
2494 slot = reduction_list->find_slot (new_reduction, INSERT);
2495 *slot = new_reduction;
2498 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2501 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2503 struct reduction_info *const red = *slot;
2504 gimple_set_uid (red->reduc_phi, red->reduc_version);
2505 return 1;
2508 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2510 static void
2511 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2513 gphi_iterator gsi;
2514 loop_vec_info simple_loop_info;
2515 loop_vec_info simple_inner_loop_info = NULL;
2516 bool allow_double_reduc = true;
2518 if (!stmt_vec_info_vec.exists ())
2519 init_stmt_vec_info_vec ();
2521 simple_loop_info = vect_analyze_loop_form (loop);
2522 if (simple_loop_info == NULL)
2523 goto gather_done;
2525 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2527 gphi *phi = gsi.phi ();
2528 affine_iv iv;
2529 tree res = PHI_RESULT (phi);
2530 bool double_reduc;
2532 if (virtual_operand_p (res))
2533 continue;
2535 if (simple_iv (loop, loop, res, &iv, true))
2536 continue;
2538 gimple *reduc_stmt
2539 = vect_force_simple_reduction (simple_loop_info, phi, true,
2540 &double_reduc, true);
2541 if (!reduc_stmt)
2542 continue;
2544 if (double_reduc)
2546 if (!allow_double_reduc
2547 || loop->inner->inner != NULL)
2548 continue;
2550 if (!simple_inner_loop_info)
2552 simple_inner_loop_info = vect_analyze_loop_form (loop->inner);
2553 if (!simple_inner_loop_info)
2555 allow_double_reduc = false;
2556 continue;
2560 use_operand_p use_p;
2561 gimple *inner_stmt;
2562 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2563 gcc_assert (single_use_p);
2564 if (gimple_code (inner_stmt) != GIMPLE_PHI)
2565 continue;
2566 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2567 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2568 &iv, true))
2569 continue;
2571 gimple *inner_reduc_stmt
2572 = vect_force_simple_reduction (simple_inner_loop_info, inner_phi,
2573 true, &double_reduc, true);
2574 gcc_assert (!double_reduc);
2575 if (inner_reduc_stmt == NULL)
2576 continue;
2579 build_new_reduction (reduction_list, reduc_stmt, phi);
2581 destroy_loop_vec_info (simple_loop_info, true);
2582 destroy_loop_vec_info (simple_inner_loop_info, true);
2584 gather_done:
2585 /* Release the claim on gimple_uid. */
2586 free_stmt_vec_info_vec ();
2588 if (reduction_list->elements () == 0)
2589 return;
2591 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2592 and free_stmt_vec_info_vec, we can set gimple_uid of reduc_phi stmts only
2593 now. */
2594 basic_block bb;
2595 FOR_EACH_BB_FN (bb, cfun)
2596 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2597 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
2598 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2601 /* Try to initialize NITER for code generation part. */
2603 static bool
2604 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2606 edge exit = single_dom_exit (loop);
2608 gcc_assert (exit);
2610 /* We need to know # of iterations, and there should be no uses of values
2611 defined inside loop outside of it, unless the values are invariants of
2612 the loop. */
2613 if (!number_of_iterations_exit (loop, exit, niter, false))
2615 if (dump_file && (dump_flags & TDF_DETAILS))
2616 fprintf (dump_file, " FAILED: number of iterations not known\n");
2617 return false;
2620 return true;
2623 /* Return the default def of the first function argument. */
2625 static tree
2626 get_omp_data_i_param (void)
2628 tree decl = DECL_ARGUMENTS (cfun->decl);
2629 gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
2630 return ssa_default_def (cfun, decl);
2633 /* For PHI in loop header of LOOP, look for pattern:
2635 <bb preheader>
2636 .omp_data_i = &.omp_data_arr;
2637 addr = .omp_data_i->sum;
2638 sum_a = *addr;
2640 <bb header>:
2641 sum_b = PHI <sum_a (preheader), sum_c (latch)>
2643 and return addr. Otherwise, return NULL_TREE. */
2645 static tree
2646 find_reduc_addr (struct loop *loop, gphi *phi)
2648 edge e = loop_preheader_edge (loop);
2649 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
2650 gimple *stmt = SSA_NAME_DEF_STMT (arg);
2651 if (!gimple_assign_single_p (stmt))
2652 return NULL_TREE;
2653 tree memref = gimple_assign_rhs1 (stmt);
2654 if (TREE_CODE (memref) != MEM_REF)
2655 return NULL_TREE;
2656 tree addr = TREE_OPERAND (memref, 0);
2658 gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
2659 if (!gimple_assign_single_p (stmt2))
2660 return NULL_TREE;
2661 tree compref = gimple_assign_rhs1 (stmt2);
2662 if (TREE_CODE (compref) != COMPONENT_REF)
2663 return NULL_TREE;
2664 tree addr2 = TREE_OPERAND (compref, 0);
2665 if (TREE_CODE (addr2) != MEM_REF)
2666 return NULL_TREE;
2667 addr2 = TREE_OPERAND (addr2, 0);
2668 if (TREE_CODE (addr2) != SSA_NAME
2669 || addr2 != get_omp_data_i_param ())
2670 return NULL_TREE;
2672 return addr;
2675 /* Try to initialize REDUCTION_LIST for code generation part.
2676 REDUCTION_LIST describes the reductions. */
2678 static bool
2679 try_create_reduction_list (loop_p loop,
2680 reduction_info_table_type *reduction_list,
2681 bool oacc_kernels_p)
2683 edge exit = single_dom_exit (loop);
2684 gphi_iterator gsi;
2686 gcc_assert (exit);
2688 /* Try to get rid of exit phis. */
2689 final_value_replacement_loop (loop);
2691 gather_scalar_reductions (loop, reduction_list);
2694 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2696 gphi *phi = gsi.phi ();
2697 struct reduction_info *red;
2698 imm_use_iterator imm_iter;
2699 use_operand_p use_p;
2700 gimple *reduc_phi;
2701 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2703 if (!virtual_operand_p (val))
2705 if (dump_file && (dump_flags & TDF_DETAILS))
2707 fprintf (dump_file, "phi is ");
2708 print_gimple_stmt (dump_file, phi, 0, 0);
2709 fprintf (dump_file, "arg of phi to exit: value ");
2710 print_generic_expr (dump_file, val, 0);
2711 fprintf (dump_file, " used outside loop\n");
2712 fprintf (dump_file,
2713 " checking if it is part of reduction pattern:\n");
2715 if (reduction_list->elements () == 0)
2717 if (dump_file && (dump_flags & TDF_DETAILS))
2718 fprintf (dump_file,
2719 " FAILED: it is not a part of reduction.\n");
2720 return false;
2722 reduc_phi = NULL;
2723 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2725 if (!gimple_debug_bind_p (USE_STMT (use_p))
2726 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2728 reduc_phi = USE_STMT (use_p);
2729 break;
2732 red = reduction_phi (reduction_list, reduc_phi);
2733 if (red == NULL)
2735 if (dump_file && (dump_flags & TDF_DETAILS))
2736 fprintf (dump_file,
2737 " FAILED: it is not a part of reduction.\n");
2738 return false;
2740 if (red->keep_res != NULL)
2742 if (dump_file && (dump_flags & TDF_DETAILS))
2743 fprintf (dump_file,
2744 " FAILED: reduction has multiple exit phis.\n");
2745 return false;
2747 red->keep_res = phi;
2748 if (dump_file && (dump_flags & TDF_DETAILS))
2750 fprintf (dump_file, "reduction phi is ");
2751 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2752 fprintf (dump_file, "reduction stmt is ");
2753 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2758 /* The iterations of the loop may communicate only through bivs whose
2759 iteration space can be distributed efficiently. */
2760 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2762 gphi *phi = gsi.phi ();
2763 tree def = PHI_RESULT (phi);
2764 affine_iv iv;
2766 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2768 struct reduction_info *red;
2770 red = reduction_phi (reduction_list, phi);
2771 if (red == NULL)
2773 if (dump_file && (dump_flags & TDF_DETAILS))
2774 fprintf (dump_file,
2775 " FAILED: scalar dependency between iterations\n");
2776 return false;
2781 if (oacc_kernels_p)
2783 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
2784 gsi_next (&gsi))
2786 gphi *phi = gsi.phi ();
2787 tree def = PHI_RESULT (phi);
2788 affine_iv iv;
2790 if (!virtual_operand_p (def)
2791 && !simple_iv (loop, loop, def, &iv, true))
2793 tree addr = find_reduc_addr (loop, phi);
2794 if (addr == NULL_TREE)
2795 return false;
2796 struct reduction_info *red = reduction_phi (reduction_list, phi);
2797 red->reduc_addr = addr;
2802 return true;
2805 /* Return true if LOOP contains phis with ADDR_EXPR in args. */
2807 static bool
2808 loop_has_phi_with_address_arg (struct loop *loop)
2810 basic_block *bbs = get_loop_body (loop);
2811 bool res = false;
2813 unsigned i, j;
2814 gphi_iterator gsi;
2815 for (i = 0; i < loop->num_nodes; i++)
2816 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2818 gphi *phi = gsi.phi ();
2819 for (j = 0; j < gimple_phi_num_args (phi); j++)
2821 tree arg = gimple_phi_arg_def (phi, j);
2822 if (TREE_CODE (arg) == ADDR_EXPR)
2824 /* This should be handled by eliminate_local_variables, but that
2825 function currently ignores phis. */
2826 res = true;
2827 goto end;
2831 end:
2832 free (bbs);
2834 return res;
2837 /* Return true if memory ref REF (corresponding to the stmt at GSI in
2838 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
2839 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
2840 store. Ignore conflicts with SKIP_STMT. */
2842 static bool
2843 ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
2844 bool ref_is_store, vec<basic_block> region_bbs,
2845 unsigned int i, gimple *skip_stmt)
2847 basic_block bb = region_bbs[i];
2848 gsi_next (&gsi);
2850 while (true)
2852 for (; !gsi_end_p (gsi);
2853 gsi_next (&gsi))
2855 gimple *stmt = gsi_stmt (gsi);
2856 if (stmt == skip_stmt)
2858 if (dump_file)
2860 fprintf (dump_file, "skipping reduction store: ");
2861 print_gimple_stmt (dump_file, stmt, 0, 0);
2863 continue;
2866 if (!gimple_vdef (stmt)
2867 && !gimple_vuse (stmt))
2868 continue;
2870 if (gimple_code (stmt) == GIMPLE_RETURN)
2871 continue;
2873 if (ref_is_store)
2875 if (ref_maybe_used_by_stmt_p (stmt, ref))
2877 if (dump_file)
2879 fprintf (dump_file, "Stmt ");
2880 print_gimple_stmt (dump_file, stmt, 0, 0);
2882 return true;
2885 else
2887 if (stmt_may_clobber_ref_p_1 (stmt, ref))
2889 if (dump_file)
2891 fprintf (dump_file, "Stmt ");
2892 print_gimple_stmt (dump_file, stmt, 0, 0);
2894 return true;
2898 i++;
2899 if (i == region_bbs.length ())
2900 break;
2901 bb = region_bbs[i];
2902 gsi = gsi_start_bb (bb);
2905 return false;
2908 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
2909 in parallel with REGION_BBS containing the loop. Return the stores of
2910 reduction results in REDUCTION_STORES. */
2912 static bool
2913 oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs,
2914 reduction_info_table_type *reduction_list,
2915 bitmap reduction_stores)
2917 tree omp_data_i = get_omp_data_i_param ();
2919 unsigned i;
2920 basic_block bb;
2921 FOR_EACH_VEC_ELT (region_bbs, i, bb)
2923 if (bitmap_bit_p (in_loop_bbs, bb->index))
2924 continue;
2926 gimple_stmt_iterator gsi;
2927 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2928 gsi_next (&gsi))
2930 gimple *stmt = gsi_stmt (gsi);
2931 gimple *skip_stmt = NULL;
2933 if (is_gimple_debug (stmt)
2934 || gimple_code (stmt) == GIMPLE_COND)
2935 continue;
2937 ao_ref ref;
2938 bool ref_is_store = false;
2939 if (gimple_assign_load_p (stmt))
2941 tree rhs = gimple_assign_rhs1 (stmt);
2942 tree base = get_base_address (rhs);
2943 if (TREE_CODE (base) == MEM_REF
2944 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
2945 continue;
2947 tree lhs = gimple_assign_lhs (stmt);
2948 if (TREE_CODE (lhs) == SSA_NAME
2949 && has_single_use (lhs))
2951 use_operand_p use_p;
2952 gimple *use_stmt;
2953 single_imm_use (lhs, &use_p, &use_stmt);
2954 if (gimple_code (use_stmt) == GIMPLE_PHI)
2956 struct reduction_info *red;
2957 red = reduction_phi (reduction_list, use_stmt);
2958 tree val = PHI_RESULT (red->keep_res);
2959 if (has_single_use (val))
2961 single_imm_use (val, &use_p, &use_stmt);
2962 if (gimple_store_p (use_stmt))
2964 unsigned int id
2965 = SSA_NAME_VERSION (gimple_vdef (use_stmt));
2966 bitmap_set_bit (reduction_stores, id);
2967 skip_stmt = use_stmt;
2968 if (dump_file)
2970 fprintf (dump_file, "found reduction load: ");
2971 print_gimple_stmt (dump_file, stmt, 0, 0);
2978 ao_ref_init (&ref, rhs);
2980 else if (gimple_store_p (stmt))
2982 ao_ref_init (&ref, gimple_assign_lhs (stmt));
2983 ref_is_store = true;
2985 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
2986 continue;
2987 else if (!gimple_has_side_effects (stmt)
2988 && !gimple_could_trap_p (stmt)
2989 && !stmt_could_throw_p (stmt)
2990 && !gimple_vdef (stmt)
2991 && !gimple_vuse (stmt))
2992 continue;
2993 else if (gimple_call_internal_p (stmt, IFN_GOACC_DIM_POS))
2994 continue;
2995 else if (gimple_code (stmt) == GIMPLE_RETURN)
2996 continue;
2997 else
2999 if (dump_file)
3001 fprintf (dump_file, "Unhandled stmt in entry/exit: ");
3002 print_gimple_stmt (dump_file, stmt, 0, 0);
3004 return false;
3007 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
3008 i, skip_stmt))
3010 if (dump_file)
3012 fprintf (dump_file, "conflicts with entry/exit stmt: ");
3013 print_gimple_stmt (dump_file, stmt, 0, 0);
3015 return false;
3020 return true;
3023 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3024 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3025 if any changes were made. */
3027 static bool
3028 oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3029 bitmap reduction_stores)
3031 tree gang_pos = NULL_TREE;
3032 bool changed = false;
3034 unsigned i;
3035 basic_block bb;
3036 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3038 if (bitmap_bit_p (in_loop_bbs, bb->index))
3039 continue;
3041 gimple_stmt_iterator gsi;
3042 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3044 gimple *stmt = gsi_stmt (gsi);
3046 if (!gimple_store_p (stmt))
3048 /* Update gsi to point to next stmt. */
3049 gsi_next (&gsi);
3050 continue;
3053 if (bitmap_bit_p (reduction_stores,
3054 SSA_NAME_VERSION (gimple_vdef (stmt))))
3056 if (dump_file)
3058 fprintf (dump_file,
3059 "skipped reduction store for single-gang"
3060 " neutering: ");
3061 print_gimple_stmt (dump_file, stmt, 0, 0);
3064 /* Update gsi to point to next stmt. */
3065 gsi_next (&gsi);
3066 continue;
3069 changed = true;
3071 if (gang_pos == NULL_TREE)
3073 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
3074 gcall *gang_single
3075 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
3076 gang_pos = make_ssa_name (integer_type_node);
3077 gimple_call_set_lhs (gang_single, gang_pos);
3078 gimple_stmt_iterator start
3079 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
3080 tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
3081 gimple_set_vuse (gang_single, vuse);
3082 gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
3085 if (dump_file)
3087 fprintf (dump_file,
3088 "found store that needs single-gang neutering: ");
3089 print_gimple_stmt (dump_file, stmt, 0, 0);
3093 /* Split block before store. */
3094 gimple_stmt_iterator gsi2 = gsi;
3095 gsi_prev (&gsi2);
3096 edge e;
3097 if (gsi_end_p (gsi2))
3099 e = split_block_after_labels (bb);
3100 gsi2 = gsi_last_bb (bb);
3102 else
3103 e = split_block (bb, gsi_stmt (gsi2));
3104 basic_block bb2 = e->dest;
3106 /* Split block after store. */
3107 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
3108 edge e2 = split_block (bb2, gsi_stmt (gsi3));
3109 basic_block bb3 = e2->dest;
3111 gimple *cond
3112 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
3113 NULL_TREE, NULL_TREE);
3114 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
3116 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
3117 e->flags = EDGE_TRUE_VALUE;
3119 tree vdef = gimple_vdef (stmt);
3120 tree vuse = gimple_vuse (stmt);
3122 tree phi_res = copy_ssa_name (vdef);
3123 gphi *new_phi = create_phi_node (phi_res, bb3);
3124 replace_uses_by (vdef, phi_res);
3125 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
3126 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
3128 /* Update gsi to point to next stmt. */
3129 bb = bb3;
3130 gsi = gsi_start_bb (bb);
3135 return changed;
3138 /* Return true if the statements before and after the LOOP can be executed in
3139 parallel with the function containing the loop. Resolve conflicting stores
3140 outside LOOP by guarding them such that only a single gang executes them. */
3142 static bool
3143 oacc_entry_exit_ok (struct loop *loop,
3144 reduction_info_table_type *reduction_list)
3146 basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
3147 vec<basic_block> region_bbs
3148 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
3150 bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
3151 bitmap_clear (in_loop_bbs);
3152 for (unsigned int i = 0; i < loop->num_nodes; i++)
3153 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
3155 bitmap reduction_stores = BITMAP_ALLOC (NULL);
3156 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
3157 reduction_stores);
3159 if (res)
3161 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
3162 reduction_stores);
3163 if (changed)
3165 free_dominance_info (CDI_DOMINATORS);
3166 calculate_dominance_info (CDI_DOMINATORS);
3170 region_bbs.release ();
3171 free (loop_bbs);
3173 BITMAP_FREE (in_loop_bbs);
3174 BITMAP_FREE (reduction_stores);
3176 return res;
3179 /* Detect parallel loops and generate parallel code using libgomp
3180 primitives. Returns true if some loop was parallelized, false
3181 otherwise. */
3183 static bool
3184 parallelize_loops (bool oacc_kernels_p)
3186 unsigned n_threads;
3187 bool changed = false;
3188 struct loop *loop;
3189 struct loop *skip_loop = NULL;
3190 struct tree_niter_desc niter_desc;
3191 struct obstack parloop_obstack;
3192 HOST_WIDE_INT estimated;
3193 source_location loop_loc;
3195 /* Do not parallelize loops in the functions created by parallelization. */
3196 if (!oacc_kernels_p
3197 && parallelized_function_p (cfun->decl))
3198 return false;
3200 /* Do not parallelize loops in offloaded functions. */
3201 if (!oacc_kernels_p
3202 && get_oacc_fn_attrib (cfun->decl) != NULL)
3203 return false;
3205 if (cfun->has_nonlocal_label)
3206 return false;
3208 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
3209 the argument to -ftree-parallelize-loops. */
3210 if (oacc_kernels_p)
3211 n_threads = 0;
3212 else
3213 n_threads = flag_tree_parallelize_loops;
3215 gcc_obstack_init (&parloop_obstack);
3216 reduction_info_table_type reduction_list (10);
3218 calculate_dominance_info (CDI_DOMINATORS);
3220 FOR_EACH_LOOP (loop, 0)
3222 if (loop == skip_loop)
3224 if (!loop->in_oacc_kernels_region
3225 && dump_file && (dump_flags & TDF_DETAILS))
3226 fprintf (dump_file,
3227 "Skipping loop %d as inner loop of parallelized loop\n",
3228 loop->num);
3230 skip_loop = loop->inner;
3231 continue;
3233 else
3234 skip_loop = NULL;
3236 reduction_list.empty ();
3238 if (oacc_kernels_p)
3240 if (!loop->in_oacc_kernels_region)
3241 continue;
3243 /* Don't try to parallelize inner loops in an oacc kernels region. */
3244 if (loop->inner)
3245 skip_loop = loop->inner;
3247 if (dump_file && (dump_flags & TDF_DETAILS))
3248 fprintf (dump_file,
3249 "Trying loop %d with header bb %d in oacc kernels"
3250 " region\n", loop->num, loop->header->index);
3253 if (dump_file && (dump_flags & TDF_DETAILS))
3255 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
3256 if (loop->inner)
3257 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
3258 else
3259 fprintf (dump_file, "loop %d is innermost\n",loop->num);
3262 /* If we use autopar in graphite pass, we use its marked dependency
3263 checking results. */
3264 if (flag_loop_parallelize_all && !loop->can_be_parallel)
3266 if (dump_file && (dump_flags & TDF_DETAILS))
3267 fprintf (dump_file, "loop is not parallel according to graphite\n");
3268 continue;
3271 if (!single_dom_exit (loop))
3274 if (dump_file && (dump_flags & TDF_DETAILS))
3275 fprintf (dump_file, "loop is !single_dom_exit\n");
3277 continue;
3280 if (/* And of course, the loop must be parallelizable. */
3281 !can_duplicate_loop_p (loop)
3282 || loop_has_blocks_with_irreducible_flag (loop)
3283 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
3284 /* FIXME: the check for vector phi nodes could be removed. */
3285 || loop_has_vector_phi_nodes (loop))
3286 continue;
3288 estimated = estimated_stmt_executions_int (loop);
3289 if (estimated == -1)
3290 estimated = likely_max_stmt_executions_int (loop);
3291 /* FIXME: Bypass this check as graphite doesn't update the
3292 count and frequency correctly now. */
3293 if (!flag_loop_parallelize_all
3294 && !oacc_kernels_p
3295 && ((estimated != -1
3296 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
3297 /* Do not bother with loops in cold areas. */
3298 || optimize_loop_nest_for_size_p (loop)))
3299 continue;
3301 if (!try_get_loop_niter (loop, &niter_desc))
3302 continue;
3304 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
3305 continue;
3307 if (loop_has_phi_with_address_arg (loop))
3308 continue;
3310 if (!flag_loop_parallelize_all
3311 && !loop_parallel_p (loop, &parloop_obstack))
3312 continue;
3314 if (oacc_kernels_p
3315 && !oacc_entry_exit_ok (loop, &reduction_list))
3317 if (dump_file)
3318 fprintf (dump_file, "entry/exit not ok: FAILED\n");
3319 continue;
3322 changed = true;
3323 skip_loop = loop->inner;
3324 if (dump_file && (dump_flags & TDF_DETAILS))
3326 if (loop->inner)
3327 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
3328 else
3329 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
3330 loop_loc = find_loop_location (loop);
3331 if (loop_loc != UNKNOWN_LOCATION)
3332 fprintf (dump_file, "\nloop at %s:%d: ",
3333 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
3336 gen_parallel_loop (loop, &reduction_list,
3337 n_threads, &niter_desc, oacc_kernels_p);
3340 obstack_free (&parloop_obstack, NULL);
3342 /* Parallelization will cause new function calls to be inserted through
3343 which local variables will escape. Reset the points-to solution
3344 for ESCAPED. */
3345 if (changed)
3346 pt_solution_reset (&cfun->gimple_df->escaped);
3348 return changed;
3351 /* Parallelization. */
3353 namespace {
3355 const pass_data pass_data_parallelize_loops =
3357 GIMPLE_PASS, /* type */
3358 "parloops", /* name */
3359 OPTGROUP_LOOP, /* optinfo_flags */
3360 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
3361 ( PROP_cfg | PROP_ssa ), /* properties_required */
3362 0, /* properties_provided */
3363 0, /* properties_destroyed */
3364 0, /* todo_flags_start */
3365 0, /* todo_flags_finish */
3368 class pass_parallelize_loops : public gimple_opt_pass
3370 public:
3371 pass_parallelize_loops (gcc::context *ctxt)
3372 : gimple_opt_pass (pass_data_parallelize_loops, ctxt),
3373 oacc_kernels_p (false)
3376 /* opt_pass methods: */
3377 virtual bool gate (function *)
3379 if (oacc_kernels_p)
3380 return flag_openacc;
3381 else
3382 return flag_tree_parallelize_loops > 1;
3384 virtual unsigned int execute (function *);
3385 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
3386 void set_pass_param (unsigned int n, bool param)
3388 gcc_assert (n == 0);
3389 oacc_kernels_p = param;
3392 private:
3393 bool oacc_kernels_p;
3394 }; // class pass_parallelize_loops
3396 unsigned
3397 pass_parallelize_loops::execute (function *fun)
3399 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
3400 if (nthreads == NULL_TREE)
3401 return 0;
3403 bool in_loop_pipeline = scev_initialized_p ();
3404 if (!in_loop_pipeline)
3405 loop_optimizer_init (LOOPS_NORMAL
3406 | LOOPS_HAVE_RECORDED_EXITS);
3408 if (number_of_loops (fun) <= 1)
3409 return 0;
3411 if (!in_loop_pipeline)
3413 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3414 scev_initialize ();
3417 unsigned int todo = 0;
3418 if (parallelize_loops (oacc_kernels_p))
3420 fun->curr_properties &= ~(PROP_gimple_eomp);
3422 checking_verify_loop_structure ();
3424 todo |= TODO_update_ssa;
3427 if (!in_loop_pipeline)
3429 scev_finalize ();
3430 loop_optimizer_finalize ();
3433 return todo;
3436 } // anon namespace
3438 gimple_opt_pass *
3439 make_pass_parallelize_loops (gcc::context *ctxt)
3441 return new pass_parallelize_loops (ctxt);