[ARM][committed] Sort ARMv8 processors by alphabetic order
[official-gcc.git] / gcc / fold-const.c
blobc649e547ead5997504b5b3addd22471532878e6f
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
83 /* Nonzero if we are folding constants inside an initializer; zero
84 otherwise. */
85 int folding_initializer = 0;
87 /* The following constants represent a bit based encoding of GCC's
88 comparison operators. This encoding simplifies transformations
89 on relational comparison operators, such as AND and OR. */
90 enum comparison_code {
91 COMPCODE_FALSE = 0,
92 COMPCODE_LT = 1,
93 COMPCODE_EQ = 2,
94 COMPCODE_LE = 3,
95 COMPCODE_GT = 4,
96 COMPCODE_LTGT = 5,
97 COMPCODE_GE = 6,
98 COMPCODE_ORD = 7,
99 COMPCODE_UNORD = 8,
100 COMPCODE_UNLT = 9,
101 COMPCODE_UNEQ = 10,
102 COMPCODE_UNLE = 11,
103 COMPCODE_UNGT = 12,
104 COMPCODE_NE = 13,
105 COMPCODE_UNGE = 14,
106 COMPCODE_TRUE = 15
109 static bool negate_expr_p (tree);
110 static tree negate_expr (tree);
111 static tree split_tree (location_t, tree, tree, enum tree_code,
112 tree *, tree *, tree *, int);
113 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
114 static enum comparison_code comparison_to_compcode (enum tree_code);
115 static enum tree_code compcode_to_comparison (enum comparison_code);
116 static int operand_equal_for_comparison_p (tree, tree, tree);
117 static int twoval_comparison_p (tree, tree *, tree *, int *);
118 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
119 static tree optimize_bit_field_compare (location_t, enum tree_code,
120 tree, tree, tree);
121 static int simple_operand_p (const_tree);
122 static bool simple_operand_p_2 (tree);
123 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
124 static tree range_predecessor (tree);
125 static tree range_successor (tree);
126 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
127 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
128 static tree unextend (tree, int, int, tree);
129 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
130 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
131 static tree fold_binary_op_with_conditional_arg (location_t,
132 enum tree_code, tree,
133 tree, tree,
134 tree, tree, int);
135 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
136 static tree fold_negate_const (tree, tree);
137 static tree fold_not_const (const_tree, tree);
138 static tree fold_relational_const (enum tree_code, tree, tree, tree);
139 static tree fold_convert_const (enum tree_code, tree, tree);
140 static tree fold_view_convert_expr (tree, tree);
141 static bool vec_cst_ctor_to_array (tree, tree *);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
147 static location_t
148 expr_location_or (tree t, location_t loc)
150 location_t tloc = EXPR_LOCATION (t);
151 return tloc == UNKNOWN_LOCATION ? loc : tloc;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
157 static inline tree
158 protected_set_expr_location_unshare (tree x, location_t loc)
160 if (CAN_HAVE_LOCATION_P (x)
161 && EXPR_LOCATION (x) != loc
162 && !(TREE_CODE (x) == SAVE_EXPR
163 || TREE_CODE (x) == TARGET_EXPR
164 || TREE_CODE (x) == BIND_EXPR))
166 x = copy_node (x);
167 SET_EXPR_LOCATION (x, loc);
169 return x;
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
174 NULL_TREE. */
176 tree
177 div_if_zero_remainder (const_tree arg1, const_tree arg2)
179 widest_int quo;
181 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
182 SIGNED, &quo))
183 return wide_int_to_tree (TREE_TYPE (arg1), quo);
185 return NULL_TREE;
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
195 used. */
197 static int fold_deferring_overflow_warnings;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
214 void
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
227 deferred code. */
229 void
230 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
232 const char *warnmsg;
233 location_t locus;
235 gcc_assert (fold_deferring_overflow_warnings > 0);
236 --fold_deferring_overflow_warnings;
237 if (fold_deferring_overflow_warnings > 0)
239 if (fold_deferred_overflow_warning != NULL
240 && code != 0
241 && code < (int) fold_deferred_overflow_code)
242 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
243 return;
246 warnmsg = fold_deferred_overflow_warning;
247 fold_deferred_overflow_warning = NULL;
249 if (!issue || warnmsg == NULL)
250 return;
252 if (gimple_no_warning_p (stmt))
253 return;
255 /* Use the smallest code level when deciding to issue the
256 warning. */
257 if (code == 0 || code > (int) fold_deferred_overflow_code)
258 code = fold_deferred_overflow_code;
260 if (!issue_strict_overflow_warning (code))
261 return;
263 if (stmt == NULL)
264 locus = input_location;
265 else
266 locus = gimple_location (stmt);
267 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
270 /* Stop deferring overflow warnings, ignoring any deferred
271 warnings. */
273 void
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL, 0);
279 /* Whether we are deferring overflow warnings. */
281 bool
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings > 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
290 void
291 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
293 if (fold_deferring_overflow_warnings > 0)
295 if (fold_deferred_overflow_warning == NULL
296 || wc < fold_deferred_overflow_code)
298 fold_deferred_overflow_warning = gmsgid;
299 fold_deferred_overflow_code = wc;
302 else if (issue_strict_overflow_warning (wc))
303 warning (OPT_Wstrict_overflow, gmsgid);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
309 bool
310 negate_mathfn_p (combined_fn fn)
312 switch (fn)
314 CASE_CFN_ASIN:
315 CASE_CFN_ASINH:
316 CASE_CFN_ATAN:
317 CASE_CFN_ATANH:
318 CASE_CFN_CASIN:
319 CASE_CFN_CASINH:
320 CASE_CFN_CATAN:
321 CASE_CFN_CATANH:
322 CASE_CFN_CBRT:
323 CASE_CFN_CPROJ:
324 CASE_CFN_CSIN:
325 CASE_CFN_CSINH:
326 CASE_CFN_CTAN:
327 CASE_CFN_CTANH:
328 CASE_CFN_ERF:
329 CASE_CFN_LLROUND:
330 CASE_CFN_LROUND:
331 CASE_CFN_ROUND:
332 CASE_CFN_SIN:
333 CASE_CFN_SINH:
334 CASE_CFN_TAN:
335 CASE_CFN_TANH:
336 CASE_CFN_TRUNC:
337 return true;
339 CASE_CFN_LLRINT:
340 CASE_CFN_LRINT:
341 CASE_CFN_NEARBYINT:
342 CASE_CFN_RINT:
343 return !flag_rounding_math;
345 default:
346 break;
348 return false;
351 /* Check whether we may negate an integer constant T without causing
352 overflow. */
354 bool
355 may_negate_without_overflow_p (const_tree t)
357 tree type;
359 gcc_assert (TREE_CODE (t) == INTEGER_CST);
361 type = TREE_TYPE (t);
362 if (TYPE_UNSIGNED (type))
363 return false;
365 return !wi::only_sign_bit_p (t);
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
371 static bool
372 negate_expr_p (tree t)
374 tree type;
376 if (t == 0)
377 return false;
379 type = TREE_TYPE (t);
381 STRIP_SIGN_NOPS (t);
382 switch (TREE_CODE (t))
384 case INTEGER_CST:
385 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
386 return true;
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t);
390 case BIT_NOT_EXPR:
391 return (INTEGRAL_TYPE_P (type)
392 && TYPE_OVERFLOW_WRAPS (type));
394 case FIXED_CST:
395 return true;
397 case NEGATE_EXPR:
398 return !TYPE_OVERFLOW_SANITIZED (type);
400 case REAL_CST:
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
405 case COMPLEX_CST:
406 return negate_expr_p (TREE_REALPART (t))
407 && negate_expr_p (TREE_IMAGPART (t));
409 case VECTOR_CST:
411 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
412 return true;
414 int count = TYPE_VECTOR_SUBPARTS (type), i;
416 for (i = 0; i < count; i++)
417 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
418 return false;
420 return true;
423 case COMPLEX_EXPR:
424 return negate_expr_p (TREE_OPERAND (t, 0))
425 && negate_expr_p (TREE_OPERAND (t, 1));
427 case CONJ_EXPR:
428 return negate_expr_p (TREE_OPERAND (t, 0));
430 case PLUS_EXPR:
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
432 || HONOR_SIGNED_ZEROS (element_mode (type))
433 || (INTEGRAL_TYPE_P (type)
434 && ! TYPE_OVERFLOW_WRAPS (type)))
435 return false;
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t, 1)))
438 return true;
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t, 0));
442 case MINUS_EXPR:
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
445 && !HONOR_SIGNED_ZEROS (element_mode (type))
446 && (! INTEGRAL_TYPE_P (type)
447 || TYPE_OVERFLOW_WRAPS (type));
449 case MULT_EXPR:
450 if (TYPE_UNSIGNED (type))
451 break;
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
456 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
457 && wi::popcount (wi::abs (TREE_OPERAND (t, 0))) != 1)
458 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
459 && wi::popcount (wi::abs (TREE_OPERAND (t, 1))) != 1)))
460 break;
462 /* Fall through. */
464 case RDIV_EXPR:
465 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
466 return negate_expr_p (TREE_OPERAND (t, 1))
467 || negate_expr_p (TREE_OPERAND (t, 0));
468 break;
470 case TRUNC_DIV_EXPR:
471 case ROUND_DIV_EXPR:
472 case EXACT_DIV_EXPR:
473 if (TYPE_UNSIGNED (type))
474 break;
475 if (negate_expr_p (TREE_OPERAND (t, 0)))
476 return true;
477 /* In general we can't negate B in A / B, because if A is INT_MIN and
478 B is 1, we may turn this into INT_MIN / -1 which is undefined
479 and actually traps on some architectures. */
480 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
481 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
482 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
483 && ! integer_onep (TREE_OPERAND (t, 1))))
484 return negate_expr_p (TREE_OPERAND (t, 1));
485 break;
487 case NOP_EXPR:
488 /* Negate -((double)float) as (double)(-float). */
489 if (TREE_CODE (type) == REAL_TYPE)
491 tree tem = strip_float_extensions (t);
492 if (tem != t)
493 return negate_expr_p (tem);
495 break;
497 case CALL_EXPR:
498 /* Negate -f(x) as f(-x). */
499 if (negate_mathfn_p (get_call_combined_fn (t)))
500 return negate_expr_p (CALL_EXPR_ARG (t, 0));
501 break;
503 case RSHIFT_EXPR:
504 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
505 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
507 tree op1 = TREE_OPERAND (t, 1);
508 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
509 return true;
511 break;
513 default:
514 break;
516 return false;
519 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
520 simplification is possible.
521 If negate_expr_p would return true for T, NULL_TREE will never be
522 returned. */
524 static tree
525 fold_negate_expr (location_t loc, tree t)
527 tree type = TREE_TYPE (t);
528 tree tem;
530 switch (TREE_CODE (t))
532 /* Convert - (~A) to A + 1. */
533 case BIT_NOT_EXPR:
534 if (INTEGRAL_TYPE_P (type))
535 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
536 build_one_cst (type));
537 break;
539 case INTEGER_CST:
540 tem = fold_negate_const (t, type);
541 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
542 || (ANY_INTEGRAL_TYPE_P (type)
543 && !TYPE_OVERFLOW_TRAPS (type)
544 && TYPE_OVERFLOW_WRAPS (type))
545 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
546 return tem;
547 break;
549 case REAL_CST:
550 tem = fold_negate_const (t, type);
551 return tem;
553 case FIXED_CST:
554 tem = fold_negate_const (t, type);
555 return tem;
557 case COMPLEX_CST:
559 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
560 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
561 if (rpart && ipart)
562 return build_complex (type, rpart, ipart);
564 break;
566 case VECTOR_CST:
568 int count = TYPE_VECTOR_SUBPARTS (type), i;
569 tree *elts = XALLOCAVEC (tree, count);
571 for (i = 0; i < count; i++)
573 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
574 if (elts[i] == NULL_TREE)
575 return NULL_TREE;
578 return build_vector (type, elts);
581 case COMPLEX_EXPR:
582 if (negate_expr_p (t))
583 return fold_build2_loc (loc, COMPLEX_EXPR, type,
584 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
585 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
586 break;
588 case CONJ_EXPR:
589 if (negate_expr_p (t))
590 return fold_build1_loc (loc, CONJ_EXPR, type,
591 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
592 break;
594 case NEGATE_EXPR:
595 if (!TYPE_OVERFLOW_SANITIZED (type))
596 return TREE_OPERAND (t, 0);
597 break;
599 case PLUS_EXPR:
600 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
601 && !HONOR_SIGNED_ZEROS (element_mode (type)))
603 /* -(A + B) -> (-B) - A. */
604 if (negate_expr_p (TREE_OPERAND (t, 1)))
606 tem = negate_expr (TREE_OPERAND (t, 1));
607 return fold_build2_loc (loc, MINUS_EXPR, type,
608 tem, TREE_OPERAND (t, 0));
611 /* -(A + B) -> (-A) - B. */
612 if (negate_expr_p (TREE_OPERAND (t, 0)))
614 tem = negate_expr (TREE_OPERAND (t, 0));
615 return fold_build2_loc (loc, MINUS_EXPR, type,
616 tem, TREE_OPERAND (t, 1));
619 break;
621 case MINUS_EXPR:
622 /* - (A - B) -> B - A */
623 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
624 && !HONOR_SIGNED_ZEROS (element_mode (type)))
625 return fold_build2_loc (loc, MINUS_EXPR, type,
626 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
627 break;
629 case MULT_EXPR:
630 if (TYPE_UNSIGNED (type))
631 break;
633 /* Fall through. */
635 case RDIV_EXPR:
636 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
638 tem = TREE_OPERAND (t, 1);
639 if (negate_expr_p (tem))
640 return fold_build2_loc (loc, TREE_CODE (t), type,
641 TREE_OPERAND (t, 0), negate_expr (tem));
642 tem = TREE_OPERAND (t, 0);
643 if (negate_expr_p (tem))
644 return fold_build2_loc (loc, TREE_CODE (t), type,
645 negate_expr (tem), TREE_OPERAND (t, 1));
647 break;
649 case TRUNC_DIV_EXPR:
650 case ROUND_DIV_EXPR:
651 case EXACT_DIV_EXPR:
652 if (TYPE_UNSIGNED (type))
653 break;
654 if (negate_expr_p (TREE_OPERAND (t, 0)))
655 return fold_build2_loc (loc, TREE_CODE (t), type,
656 negate_expr (TREE_OPERAND (t, 0)),
657 TREE_OPERAND (t, 1));
658 /* In general we can't negate B in A / B, because if A is INT_MIN and
659 B is 1, we may turn this into INT_MIN / -1 which is undefined
660 and actually traps on some architectures. */
661 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
662 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
663 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
664 && ! integer_onep (TREE_OPERAND (t, 1))))
665 && negate_expr_p (TREE_OPERAND (t, 1)))
666 return fold_build2_loc (loc, TREE_CODE (t), type,
667 TREE_OPERAND (t, 0),
668 negate_expr (TREE_OPERAND (t, 1)));
669 break;
671 case NOP_EXPR:
672 /* Convert -((double)float) into (double)(-float). */
673 if (TREE_CODE (type) == REAL_TYPE)
675 tem = strip_float_extensions (t);
676 if (tem != t && negate_expr_p (tem))
677 return fold_convert_loc (loc, type, negate_expr (tem));
679 break;
681 case CALL_EXPR:
682 /* Negate -f(x) as f(-x). */
683 if (negate_mathfn_p (get_call_combined_fn (t))
684 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
686 tree fndecl, arg;
688 fndecl = get_callee_fndecl (t);
689 arg = negate_expr (CALL_EXPR_ARG (t, 0));
690 return build_call_expr_loc (loc, fndecl, 1, arg);
692 break;
694 case RSHIFT_EXPR:
695 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
696 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
698 tree op1 = TREE_OPERAND (t, 1);
699 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
701 tree ntype = TYPE_UNSIGNED (type)
702 ? signed_type_for (type)
703 : unsigned_type_for (type);
704 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
705 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
706 return fold_convert_loc (loc, type, temp);
709 break;
711 default:
712 break;
715 return NULL_TREE;
718 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
719 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
720 return NULL_TREE. */
722 static tree
723 negate_expr (tree t)
725 tree type, tem;
726 location_t loc;
728 if (t == NULL_TREE)
729 return NULL_TREE;
731 loc = EXPR_LOCATION (t);
732 type = TREE_TYPE (t);
733 STRIP_SIGN_NOPS (t);
735 tem = fold_negate_expr (loc, t);
736 if (!tem)
737 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
738 return fold_convert_loc (loc, type, tem);
741 /* Split a tree IN into a constant, literal and variable parts that could be
742 combined with CODE to make IN. "constant" means an expression with
743 TREE_CONSTANT but that isn't an actual constant. CODE must be a
744 commutative arithmetic operation. Store the constant part into *CONP,
745 the literal in *LITP and return the variable part. If a part isn't
746 present, set it to null. If the tree does not decompose in this way,
747 return the entire tree as the variable part and the other parts as null.
749 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
750 case, we negate an operand that was subtracted. Except if it is a
751 literal for which we use *MINUS_LITP instead.
753 If NEGATE_P is true, we are negating all of IN, again except a literal
754 for which we use *MINUS_LITP instead. If a variable part is of pointer
755 type, it is negated after converting to TYPE. This prevents us from
756 generating illegal MINUS pointer expression. LOC is the location of
757 the converted variable part.
759 If IN is itself a literal or constant, return it as appropriate.
761 Note that we do not guarantee that any of the three values will be the
762 same type as IN, but they will have the same signedness and mode. */
764 static tree
765 split_tree (location_t loc, tree in, tree type, enum tree_code code,
766 tree *conp, tree *litp, tree *minus_litp, int negate_p)
768 tree var = 0;
770 *conp = 0;
771 *litp = 0;
772 *minus_litp = 0;
774 /* Strip any conversions that don't change the machine mode or signedness. */
775 STRIP_SIGN_NOPS (in);
777 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
778 || TREE_CODE (in) == FIXED_CST)
779 *litp = in;
780 else if (TREE_CODE (in) == code
781 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
782 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
783 /* We can associate addition and subtraction together (even
784 though the C standard doesn't say so) for integers because
785 the value is not affected. For reals, the value might be
786 affected, so we can't. */
787 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
788 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
790 tree op0 = TREE_OPERAND (in, 0);
791 tree op1 = TREE_OPERAND (in, 1);
792 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
793 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
795 /* First see if either of the operands is a literal, then a constant. */
796 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
797 || TREE_CODE (op0) == FIXED_CST)
798 *litp = op0, op0 = 0;
799 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
800 || TREE_CODE (op1) == FIXED_CST)
801 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
803 if (op0 != 0 && TREE_CONSTANT (op0))
804 *conp = op0, op0 = 0;
805 else if (op1 != 0 && TREE_CONSTANT (op1))
806 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
808 /* If we haven't dealt with either operand, this is not a case we can
809 decompose. Otherwise, VAR is either of the ones remaining, if any. */
810 if (op0 != 0 && op1 != 0)
811 var = in;
812 else if (op0 != 0)
813 var = op0;
814 else
815 var = op1, neg_var_p = neg1_p;
817 /* Now do any needed negations. */
818 if (neg_litp_p)
819 *minus_litp = *litp, *litp = 0;
820 if (neg_conp_p)
821 *conp = negate_expr (*conp);
822 if (neg_var_p && var)
824 /* Convert to TYPE before negating. */
825 var = fold_convert_loc (loc, type, var);
826 var = negate_expr (var);
829 else if (TREE_CONSTANT (in))
830 *conp = in;
831 else if (TREE_CODE (in) == BIT_NOT_EXPR
832 && code == PLUS_EXPR)
834 /* -X - 1 is folded to ~X, undo that here. Do _not_ do this
835 when IN is constant. */
836 *minus_litp = build_one_cst (TREE_TYPE (in));
837 var = negate_expr (TREE_OPERAND (in, 0));
839 else
840 var = in;
842 if (negate_p)
844 if (*litp)
845 *minus_litp = *litp, *litp = 0;
846 else if (*minus_litp)
847 *litp = *minus_litp, *minus_litp = 0;
848 *conp = negate_expr (*conp);
849 if (var)
851 /* Convert to TYPE before negating. */
852 var = fold_convert_loc (loc, type, var);
853 var = negate_expr (var);
857 return var;
860 /* Re-associate trees split by the above function. T1 and T2 are
861 either expressions to associate or null. Return the new
862 expression, if any. LOC is the location of the new expression. If
863 we build an operation, do it in TYPE and with CODE. */
865 static tree
866 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
868 if (t1 == 0)
869 return t2;
870 else if (t2 == 0)
871 return t1;
873 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
874 try to fold this since we will have infinite recursion. But do
875 deal with any NEGATE_EXPRs. */
876 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
877 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
879 if (code == PLUS_EXPR)
881 if (TREE_CODE (t1) == NEGATE_EXPR)
882 return build2_loc (loc, MINUS_EXPR, type,
883 fold_convert_loc (loc, type, t2),
884 fold_convert_loc (loc, type,
885 TREE_OPERAND (t1, 0)));
886 else if (TREE_CODE (t2) == NEGATE_EXPR)
887 return build2_loc (loc, MINUS_EXPR, type,
888 fold_convert_loc (loc, type, t1),
889 fold_convert_loc (loc, type,
890 TREE_OPERAND (t2, 0)));
891 else if (integer_zerop (t2))
892 return fold_convert_loc (loc, type, t1);
894 else if (code == MINUS_EXPR)
896 if (integer_zerop (t2))
897 return fold_convert_loc (loc, type, t1);
900 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
901 fold_convert_loc (loc, type, t2));
904 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
905 fold_convert_loc (loc, type, t2));
908 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
909 for use in int_const_binop, size_binop and size_diffop. */
911 static bool
912 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
914 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
915 return false;
916 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
917 return false;
919 switch (code)
921 case LSHIFT_EXPR:
922 case RSHIFT_EXPR:
923 case LROTATE_EXPR:
924 case RROTATE_EXPR:
925 return true;
927 default:
928 break;
931 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
932 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
933 && TYPE_MODE (type1) == TYPE_MODE (type2);
937 /* Combine two integer constants ARG1 and ARG2 under operation CODE
938 to produce a new constant. Return NULL_TREE if we don't know how
939 to evaluate CODE at compile-time. */
941 static tree
942 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
943 int overflowable)
945 wide_int res;
946 tree t;
947 tree type = TREE_TYPE (arg1);
948 signop sign = TYPE_SIGN (type);
949 bool overflow = false;
951 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
953 switch (code)
955 case BIT_IOR_EXPR:
956 res = wi::bit_or (arg1, arg2);
957 break;
959 case BIT_XOR_EXPR:
960 res = wi::bit_xor (arg1, arg2);
961 break;
963 case BIT_AND_EXPR:
964 res = wi::bit_and (arg1, arg2);
965 break;
967 case RSHIFT_EXPR:
968 case LSHIFT_EXPR:
969 if (wi::neg_p (arg2))
971 arg2 = -arg2;
972 if (code == RSHIFT_EXPR)
973 code = LSHIFT_EXPR;
974 else
975 code = RSHIFT_EXPR;
978 if (code == RSHIFT_EXPR)
979 /* It's unclear from the C standard whether shifts can overflow.
980 The following code ignores overflow; perhaps a C standard
981 interpretation ruling is needed. */
982 res = wi::rshift (arg1, arg2, sign);
983 else
984 res = wi::lshift (arg1, arg2);
985 break;
987 case RROTATE_EXPR:
988 case LROTATE_EXPR:
989 if (wi::neg_p (arg2))
991 arg2 = -arg2;
992 if (code == RROTATE_EXPR)
993 code = LROTATE_EXPR;
994 else
995 code = RROTATE_EXPR;
998 if (code == RROTATE_EXPR)
999 res = wi::rrotate (arg1, arg2);
1000 else
1001 res = wi::lrotate (arg1, arg2);
1002 break;
1004 case PLUS_EXPR:
1005 res = wi::add (arg1, arg2, sign, &overflow);
1006 break;
1008 case MINUS_EXPR:
1009 res = wi::sub (arg1, arg2, sign, &overflow);
1010 break;
1012 case MULT_EXPR:
1013 res = wi::mul (arg1, arg2, sign, &overflow);
1014 break;
1016 case MULT_HIGHPART_EXPR:
1017 res = wi::mul_high (arg1, arg2, sign);
1018 break;
1020 case TRUNC_DIV_EXPR:
1021 case EXACT_DIV_EXPR:
1022 if (arg2 == 0)
1023 return NULL_TREE;
1024 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1025 break;
1027 case FLOOR_DIV_EXPR:
1028 if (arg2 == 0)
1029 return NULL_TREE;
1030 res = wi::div_floor (arg1, arg2, sign, &overflow);
1031 break;
1033 case CEIL_DIV_EXPR:
1034 if (arg2 == 0)
1035 return NULL_TREE;
1036 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1037 break;
1039 case ROUND_DIV_EXPR:
1040 if (arg2 == 0)
1041 return NULL_TREE;
1042 res = wi::div_round (arg1, arg2, sign, &overflow);
1043 break;
1045 case TRUNC_MOD_EXPR:
1046 if (arg2 == 0)
1047 return NULL_TREE;
1048 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1049 break;
1051 case FLOOR_MOD_EXPR:
1052 if (arg2 == 0)
1053 return NULL_TREE;
1054 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1055 break;
1057 case CEIL_MOD_EXPR:
1058 if (arg2 == 0)
1059 return NULL_TREE;
1060 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1061 break;
1063 case ROUND_MOD_EXPR:
1064 if (arg2 == 0)
1065 return NULL_TREE;
1066 res = wi::mod_round (arg1, arg2, sign, &overflow);
1067 break;
1069 case MIN_EXPR:
1070 res = wi::min (arg1, arg2, sign);
1071 break;
1073 case MAX_EXPR:
1074 res = wi::max (arg1, arg2, sign);
1075 break;
1077 default:
1078 return NULL_TREE;
1081 t = force_fit_type (type, res, overflowable,
1082 (((sign == SIGNED || overflowable == -1)
1083 && overflow)
1084 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1086 return t;
1089 tree
1090 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1092 return int_const_binop_1 (code, arg1, arg2, 1);
1095 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1096 constant. We assume ARG1 and ARG2 have the same data type, or at least
1097 are the same kind of constant and the same machine mode. Return zero if
1098 combining the constants is not allowed in the current operating mode. */
1100 static tree
1101 const_binop (enum tree_code code, tree arg1, tree arg2)
1103 /* Sanity check for the recursive cases. */
1104 if (!arg1 || !arg2)
1105 return NULL_TREE;
1107 STRIP_NOPS (arg1);
1108 STRIP_NOPS (arg2);
1110 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1112 if (code == POINTER_PLUS_EXPR)
1113 return int_const_binop (PLUS_EXPR,
1114 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1116 return int_const_binop (code, arg1, arg2);
1119 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1121 machine_mode mode;
1122 REAL_VALUE_TYPE d1;
1123 REAL_VALUE_TYPE d2;
1124 REAL_VALUE_TYPE value;
1125 REAL_VALUE_TYPE result;
1126 bool inexact;
1127 tree t, type;
1129 /* The following codes are handled by real_arithmetic. */
1130 switch (code)
1132 case PLUS_EXPR:
1133 case MINUS_EXPR:
1134 case MULT_EXPR:
1135 case RDIV_EXPR:
1136 case MIN_EXPR:
1137 case MAX_EXPR:
1138 break;
1140 default:
1141 return NULL_TREE;
1144 d1 = TREE_REAL_CST (arg1);
1145 d2 = TREE_REAL_CST (arg2);
1147 type = TREE_TYPE (arg1);
1148 mode = TYPE_MODE (type);
1150 /* Don't perform operation if we honor signaling NaNs and
1151 either operand is a signaling NaN. */
1152 if (HONOR_SNANS (mode)
1153 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1154 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1155 return NULL_TREE;
1157 /* Don't perform operation if it would raise a division
1158 by zero exception. */
1159 if (code == RDIV_EXPR
1160 && real_equal (&d2, &dconst0)
1161 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1162 return NULL_TREE;
1164 /* If either operand is a NaN, just return it. Otherwise, set up
1165 for floating-point trap; we return an overflow. */
1166 if (REAL_VALUE_ISNAN (d1))
1168 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1169 is off. */
1170 d1.signalling = 0;
1171 t = build_real (type, d1);
1172 return t;
1174 else if (REAL_VALUE_ISNAN (d2))
1176 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1177 is off. */
1178 d2.signalling = 0;
1179 t = build_real (type, d2);
1180 return t;
1183 inexact = real_arithmetic (&value, code, &d1, &d2);
1184 real_convert (&result, mode, &value);
1186 /* Don't constant fold this floating point operation if
1187 the result has overflowed and flag_trapping_math. */
1188 if (flag_trapping_math
1189 && MODE_HAS_INFINITIES (mode)
1190 && REAL_VALUE_ISINF (result)
1191 && !REAL_VALUE_ISINF (d1)
1192 && !REAL_VALUE_ISINF (d2))
1193 return NULL_TREE;
1195 /* Don't constant fold this floating point operation if the
1196 result may dependent upon the run-time rounding mode and
1197 flag_rounding_math is set, or if GCC's software emulation
1198 is unable to accurately represent the result. */
1199 if ((flag_rounding_math
1200 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1201 && (inexact || !real_identical (&result, &value)))
1202 return NULL_TREE;
1204 t = build_real (type, result);
1206 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1207 return t;
1210 if (TREE_CODE (arg1) == FIXED_CST)
1212 FIXED_VALUE_TYPE f1;
1213 FIXED_VALUE_TYPE f2;
1214 FIXED_VALUE_TYPE result;
1215 tree t, type;
1216 int sat_p;
1217 bool overflow_p;
1219 /* The following codes are handled by fixed_arithmetic. */
1220 switch (code)
1222 case PLUS_EXPR:
1223 case MINUS_EXPR:
1224 case MULT_EXPR:
1225 case TRUNC_DIV_EXPR:
1226 if (TREE_CODE (arg2) != FIXED_CST)
1227 return NULL_TREE;
1228 f2 = TREE_FIXED_CST (arg2);
1229 break;
1231 case LSHIFT_EXPR:
1232 case RSHIFT_EXPR:
1234 if (TREE_CODE (arg2) != INTEGER_CST)
1235 return NULL_TREE;
1236 wide_int w2 = arg2;
1237 f2.data.high = w2.elt (1);
1238 f2.data.low = w2.elt (0);
1239 f2.mode = SImode;
1241 break;
1243 default:
1244 return NULL_TREE;
1247 f1 = TREE_FIXED_CST (arg1);
1248 type = TREE_TYPE (arg1);
1249 sat_p = TYPE_SATURATING (type);
1250 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1251 t = build_fixed (type, result);
1252 /* Propagate overflow flags. */
1253 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1254 TREE_OVERFLOW (t) = 1;
1255 return t;
1258 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1260 tree type = TREE_TYPE (arg1);
1261 tree r1 = TREE_REALPART (arg1);
1262 tree i1 = TREE_IMAGPART (arg1);
1263 tree r2 = TREE_REALPART (arg2);
1264 tree i2 = TREE_IMAGPART (arg2);
1265 tree real, imag;
1267 switch (code)
1269 case PLUS_EXPR:
1270 case MINUS_EXPR:
1271 real = const_binop (code, r1, r2);
1272 imag = const_binop (code, i1, i2);
1273 break;
1275 case MULT_EXPR:
1276 if (COMPLEX_FLOAT_TYPE_P (type))
1277 return do_mpc_arg2 (arg1, arg2, type,
1278 /* do_nonfinite= */ folding_initializer,
1279 mpc_mul);
1281 real = const_binop (MINUS_EXPR,
1282 const_binop (MULT_EXPR, r1, r2),
1283 const_binop (MULT_EXPR, i1, i2));
1284 imag = const_binop (PLUS_EXPR,
1285 const_binop (MULT_EXPR, r1, i2),
1286 const_binop (MULT_EXPR, i1, r2));
1287 break;
1289 case RDIV_EXPR:
1290 if (COMPLEX_FLOAT_TYPE_P (type))
1291 return do_mpc_arg2 (arg1, arg2, type,
1292 /* do_nonfinite= */ folding_initializer,
1293 mpc_div);
1294 /* Fallthru. */
1295 case TRUNC_DIV_EXPR:
1296 case CEIL_DIV_EXPR:
1297 case FLOOR_DIV_EXPR:
1298 case ROUND_DIV_EXPR:
1299 if (flag_complex_method == 0)
1301 /* Keep this algorithm in sync with
1302 tree-complex.c:expand_complex_div_straight().
1304 Expand complex division to scalars, straightforward algorithm.
1305 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1306 t = br*br + bi*bi
1308 tree magsquared
1309 = const_binop (PLUS_EXPR,
1310 const_binop (MULT_EXPR, r2, r2),
1311 const_binop (MULT_EXPR, i2, i2));
1312 tree t1
1313 = const_binop (PLUS_EXPR,
1314 const_binop (MULT_EXPR, r1, r2),
1315 const_binop (MULT_EXPR, i1, i2));
1316 tree t2
1317 = const_binop (MINUS_EXPR,
1318 const_binop (MULT_EXPR, i1, r2),
1319 const_binop (MULT_EXPR, r1, i2));
1321 real = const_binop (code, t1, magsquared);
1322 imag = const_binop (code, t2, magsquared);
1324 else
1326 /* Keep this algorithm in sync with
1327 tree-complex.c:expand_complex_div_wide().
1329 Expand complex division to scalars, modified algorithm to minimize
1330 overflow with wide input ranges. */
1331 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1332 fold_abs_const (r2, TREE_TYPE (type)),
1333 fold_abs_const (i2, TREE_TYPE (type)));
1335 if (integer_nonzerop (compare))
1337 /* In the TRUE branch, we compute
1338 ratio = br/bi;
1339 div = (br * ratio) + bi;
1340 tr = (ar * ratio) + ai;
1341 ti = (ai * ratio) - ar;
1342 tr = tr / div;
1343 ti = ti / div; */
1344 tree ratio = const_binop (code, r2, i2);
1345 tree div = const_binop (PLUS_EXPR, i2,
1346 const_binop (MULT_EXPR, r2, ratio));
1347 real = const_binop (MULT_EXPR, r1, ratio);
1348 real = const_binop (PLUS_EXPR, real, i1);
1349 real = const_binop (code, real, div);
1351 imag = const_binop (MULT_EXPR, i1, ratio);
1352 imag = const_binop (MINUS_EXPR, imag, r1);
1353 imag = const_binop (code, imag, div);
1355 else
1357 /* In the FALSE branch, we compute
1358 ratio = d/c;
1359 divisor = (d * ratio) + c;
1360 tr = (b * ratio) + a;
1361 ti = b - (a * ratio);
1362 tr = tr / div;
1363 ti = ti / div; */
1364 tree ratio = const_binop (code, i2, r2);
1365 tree div = const_binop (PLUS_EXPR, r2,
1366 const_binop (MULT_EXPR, i2, ratio));
1368 real = const_binop (MULT_EXPR, i1, ratio);
1369 real = const_binop (PLUS_EXPR, real, r1);
1370 real = const_binop (code, real, div);
1372 imag = const_binop (MULT_EXPR, r1, ratio);
1373 imag = const_binop (MINUS_EXPR, i1, imag);
1374 imag = const_binop (code, imag, div);
1377 break;
1379 default:
1380 return NULL_TREE;
1383 if (real && imag)
1384 return build_complex (type, real, imag);
1387 if (TREE_CODE (arg1) == VECTOR_CST
1388 && TREE_CODE (arg2) == VECTOR_CST)
1390 tree type = TREE_TYPE (arg1);
1391 int count = TYPE_VECTOR_SUBPARTS (type), i;
1392 tree *elts = XALLOCAVEC (tree, count);
1394 for (i = 0; i < count; i++)
1396 tree elem1 = VECTOR_CST_ELT (arg1, i);
1397 tree elem2 = VECTOR_CST_ELT (arg2, i);
1399 elts[i] = const_binop (code, elem1, elem2);
1401 /* It is possible that const_binop cannot handle the given
1402 code and return NULL_TREE */
1403 if (elts[i] == NULL_TREE)
1404 return NULL_TREE;
1407 return build_vector (type, elts);
1410 /* Shifts allow a scalar offset for a vector. */
1411 if (TREE_CODE (arg1) == VECTOR_CST
1412 && TREE_CODE (arg2) == INTEGER_CST)
1414 tree type = TREE_TYPE (arg1);
1415 int count = TYPE_VECTOR_SUBPARTS (type), i;
1416 tree *elts = XALLOCAVEC (tree, count);
1418 for (i = 0; i < count; i++)
1420 tree elem1 = VECTOR_CST_ELT (arg1, i);
1422 elts[i] = const_binop (code, elem1, arg2);
1424 /* It is possible that const_binop cannot handle the given
1425 code and return NULL_TREE. */
1426 if (elts[i] == NULL_TREE)
1427 return NULL_TREE;
1430 return build_vector (type, elts);
1432 return NULL_TREE;
1435 /* Overload that adds a TYPE parameter to be able to dispatch
1436 to fold_relational_const. */
1438 tree
1439 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1441 if (TREE_CODE_CLASS (code) == tcc_comparison)
1442 return fold_relational_const (code, type, arg1, arg2);
1444 /* ??? Until we make the const_binop worker take the type of the
1445 result as argument put those cases that need it here. */
1446 switch (code)
1448 case COMPLEX_EXPR:
1449 if ((TREE_CODE (arg1) == REAL_CST
1450 && TREE_CODE (arg2) == REAL_CST)
1451 || (TREE_CODE (arg1) == INTEGER_CST
1452 && TREE_CODE (arg2) == INTEGER_CST))
1453 return build_complex (type, arg1, arg2);
1454 return NULL_TREE;
1456 case VEC_PACK_TRUNC_EXPR:
1457 case VEC_PACK_FIX_TRUNC_EXPR:
1459 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1460 tree *elts;
1462 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1463 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1464 if (TREE_CODE (arg1) != VECTOR_CST
1465 || TREE_CODE (arg2) != VECTOR_CST)
1466 return NULL_TREE;
1468 elts = XALLOCAVEC (tree, nelts);
1469 if (!vec_cst_ctor_to_array (arg1, elts)
1470 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1471 return NULL_TREE;
1473 for (i = 0; i < nelts; i++)
1475 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1476 ? NOP_EXPR : FIX_TRUNC_EXPR,
1477 TREE_TYPE (type), elts[i]);
1478 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1479 return NULL_TREE;
1482 return build_vector (type, elts);
1485 case VEC_WIDEN_MULT_LO_EXPR:
1486 case VEC_WIDEN_MULT_HI_EXPR:
1487 case VEC_WIDEN_MULT_EVEN_EXPR:
1488 case VEC_WIDEN_MULT_ODD_EXPR:
1490 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1491 unsigned int out, ofs, scale;
1492 tree *elts;
1494 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1495 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1496 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1497 return NULL_TREE;
1499 elts = XALLOCAVEC (tree, nelts * 4);
1500 if (!vec_cst_ctor_to_array (arg1, elts)
1501 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1502 return NULL_TREE;
1504 if (code == VEC_WIDEN_MULT_LO_EXPR)
1505 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1506 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1507 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1508 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1509 scale = 1, ofs = 0;
1510 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1511 scale = 1, ofs = 1;
1513 for (out = 0; out < nelts; out++)
1515 unsigned int in1 = (out << scale) + ofs;
1516 unsigned int in2 = in1 + nelts * 2;
1517 tree t1, t2;
1519 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1520 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1522 if (t1 == NULL_TREE || t2 == NULL_TREE)
1523 return NULL_TREE;
1524 elts[out] = const_binop (MULT_EXPR, t1, t2);
1525 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1526 return NULL_TREE;
1529 return build_vector (type, elts);
1532 default:;
1535 if (TREE_CODE_CLASS (code) != tcc_binary)
1536 return NULL_TREE;
1538 /* Make sure type and arg0 have the same saturating flag. */
1539 gcc_checking_assert (TYPE_SATURATING (type)
1540 == TYPE_SATURATING (TREE_TYPE (arg1)));
1542 return const_binop (code, arg1, arg2);
1545 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1546 Return zero if computing the constants is not possible. */
1548 tree
1549 const_unop (enum tree_code code, tree type, tree arg0)
1551 /* Don't perform the operation, other than NEGATE and ABS, if
1552 flag_signaling_nans is on and the operand is a signaling NaN. */
1553 if (TREE_CODE (arg0) == REAL_CST
1554 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1555 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1556 && code != NEGATE_EXPR
1557 && code != ABS_EXPR)
1558 return NULL_TREE;
1560 switch (code)
1562 CASE_CONVERT:
1563 case FLOAT_EXPR:
1564 case FIX_TRUNC_EXPR:
1565 case FIXED_CONVERT_EXPR:
1566 return fold_convert_const (code, type, arg0);
1568 case ADDR_SPACE_CONVERT_EXPR:
1569 /* If the source address is 0, and the source address space
1570 cannot have a valid object at 0, fold to dest type null. */
1571 if (integer_zerop (arg0)
1572 && !(targetm.addr_space.zero_address_valid
1573 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1574 return fold_convert_const (code, type, arg0);
1575 break;
1577 case VIEW_CONVERT_EXPR:
1578 return fold_view_convert_expr (type, arg0);
1580 case NEGATE_EXPR:
1582 /* Can't call fold_negate_const directly here as that doesn't
1583 handle all cases and we might not be able to negate some
1584 constants. */
1585 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1586 if (tem && CONSTANT_CLASS_P (tem))
1587 return tem;
1588 break;
1591 case ABS_EXPR:
1592 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1593 return fold_abs_const (arg0, type);
1594 break;
1596 case CONJ_EXPR:
1597 if (TREE_CODE (arg0) == COMPLEX_CST)
1599 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1600 TREE_TYPE (type));
1601 return build_complex (type, TREE_REALPART (arg0), ipart);
1603 break;
1605 case BIT_NOT_EXPR:
1606 if (TREE_CODE (arg0) == INTEGER_CST)
1607 return fold_not_const (arg0, type);
1608 /* Perform BIT_NOT_EXPR on each element individually. */
1609 else if (TREE_CODE (arg0) == VECTOR_CST)
1611 tree *elements;
1612 tree elem;
1613 unsigned count = VECTOR_CST_NELTS (arg0), i;
1615 elements = XALLOCAVEC (tree, count);
1616 for (i = 0; i < count; i++)
1618 elem = VECTOR_CST_ELT (arg0, i);
1619 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1620 if (elem == NULL_TREE)
1621 break;
1622 elements[i] = elem;
1624 if (i == count)
1625 return build_vector (type, elements);
1627 break;
1629 case TRUTH_NOT_EXPR:
1630 if (TREE_CODE (arg0) == INTEGER_CST)
1631 return constant_boolean_node (integer_zerop (arg0), type);
1632 break;
1634 case REALPART_EXPR:
1635 if (TREE_CODE (arg0) == COMPLEX_CST)
1636 return fold_convert (type, TREE_REALPART (arg0));
1637 break;
1639 case IMAGPART_EXPR:
1640 if (TREE_CODE (arg0) == COMPLEX_CST)
1641 return fold_convert (type, TREE_IMAGPART (arg0));
1642 break;
1644 case VEC_UNPACK_LO_EXPR:
1645 case VEC_UNPACK_HI_EXPR:
1646 case VEC_UNPACK_FLOAT_LO_EXPR:
1647 case VEC_UNPACK_FLOAT_HI_EXPR:
1649 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1650 tree *elts;
1651 enum tree_code subcode;
1653 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1654 if (TREE_CODE (arg0) != VECTOR_CST)
1655 return NULL_TREE;
1657 elts = XALLOCAVEC (tree, nelts * 2);
1658 if (!vec_cst_ctor_to_array (arg0, elts))
1659 return NULL_TREE;
1661 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1662 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1663 elts += nelts;
1665 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1666 subcode = NOP_EXPR;
1667 else
1668 subcode = FLOAT_EXPR;
1670 for (i = 0; i < nelts; i++)
1672 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1673 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1674 return NULL_TREE;
1677 return build_vector (type, elts);
1680 case REDUC_MIN_EXPR:
1681 case REDUC_MAX_EXPR:
1682 case REDUC_PLUS_EXPR:
1684 unsigned int nelts, i;
1685 tree *elts;
1686 enum tree_code subcode;
1688 if (TREE_CODE (arg0) != VECTOR_CST)
1689 return NULL_TREE;
1690 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1692 elts = XALLOCAVEC (tree, nelts);
1693 if (!vec_cst_ctor_to_array (arg0, elts))
1694 return NULL_TREE;
1696 switch (code)
1698 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1699 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1700 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1701 default: gcc_unreachable ();
1704 for (i = 1; i < nelts; i++)
1706 elts[0] = const_binop (subcode, elts[0], elts[i]);
1707 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1708 return NULL_TREE;
1711 return elts[0];
1714 default:
1715 break;
1718 return NULL_TREE;
1721 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1722 indicates which particular sizetype to create. */
1724 tree
1725 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1727 return build_int_cst (sizetype_tab[(int) kind], number);
1730 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1731 is a tree code. The type of the result is taken from the operands.
1732 Both must be equivalent integer types, ala int_binop_types_match_p.
1733 If the operands are constant, so is the result. */
1735 tree
1736 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1738 tree type = TREE_TYPE (arg0);
1740 if (arg0 == error_mark_node || arg1 == error_mark_node)
1741 return error_mark_node;
1743 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1744 TREE_TYPE (arg1)));
1746 /* Handle the special case of two integer constants faster. */
1747 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1749 /* And some specific cases even faster than that. */
1750 if (code == PLUS_EXPR)
1752 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1753 return arg1;
1754 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1755 return arg0;
1757 else if (code == MINUS_EXPR)
1759 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1760 return arg0;
1762 else if (code == MULT_EXPR)
1764 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1765 return arg1;
1768 /* Handle general case of two integer constants. For sizetype
1769 constant calculations we always want to know about overflow,
1770 even in the unsigned case. */
1771 return int_const_binop_1 (code, arg0, arg1, -1);
1774 return fold_build2_loc (loc, code, type, arg0, arg1);
1777 /* Given two values, either both of sizetype or both of bitsizetype,
1778 compute the difference between the two values. Return the value
1779 in signed type corresponding to the type of the operands. */
1781 tree
1782 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1784 tree type = TREE_TYPE (arg0);
1785 tree ctype;
1787 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1788 TREE_TYPE (arg1)));
1790 /* If the type is already signed, just do the simple thing. */
1791 if (!TYPE_UNSIGNED (type))
1792 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1794 if (type == sizetype)
1795 ctype = ssizetype;
1796 else if (type == bitsizetype)
1797 ctype = sbitsizetype;
1798 else
1799 ctype = signed_type_for (type);
1801 /* If either operand is not a constant, do the conversions to the signed
1802 type and subtract. The hardware will do the right thing with any
1803 overflow in the subtraction. */
1804 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1805 return size_binop_loc (loc, MINUS_EXPR,
1806 fold_convert_loc (loc, ctype, arg0),
1807 fold_convert_loc (loc, ctype, arg1));
1809 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1810 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1811 overflow) and negate (which can't either). Special-case a result
1812 of zero while we're here. */
1813 if (tree_int_cst_equal (arg0, arg1))
1814 return build_int_cst (ctype, 0);
1815 else if (tree_int_cst_lt (arg1, arg0))
1816 return fold_convert_loc (loc, ctype,
1817 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1818 else
1819 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1820 fold_convert_loc (loc, ctype,
1821 size_binop_loc (loc,
1822 MINUS_EXPR,
1823 arg1, arg0)));
1826 /* A subroutine of fold_convert_const handling conversions of an
1827 INTEGER_CST to another integer type. */
1829 static tree
1830 fold_convert_const_int_from_int (tree type, const_tree arg1)
1832 /* Given an integer constant, make new constant with new type,
1833 appropriately sign-extended or truncated. Use widest_int
1834 so that any extension is done according ARG1's type. */
1835 return force_fit_type (type, wi::to_widest (arg1),
1836 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1837 TREE_OVERFLOW (arg1));
1840 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1841 to an integer type. */
1843 static tree
1844 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1846 bool overflow = false;
1847 tree t;
1849 /* The following code implements the floating point to integer
1850 conversion rules required by the Java Language Specification,
1851 that IEEE NaNs are mapped to zero and values that overflow
1852 the target precision saturate, i.e. values greater than
1853 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1854 are mapped to INT_MIN. These semantics are allowed by the
1855 C and C++ standards that simply state that the behavior of
1856 FP-to-integer conversion is unspecified upon overflow. */
1858 wide_int val;
1859 REAL_VALUE_TYPE r;
1860 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1862 switch (code)
1864 case FIX_TRUNC_EXPR:
1865 real_trunc (&r, VOIDmode, &x);
1866 break;
1868 default:
1869 gcc_unreachable ();
1872 /* If R is NaN, return zero and show we have an overflow. */
1873 if (REAL_VALUE_ISNAN (r))
1875 overflow = true;
1876 val = wi::zero (TYPE_PRECISION (type));
1879 /* See if R is less than the lower bound or greater than the
1880 upper bound. */
1882 if (! overflow)
1884 tree lt = TYPE_MIN_VALUE (type);
1885 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1886 if (real_less (&r, &l))
1888 overflow = true;
1889 val = lt;
1893 if (! overflow)
1895 tree ut = TYPE_MAX_VALUE (type);
1896 if (ut)
1898 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1899 if (real_less (&u, &r))
1901 overflow = true;
1902 val = ut;
1907 if (! overflow)
1908 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1910 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1911 return t;
1914 /* A subroutine of fold_convert_const handling conversions of a
1915 FIXED_CST to an integer type. */
1917 static tree
1918 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1920 tree t;
1921 double_int temp, temp_trunc;
1922 unsigned int mode;
1924 /* Right shift FIXED_CST to temp by fbit. */
1925 temp = TREE_FIXED_CST (arg1).data;
1926 mode = TREE_FIXED_CST (arg1).mode;
1927 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1929 temp = temp.rshift (GET_MODE_FBIT (mode),
1930 HOST_BITS_PER_DOUBLE_INT,
1931 SIGNED_FIXED_POINT_MODE_P (mode));
1933 /* Left shift temp to temp_trunc by fbit. */
1934 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1935 HOST_BITS_PER_DOUBLE_INT,
1936 SIGNED_FIXED_POINT_MODE_P (mode));
1938 else
1940 temp = double_int_zero;
1941 temp_trunc = double_int_zero;
1944 /* If FIXED_CST is negative, we need to round the value toward 0.
1945 By checking if the fractional bits are not zero to add 1 to temp. */
1946 if (SIGNED_FIXED_POINT_MODE_P (mode)
1947 && temp_trunc.is_negative ()
1948 && TREE_FIXED_CST (arg1).data != temp_trunc)
1949 temp += double_int_one;
1951 /* Given a fixed-point constant, make new constant with new type,
1952 appropriately sign-extended or truncated. */
1953 t = force_fit_type (type, temp, -1,
1954 (temp.is_negative ()
1955 && (TYPE_UNSIGNED (type)
1956 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1957 | TREE_OVERFLOW (arg1));
1959 return t;
1962 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1963 to another floating point type. */
1965 static tree
1966 fold_convert_const_real_from_real (tree type, const_tree arg1)
1968 REAL_VALUE_TYPE value;
1969 tree t;
1971 /* Don't perform the operation if flag_signaling_nans is on
1972 and the operand is a signaling NaN. */
1973 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1974 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
1975 return NULL_TREE;
1977 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1978 t = build_real (type, value);
1980 /* If converting an infinity or NAN to a representation that doesn't
1981 have one, set the overflow bit so that we can produce some kind of
1982 error message at the appropriate point if necessary. It's not the
1983 most user-friendly message, but it's better than nothing. */
1984 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1985 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1986 TREE_OVERFLOW (t) = 1;
1987 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1988 && !MODE_HAS_NANS (TYPE_MODE (type)))
1989 TREE_OVERFLOW (t) = 1;
1990 /* Regular overflow, conversion produced an infinity in a mode that
1991 can't represent them. */
1992 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1993 && REAL_VALUE_ISINF (value)
1994 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1995 TREE_OVERFLOW (t) = 1;
1996 else
1997 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1998 return t;
2001 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2002 to a floating point type. */
2004 static tree
2005 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2007 REAL_VALUE_TYPE value;
2008 tree t;
2010 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2011 t = build_real (type, value);
2013 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2014 return t;
2017 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2018 to another fixed-point type. */
2020 static tree
2021 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2023 FIXED_VALUE_TYPE value;
2024 tree t;
2025 bool overflow_p;
2027 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2028 TYPE_SATURATING (type));
2029 t = build_fixed (type, value);
2031 /* Propagate overflow flags. */
2032 if (overflow_p | TREE_OVERFLOW (arg1))
2033 TREE_OVERFLOW (t) = 1;
2034 return t;
2037 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2038 to a fixed-point type. */
2040 static tree
2041 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2043 FIXED_VALUE_TYPE value;
2044 tree t;
2045 bool overflow_p;
2046 double_int di;
2048 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2050 di.low = TREE_INT_CST_ELT (arg1, 0);
2051 if (TREE_INT_CST_NUNITS (arg1) == 1)
2052 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2053 else
2054 di.high = TREE_INT_CST_ELT (arg1, 1);
2056 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2057 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2058 TYPE_SATURATING (type));
2059 t = build_fixed (type, value);
2061 /* Propagate overflow flags. */
2062 if (overflow_p | TREE_OVERFLOW (arg1))
2063 TREE_OVERFLOW (t) = 1;
2064 return t;
2067 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2068 to a fixed-point type. */
2070 static tree
2071 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2073 FIXED_VALUE_TYPE value;
2074 tree t;
2075 bool overflow_p;
2077 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2078 &TREE_REAL_CST (arg1),
2079 TYPE_SATURATING (type));
2080 t = build_fixed (type, value);
2082 /* Propagate overflow flags. */
2083 if (overflow_p | TREE_OVERFLOW (arg1))
2084 TREE_OVERFLOW (t) = 1;
2085 return t;
2088 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2089 type TYPE. If no simplification can be done return NULL_TREE. */
2091 static tree
2092 fold_convert_const (enum tree_code code, tree type, tree arg1)
2094 if (TREE_TYPE (arg1) == type)
2095 return arg1;
2097 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2098 || TREE_CODE (type) == OFFSET_TYPE)
2100 if (TREE_CODE (arg1) == INTEGER_CST)
2101 return fold_convert_const_int_from_int (type, arg1);
2102 else if (TREE_CODE (arg1) == REAL_CST)
2103 return fold_convert_const_int_from_real (code, type, arg1);
2104 else if (TREE_CODE (arg1) == FIXED_CST)
2105 return fold_convert_const_int_from_fixed (type, arg1);
2107 else if (TREE_CODE (type) == REAL_TYPE)
2109 if (TREE_CODE (arg1) == INTEGER_CST)
2110 return build_real_from_int_cst (type, arg1);
2111 else if (TREE_CODE (arg1) == REAL_CST)
2112 return fold_convert_const_real_from_real (type, arg1);
2113 else if (TREE_CODE (arg1) == FIXED_CST)
2114 return fold_convert_const_real_from_fixed (type, arg1);
2116 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2118 if (TREE_CODE (arg1) == FIXED_CST)
2119 return fold_convert_const_fixed_from_fixed (type, arg1);
2120 else if (TREE_CODE (arg1) == INTEGER_CST)
2121 return fold_convert_const_fixed_from_int (type, arg1);
2122 else if (TREE_CODE (arg1) == REAL_CST)
2123 return fold_convert_const_fixed_from_real (type, arg1);
2125 else if (TREE_CODE (type) == VECTOR_TYPE)
2127 if (TREE_CODE (arg1) == VECTOR_CST
2128 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2130 int len = TYPE_VECTOR_SUBPARTS (type);
2131 tree elttype = TREE_TYPE (type);
2132 tree *v = XALLOCAVEC (tree, len);
2133 for (int i = 0; i < len; ++i)
2135 tree elt = VECTOR_CST_ELT (arg1, i);
2136 tree cvt = fold_convert_const (code, elttype, elt);
2137 if (cvt == NULL_TREE)
2138 return NULL_TREE;
2139 v[i] = cvt;
2141 return build_vector (type, v);
2144 return NULL_TREE;
2147 /* Construct a vector of zero elements of vector type TYPE. */
2149 static tree
2150 build_zero_vector (tree type)
2152 tree t;
2154 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2155 return build_vector_from_val (type, t);
2158 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2160 bool
2161 fold_convertible_p (const_tree type, const_tree arg)
2163 tree orig = TREE_TYPE (arg);
2165 if (type == orig)
2166 return true;
2168 if (TREE_CODE (arg) == ERROR_MARK
2169 || TREE_CODE (type) == ERROR_MARK
2170 || TREE_CODE (orig) == ERROR_MARK)
2171 return false;
2173 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2174 return true;
2176 switch (TREE_CODE (type))
2178 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2179 case POINTER_TYPE: case REFERENCE_TYPE:
2180 case OFFSET_TYPE:
2181 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2182 || TREE_CODE (orig) == OFFSET_TYPE);
2184 case REAL_TYPE:
2185 case FIXED_POINT_TYPE:
2186 case VECTOR_TYPE:
2187 case VOID_TYPE:
2188 return TREE_CODE (type) == TREE_CODE (orig);
2190 default:
2191 return false;
2195 /* Convert expression ARG to type TYPE. Used by the middle-end for
2196 simple conversions in preference to calling the front-end's convert. */
2198 tree
2199 fold_convert_loc (location_t loc, tree type, tree arg)
2201 tree orig = TREE_TYPE (arg);
2202 tree tem;
2204 if (type == orig)
2205 return arg;
2207 if (TREE_CODE (arg) == ERROR_MARK
2208 || TREE_CODE (type) == ERROR_MARK
2209 || TREE_CODE (orig) == ERROR_MARK)
2210 return error_mark_node;
2212 switch (TREE_CODE (type))
2214 case POINTER_TYPE:
2215 case REFERENCE_TYPE:
2216 /* Handle conversions between pointers to different address spaces. */
2217 if (POINTER_TYPE_P (orig)
2218 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2219 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2220 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2221 /* fall through */
2223 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2224 case OFFSET_TYPE:
2225 if (TREE_CODE (arg) == INTEGER_CST)
2227 tem = fold_convert_const (NOP_EXPR, type, arg);
2228 if (tem != NULL_TREE)
2229 return tem;
2231 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2232 || TREE_CODE (orig) == OFFSET_TYPE)
2233 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2234 if (TREE_CODE (orig) == COMPLEX_TYPE)
2235 return fold_convert_loc (loc, type,
2236 fold_build1_loc (loc, REALPART_EXPR,
2237 TREE_TYPE (orig), arg));
2238 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2239 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2240 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2242 case REAL_TYPE:
2243 if (TREE_CODE (arg) == INTEGER_CST)
2245 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2246 if (tem != NULL_TREE)
2247 return tem;
2249 else if (TREE_CODE (arg) == REAL_CST)
2251 tem = fold_convert_const (NOP_EXPR, type, arg);
2252 if (tem != NULL_TREE)
2253 return tem;
2255 else if (TREE_CODE (arg) == FIXED_CST)
2257 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2258 if (tem != NULL_TREE)
2259 return tem;
2262 switch (TREE_CODE (orig))
2264 case INTEGER_TYPE:
2265 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2266 case POINTER_TYPE: case REFERENCE_TYPE:
2267 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2269 case REAL_TYPE:
2270 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2272 case FIXED_POINT_TYPE:
2273 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2275 case COMPLEX_TYPE:
2276 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2277 return fold_convert_loc (loc, type, tem);
2279 default:
2280 gcc_unreachable ();
2283 case FIXED_POINT_TYPE:
2284 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2285 || TREE_CODE (arg) == REAL_CST)
2287 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2288 if (tem != NULL_TREE)
2289 goto fold_convert_exit;
2292 switch (TREE_CODE (orig))
2294 case FIXED_POINT_TYPE:
2295 case INTEGER_TYPE:
2296 case ENUMERAL_TYPE:
2297 case BOOLEAN_TYPE:
2298 case REAL_TYPE:
2299 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2301 case COMPLEX_TYPE:
2302 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2303 return fold_convert_loc (loc, type, tem);
2305 default:
2306 gcc_unreachable ();
2309 case COMPLEX_TYPE:
2310 switch (TREE_CODE (orig))
2312 case INTEGER_TYPE:
2313 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2314 case POINTER_TYPE: case REFERENCE_TYPE:
2315 case REAL_TYPE:
2316 case FIXED_POINT_TYPE:
2317 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2318 fold_convert_loc (loc, TREE_TYPE (type), arg),
2319 fold_convert_loc (loc, TREE_TYPE (type),
2320 integer_zero_node));
2321 case COMPLEX_TYPE:
2323 tree rpart, ipart;
2325 if (TREE_CODE (arg) == COMPLEX_EXPR)
2327 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2328 TREE_OPERAND (arg, 0));
2329 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2330 TREE_OPERAND (arg, 1));
2331 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2334 arg = save_expr (arg);
2335 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2336 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2337 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2338 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2339 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2342 default:
2343 gcc_unreachable ();
2346 case VECTOR_TYPE:
2347 if (integer_zerop (arg))
2348 return build_zero_vector (type);
2349 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2350 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2351 || TREE_CODE (orig) == VECTOR_TYPE);
2352 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2354 case VOID_TYPE:
2355 tem = fold_ignored_result (arg);
2356 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2358 default:
2359 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2360 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2361 gcc_unreachable ();
2363 fold_convert_exit:
2364 protected_set_expr_location_unshare (tem, loc);
2365 return tem;
2368 /* Return false if expr can be assumed not to be an lvalue, true
2369 otherwise. */
2371 static bool
2372 maybe_lvalue_p (const_tree x)
2374 /* We only need to wrap lvalue tree codes. */
2375 switch (TREE_CODE (x))
2377 case VAR_DECL:
2378 case PARM_DECL:
2379 case RESULT_DECL:
2380 case LABEL_DECL:
2381 case FUNCTION_DECL:
2382 case SSA_NAME:
2384 case COMPONENT_REF:
2385 case MEM_REF:
2386 case INDIRECT_REF:
2387 case ARRAY_REF:
2388 case ARRAY_RANGE_REF:
2389 case BIT_FIELD_REF:
2390 case OBJ_TYPE_REF:
2392 case REALPART_EXPR:
2393 case IMAGPART_EXPR:
2394 case PREINCREMENT_EXPR:
2395 case PREDECREMENT_EXPR:
2396 case SAVE_EXPR:
2397 case TRY_CATCH_EXPR:
2398 case WITH_CLEANUP_EXPR:
2399 case COMPOUND_EXPR:
2400 case MODIFY_EXPR:
2401 case TARGET_EXPR:
2402 case COND_EXPR:
2403 case BIND_EXPR:
2404 break;
2406 default:
2407 /* Assume the worst for front-end tree codes. */
2408 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2409 break;
2410 return false;
2413 return true;
2416 /* Return an expr equal to X but certainly not valid as an lvalue. */
2418 tree
2419 non_lvalue_loc (location_t loc, tree x)
2421 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2422 us. */
2423 if (in_gimple_form)
2424 return x;
2426 if (! maybe_lvalue_p (x))
2427 return x;
2428 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2431 /* When pedantic, return an expr equal to X but certainly not valid as a
2432 pedantic lvalue. Otherwise, return X. */
2434 static tree
2435 pedantic_non_lvalue_loc (location_t loc, tree x)
2437 return protected_set_expr_location_unshare (x, loc);
2440 /* Given a tree comparison code, return the code that is the logical inverse.
2441 It is generally not safe to do this for floating-point comparisons, except
2442 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2443 ERROR_MARK in this case. */
2445 enum tree_code
2446 invert_tree_comparison (enum tree_code code, bool honor_nans)
2448 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2449 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2450 return ERROR_MARK;
2452 switch (code)
2454 case EQ_EXPR:
2455 return NE_EXPR;
2456 case NE_EXPR:
2457 return EQ_EXPR;
2458 case GT_EXPR:
2459 return honor_nans ? UNLE_EXPR : LE_EXPR;
2460 case GE_EXPR:
2461 return honor_nans ? UNLT_EXPR : LT_EXPR;
2462 case LT_EXPR:
2463 return honor_nans ? UNGE_EXPR : GE_EXPR;
2464 case LE_EXPR:
2465 return honor_nans ? UNGT_EXPR : GT_EXPR;
2466 case LTGT_EXPR:
2467 return UNEQ_EXPR;
2468 case UNEQ_EXPR:
2469 return LTGT_EXPR;
2470 case UNGT_EXPR:
2471 return LE_EXPR;
2472 case UNGE_EXPR:
2473 return LT_EXPR;
2474 case UNLT_EXPR:
2475 return GE_EXPR;
2476 case UNLE_EXPR:
2477 return GT_EXPR;
2478 case ORDERED_EXPR:
2479 return UNORDERED_EXPR;
2480 case UNORDERED_EXPR:
2481 return ORDERED_EXPR;
2482 default:
2483 gcc_unreachable ();
2487 /* Similar, but return the comparison that results if the operands are
2488 swapped. This is safe for floating-point. */
2490 enum tree_code
2491 swap_tree_comparison (enum tree_code code)
2493 switch (code)
2495 case EQ_EXPR:
2496 case NE_EXPR:
2497 case ORDERED_EXPR:
2498 case UNORDERED_EXPR:
2499 case LTGT_EXPR:
2500 case UNEQ_EXPR:
2501 return code;
2502 case GT_EXPR:
2503 return LT_EXPR;
2504 case GE_EXPR:
2505 return LE_EXPR;
2506 case LT_EXPR:
2507 return GT_EXPR;
2508 case LE_EXPR:
2509 return GE_EXPR;
2510 case UNGT_EXPR:
2511 return UNLT_EXPR;
2512 case UNGE_EXPR:
2513 return UNLE_EXPR;
2514 case UNLT_EXPR:
2515 return UNGT_EXPR;
2516 case UNLE_EXPR:
2517 return UNGE_EXPR;
2518 default:
2519 gcc_unreachable ();
2524 /* Convert a comparison tree code from an enum tree_code representation
2525 into a compcode bit-based encoding. This function is the inverse of
2526 compcode_to_comparison. */
2528 static enum comparison_code
2529 comparison_to_compcode (enum tree_code code)
2531 switch (code)
2533 case LT_EXPR:
2534 return COMPCODE_LT;
2535 case EQ_EXPR:
2536 return COMPCODE_EQ;
2537 case LE_EXPR:
2538 return COMPCODE_LE;
2539 case GT_EXPR:
2540 return COMPCODE_GT;
2541 case NE_EXPR:
2542 return COMPCODE_NE;
2543 case GE_EXPR:
2544 return COMPCODE_GE;
2545 case ORDERED_EXPR:
2546 return COMPCODE_ORD;
2547 case UNORDERED_EXPR:
2548 return COMPCODE_UNORD;
2549 case UNLT_EXPR:
2550 return COMPCODE_UNLT;
2551 case UNEQ_EXPR:
2552 return COMPCODE_UNEQ;
2553 case UNLE_EXPR:
2554 return COMPCODE_UNLE;
2555 case UNGT_EXPR:
2556 return COMPCODE_UNGT;
2557 case LTGT_EXPR:
2558 return COMPCODE_LTGT;
2559 case UNGE_EXPR:
2560 return COMPCODE_UNGE;
2561 default:
2562 gcc_unreachable ();
2566 /* Convert a compcode bit-based encoding of a comparison operator back
2567 to GCC's enum tree_code representation. This function is the
2568 inverse of comparison_to_compcode. */
2570 static enum tree_code
2571 compcode_to_comparison (enum comparison_code code)
2573 switch (code)
2575 case COMPCODE_LT:
2576 return LT_EXPR;
2577 case COMPCODE_EQ:
2578 return EQ_EXPR;
2579 case COMPCODE_LE:
2580 return LE_EXPR;
2581 case COMPCODE_GT:
2582 return GT_EXPR;
2583 case COMPCODE_NE:
2584 return NE_EXPR;
2585 case COMPCODE_GE:
2586 return GE_EXPR;
2587 case COMPCODE_ORD:
2588 return ORDERED_EXPR;
2589 case COMPCODE_UNORD:
2590 return UNORDERED_EXPR;
2591 case COMPCODE_UNLT:
2592 return UNLT_EXPR;
2593 case COMPCODE_UNEQ:
2594 return UNEQ_EXPR;
2595 case COMPCODE_UNLE:
2596 return UNLE_EXPR;
2597 case COMPCODE_UNGT:
2598 return UNGT_EXPR;
2599 case COMPCODE_LTGT:
2600 return LTGT_EXPR;
2601 case COMPCODE_UNGE:
2602 return UNGE_EXPR;
2603 default:
2604 gcc_unreachable ();
2608 /* Return a tree for the comparison which is the combination of
2609 doing the AND or OR (depending on CODE) of the two operations LCODE
2610 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2611 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2612 if this makes the transformation invalid. */
2614 tree
2615 combine_comparisons (location_t loc,
2616 enum tree_code code, enum tree_code lcode,
2617 enum tree_code rcode, tree truth_type,
2618 tree ll_arg, tree lr_arg)
2620 bool honor_nans = HONOR_NANS (ll_arg);
2621 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2622 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2623 int compcode;
2625 switch (code)
2627 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2628 compcode = lcompcode & rcompcode;
2629 break;
2631 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2632 compcode = lcompcode | rcompcode;
2633 break;
2635 default:
2636 return NULL_TREE;
2639 if (!honor_nans)
2641 /* Eliminate unordered comparisons, as well as LTGT and ORD
2642 which are not used unless the mode has NaNs. */
2643 compcode &= ~COMPCODE_UNORD;
2644 if (compcode == COMPCODE_LTGT)
2645 compcode = COMPCODE_NE;
2646 else if (compcode == COMPCODE_ORD)
2647 compcode = COMPCODE_TRUE;
2649 else if (flag_trapping_math)
2651 /* Check that the original operation and the optimized ones will trap
2652 under the same condition. */
2653 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2654 && (lcompcode != COMPCODE_EQ)
2655 && (lcompcode != COMPCODE_ORD);
2656 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2657 && (rcompcode != COMPCODE_EQ)
2658 && (rcompcode != COMPCODE_ORD);
2659 bool trap = (compcode & COMPCODE_UNORD) == 0
2660 && (compcode != COMPCODE_EQ)
2661 && (compcode != COMPCODE_ORD);
2663 /* In a short-circuited boolean expression the LHS might be
2664 such that the RHS, if evaluated, will never trap. For
2665 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2666 if neither x nor y is NaN. (This is a mixed blessing: for
2667 example, the expression above will never trap, hence
2668 optimizing it to x < y would be invalid). */
2669 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2670 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2671 rtrap = false;
2673 /* If the comparison was short-circuited, and only the RHS
2674 trapped, we may now generate a spurious trap. */
2675 if (rtrap && !ltrap
2676 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2677 return NULL_TREE;
2679 /* If we changed the conditions that cause a trap, we lose. */
2680 if ((ltrap || rtrap) != trap)
2681 return NULL_TREE;
2684 if (compcode == COMPCODE_TRUE)
2685 return constant_boolean_node (true, truth_type);
2686 else if (compcode == COMPCODE_FALSE)
2687 return constant_boolean_node (false, truth_type);
2688 else
2690 enum tree_code tcode;
2692 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2693 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2697 /* Return nonzero if two operands (typically of the same tree node)
2698 are necessarily equal. FLAGS modifies behavior as follows:
2700 If OEP_ONLY_CONST is set, only return nonzero for constants.
2701 This function tests whether the operands are indistinguishable;
2702 it does not test whether they are equal using C's == operation.
2703 The distinction is important for IEEE floating point, because
2704 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2705 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2707 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2708 even though it may hold multiple values during a function.
2709 This is because a GCC tree node guarantees that nothing else is
2710 executed between the evaluation of its "operands" (which may often
2711 be evaluated in arbitrary order). Hence if the operands themselves
2712 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2713 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2714 unset means assuming isochronic (or instantaneous) tree equivalence.
2715 Unless comparing arbitrary expression trees, such as from different
2716 statements, this flag can usually be left unset.
2718 If OEP_PURE_SAME is set, then pure functions with identical arguments
2719 are considered the same. It is used when the caller has other ways
2720 to ensure that global memory is unchanged in between.
2722 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2723 not values of expressions.
2725 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2726 any operand with side effect. This is unnecesarily conservative in the
2727 case we know that arg0 and arg1 are in disjoint code paths (such as in
2728 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2729 addresses with TREE_CONSTANT flag set so we know that &var == &var
2730 even if var is volatile. */
2733 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2735 /* When checking, verify at the outermost operand_equal_p call that
2736 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2737 hash value. */
2738 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2740 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2742 if (arg0 != arg1)
2744 inchash::hash hstate0 (0), hstate1 (0);
2745 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2746 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2747 hashval_t h0 = hstate0.end ();
2748 hashval_t h1 = hstate1.end ();
2749 gcc_assert (h0 == h1);
2751 return 1;
2753 else
2754 return 0;
2757 /* If either is ERROR_MARK, they aren't equal. */
2758 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2759 || TREE_TYPE (arg0) == error_mark_node
2760 || TREE_TYPE (arg1) == error_mark_node)
2761 return 0;
2763 /* Similar, if either does not have a type (like a released SSA name),
2764 they aren't equal. */
2765 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2766 return 0;
2768 /* We cannot consider pointers to different address space equal. */
2769 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2770 && POINTER_TYPE_P (TREE_TYPE (arg1))
2771 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2772 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2773 return 0;
2775 /* Check equality of integer constants before bailing out due to
2776 precision differences. */
2777 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2779 /* Address of INTEGER_CST is not defined; check that we did not forget
2780 to drop the OEP_ADDRESS_OF flags. */
2781 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2782 return tree_int_cst_equal (arg0, arg1);
2785 if (!(flags & OEP_ADDRESS_OF))
2787 /* If both types don't have the same signedness, then we can't consider
2788 them equal. We must check this before the STRIP_NOPS calls
2789 because they may change the signedness of the arguments. As pointers
2790 strictly don't have a signedness, require either two pointers or
2791 two non-pointers as well. */
2792 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2793 || POINTER_TYPE_P (TREE_TYPE (arg0))
2794 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2795 return 0;
2797 /* If both types don't have the same precision, then it is not safe
2798 to strip NOPs. */
2799 if (element_precision (TREE_TYPE (arg0))
2800 != element_precision (TREE_TYPE (arg1)))
2801 return 0;
2803 STRIP_NOPS (arg0);
2804 STRIP_NOPS (arg1);
2806 #if 0
2807 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2808 sanity check once the issue is solved. */
2809 else
2810 /* Addresses of conversions and SSA_NAMEs (and many other things)
2811 are not defined. Check that we did not forget to drop the
2812 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2813 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2814 && TREE_CODE (arg0) != SSA_NAME);
2815 #endif
2817 /* In case both args are comparisons but with different comparison
2818 code, try to swap the comparison operands of one arg to produce
2819 a match and compare that variant. */
2820 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2821 && COMPARISON_CLASS_P (arg0)
2822 && COMPARISON_CLASS_P (arg1))
2824 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2826 if (TREE_CODE (arg0) == swap_code)
2827 return operand_equal_p (TREE_OPERAND (arg0, 0),
2828 TREE_OPERAND (arg1, 1), flags)
2829 && operand_equal_p (TREE_OPERAND (arg0, 1),
2830 TREE_OPERAND (arg1, 0), flags);
2833 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2835 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2836 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2838 else if (flags & OEP_ADDRESS_OF)
2840 /* If we are interested in comparing addresses ignore
2841 MEM_REF wrappings of the base that can appear just for
2842 TBAA reasons. */
2843 if (TREE_CODE (arg0) == MEM_REF
2844 && DECL_P (arg1)
2845 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2846 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2847 && integer_zerop (TREE_OPERAND (arg0, 1)))
2848 return 1;
2849 else if (TREE_CODE (arg1) == MEM_REF
2850 && DECL_P (arg0)
2851 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2852 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2853 && integer_zerop (TREE_OPERAND (arg1, 1)))
2854 return 1;
2855 return 0;
2857 else
2858 return 0;
2861 /* When not checking adddresses, this is needed for conversions and for
2862 COMPONENT_REF. Might as well play it safe and always test this. */
2863 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2864 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2865 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2866 && !(flags & OEP_ADDRESS_OF)))
2867 return 0;
2869 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2870 We don't care about side effects in that case because the SAVE_EXPR
2871 takes care of that for us. In all other cases, two expressions are
2872 equal if they have no side effects. If we have two identical
2873 expressions with side effects that should be treated the same due
2874 to the only side effects being identical SAVE_EXPR's, that will
2875 be detected in the recursive calls below.
2876 If we are taking an invariant address of two identical objects
2877 they are necessarily equal as well. */
2878 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2879 && (TREE_CODE (arg0) == SAVE_EXPR
2880 || (flags & OEP_MATCH_SIDE_EFFECTS)
2881 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2882 return 1;
2884 /* Next handle constant cases, those for which we can return 1 even
2885 if ONLY_CONST is set. */
2886 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2887 switch (TREE_CODE (arg0))
2889 case INTEGER_CST:
2890 return tree_int_cst_equal (arg0, arg1);
2892 case FIXED_CST:
2893 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2894 TREE_FIXED_CST (arg1));
2896 case REAL_CST:
2897 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2898 return 1;
2901 if (!HONOR_SIGNED_ZEROS (arg0))
2903 /* If we do not distinguish between signed and unsigned zero,
2904 consider them equal. */
2905 if (real_zerop (arg0) && real_zerop (arg1))
2906 return 1;
2908 return 0;
2910 case VECTOR_CST:
2912 unsigned i;
2914 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2915 return 0;
2917 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2919 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2920 VECTOR_CST_ELT (arg1, i), flags))
2921 return 0;
2923 return 1;
2926 case COMPLEX_CST:
2927 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2928 flags)
2929 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2930 flags));
2932 case STRING_CST:
2933 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2934 && ! memcmp (TREE_STRING_POINTER (arg0),
2935 TREE_STRING_POINTER (arg1),
2936 TREE_STRING_LENGTH (arg0)));
2938 case ADDR_EXPR:
2939 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2940 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2941 flags | OEP_ADDRESS_OF
2942 | OEP_MATCH_SIDE_EFFECTS);
2943 case CONSTRUCTOR:
2944 /* In GIMPLE empty constructors are allowed in initializers of
2945 aggregates. */
2946 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
2947 default:
2948 break;
2951 if (flags & OEP_ONLY_CONST)
2952 return 0;
2954 /* Define macros to test an operand from arg0 and arg1 for equality and a
2955 variant that allows null and views null as being different from any
2956 non-null value. In the latter case, if either is null, the both
2957 must be; otherwise, do the normal comparison. */
2958 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2959 TREE_OPERAND (arg1, N), flags)
2961 #define OP_SAME_WITH_NULL(N) \
2962 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2963 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2965 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2967 case tcc_unary:
2968 /* Two conversions are equal only if signedness and modes match. */
2969 switch (TREE_CODE (arg0))
2971 CASE_CONVERT:
2972 case FIX_TRUNC_EXPR:
2973 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2974 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2975 return 0;
2976 break;
2977 default:
2978 break;
2981 return OP_SAME (0);
2984 case tcc_comparison:
2985 case tcc_binary:
2986 if (OP_SAME (0) && OP_SAME (1))
2987 return 1;
2989 /* For commutative ops, allow the other order. */
2990 return (commutative_tree_code (TREE_CODE (arg0))
2991 && operand_equal_p (TREE_OPERAND (arg0, 0),
2992 TREE_OPERAND (arg1, 1), flags)
2993 && operand_equal_p (TREE_OPERAND (arg0, 1),
2994 TREE_OPERAND (arg1, 0), flags));
2996 case tcc_reference:
2997 /* If either of the pointer (or reference) expressions we are
2998 dereferencing contain a side effect, these cannot be equal,
2999 but their addresses can be. */
3000 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3001 && (TREE_SIDE_EFFECTS (arg0)
3002 || TREE_SIDE_EFFECTS (arg1)))
3003 return 0;
3005 switch (TREE_CODE (arg0))
3007 case INDIRECT_REF:
3008 if (!(flags & OEP_ADDRESS_OF)
3009 && (TYPE_ALIGN (TREE_TYPE (arg0))
3010 != TYPE_ALIGN (TREE_TYPE (arg1))))
3011 return 0;
3012 flags &= ~OEP_ADDRESS_OF;
3013 return OP_SAME (0);
3015 case IMAGPART_EXPR:
3016 /* Require the same offset. */
3017 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3018 TYPE_SIZE (TREE_TYPE (arg1)),
3019 flags & ~OEP_ADDRESS_OF))
3020 return 0;
3022 /* Fallthru. */
3023 case REALPART_EXPR:
3024 case VIEW_CONVERT_EXPR:
3025 return OP_SAME (0);
3027 case TARGET_MEM_REF:
3028 case MEM_REF:
3029 if (!(flags & OEP_ADDRESS_OF))
3031 /* Require equal access sizes */
3032 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3033 && (!TYPE_SIZE (TREE_TYPE (arg0))
3034 || !TYPE_SIZE (TREE_TYPE (arg1))
3035 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3036 TYPE_SIZE (TREE_TYPE (arg1)),
3037 flags)))
3038 return 0;
3039 /* Verify that access happens in similar types. */
3040 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3041 return 0;
3042 /* Verify that accesses are TBAA compatible. */
3043 if (!alias_ptr_types_compatible_p
3044 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3045 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3046 || (MR_DEPENDENCE_CLIQUE (arg0)
3047 != MR_DEPENDENCE_CLIQUE (arg1))
3048 || (MR_DEPENDENCE_BASE (arg0)
3049 != MR_DEPENDENCE_BASE (arg1)))
3050 return 0;
3051 /* Verify that alignment is compatible. */
3052 if (TYPE_ALIGN (TREE_TYPE (arg0))
3053 != TYPE_ALIGN (TREE_TYPE (arg1)))
3054 return 0;
3056 flags &= ~OEP_ADDRESS_OF;
3057 return (OP_SAME (0) && OP_SAME (1)
3058 /* TARGET_MEM_REF require equal extra operands. */
3059 && (TREE_CODE (arg0) != TARGET_MEM_REF
3060 || (OP_SAME_WITH_NULL (2)
3061 && OP_SAME_WITH_NULL (3)
3062 && OP_SAME_WITH_NULL (4))));
3064 case ARRAY_REF:
3065 case ARRAY_RANGE_REF:
3066 if (!OP_SAME (0))
3067 return 0;
3068 flags &= ~OEP_ADDRESS_OF;
3069 /* Compare the array index by value if it is constant first as we
3070 may have different types but same value here. */
3071 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3072 TREE_OPERAND (arg1, 1))
3073 || OP_SAME (1))
3074 && OP_SAME_WITH_NULL (2)
3075 && OP_SAME_WITH_NULL (3)
3076 /* Compare low bound and element size as with OEP_ADDRESS_OF
3077 we have to account for the offset of the ref. */
3078 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3079 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3080 || (operand_equal_p (array_ref_low_bound
3081 (CONST_CAST_TREE (arg0)),
3082 array_ref_low_bound
3083 (CONST_CAST_TREE (arg1)), flags)
3084 && operand_equal_p (array_ref_element_size
3085 (CONST_CAST_TREE (arg0)),
3086 array_ref_element_size
3087 (CONST_CAST_TREE (arg1)),
3088 flags))));
3090 case COMPONENT_REF:
3091 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3092 may be NULL when we're called to compare MEM_EXPRs. */
3093 if (!OP_SAME_WITH_NULL (0)
3094 || !OP_SAME (1))
3095 return 0;
3096 flags &= ~OEP_ADDRESS_OF;
3097 return OP_SAME_WITH_NULL (2);
3099 case BIT_FIELD_REF:
3100 if (!OP_SAME (0))
3101 return 0;
3102 flags &= ~OEP_ADDRESS_OF;
3103 return OP_SAME (1) && OP_SAME (2);
3105 default:
3106 return 0;
3109 case tcc_expression:
3110 switch (TREE_CODE (arg0))
3112 case ADDR_EXPR:
3113 /* Be sure we pass right ADDRESS_OF flag. */
3114 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3115 return operand_equal_p (TREE_OPERAND (arg0, 0),
3116 TREE_OPERAND (arg1, 0),
3117 flags | OEP_ADDRESS_OF);
3119 case TRUTH_NOT_EXPR:
3120 return OP_SAME (0);
3122 case TRUTH_ANDIF_EXPR:
3123 case TRUTH_ORIF_EXPR:
3124 return OP_SAME (0) && OP_SAME (1);
3126 case FMA_EXPR:
3127 case WIDEN_MULT_PLUS_EXPR:
3128 case WIDEN_MULT_MINUS_EXPR:
3129 if (!OP_SAME (2))
3130 return 0;
3131 /* The multiplcation operands are commutative. */
3132 /* FALLTHRU */
3134 case TRUTH_AND_EXPR:
3135 case TRUTH_OR_EXPR:
3136 case TRUTH_XOR_EXPR:
3137 if (OP_SAME (0) && OP_SAME (1))
3138 return 1;
3140 /* Otherwise take into account this is a commutative operation. */
3141 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3142 TREE_OPERAND (arg1, 1), flags)
3143 && operand_equal_p (TREE_OPERAND (arg0, 1),
3144 TREE_OPERAND (arg1, 0), flags));
3146 case COND_EXPR:
3147 if (! OP_SAME (1) || ! OP_SAME (2))
3148 return 0;
3149 flags &= ~OEP_ADDRESS_OF;
3150 return OP_SAME (0);
3152 case VEC_COND_EXPR:
3153 case DOT_PROD_EXPR:
3154 case BIT_INSERT_EXPR:
3155 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3157 default:
3158 return 0;
3161 case tcc_vl_exp:
3162 switch (TREE_CODE (arg0))
3164 case CALL_EXPR:
3165 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3166 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3167 /* If not both CALL_EXPRs are either internal or normal function
3168 functions, then they are not equal. */
3169 return 0;
3170 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3172 /* If the CALL_EXPRs call different internal functions, then they
3173 are not equal. */
3174 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3175 return 0;
3177 else
3179 /* If the CALL_EXPRs call different functions, then they are not
3180 equal. */
3181 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3182 flags))
3183 return 0;
3186 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3188 unsigned int cef = call_expr_flags (arg0);
3189 if (flags & OEP_PURE_SAME)
3190 cef &= ECF_CONST | ECF_PURE;
3191 else
3192 cef &= ECF_CONST;
3193 if (!cef)
3194 return 0;
3197 /* Now see if all the arguments are the same. */
3199 const_call_expr_arg_iterator iter0, iter1;
3200 const_tree a0, a1;
3201 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3202 a1 = first_const_call_expr_arg (arg1, &iter1);
3203 a0 && a1;
3204 a0 = next_const_call_expr_arg (&iter0),
3205 a1 = next_const_call_expr_arg (&iter1))
3206 if (! operand_equal_p (a0, a1, flags))
3207 return 0;
3209 /* If we get here and both argument lists are exhausted
3210 then the CALL_EXPRs are equal. */
3211 return ! (a0 || a1);
3213 default:
3214 return 0;
3217 case tcc_declaration:
3218 /* Consider __builtin_sqrt equal to sqrt. */
3219 return (TREE_CODE (arg0) == FUNCTION_DECL
3220 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3221 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3222 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3224 case tcc_exceptional:
3225 if (TREE_CODE (arg0) == CONSTRUCTOR)
3227 /* In GIMPLE constructors are used only to build vectors from
3228 elements. Individual elements in the constructor must be
3229 indexed in increasing order and form an initial sequence.
3231 We make no effort to compare constructors in generic.
3232 (see sem_variable::equals in ipa-icf which can do so for
3233 constants). */
3234 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3235 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3236 return 0;
3238 /* Be sure that vectors constructed have the same representation.
3239 We only tested element precision and modes to match.
3240 Vectors may be BLKmode and thus also check that the number of
3241 parts match. */
3242 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3243 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3244 return 0;
3246 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3247 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3248 unsigned int len = vec_safe_length (v0);
3250 if (len != vec_safe_length (v1))
3251 return 0;
3253 for (unsigned int i = 0; i < len; i++)
3255 constructor_elt *c0 = &(*v0)[i];
3256 constructor_elt *c1 = &(*v1)[i];
3258 if (!operand_equal_p (c0->value, c1->value, flags)
3259 /* In GIMPLE the indexes can be either NULL or matching i.
3260 Double check this so we won't get false
3261 positives for GENERIC. */
3262 || (c0->index
3263 && (TREE_CODE (c0->index) != INTEGER_CST
3264 || !compare_tree_int (c0->index, i)))
3265 || (c1->index
3266 && (TREE_CODE (c1->index) != INTEGER_CST
3267 || !compare_tree_int (c1->index, i))))
3268 return 0;
3270 return 1;
3272 return 0;
3274 default:
3275 return 0;
3278 #undef OP_SAME
3279 #undef OP_SAME_WITH_NULL
3282 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3283 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3285 When in doubt, return 0. */
3287 static int
3288 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3290 int unsignedp1, unsignedpo;
3291 tree primarg0, primarg1, primother;
3292 unsigned int correct_width;
3294 if (operand_equal_p (arg0, arg1, 0))
3295 return 1;
3297 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3298 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3299 return 0;
3301 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3302 and see if the inner values are the same. This removes any
3303 signedness comparison, which doesn't matter here. */
3304 primarg0 = arg0, primarg1 = arg1;
3305 STRIP_NOPS (primarg0);
3306 STRIP_NOPS (primarg1);
3307 if (operand_equal_p (primarg0, primarg1, 0))
3308 return 1;
3310 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3311 actual comparison operand, ARG0.
3313 First throw away any conversions to wider types
3314 already present in the operands. */
3316 primarg1 = get_narrower (arg1, &unsignedp1);
3317 primother = get_narrower (other, &unsignedpo);
3319 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3320 if (unsignedp1 == unsignedpo
3321 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3322 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3324 tree type = TREE_TYPE (arg0);
3326 /* Make sure shorter operand is extended the right way
3327 to match the longer operand. */
3328 primarg1 = fold_convert (signed_or_unsigned_type_for
3329 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3331 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3332 return 1;
3335 return 0;
3338 /* See if ARG is an expression that is either a comparison or is performing
3339 arithmetic on comparisons. The comparisons must only be comparing
3340 two different values, which will be stored in *CVAL1 and *CVAL2; if
3341 they are nonzero it means that some operands have already been found.
3342 No variables may be used anywhere else in the expression except in the
3343 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3344 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3346 If this is true, return 1. Otherwise, return zero. */
3348 static int
3349 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3351 enum tree_code code = TREE_CODE (arg);
3352 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3354 /* We can handle some of the tcc_expression cases here. */
3355 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3356 tclass = tcc_unary;
3357 else if (tclass == tcc_expression
3358 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3359 || code == COMPOUND_EXPR))
3360 tclass = tcc_binary;
3362 else if (tclass == tcc_expression && code == SAVE_EXPR
3363 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3365 /* If we've already found a CVAL1 or CVAL2, this expression is
3366 two complex to handle. */
3367 if (*cval1 || *cval2)
3368 return 0;
3370 tclass = tcc_unary;
3371 *save_p = 1;
3374 switch (tclass)
3376 case tcc_unary:
3377 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3379 case tcc_binary:
3380 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3381 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3382 cval1, cval2, save_p));
3384 case tcc_constant:
3385 return 1;
3387 case tcc_expression:
3388 if (code == COND_EXPR)
3389 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3390 cval1, cval2, save_p)
3391 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3392 cval1, cval2, save_p)
3393 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3394 cval1, cval2, save_p));
3395 return 0;
3397 case tcc_comparison:
3398 /* First see if we can handle the first operand, then the second. For
3399 the second operand, we know *CVAL1 can't be zero. It must be that
3400 one side of the comparison is each of the values; test for the
3401 case where this isn't true by failing if the two operands
3402 are the same. */
3404 if (operand_equal_p (TREE_OPERAND (arg, 0),
3405 TREE_OPERAND (arg, 1), 0))
3406 return 0;
3408 if (*cval1 == 0)
3409 *cval1 = TREE_OPERAND (arg, 0);
3410 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3412 else if (*cval2 == 0)
3413 *cval2 = TREE_OPERAND (arg, 0);
3414 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3416 else
3417 return 0;
3419 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3421 else if (*cval2 == 0)
3422 *cval2 = TREE_OPERAND (arg, 1);
3423 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3425 else
3426 return 0;
3428 return 1;
3430 default:
3431 return 0;
3435 /* ARG is a tree that is known to contain just arithmetic operations and
3436 comparisons. Evaluate the operations in the tree substituting NEW0 for
3437 any occurrence of OLD0 as an operand of a comparison and likewise for
3438 NEW1 and OLD1. */
3440 static tree
3441 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3442 tree old1, tree new1)
3444 tree type = TREE_TYPE (arg);
3445 enum tree_code code = TREE_CODE (arg);
3446 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3448 /* We can handle some of the tcc_expression cases here. */
3449 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3450 tclass = tcc_unary;
3451 else if (tclass == tcc_expression
3452 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3453 tclass = tcc_binary;
3455 switch (tclass)
3457 case tcc_unary:
3458 return fold_build1_loc (loc, code, type,
3459 eval_subst (loc, TREE_OPERAND (arg, 0),
3460 old0, new0, old1, new1));
3462 case tcc_binary:
3463 return fold_build2_loc (loc, code, type,
3464 eval_subst (loc, TREE_OPERAND (arg, 0),
3465 old0, new0, old1, new1),
3466 eval_subst (loc, TREE_OPERAND (arg, 1),
3467 old0, new0, old1, new1));
3469 case tcc_expression:
3470 switch (code)
3472 case SAVE_EXPR:
3473 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3474 old1, new1);
3476 case COMPOUND_EXPR:
3477 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3478 old1, new1);
3480 case COND_EXPR:
3481 return fold_build3_loc (loc, code, type,
3482 eval_subst (loc, TREE_OPERAND (arg, 0),
3483 old0, new0, old1, new1),
3484 eval_subst (loc, TREE_OPERAND (arg, 1),
3485 old0, new0, old1, new1),
3486 eval_subst (loc, TREE_OPERAND (arg, 2),
3487 old0, new0, old1, new1));
3488 default:
3489 break;
3491 /* Fall through - ??? */
3493 case tcc_comparison:
3495 tree arg0 = TREE_OPERAND (arg, 0);
3496 tree arg1 = TREE_OPERAND (arg, 1);
3498 /* We need to check both for exact equality and tree equality. The
3499 former will be true if the operand has a side-effect. In that
3500 case, we know the operand occurred exactly once. */
3502 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3503 arg0 = new0;
3504 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3505 arg0 = new1;
3507 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3508 arg1 = new0;
3509 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3510 arg1 = new1;
3512 return fold_build2_loc (loc, code, type, arg0, arg1);
3515 default:
3516 return arg;
3520 /* Return a tree for the case when the result of an expression is RESULT
3521 converted to TYPE and OMITTED was previously an operand of the expression
3522 but is now not needed (e.g., we folded OMITTED * 0).
3524 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3525 the conversion of RESULT to TYPE. */
3527 tree
3528 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3530 tree t = fold_convert_loc (loc, type, result);
3532 /* If the resulting operand is an empty statement, just return the omitted
3533 statement casted to void. */
3534 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3535 return build1_loc (loc, NOP_EXPR, void_type_node,
3536 fold_ignored_result (omitted));
3538 if (TREE_SIDE_EFFECTS (omitted))
3539 return build2_loc (loc, COMPOUND_EXPR, type,
3540 fold_ignored_result (omitted), t);
3542 return non_lvalue_loc (loc, t);
3545 /* Return a tree for the case when the result of an expression is RESULT
3546 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3547 of the expression but are now not needed.
3549 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3550 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3551 evaluated before OMITTED2. Otherwise, if neither has side effects,
3552 just do the conversion of RESULT to TYPE. */
3554 tree
3555 omit_two_operands_loc (location_t loc, tree type, tree result,
3556 tree omitted1, tree omitted2)
3558 tree t = fold_convert_loc (loc, type, result);
3560 if (TREE_SIDE_EFFECTS (omitted2))
3561 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3562 if (TREE_SIDE_EFFECTS (omitted1))
3563 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3565 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3569 /* Return a simplified tree node for the truth-negation of ARG. This
3570 never alters ARG itself. We assume that ARG is an operation that
3571 returns a truth value (0 or 1).
3573 FIXME: one would think we would fold the result, but it causes
3574 problems with the dominator optimizer. */
3576 static tree
3577 fold_truth_not_expr (location_t loc, tree arg)
3579 tree type = TREE_TYPE (arg);
3580 enum tree_code code = TREE_CODE (arg);
3581 location_t loc1, loc2;
3583 /* If this is a comparison, we can simply invert it, except for
3584 floating-point non-equality comparisons, in which case we just
3585 enclose a TRUTH_NOT_EXPR around what we have. */
3587 if (TREE_CODE_CLASS (code) == tcc_comparison)
3589 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3590 if (FLOAT_TYPE_P (op_type)
3591 && flag_trapping_math
3592 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3593 && code != NE_EXPR && code != EQ_EXPR)
3594 return NULL_TREE;
3596 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3597 if (code == ERROR_MARK)
3598 return NULL_TREE;
3600 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3601 TREE_OPERAND (arg, 1));
3602 if (TREE_NO_WARNING (arg))
3603 TREE_NO_WARNING (ret) = 1;
3604 return ret;
3607 switch (code)
3609 case INTEGER_CST:
3610 return constant_boolean_node (integer_zerop (arg), type);
3612 case TRUTH_AND_EXPR:
3613 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3614 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3615 return build2_loc (loc, TRUTH_OR_EXPR, type,
3616 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3617 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3619 case TRUTH_OR_EXPR:
3620 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3621 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3622 return build2_loc (loc, TRUTH_AND_EXPR, type,
3623 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3624 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3626 case TRUTH_XOR_EXPR:
3627 /* Here we can invert either operand. We invert the first operand
3628 unless the second operand is a TRUTH_NOT_EXPR in which case our
3629 result is the XOR of the first operand with the inside of the
3630 negation of the second operand. */
3632 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3633 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3634 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3635 else
3636 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3637 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3638 TREE_OPERAND (arg, 1));
3640 case TRUTH_ANDIF_EXPR:
3641 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3642 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3643 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3644 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3645 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3647 case TRUTH_ORIF_EXPR:
3648 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3649 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3650 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3651 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3652 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3654 case TRUTH_NOT_EXPR:
3655 return TREE_OPERAND (arg, 0);
3657 case COND_EXPR:
3659 tree arg1 = TREE_OPERAND (arg, 1);
3660 tree arg2 = TREE_OPERAND (arg, 2);
3662 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3663 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3665 /* A COND_EXPR may have a throw as one operand, which
3666 then has void type. Just leave void operands
3667 as they are. */
3668 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3669 VOID_TYPE_P (TREE_TYPE (arg1))
3670 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3671 VOID_TYPE_P (TREE_TYPE (arg2))
3672 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3675 case COMPOUND_EXPR:
3676 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3677 return build2_loc (loc, COMPOUND_EXPR, type,
3678 TREE_OPERAND (arg, 0),
3679 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3681 case NON_LVALUE_EXPR:
3682 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3683 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3685 CASE_CONVERT:
3686 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3687 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3689 /* fall through */
3691 case FLOAT_EXPR:
3692 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3693 return build1_loc (loc, TREE_CODE (arg), type,
3694 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3696 case BIT_AND_EXPR:
3697 if (!integer_onep (TREE_OPERAND (arg, 1)))
3698 return NULL_TREE;
3699 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3701 case SAVE_EXPR:
3702 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3704 case CLEANUP_POINT_EXPR:
3705 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3706 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3707 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3709 default:
3710 return NULL_TREE;
3714 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3715 assume that ARG is an operation that returns a truth value (0 or 1
3716 for scalars, 0 or -1 for vectors). Return the folded expression if
3717 folding is successful. Otherwise, return NULL_TREE. */
3719 static tree
3720 fold_invert_truthvalue (location_t loc, tree arg)
3722 tree type = TREE_TYPE (arg);
3723 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3724 ? BIT_NOT_EXPR
3725 : TRUTH_NOT_EXPR,
3726 type, arg);
3729 /* Return a simplified tree node for the truth-negation of ARG. This
3730 never alters ARG itself. We assume that ARG is an operation that
3731 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3733 tree
3734 invert_truthvalue_loc (location_t loc, tree arg)
3736 if (TREE_CODE (arg) == ERROR_MARK)
3737 return arg;
3739 tree type = TREE_TYPE (arg);
3740 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3741 ? BIT_NOT_EXPR
3742 : TRUTH_NOT_EXPR,
3743 type, arg);
3746 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3747 with code CODE. This optimization is unsafe. */
3748 static tree
3749 distribute_real_division (location_t loc, enum tree_code code, tree type,
3750 tree arg0, tree arg1)
3752 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3753 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3755 /* (A / C) +- (B / C) -> (A +- B) / C. */
3756 if (mul0 == mul1
3757 && operand_equal_p (TREE_OPERAND (arg0, 1),
3758 TREE_OPERAND (arg1, 1), 0))
3759 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3760 fold_build2_loc (loc, code, type,
3761 TREE_OPERAND (arg0, 0),
3762 TREE_OPERAND (arg1, 0)),
3763 TREE_OPERAND (arg0, 1));
3765 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3766 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3767 TREE_OPERAND (arg1, 0), 0)
3768 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3769 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3771 REAL_VALUE_TYPE r0, r1;
3772 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3773 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3774 if (!mul0)
3775 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3776 if (!mul1)
3777 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3778 real_arithmetic (&r0, code, &r0, &r1);
3779 return fold_build2_loc (loc, MULT_EXPR, type,
3780 TREE_OPERAND (arg0, 0),
3781 build_real (type, r0));
3784 return NULL_TREE;
3787 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3788 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3789 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3790 is the original memory reference used to preserve the alias set of
3791 the access. */
3793 static tree
3794 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3795 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3796 int unsignedp, int reversep)
3798 tree result, bftype;
3800 alias_set_type iset = get_alias_set (orig_inner);
3801 if (iset == 0 && get_alias_set (inner) != iset)
3802 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3803 build_fold_addr_expr (inner),
3804 build_int_cst (ptr_type_node, 0));
3806 if (bitpos == 0 && !reversep)
3808 tree size = TYPE_SIZE (TREE_TYPE (inner));
3809 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3810 || POINTER_TYPE_P (TREE_TYPE (inner)))
3811 && tree_fits_shwi_p (size)
3812 && tree_to_shwi (size) == bitsize)
3813 return fold_convert_loc (loc, type, inner);
3816 bftype = type;
3817 if (TYPE_PRECISION (bftype) != bitsize
3818 || TYPE_UNSIGNED (bftype) == !unsignedp)
3819 bftype = build_nonstandard_integer_type (bitsize, 0);
3821 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3822 size_int (bitsize), bitsize_int (bitpos));
3823 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3825 if (bftype != type)
3826 result = fold_convert_loc (loc, type, result);
3828 return result;
3831 /* Optimize a bit-field compare.
3833 There are two cases: First is a compare against a constant and the
3834 second is a comparison of two items where the fields are at the same
3835 bit position relative to the start of a chunk (byte, halfword, word)
3836 large enough to contain it. In these cases we can avoid the shift
3837 implicit in bitfield extractions.
3839 For constants, we emit a compare of the shifted constant with the
3840 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3841 compared. For two fields at the same position, we do the ANDs with the
3842 similar mask and compare the result of the ANDs.
3844 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3845 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3846 are the left and right operands of the comparison, respectively.
3848 If the optimization described above can be done, we return the resulting
3849 tree. Otherwise we return zero. */
3851 static tree
3852 optimize_bit_field_compare (location_t loc, enum tree_code code,
3853 tree compare_type, tree lhs, tree rhs)
3855 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3856 tree type = TREE_TYPE (lhs);
3857 tree unsigned_type;
3858 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3859 machine_mode lmode, rmode, nmode;
3860 int lunsignedp, runsignedp;
3861 int lreversep, rreversep;
3862 int lvolatilep = 0, rvolatilep = 0;
3863 tree linner, rinner = NULL_TREE;
3864 tree mask;
3865 tree offset;
3867 /* Get all the information about the extractions being done. If the bit size
3868 if the same as the size of the underlying object, we aren't doing an
3869 extraction at all and so can do nothing. We also don't want to
3870 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3871 then will no longer be able to replace it. */
3872 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3873 &lunsignedp, &lreversep, &lvolatilep);
3874 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3875 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3876 return 0;
3878 if (const_p)
3879 rreversep = lreversep;
3880 else
3882 /* If this is not a constant, we can only do something if bit positions,
3883 sizes, signedness and storage order are the same. */
3884 rinner
3885 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3886 &runsignedp, &rreversep, &rvolatilep);
3888 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3889 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3890 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3891 return 0;
3894 /* Honor the C++ memory model and mimic what RTL expansion does. */
3895 unsigned HOST_WIDE_INT bitstart = 0;
3896 unsigned HOST_WIDE_INT bitend = 0;
3897 if (TREE_CODE (lhs) == COMPONENT_REF)
3899 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
3900 if (offset != NULL_TREE)
3901 return 0;
3904 /* See if we can find a mode to refer to this field. We should be able to,
3905 but fail if we can't. */
3906 nmode = get_best_mode (lbitsize, lbitpos, bitstart, bitend,
3907 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3908 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3909 TYPE_ALIGN (TREE_TYPE (rinner))),
3910 word_mode, false);
3911 if (nmode == VOIDmode)
3912 return 0;
3914 /* Set signed and unsigned types of the precision of this mode for the
3915 shifts below. */
3916 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3918 /* Compute the bit position and size for the new reference and our offset
3919 within it. If the new reference is the same size as the original, we
3920 won't optimize anything, so return zero. */
3921 nbitsize = GET_MODE_BITSIZE (nmode);
3922 nbitpos = lbitpos & ~ (nbitsize - 1);
3923 lbitpos -= nbitpos;
3924 if (nbitsize == lbitsize)
3925 return 0;
3927 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3928 lbitpos = nbitsize - lbitsize - lbitpos;
3930 /* Make the mask to be used against the extracted field. */
3931 mask = build_int_cst_type (unsigned_type, -1);
3932 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3933 mask = const_binop (RSHIFT_EXPR, mask,
3934 size_int (nbitsize - lbitsize - lbitpos));
3936 if (! const_p)
3937 /* If not comparing with constant, just rework the comparison
3938 and return. */
3939 return fold_build2_loc (loc, code, compare_type,
3940 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3941 make_bit_field_ref (loc, linner, lhs,
3942 unsigned_type,
3943 nbitsize, nbitpos,
3944 1, lreversep),
3945 mask),
3946 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3947 make_bit_field_ref (loc, rinner, rhs,
3948 unsigned_type,
3949 nbitsize, nbitpos,
3950 1, rreversep),
3951 mask));
3953 /* Otherwise, we are handling the constant case. See if the constant is too
3954 big for the field. Warn and return a tree for 0 (false) if so. We do
3955 this not only for its own sake, but to avoid having to test for this
3956 error case below. If we didn't, we might generate wrong code.
3958 For unsigned fields, the constant shifted right by the field length should
3959 be all zero. For signed fields, the high-order bits should agree with
3960 the sign bit. */
3962 if (lunsignedp)
3964 if (wi::lrshift (rhs, lbitsize) != 0)
3966 warning (0, "comparison is always %d due to width of bit-field",
3967 code == NE_EXPR);
3968 return constant_boolean_node (code == NE_EXPR, compare_type);
3971 else
3973 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3974 if (tem != 0 && tem != -1)
3976 warning (0, "comparison is always %d due to width of bit-field",
3977 code == NE_EXPR);
3978 return constant_boolean_node (code == NE_EXPR, compare_type);
3982 /* Single-bit compares should always be against zero. */
3983 if (lbitsize == 1 && ! integer_zerop (rhs))
3985 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3986 rhs = build_int_cst (type, 0);
3989 /* Make a new bitfield reference, shift the constant over the
3990 appropriate number of bits and mask it with the computed mask
3991 (in case this was a signed field). If we changed it, make a new one. */
3992 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
3993 nbitsize, nbitpos, 1, lreversep);
3995 rhs = const_binop (BIT_AND_EXPR,
3996 const_binop (LSHIFT_EXPR,
3997 fold_convert_loc (loc, unsigned_type, rhs),
3998 size_int (lbitpos)),
3999 mask);
4001 lhs = build2_loc (loc, code, compare_type,
4002 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4003 return lhs;
4006 /* Subroutine for fold_truth_andor_1: decode a field reference.
4008 If EXP is a comparison reference, we return the innermost reference.
4010 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4011 set to the starting bit number.
4013 If the innermost field can be completely contained in a mode-sized
4014 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4016 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4017 otherwise it is not changed.
4019 *PUNSIGNEDP is set to the signedness of the field.
4021 *PREVERSEP is set to the storage order of the field.
4023 *PMASK is set to the mask used. This is either contained in a
4024 BIT_AND_EXPR or derived from the width of the field.
4026 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4028 Return 0 if this is not a component reference or is one that we can't
4029 do anything with. */
4031 static tree
4032 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4033 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4034 int *punsignedp, int *preversep, int *pvolatilep,
4035 tree *pmask, tree *pand_mask)
4037 tree exp = *exp_;
4038 tree outer_type = 0;
4039 tree and_mask = 0;
4040 tree mask, inner, offset;
4041 tree unsigned_type;
4042 unsigned int precision;
4044 /* All the optimizations using this function assume integer fields.
4045 There are problems with FP fields since the type_for_size call
4046 below can fail for, e.g., XFmode. */
4047 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4048 return 0;
4050 /* We are interested in the bare arrangement of bits, so strip everything
4051 that doesn't affect the machine mode. However, record the type of the
4052 outermost expression if it may matter below. */
4053 if (CONVERT_EXPR_P (exp)
4054 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4055 outer_type = TREE_TYPE (exp);
4056 STRIP_NOPS (exp);
4058 if (TREE_CODE (exp) == BIT_AND_EXPR)
4060 and_mask = TREE_OPERAND (exp, 1);
4061 exp = TREE_OPERAND (exp, 0);
4062 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4063 if (TREE_CODE (and_mask) != INTEGER_CST)
4064 return 0;
4067 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4068 punsignedp, preversep, pvolatilep);
4069 if ((inner == exp && and_mask == 0)
4070 || *pbitsize < 0 || offset != 0
4071 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4072 return 0;
4074 *exp_ = exp;
4076 /* If the number of bits in the reference is the same as the bitsize of
4077 the outer type, then the outer type gives the signedness. Otherwise
4078 (in case of a small bitfield) the signedness is unchanged. */
4079 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4080 *punsignedp = TYPE_UNSIGNED (outer_type);
4082 /* Compute the mask to access the bitfield. */
4083 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4084 precision = TYPE_PRECISION (unsigned_type);
4086 mask = build_int_cst_type (unsigned_type, -1);
4088 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4089 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4091 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4092 if (and_mask != 0)
4093 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4094 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4096 *pmask = mask;
4097 *pand_mask = and_mask;
4098 return inner;
4101 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4102 bit positions and MASK is SIGNED. */
4104 static int
4105 all_ones_mask_p (const_tree mask, unsigned int size)
4107 tree type = TREE_TYPE (mask);
4108 unsigned int precision = TYPE_PRECISION (type);
4110 /* If this function returns true when the type of the mask is
4111 UNSIGNED, then there will be errors. In particular see
4112 gcc.c-torture/execute/990326-1.c. There does not appear to be
4113 any documentation paper trail as to why this is so. But the pre
4114 wide-int worked with that restriction and it has been preserved
4115 here. */
4116 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4117 return false;
4119 return wi::mask (size, false, precision) == mask;
4122 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4123 represents the sign bit of EXP's type. If EXP represents a sign
4124 or zero extension, also test VAL against the unextended type.
4125 The return value is the (sub)expression whose sign bit is VAL,
4126 or NULL_TREE otherwise. */
4128 tree
4129 sign_bit_p (tree exp, const_tree val)
4131 int width;
4132 tree t;
4134 /* Tree EXP must have an integral type. */
4135 t = TREE_TYPE (exp);
4136 if (! INTEGRAL_TYPE_P (t))
4137 return NULL_TREE;
4139 /* Tree VAL must be an integer constant. */
4140 if (TREE_CODE (val) != INTEGER_CST
4141 || TREE_OVERFLOW (val))
4142 return NULL_TREE;
4144 width = TYPE_PRECISION (t);
4145 if (wi::only_sign_bit_p (val, width))
4146 return exp;
4148 /* Handle extension from a narrower type. */
4149 if (TREE_CODE (exp) == NOP_EXPR
4150 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4151 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4153 return NULL_TREE;
4156 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4157 to be evaluated unconditionally. */
4159 static int
4160 simple_operand_p (const_tree exp)
4162 /* Strip any conversions that don't change the machine mode. */
4163 STRIP_NOPS (exp);
4165 return (CONSTANT_CLASS_P (exp)
4166 || TREE_CODE (exp) == SSA_NAME
4167 || (DECL_P (exp)
4168 && ! TREE_ADDRESSABLE (exp)
4169 && ! TREE_THIS_VOLATILE (exp)
4170 && ! DECL_NONLOCAL (exp)
4171 /* Don't regard global variables as simple. They may be
4172 allocated in ways unknown to the compiler (shared memory,
4173 #pragma weak, etc). */
4174 && ! TREE_PUBLIC (exp)
4175 && ! DECL_EXTERNAL (exp)
4176 /* Weakrefs are not safe to be read, since they can be NULL.
4177 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4178 have DECL_WEAK flag set. */
4179 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4180 /* Loading a static variable is unduly expensive, but global
4181 registers aren't expensive. */
4182 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4185 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4186 to be evaluated unconditionally.
4187 I addition to simple_operand_p, we assume that comparisons, conversions,
4188 and logic-not operations are simple, if their operands are simple, too. */
4190 static bool
4191 simple_operand_p_2 (tree exp)
4193 enum tree_code code;
4195 if (TREE_SIDE_EFFECTS (exp)
4196 || tree_could_trap_p (exp))
4197 return false;
4199 while (CONVERT_EXPR_P (exp))
4200 exp = TREE_OPERAND (exp, 0);
4202 code = TREE_CODE (exp);
4204 if (TREE_CODE_CLASS (code) == tcc_comparison)
4205 return (simple_operand_p (TREE_OPERAND (exp, 0))
4206 && simple_operand_p (TREE_OPERAND (exp, 1)));
4208 if (code == TRUTH_NOT_EXPR)
4209 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4211 return simple_operand_p (exp);
4215 /* The following functions are subroutines to fold_range_test and allow it to
4216 try to change a logical combination of comparisons into a range test.
4218 For example, both
4219 X == 2 || X == 3 || X == 4 || X == 5
4221 X >= 2 && X <= 5
4222 are converted to
4223 (unsigned) (X - 2) <= 3
4225 We describe each set of comparisons as being either inside or outside
4226 a range, using a variable named like IN_P, and then describe the
4227 range with a lower and upper bound. If one of the bounds is omitted,
4228 it represents either the highest or lowest value of the type.
4230 In the comments below, we represent a range by two numbers in brackets
4231 preceded by a "+" to designate being inside that range, or a "-" to
4232 designate being outside that range, so the condition can be inverted by
4233 flipping the prefix. An omitted bound is represented by a "-". For
4234 example, "- [-, 10]" means being outside the range starting at the lowest
4235 possible value and ending at 10, in other words, being greater than 10.
4236 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4237 always false.
4239 We set up things so that the missing bounds are handled in a consistent
4240 manner so neither a missing bound nor "true" and "false" need to be
4241 handled using a special case. */
4243 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4244 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4245 and UPPER1_P are nonzero if the respective argument is an upper bound
4246 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4247 must be specified for a comparison. ARG1 will be converted to ARG0's
4248 type if both are specified. */
4250 static tree
4251 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4252 tree arg1, int upper1_p)
4254 tree tem;
4255 int result;
4256 int sgn0, sgn1;
4258 /* If neither arg represents infinity, do the normal operation.
4259 Else, if not a comparison, return infinity. Else handle the special
4260 comparison rules. Note that most of the cases below won't occur, but
4261 are handled for consistency. */
4263 if (arg0 != 0 && arg1 != 0)
4265 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4266 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4267 STRIP_NOPS (tem);
4268 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4271 if (TREE_CODE_CLASS (code) != tcc_comparison)
4272 return 0;
4274 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4275 for neither. In real maths, we cannot assume open ended ranges are
4276 the same. But, this is computer arithmetic, where numbers are finite.
4277 We can therefore make the transformation of any unbounded range with
4278 the value Z, Z being greater than any representable number. This permits
4279 us to treat unbounded ranges as equal. */
4280 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4281 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4282 switch (code)
4284 case EQ_EXPR:
4285 result = sgn0 == sgn1;
4286 break;
4287 case NE_EXPR:
4288 result = sgn0 != sgn1;
4289 break;
4290 case LT_EXPR:
4291 result = sgn0 < sgn1;
4292 break;
4293 case LE_EXPR:
4294 result = sgn0 <= sgn1;
4295 break;
4296 case GT_EXPR:
4297 result = sgn0 > sgn1;
4298 break;
4299 case GE_EXPR:
4300 result = sgn0 >= sgn1;
4301 break;
4302 default:
4303 gcc_unreachable ();
4306 return constant_boolean_node (result, type);
4309 /* Helper routine for make_range. Perform one step for it, return
4310 new expression if the loop should continue or NULL_TREE if it should
4311 stop. */
4313 tree
4314 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4315 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4316 bool *strict_overflow_p)
4318 tree arg0_type = TREE_TYPE (arg0);
4319 tree n_low, n_high, low = *p_low, high = *p_high;
4320 int in_p = *p_in_p, n_in_p;
4322 switch (code)
4324 case TRUTH_NOT_EXPR:
4325 /* We can only do something if the range is testing for zero. */
4326 if (low == NULL_TREE || high == NULL_TREE
4327 || ! integer_zerop (low) || ! integer_zerop (high))
4328 return NULL_TREE;
4329 *p_in_p = ! in_p;
4330 return arg0;
4332 case EQ_EXPR: case NE_EXPR:
4333 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4334 /* We can only do something if the range is testing for zero
4335 and if the second operand is an integer constant. Note that
4336 saying something is "in" the range we make is done by
4337 complementing IN_P since it will set in the initial case of
4338 being not equal to zero; "out" is leaving it alone. */
4339 if (low == NULL_TREE || high == NULL_TREE
4340 || ! integer_zerop (low) || ! integer_zerop (high)
4341 || TREE_CODE (arg1) != INTEGER_CST)
4342 return NULL_TREE;
4344 switch (code)
4346 case NE_EXPR: /* - [c, c] */
4347 low = high = arg1;
4348 break;
4349 case EQ_EXPR: /* + [c, c] */
4350 in_p = ! in_p, low = high = arg1;
4351 break;
4352 case GT_EXPR: /* - [-, c] */
4353 low = 0, high = arg1;
4354 break;
4355 case GE_EXPR: /* + [c, -] */
4356 in_p = ! in_p, low = arg1, high = 0;
4357 break;
4358 case LT_EXPR: /* - [c, -] */
4359 low = arg1, high = 0;
4360 break;
4361 case LE_EXPR: /* + [-, c] */
4362 in_p = ! in_p, low = 0, high = arg1;
4363 break;
4364 default:
4365 gcc_unreachable ();
4368 /* If this is an unsigned comparison, we also know that EXP is
4369 greater than or equal to zero. We base the range tests we make
4370 on that fact, so we record it here so we can parse existing
4371 range tests. We test arg0_type since often the return type
4372 of, e.g. EQ_EXPR, is boolean. */
4373 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4375 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4376 in_p, low, high, 1,
4377 build_int_cst (arg0_type, 0),
4378 NULL_TREE))
4379 return NULL_TREE;
4381 in_p = n_in_p, low = n_low, high = n_high;
4383 /* If the high bound is missing, but we have a nonzero low
4384 bound, reverse the range so it goes from zero to the low bound
4385 minus 1. */
4386 if (high == 0 && low && ! integer_zerop (low))
4388 in_p = ! in_p;
4389 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4390 build_int_cst (TREE_TYPE (low), 1), 0);
4391 low = build_int_cst (arg0_type, 0);
4395 *p_low = low;
4396 *p_high = high;
4397 *p_in_p = in_p;
4398 return arg0;
4400 case NEGATE_EXPR:
4401 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4402 low and high are non-NULL, then normalize will DTRT. */
4403 if (!TYPE_UNSIGNED (arg0_type)
4404 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4406 if (low == NULL_TREE)
4407 low = TYPE_MIN_VALUE (arg0_type);
4408 if (high == NULL_TREE)
4409 high = TYPE_MAX_VALUE (arg0_type);
4412 /* (-x) IN [a,b] -> x in [-b, -a] */
4413 n_low = range_binop (MINUS_EXPR, exp_type,
4414 build_int_cst (exp_type, 0),
4415 0, high, 1);
4416 n_high = range_binop (MINUS_EXPR, exp_type,
4417 build_int_cst (exp_type, 0),
4418 0, low, 0);
4419 if (n_high != 0 && TREE_OVERFLOW (n_high))
4420 return NULL_TREE;
4421 goto normalize;
4423 case BIT_NOT_EXPR:
4424 /* ~ X -> -X - 1 */
4425 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4426 build_int_cst (exp_type, 1));
4428 case PLUS_EXPR:
4429 case MINUS_EXPR:
4430 if (TREE_CODE (arg1) != INTEGER_CST)
4431 return NULL_TREE;
4433 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4434 move a constant to the other side. */
4435 if (!TYPE_UNSIGNED (arg0_type)
4436 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4437 return NULL_TREE;
4439 /* If EXP is signed, any overflow in the computation is undefined,
4440 so we don't worry about it so long as our computations on
4441 the bounds don't overflow. For unsigned, overflow is defined
4442 and this is exactly the right thing. */
4443 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4444 arg0_type, low, 0, arg1, 0);
4445 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4446 arg0_type, high, 1, arg1, 0);
4447 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4448 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4449 return NULL_TREE;
4451 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4452 *strict_overflow_p = true;
4454 normalize:
4455 /* Check for an unsigned range which has wrapped around the maximum
4456 value thus making n_high < n_low, and normalize it. */
4457 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4459 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4460 build_int_cst (TREE_TYPE (n_high), 1), 0);
4461 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4462 build_int_cst (TREE_TYPE (n_low), 1), 0);
4464 /* If the range is of the form +/- [ x+1, x ], we won't
4465 be able to normalize it. But then, it represents the
4466 whole range or the empty set, so make it
4467 +/- [ -, - ]. */
4468 if (tree_int_cst_equal (n_low, low)
4469 && tree_int_cst_equal (n_high, high))
4470 low = high = 0;
4471 else
4472 in_p = ! in_p;
4474 else
4475 low = n_low, high = n_high;
4477 *p_low = low;
4478 *p_high = high;
4479 *p_in_p = in_p;
4480 return arg0;
4482 CASE_CONVERT:
4483 case NON_LVALUE_EXPR:
4484 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4485 return NULL_TREE;
4487 if (! INTEGRAL_TYPE_P (arg0_type)
4488 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4489 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4490 return NULL_TREE;
4492 n_low = low, n_high = high;
4494 if (n_low != 0)
4495 n_low = fold_convert_loc (loc, arg0_type, n_low);
4497 if (n_high != 0)
4498 n_high = fold_convert_loc (loc, arg0_type, n_high);
4500 /* If we're converting arg0 from an unsigned type, to exp,
4501 a signed type, we will be doing the comparison as unsigned.
4502 The tests above have already verified that LOW and HIGH
4503 are both positive.
4505 So we have to ensure that we will handle large unsigned
4506 values the same way that the current signed bounds treat
4507 negative values. */
4509 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4511 tree high_positive;
4512 tree equiv_type;
4513 /* For fixed-point modes, we need to pass the saturating flag
4514 as the 2nd parameter. */
4515 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4516 equiv_type
4517 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4518 TYPE_SATURATING (arg0_type));
4519 else
4520 equiv_type
4521 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4523 /* A range without an upper bound is, naturally, unbounded.
4524 Since convert would have cropped a very large value, use
4525 the max value for the destination type. */
4526 high_positive
4527 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4528 : TYPE_MAX_VALUE (arg0_type);
4530 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4531 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4532 fold_convert_loc (loc, arg0_type,
4533 high_positive),
4534 build_int_cst (arg0_type, 1));
4536 /* If the low bound is specified, "and" the range with the
4537 range for which the original unsigned value will be
4538 positive. */
4539 if (low != 0)
4541 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4542 1, fold_convert_loc (loc, arg0_type,
4543 integer_zero_node),
4544 high_positive))
4545 return NULL_TREE;
4547 in_p = (n_in_p == in_p);
4549 else
4551 /* Otherwise, "or" the range with the range of the input
4552 that will be interpreted as negative. */
4553 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4554 1, fold_convert_loc (loc, arg0_type,
4555 integer_zero_node),
4556 high_positive))
4557 return NULL_TREE;
4559 in_p = (in_p != n_in_p);
4563 *p_low = n_low;
4564 *p_high = n_high;
4565 *p_in_p = in_p;
4566 return arg0;
4568 default:
4569 return NULL_TREE;
4573 /* Given EXP, a logical expression, set the range it is testing into
4574 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4575 actually being tested. *PLOW and *PHIGH will be made of the same
4576 type as the returned expression. If EXP is not a comparison, we
4577 will most likely not be returning a useful value and range. Set
4578 *STRICT_OVERFLOW_P to true if the return value is only valid
4579 because signed overflow is undefined; otherwise, do not change
4580 *STRICT_OVERFLOW_P. */
4582 tree
4583 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4584 bool *strict_overflow_p)
4586 enum tree_code code;
4587 tree arg0, arg1 = NULL_TREE;
4588 tree exp_type, nexp;
4589 int in_p;
4590 tree low, high;
4591 location_t loc = EXPR_LOCATION (exp);
4593 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4594 and see if we can refine the range. Some of the cases below may not
4595 happen, but it doesn't seem worth worrying about this. We "continue"
4596 the outer loop when we've changed something; otherwise we "break"
4597 the switch, which will "break" the while. */
4599 in_p = 0;
4600 low = high = build_int_cst (TREE_TYPE (exp), 0);
4602 while (1)
4604 code = TREE_CODE (exp);
4605 exp_type = TREE_TYPE (exp);
4606 arg0 = NULL_TREE;
4608 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4610 if (TREE_OPERAND_LENGTH (exp) > 0)
4611 arg0 = TREE_OPERAND (exp, 0);
4612 if (TREE_CODE_CLASS (code) == tcc_binary
4613 || TREE_CODE_CLASS (code) == tcc_comparison
4614 || (TREE_CODE_CLASS (code) == tcc_expression
4615 && TREE_OPERAND_LENGTH (exp) > 1))
4616 arg1 = TREE_OPERAND (exp, 1);
4618 if (arg0 == NULL_TREE)
4619 break;
4621 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4622 &high, &in_p, strict_overflow_p);
4623 if (nexp == NULL_TREE)
4624 break;
4625 exp = nexp;
4628 /* If EXP is a constant, we can evaluate whether this is true or false. */
4629 if (TREE_CODE (exp) == INTEGER_CST)
4631 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4632 exp, 0, low, 0))
4633 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4634 exp, 1, high, 1)));
4635 low = high = 0;
4636 exp = 0;
4639 *pin_p = in_p, *plow = low, *phigh = high;
4640 return exp;
4643 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4644 type, TYPE, return an expression to test if EXP is in (or out of, depending
4645 on IN_P) the range. Return 0 if the test couldn't be created. */
4647 tree
4648 build_range_check (location_t loc, tree type, tree exp, int in_p,
4649 tree low, tree high)
4651 tree etype = TREE_TYPE (exp), value;
4653 /* Disable this optimization for function pointer expressions
4654 on targets that require function pointer canonicalization. */
4655 if (targetm.have_canonicalize_funcptr_for_compare ()
4656 && TREE_CODE (etype) == POINTER_TYPE
4657 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4658 return NULL_TREE;
4660 if (! in_p)
4662 value = build_range_check (loc, type, exp, 1, low, high);
4663 if (value != 0)
4664 return invert_truthvalue_loc (loc, value);
4666 return 0;
4669 if (low == 0 && high == 0)
4670 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4672 if (low == 0)
4673 return fold_build2_loc (loc, LE_EXPR, type, exp,
4674 fold_convert_loc (loc, etype, high));
4676 if (high == 0)
4677 return fold_build2_loc (loc, GE_EXPR, type, exp,
4678 fold_convert_loc (loc, etype, low));
4680 if (operand_equal_p (low, high, 0))
4681 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4682 fold_convert_loc (loc, etype, low));
4684 if (integer_zerop (low))
4686 if (! TYPE_UNSIGNED (etype))
4688 etype = unsigned_type_for (etype);
4689 high = fold_convert_loc (loc, etype, high);
4690 exp = fold_convert_loc (loc, etype, exp);
4692 return build_range_check (loc, type, exp, 1, 0, high);
4695 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4696 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4698 int prec = TYPE_PRECISION (etype);
4700 if (wi::mask (prec - 1, false, prec) == high)
4702 if (TYPE_UNSIGNED (etype))
4704 tree signed_etype = signed_type_for (etype);
4705 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4706 etype
4707 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4708 else
4709 etype = signed_etype;
4710 exp = fold_convert_loc (loc, etype, exp);
4712 return fold_build2_loc (loc, GT_EXPR, type, exp,
4713 build_int_cst (etype, 0));
4717 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4718 This requires wrap-around arithmetics for the type of the expression.
4719 First make sure that arithmetics in this type is valid, then make sure
4720 that it wraps around. */
4721 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4722 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4723 TYPE_UNSIGNED (etype));
4725 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4727 tree utype, minv, maxv;
4729 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4730 for the type in question, as we rely on this here. */
4731 utype = unsigned_type_for (etype);
4732 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4733 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4734 build_int_cst (TREE_TYPE (maxv), 1), 1);
4735 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4737 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4738 minv, 1, maxv, 1)))
4739 etype = utype;
4740 else
4741 return 0;
4744 high = fold_convert_loc (loc, etype, high);
4745 low = fold_convert_loc (loc, etype, low);
4746 exp = fold_convert_loc (loc, etype, exp);
4748 value = const_binop (MINUS_EXPR, high, low);
4751 if (POINTER_TYPE_P (etype))
4753 if (value != 0 && !TREE_OVERFLOW (value))
4755 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4756 return build_range_check (loc, type,
4757 fold_build_pointer_plus_loc (loc, exp, low),
4758 1, build_int_cst (etype, 0), value);
4760 return 0;
4763 if (value != 0 && !TREE_OVERFLOW (value))
4764 return build_range_check (loc, type,
4765 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4766 1, build_int_cst (etype, 0), value);
4768 return 0;
4771 /* Return the predecessor of VAL in its type, handling the infinite case. */
4773 static tree
4774 range_predecessor (tree val)
4776 tree type = TREE_TYPE (val);
4778 if (INTEGRAL_TYPE_P (type)
4779 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4780 return 0;
4781 else
4782 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4783 build_int_cst (TREE_TYPE (val), 1), 0);
4786 /* Return the successor of VAL in its type, handling the infinite case. */
4788 static tree
4789 range_successor (tree val)
4791 tree type = TREE_TYPE (val);
4793 if (INTEGRAL_TYPE_P (type)
4794 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4795 return 0;
4796 else
4797 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4798 build_int_cst (TREE_TYPE (val), 1), 0);
4801 /* Given two ranges, see if we can merge them into one. Return 1 if we
4802 can, 0 if we can't. Set the output range into the specified parameters. */
4804 bool
4805 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4806 tree high0, int in1_p, tree low1, tree high1)
4808 int no_overlap;
4809 int subset;
4810 int temp;
4811 tree tem;
4812 int in_p;
4813 tree low, high;
4814 int lowequal = ((low0 == 0 && low1 == 0)
4815 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4816 low0, 0, low1, 0)));
4817 int highequal = ((high0 == 0 && high1 == 0)
4818 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4819 high0, 1, high1, 1)));
4821 /* Make range 0 be the range that starts first, or ends last if they
4822 start at the same value. Swap them if it isn't. */
4823 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4824 low0, 0, low1, 0))
4825 || (lowequal
4826 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4827 high1, 1, high0, 1))))
4829 temp = in0_p, in0_p = in1_p, in1_p = temp;
4830 tem = low0, low0 = low1, low1 = tem;
4831 tem = high0, high0 = high1, high1 = tem;
4834 /* Now flag two cases, whether the ranges are disjoint or whether the
4835 second range is totally subsumed in the first. Note that the tests
4836 below are simplified by the ones above. */
4837 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4838 high0, 1, low1, 0));
4839 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4840 high1, 1, high0, 1));
4842 /* We now have four cases, depending on whether we are including or
4843 excluding the two ranges. */
4844 if (in0_p && in1_p)
4846 /* If they don't overlap, the result is false. If the second range
4847 is a subset it is the result. Otherwise, the range is from the start
4848 of the second to the end of the first. */
4849 if (no_overlap)
4850 in_p = 0, low = high = 0;
4851 else if (subset)
4852 in_p = 1, low = low1, high = high1;
4853 else
4854 in_p = 1, low = low1, high = high0;
4857 else if (in0_p && ! in1_p)
4859 /* If they don't overlap, the result is the first range. If they are
4860 equal, the result is false. If the second range is a subset of the
4861 first, and the ranges begin at the same place, we go from just after
4862 the end of the second range to the end of the first. If the second
4863 range is not a subset of the first, or if it is a subset and both
4864 ranges end at the same place, the range starts at the start of the
4865 first range and ends just before the second range.
4866 Otherwise, we can't describe this as a single range. */
4867 if (no_overlap)
4868 in_p = 1, low = low0, high = high0;
4869 else if (lowequal && highequal)
4870 in_p = 0, low = high = 0;
4871 else if (subset && lowequal)
4873 low = range_successor (high1);
4874 high = high0;
4875 in_p = 1;
4876 if (low == 0)
4878 /* We are in the weird situation where high0 > high1 but
4879 high1 has no successor. Punt. */
4880 return 0;
4883 else if (! subset || highequal)
4885 low = low0;
4886 high = range_predecessor (low1);
4887 in_p = 1;
4888 if (high == 0)
4890 /* low0 < low1 but low1 has no predecessor. Punt. */
4891 return 0;
4894 else
4895 return 0;
4898 else if (! in0_p && in1_p)
4900 /* If they don't overlap, the result is the second range. If the second
4901 is a subset of the first, the result is false. Otherwise,
4902 the range starts just after the first range and ends at the
4903 end of the second. */
4904 if (no_overlap)
4905 in_p = 1, low = low1, high = high1;
4906 else if (subset || highequal)
4907 in_p = 0, low = high = 0;
4908 else
4910 low = range_successor (high0);
4911 high = high1;
4912 in_p = 1;
4913 if (low == 0)
4915 /* high1 > high0 but high0 has no successor. Punt. */
4916 return 0;
4921 else
4923 /* The case where we are excluding both ranges. Here the complex case
4924 is if they don't overlap. In that case, the only time we have a
4925 range is if they are adjacent. If the second is a subset of the
4926 first, the result is the first. Otherwise, the range to exclude
4927 starts at the beginning of the first range and ends at the end of the
4928 second. */
4929 if (no_overlap)
4931 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4932 range_successor (high0),
4933 1, low1, 0)))
4934 in_p = 0, low = low0, high = high1;
4935 else
4937 /* Canonicalize - [min, x] into - [-, x]. */
4938 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4939 switch (TREE_CODE (TREE_TYPE (low0)))
4941 case ENUMERAL_TYPE:
4942 if (TYPE_PRECISION (TREE_TYPE (low0))
4943 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4944 break;
4945 /* FALLTHROUGH */
4946 case INTEGER_TYPE:
4947 if (tree_int_cst_equal (low0,
4948 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4949 low0 = 0;
4950 break;
4951 case POINTER_TYPE:
4952 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4953 && integer_zerop (low0))
4954 low0 = 0;
4955 break;
4956 default:
4957 break;
4960 /* Canonicalize - [x, max] into - [x, -]. */
4961 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4962 switch (TREE_CODE (TREE_TYPE (high1)))
4964 case ENUMERAL_TYPE:
4965 if (TYPE_PRECISION (TREE_TYPE (high1))
4966 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4967 break;
4968 /* FALLTHROUGH */
4969 case INTEGER_TYPE:
4970 if (tree_int_cst_equal (high1,
4971 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4972 high1 = 0;
4973 break;
4974 case POINTER_TYPE:
4975 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4976 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4977 high1, 1,
4978 build_int_cst (TREE_TYPE (high1), 1),
4979 1)))
4980 high1 = 0;
4981 break;
4982 default:
4983 break;
4986 /* The ranges might be also adjacent between the maximum and
4987 minimum values of the given type. For
4988 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4989 return + [x + 1, y - 1]. */
4990 if (low0 == 0 && high1 == 0)
4992 low = range_successor (high0);
4993 high = range_predecessor (low1);
4994 if (low == 0 || high == 0)
4995 return 0;
4997 in_p = 1;
4999 else
5000 return 0;
5003 else if (subset)
5004 in_p = 0, low = low0, high = high0;
5005 else
5006 in_p = 0, low = low0, high = high1;
5009 *pin_p = in_p, *plow = low, *phigh = high;
5010 return 1;
5014 /* Subroutine of fold, looking inside expressions of the form
5015 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5016 of the COND_EXPR. This function is being used also to optimize
5017 A op B ? C : A, by reversing the comparison first.
5019 Return a folded expression whose code is not a COND_EXPR
5020 anymore, or NULL_TREE if no folding opportunity is found. */
5022 static tree
5023 fold_cond_expr_with_comparison (location_t loc, tree type,
5024 tree arg0, tree arg1, tree arg2)
5026 enum tree_code comp_code = TREE_CODE (arg0);
5027 tree arg00 = TREE_OPERAND (arg0, 0);
5028 tree arg01 = TREE_OPERAND (arg0, 1);
5029 tree arg1_type = TREE_TYPE (arg1);
5030 tree tem;
5032 STRIP_NOPS (arg1);
5033 STRIP_NOPS (arg2);
5035 /* If we have A op 0 ? A : -A, consider applying the following
5036 transformations:
5038 A == 0? A : -A same as -A
5039 A != 0? A : -A same as A
5040 A >= 0? A : -A same as abs (A)
5041 A > 0? A : -A same as abs (A)
5042 A <= 0? A : -A same as -abs (A)
5043 A < 0? A : -A same as -abs (A)
5045 None of these transformations work for modes with signed
5046 zeros. If A is +/-0, the first two transformations will
5047 change the sign of the result (from +0 to -0, or vice
5048 versa). The last four will fix the sign of the result,
5049 even though the original expressions could be positive or
5050 negative, depending on the sign of A.
5052 Note that all these transformations are correct if A is
5053 NaN, since the two alternatives (A and -A) are also NaNs. */
5054 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5055 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5056 ? real_zerop (arg01)
5057 : integer_zerop (arg01))
5058 && ((TREE_CODE (arg2) == NEGATE_EXPR
5059 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5060 /* In the case that A is of the form X-Y, '-A' (arg2) may
5061 have already been folded to Y-X, check for that. */
5062 || (TREE_CODE (arg1) == MINUS_EXPR
5063 && TREE_CODE (arg2) == MINUS_EXPR
5064 && operand_equal_p (TREE_OPERAND (arg1, 0),
5065 TREE_OPERAND (arg2, 1), 0)
5066 && operand_equal_p (TREE_OPERAND (arg1, 1),
5067 TREE_OPERAND (arg2, 0), 0))))
5068 switch (comp_code)
5070 case EQ_EXPR:
5071 case UNEQ_EXPR:
5072 tem = fold_convert_loc (loc, arg1_type, arg1);
5073 return fold_convert_loc (loc, type, negate_expr (tem));
5074 case NE_EXPR:
5075 case LTGT_EXPR:
5076 return fold_convert_loc (loc, type, arg1);
5077 case UNGE_EXPR:
5078 case UNGT_EXPR:
5079 if (flag_trapping_math)
5080 break;
5081 /* Fall through. */
5082 case GE_EXPR:
5083 case GT_EXPR:
5084 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5085 break;
5086 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5087 return fold_convert_loc (loc, type, tem);
5088 case UNLE_EXPR:
5089 case UNLT_EXPR:
5090 if (flag_trapping_math)
5091 break;
5092 /* FALLTHRU */
5093 case LE_EXPR:
5094 case LT_EXPR:
5095 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5096 break;
5097 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5098 return negate_expr (fold_convert_loc (loc, type, tem));
5099 default:
5100 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5101 break;
5104 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5105 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5106 both transformations are correct when A is NaN: A != 0
5107 is then true, and A == 0 is false. */
5109 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5110 && integer_zerop (arg01) && integer_zerop (arg2))
5112 if (comp_code == NE_EXPR)
5113 return fold_convert_loc (loc, type, arg1);
5114 else if (comp_code == EQ_EXPR)
5115 return build_zero_cst (type);
5118 /* Try some transformations of A op B ? A : B.
5120 A == B? A : B same as B
5121 A != B? A : B same as A
5122 A >= B? A : B same as max (A, B)
5123 A > B? A : B same as max (B, A)
5124 A <= B? A : B same as min (A, B)
5125 A < B? A : B same as min (B, A)
5127 As above, these transformations don't work in the presence
5128 of signed zeros. For example, if A and B are zeros of
5129 opposite sign, the first two transformations will change
5130 the sign of the result. In the last four, the original
5131 expressions give different results for (A=+0, B=-0) and
5132 (A=-0, B=+0), but the transformed expressions do not.
5134 The first two transformations are correct if either A or B
5135 is a NaN. In the first transformation, the condition will
5136 be false, and B will indeed be chosen. In the case of the
5137 second transformation, the condition A != B will be true,
5138 and A will be chosen.
5140 The conversions to max() and min() are not correct if B is
5141 a number and A is not. The conditions in the original
5142 expressions will be false, so all four give B. The min()
5143 and max() versions would give a NaN instead. */
5144 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5145 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5146 /* Avoid these transformations if the COND_EXPR may be used
5147 as an lvalue in the C++ front-end. PR c++/19199. */
5148 && (in_gimple_form
5149 || VECTOR_TYPE_P (type)
5150 || (! lang_GNU_CXX ()
5151 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5152 || ! maybe_lvalue_p (arg1)
5153 || ! maybe_lvalue_p (arg2)))
5155 tree comp_op0 = arg00;
5156 tree comp_op1 = arg01;
5157 tree comp_type = TREE_TYPE (comp_op0);
5159 switch (comp_code)
5161 case EQ_EXPR:
5162 return fold_convert_loc (loc, type, arg2);
5163 case NE_EXPR:
5164 return fold_convert_loc (loc, type, arg1);
5165 case LE_EXPR:
5166 case LT_EXPR:
5167 case UNLE_EXPR:
5168 case UNLT_EXPR:
5169 /* In C++ a ?: expression can be an lvalue, so put the
5170 operand which will be used if they are equal first
5171 so that we can convert this back to the
5172 corresponding COND_EXPR. */
5173 if (!HONOR_NANS (arg1))
5175 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5176 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5177 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5178 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5179 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5180 comp_op1, comp_op0);
5181 return fold_convert_loc (loc, type, tem);
5183 break;
5184 case GE_EXPR:
5185 case GT_EXPR:
5186 case UNGE_EXPR:
5187 case UNGT_EXPR:
5188 if (!HONOR_NANS (arg1))
5190 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5191 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5192 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5193 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5194 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5195 comp_op1, comp_op0);
5196 return fold_convert_loc (loc, type, tem);
5198 break;
5199 case UNEQ_EXPR:
5200 if (!HONOR_NANS (arg1))
5201 return fold_convert_loc (loc, type, arg2);
5202 break;
5203 case LTGT_EXPR:
5204 if (!HONOR_NANS (arg1))
5205 return fold_convert_loc (loc, type, arg1);
5206 break;
5207 default:
5208 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5209 break;
5213 return NULL_TREE;
5218 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5219 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5220 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5221 false) >= 2)
5222 #endif
5224 /* EXP is some logical combination of boolean tests. See if we can
5225 merge it into some range test. Return the new tree if so. */
5227 static tree
5228 fold_range_test (location_t loc, enum tree_code code, tree type,
5229 tree op0, tree op1)
5231 int or_op = (code == TRUTH_ORIF_EXPR
5232 || code == TRUTH_OR_EXPR);
5233 int in0_p, in1_p, in_p;
5234 tree low0, low1, low, high0, high1, high;
5235 bool strict_overflow_p = false;
5236 tree tem, lhs, rhs;
5237 const char * const warnmsg = G_("assuming signed overflow does not occur "
5238 "when simplifying range test");
5240 if (!INTEGRAL_TYPE_P (type))
5241 return 0;
5243 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5244 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5246 /* If this is an OR operation, invert both sides; we will invert
5247 again at the end. */
5248 if (or_op)
5249 in0_p = ! in0_p, in1_p = ! in1_p;
5251 /* If both expressions are the same, if we can merge the ranges, and we
5252 can build the range test, return it or it inverted. If one of the
5253 ranges is always true or always false, consider it to be the same
5254 expression as the other. */
5255 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5256 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5257 in1_p, low1, high1)
5258 && 0 != (tem = (build_range_check (loc, type,
5259 lhs != 0 ? lhs
5260 : rhs != 0 ? rhs : integer_zero_node,
5261 in_p, low, high))))
5263 if (strict_overflow_p)
5264 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5265 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5268 /* On machines where the branch cost is expensive, if this is a
5269 short-circuited branch and the underlying object on both sides
5270 is the same, make a non-short-circuit operation. */
5271 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5272 && lhs != 0 && rhs != 0
5273 && (code == TRUTH_ANDIF_EXPR
5274 || code == TRUTH_ORIF_EXPR)
5275 && operand_equal_p (lhs, rhs, 0))
5277 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5278 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5279 which cases we can't do this. */
5280 if (simple_operand_p (lhs))
5281 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5282 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5283 type, op0, op1);
5285 else if (!lang_hooks.decls.global_bindings_p ()
5286 && !CONTAINS_PLACEHOLDER_P (lhs))
5288 tree common = save_expr (lhs);
5290 if (0 != (lhs = build_range_check (loc, type, common,
5291 or_op ? ! in0_p : in0_p,
5292 low0, high0))
5293 && (0 != (rhs = build_range_check (loc, type, common,
5294 or_op ? ! in1_p : in1_p,
5295 low1, high1))))
5297 if (strict_overflow_p)
5298 fold_overflow_warning (warnmsg,
5299 WARN_STRICT_OVERFLOW_COMPARISON);
5300 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5301 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5302 type, lhs, rhs);
5307 return 0;
5310 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5311 bit value. Arrange things so the extra bits will be set to zero if and
5312 only if C is signed-extended to its full width. If MASK is nonzero,
5313 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5315 static tree
5316 unextend (tree c, int p, int unsignedp, tree mask)
5318 tree type = TREE_TYPE (c);
5319 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5320 tree temp;
5322 if (p == modesize || unsignedp)
5323 return c;
5325 /* We work by getting just the sign bit into the low-order bit, then
5326 into the high-order bit, then sign-extend. We then XOR that value
5327 with C. */
5328 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5330 /* We must use a signed type in order to get an arithmetic right shift.
5331 However, we must also avoid introducing accidental overflows, so that
5332 a subsequent call to integer_zerop will work. Hence we must
5333 do the type conversion here. At this point, the constant is either
5334 zero or one, and the conversion to a signed type can never overflow.
5335 We could get an overflow if this conversion is done anywhere else. */
5336 if (TYPE_UNSIGNED (type))
5337 temp = fold_convert (signed_type_for (type), temp);
5339 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5340 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5341 if (mask != 0)
5342 temp = const_binop (BIT_AND_EXPR, temp,
5343 fold_convert (TREE_TYPE (c), mask));
5344 /* If necessary, convert the type back to match the type of C. */
5345 if (TYPE_UNSIGNED (type))
5346 temp = fold_convert (type, temp);
5348 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5351 /* For an expression that has the form
5352 (A && B) || ~B
5354 (A || B) && ~B,
5355 we can drop one of the inner expressions and simplify to
5356 A || ~B
5358 A && ~B
5359 LOC is the location of the resulting expression. OP is the inner
5360 logical operation; the left-hand side in the examples above, while CMPOP
5361 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5362 removing a condition that guards another, as in
5363 (A != NULL && A->...) || A == NULL
5364 which we must not transform. If RHS_ONLY is true, only eliminate the
5365 right-most operand of the inner logical operation. */
5367 static tree
5368 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5369 bool rhs_only)
5371 tree type = TREE_TYPE (cmpop);
5372 enum tree_code code = TREE_CODE (cmpop);
5373 enum tree_code truthop_code = TREE_CODE (op);
5374 tree lhs = TREE_OPERAND (op, 0);
5375 tree rhs = TREE_OPERAND (op, 1);
5376 tree orig_lhs = lhs, orig_rhs = rhs;
5377 enum tree_code rhs_code = TREE_CODE (rhs);
5378 enum tree_code lhs_code = TREE_CODE (lhs);
5379 enum tree_code inv_code;
5381 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5382 return NULL_TREE;
5384 if (TREE_CODE_CLASS (code) != tcc_comparison)
5385 return NULL_TREE;
5387 if (rhs_code == truthop_code)
5389 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5390 if (newrhs != NULL_TREE)
5392 rhs = newrhs;
5393 rhs_code = TREE_CODE (rhs);
5396 if (lhs_code == truthop_code && !rhs_only)
5398 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5399 if (newlhs != NULL_TREE)
5401 lhs = newlhs;
5402 lhs_code = TREE_CODE (lhs);
5406 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5407 if (inv_code == rhs_code
5408 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5409 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5410 return lhs;
5411 if (!rhs_only && inv_code == lhs_code
5412 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5413 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5414 return rhs;
5415 if (rhs != orig_rhs || lhs != orig_lhs)
5416 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5417 lhs, rhs);
5418 return NULL_TREE;
5421 /* Find ways of folding logical expressions of LHS and RHS:
5422 Try to merge two comparisons to the same innermost item.
5423 Look for range tests like "ch >= '0' && ch <= '9'".
5424 Look for combinations of simple terms on machines with expensive branches
5425 and evaluate the RHS unconditionally.
5427 For example, if we have p->a == 2 && p->b == 4 and we can make an
5428 object large enough to span both A and B, we can do this with a comparison
5429 against the object ANDed with the a mask.
5431 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5432 operations to do this with one comparison.
5434 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5435 function and the one above.
5437 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5438 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5440 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5441 two operands.
5443 We return the simplified tree or 0 if no optimization is possible. */
5445 static tree
5446 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5447 tree lhs, tree rhs)
5449 /* If this is the "or" of two comparisons, we can do something if
5450 the comparisons are NE_EXPR. If this is the "and", we can do something
5451 if the comparisons are EQ_EXPR. I.e.,
5452 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5454 WANTED_CODE is this operation code. For single bit fields, we can
5455 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5456 comparison for one-bit fields. */
5458 enum tree_code wanted_code;
5459 enum tree_code lcode, rcode;
5460 tree ll_arg, lr_arg, rl_arg, rr_arg;
5461 tree ll_inner, lr_inner, rl_inner, rr_inner;
5462 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5463 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5464 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5465 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5466 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5467 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5468 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5469 machine_mode lnmode, rnmode;
5470 tree ll_mask, lr_mask, rl_mask, rr_mask;
5471 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5472 tree l_const, r_const;
5473 tree lntype, rntype, result;
5474 HOST_WIDE_INT first_bit, end_bit;
5475 int volatilep;
5477 /* Start by getting the comparison codes. Fail if anything is volatile.
5478 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5479 it were surrounded with a NE_EXPR. */
5481 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5482 return 0;
5484 lcode = TREE_CODE (lhs);
5485 rcode = TREE_CODE (rhs);
5487 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5489 lhs = build2 (NE_EXPR, truth_type, lhs,
5490 build_int_cst (TREE_TYPE (lhs), 0));
5491 lcode = NE_EXPR;
5494 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5496 rhs = build2 (NE_EXPR, truth_type, rhs,
5497 build_int_cst (TREE_TYPE (rhs), 0));
5498 rcode = NE_EXPR;
5501 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5502 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5503 return 0;
5505 ll_arg = TREE_OPERAND (lhs, 0);
5506 lr_arg = TREE_OPERAND (lhs, 1);
5507 rl_arg = TREE_OPERAND (rhs, 0);
5508 rr_arg = TREE_OPERAND (rhs, 1);
5510 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5511 if (simple_operand_p (ll_arg)
5512 && simple_operand_p (lr_arg))
5514 if (operand_equal_p (ll_arg, rl_arg, 0)
5515 && operand_equal_p (lr_arg, rr_arg, 0))
5517 result = combine_comparisons (loc, code, lcode, rcode,
5518 truth_type, ll_arg, lr_arg);
5519 if (result)
5520 return result;
5522 else if (operand_equal_p (ll_arg, rr_arg, 0)
5523 && operand_equal_p (lr_arg, rl_arg, 0))
5525 result = combine_comparisons (loc, code, lcode,
5526 swap_tree_comparison (rcode),
5527 truth_type, ll_arg, lr_arg);
5528 if (result)
5529 return result;
5533 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5534 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5536 /* If the RHS can be evaluated unconditionally and its operands are
5537 simple, it wins to evaluate the RHS unconditionally on machines
5538 with expensive branches. In this case, this isn't a comparison
5539 that can be merged. */
5541 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5542 false) >= 2
5543 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5544 && simple_operand_p (rl_arg)
5545 && simple_operand_p (rr_arg))
5547 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5548 if (code == TRUTH_OR_EXPR
5549 && lcode == NE_EXPR && integer_zerop (lr_arg)
5550 && rcode == NE_EXPR && integer_zerop (rr_arg)
5551 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5552 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5553 return build2_loc (loc, NE_EXPR, truth_type,
5554 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5555 ll_arg, rl_arg),
5556 build_int_cst (TREE_TYPE (ll_arg), 0));
5558 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5559 if (code == TRUTH_AND_EXPR
5560 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5561 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5562 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5563 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5564 return build2_loc (loc, EQ_EXPR, truth_type,
5565 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5566 ll_arg, rl_arg),
5567 build_int_cst (TREE_TYPE (ll_arg), 0));
5570 /* See if the comparisons can be merged. Then get all the parameters for
5571 each side. */
5573 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5574 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5575 return 0;
5577 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5578 volatilep = 0;
5579 ll_inner = decode_field_reference (loc, &ll_arg,
5580 &ll_bitsize, &ll_bitpos, &ll_mode,
5581 &ll_unsignedp, &ll_reversep, &volatilep,
5582 &ll_mask, &ll_and_mask);
5583 lr_inner = decode_field_reference (loc, &lr_arg,
5584 &lr_bitsize, &lr_bitpos, &lr_mode,
5585 &lr_unsignedp, &lr_reversep, &volatilep,
5586 &lr_mask, &lr_and_mask);
5587 rl_inner = decode_field_reference (loc, &rl_arg,
5588 &rl_bitsize, &rl_bitpos, &rl_mode,
5589 &rl_unsignedp, &rl_reversep, &volatilep,
5590 &rl_mask, &rl_and_mask);
5591 rr_inner = decode_field_reference (loc, &rr_arg,
5592 &rr_bitsize, &rr_bitpos, &rr_mode,
5593 &rr_unsignedp, &rr_reversep, &volatilep,
5594 &rr_mask, &rr_and_mask);
5596 /* It must be true that the inner operation on the lhs of each
5597 comparison must be the same if we are to be able to do anything.
5598 Then see if we have constants. If not, the same must be true for
5599 the rhs's. */
5600 if (volatilep
5601 || ll_reversep != rl_reversep
5602 || ll_inner == 0 || rl_inner == 0
5603 || ! operand_equal_p (ll_inner, rl_inner, 0))
5604 return 0;
5606 if (TREE_CODE (lr_arg) == INTEGER_CST
5607 && TREE_CODE (rr_arg) == INTEGER_CST)
5609 l_const = lr_arg, r_const = rr_arg;
5610 lr_reversep = ll_reversep;
5612 else if (lr_reversep != rr_reversep
5613 || lr_inner == 0 || rr_inner == 0
5614 || ! operand_equal_p (lr_inner, rr_inner, 0))
5615 return 0;
5616 else
5617 l_const = r_const = 0;
5619 /* If either comparison code is not correct for our logical operation,
5620 fail. However, we can convert a one-bit comparison against zero into
5621 the opposite comparison against that bit being set in the field. */
5623 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5624 if (lcode != wanted_code)
5626 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5628 /* Make the left operand unsigned, since we are only interested
5629 in the value of one bit. Otherwise we are doing the wrong
5630 thing below. */
5631 ll_unsignedp = 1;
5632 l_const = ll_mask;
5634 else
5635 return 0;
5638 /* This is analogous to the code for l_const above. */
5639 if (rcode != wanted_code)
5641 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5643 rl_unsignedp = 1;
5644 r_const = rl_mask;
5646 else
5647 return 0;
5650 /* See if we can find a mode that contains both fields being compared on
5651 the left. If we can't, fail. Otherwise, update all constants and masks
5652 to be relative to a field of that size. */
5653 first_bit = MIN (ll_bitpos, rl_bitpos);
5654 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5655 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5656 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5657 volatilep);
5658 if (lnmode == VOIDmode)
5659 return 0;
5661 lnbitsize = GET_MODE_BITSIZE (lnmode);
5662 lnbitpos = first_bit & ~ (lnbitsize - 1);
5663 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5664 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5666 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5668 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5669 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5672 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5673 size_int (xll_bitpos));
5674 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5675 size_int (xrl_bitpos));
5677 if (l_const)
5679 l_const = fold_convert_loc (loc, lntype, l_const);
5680 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5681 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5682 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5683 fold_build1_loc (loc, BIT_NOT_EXPR,
5684 lntype, ll_mask))))
5686 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5688 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5691 if (r_const)
5693 r_const = fold_convert_loc (loc, lntype, r_const);
5694 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5695 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5696 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5697 fold_build1_loc (loc, BIT_NOT_EXPR,
5698 lntype, rl_mask))))
5700 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5702 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5706 /* If the right sides are not constant, do the same for it. Also,
5707 disallow this optimization if a size or signedness mismatch occurs
5708 between the left and right sides. */
5709 if (l_const == 0)
5711 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5712 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5713 /* Make sure the two fields on the right
5714 correspond to the left without being swapped. */
5715 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5716 return 0;
5718 first_bit = MIN (lr_bitpos, rr_bitpos);
5719 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5720 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5721 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5722 volatilep);
5723 if (rnmode == VOIDmode)
5724 return 0;
5726 rnbitsize = GET_MODE_BITSIZE (rnmode);
5727 rnbitpos = first_bit & ~ (rnbitsize - 1);
5728 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5729 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5731 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5733 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5734 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5737 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5738 rntype, lr_mask),
5739 size_int (xlr_bitpos));
5740 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5741 rntype, rr_mask),
5742 size_int (xrr_bitpos));
5744 /* Make a mask that corresponds to both fields being compared.
5745 Do this for both items being compared. If the operands are the
5746 same size and the bits being compared are in the same position
5747 then we can do this by masking both and comparing the masked
5748 results. */
5749 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5750 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5751 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5753 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5754 lntype, lnbitsize, lnbitpos,
5755 ll_unsignedp || rl_unsignedp, ll_reversep);
5756 if (! all_ones_mask_p (ll_mask, lnbitsize))
5757 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5759 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5760 rntype, rnbitsize, rnbitpos,
5761 lr_unsignedp || rr_unsignedp, lr_reversep);
5762 if (! all_ones_mask_p (lr_mask, rnbitsize))
5763 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5765 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5768 /* There is still another way we can do something: If both pairs of
5769 fields being compared are adjacent, we may be able to make a wider
5770 field containing them both.
5772 Note that we still must mask the lhs/rhs expressions. Furthermore,
5773 the mask must be shifted to account for the shift done by
5774 make_bit_field_ref. */
5775 if ((ll_bitsize + ll_bitpos == rl_bitpos
5776 && lr_bitsize + lr_bitpos == rr_bitpos)
5777 || (ll_bitpos == rl_bitpos + rl_bitsize
5778 && lr_bitpos == rr_bitpos + rr_bitsize))
5780 tree type;
5782 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5783 ll_bitsize + rl_bitsize,
5784 MIN (ll_bitpos, rl_bitpos),
5785 ll_unsignedp, ll_reversep);
5786 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5787 lr_bitsize + rr_bitsize,
5788 MIN (lr_bitpos, rr_bitpos),
5789 lr_unsignedp, lr_reversep);
5791 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5792 size_int (MIN (xll_bitpos, xrl_bitpos)));
5793 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5794 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5796 /* Convert to the smaller type before masking out unwanted bits. */
5797 type = lntype;
5798 if (lntype != rntype)
5800 if (lnbitsize > rnbitsize)
5802 lhs = fold_convert_loc (loc, rntype, lhs);
5803 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5804 type = rntype;
5806 else if (lnbitsize < rnbitsize)
5808 rhs = fold_convert_loc (loc, lntype, rhs);
5809 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5810 type = lntype;
5814 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5815 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5817 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5818 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5820 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5823 return 0;
5826 /* Handle the case of comparisons with constants. If there is something in
5827 common between the masks, those bits of the constants must be the same.
5828 If not, the condition is always false. Test for this to avoid generating
5829 incorrect code below. */
5830 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5831 if (! integer_zerop (result)
5832 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5833 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5835 if (wanted_code == NE_EXPR)
5837 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5838 return constant_boolean_node (true, truth_type);
5840 else
5842 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5843 return constant_boolean_node (false, truth_type);
5847 /* Construct the expression we will return. First get the component
5848 reference we will make. Unless the mask is all ones the width of
5849 that field, perform the mask operation. Then compare with the
5850 merged constant. */
5851 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5852 lntype, lnbitsize, lnbitpos,
5853 ll_unsignedp || rl_unsignedp, ll_reversep);
5855 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5856 if (! all_ones_mask_p (ll_mask, lnbitsize))
5857 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5859 return build2_loc (loc, wanted_code, truth_type, result,
5860 const_binop (BIT_IOR_EXPR, l_const, r_const));
5863 /* T is an integer expression that is being multiplied, divided, or taken a
5864 modulus (CODE says which and what kind of divide or modulus) by a
5865 constant C. See if we can eliminate that operation by folding it with
5866 other operations already in T. WIDE_TYPE, if non-null, is a type that
5867 should be used for the computation if wider than our type.
5869 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5870 (X * 2) + (Y * 4). We must, however, be assured that either the original
5871 expression would not overflow or that overflow is undefined for the type
5872 in the language in question.
5874 If we return a non-null expression, it is an equivalent form of the
5875 original computation, but need not be in the original type.
5877 We set *STRICT_OVERFLOW_P to true if the return values depends on
5878 signed overflow being undefined. Otherwise we do not change
5879 *STRICT_OVERFLOW_P. */
5881 static tree
5882 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5883 bool *strict_overflow_p)
5885 /* To avoid exponential search depth, refuse to allow recursion past
5886 three levels. Beyond that (1) it's highly unlikely that we'll find
5887 something interesting and (2) we've probably processed it before
5888 when we built the inner expression. */
5890 static int depth;
5891 tree ret;
5893 if (depth > 3)
5894 return NULL;
5896 depth++;
5897 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5898 depth--;
5900 return ret;
5903 static tree
5904 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5905 bool *strict_overflow_p)
5907 tree type = TREE_TYPE (t);
5908 enum tree_code tcode = TREE_CODE (t);
5909 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5910 > GET_MODE_SIZE (TYPE_MODE (type)))
5911 ? wide_type : type);
5912 tree t1, t2;
5913 int same_p = tcode == code;
5914 tree op0 = NULL_TREE, op1 = NULL_TREE;
5915 bool sub_strict_overflow_p;
5917 /* Don't deal with constants of zero here; they confuse the code below. */
5918 if (integer_zerop (c))
5919 return NULL_TREE;
5921 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5922 op0 = TREE_OPERAND (t, 0);
5924 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5925 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5927 /* Note that we need not handle conditional operations here since fold
5928 already handles those cases. So just do arithmetic here. */
5929 switch (tcode)
5931 case INTEGER_CST:
5932 /* For a constant, we can always simplify if we are a multiply
5933 or (for divide and modulus) if it is a multiple of our constant. */
5934 if (code == MULT_EXPR
5935 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5937 tree tem = const_binop (code, fold_convert (ctype, t),
5938 fold_convert (ctype, c));
5939 /* If the multiplication overflowed, we lost information on it.
5940 See PR68142 and PR69845. */
5941 if (TREE_OVERFLOW (tem))
5942 return NULL_TREE;
5943 return tem;
5945 break;
5947 CASE_CONVERT: case NON_LVALUE_EXPR:
5948 /* If op0 is an expression ... */
5949 if ((COMPARISON_CLASS_P (op0)
5950 || UNARY_CLASS_P (op0)
5951 || BINARY_CLASS_P (op0)
5952 || VL_EXP_CLASS_P (op0)
5953 || EXPRESSION_CLASS_P (op0))
5954 /* ... and has wrapping overflow, and its type is smaller
5955 than ctype, then we cannot pass through as widening. */
5956 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5957 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5958 && (TYPE_PRECISION (ctype)
5959 > TYPE_PRECISION (TREE_TYPE (op0))))
5960 /* ... or this is a truncation (t is narrower than op0),
5961 then we cannot pass through this narrowing. */
5962 || (TYPE_PRECISION (type)
5963 < TYPE_PRECISION (TREE_TYPE (op0)))
5964 /* ... or signedness changes for division or modulus,
5965 then we cannot pass through this conversion. */
5966 || (code != MULT_EXPR
5967 && (TYPE_UNSIGNED (ctype)
5968 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5969 /* ... or has undefined overflow while the converted to
5970 type has not, we cannot do the operation in the inner type
5971 as that would introduce undefined overflow. */
5972 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5973 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
5974 && !TYPE_OVERFLOW_UNDEFINED (type))))
5975 break;
5977 /* Pass the constant down and see if we can make a simplification. If
5978 we can, replace this expression with the inner simplification for
5979 possible later conversion to our or some other type. */
5980 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5981 && TREE_CODE (t2) == INTEGER_CST
5982 && !TREE_OVERFLOW (t2)
5983 && (0 != (t1 = extract_muldiv (op0, t2, code,
5984 code == MULT_EXPR
5985 ? ctype : NULL_TREE,
5986 strict_overflow_p))))
5987 return t1;
5988 break;
5990 case ABS_EXPR:
5991 /* If widening the type changes it from signed to unsigned, then we
5992 must avoid building ABS_EXPR itself as unsigned. */
5993 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5995 tree cstype = (*signed_type_for) (ctype);
5996 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5997 != 0)
5999 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6000 return fold_convert (ctype, t1);
6002 break;
6004 /* If the constant is negative, we cannot simplify this. */
6005 if (tree_int_cst_sgn (c) == -1)
6006 break;
6007 /* FALLTHROUGH */
6008 case NEGATE_EXPR:
6009 /* For division and modulus, type can't be unsigned, as e.g.
6010 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6011 For signed types, even with wrapping overflow, this is fine. */
6012 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6013 break;
6014 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6015 != 0)
6016 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6017 break;
6019 case MIN_EXPR: case MAX_EXPR:
6020 /* If widening the type changes the signedness, then we can't perform
6021 this optimization as that changes the result. */
6022 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6023 break;
6025 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6026 sub_strict_overflow_p = false;
6027 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6028 &sub_strict_overflow_p)) != 0
6029 && (t2 = extract_muldiv (op1, c, code, wide_type,
6030 &sub_strict_overflow_p)) != 0)
6032 if (tree_int_cst_sgn (c) < 0)
6033 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6034 if (sub_strict_overflow_p)
6035 *strict_overflow_p = true;
6036 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6037 fold_convert (ctype, t2));
6039 break;
6041 case LSHIFT_EXPR: case RSHIFT_EXPR:
6042 /* If the second operand is constant, this is a multiplication
6043 or floor division, by a power of two, so we can treat it that
6044 way unless the multiplier or divisor overflows. Signed
6045 left-shift overflow is implementation-defined rather than
6046 undefined in C90, so do not convert signed left shift into
6047 multiplication. */
6048 if (TREE_CODE (op1) == INTEGER_CST
6049 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6050 /* const_binop may not detect overflow correctly,
6051 so check for it explicitly here. */
6052 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6053 && 0 != (t1 = fold_convert (ctype,
6054 const_binop (LSHIFT_EXPR,
6055 size_one_node,
6056 op1)))
6057 && !TREE_OVERFLOW (t1))
6058 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6059 ? MULT_EXPR : FLOOR_DIV_EXPR,
6060 ctype,
6061 fold_convert (ctype, op0),
6062 t1),
6063 c, code, wide_type, strict_overflow_p);
6064 break;
6066 case PLUS_EXPR: case MINUS_EXPR:
6067 /* See if we can eliminate the operation on both sides. If we can, we
6068 can return a new PLUS or MINUS. If we can't, the only remaining
6069 cases where we can do anything are if the second operand is a
6070 constant. */
6071 sub_strict_overflow_p = false;
6072 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6073 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6074 if (t1 != 0 && t2 != 0
6075 && (code == MULT_EXPR
6076 /* If not multiplication, we can only do this if both operands
6077 are divisible by c. */
6078 || (multiple_of_p (ctype, op0, c)
6079 && multiple_of_p (ctype, op1, c))))
6081 if (sub_strict_overflow_p)
6082 *strict_overflow_p = true;
6083 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6084 fold_convert (ctype, t2));
6087 /* If this was a subtraction, negate OP1 and set it to be an addition.
6088 This simplifies the logic below. */
6089 if (tcode == MINUS_EXPR)
6091 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6092 /* If OP1 was not easily negatable, the constant may be OP0. */
6093 if (TREE_CODE (op0) == INTEGER_CST)
6095 std::swap (op0, op1);
6096 std::swap (t1, t2);
6100 if (TREE_CODE (op1) != INTEGER_CST)
6101 break;
6103 /* If either OP1 or C are negative, this optimization is not safe for
6104 some of the division and remainder types while for others we need
6105 to change the code. */
6106 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6108 if (code == CEIL_DIV_EXPR)
6109 code = FLOOR_DIV_EXPR;
6110 else if (code == FLOOR_DIV_EXPR)
6111 code = CEIL_DIV_EXPR;
6112 else if (code != MULT_EXPR
6113 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6114 break;
6117 /* If it's a multiply or a division/modulus operation of a multiple
6118 of our constant, do the operation and verify it doesn't overflow. */
6119 if (code == MULT_EXPR
6120 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6122 op1 = const_binop (code, fold_convert (ctype, op1),
6123 fold_convert (ctype, c));
6124 /* We allow the constant to overflow with wrapping semantics. */
6125 if (op1 == 0
6126 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6127 break;
6129 else
6130 break;
6132 /* If we have an unsigned type, we cannot widen the operation since it
6133 will change the result if the original computation overflowed. */
6134 if (TYPE_UNSIGNED (ctype) && ctype != type)
6135 break;
6137 /* If we were able to eliminate our operation from the first side,
6138 apply our operation to the second side and reform the PLUS. */
6139 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6140 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6142 /* The last case is if we are a multiply. In that case, we can
6143 apply the distributive law to commute the multiply and addition
6144 if the multiplication of the constants doesn't overflow
6145 and overflow is defined. With undefined overflow
6146 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6147 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6148 return fold_build2 (tcode, ctype,
6149 fold_build2 (code, ctype,
6150 fold_convert (ctype, op0),
6151 fold_convert (ctype, c)),
6152 op1);
6154 break;
6156 case MULT_EXPR:
6157 /* We have a special case here if we are doing something like
6158 (C * 8) % 4 since we know that's zero. */
6159 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6160 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6161 /* If the multiplication can overflow we cannot optimize this. */
6162 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6163 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6164 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6166 *strict_overflow_p = true;
6167 return omit_one_operand (type, integer_zero_node, op0);
6170 /* ... fall through ... */
6172 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6173 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6174 /* If we can extract our operation from the LHS, do so and return a
6175 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6176 do something only if the second operand is a constant. */
6177 if (same_p
6178 && (t1 = extract_muldiv (op0, c, code, wide_type,
6179 strict_overflow_p)) != 0)
6180 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6181 fold_convert (ctype, op1));
6182 else if (tcode == MULT_EXPR && code == MULT_EXPR
6183 && (t1 = extract_muldiv (op1, c, code, wide_type,
6184 strict_overflow_p)) != 0)
6185 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6186 fold_convert (ctype, t1));
6187 else if (TREE_CODE (op1) != INTEGER_CST)
6188 return 0;
6190 /* If these are the same operation types, we can associate them
6191 assuming no overflow. */
6192 if (tcode == code)
6194 bool overflow_p = false;
6195 bool overflow_mul_p;
6196 signop sign = TYPE_SIGN (ctype);
6197 unsigned prec = TYPE_PRECISION (ctype);
6198 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6199 wi::to_wide (c, prec),
6200 sign, &overflow_mul_p);
6201 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6202 if (overflow_mul_p
6203 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6204 overflow_p = true;
6205 if (!overflow_p)
6206 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6207 wide_int_to_tree (ctype, mul));
6210 /* If these operations "cancel" each other, we have the main
6211 optimizations of this pass, which occur when either constant is a
6212 multiple of the other, in which case we replace this with either an
6213 operation or CODE or TCODE.
6215 If we have an unsigned type, we cannot do this since it will change
6216 the result if the original computation overflowed. */
6217 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6218 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6219 || (tcode == MULT_EXPR
6220 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6221 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6222 && code != MULT_EXPR)))
6224 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6226 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6227 *strict_overflow_p = true;
6228 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6229 fold_convert (ctype,
6230 const_binop (TRUNC_DIV_EXPR,
6231 op1, c)));
6233 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6235 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6236 *strict_overflow_p = true;
6237 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6238 fold_convert (ctype,
6239 const_binop (TRUNC_DIV_EXPR,
6240 c, op1)));
6243 break;
6245 default:
6246 break;
6249 return 0;
6252 /* Return a node which has the indicated constant VALUE (either 0 or
6253 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6254 and is of the indicated TYPE. */
6256 tree
6257 constant_boolean_node (bool value, tree type)
6259 if (type == integer_type_node)
6260 return value ? integer_one_node : integer_zero_node;
6261 else if (type == boolean_type_node)
6262 return value ? boolean_true_node : boolean_false_node;
6263 else if (TREE_CODE (type) == VECTOR_TYPE)
6264 return build_vector_from_val (type,
6265 build_int_cst (TREE_TYPE (type),
6266 value ? -1 : 0));
6267 else
6268 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6272 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6273 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6274 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6275 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6276 COND is the first argument to CODE; otherwise (as in the example
6277 given here), it is the second argument. TYPE is the type of the
6278 original expression. Return NULL_TREE if no simplification is
6279 possible. */
6281 static tree
6282 fold_binary_op_with_conditional_arg (location_t loc,
6283 enum tree_code code,
6284 tree type, tree op0, tree op1,
6285 tree cond, tree arg, int cond_first_p)
6287 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6288 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6289 tree test, true_value, false_value;
6290 tree lhs = NULL_TREE;
6291 tree rhs = NULL_TREE;
6292 enum tree_code cond_code = COND_EXPR;
6294 if (TREE_CODE (cond) == COND_EXPR
6295 || TREE_CODE (cond) == VEC_COND_EXPR)
6297 test = TREE_OPERAND (cond, 0);
6298 true_value = TREE_OPERAND (cond, 1);
6299 false_value = TREE_OPERAND (cond, 2);
6300 /* If this operand throws an expression, then it does not make
6301 sense to try to perform a logical or arithmetic operation
6302 involving it. */
6303 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6304 lhs = true_value;
6305 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6306 rhs = false_value;
6308 else if (!(TREE_CODE (type) != VECTOR_TYPE
6309 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6311 tree testtype = TREE_TYPE (cond);
6312 test = cond;
6313 true_value = constant_boolean_node (true, testtype);
6314 false_value = constant_boolean_node (false, testtype);
6316 else
6317 /* Detect the case of mixing vector and scalar types - bail out. */
6318 return NULL_TREE;
6320 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6321 cond_code = VEC_COND_EXPR;
6323 /* This transformation is only worthwhile if we don't have to wrap ARG
6324 in a SAVE_EXPR and the operation can be simplified without recursing
6325 on at least one of the branches once its pushed inside the COND_EXPR. */
6326 if (!TREE_CONSTANT (arg)
6327 && (TREE_SIDE_EFFECTS (arg)
6328 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6329 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6330 return NULL_TREE;
6332 arg = fold_convert_loc (loc, arg_type, arg);
6333 if (lhs == 0)
6335 true_value = fold_convert_loc (loc, cond_type, true_value);
6336 if (cond_first_p)
6337 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6338 else
6339 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6341 if (rhs == 0)
6343 false_value = fold_convert_loc (loc, cond_type, false_value);
6344 if (cond_first_p)
6345 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6346 else
6347 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6350 /* Check that we have simplified at least one of the branches. */
6351 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6352 return NULL_TREE;
6354 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6358 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6360 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6361 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6362 ADDEND is the same as X.
6364 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6365 and finite. The problematic cases are when X is zero, and its mode
6366 has signed zeros. In the case of rounding towards -infinity,
6367 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6368 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6370 bool
6371 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6373 if (!real_zerop (addend))
6374 return false;
6376 /* Don't allow the fold with -fsignaling-nans. */
6377 if (HONOR_SNANS (element_mode (type)))
6378 return false;
6380 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6381 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6382 return true;
6384 /* In a vector or complex, we would need to check the sign of all zeros. */
6385 if (TREE_CODE (addend) != REAL_CST)
6386 return false;
6388 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6389 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6390 negate = !negate;
6392 /* The mode has signed zeros, and we have to honor their sign.
6393 In this situation, there is only one case we can return true for.
6394 X - 0 is the same as X unless rounding towards -infinity is
6395 supported. */
6396 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6399 /* Subroutine of fold() that optimizes comparisons of a division by
6400 a nonzero integer constant against an integer constant, i.e.
6401 X/C1 op C2.
6403 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6404 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6405 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6407 The function returns the constant folded tree if a simplification
6408 can be made, and NULL_TREE otherwise. */
6410 static tree
6411 fold_div_compare (location_t loc,
6412 enum tree_code code, tree type, tree arg0, tree arg1)
6414 tree prod, tmp, hi, lo;
6415 tree arg00 = TREE_OPERAND (arg0, 0);
6416 tree arg01 = TREE_OPERAND (arg0, 1);
6417 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6418 bool neg_overflow = false;
6419 bool overflow;
6421 /* We have to do this the hard way to detect unsigned overflow.
6422 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6423 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6424 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6425 neg_overflow = false;
6427 if (sign == UNSIGNED)
6429 tmp = int_const_binop (MINUS_EXPR, arg01,
6430 build_int_cst (TREE_TYPE (arg01), 1));
6431 lo = prod;
6433 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6434 val = wi::add (prod, tmp, sign, &overflow);
6435 hi = force_fit_type (TREE_TYPE (arg00), val,
6436 -1, overflow | TREE_OVERFLOW (prod));
6438 else if (tree_int_cst_sgn (arg01) >= 0)
6440 tmp = int_const_binop (MINUS_EXPR, arg01,
6441 build_int_cst (TREE_TYPE (arg01), 1));
6442 switch (tree_int_cst_sgn (arg1))
6444 case -1:
6445 neg_overflow = true;
6446 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6447 hi = prod;
6448 break;
6450 case 0:
6451 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6452 hi = tmp;
6453 break;
6455 case 1:
6456 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6457 lo = prod;
6458 break;
6460 default:
6461 gcc_unreachable ();
6464 else
6466 /* A negative divisor reverses the relational operators. */
6467 code = swap_tree_comparison (code);
6469 tmp = int_const_binop (PLUS_EXPR, arg01,
6470 build_int_cst (TREE_TYPE (arg01), 1));
6471 switch (tree_int_cst_sgn (arg1))
6473 case -1:
6474 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6475 lo = prod;
6476 break;
6478 case 0:
6479 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6480 lo = tmp;
6481 break;
6483 case 1:
6484 neg_overflow = true;
6485 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6486 hi = prod;
6487 break;
6489 default:
6490 gcc_unreachable ();
6494 switch (code)
6496 case EQ_EXPR:
6497 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6498 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6499 if (TREE_OVERFLOW (hi))
6500 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6501 if (TREE_OVERFLOW (lo))
6502 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6503 return build_range_check (loc, type, arg00, 1, lo, hi);
6505 case NE_EXPR:
6506 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6507 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6508 if (TREE_OVERFLOW (hi))
6509 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6510 if (TREE_OVERFLOW (lo))
6511 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6512 return build_range_check (loc, type, arg00, 0, lo, hi);
6514 case LT_EXPR:
6515 if (TREE_OVERFLOW (lo))
6517 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6518 return omit_one_operand_loc (loc, type, tmp, arg00);
6520 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6522 case LE_EXPR:
6523 if (TREE_OVERFLOW (hi))
6525 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6526 return omit_one_operand_loc (loc, type, tmp, arg00);
6528 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6530 case GT_EXPR:
6531 if (TREE_OVERFLOW (hi))
6533 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6534 return omit_one_operand_loc (loc, type, tmp, arg00);
6536 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6538 case GE_EXPR:
6539 if (TREE_OVERFLOW (lo))
6541 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6542 return omit_one_operand_loc (loc, type, tmp, arg00);
6544 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6546 default:
6547 break;
6550 return NULL_TREE;
6554 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6555 equality/inequality test, then return a simplified form of the test
6556 using a sign testing. Otherwise return NULL. TYPE is the desired
6557 result type. */
6559 static tree
6560 fold_single_bit_test_into_sign_test (location_t loc,
6561 enum tree_code code, tree arg0, tree arg1,
6562 tree result_type)
6564 /* If this is testing a single bit, we can optimize the test. */
6565 if ((code == NE_EXPR || code == EQ_EXPR)
6566 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6567 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6569 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6570 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6571 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6573 if (arg00 != NULL_TREE
6574 /* This is only a win if casting to a signed type is cheap,
6575 i.e. when arg00's type is not a partial mode. */
6576 && TYPE_PRECISION (TREE_TYPE (arg00))
6577 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6579 tree stype = signed_type_for (TREE_TYPE (arg00));
6580 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6581 result_type,
6582 fold_convert_loc (loc, stype, arg00),
6583 build_int_cst (stype, 0));
6587 return NULL_TREE;
6590 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6591 equality/inequality test, then return a simplified form of
6592 the test using shifts and logical operations. Otherwise return
6593 NULL. TYPE is the desired result type. */
6595 tree
6596 fold_single_bit_test (location_t loc, enum tree_code code,
6597 tree arg0, tree arg1, tree result_type)
6599 /* If this is testing a single bit, we can optimize the test. */
6600 if ((code == NE_EXPR || code == EQ_EXPR)
6601 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6602 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6604 tree inner = TREE_OPERAND (arg0, 0);
6605 tree type = TREE_TYPE (arg0);
6606 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6607 machine_mode operand_mode = TYPE_MODE (type);
6608 int ops_unsigned;
6609 tree signed_type, unsigned_type, intermediate_type;
6610 tree tem, one;
6612 /* First, see if we can fold the single bit test into a sign-bit
6613 test. */
6614 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6615 result_type);
6616 if (tem)
6617 return tem;
6619 /* Otherwise we have (A & C) != 0 where C is a single bit,
6620 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6621 Similarly for (A & C) == 0. */
6623 /* If INNER is a right shift of a constant and it plus BITNUM does
6624 not overflow, adjust BITNUM and INNER. */
6625 if (TREE_CODE (inner) == RSHIFT_EXPR
6626 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6627 && bitnum < TYPE_PRECISION (type)
6628 && wi::ltu_p (TREE_OPERAND (inner, 1),
6629 TYPE_PRECISION (type) - bitnum))
6631 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6632 inner = TREE_OPERAND (inner, 0);
6635 /* If we are going to be able to omit the AND below, we must do our
6636 operations as unsigned. If we must use the AND, we have a choice.
6637 Normally unsigned is faster, but for some machines signed is. */
6638 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6639 && !flag_syntax_only) ? 0 : 1;
6641 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6642 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6643 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6644 inner = fold_convert_loc (loc, intermediate_type, inner);
6646 if (bitnum != 0)
6647 inner = build2 (RSHIFT_EXPR, intermediate_type,
6648 inner, size_int (bitnum));
6650 one = build_int_cst (intermediate_type, 1);
6652 if (code == EQ_EXPR)
6653 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6655 /* Put the AND last so it can combine with more things. */
6656 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6658 /* Make sure to return the proper type. */
6659 inner = fold_convert_loc (loc, result_type, inner);
6661 return inner;
6663 return NULL_TREE;
6666 /* Test whether it is preferable two swap two operands, ARG0 and
6667 ARG1, for example because ARG0 is an integer constant and ARG1
6668 isn't. */
6670 bool
6671 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6673 if (CONSTANT_CLASS_P (arg1))
6674 return 0;
6675 if (CONSTANT_CLASS_P (arg0))
6676 return 1;
6678 STRIP_NOPS (arg0);
6679 STRIP_NOPS (arg1);
6681 if (TREE_CONSTANT (arg1))
6682 return 0;
6683 if (TREE_CONSTANT (arg0))
6684 return 1;
6686 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6687 for commutative and comparison operators. Ensuring a canonical
6688 form allows the optimizers to find additional redundancies without
6689 having to explicitly check for both orderings. */
6690 if (TREE_CODE (arg0) == SSA_NAME
6691 && TREE_CODE (arg1) == SSA_NAME
6692 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6693 return 1;
6695 /* Put SSA_NAMEs last. */
6696 if (TREE_CODE (arg1) == SSA_NAME)
6697 return 0;
6698 if (TREE_CODE (arg0) == SSA_NAME)
6699 return 1;
6701 /* Put variables last. */
6702 if (DECL_P (arg1))
6703 return 0;
6704 if (DECL_P (arg0))
6705 return 1;
6707 return 0;
6711 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6712 means A >= Y && A != MAX, but in this case we know that
6713 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6715 static tree
6716 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6718 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6720 if (TREE_CODE (bound) == LT_EXPR)
6721 a = TREE_OPERAND (bound, 0);
6722 else if (TREE_CODE (bound) == GT_EXPR)
6723 a = TREE_OPERAND (bound, 1);
6724 else
6725 return NULL_TREE;
6727 typea = TREE_TYPE (a);
6728 if (!INTEGRAL_TYPE_P (typea)
6729 && !POINTER_TYPE_P (typea))
6730 return NULL_TREE;
6732 if (TREE_CODE (ineq) == LT_EXPR)
6734 a1 = TREE_OPERAND (ineq, 1);
6735 y = TREE_OPERAND (ineq, 0);
6737 else if (TREE_CODE (ineq) == GT_EXPR)
6739 a1 = TREE_OPERAND (ineq, 0);
6740 y = TREE_OPERAND (ineq, 1);
6742 else
6743 return NULL_TREE;
6745 if (TREE_TYPE (a1) != typea)
6746 return NULL_TREE;
6748 if (POINTER_TYPE_P (typea))
6750 /* Convert the pointer types into integer before taking the difference. */
6751 tree ta = fold_convert_loc (loc, ssizetype, a);
6752 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6753 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6755 else
6756 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6758 if (!diff || !integer_onep (diff))
6759 return NULL_TREE;
6761 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6764 /* Fold a sum or difference of at least one multiplication.
6765 Returns the folded tree or NULL if no simplification could be made. */
6767 static tree
6768 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6769 tree arg0, tree arg1)
6771 tree arg00, arg01, arg10, arg11;
6772 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6774 /* (A * C) +- (B * C) -> (A+-B) * C.
6775 (A * C) +- A -> A * (C+-1).
6776 We are most concerned about the case where C is a constant,
6777 but other combinations show up during loop reduction. Since
6778 it is not difficult, try all four possibilities. */
6780 if (TREE_CODE (arg0) == MULT_EXPR)
6782 arg00 = TREE_OPERAND (arg0, 0);
6783 arg01 = TREE_OPERAND (arg0, 1);
6785 else if (TREE_CODE (arg0) == INTEGER_CST)
6787 arg00 = build_one_cst (type);
6788 arg01 = arg0;
6790 else
6792 /* We cannot generate constant 1 for fract. */
6793 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6794 return NULL_TREE;
6795 arg00 = arg0;
6796 arg01 = build_one_cst (type);
6798 if (TREE_CODE (arg1) == MULT_EXPR)
6800 arg10 = TREE_OPERAND (arg1, 0);
6801 arg11 = TREE_OPERAND (arg1, 1);
6803 else if (TREE_CODE (arg1) == INTEGER_CST)
6805 arg10 = build_one_cst (type);
6806 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6807 the purpose of this canonicalization. */
6808 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6809 && negate_expr_p (arg1)
6810 && code == PLUS_EXPR)
6812 arg11 = negate_expr (arg1);
6813 code = MINUS_EXPR;
6815 else
6816 arg11 = arg1;
6818 else
6820 /* We cannot generate constant 1 for fract. */
6821 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6822 return NULL_TREE;
6823 arg10 = arg1;
6824 arg11 = build_one_cst (type);
6826 same = NULL_TREE;
6828 if (operand_equal_p (arg01, arg11, 0))
6829 same = arg01, alt0 = arg00, alt1 = arg10;
6830 else if (operand_equal_p (arg00, arg10, 0))
6831 same = arg00, alt0 = arg01, alt1 = arg11;
6832 else if (operand_equal_p (arg00, arg11, 0))
6833 same = arg00, alt0 = arg01, alt1 = arg10;
6834 else if (operand_equal_p (arg01, arg10, 0))
6835 same = arg01, alt0 = arg00, alt1 = arg11;
6837 /* No identical multiplicands; see if we can find a common
6838 power-of-two factor in non-power-of-two multiplies. This
6839 can help in multi-dimensional array access. */
6840 else if (tree_fits_shwi_p (arg01)
6841 && tree_fits_shwi_p (arg11))
6843 HOST_WIDE_INT int01, int11, tmp;
6844 bool swap = false;
6845 tree maybe_same;
6846 int01 = tree_to_shwi (arg01);
6847 int11 = tree_to_shwi (arg11);
6849 /* Move min of absolute values to int11. */
6850 if (absu_hwi (int01) < absu_hwi (int11))
6852 tmp = int01, int01 = int11, int11 = tmp;
6853 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6854 maybe_same = arg01;
6855 swap = true;
6857 else
6858 maybe_same = arg11;
6860 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6861 /* The remainder should not be a constant, otherwise we
6862 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6863 increased the number of multiplications necessary. */
6864 && TREE_CODE (arg10) != INTEGER_CST)
6866 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6867 build_int_cst (TREE_TYPE (arg00),
6868 int01 / int11));
6869 alt1 = arg10;
6870 same = maybe_same;
6871 if (swap)
6872 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6876 if (same)
6877 return fold_build2_loc (loc, MULT_EXPR, type,
6878 fold_build2_loc (loc, code, type,
6879 fold_convert_loc (loc, type, alt0),
6880 fold_convert_loc (loc, type, alt1)),
6881 fold_convert_loc (loc, type, same));
6883 return NULL_TREE;
6886 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6887 specified by EXPR into the buffer PTR of length LEN bytes.
6888 Return the number of bytes placed in the buffer, or zero
6889 upon failure. */
6891 static int
6892 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6894 tree type = TREE_TYPE (expr);
6895 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6896 int byte, offset, word, words;
6897 unsigned char value;
6899 if ((off == -1 && total_bytes > len)
6900 || off >= total_bytes)
6901 return 0;
6902 if (off == -1)
6903 off = 0;
6904 words = total_bytes / UNITS_PER_WORD;
6906 for (byte = 0; byte < total_bytes; byte++)
6908 int bitpos = byte * BITS_PER_UNIT;
6909 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6910 number of bytes. */
6911 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6913 if (total_bytes > UNITS_PER_WORD)
6915 word = byte / UNITS_PER_WORD;
6916 if (WORDS_BIG_ENDIAN)
6917 word = (words - 1) - word;
6918 offset = word * UNITS_PER_WORD;
6919 if (BYTES_BIG_ENDIAN)
6920 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6921 else
6922 offset += byte % UNITS_PER_WORD;
6924 else
6925 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6926 if (offset >= off
6927 && offset - off < len)
6928 ptr[offset - off] = value;
6930 return MIN (len, total_bytes - off);
6934 /* Subroutine of native_encode_expr. Encode the FIXED_CST
6935 specified by EXPR into the buffer PTR of length LEN bytes.
6936 Return the number of bytes placed in the buffer, or zero
6937 upon failure. */
6939 static int
6940 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
6942 tree type = TREE_TYPE (expr);
6943 machine_mode mode = TYPE_MODE (type);
6944 int total_bytes = GET_MODE_SIZE (mode);
6945 FIXED_VALUE_TYPE value;
6946 tree i_value, i_type;
6948 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
6949 return 0;
6951 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
6953 if (NULL_TREE == i_type
6954 || TYPE_PRECISION (i_type) != total_bytes)
6955 return 0;
6957 value = TREE_FIXED_CST (expr);
6958 i_value = double_int_to_tree (i_type, value.data);
6960 return native_encode_int (i_value, ptr, len, off);
6964 /* Subroutine of native_encode_expr. Encode the REAL_CST
6965 specified by EXPR into the buffer PTR of length LEN bytes.
6966 Return the number of bytes placed in the buffer, or zero
6967 upon failure. */
6969 static int
6970 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
6972 tree type = TREE_TYPE (expr);
6973 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6974 int byte, offset, word, words, bitpos;
6975 unsigned char value;
6977 /* There are always 32 bits in each long, no matter the size of
6978 the hosts long. We handle floating point representations with
6979 up to 192 bits. */
6980 long tmp[6];
6982 if ((off == -1 && total_bytes > len)
6983 || off >= total_bytes)
6984 return 0;
6985 if (off == -1)
6986 off = 0;
6987 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
6989 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
6991 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
6992 bitpos += BITS_PER_UNIT)
6994 byte = (bitpos / BITS_PER_UNIT) & 3;
6995 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
6997 if (UNITS_PER_WORD < 4)
6999 word = byte / UNITS_PER_WORD;
7000 if (WORDS_BIG_ENDIAN)
7001 word = (words - 1) - word;
7002 offset = word * UNITS_PER_WORD;
7003 if (BYTES_BIG_ENDIAN)
7004 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7005 else
7006 offset += byte % UNITS_PER_WORD;
7008 else
7010 offset = byte;
7011 if (BYTES_BIG_ENDIAN)
7013 /* Reverse bytes within each long, or within the entire float
7014 if it's smaller than a long (for HFmode). */
7015 offset = MIN (3, total_bytes - 1) - offset;
7016 gcc_assert (offset >= 0);
7019 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7020 if (offset >= off
7021 && offset - off < len)
7022 ptr[offset - off] = value;
7024 return MIN (len, total_bytes - off);
7027 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7028 specified by EXPR into the buffer PTR of length LEN bytes.
7029 Return the number of bytes placed in the buffer, or zero
7030 upon failure. */
7032 static int
7033 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7035 int rsize, isize;
7036 tree part;
7038 part = TREE_REALPART (expr);
7039 rsize = native_encode_expr (part, ptr, len, off);
7040 if (off == -1
7041 && rsize == 0)
7042 return 0;
7043 part = TREE_IMAGPART (expr);
7044 if (off != -1)
7045 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7046 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7047 if (off == -1
7048 && isize != rsize)
7049 return 0;
7050 return rsize + isize;
7054 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7055 specified by EXPR into the buffer PTR of length LEN bytes.
7056 Return the number of bytes placed in the buffer, or zero
7057 upon failure. */
7059 static int
7060 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7062 unsigned i, count;
7063 int size, offset;
7064 tree itype, elem;
7066 offset = 0;
7067 count = VECTOR_CST_NELTS (expr);
7068 itype = TREE_TYPE (TREE_TYPE (expr));
7069 size = GET_MODE_SIZE (TYPE_MODE (itype));
7070 for (i = 0; i < count; i++)
7072 if (off >= size)
7074 off -= size;
7075 continue;
7077 elem = VECTOR_CST_ELT (expr, i);
7078 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7079 if ((off == -1 && res != size)
7080 || res == 0)
7081 return 0;
7082 offset += res;
7083 if (offset >= len)
7084 return offset;
7085 if (off != -1)
7086 off = 0;
7088 return offset;
7092 /* Subroutine of native_encode_expr. Encode the STRING_CST
7093 specified by EXPR into the buffer PTR of length LEN bytes.
7094 Return the number of bytes placed in the buffer, or zero
7095 upon failure. */
7097 static int
7098 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7100 tree type = TREE_TYPE (expr);
7101 HOST_WIDE_INT total_bytes;
7103 if (TREE_CODE (type) != ARRAY_TYPE
7104 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7105 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7106 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7107 return 0;
7108 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7109 if ((off == -1 && total_bytes > len)
7110 || off >= total_bytes)
7111 return 0;
7112 if (off == -1)
7113 off = 0;
7114 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7116 int written = 0;
7117 if (off < TREE_STRING_LENGTH (expr))
7119 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7120 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7122 memset (ptr + written, 0,
7123 MIN (total_bytes - written, len - written));
7125 else
7126 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7127 return MIN (total_bytes - off, len);
7131 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7132 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7133 buffer PTR of length LEN bytes. If OFF is not -1 then start
7134 the encoding at byte offset OFF and encode at most LEN bytes.
7135 Return the number of bytes placed in the buffer, or zero upon failure. */
7138 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7140 /* We don't support starting at negative offset and -1 is special. */
7141 if (off < -1)
7142 return 0;
7144 switch (TREE_CODE (expr))
7146 case INTEGER_CST:
7147 return native_encode_int (expr, ptr, len, off);
7149 case REAL_CST:
7150 return native_encode_real (expr, ptr, len, off);
7152 case FIXED_CST:
7153 return native_encode_fixed (expr, ptr, len, off);
7155 case COMPLEX_CST:
7156 return native_encode_complex (expr, ptr, len, off);
7158 case VECTOR_CST:
7159 return native_encode_vector (expr, ptr, len, off);
7161 case STRING_CST:
7162 return native_encode_string (expr, ptr, len, off);
7164 default:
7165 return 0;
7170 /* Subroutine of native_interpret_expr. Interpret the contents of
7171 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7172 If the buffer cannot be interpreted, return NULL_TREE. */
7174 static tree
7175 native_interpret_int (tree type, const unsigned char *ptr, int len)
7177 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7179 if (total_bytes > len
7180 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7181 return NULL_TREE;
7183 wide_int result = wi::from_buffer (ptr, total_bytes);
7185 return wide_int_to_tree (type, result);
7189 /* Subroutine of native_interpret_expr. Interpret the contents of
7190 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7191 If the buffer cannot be interpreted, return NULL_TREE. */
7193 static tree
7194 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7196 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7197 double_int result;
7198 FIXED_VALUE_TYPE fixed_value;
7200 if (total_bytes > len
7201 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7202 return NULL_TREE;
7204 result = double_int::from_buffer (ptr, total_bytes);
7205 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7207 return build_fixed (type, fixed_value);
7211 /* Subroutine of native_interpret_expr. Interpret the contents of
7212 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7213 If the buffer cannot be interpreted, return NULL_TREE. */
7215 static tree
7216 native_interpret_real (tree type, const unsigned char *ptr, int len)
7218 machine_mode mode = TYPE_MODE (type);
7219 int total_bytes = GET_MODE_SIZE (mode);
7220 unsigned char value;
7221 /* There are always 32 bits in each long, no matter the size of
7222 the hosts long. We handle floating point representations with
7223 up to 192 bits. */
7224 REAL_VALUE_TYPE r;
7225 long tmp[6];
7227 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7228 if (total_bytes > len || total_bytes > 24)
7229 return NULL_TREE;
7230 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7232 memset (tmp, 0, sizeof (tmp));
7233 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7234 bitpos += BITS_PER_UNIT)
7236 /* Both OFFSET and BYTE index within a long;
7237 bitpos indexes the whole float. */
7238 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7239 if (UNITS_PER_WORD < 4)
7241 int word = byte / UNITS_PER_WORD;
7242 if (WORDS_BIG_ENDIAN)
7243 word = (words - 1) - word;
7244 offset = word * UNITS_PER_WORD;
7245 if (BYTES_BIG_ENDIAN)
7246 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7247 else
7248 offset += byte % UNITS_PER_WORD;
7250 else
7252 offset = byte;
7253 if (BYTES_BIG_ENDIAN)
7255 /* Reverse bytes within each long, or within the entire float
7256 if it's smaller than a long (for HFmode). */
7257 offset = MIN (3, total_bytes - 1) - offset;
7258 gcc_assert (offset >= 0);
7261 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7263 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7266 real_from_target (&r, tmp, mode);
7267 return build_real (type, r);
7271 /* Subroutine of native_interpret_expr. Interpret the contents of
7272 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7273 If the buffer cannot be interpreted, return NULL_TREE. */
7275 static tree
7276 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7278 tree etype, rpart, ipart;
7279 int size;
7281 etype = TREE_TYPE (type);
7282 size = GET_MODE_SIZE (TYPE_MODE (etype));
7283 if (size * 2 > len)
7284 return NULL_TREE;
7285 rpart = native_interpret_expr (etype, ptr, size);
7286 if (!rpart)
7287 return NULL_TREE;
7288 ipart = native_interpret_expr (etype, ptr+size, size);
7289 if (!ipart)
7290 return NULL_TREE;
7291 return build_complex (type, rpart, ipart);
7295 /* Subroutine of native_interpret_expr. Interpret the contents of
7296 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7297 If the buffer cannot be interpreted, return NULL_TREE. */
7299 static tree
7300 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7302 tree etype, elem;
7303 int i, size, count;
7304 tree *elements;
7306 etype = TREE_TYPE (type);
7307 size = GET_MODE_SIZE (TYPE_MODE (etype));
7308 count = TYPE_VECTOR_SUBPARTS (type);
7309 if (size * count > len)
7310 return NULL_TREE;
7312 elements = XALLOCAVEC (tree, count);
7313 for (i = count - 1; i >= 0; i--)
7315 elem = native_interpret_expr (etype, ptr+(i*size), size);
7316 if (!elem)
7317 return NULL_TREE;
7318 elements[i] = elem;
7320 return build_vector (type, elements);
7324 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7325 the buffer PTR of length LEN as a constant of type TYPE. For
7326 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7327 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7328 return NULL_TREE. */
7330 tree
7331 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7333 switch (TREE_CODE (type))
7335 case INTEGER_TYPE:
7336 case ENUMERAL_TYPE:
7337 case BOOLEAN_TYPE:
7338 case POINTER_TYPE:
7339 case REFERENCE_TYPE:
7340 return native_interpret_int (type, ptr, len);
7342 case REAL_TYPE:
7343 return native_interpret_real (type, ptr, len);
7345 case FIXED_POINT_TYPE:
7346 return native_interpret_fixed (type, ptr, len);
7348 case COMPLEX_TYPE:
7349 return native_interpret_complex (type, ptr, len);
7351 case VECTOR_TYPE:
7352 return native_interpret_vector (type, ptr, len);
7354 default:
7355 return NULL_TREE;
7359 /* Returns true if we can interpret the contents of a native encoding
7360 as TYPE. */
7362 static bool
7363 can_native_interpret_type_p (tree type)
7365 switch (TREE_CODE (type))
7367 case INTEGER_TYPE:
7368 case ENUMERAL_TYPE:
7369 case BOOLEAN_TYPE:
7370 case POINTER_TYPE:
7371 case REFERENCE_TYPE:
7372 case FIXED_POINT_TYPE:
7373 case REAL_TYPE:
7374 case COMPLEX_TYPE:
7375 case VECTOR_TYPE:
7376 return true;
7377 default:
7378 return false;
7382 /* Return true iff a constant of type TYPE is accepted by
7383 native_encode_expr. */
7385 bool
7386 can_native_encode_type_p (tree type)
7388 switch (TREE_CODE (type))
7390 case INTEGER_TYPE:
7391 case REAL_TYPE:
7392 case FIXED_POINT_TYPE:
7393 case COMPLEX_TYPE:
7394 case VECTOR_TYPE:
7395 case POINTER_TYPE:
7396 return true;
7397 default:
7398 return false;
7402 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7403 TYPE at compile-time. If we're unable to perform the conversion
7404 return NULL_TREE. */
7406 static tree
7407 fold_view_convert_expr (tree type, tree expr)
7409 /* We support up to 512-bit values (for V8DFmode). */
7410 unsigned char buffer[64];
7411 int len;
7413 /* Check that the host and target are sane. */
7414 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7415 return NULL_TREE;
7417 len = native_encode_expr (expr, buffer, sizeof (buffer));
7418 if (len == 0)
7419 return NULL_TREE;
7421 return native_interpret_expr (type, buffer, len);
7424 /* Build an expression for the address of T. Folds away INDIRECT_REF
7425 to avoid confusing the gimplify process. */
7427 tree
7428 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7430 /* The size of the object is not relevant when talking about its address. */
7431 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7432 t = TREE_OPERAND (t, 0);
7434 if (TREE_CODE (t) == INDIRECT_REF)
7436 t = TREE_OPERAND (t, 0);
7438 if (TREE_TYPE (t) != ptrtype)
7439 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7441 else if (TREE_CODE (t) == MEM_REF
7442 && integer_zerop (TREE_OPERAND (t, 1)))
7443 return TREE_OPERAND (t, 0);
7444 else if (TREE_CODE (t) == MEM_REF
7445 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7446 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7447 TREE_OPERAND (t, 0),
7448 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7449 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7451 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7453 if (TREE_TYPE (t) != ptrtype)
7454 t = fold_convert_loc (loc, ptrtype, t);
7456 else
7457 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7459 return t;
7462 /* Build an expression for the address of T. */
7464 tree
7465 build_fold_addr_expr_loc (location_t loc, tree t)
7467 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7469 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7472 /* Fold a unary expression of code CODE and type TYPE with operand
7473 OP0. Return the folded expression if folding is successful.
7474 Otherwise, return NULL_TREE. */
7476 tree
7477 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7479 tree tem;
7480 tree arg0;
7481 enum tree_code_class kind = TREE_CODE_CLASS (code);
7483 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7484 && TREE_CODE_LENGTH (code) == 1);
7486 arg0 = op0;
7487 if (arg0)
7489 if (CONVERT_EXPR_CODE_P (code)
7490 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7492 /* Don't use STRIP_NOPS, because signedness of argument type
7493 matters. */
7494 STRIP_SIGN_NOPS (arg0);
7496 else
7498 /* Strip any conversions that don't change the mode. This
7499 is safe for every expression, except for a comparison
7500 expression because its signedness is derived from its
7501 operands.
7503 Note that this is done as an internal manipulation within
7504 the constant folder, in order to find the simplest
7505 representation of the arguments so that their form can be
7506 studied. In any cases, the appropriate type conversions
7507 should be put back in the tree that will get out of the
7508 constant folder. */
7509 STRIP_NOPS (arg0);
7512 if (CONSTANT_CLASS_P (arg0))
7514 tree tem = const_unop (code, type, arg0);
7515 if (tem)
7517 if (TREE_TYPE (tem) != type)
7518 tem = fold_convert_loc (loc, type, tem);
7519 return tem;
7524 tem = generic_simplify (loc, code, type, op0);
7525 if (tem)
7526 return tem;
7528 if (TREE_CODE_CLASS (code) == tcc_unary)
7530 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7531 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7532 fold_build1_loc (loc, code, type,
7533 fold_convert_loc (loc, TREE_TYPE (op0),
7534 TREE_OPERAND (arg0, 1))));
7535 else if (TREE_CODE (arg0) == COND_EXPR)
7537 tree arg01 = TREE_OPERAND (arg0, 1);
7538 tree arg02 = TREE_OPERAND (arg0, 2);
7539 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7540 arg01 = fold_build1_loc (loc, code, type,
7541 fold_convert_loc (loc,
7542 TREE_TYPE (op0), arg01));
7543 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7544 arg02 = fold_build1_loc (loc, code, type,
7545 fold_convert_loc (loc,
7546 TREE_TYPE (op0), arg02));
7547 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7548 arg01, arg02);
7550 /* If this was a conversion, and all we did was to move into
7551 inside the COND_EXPR, bring it back out. But leave it if
7552 it is a conversion from integer to integer and the
7553 result precision is no wider than a word since such a
7554 conversion is cheap and may be optimized away by combine,
7555 while it couldn't if it were outside the COND_EXPR. Then return
7556 so we don't get into an infinite recursion loop taking the
7557 conversion out and then back in. */
7559 if ((CONVERT_EXPR_CODE_P (code)
7560 || code == NON_LVALUE_EXPR)
7561 && TREE_CODE (tem) == COND_EXPR
7562 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7563 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7564 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7565 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7566 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7567 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7568 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7569 && (INTEGRAL_TYPE_P
7570 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7571 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7572 || flag_syntax_only))
7573 tem = build1_loc (loc, code, type,
7574 build3 (COND_EXPR,
7575 TREE_TYPE (TREE_OPERAND
7576 (TREE_OPERAND (tem, 1), 0)),
7577 TREE_OPERAND (tem, 0),
7578 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7579 TREE_OPERAND (TREE_OPERAND (tem, 2),
7580 0)));
7581 return tem;
7585 switch (code)
7587 case NON_LVALUE_EXPR:
7588 if (!maybe_lvalue_p (op0))
7589 return fold_convert_loc (loc, type, op0);
7590 return NULL_TREE;
7592 CASE_CONVERT:
7593 case FLOAT_EXPR:
7594 case FIX_TRUNC_EXPR:
7595 if (COMPARISON_CLASS_P (op0))
7597 /* If we have (type) (a CMP b) and type is an integral type, return
7598 new expression involving the new type. Canonicalize
7599 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7600 non-integral type.
7601 Do not fold the result as that would not simplify further, also
7602 folding again results in recursions. */
7603 if (TREE_CODE (type) == BOOLEAN_TYPE)
7604 return build2_loc (loc, TREE_CODE (op0), type,
7605 TREE_OPERAND (op0, 0),
7606 TREE_OPERAND (op0, 1));
7607 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7608 && TREE_CODE (type) != VECTOR_TYPE)
7609 return build3_loc (loc, COND_EXPR, type, op0,
7610 constant_boolean_node (true, type),
7611 constant_boolean_node (false, type));
7614 /* Handle (T *)&A.B.C for A being of type T and B and C
7615 living at offset zero. This occurs frequently in
7616 C++ upcasting and then accessing the base. */
7617 if (TREE_CODE (op0) == ADDR_EXPR
7618 && POINTER_TYPE_P (type)
7619 && handled_component_p (TREE_OPERAND (op0, 0)))
7621 HOST_WIDE_INT bitsize, bitpos;
7622 tree offset;
7623 machine_mode mode;
7624 int unsignedp, reversep, volatilep;
7625 tree base
7626 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7627 &offset, &mode, &unsignedp, &reversep,
7628 &volatilep);
7629 /* If the reference was to a (constant) zero offset, we can use
7630 the address of the base if it has the same base type
7631 as the result type and the pointer type is unqualified. */
7632 if (! offset && bitpos == 0
7633 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7634 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7635 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7636 return fold_convert_loc (loc, type,
7637 build_fold_addr_expr_loc (loc, base));
7640 if (TREE_CODE (op0) == MODIFY_EXPR
7641 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7642 /* Detect assigning a bitfield. */
7643 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7644 && DECL_BIT_FIELD
7645 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7647 /* Don't leave an assignment inside a conversion
7648 unless assigning a bitfield. */
7649 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7650 /* First do the assignment, then return converted constant. */
7651 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7652 TREE_NO_WARNING (tem) = 1;
7653 TREE_USED (tem) = 1;
7654 return tem;
7657 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7658 constants (if x has signed type, the sign bit cannot be set
7659 in c). This folds extension into the BIT_AND_EXPR.
7660 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7661 very likely don't have maximal range for their precision and this
7662 transformation effectively doesn't preserve non-maximal ranges. */
7663 if (TREE_CODE (type) == INTEGER_TYPE
7664 && TREE_CODE (op0) == BIT_AND_EXPR
7665 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7667 tree and_expr = op0;
7668 tree and0 = TREE_OPERAND (and_expr, 0);
7669 tree and1 = TREE_OPERAND (and_expr, 1);
7670 int change = 0;
7672 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7673 || (TYPE_PRECISION (type)
7674 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7675 change = 1;
7676 else if (TYPE_PRECISION (TREE_TYPE (and1))
7677 <= HOST_BITS_PER_WIDE_INT
7678 && tree_fits_uhwi_p (and1))
7680 unsigned HOST_WIDE_INT cst;
7682 cst = tree_to_uhwi (and1);
7683 cst &= HOST_WIDE_INT_M1U
7684 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7685 change = (cst == 0);
7686 if (change
7687 && !flag_syntax_only
7688 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
7689 == ZERO_EXTEND))
7691 tree uns = unsigned_type_for (TREE_TYPE (and0));
7692 and0 = fold_convert_loc (loc, uns, and0);
7693 and1 = fold_convert_loc (loc, uns, and1);
7696 if (change)
7698 tem = force_fit_type (type, wi::to_widest (and1), 0,
7699 TREE_OVERFLOW (and1));
7700 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7701 fold_convert_loc (loc, type, and0), tem);
7705 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7706 cast (T1)X will fold away. We assume that this happens when X itself
7707 is a cast. */
7708 if (POINTER_TYPE_P (type)
7709 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7710 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7712 tree arg00 = TREE_OPERAND (arg0, 0);
7713 tree arg01 = TREE_OPERAND (arg0, 1);
7715 return fold_build_pointer_plus_loc
7716 (loc, fold_convert_loc (loc, type, arg00), arg01);
7719 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7720 of the same precision, and X is an integer type not narrower than
7721 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7722 if (INTEGRAL_TYPE_P (type)
7723 && TREE_CODE (op0) == BIT_NOT_EXPR
7724 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7725 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7726 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7728 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7729 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7730 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7731 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7732 fold_convert_loc (loc, type, tem));
7735 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7736 type of X and Y (integer types only). */
7737 if (INTEGRAL_TYPE_P (type)
7738 && TREE_CODE (op0) == MULT_EXPR
7739 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7740 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7742 /* Be careful not to introduce new overflows. */
7743 tree mult_type;
7744 if (TYPE_OVERFLOW_WRAPS (type))
7745 mult_type = type;
7746 else
7747 mult_type = unsigned_type_for (type);
7749 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7751 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7752 fold_convert_loc (loc, mult_type,
7753 TREE_OPERAND (op0, 0)),
7754 fold_convert_loc (loc, mult_type,
7755 TREE_OPERAND (op0, 1)));
7756 return fold_convert_loc (loc, type, tem);
7760 return NULL_TREE;
7762 case VIEW_CONVERT_EXPR:
7763 if (TREE_CODE (op0) == MEM_REF)
7765 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7766 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7767 tem = fold_build2_loc (loc, MEM_REF, type,
7768 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7769 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7770 return tem;
7773 return NULL_TREE;
7775 case NEGATE_EXPR:
7776 tem = fold_negate_expr (loc, arg0);
7777 if (tem)
7778 return fold_convert_loc (loc, type, tem);
7779 return NULL_TREE;
7781 case ABS_EXPR:
7782 /* Convert fabs((double)float) into (double)fabsf(float). */
7783 if (TREE_CODE (arg0) == NOP_EXPR
7784 && TREE_CODE (type) == REAL_TYPE)
7786 tree targ0 = strip_float_extensions (arg0);
7787 if (targ0 != arg0)
7788 return fold_convert_loc (loc, type,
7789 fold_build1_loc (loc, ABS_EXPR,
7790 TREE_TYPE (targ0),
7791 targ0));
7793 return NULL_TREE;
7795 case BIT_NOT_EXPR:
7796 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7797 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7798 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7799 fold_convert_loc (loc, type,
7800 TREE_OPERAND (arg0, 0)))))
7801 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7802 fold_convert_loc (loc, type,
7803 TREE_OPERAND (arg0, 1)));
7804 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7805 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7806 fold_convert_loc (loc, type,
7807 TREE_OPERAND (arg0, 1)))))
7808 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7809 fold_convert_loc (loc, type,
7810 TREE_OPERAND (arg0, 0)), tem);
7812 return NULL_TREE;
7814 case TRUTH_NOT_EXPR:
7815 /* Note that the operand of this must be an int
7816 and its values must be 0 or 1.
7817 ("true" is a fixed value perhaps depending on the language,
7818 but we don't handle values other than 1 correctly yet.) */
7819 tem = fold_truth_not_expr (loc, arg0);
7820 if (!tem)
7821 return NULL_TREE;
7822 return fold_convert_loc (loc, type, tem);
7824 case INDIRECT_REF:
7825 /* Fold *&X to X if X is an lvalue. */
7826 if (TREE_CODE (op0) == ADDR_EXPR)
7828 tree op00 = TREE_OPERAND (op0, 0);
7829 if ((VAR_P (op00)
7830 || TREE_CODE (op00) == PARM_DECL
7831 || TREE_CODE (op00) == RESULT_DECL)
7832 && !TREE_READONLY (op00))
7833 return op00;
7835 return NULL_TREE;
7837 default:
7838 return NULL_TREE;
7839 } /* switch (code) */
7843 /* If the operation was a conversion do _not_ mark a resulting constant
7844 with TREE_OVERFLOW if the original constant was not. These conversions
7845 have implementation defined behavior and retaining the TREE_OVERFLOW
7846 flag here would confuse later passes such as VRP. */
7847 tree
7848 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7849 tree type, tree op0)
7851 tree res = fold_unary_loc (loc, code, type, op0);
7852 if (res
7853 && TREE_CODE (res) == INTEGER_CST
7854 && TREE_CODE (op0) == INTEGER_CST
7855 && CONVERT_EXPR_CODE_P (code))
7856 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7858 return res;
7861 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7862 operands OP0 and OP1. LOC is the location of the resulting expression.
7863 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7864 Return the folded expression if folding is successful. Otherwise,
7865 return NULL_TREE. */
7866 static tree
7867 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7868 tree arg0, tree arg1, tree op0, tree op1)
7870 tree tem;
7872 /* We only do these simplifications if we are optimizing. */
7873 if (!optimize)
7874 return NULL_TREE;
7876 /* Check for things like (A || B) && (A || C). We can convert this
7877 to A || (B && C). Note that either operator can be any of the four
7878 truth and/or operations and the transformation will still be
7879 valid. Also note that we only care about order for the
7880 ANDIF and ORIF operators. If B contains side effects, this
7881 might change the truth-value of A. */
7882 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7883 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7884 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7885 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7886 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7887 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7889 tree a00 = TREE_OPERAND (arg0, 0);
7890 tree a01 = TREE_OPERAND (arg0, 1);
7891 tree a10 = TREE_OPERAND (arg1, 0);
7892 tree a11 = TREE_OPERAND (arg1, 1);
7893 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7894 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7895 && (code == TRUTH_AND_EXPR
7896 || code == TRUTH_OR_EXPR));
7898 if (operand_equal_p (a00, a10, 0))
7899 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7900 fold_build2_loc (loc, code, type, a01, a11));
7901 else if (commutative && operand_equal_p (a00, a11, 0))
7902 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7903 fold_build2_loc (loc, code, type, a01, a10));
7904 else if (commutative && operand_equal_p (a01, a10, 0))
7905 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7906 fold_build2_loc (loc, code, type, a00, a11));
7908 /* This case if tricky because we must either have commutative
7909 operators or else A10 must not have side-effects. */
7911 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
7912 && operand_equal_p (a01, a11, 0))
7913 return fold_build2_loc (loc, TREE_CODE (arg0), type,
7914 fold_build2_loc (loc, code, type, a00, a10),
7915 a01);
7918 /* See if we can build a range comparison. */
7919 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
7920 return tem;
7922 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
7923 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
7925 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
7926 if (tem)
7927 return fold_build2_loc (loc, code, type, tem, arg1);
7930 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
7931 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
7933 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
7934 if (tem)
7935 return fold_build2_loc (loc, code, type, arg0, tem);
7938 /* Check for the possibility of merging component references. If our
7939 lhs is another similar operation, try to merge its rhs with our
7940 rhs. Then try to merge our lhs and rhs. */
7941 if (TREE_CODE (arg0) == code
7942 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
7943 TREE_OPERAND (arg0, 1), arg1)))
7944 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
7946 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
7947 return tem;
7949 if (LOGICAL_OP_NON_SHORT_CIRCUIT
7950 && (code == TRUTH_AND_EXPR
7951 || code == TRUTH_ANDIF_EXPR
7952 || code == TRUTH_OR_EXPR
7953 || code == TRUTH_ORIF_EXPR))
7955 enum tree_code ncode, icode;
7957 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
7958 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
7959 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
7961 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
7962 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
7963 We don't want to pack more than two leafs to a non-IF AND/OR
7964 expression.
7965 If tree-code of left-hand operand isn't an AND/OR-IF code and not
7966 equal to IF-CODE, then we don't want to add right-hand operand.
7967 If the inner right-hand side of left-hand operand has
7968 side-effects, or isn't simple, then we can't add to it,
7969 as otherwise we might destroy if-sequence. */
7970 if (TREE_CODE (arg0) == icode
7971 && simple_operand_p_2 (arg1)
7972 /* Needed for sequence points to handle trappings, and
7973 side-effects. */
7974 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
7976 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
7977 arg1);
7978 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
7979 tem);
7981 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
7982 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
7983 else if (TREE_CODE (arg1) == icode
7984 && simple_operand_p_2 (arg0)
7985 /* Needed for sequence points to handle trappings, and
7986 side-effects. */
7987 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
7989 tem = fold_build2_loc (loc, ncode, type,
7990 arg0, TREE_OPERAND (arg1, 0));
7991 return fold_build2_loc (loc, icode, type, tem,
7992 TREE_OPERAND (arg1, 1));
7994 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
7995 into (A OR B).
7996 For sequence point consistancy, we need to check for trapping,
7997 and side-effects. */
7998 else if (code == icode && simple_operand_p_2 (arg0)
7999 && simple_operand_p_2 (arg1))
8000 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8003 return NULL_TREE;
8006 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8007 by changing CODE to reduce the magnitude of constants involved in
8008 ARG0 of the comparison.
8009 Returns a canonicalized comparison tree if a simplification was
8010 possible, otherwise returns NULL_TREE.
8011 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8012 valid if signed overflow is undefined. */
8014 static tree
8015 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8016 tree arg0, tree arg1,
8017 bool *strict_overflow_p)
8019 enum tree_code code0 = TREE_CODE (arg0);
8020 tree t, cst0 = NULL_TREE;
8021 int sgn0;
8023 /* Match A +- CST code arg1. We can change this only if overflow
8024 is undefined. */
8025 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8026 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8027 /* In principle pointers also have undefined overflow behavior,
8028 but that causes problems elsewhere. */
8029 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8030 && (code0 == MINUS_EXPR
8031 || code0 == PLUS_EXPR)
8032 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8033 return NULL_TREE;
8035 /* Identify the constant in arg0 and its sign. */
8036 cst0 = TREE_OPERAND (arg0, 1);
8037 sgn0 = tree_int_cst_sgn (cst0);
8039 /* Overflowed constants and zero will cause problems. */
8040 if (integer_zerop (cst0)
8041 || TREE_OVERFLOW (cst0))
8042 return NULL_TREE;
8044 /* See if we can reduce the magnitude of the constant in
8045 arg0 by changing the comparison code. */
8046 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8047 if (code == LT_EXPR
8048 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8049 code = LE_EXPR;
8050 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8051 else if (code == GT_EXPR
8052 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8053 code = GE_EXPR;
8054 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8055 else if (code == LE_EXPR
8056 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8057 code = LT_EXPR;
8058 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8059 else if (code == GE_EXPR
8060 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8061 code = GT_EXPR;
8062 else
8063 return NULL_TREE;
8064 *strict_overflow_p = true;
8066 /* Now build the constant reduced in magnitude. But not if that
8067 would produce one outside of its types range. */
8068 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8069 && ((sgn0 == 1
8070 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8071 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8072 || (sgn0 == -1
8073 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8074 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8075 return NULL_TREE;
8077 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8078 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8079 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8080 t = fold_convert (TREE_TYPE (arg1), t);
8082 return fold_build2_loc (loc, code, type, t, arg1);
8085 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8086 overflow further. Try to decrease the magnitude of constants involved
8087 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8088 and put sole constants at the second argument position.
8089 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8091 static tree
8092 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8093 tree arg0, tree arg1)
8095 tree t;
8096 bool strict_overflow_p;
8097 const char * const warnmsg = G_("assuming signed overflow does not occur "
8098 "when reducing constant in comparison");
8100 /* Try canonicalization by simplifying arg0. */
8101 strict_overflow_p = false;
8102 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8103 &strict_overflow_p);
8104 if (t)
8106 if (strict_overflow_p)
8107 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8108 return t;
8111 /* Try canonicalization by simplifying arg1 using the swapped
8112 comparison. */
8113 code = swap_tree_comparison (code);
8114 strict_overflow_p = false;
8115 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8116 &strict_overflow_p);
8117 if (t && strict_overflow_p)
8118 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8119 return t;
8122 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8123 space. This is used to avoid issuing overflow warnings for
8124 expressions like &p->x which can not wrap. */
8126 static bool
8127 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8129 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8130 return true;
8132 if (bitpos < 0)
8133 return true;
8135 wide_int wi_offset;
8136 int precision = TYPE_PRECISION (TREE_TYPE (base));
8137 if (offset == NULL_TREE)
8138 wi_offset = wi::zero (precision);
8139 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8140 return true;
8141 else
8142 wi_offset = offset;
8144 bool overflow;
8145 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8146 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8147 if (overflow)
8148 return true;
8150 if (!wi::fits_uhwi_p (total))
8151 return true;
8153 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8154 if (size <= 0)
8155 return true;
8157 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8158 array. */
8159 if (TREE_CODE (base) == ADDR_EXPR)
8161 HOST_WIDE_INT base_size;
8163 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8164 if (base_size > 0 && size < base_size)
8165 size = base_size;
8168 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8171 /* Return a positive integer when the symbol DECL is known to have
8172 a nonzero address, zero when it's known not to (e.g., it's a weak
8173 symbol), and a negative integer when the symbol is not yet in the
8174 symbol table and so whether or not its address is zero is unknown. */
8175 static int
8176 maybe_nonzero_address (tree decl)
8178 if (DECL_P (decl) && decl_in_symtab_p (decl))
8179 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8180 return symbol->nonzero_address ();
8182 return -1;
8185 /* Subroutine of fold_binary. This routine performs all of the
8186 transformations that are common to the equality/inequality
8187 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8188 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8189 fold_binary should call fold_binary. Fold a comparison with
8190 tree code CODE and type TYPE with operands OP0 and OP1. Return
8191 the folded comparison or NULL_TREE. */
8193 static tree
8194 fold_comparison (location_t loc, enum tree_code code, tree type,
8195 tree op0, tree op1)
8197 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8198 tree arg0, arg1, tem;
8200 arg0 = op0;
8201 arg1 = op1;
8203 STRIP_SIGN_NOPS (arg0);
8204 STRIP_SIGN_NOPS (arg1);
8206 /* For comparisons of pointers we can decompose it to a compile time
8207 comparison of the base objects and the offsets into the object.
8208 This requires at least one operand being an ADDR_EXPR or a
8209 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8210 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8211 && (TREE_CODE (arg0) == ADDR_EXPR
8212 || TREE_CODE (arg1) == ADDR_EXPR
8213 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8214 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8216 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8217 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8218 machine_mode mode;
8219 int volatilep, reversep, unsignedp;
8220 bool indirect_base0 = false, indirect_base1 = false;
8222 /* Get base and offset for the access. Strip ADDR_EXPR for
8223 get_inner_reference, but put it back by stripping INDIRECT_REF
8224 off the base object if possible. indirect_baseN will be true
8225 if baseN is not an address but refers to the object itself. */
8226 base0 = arg0;
8227 if (TREE_CODE (arg0) == ADDR_EXPR)
8229 base0
8230 = get_inner_reference (TREE_OPERAND (arg0, 0),
8231 &bitsize, &bitpos0, &offset0, &mode,
8232 &unsignedp, &reversep, &volatilep);
8233 if (TREE_CODE (base0) == INDIRECT_REF)
8234 base0 = TREE_OPERAND (base0, 0);
8235 else
8236 indirect_base0 = true;
8238 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8240 base0 = TREE_OPERAND (arg0, 0);
8241 STRIP_SIGN_NOPS (base0);
8242 if (TREE_CODE (base0) == ADDR_EXPR)
8244 base0
8245 = get_inner_reference (TREE_OPERAND (base0, 0),
8246 &bitsize, &bitpos0, &offset0, &mode,
8247 &unsignedp, &reversep, &volatilep);
8248 if (TREE_CODE (base0) == INDIRECT_REF)
8249 base0 = TREE_OPERAND (base0, 0);
8250 else
8251 indirect_base0 = true;
8253 if (offset0 == NULL_TREE || integer_zerop (offset0))
8254 offset0 = TREE_OPERAND (arg0, 1);
8255 else
8256 offset0 = size_binop (PLUS_EXPR, offset0,
8257 TREE_OPERAND (arg0, 1));
8258 if (TREE_CODE (offset0) == INTEGER_CST)
8260 offset_int tem = wi::sext (wi::to_offset (offset0),
8261 TYPE_PRECISION (sizetype));
8262 tem <<= LOG2_BITS_PER_UNIT;
8263 tem += bitpos0;
8264 if (wi::fits_shwi_p (tem))
8266 bitpos0 = tem.to_shwi ();
8267 offset0 = NULL_TREE;
8272 base1 = arg1;
8273 if (TREE_CODE (arg1) == ADDR_EXPR)
8275 base1
8276 = get_inner_reference (TREE_OPERAND (arg1, 0),
8277 &bitsize, &bitpos1, &offset1, &mode,
8278 &unsignedp, &reversep, &volatilep);
8279 if (TREE_CODE (base1) == INDIRECT_REF)
8280 base1 = TREE_OPERAND (base1, 0);
8281 else
8282 indirect_base1 = true;
8284 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8286 base1 = TREE_OPERAND (arg1, 0);
8287 STRIP_SIGN_NOPS (base1);
8288 if (TREE_CODE (base1) == ADDR_EXPR)
8290 base1
8291 = get_inner_reference (TREE_OPERAND (base1, 0),
8292 &bitsize, &bitpos1, &offset1, &mode,
8293 &unsignedp, &reversep, &volatilep);
8294 if (TREE_CODE (base1) == INDIRECT_REF)
8295 base1 = TREE_OPERAND (base1, 0);
8296 else
8297 indirect_base1 = true;
8299 if (offset1 == NULL_TREE || integer_zerop (offset1))
8300 offset1 = TREE_OPERAND (arg1, 1);
8301 else
8302 offset1 = size_binop (PLUS_EXPR, offset1,
8303 TREE_OPERAND (arg1, 1));
8304 if (TREE_CODE (offset1) == INTEGER_CST)
8306 offset_int tem = wi::sext (wi::to_offset (offset1),
8307 TYPE_PRECISION (sizetype));
8308 tem <<= LOG2_BITS_PER_UNIT;
8309 tem += bitpos1;
8310 if (wi::fits_shwi_p (tem))
8312 bitpos1 = tem.to_shwi ();
8313 offset1 = NULL_TREE;
8318 /* If we have equivalent bases we might be able to simplify. */
8319 if (indirect_base0 == indirect_base1
8320 && operand_equal_p (base0, base1,
8321 indirect_base0 ? OEP_ADDRESS_OF : 0))
8323 /* We can fold this expression to a constant if the non-constant
8324 offset parts are equal. */
8325 if ((offset0 == offset1
8326 || (offset0 && offset1
8327 && operand_equal_p (offset0, offset1, 0)))
8328 && (equality_code
8329 || (indirect_base0
8330 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8331 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8334 if (!equality_code
8335 && bitpos0 != bitpos1
8336 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8337 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8338 fold_overflow_warning (("assuming pointer wraparound does not "
8339 "occur when comparing P +- C1 with "
8340 "P +- C2"),
8341 WARN_STRICT_OVERFLOW_CONDITIONAL);
8343 switch (code)
8345 case EQ_EXPR:
8346 return constant_boolean_node (bitpos0 == bitpos1, type);
8347 case NE_EXPR:
8348 return constant_boolean_node (bitpos0 != bitpos1, type);
8349 case LT_EXPR:
8350 return constant_boolean_node (bitpos0 < bitpos1, type);
8351 case LE_EXPR:
8352 return constant_boolean_node (bitpos0 <= bitpos1, type);
8353 case GE_EXPR:
8354 return constant_boolean_node (bitpos0 >= bitpos1, type);
8355 case GT_EXPR:
8356 return constant_boolean_node (bitpos0 > bitpos1, type);
8357 default:;
8360 /* We can simplify the comparison to a comparison of the variable
8361 offset parts if the constant offset parts are equal.
8362 Be careful to use signed sizetype here because otherwise we
8363 mess with array offsets in the wrong way. This is possible
8364 because pointer arithmetic is restricted to retain within an
8365 object and overflow on pointer differences is undefined as of
8366 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8367 else if (bitpos0 == bitpos1
8368 && (equality_code
8369 || (indirect_base0
8370 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8371 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8373 /* By converting to signed sizetype we cover middle-end pointer
8374 arithmetic which operates on unsigned pointer types of size
8375 type size and ARRAY_REF offsets which are properly sign or
8376 zero extended from their type in case it is narrower than
8377 sizetype. */
8378 if (offset0 == NULL_TREE)
8379 offset0 = build_int_cst (ssizetype, 0);
8380 else
8381 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8382 if (offset1 == NULL_TREE)
8383 offset1 = build_int_cst (ssizetype, 0);
8384 else
8385 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8387 if (!equality_code
8388 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8389 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8390 fold_overflow_warning (("assuming pointer wraparound does not "
8391 "occur when comparing P +- C1 with "
8392 "P +- C2"),
8393 WARN_STRICT_OVERFLOW_COMPARISON);
8395 return fold_build2_loc (loc, code, type, offset0, offset1);
8398 /* For equal offsets we can simplify to a comparison of the
8399 base addresses. */
8400 else if (bitpos0 == bitpos1
8401 && (indirect_base0
8402 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8403 && (indirect_base1
8404 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8405 && ((offset0 == offset1)
8406 || (offset0 && offset1
8407 && operand_equal_p (offset0, offset1, 0))))
8409 if (indirect_base0)
8410 base0 = build_fold_addr_expr_loc (loc, base0);
8411 if (indirect_base1)
8412 base1 = build_fold_addr_expr_loc (loc, base1);
8413 return fold_build2_loc (loc, code, type, base0, base1);
8415 /* Comparison between an ordinary (non-weak) symbol and a null
8416 pointer can be eliminated since such symbols must have a non
8417 null address. In C, relational expressions between pointers
8418 to objects and null pointers are undefined. The results
8419 below follow the C++ rules with the additional property that
8420 every object pointer compares greater than a null pointer.
8422 else if (((DECL_P (base0)
8423 && maybe_nonzero_address (base0) > 0
8424 /* Avoid folding references to struct members at offset 0 to
8425 prevent tests like '&ptr->firstmember == 0' from getting
8426 eliminated. When ptr is null, although the -> expression
8427 is strictly speaking invalid, GCC retains it as a matter
8428 of QoI. See PR c/44555. */
8429 && (offset0 == NULL_TREE && bitpos0 != 0))
8430 || CONSTANT_CLASS_P (base0))
8431 && indirect_base0
8432 /* The caller guarantees that when one of the arguments is
8433 constant (i.e., null in this case) it is second. */
8434 && integer_zerop (arg1))
8436 switch (code)
8438 case EQ_EXPR:
8439 case LE_EXPR:
8440 case LT_EXPR:
8441 return constant_boolean_node (false, type);
8442 case GE_EXPR:
8443 case GT_EXPR:
8444 case NE_EXPR:
8445 return constant_boolean_node (true, type);
8446 default:
8447 gcc_unreachable ();
8452 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8453 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8454 the resulting offset is smaller in absolute value than the
8455 original one and has the same sign. */
8456 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8457 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8458 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8459 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8460 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8461 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8462 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8463 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8465 tree const1 = TREE_OPERAND (arg0, 1);
8466 tree const2 = TREE_OPERAND (arg1, 1);
8467 tree variable1 = TREE_OPERAND (arg0, 0);
8468 tree variable2 = TREE_OPERAND (arg1, 0);
8469 tree cst;
8470 const char * const warnmsg = G_("assuming signed overflow does not "
8471 "occur when combining constants around "
8472 "a comparison");
8474 /* Put the constant on the side where it doesn't overflow and is
8475 of lower absolute value and of same sign than before. */
8476 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8477 ? MINUS_EXPR : PLUS_EXPR,
8478 const2, const1);
8479 if (!TREE_OVERFLOW (cst)
8480 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8481 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8483 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8484 return fold_build2_loc (loc, code, type,
8485 variable1,
8486 fold_build2_loc (loc, TREE_CODE (arg1),
8487 TREE_TYPE (arg1),
8488 variable2, cst));
8491 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8492 ? MINUS_EXPR : PLUS_EXPR,
8493 const1, const2);
8494 if (!TREE_OVERFLOW (cst)
8495 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8496 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8498 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8499 return fold_build2_loc (loc, code, type,
8500 fold_build2_loc (loc, TREE_CODE (arg0),
8501 TREE_TYPE (arg0),
8502 variable1, cst),
8503 variable2);
8507 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8508 if (tem)
8509 return tem;
8511 /* If we are comparing an expression that just has comparisons
8512 of two integer values, arithmetic expressions of those comparisons,
8513 and constants, we can simplify it. There are only three cases
8514 to check: the two values can either be equal, the first can be
8515 greater, or the second can be greater. Fold the expression for
8516 those three values. Since each value must be 0 or 1, we have
8517 eight possibilities, each of which corresponds to the constant 0
8518 or 1 or one of the six possible comparisons.
8520 This handles common cases like (a > b) == 0 but also handles
8521 expressions like ((x > y) - (y > x)) > 0, which supposedly
8522 occur in macroized code. */
8524 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8526 tree cval1 = 0, cval2 = 0;
8527 int save_p = 0;
8529 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8530 /* Don't handle degenerate cases here; they should already
8531 have been handled anyway. */
8532 && cval1 != 0 && cval2 != 0
8533 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8534 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8535 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8536 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8537 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8538 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8539 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8541 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8542 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8544 /* We can't just pass T to eval_subst in case cval1 or cval2
8545 was the same as ARG1. */
8547 tree high_result
8548 = fold_build2_loc (loc, code, type,
8549 eval_subst (loc, arg0, cval1, maxval,
8550 cval2, minval),
8551 arg1);
8552 tree equal_result
8553 = fold_build2_loc (loc, code, type,
8554 eval_subst (loc, arg0, cval1, maxval,
8555 cval2, maxval),
8556 arg1);
8557 tree low_result
8558 = fold_build2_loc (loc, code, type,
8559 eval_subst (loc, arg0, cval1, minval,
8560 cval2, maxval),
8561 arg1);
8563 /* All three of these results should be 0 or 1. Confirm they are.
8564 Then use those values to select the proper code to use. */
8566 if (TREE_CODE (high_result) == INTEGER_CST
8567 && TREE_CODE (equal_result) == INTEGER_CST
8568 && TREE_CODE (low_result) == INTEGER_CST)
8570 /* Make a 3-bit mask with the high-order bit being the
8571 value for `>', the next for '=', and the low for '<'. */
8572 switch ((integer_onep (high_result) * 4)
8573 + (integer_onep (equal_result) * 2)
8574 + integer_onep (low_result))
8576 case 0:
8577 /* Always false. */
8578 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8579 case 1:
8580 code = LT_EXPR;
8581 break;
8582 case 2:
8583 code = EQ_EXPR;
8584 break;
8585 case 3:
8586 code = LE_EXPR;
8587 break;
8588 case 4:
8589 code = GT_EXPR;
8590 break;
8591 case 5:
8592 code = NE_EXPR;
8593 break;
8594 case 6:
8595 code = GE_EXPR;
8596 break;
8597 case 7:
8598 /* Always true. */
8599 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8602 if (save_p)
8604 tem = save_expr (build2 (code, type, cval1, cval2));
8605 SET_EXPR_LOCATION (tem, loc);
8606 return tem;
8608 return fold_build2_loc (loc, code, type, cval1, cval2);
8613 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8614 into a single range test. */
8615 if (TREE_CODE (arg0) == TRUNC_DIV_EXPR
8616 && TREE_CODE (arg1) == INTEGER_CST
8617 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8618 && !integer_zerop (TREE_OPERAND (arg0, 1))
8619 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8620 && !TREE_OVERFLOW (arg1))
8622 tem = fold_div_compare (loc, code, type, arg0, arg1);
8623 if (tem != NULL_TREE)
8624 return tem;
8627 return NULL_TREE;
8631 /* Subroutine of fold_binary. Optimize complex multiplications of the
8632 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8633 argument EXPR represents the expression "z" of type TYPE. */
8635 static tree
8636 fold_mult_zconjz (location_t loc, tree type, tree expr)
8638 tree itype = TREE_TYPE (type);
8639 tree rpart, ipart, tem;
8641 if (TREE_CODE (expr) == COMPLEX_EXPR)
8643 rpart = TREE_OPERAND (expr, 0);
8644 ipart = TREE_OPERAND (expr, 1);
8646 else if (TREE_CODE (expr) == COMPLEX_CST)
8648 rpart = TREE_REALPART (expr);
8649 ipart = TREE_IMAGPART (expr);
8651 else
8653 expr = save_expr (expr);
8654 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8655 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8658 rpart = save_expr (rpart);
8659 ipart = save_expr (ipart);
8660 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8661 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8662 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8663 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8664 build_zero_cst (itype));
8668 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8669 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8671 static bool
8672 vec_cst_ctor_to_array (tree arg, tree *elts)
8674 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8676 if (TREE_CODE (arg) == VECTOR_CST)
8678 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8679 elts[i] = VECTOR_CST_ELT (arg, i);
8681 else if (TREE_CODE (arg) == CONSTRUCTOR)
8683 constructor_elt *elt;
8685 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8686 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8687 return false;
8688 else
8689 elts[i] = elt->value;
8691 else
8692 return false;
8693 for (; i < nelts; i++)
8694 elts[i]
8695 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8696 return true;
8699 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8700 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8701 NULL_TREE otherwise. */
8703 static tree
8704 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8706 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8707 tree *elts;
8708 bool need_ctor = false;
8710 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8711 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8712 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8713 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8714 return NULL_TREE;
8716 elts = XALLOCAVEC (tree, nelts * 3);
8717 if (!vec_cst_ctor_to_array (arg0, elts)
8718 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8719 return NULL_TREE;
8721 for (i = 0; i < nelts; i++)
8723 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8724 need_ctor = true;
8725 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8728 if (need_ctor)
8730 vec<constructor_elt, va_gc> *v;
8731 vec_alloc (v, nelts);
8732 for (i = 0; i < nelts; i++)
8733 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8734 return build_constructor (type, v);
8736 else
8737 return build_vector (type, &elts[2 * nelts]);
8740 /* Try to fold a pointer difference of type TYPE two address expressions of
8741 array references AREF0 and AREF1 using location LOC. Return a
8742 simplified expression for the difference or NULL_TREE. */
8744 static tree
8745 fold_addr_of_array_ref_difference (location_t loc, tree type,
8746 tree aref0, tree aref1)
8748 tree base0 = TREE_OPERAND (aref0, 0);
8749 tree base1 = TREE_OPERAND (aref1, 0);
8750 tree base_offset = build_int_cst (type, 0);
8752 /* If the bases are array references as well, recurse. If the bases
8753 are pointer indirections compute the difference of the pointers.
8754 If the bases are equal, we are set. */
8755 if ((TREE_CODE (base0) == ARRAY_REF
8756 && TREE_CODE (base1) == ARRAY_REF
8757 && (base_offset
8758 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8759 || (INDIRECT_REF_P (base0)
8760 && INDIRECT_REF_P (base1)
8761 && (base_offset
8762 = fold_binary_loc (loc, MINUS_EXPR, type,
8763 fold_convert (type, TREE_OPERAND (base0, 0)),
8764 fold_convert (type,
8765 TREE_OPERAND (base1, 0)))))
8766 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8768 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8769 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8770 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8771 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8772 return fold_build2_loc (loc, PLUS_EXPR, type,
8773 base_offset,
8774 fold_build2_loc (loc, MULT_EXPR, type,
8775 diff, esz));
8777 return NULL_TREE;
8780 /* If the real or vector real constant CST of type TYPE has an exact
8781 inverse, return it, else return NULL. */
8783 tree
8784 exact_inverse (tree type, tree cst)
8786 REAL_VALUE_TYPE r;
8787 tree unit_type, *elts;
8788 machine_mode mode;
8789 unsigned vec_nelts, i;
8791 switch (TREE_CODE (cst))
8793 case REAL_CST:
8794 r = TREE_REAL_CST (cst);
8796 if (exact_real_inverse (TYPE_MODE (type), &r))
8797 return build_real (type, r);
8799 return NULL_TREE;
8801 case VECTOR_CST:
8802 vec_nelts = VECTOR_CST_NELTS (cst);
8803 elts = XALLOCAVEC (tree, vec_nelts);
8804 unit_type = TREE_TYPE (type);
8805 mode = TYPE_MODE (unit_type);
8807 for (i = 0; i < vec_nelts; i++)
8809 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8810 if (!exact_real_inverse (mode, &r))
8811 return NULL_TREE;
8812 elts[i] = build_real (unit_type, r);
8815 return build_vector (type, elts);
8817 default:
8818 return NULL_TREE;
8822 /* Mask out the tz least significant bits of X of type TYPE where
8823 tz is the number of trailing zeroes in Y. */
8824 static wide_int
8825 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8827 int tz = wi::ctz (y);
8828 if (tz > 0)
8829 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8830 return x;
8833 /* Return true when T is an address and is known to be nonzero.
8834 For floating point we further ensure that T is not denormal.
8835 Similar logic is present in nonzero_address in rtlanal.h.
8837 If the return value is based on the assumption that signed overflow
8838 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8839 change *STRICT_OVERFLOW_P. */
8841 static bool
8842 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8844 tree type = TREE_TYPE (t);
8845 enum tree_code code;
8847 /* Doing something useful for floating point would need more work. */
8848 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8849 return false;
8851 code = TREE_CODE (t);
8852 switch (TREE_CODE_CLASS (code))
8854 case tcc_unary:
8855 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8856 strict_overflow_p);
8857 case tcc_binary:
8858 case tcc_comparison:
8859 return tree_binary_nonzero_warnv_p (code, type,
8860 TREE_OPERAND (t, 0),
8861 TREE_OPERAND (t, 1),
8862 strict_overflow_p);
8863 case tcc_constant:
8864 case tcc_declaration:
8865 case tcc_reference:
8866 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8868 default:
8869 break;
8872 switch (code)
8874 case TRUTH_NOT_EXPR:
8875 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8876 strict_overflow_p);
8878 case TRUTH_AND_EXPR:
8879 case TRUTH_OR_EXPR:
8880 case TRUTH_XOR_EXPR:
8881 return tree_binary_nonzero_warnv_p (code, type,
8882 TREE_OPERAND (t, 0),
8883 TREE_OPERAND (t, 1),
8884 strict_overflow_p);
8886 case COND_EXPR:
8887 case CONSTRUCTOR:
8888 case OBJ_TYPE_REF:
8889 case ASSERT_EXPR:
8890 case ADDR_EXPR:
8891 case WITH_SIZE_EXPR:
8892 case SSA_NAME:
8893 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8895 case COMPOUND_EXPR:
8896 case MODIFY_EXPR:
8897 case BIND_EXPR:
8898 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
8899 strict_overflow_p);
8901 case SAVE_EXPR:
8902 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
8903 strict_overflow_p);
8905 case CALL_EXPR:
8907 tree fndecl = get_callee_fndecl (t);
8908 if (!fndecl) return false;
8909 if (flag_delete_null_pointer_checks && !flag_check_new
8910 && DECL_IS_OPERATOR_NEW (fndecl)
8911 && !TREE_NOTHROW (fndecl))
8912 return true;
8913 if (flag_delete_null_pointer_checks
8914 && lookup_attribute ("returns_nonnull",
8915 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
8916 return true;
8917 return alloca_call_p (t);
8920 default:
8921 break;
8923 return false;
8926 /* Return true when T is an address and is known to be nonzero.
8927 Handle warnings about undefined signed overflow. */
8929 bool
8930 tree_expr_nonzero_p (tree t)
8932 bool ret, strict_overflow_p;
8934 strict_overflow_p = false;
8935 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
8936 if (strict_overflow_p)
8937 fold_overflow_warning (("assuming signed overflow does not occur when "
8938 "determining that expression is always "
8939 "non-zero"),
8940 WARN_STRICT_OVERFLOW_MISC);
8941 return ret;
8944 /* Return true if T is known not to be equal to an integer W. */
8946 bool
8947 expr_not_equal_to (tree t, const wide_int &w)
8949 wide_int min, max, nz;
8950 value_range_type rtype;
8951 switch (TREE_CODE (t))
8953 case INTEGER_CST:
8954 return wi::ne_p (t, w);
8956 case SSA_NAME:
8957 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
8958 return false;
8959 rtype = get_range_info (t, &min, &max);
8960 if (rtype == VR_RANGE)
8962 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
8963 return true;
8964 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
8965 return true;
8967 else if (rtype == VR_ANTI_RANGE
8968 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
8969 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
8970 return true;
8971 /* If T has some known zero bits and W has any of those bits set,
8972 then T is known not to be equal to W. */
8973 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
8974 TYPE_PRECISION (TREE_TYPE (t))), 0))
8975 return true;
8976 return false;
8978 default:
8979 return false;
8983 /* Fold a binary expression of code CODE and type TYPE with operands
8984 OP0 and OP1. LOC is the location of the resulting expression.
8985 Return the folded expression if folding is successful. Otherwise,
8986 return NULL_TREE. */
8988 tree
8989 fold_binary_loc (location_t loc,
8990 enum tree_code code, tree type, tree op0, tree op1)
8992 enum tree_code_class kind = TREE_CODE_CLASS (code);
8993 tree arg0, arg1, tem;
8994 tree t1 = NULL_TREE;
8995 bool strict_overflow_p;
8996 unsigned int prec;
8998 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8999 && TREE_CODE_LENGTH (code) == 2
9000 && op0 != NULL_TREE
9001 && op1 != NULL_TREE);
9003 arg0 = op0;
9004 arg1 = op1;
9006 /* Strip any conversions that don't change the mode. This is
9007 safe for every expression, except for a comparison expression
9008 because its signedness is derived from its operands. So, in
9009 the latter case, only strip conversions that don't change the
9010 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9011 preserved.
9013 Note that this is done as an internal manipulation within the
9014 constant folder, in order to find the simplest representation
9015 of the arguments so that their form can be studied. In any
9016 cases, the appropriate type conversions should be put back in
9017 the tree that will get out of the constant folder. */
9019 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9021 STRIP_SIGN_NOPS (arg0);
9022 STRIP_SIGN_NOPS (arg1);
9024 else
9026 STRIP_NOPS (arg0);
9027 STRIP_NOPS (arg1);
9030 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9031 constant but we can't do arithmetic on them. */
9032 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9034 tem = const_binop (code, type, arg0, arg1);
9035 if (tem != NULL_TREE)
9037 if (TREE_TYPE (tem) != type)
9038 tem = fold_convert_loc (loc, type, tem);
9039 return tem;
9043 /* If this is a commutative operation, and ARG0 is a constant, move it
9044 to ARG1 to reduce the number of tests below. */
9045 if (commutative_tree_code (code)
9046 && tree_swap_operands_p (arg0, arg1))
9047 return fold_build2_loc (loc, code, type, op1, op0);
9049 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9050 to ARG1 to reduce the number of tests below. */
9051 if (kind == tcc_comparison
9052 && tree_swap_operands_p (arg0, arg1))
9053 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9055 tem = generic_simplify (loc, code, type, op0, op1);
9056 if (tem)
9057 return tem;
9059 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9061 First check for cases where an arithmetic operation is applied to a
9062 compound, conditional, or comparison operation. Push the arithmetic
9063 operation inside the compound or conditional to see if any folding
9064 can then be done. Convert comparison to conditional for this purpose.
9065 The also optimizes non-constant cases that used to be done in
9066 expand_expr.
9068 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9069 one of the operands is a comparison and the other is a comparison, a
9070 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9071 code below would make the expression more complex. Change it to a
9072 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9073 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9075 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9076 || code == EQ_EXPR || code == NE_EXPR)
9077 && TREE_CODE (type) != VECTOR_TYPE
9078 && ((truth_value_p (TREE_CODE (arg0))
9079 && (truth_value_p (TREE_CODE (arg1))
9080 || (TREE_CODE (arg1) == BIT_AND_EXPR
9081 && integer_onep (TREE_OPERAND (arg1, 1)))))
9082 || (truth_value_p (TREE_CODE (arg1))
9083 && (truth_value_p (TREE_CODE (arg0))
9084 || (TREE_CODE (arg0) == BIT_AND_EXPR
9085 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9087 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9088 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9089 : TRUTH_XOR_EXPR,
9090 boolean_type_node,
9091 fold_convert_loc (loc, boolean_type_node, arg0),
9092 fold_convert_loc (loc, boolean_type_node, arg1));
9094 if (code == EQ_EXPR)
9095 tem = invert_truthvalue_loc (loc, tem);
9097 return fold_convert_loc (loc, type, tem);
9100 if (TREE_CODE_CLASS (code) == tcc_binary
9101 || TREE_CODE_CLASS (code) == tcc_comparison)
9103 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9105 tem = fold_build2_loc (loc, code, type,
9106 fold_convert_loc (loc, TREE_TYPE (op0),
9107 TREE_OPERAND (arg0, 1)), op1);
9108 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9109 tem);
9111 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9113 tem = fold_build2_loc (loc, code, type, op0,
9114 fold_convert_loc (loc, TREE_TYPE (op1),
9115 TREE_OPERAND (arg1, 1)));
9116 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9117 tem);
9120 if (TREE_CODE (arg0) == COND_EXPR
9121 || TREE_CODE (arg0) == VEC_COND_EXPR
9122 || COMPARISON_CLASS_P (arg0))
9124 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9125 arg0, arg1,
9126 /*cond_first_p=*/1);
9127 if (tem != NULL_TREE)
9128 return tem;
9131 if (TREE_CODE (arg1) == COND_EXPR
9132 || TREE_CODE (arg1) == VEC_COND_EXPR
9133 || COMPARISON_CLASS_P (arg1))
9135 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9136 arg1, arg0,
9137 /*cond_first_p=*/0);
9138 if (tem != NULL_TREE)
9139 return tem;
9143 switch (code)
9145 case MEM_REF:
9146 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9147 if (TREE_CODE (arg0) == ADDR_EXPR
9148 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9150 tree iref = TREE_OPERAND (arg0, 0);
9151 return fold_build2 (MEM_REF, type,
9152 TREE_OPERAND (iref, 0),
9153 int_const_binop (PLUS_EXPR, arg1,
9154 TREE_OPERAND (iref, 1)));
9157 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9158 if (TREE_CODE (arg0) == ADDR_EXPR
9159 && handled_component_p (TREE_OPERAND (arg0, 0)))
9161 tree base;
9162 HOST_WIDE_INT coffset;
9163 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9164 &coffset);
9165 if (!base)
9166 return NULL_TREE;
9167 return fold_build2 (MEM_REF, type,
9168 build_fold_addr_expr (base),
9169 int_const_binop (PLUS_EXPR, arg1,
9170 size_int (coffset)));
9173 return NULL_TREE;
9175 case POINTER_PLUS_EXPR:
9176 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9177 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9178 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9179 return fold_convert_loc (loc, type,
9180 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9181 fold_convert_loc (loc, sizetype,
9182 arg1),
9183 fold_convert_loc (loc, sizetype,
9184 arg0)));
9186 return NULL_TREE;
9188 case PLUS_EXPR:
9189 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9191 /* X + (X / CST) * -CST is X % CST. */
9192 if (TREE_CODE (arg1) == MULT_EXPR
9193 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9194 && operand_equal_p (arg0,
9195 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9197 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9198 tree cst1 = TREE_OPERAND (arg1, 1);
9199 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9200 cst1, cst0);
9201 if (sum && integer_zerop (sum))
9202 return fold_convert_loc (loc, type,
9203 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9204 TREE_TYPE (arg0), arg0,
9205 cst0));
9209 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9210 one. Make sure the type is not saturating and has the signedness of
9211 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9212 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9213 if ((TREE_CODE (arg0) == MULT_EXPR
9214 || TREE_CODE (arg1) == MULT_EXPR)
9215 && !TYPE_SATURATING (type)
9216 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9217 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9218 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9220 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9221 if (tem)
9222 return tem;
9225 if (! FLOAT_TYPE_P (type))
9227 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9228 (plus (plus (mult) (mult)) (foo)) so that we can
9229 take advantage of the factoring cases below. */
9230 if (ANY_INTEGRAL_TYPE_P (type)
9231 && TYPE_OVERFLOW_WRAPS (type)
9232 && (((TREE_CODE (arg0) == PLUS_EXPR
9233 || TREE_CODE (arg0) == MINUS_EXPR)
9234 && TREE_CODE (arg1) == MULT_EXPR)
9235 || ((TREE_CODE (arg1) == PLUS_EXPR
9236 || TREE_CODE (arg1) == MINUS_EXPR)
9237 && TREE_CODE (arg0) == MULT_EXPR)))
9239 tree parg0, parg1, parg, marg;
9240 enum tree_code pcode;
9242 if (TREE_CODE (arg1) == MULT_EXPR)
9243 parg = arg0, marg = arg1;
9244 else
9245 parg = arg1, marg = arg0;
9246 pcode = TREE_CODE (parg);
9247 parg0 = TREE_OPERAND (parg, 0);
9248 parg1 = TREE_OPERAND (parg, 1);
9249 STRIP_NOPS (parg0);
9250 STRIP_NOPS (parg1);
9252 if (TREE_CODE (parg0) == MULT_EXPR
9253 && TREE_CODE (parg1) != MULT_EXPR)
9254 return fold_build2_loc (loc, pcode, type,
9255 fold_build2_loc (loc, PLUS_EXPR, type,
9256 fold_convert_loc (loc, type,
9257 parg0),
9258 fold_convert_loc (loc, type,
9259 marg)),
9260 fold_convert_loc (loc, type, parg1));
9261 if (TREE_CODE (parg0) != MULT_EXPR
9262 && TREE_CODE (parg1) == MULT_EXPR)
9263 return
9264 fold_build2_loc (loc, PLUS_EXPR, type,
9265 fold_convert_loc (loc, type, parg0),
9266 fold_build2_loc (loc, pcode, type,
9267 fold_convert_loc (loc, type, marg),
9268 fold_convert_loc (loc, type,
9269 parg1)));
9272 else
9274 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9275 to __complex__ ( x, y ). This is not the same for SNaNs or
9276 if signed zeros are involved. */
9277 if (!HONOR_SNANS (element_mode (arg0))
9278 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9279 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9281 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9282 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9283 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9284 bool arg0rz = false, arg0iz = false;
9285 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9286 || (arg0i && (arg0iz = real_zerop (arg0i))))
9288 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9289 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9290 if (arg0rz && arg1i && real_zerop (arg1i))
9292 tree rp = arg1r ? arg1r
9293 : build1 (REALPART_EXPR, rtype, arg1);
9294 tree ip = arg0i ? arg0i
9295 : build1 (IMAGPART_EXPR, rtype, arg0);
9296 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9298 else if (arg0iz && arg1r && real_zerop (arg1r))
9300 tree rp = arg0r ? arg0r
9301 : build1 (REALPART_EXPR, rtype, arg0);
9302 tree ip = arg1i ? arg1i
9303 : build1 (IMAGPART_EXPR, rtype, arg1);
9304 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9309 if (flag_unsafe_math_optimizations
9310 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9311 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9312 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9313 return tem;
9315 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9316 We associate floats only if the user has specified
9317 -fassociative-math. */
9318 if (flag_associative_math
9319 && TREE_CODE (arg1) == PLUS_EXPR
9320 && TREE_CODE (arg0) != MULT_EXPR)
9322 tree tree10 = TREE_OPERAND (arg1, 0);
9323 tree tree11 = TREE_OPERAND (arg1, 1);
9324 if (TREE_CODE (tree11) == MULT_EXPR
9325 && TREE_CODE (tree10) == MULT_EXPR)
9327 tree tree0;
9328 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9329 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9332 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9333 We associate floats only if the user has specified
9334 -fassociative-math. */
9335 if (flag_associative_math
9336 && TREE_CODE (arg0) == PLUS_EXPR
9337 && TREE_CODE (arg1) != MULT_EXPR)
9339 tree tree00 = TREE_OPERAND (arg0, 0);
9340 tree tree01 = TREE_OPERAND (arg0, 1);
9341 if (TREE_CODE (tree01) == MULT_EXPR
9342 && TREE_CODE (tree00) == MULT_EXPR)
9344 tree tree0;
9345 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9346 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9351 bit_rotate:
9352 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9353 is a rotate of A by C1 bits. */
9354 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9355 is a rotate of A by B bits. */
9357 enum tree_code code0, code1;
9358 tree rtype;
9359 code0 = TREE_CODE (arg0);
9360 code1 = TREE_CODE (arg1);
9361 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9362 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9363 && operand_equal_p (TREE_OPERAND (arg0, 0),
9364 TREE_OPERAND (arg1, 0), 0)
9365 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9366 TYPE_UNSIGNED (rtype))
9367 /* Only create rotates in complete modes. Other cases are not
9368 expanded properly. */
9369 && (element_precision (rtype)
9370 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9372 tree tree01, tree11;
9373 enum tree_code code01, code11;
9375 tree01 = TREE_OPERAND (arg0, 1);
9376 tree11 = TREE_OPERAND (arg1, 1);
9377 STRIP_NOPS (tree01);
9378 STRIP_NOPS (tree11);
9379 code01 = TREE_CODE (tree01);
9380 code11 = TREE_CODE (tree11);
9381 if (code01 == INTEGER_CST
9382 && code11 == INTEGER_CST
9383 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9384 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9386 tem = build2_loc (loc, LROTATE_EXPR,
9387 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9388 TREE_OPERAND (arg0, 0),
9389 code0 == LSHIFT_EXPR
9390 ? TREE_OPERAND (arg0, 1)
9391 : TREE_OPERAND (arg1, 1));
9392 return fold_convert_loc (loc, type, tem);
9394 else if (code11 == MINUS_EXPR)
9396 tree tree110, tree111;
9397 tree110 = TREE_OPERAND (tree11, 0);
9398 tree111 = TREE_OPERAND (tree11, 1);
9399 STRIP_NOPS (tree110);
9400 STRIP_NOPS (tree111);
9401 if (TREE_CODE (tree110) == INTEGER_CST
9402 && 0 == compare_tree_int (tree110,
9403 element_precision
9404 (TREE_TYPE (TREE_OPERAND
9405 (arg0, 0))))
9406 && operand_equal_p (tree01, tree111, 0))
9407 return
9408 fold_convert_loc (loc, type,
9409 build2 ((code0 == LSHIFT_EXPR
9410 ? LROTATE_EXPR
9411 : RROTATE_EXPR),
9412 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9413 TREE_OPERAND (arg0, 0),
9414 TREE_OPERAND (arg0, 1)));
9416 else if (code01 == MINUS_EXPR)
9418 tree tree010, tree011;
9419 tree010 = TREE_OPERAND (tree01, 0);
9420 tree011 = TREE_OPERAND (tree01, 1);
9421 STRIP_NOPS (tree010);
9422 STRIP_NOPS (tree011);
9423 if (TREE_CODE (tree010) == INTEGER_CST
9424 && 0 == compare_tree_int (tree010,
9425 element_precision
9426 (TREE_TYPE (TREE_OPERAND
9427 (arg0, 0))))
9428 && operand_equal_p (tree11, tree011, 0))
9429 return fold_convert_loc
9430 (loc, type,
9431 build2 ((code0 != LSHIFT_EXPR
9432 ? LROTATE_EXPR
9433 : RROTATE_EXPR),
9434 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9435 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9440 associate:
9441 /* In most languages, can't associate operations on floats through
9442 parentheses. Rather than remember where the parentheses were, we
9443 don't associate floats at all, unless the user has specified
9444 -fassociative-math.
9445 And, we need to make sure type is not saturating. */
9447 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9448 && !TYPE_SATURATING (type))
9450 tree var0, con0, lit0, minus_lit0;
9451 tree var1, con1, lit1, minus_lit1;
9452 tree atype = type;
9453 bool ok = true;
9455 /* Split both trees into variables, constants, and literals. Then
9456 associate each group together, the constants with literals,
9457 then the result with variables. This increases the chances of
9458 literals being recombined later and of generating relocatable
9459 expressions for the sum of a constant and literal. */
9460 var0 = split_tree (loc, arg0, type, code,
9461 &con0, &lit0, &minus_lit0, 0);
9462 var1 = split_tree (loc, arg1, type, code,
9463 &con1, &lit1, &minus_lit1, code == MINUS_EXPR);
9465 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9466 if (code == MINUS_EXPR)
9467 code = PLUS_EXPR;
9469 /* With undefined overflow prefer doing association in a type
9470 which wraps on overflow, if that is one of the operand types. */
9471 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9472 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9474 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9475 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9476 atype = TREE_TYPE (arg0);
9477 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9478 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9479 atype = TREE_TYPE (arg1);
9480 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9483 /* With undefined overflow we can only associate constants with one
9484 variable, and constants whose association doesn't overflow. */
9485 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9486 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9488 if (var0 && var1)
9490 tree tmp0 = var0;
9491 tree tmp1 = var1;
9492 bool one_neg = false;
9494 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9496 tmp0 = TREE_OPERAND (tmp0, 0);
9497 one_neg = !one_neg;
9499 if (CONVERT_EXPR_P (tmp0)
9500 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9501 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9502 <= TYPE_PRECISION (atype)))
9503 tmp0 = TREE_OPERAND (tmp0, 0);
9504 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9506 tmp1 = TREE_OPERAND (tmp1, 0);
9507 one_neg = !one_neg;
9509 if (CONVERT_EXPR_P (tmp1)
9510 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9511 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9512 <= TYPE_PRECISION (atype)))
9513 tmp1 = TREE_OPERAND (tmp1, 0);
9514 /* The only case we can still associate with two variables
9515 is if they cancel out. */
9516 if (!one_neg
9517 || !operand_equal_p (tmp0, tmp1, 0))
9518 ok = false;
9522 /* Only do something if we found more than two objects. Otherwise,
9523 nothing has changed and we risk infinite recursion. */
9524 if (ok
9525 && (2 < ((var0 != 0) + (var1 != 0)
9526 + (con0 != 0) + (con1 != 0)
9527 + (lit0 != 0) + (lit1 != 0)
9528 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9530 bool any_overflows = false;
9531 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9532 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9533 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9534 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9535 var0 = associate_trees (loc, var0, var1, code, atype);
9536 con0 = associate_trees (loc, con0, con1, code, atype);
9537 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9538 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9539 code, atype);
9541 /* Preserve the MINUS_EXPR if the negative part of the literal is
9542 greater than the positive part. Otherwise, the multiplicative
9543 folding code (i.e extract_muldiv) may be fooled in case
9544 unsigned constants are subtracted, like in the following
9545 example: ((X*2 + 4) - 8U)/2. */
9546 if (minus_lit0 && lit0)
9548 if (TREE_CODE (lit0) == INTEGER_CST
9549 && TREE_CODE (minus_lit0) == INTEGER_CST
9550 && tree_int_cst_lt (lit0, minus_lit0))
9552 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9553 MINUS_EXPR, atype);
9554 lit0 = 0;
9556 else
9558 lit0 = associate_trees (loc, lit0, minus_lit0,
9559 MINUS_EXPR, atype);
9560 minus_lit0 = 0;
9564 /* Don't introduce overflows through reassociation. */
9565 if (!any_overflows
9566 && ((lit0 && TREE_OVERFLOW_P (lit0))
9567 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9568 return NULL_TREE;
9570 if (minus_lit0)
9572 if (con0 == 0)
9573 return
9574 fold_convert_loc (loc, type,
9575 associate_trees (loc, var0, minus_lit0,
9576 MINUS_EXPR, atype));
9577 else
9579 con0 = associate_trees (loc, con0, minus_lit0,
9580 MINUS_EXPR, atype);
9581 return
9582 fold_convert_loc (loc, type,
9583 associate_trees (loc, var0, con0,
9584 PLUS_EXPR, atype));
9588 con0 = associate_trees (loc, con0, lit0, code, atype);
9589 return
9590 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9591 code, atype));
9595 return NULL_TREE;
9597 case MINUS_EXPR:
9598 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9599 if (TREE_CODE (arg0) == NEGATE_EXPR
9600 && negate_expr_p (op1))
9601 return fold_build2_loc (loc, MINUS_EXPR, type,
9602 negate_expr (op1),
9603 fold_convert_loc (loc, type,
9604 TREE_OPERAND (arg0, 0)));
9606 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9607 __complex__ ( x, -y ). This is not the same for SNaNs or if
9608 signed zeros are involved. */
9609 if (!HONOR_SNANS (element_mode (arg0))
9610 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9611 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9613 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9614 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9615 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9616 bool arg0rz = false, arg0iz = false;
9617 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9618 || (arg0i && (arg0iz = real_zerop (arg0i))))
9620 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9621 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9622 if (arg0rz && arg1i && real_zerop (arg1i))
9624 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9625 arg1r ? arg1r
9626 : build1 (REALPART_EXPR, rtype, arg1));
9627 tree ip = arg0i ? arg0i
9628 : build1 (IMAGPART_EXPR, rtype, arg0);
9629 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9631 else if (arg0iz && arg1r && real_zerop (arg1r))
9633 tree rp = arg0r ? arg0r
9634 : build1 (REALPART_EXPR, rtype, arg0);
9635 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9636 arg1i ? arg1i
9637 : build1 (IMAGPART_EXPR, rtype, arg1));
9638 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9643 /* A - B -> A + (-B) if B is easily negatable. */
9644 if (negate_expr_p (op1)
9645 && ! TYPE_OVERFLOW_SANITIZED (type)
9646 && ((FLOAT_TYPE_P (type)
9647 /* Avoid this transformation if B is a positive REAL_CST. */
9648 && (TREE_CODE (op1) != REAL_CST
9649 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9650 || INTEGRAL_TYPE_P (type)))
9651 return fold_build2_loc (loc, PLUS_EXPR, type,
9652 fold_convert_loc (loc, type, arg0),
9653 negate_expr (op1));
9655 /* Fold &a[i] - &a[j] to i-j. */
9656 if (TREE_CODE (arg0) == ADDR_EXPR
9657 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9658 && TREE_CODE (arg1) == ADDR_EXPR
9659 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9661 tree tem = fold_addr_of_array_ref_difference (loc, type,
9662 TREE_OPERAND (arg0, 0),
9663 TREE_OPERAND (arg1, 0));
9664 if (tem)
9665 return tem;
9668 if (FLOAT_TYPE_P (type)
9669 && flag_unsafe_math_optimizations
9670 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9671 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9672 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9673 return tem;
9675 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9676 one. Make sure the type is not saturating and has the signedness of
9677 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9678 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9679 if ((TREE_CODE (arg0) == MULT_EXPR
9680 || TREE_CODE (arg1) == MULT_EXPR)
9681 && !TYPE_SATURATING (type)
9682 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9683 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9684 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9686 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9687 if (tem)
9688 return tem;
9691 goto associate;
9693 case MULT_EXPR:
9694 if (! FLOAT_TYPE_P (type))
9696 /* Transform x * -C into -x * C if x is easily negatable. */
9697 if (TREE_CODE (op1) == INTEGER_CST
9698 && tree_int_cst_sgn (op1) == -1
9699 && negate_expr_p (op0)
9700 && (tem = negate_expr (op1)) != op1
9701 && ! TREE_OVERFLOW (tem))
9702 return fold_build2_loc (loc, MULT_EXPR, type,
9703 fold_convert_loc (loc, type,
9704 negate_expr (op0)), tem);
9706 strict_overflow_p = false;
9707 if (TREE_CODE (arg1) == INTEGER_CST
9708 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9709 &strict_overflow_p)))
9711 if (strict_overflow_p)
9712 fold_overflow_warning (("assuming signed overflow does not "
9713 "occur when simplifying "
9714 "multiplication"),
9715 WARN_STRICT_OVERFLOW_MISC);
9716 return fold_convert_loc (loc, type, tem);
9719 /* Optimize z * conj(z) for integer complex numbers. */
9720 if (TREE_CODE (arg0) == CONJ_EXPR
9721 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9722 return fold_mult_zconjz (loc, type, arg1);
9723 if (TREE_CODE (arg1) == CONJ_EXPR
9724 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9725 return fold_mult_zconjz (loc, type, arg0);
9727 else
9729 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9730 This is not the same for NaNs or if signed zeros are
9731 involved. */
9732 if (!HONOR_NANS (arg0)
9733 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9734 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9735 && TREE_CODE (arg1) == COMPLEX_CST
9736 && real_zerop (TREE_REALPART (arg1)))
9738 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9739 if (real_onep (TREE_IMAGPART (arg1)))
9740 return
9741 fold_build2_loc (loc, COMPLEX_EXPR, type,
9742 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9743 rtype, arg0)),
9744 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9745 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9746 return
9747 fold_build2_loc (loc, COMPLEX_EXPR, type,
9748 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9749 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9750 rtype, arg0)));
9753 /* Optimize z * conj(z) for floating point complex numbers.
9754 Guarded by flag_unsafe_math_optimizations as non-finite
9755 imaginary components don't produce scalar results. */
9756 if (flag_unsafe_math_optimizations
9757 && TREE_CODE (arg0) == CONJ_EXPR
9758 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9759 return fold_mult_zconjz (loc, type, arg1);
9760 if (flag_unsafe_math_optimizations
9761 && TREE_CODE (arg1) == CONJ_EXPR
9762 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9763 return fold_mult_zconjz (loc, type, arg0);
9765 goto associate;
9767 case BIT_IOR_EXPR:
9768 /* Canonicalize (X & C1) | C2. */
9769 if (TREE_CODE (arg0) == BIT_AND_EXPR
9770 && TREE_CODE (arg1) == INTEGER_CST
9771 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9773 int width = TYPE_PRECISION (type), w;
9774 wide_int c1 = TREE_OPERAND (arg0, 1);
9775 wide_int c2 = arg1;
9777 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9778 if ((c1 & c2) == c1)
9779 return omit_one_operand_loc (loc, type, arg1,
9780 TREE_OPERAND (arg0, 0));
9782 wide_int msk = wi::mask (width, false,
9783 TYPE_PRECISION (TREE_TYPE (arg1)));
9785 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9786 if (msk.and_not (c1 | c2) == 0)
9787 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9788 TREE_OPERAND (arg0, 0), arg1);
9790 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9791 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9792 mode which allows further optimizations. */
9793 c1 &= msk;
9794 c2 &= msk;
9795 wide_int c3 = c1.and_not (c2);
9796 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9798 wide_int mask = wi::mask (w, false,
9799 TYPE_PRECISION (type));
9800 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9802 c3 = mask;
9803 break;
9807 if (c3 != c1)
9808 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9809 fold_build2_loc (loc, BIT_AND_EXPR, type,
9810 TREE_OPERAND (arg0, 0),
9811 wide_int_to_tree (type,
9812 c3)),
9813 arg1);
9816 /* See if this can be simplified into a rotate first. If that
9817 is unsuccessful continue in the association code. */
9818 goto bit_rotate;
9820 case BIT_XOR_EXPR:
9821 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9822 if (TREE_CODE (arg0) == BIT_AND_EXPR
9823 && INTEGRAL_TYPE_P (type)
9824 && integer_onep (TREE_OPERAND (arg0, 1))
9825 && integer_onep (arg1))
9826 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9827 build_zero_cst (TREE_TYPE (arg0)));
9829 /* See if this can be simplified into a rotate first. If that
9830 is unsuccessful continue in the association code. */
9831 goto bit_rotate;
9833 case BIT_AND_EXPR:
9834 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9835 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9836 && INTEGRAL_TYPE_P (type)
9837 && integer_onep (TREE_OPERAND (arg0, 1))
9838 && integer_onep (arg1))
9840 tree tem2;
9841 tem = TREE_OPERAND (arg0, 0);
9842 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9843 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9844 tem, tem2);
9845 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9846 build_zero_cst (TREE_TYPE (tem)));
9848 /* Fold ~X & 1 as (X & 1) == 0. */
9849 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9850 && INTEGRAL_TYPE_P (type)
9851 && integer_onep (arg1))
9853 tree tem2;
9854 tem = TREE_OPERAND (arg0, 0);
9855 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9856 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9857 tem, tem2);
9858 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9859 build_zero_cst (TREE_TYPE (tem)));
9861 /* Fold !X & 1 as X == 0. */
9862 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9863 && integer_onep (arg1))
9865 tem = TREE_OPERAND (arg0, 0);
9866 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9867 build_zero_cst (TREE_TYPE (tem)));
9870 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9871 multiple of 1 << CST. */
9872 if (TREE_CODE (arg1) == INTEGER_CST)
9874 wide_int cst1 = arg1;
9875 wide_int ncst1 = -cst1;
9876 if ((cst1 & ncst1) == ncst1
9877 && multiple_of_p (type, arg0,
9878 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
9879 return fold_convert_loc (loc, type, arg0);
9882 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
9883 bits from CST2. */
9884 if (TREE_CODE (arg1) == INTEGER_CST
9885 && TREE_CODE (arg0) == MULT_EXPR
9886 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9888 wide_int warg1 = arg1;
9889 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
9891 if (masked == 0)
9892 return omit_two_operands_loc (loc, type, build_zero_cst (type),
9893 arg0, arg1);
9894 else if (masked != warg1)
9896 /* Avoid the transform if arg1 is a mask of some
9897 mode which allows further optimizations. */
9898 int pop = wi::popcount (warg1);
9899 if (!(pop >= BITS_PER_UNIT
9900 && pow2p_hwi (pop)
9901 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
9902 return fold_build2_loc (loc, code, type, op0,
9903 wide_int_to_tree (type, masked));
9907 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
9908 ((A & N) + B) & M -> (A + B) & M
9909 Similarly if (N & M) == 0,
9910 ((A | N) + B) & M -> (A + B) & M
9911 and for - instead of + (or unary - instead of +)
9912 and/or ^ instead of |.
9913 If B is constant and (B & M) == 0, fold into A & M. */
9914 if (TREE_CODE (arg1) == INTEGER_CST)
9916 wide_int cst1 = arg1;
9917 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
9918 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9919 && (TREE_CODE (arg0) == PLUS_EXPR
9920 || TREE_CODE (arg0) == MINUS_EXPR
9921 || TREE_CODE (arg0) == NEGATE_EXPR)
9922 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
9923 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
9925 tree pmop[2];
9926 int which = 0;
9927 wide_int cst0;
9929 /* Now we know that arg0 is (C + D) or (C - D) or
9930 -C and arg1 (M) is == (1LL << cst) - 1.
9931 Store C into PMOP[0] and D into PMOP[1]. */
9932 pmop[0] = TREE_OPERAND (arg0, 0);
9933 pmop[1] = NULL;
9934 if (TREE_CODE (arg0) != NEGATE_EXPR)
9936 pmop[1] = TREE_OPERAND (arg0, 1);
9937 which = 1;
9940 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
9941 which = -1;
9943 for (; which >= 0; which--)
9944 switch (TREE_CODE (pmop[which]))
9946 case BIT_AND_EXPR:
9947 case BIT_IOR_EXPR:
9948 case BIT_XOR_EXPR:
9949 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
9950 != INTEGER_CST)
9951 break;
9952 cst0 = TREE_OPERAND (pmop[which], 1);
9953 cst0 &= cst1;
9954 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
9956 if (cst0 != cst1)
9957 break;
9959 else if (cst0 != 0)
9960 break;
9961 /* If C or D is of the form (A & N) where
9962 (N & M) == M, or of the form (A | N) or
9963 (A ^ N) where (N & M) == 0, replace it with A. */
9964 pmop[which] = TREE_OPERAND (pmop[which], 0);
9965 break;
9966 case INTEGER_CST:
9967 /* If C or D is a N where (N & M) == 0, it can be
9968 omitted (assumed 0). */
9969 if ((TREE_CODE (arg0) == PLUS_EXPR
9970 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
9971 && (cst1 & pmop[which]) == 0)
9972 pmop[which] = NULL;
9973 break;
9974 default:
9975 break;
9978 /* Only build anything new if we optimized one or both arguments
9979 above. */
9980 if (pmop[0] != TREE_OPERAND (arg0, 0)
9981 || (TREE_CODE (arg0) != NEGATE_EXPR
9982 && pmop[1] != TREE_OPERAND (arg0, 1)))
9984 tree utype = TREE_TYPE (arg0);
9985 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9987 /* Perform the operations in a type that has defined
9988 overflow behavior. */
9989 utype = unsigned_type_for (TREE_TYPE (arg0));
9990 if (pmop[0] != NULL)
9991 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
9992 if (pmop[1] != NULL)
9993 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
9996 if (TREE_CODE (arg0) == NEGATE_EXPR)
9997 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
9998 else if (TREE_CODE (arg0) == PLUS_EXPR)
10000 if (pmop[0] != NULL && pmop[1] != NULL)
10001 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10002 pmop[0], pmop[1]);
10003 else if (pmop[0] != NULL)
10004 tem = pmop[0];
10005 else if (pmop[1] != NULL)
10006 tem = pmop[1];
10007 else
10008 return build_int_cst (type, 0);
10010 else if (pmop[0] == NULL)
10011 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10012 else
10013 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10014 pmop[0], pmop[1]);
10015 /* TEM is now the new binary +, - or unary - replacement. */
10016 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10017 fold_convert_loc (loc, utype, arg1));
10018 return fold_convert_loc (loc, type, tem);
10023 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10024 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10025 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10027 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10029 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10030 if (mask == -1)
10031 return
10032 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10035 goto associate;
10037 case RDIV_EXPR:
10038 /* Don't touch a floating-point divide by zero unless the mode
10039 of the constant can represent infinity. */
10040 if (TREE_CODE (arg1) == REAL_CST
10041 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10042 && real_zerop (arg1))
10043 return NULL_TREE;
10045 /* (-A) / (-B) -> A / B */
10046 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10047 return fold_build2_loc (loc, RDIV_EXPR, type,
10048 TREE_OPERAND (arg0, 0),
10049 negate_expr (arg1));
10050 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10051 return fold_build2_loc (loc, RDIV_EXPR, type,
10052 negate_expr (arg0),
10053 TREE_OPERAND (arg1, 0));
10054 return NULL_TREE;
10056 case TRUNC_DIV_EXPR:
10057 /* Fall through */
10059 case FLOOR_DIV_EXPR:
10060 /* Simplify A / (B << N) where A and B are positive and B is
10061 a power of 2, to A >> (N + log2(B)). */
10062 strict_overflow_p = false;
10063 if (TREE_CODE (arg1) == LSHIFT_EXPR
10064 && (TYPE_UNSIGNED (type)
10065 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10067 tree sval = TREE_OPERAND (arg1, 0);
10068 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10070 tree sh_cnt = TREE_OPERAND (arg1, 1);
10071 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10072 wi::exact_log2 (sval));
10074 if (strict_overflow_p)
10075 fold_overflow_warning (("assuming signed overflow does not "
10076 "occur when simplifying A / (B << N)"),
10077 WARN_STRICT_OVERFLOW_MISC);
10079 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10080 sh_cnt, pow2);
10081 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10082 fold_convert_loc (loc, type, arg0), sh_cnt);
10086 /* Fall through */
10088 case ROUND_DIV_EXPR:
10089 case CEIL_DIV_EXPR:
10090 case EXACT_DIV_EXPR:
10091 if (integer_zerop (arg1))
10092 return NULL_TREE;
10094 /* Convert -A / -B to A / B when the type is signed and overflow is
10095 undefined. */
10096 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10097 && TREE_CODE (arg0) == NEGATE_EXPR
10098 && negate_expr_p (op1))
10100 if (INTEGRAL_TYPE_P (type))
10101 fold_overflow_warning (("assuming signed overflow does not occur "
10102 "when distributing negation across "
10103 "division"),
10104 WARN_STRICT_OVERFLOW_MISC);
10105 return fold_build2_loc (loc, code, type,
10106 fold_convert_loc (loc, type,
10107 TREE_OPERAND (arg0, 0)),
10108 negate_expr (op1));
10110 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10111 && TREE_CODE (arg1) == NEGATE_EXPR
10112 && negate_expr_p (op0))
10114 if (INTEGRAL_TYPE_P (type))
10115 fold_overflow_warning (("assuming signed overflow does not occur "
10116 "when distributing negation across "
10117 "division"),
10118 WARN_STRICT_OVERFLOW_MISC);
10119 return fold_build2_loc (loc, code, type,
10120 negate_expr (op0),
10121 fold_convert_loc (loc, type,
10122 TREE_OPERAND (arg1, 0)));
10125 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10126 operation, EXACT_DIV_EXPR.
10128 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10129 At one time others generated faster code, it's not clear if they do
10130 after the last round to changes to the DIV code in expmed.c. */
10131 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10132 && multiple_of_p (type, arg0, arg1))
10133 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10134 fold_convert (type, arg0),
10135 fold_convert (type, arg1));
10137 strict_overflow_p = false;
10138 if (TREE_CODE (arg1) == INTEGER_CST
10139 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10140 &strict_overflow_p)))
10142 if (strict_overflow_p)
10143 fold_overflow_warning (("assuming signed overflow does not occur "
10144 "when simplifying division"),
10145 WARN_STRICT_OVERFLOW_MISC);
10146 return fold_convert_loc (loc, type, tem);
10149 return NULL_TREE;
10151 case CEIL_MOD_EXPR:
10152 case FLOOR_MOD_EXPR:
10153 case ROUND_MOD_EXPR:
10154 case TRUNC_MOD_EXPR:
10155 strict_overflow_p = false;
10156 if (TREE_CODE (arg1) == INTEGER_CST
10157 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10158 &strict_overflow_p)))
10160 if (strict_overflow_p)
10161 fold_overflow_warning (("assuming signed overflow does not occur "
10162 "when simplifying modulus"),
10163 WARN_STRICT_OVERFLOW_MISC);
10164 return fold_convert_loc (loc, type, tem);
10167 return NULL_TREE;
10169 case LROTATE_EXPR:
10170 case RROTATE_EXPR:
10171 case RSHIFT_EXPR:
10172 case LSHIFT_EXPR:
10173 /* Since negative shift count is not well-defined,
10174 don't try to compute it in the compiler. */
10175 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10176 return NULL_TREE;
10178 prec = element_precision (type);
10180 /* If we have a rotate of a bit operation with the rotate count and
10181 the second operand of the bit operation both constant,
10182 permute the two operations. */
10183 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10184 && (TREE_CODE (arg0) == BIT_AND_EXPR
10185 || TREE_CODE (arg0) == BIT_IOR_EXPR
10186 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10187 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10189 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10190 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10191 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10192 fold_build2_loc (loc, code, type,
10193 arg00, arg1),
10194 fold_build2_loc (loc, code, type,
10195 arg01, arg1));
10198 /* Two consecutive rotates adding up to the some integer
10199 multiple of the precision of the type can be ignored. */
10200 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10201 && TREE_CODE (arg0) == RROTATE_EXPR
10202 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10203 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10204 prec) == 0)
10205 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10207 return NULL_TREE;
10209 case MIN_EXPR:
10210 case MAX_EXPR:
10211 goto associate;
10213 case TRUTH_ANDIF_EXPR:
10214 /* Note that the operands of this must be ints
10215 and their values must be 0 or 1.
10216 ("true" is a fixed value perhaps depending on the language.) */
10217 /* If first arg is constant zero, return it. */
10218 if (integer_zerop (arg0))
10219 return fold_convert_loc (loc, type, arg0);
10220 /* FALLTHRU */
10221 case TRUTH_AND_EXPR:
10222 /* If either arg is constant true, drop it. */
10223 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10224 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10225 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10226 /* Preserve sequence points. */
10227 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10228 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10229 /* If second arg is constant zero, result is zero, but first arg
10230 must be evaluated. */
10231 if (integer_zerop (arg1))
10232 return omit_one_operand_loc (loc, type, arg1, arg0);
10233 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10234 case will be handled here. */
10235 if (integer_zerop (arg0))
10236 return omit_one_operand_loc (loc, type, arg0, arg1);
10238 /* !X && X is always false. */
10239 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10240 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10241 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10242 /* X && !X is always false. */
10243 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10244 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10245 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10247 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10248 means A >= Y && A != MAX, but in this case we know that
10249 A < X <= MAX. */
10251 if (!TREE_SIDE_EFFECTS (arg0)
10252 && !TREE_SIDE_EFFECTS (arg1))
10254 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10255 if (tem && !operand_equal_p (tem, arg0, 0))
10256 return fold_build2_loc (loc, code, type, tem, arg1);
10258 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10259 if (tem && !operand_equal_p (tem, arg1, 0))
10260 return fold_build2_loc (loc, code, type, arg0, tem);
10263 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10264 != NULL_TREE)
10265 return tem;
10267 return NULL_TREE;
10269 case TRUTH_ORIF_EXPR:
10270 /* Note that the operands of this must be ints
10271 and their values must be 0 or true.
10272 ("true" is a fixed value perhaps depending on the language.) */
10273 /* If first arg is constant true, return it. */
10274 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10275 return fold_convert_loc (loc, type, arg0);
10276 /* FALLTHRU */
10277 case TRUTH_OR_EXPR:
10278 /* If either arg is constant zero, drop it. */
10279 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10280 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10281 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10282 /* Preserve sequence points. */
10283 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10284 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10285 /* If second arg is constant true, result is true, but we must
10286 evaluate first arg. */
10287 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10288 return omit_one_operand_loc (loc, type, arg1, arg0);
10289 /* Likewise for first arg, but note this only occurs here for
10290 TRUTH_OR_EXPR. */
10291 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10292 return omit_one_operand_loc (loc, type, arg0, arg1);
10294 /* !X || X is always true. */
10295 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10296 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10297 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10298 /* X || !X is always true. */
10299 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10300 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10301 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10303 /* (X && !Y) || (!X && Y) is X ^ Y */
10304 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10305 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10307 tree a0, a1, l0, l1, n0, n1;
10309 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10310 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10312 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10313 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10315 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10316 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10318 if ((operand_equal_p (n0, a0, 0)
10319 && operand_equal_p (n1, a1, 0))
10320 || (operand_equal_p (n0, a1, 0)
10321 && operand_equal_p (n1, a0, 0)))
10322 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10325 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10326 != NULL_TREE)
10327 return tem;
10329 return NULL_TREE;
10331 case TRUTH_XOR_EXPR:
10332 /* If the second arg is constant zero, drop it. */
10333 if (integer_zerop (arg1))
10334 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10335 /* If the second arg is constant true, this is a logical inversion. */
10336 if (integer_onep (arg1))
10338 tem = invert_truthvalue_loc (loc, arg0);
10339 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10341 /* Identical arguments cancel to zero. */
10342 if (operand_equal_p (arg0, arg1, 0))
10343 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10345 /* !X ^ X is always true. */
10346 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10347 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10348 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10350 /* X ^ !X is always true. */
10351 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10352 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10353 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10355 return NULL_TREE;
10357 case EQ_EXPR:
10358 case NE_EXPR:
10359 STRIP_NOPS (arg0);
10360 STRIP_NOPS (arg1);
10362 tem = fold_comparison (loc, code, type, op0, op1);
10363 if (tem != NULL_TREE)
10364 return tem;
10366 /* bool_var != 1 becomes !bool_var. */
10367 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10368 && code == NE_EXPR)
10369 return fold_convert_loc (loc, type,
10370 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10371 TREE_TYPE (arg0), arg0));
10373 /* bool_var == 0 becomes !bool_var. */
10374 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10375 && code == EQ_EXPR)
10376 return fold_convert_loc (loc, type,
10377 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10378 TREE_TYPE (arg0), arg0));
10380 /* !exp != 0 becomes !exp */
10381 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10382 && code == NE_EXPR)
10383 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10385 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10386 if ((TREE_CODE (arg0) == PLUS_EXPR
10387 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10388 || TREE_CODE (arg0) == MINUS_EXPR)
10389 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10390 0)),
10391 arg1, 0)
10392 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10393 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10395 tree val = TREE_OPERAND (arg0, 1);
10396 val = fold_build2_loc (loc, code, type, val,
10397 build_int_cst (TREE_TYPE (val), 0));
10398 return omit_two_operands_loc (loc, type, val,
10399 TREE_OPERAND (arg0, 0), arg1);
10402 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10403 if ((TREE_CODE (arg1) == PLUS_EXPR
10404 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10405 || TREE_CODE (arg1) == MINUS_EXPR)
10406 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10407 0)),
10408 arg0, 0)
10409 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10410 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10412 tree val = TREE_OPERAND (arg1, 1);
10413 val = fold_build2_loc (loc, code, type, val,
10414 build_int_cst (TREE_TYPE (val), 0));
10415 return omit_two_operands_loc (loc, type, val,
10416 TREE_OPERAND (arg1, 0), arg0);
10419 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10420 if (TREE_CODE (arg0) == MINUS_EXPR
10421 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
10422 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10423 1)),
10424 arg1, 0)
10425 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
10426 return omit_two_operands_loc (loc, type,
10427 code == NE_EXPR
10428 ? boolean_true_node : boolean_false_node,
10429 TREE_OPERAND (arg0, 1), arg1);
10431 /* Transform comparisons of the form X CMP C - X if C % 2 == 1. */
10432 if (TREE_CODE (arg1) == MINUS_EXPR
10433 && TREE_CODE (TREE_OPERAND (arg1, 0)) == INTEGER_CST
10434 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10435 1)),
10436 arg0, 0)
10437 && wi::extract_uhwi (TREE_OPERAND (arg1, 0), 0, 1) == 1)
10438 return omit_two_operands_loc (loc, type,
10439 code == NE_EXPR
10440 ? boolean_true_node : boolean_false_node,
10441 TREE_OPERAND (arg1, 1), arg0);
10443 /* If this is an EQ or NE comparison with zero and ARG0 is
10444 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10445 two operations, but the latter can be done in one less insn
10446 on machines that have only two-operand insns or on which a
10447 constant cannot be the first operand. */
10448 if (TREE_CODE (arg0) == BIT_AND_EXPR
10449 && integer_zerop (arg1))
10451 tree arg00 = TREE_OPERAND (arg0, 0);
10452 tree arg01 = TREE_OPERAND (arg0, 1);
10453 if (TREE_CODE (arg00) == LSHIFT_EXPR
10454 && integer_onep (TREE_OPERAND (arg00, 0)))
10456 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10457 arg01, TREE_OPERAND (arg00, 1));
10458 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10459 build_int_cst (TREE_TYPE (arg0), 1));
10460 return fold_build2_loc (loc, code, type,
10461 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10462 arg1);
10464 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10465 && integer_onep (TREE_OPERAND (arg01, 0)))
10467 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10468 arg00, TREE_OPERAND (arg01, 1));
10469 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10470 build_int_cst (TREE_TYPE (arg0), 1));
10471 return fold_build2_loc (loc, code, type,
10472 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10473 arg1);
10477 /* If this is an NE or EQ comparison of zero against the result of a
10478 signed MOD operation whose second operand is a power of 2, make
10479 the MOD operation unsigned since it is simpler and equivalent. */
10480 if (integer_zerop (arg1)
10481 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10482 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10483 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10484 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10485 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10486 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10488 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10489 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10490 fold_convert_loc (loc, newtype,
10491 TREE_OPERAND (arg0, 0)),
10492 fold_convert_loc (loc, newtype,
10493 TREE_OPERAND (arg0, 1)));
10495 return fold_build2_loc (loc, code, type, newmod,
10496 fold_convert_loc (loc, newtype, arg1));
10499 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10500 C1 is a valid shift constant, and C2 is a power of two, i.e.
10501 a single bit. */
10502 if (TREE_CODE (arg0) == BIT_AND_EXPR
10503 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10504 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10505 == INTEGER_CST
10506 && integer_pow2p (TREE_OPERAND (arg0, 1))
10507 && integer_zerop (arg1))
10509 tree itype = TREE_TYPE (arg0);
10510 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10511 prec = TYPE_PRECISION (itype);
10513 /* Check for a valid shift count. */
10514 if (wi::ltu_p (arg001, prec))
10516 tree arg01 = TREE_OPERAND (arg0, 1);
10517 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10518 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10519 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10520 can be rewritten as (X & (C2 << C1)) != 0. */
10521 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10523 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10524 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10525 return fold_build2_loc (loc, code, type, tem,
10526 fold_convert_loc (loc, itype, arg1));
10528 /* Otherwise, for signed (arithmetic) shifts,
10529 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10530 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10531 else if (!TYPE_UNSIGNED (itype))
10532 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10533 arg000, build_int_cst (itype, 0));
10534 /* Otherwise, of unsigned (logical) shifts,
10535 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10536 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10537 else
10538 return omit_one_operand_loc (loc, type,
10539 code == EQ_EXPR ? integer_one_node
10540 : integer_zero_node,
10541 arg000);
10545 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10546 Similarly for NE_EXPR. */
10547 if (TREE_CODE (arg0) == BIT_AND_EXPR
10548 && TREE_CODE (arg1) == INTEGER_CST
10549 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10551 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
10552 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10553 TREE_OPERAND (arg0, 1));
10554 tree dandnotc
10555 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10556 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
10557 notc);
10558 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10559 if (integer_nonzerop (dandnotc))
10560 return omit_one_operand_loc (loc, type, rslt, arg0);
10563 /* If this is a comparison of a field, we may be able to simplify it. */
10564 if ((TREE_CODE (arg0) == COMPONENT_REF
10565 || TREE_CODE (arg0) == BIT_FIELD_REF)
10566 /* Handle the constant case even without -O
10567 to make sure the warnings are given. */
10568 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10570 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10571 if (t1)
10572 return t1;
10575 /* Optimize comparisons of strlen vs zero to a compare of the
10576 first character of the string vs zero. To wit,
10577 strlen(ptr) == 0 => *ptr == 0
10578 strlen(ptr) != 0 => *ptr != 0
10579 Other cases should reduce to one of these two (or a constant)
10580 due to the return value of strlen being unsigned. */
10581 if (TREE_CODE (arg0) == CALL_EXPR
10582 && integer_zerop (arg1))
10584 tree fndecl = get_callee_fndecl (arg0);
10586 if (fndecl
10587 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10588 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10589 && call_expr_nargs (arg0) == 1
10590 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10592 tree iref = build_fold_indirect_ref_loc (loc,
10593 CALL_EXPR_ARG (arg0, 0));
10594 return fold_build2_loc (loc, code, type, iref,
10595 build_int_cst (TREE_TYPE (iref), 0));
10599 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10600 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10601 if (TREE_CODE (arg0) == RSHIFT_EXPR
10602 && integer_zerop (arg1)
10603 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10605 tree arg00 = TREE_OPERAND (arg0, 0);
10606 tree arg01 = TREE_OPERAND (arg0, 1);
10607 tree itype = TREE_TYPE (arg00);
10608 if (wi::eq_p (arg01, element_precision (itype) - 1))
10610 if (TYPE_UNSIGNED (itype))
10612 itype = signed_type_for (itype);
10613 arg00 = fold_convert_loc (loc, itype, arg00);
10615 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10616 type, arg00, build_zero_cst (itype));
10620 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10621 (X & C) == 0 when C is a single bit. */
10622 if (TREE_CODE (arg0) == BIT_AND_EXPR
10623 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10624 && integer_zerop (arg1)
10625 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10627 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10628 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10629 TREE_OPERAND (arg0, 1));
10630 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10631 type, tem,
10632 fold_convert_loc (loc, TREE_TYPE (arg0),
10633 arg1));
10636 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10637 constant C is a power of two, i.e. a single bit. */
10638 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10639 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10640 && integer_zerop (arg1)
10641 && integer_pow2p (TREE_OPERAND (arg0, 1))
10642 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10643 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10645 tree arg00 = TREE_OPERAND (arg0, 0);
10646 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10647 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10650 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10651 when is C is a power of two, i.e. a single bit. */
10652 if (TREE_CODE (arg0) == BIT_AND_EXPR
10653 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10654 && integer_zerop (arg1)
10655 && integer_pow2p (TREE_OPERAND (arg0, 1))
10656 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10657 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10659 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10660 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10661 arg000, TREE_OPERAND (arg0, 1));
10662 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10663 tem, build_int_cst (TREE_TYPE (tem), 0));
10666 if (integer_zerop (arg1)
10667 && tree_expr_nonzero_p (arg0))
10669 tree res = constant_boolean_node (code==NE_EXPR, type);
10670 return omit_one_operand_loc (loc, type, res, arg0);
10673 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10674 if (TREE_CODE (arg0) == BIT_AND_EXPR
10675 && TREE_CODE (arg1) == BIT_AND_EXPR)
10677 tree arg00 = TREE_OPERAND (arg0, 0);
10678 tree arg01 = TREE_OPERAND (arg0, 1);
10679 tree arg10 = TREE_OPERAND (arg1, 0);
10680 tree arg11 = TREE_OPERAND (arg1, 1);
10681 tree itype = TREE_TYPE (arg0);
10683 if (operand_equal_p (arg01, arg11, 0))
10684 return fold_build2_loc (loc, code, type,
10685 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10686 fold_build2_loc (loc,
10687 BIT_XOR_EXPR, itype,
10688 arg00, arg10),
10689 arg01),
10690 build_zero_cst (itype));
10692 if (operand_equal_p (arg01, arg10, 0))
10693 return fold_build2_loc (loc, code, type,
10694 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10695 fold_build2_loc (loc,
10696 BIT_XOR_EXPR, itype,
10697 arg00, arg11),
10698 arg01),
10699 build_zero_cst (itype));
10701 if (operand_equal_p (arg00, arg11, 0))
10702 return fold_build2_loc (loc, code, type,
10703 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10704 fold_build2_loc (loc,
10705 BIT_XOR_EXPR, itype,
10706 arg01, arg10),
10707 arg00),
10708 build_zero_cst (itype));
10710 if (operand_equal_p (arg00, arg10, 0))
10711 return fold_build2_loc (loc, code, type,
10712 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10713 fold_build2_loc (loc,
10714 BIT_XOR_EXPR, itype,
10715 arg01, arg11),
10716 arg00),
10717 build_zero_cst (itype));
10720 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10721 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10723 tree arg00 = TREE_OPERAND (arg0, 0);
10724 tree arg01 = TREE_OPERAND (arg0, 1);
10725 tree arg10 = TREE_OPERAND (arg1, 0);
10726 tree arg11 = TREE_OPERAND (arg1, 1);
10727 tree itype = TREE_TYPE (arg0);
10729 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10730 operand_equal_p guarantees no side-effects so we don't need
10731 to use omit_one_operand on Z. */
10732 if (operand_equal_p (arg01, arg11, 0))
10733 return fold_build2_loc (loc, code, type, arg00,
10734 fold_convert_loc (loc, TREE_TYPE (arg00),
10735 arg10));
10736 if (operand_equal_p (arg01, arg10, 0))
10737 return fold_build2_loc (loc, code, type, arg00,
10738 fold_convert_loc (loc, TREE_TYPE (arg00),
10739 arg11));
10740 if (operand_equal_p (arg00, arg11, 0))
10741 return fold_build2_loc (loc, code, type, arg01,
10742 fold_convert_loc (loc, TREE_TYPE (arg01),
10743 arg10));
10744 if (operand_equal_p (arg00, arg10, 0))
10745 return fold_build2_loc (loc, code, type, arg01,
10746 fold_convert_loc (loc, TREE_TYPE (arg01),
10747 arg11));
10749 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10750 if (TREE_CODE (arg01) == INTEGER_CST
10751 && TREE_CODE (arg11) == INTEGER_CST)
10753 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10754 fold_convert_loc (loc, itype, arg11));
10755 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10756 return fold_build2_loc (loc, code, type, tem,
10757 fold_convert_loc (loc, itype, arg10));
10761 /* Attempt to simplify equality/inequality comparisons of complex
10762 values. Only lower the comparison if the result is known or
10763 can be simplified to a single scalar comparison. */
10764 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10765 || TREE_CODE (arg0) == COMPLEX_CST)
10766 && (TREE_CODE (arg1) == COMPLEX_EXPR
10767 || TREE_CODE (arg1) == COMPLEX_CST))
10769 tree real0, imag0, real1, imag1;
10770 tree rcond, icond;
10772 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10774 real0 = TREE_OPERAND (arg0, 0);
10775 imag0 = TREE_OPERAND (arg0, 1);
10777 else
10779 real0 = TREE_REALPART (arg0);
10780 imag0 = TREE_IMAGPART (arg0);
10783 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10785 real1 = TREE_OPERAND (arg1, 0);
10786 imag1 = TREE_OPERAND (arg1, 1);
10788 else
10790 real1 = TREE_REALPART (arg1);
10791 imag1 = TREE_IMAGPART (arg1);
10794 rcond = fold_binary_loc (loc, code, type, real0, real1);
10795 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10797 if (integer_zerop (rcond))
10799 if (code == EQ_EXPR)
10800 return omit_two_operands_loc (loc, type, boolean_false_node,
10801 imag0, imag1);
10802 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10804 else
10806 if (code == NE_EXPR)
10807 return omit_two_operands_loc (loc, type, boolean_true_node,
10808 imag0, imag1);
10809 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10813 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10814 if (icond && TREE_CODE (icond) == INTEGER_CST)
10816 if (integer_zerop (icond))
10818 if (code == EQ_EXPR)
10819 return omit_two_operands_loc (loc, type, boolean_false_node,
10820 real0, real1);
10821 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10823 else
10825 if (code == NE_EXPR)
10826 return omit_two_operands_loc (loc, type, boolean_true_node,
10827 real0, real1);
10828 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10833 return NULL_TREE;
10835 case LT_EXPR:
10836 case GT_EXPR:
10837 case LE_EXPR:
10838 case GE_EXPR:
10839 tem = fold_comparison (loc, code, type, op0, op1);
10840 if (tem != NULL_TREE)
10841 return tem;
10843 /* Transform comparisons of the form X +- C CMP X. */
10844 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10845 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10846 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10847 && !HONOR_SNANS (arg0))
10848 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10849 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
10851 tree arg01 = TREE_OPERAND (arg0, 1);
10852 enum tree_code code0 = TREE_CODE (arg0);
10853 int is_positive;
10855 if (TREE_CODE (arg01) == REAL_CST)
10856 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10857 else
10858 is_positive = tree_int_cst_sgn (arg01);
10860 /* (X - c) > X becomes false. */
10861 if (code == GT_EXPR
10862 && ((code0 == MINUS_EXPR && is_positive >= 0)
10863 || (code0 == PLUS_EXPR && is_positive <= 0)))
10865 if (TREE_CODE (arg01) == INTEGER_CST
10866 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10867 fold_overflow_warning (("assuming signed overflow does not "
10868 "occur when assuming that (X - c) > X "
10869 "is always false"),
10870 WARN_STRICT_OVERFLOW_ALL);
10871 return constant_boolean_node (0, type);
10874 /* Likewise (X + c) < X becomes false. */
10875 if (code == LT_EXPR
10876 && ((code0 == PLUS_EXPR && is_positive >= 0)
10877 || (code0 == MINUS_EXPR && is_positive <= 0)))
10879 if (TREE_CODE (arg01) == INTEGER_CST
10880 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10881 fold_overflow_warning (("assuming signed overflow does not "
10882 "occur when assuming that "
10883 "(X + c) < X is always false"),
10884 WARN_STRICT_OVERFLOW_ALL);
10885 return constant_boolean_node (0, type);
10888 /* Convert (X - c) <= X to true. */
10889 if (!HONOR_NANS (arg1)
10890 && code == LE_EXPR
10891 && ((code0 == MINUS_EXPR && is_positive >= 0)
10892 || (code0 == PLUS_EXPR && is_positive <= 0)))
10894 if (TREE_CODE (arg01) == INTEGER_CST
10895 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10896 fold_overflow_warning (("assuming signed overflow does not "
10897 "occur when assuming that "
10898 "(X - c) <= X is always true"),
10899 WARN_STRICT_OVERFLOW_ALL);
10900 return constant_boolean_node (1, type);
10903 /* Convert (X + c) >= X to true. */
10904 if (!HONOR_NANS (arg1)
10905 && code == GE_EXPR
10906 && ((code0 == PLUS_EXPR && is_positive >= 0)
10907 || (code0 == MINUS_EXPR && is_positive <= 0)))
10909 if (TREE_CODE (arg01) == INTEGER_CST
10910 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10911 fold_overflow_warning (("assuming signed overflow does not "
10912 "occur when assuming that "
10913 "(X + c) >= X is always true"),
10914 WARN_STRICT_OVERFLOW_ALL);
10915 return constant_boolean_node (1, type);
10918 if (TREE_CODE (arg01) == INTEGER_CST)
10920 /* Convert X + c > X and X - c < X to true for integers. */
10921 if (code == GT_EXPR
10922 && ((code0 == PLUS_EXPR && is_positive > 0)
10923 || (code0 == MINUS_EXPR && is_positive < 0)))
10925 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10926 fold_overflow_warning (("assuming signed overflow does "
10927 "not occur when assuming that "
10928 "(X + c) > X is always true"),
10929 WARN_STRICT_OVERFLOW_ALL);
10930 return constant_boolean_node (1, type);
10933 if (code == LT_EXPR
10934 && ((code0 == MINUS_EXPR && is_positive > 0)
10935 || (code0 == PLUS_EXPR && is_positive < 0)))
10937 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10938 fold_overflow_warning (("assuming signed overflow does "
10939 "not occur when assuming that "
10940 "(X - c) < X is always true"),
10941 WARN_STRICT_OVERFLOW_ALL);
10942 return constant_boolean_node (1, type);
10945 /* Convert X + c <= X and X - c >= X to false for integers. */
10946 if (code == LE_EXPR
10947 && ((code0 == PLUS_EXPR && is_positive > 0)
10948 || (code0 == MINUS_EXPR && is_positive < 0)))
10950 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10951 fold_overflow_warning (("assuming signed overflow does "
10952 "not occur when assuming that "
10953 "(X + c) <= X is always false"),
10954 WARN_STRICT_OVERFLOW_ALL);
10955 return constant_boolean_node (0, type);
10958 if (code == GE_EXPR
10959 && ((code0 == MINUS_EXPR && is_positive > 0)
10960 || (code0 == PLUS_EXPR && is_positive < 0)))
10962 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10963 fold_overflow_warning (("assuming signed overflow does "
10964 "not occur when assuming that "
10965 "(X - c) >= X is always false"),
10966 WARN_STRICT_OVERFLOW_ALL);
10967 return constant_boolean_node (0, type);
10972 /* If we are comparing an ABS_EXPR with a constant, we can
10973 convert all the cases into explicit comparisons, but they may
10974 well not be faster than doing the ABS and one comparison.
10975 But ABS (X) <= C is a range comparison, which becomes a subtraction
10976 and a comparison, and is probably faster. */
10977 if (code == LE_EXPR
10978 && TREE_CODE (arg1) == INTEGER_CST
10979 && TREE_CODE (arg0) == ABS_EXPR
10980 && ! TREE_SIDE_EFFECTS (arg0)
10981 && (0 != (tem = negate_expr (arg1)))
10982 && TREE_CODE (tem) == INTEGER_CST
10983 && !TREE_OVERFLOW (tem))
10984 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
10985 build2 (GE_EXPR, type,
10986 TREE_OPERAND (arg0, 0), tem),
10987 build2 (LE_EXPR, type,
10988 TREE_OPERAND (arg0, 0), arg1));
10990 /* Convert ABS_EXPR<x> >= 0 to true. */
10991 strict_overflow_p = false;
10992 if (code == GE_EXPR
10993 && (integer_zerop (arg1)
10994 || (! HONOR_NANS (arg0)
10995 && real_zerop (arg1)))
10996 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
10998 if (strict_overflow_p)
10999 fold_overflow_warning (("assuming signed overflow does not occur "
11000 "when simplifying comparison of "
11001 "absolute value and zero"),
11002 WARN_STRICT_OVERFLOW_CONDITIONAL);
11003 return omit_one_operand_loc (loc, type,
11004 constant_boolean_node (true, type),
11005 arg0);
11008 /* Convert ABS_EXPR<x> < 0 to false. */
11009 strict_overflow_p = false;
11010 if (code == LT_EXPR
11011 && (integer_zerop (arg1) || real_zerop (arg1))
11012 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11014 if (strict_overflow_p)
11015 fold_overflow_warning (("assuming signed overflow does not occur "
11016 "when simplifying comparison of "
11017 "absolute value and zero"),
11018 WARN_STRICT_OVERFLOW_CONDITIONAL);
11019 return omit_one_operand_loc (loc, type,
11020 constant_boolean_node (false, type),
11021 arg0);
11024 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11025 and similarly for >= into !=. */
11026 if ((code == LT_EXPR || code == GE_EXPR)
11027 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11028 && TREE_CODE (arg1) == LSHIFT_EXPR
11029 && integer_onep (TREE_OPERAND (arg1, 0)))
11030 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11031 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11032 TREE_OPERAND (arg1, 1)),
11033 build_zero_cst (TREE_TYPE (arg0)));
11035 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11036 otherwise Y might be >= # of bits in X's type and thus e.g.
11037 (unsigned char) (1 << Y) for Y 15 might be 0.
11038 If the cast is widening, then 1 << Y should have unsigned type,
11039 otherwise if Y is number of bits in the signed shift type minus 1,
11040 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11041 31 might be 0xffffffff80000000. */
11042 if ((code == LT_EXPR || code == GE_EXPR)
11043 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11044 && CONVERT_EXPR_P (arg1)
11045 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11046 && (element_precision (TREE_TYPE (arg1))
11047 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11048 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11049 || (element_precision (TREE_TYPE (arg1))
11050 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11051 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11053 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11054 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11055 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11056 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11057 build_zero_cst (TREE_TYPE (arg0)));
11060 return NULL_TREE;
11062 case UNORDERED_EXPR:
11063 case ORDERED_EXPR:
11064 case UNLT_EXPR:
11065 case UNLE_EXPR:
11066 case UNGT_EXPR:
11067 case UNGE_EXPR:
11068 case UNEQ_EXPR:
11069 case LTGT_EXPR:
11070 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11072 tree targ0 = strip_float_extensions (arg0);
11073 tree targ1 = strip_float_extensions (arg1);
11074 tree newtype = TREE_TYPE (targ0);
11076 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11077 newtype = TREE_TYPE (targ1);
11079 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11080 return fold_build2_loc (loc, code, type,
11081 fold_convert_loc (loc, newtype, targ0),
11082 fold_convert_loc (loc, newtype, targ1));
11085 return NULL_TREE;
11087 case COMPOUND_EXPR:
11088 /* When pedantic, a compound expression can be neither an lvalue
11089 nor an integer constant expression. */
11090 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11091 return NULL_TREE;
11092 /* Don't let (0, 0) be null pointer constant. */
11093 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11094 : fold_convert_loc (loc, type, arg1);
11095 return pedantic_non_lvalue_loc (loc, tem);
11097 case ASSERT_EXPR:
11098 /* An ASSERT_EXPR should never be passed to fold_binary. */
11099 gcc_unreachable ();
11101 default:
11102 return NULL_TREE;
11103 } /* switch (code) */
11106 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11107 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11108 of GOTO_EXPR. */
11110 static tree
11111 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11113 switch (TREE_CODE (*tp))
11115 case LABEL_EXPR:
11116 return *tp;
11118 case GOTO_EXPR:
11119 *walk_subtrees = 0;
11121 /* fall through */
11123 default:
11124 return NULL_TREE;
11128 /* Return whether the sub-tree ST contains a label which is accessible from
11129 outside the sub-tree. */
11131 static bool
11132 contains_label_p (tree st)
11134 return
11135 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11138 /* Fold a ternary expression of code CODE and type TYPE with operands
11139 OP0, OP1, and OP2. Return the folded expression if folding is
11140 successful. Otherwise, return NULL_TREE. */
11142 tree
11143 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11144 tree op0, tree op1, tree op2)
11146 tree tem;
11147 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11148 enum tree_code_class kind = TREE_CODE_CLASS (code);
11150 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11151 && TREE_CODE_LENGTH (code) == 3);
11153 /* If this is a commutative operation, and OP0 is a constant, move it
11154 to OP1 to reduce the number of tests below. */
11155 if (commutative_ternary_tree_code (code)
11156 && tree_swap_operands_p (op0, op1))
11157 return fold_build3_loc (loc, code, type, op1, op0, op2);
11159 tem = generic_simplify (loc, code, type, op0, op1, op2);
11160 if (tem)
11161 return tem;
11163 /* Strip any conversions that don't change the mode. This is safe
11164 for every expression, except for a comparison expression because
11165 its signedness is derived from its operands. So, in the latter
11166 case, only strip conversions that don't change the signedness.
11168 Note that this is done as an internal manipulation within the
11169 constant folder, in order to find the simplest representation of
11170 the arguments so that their form can be studied. In any cases,
11171 the appropriate type conversions should be put back in the tree
11172 that will get out of the constant folder. */
11173 if (op0)
11175 arg0 = op0;
11176 STRIP_NOPS (arg0);
11179 if (op1)
11181 arg1 = op1;
11182 STRIP_NOPS (arg1);
11185 if (op2)
11187 arg2 = op2;
11188 STRIP_NOPS (arg2);
11191 switch (code)
11193 case COMPONENT_REF:
11194 if (TREE_CODE (arg0) == CONSTRUCTOR
11195 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11197 unsigned HOST_WIDE_INT idx;
11198 tree field, value;
11199 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11200 if (field == arg1)
11201 return value;
11203 return NULL_TREE;
11205 case COND_EXPR:
11206 case VEC_COND_EXPR:
11207 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11208 so all simple results must be passed through pedantic_non_lvalue. */
11209 if (TREE_CODE (arg0) == INTEGER_CST)
11211 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11212 tem = integer_zerop (arg0) ? op2 : op1;
11213 /* Only optimize constant conditions when the selected branch
11214 has the same type as the COND_EXPR. This avoids optimizing
11215 away "c ? x : throw", where the throw has a void type.
11216 Avoid throwing away that operand which contains label. */
11217 if ((!TREE_SIDE_EFFECTS (unused_op)
11218 || !contains_label_p (unused_op))
11219 && (! VOID_TYPE_P (TREE_TYPE (tem))
11220 || VOID_TYPE_P (type)))
11221 return pedantic_non_lvalue_loc (loc, tem);
11222 return NULL_TREE;
11224 else if (TREE_CODE (arg0) == VECTOR_CST)
11226 if ((TREE_CODE (arg1) == VECTOR_CST
11227 || TREE_CODE (arg1) == CONSTRUCTOR)
11228 && (TREE_CODE (arg2) == VECTOR_CST
11229 || TREE_CODE (arg2) == CONSTRUCTOR))
11231 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11232 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11233 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11234 for (i = 0; i < nelts; i++)
11236 tree val = VECTOR_CST_ELT (arg0, i);
11237 if (integer_all_onesp (val))
11238 sel[i] = i;
11239 else if (integer_zerop (val))
11240 sel[i] = nelts + i;
11241 else /* Currently unreachable. */
11242 return NULL_TREE;
11244 tree t = fold_vec_perm (type, arg1, arg2, sel);
11245 if (t != NULL_TREE)
11246 return t;
11250 /* If we have A op B ? A : C, we may be able to convert this to a
11251 simpler expression, depending on the operation and the values
11252 of B and C. Signed zeros prevent all of these transformations,
11253 for reasons given above each one.
11255 Also try swapping the arguments and inverting the conditional. */
11256 if (COMPARISON_CLASS_P (arg0)
11257 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11258 arg1, TREE_OPERAND (arg0, 1))
11259 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11261 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11262 if (tem)
11263 return tem;
11266 if (COMPARISON_CLASS_P (arg0)
11267 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11268 op2,
11269 TREE_OPERAND (arg0, 1))
11270 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11272 location_t loc0 = expr_location_or (arg0, loc);
11273 tem = fold_invert_truthvalue (loc0, arg0);
11274 if (tem && COMPARISON_CLASS_P (tem))
11276 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11277 if (tem)
11278 return tem;
11282 /* If the second operand is simpler than the third, swap them
11283 since that produces better jump optimization results. */
11284 if (truth_value_p (TREE_CODE (arg0))
11285 && tree_swap_operands_p (op1, op2))
11287 location_t loc0 = expr_location_or (arg0, loc);
11288 /* See if this can be inverted. If it can't, possibly because
11289 it was a floating-point inequality comparison, don't do
11290 anything. */
11291 tem = fold_invert_truthvalue (loc0, arg0);
11292 if (tem)
11293 return fold_build3_loc (loc, code, type, tem, op2, op1);
11296 /* Convert A ? 1 : 0 to simply A. */
11297 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11298 : (integer_onep (op1)
11299 && !VECTOR_TYPE_P (type)))
11300 && integer_zerop (op2)
11301 /* If we try to convert OP0 to our type, the
11302 call to fold will try to move the conversion inside
11303 a COND, which will recurse. In that case, the COND_EXPR
11304 is probably the best choice, so leave it alone. */
11305 && type == TREE_TYPE (arg0))
11306 return pedantic_non_lvalue_loc (loc, arg0);
11308 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11309 over COND_EXPR in cases such as floating point comparisons. */
11310 if (integer_zerop (op1)
11311 && code == COND_EXPR
11312 && integer_onep (op2)
11313 && !VECTOR_TYPE_P (type)
11314 && truth_value_p (TREE_CODE (arg0)))
11315 return pedantic_non_lvalue_loc (loc,
11316 fold_convert_loc (loc, type,
11317 invert_truthvalue_loc (loc,
11318 arg0)));
11320 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11321 if (TREE_CODE (arg0) == LT_EXPR
11322 && integer_zerop (TREE_OPERAND (arg0, 1))
11323 && integer_zerop (op2)
11324 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11326 /* sign_bit_p looks through both zero and sign extensions,
11327 but for this optimization only sign extensions are
11328 usable. */
11329 tree tem2 = TREE_OPERAND (arg0, 0);
11330 while (tem != tem2)
11332 if (TREE_CODE (tem2) != NOP_EXPR
11333 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11335 tem = NULL_TREE;
11336 break;
11338 tem2 = TREE_OPERAND (tem2, 0);
11340 /* sign_bit_p only checks ARG1 bits within A's precision.
11341 If <sign bit of A> has wider type than A, bits outside
11342 of A's precision in <sign bit of A> need to be checked.
11343 If they are all 0, this optimization needs to be done
11344 in unsigned A's type, if they are all 1 in signed A's type,
11345 otherwise this can't be done. */
11346 if (tem
11347 && TYPE_PRECISION (TREE_TYPE (tem))
11348 < TYPE_PRECISION (TREE_TYPE (arg1))
11349 && TYPE_PRECISION (TREE_TYPE (tem))
11350 < TYPE_PRECISION (type))
11352 int inner_width, outer_width;
11353 tree tem_type;
11355 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11356 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11357 if (outer_width > TYPE_PRECISION (type))
11358 outer_width = TYPE_PRECISION (type);
11360 wide_int mask = wi::shifted_mask
11361 (inner_width, outer_width - inner_width, false,
11362 TYPE_PRECISION (TREE_TYPE (arg1)));
11364 wide_int common = mask & arg1;
11365 if (common == mask)
11367 tem_type = signed_type_for (TREE_TYPE (tem));
11368 tem = fold_convert_loc (loc, tem_type, tem);
11370 else if (common == 0)
11372 tem_type = unsigned_type_for (TREE_TYPE (tem));
11373 tem = fold_convert_loc (loc, tem_type, tem);
11375 else
11376 tem = NULL;
11379 if (tem)
11380 return
11381 fold_convert_loc (loc, type,
11382 fold_build2_loc (loc, BIT_AND_EXPR,
11383 TREE_TYPE (tem), tem,
11384 fold_convert_loc (loc,
11385 TREE_TYPE (tem),
11386 arg1)));
11389 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11390 already handled above. */
11391 if (TREE_CODE (arg0) == BIT_AND_EXPR
11392 && integer_onep (TREE_OPERAND (arg0, 1))
11393 && integer_zerop (op2)
11394 && integer_pow2p (arg1))
11396 tree tem = TREE_OPERAND (arg0, 0);
11397 STRIP_NOPS (tem);
11398 if (TREE_CODE (tem) == RSHIFT_EXPR
11399 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11400 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11401 tree_to_uhwi (TREE_OPERAND (tem, 1)))
11402 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11403 TREE_OPERAND (tem, 0), arg1);
11406 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11407 is probably obsolete because the first operand should be a
11408 truth value (that's why we have the two cases above), but let's
11409 leave it in until we can confirm this for all front-ends. */
11410 if (integer_zerop (op2)
11411 && TREE_CODE (arg0) == NE_EXPR
11412 && integer_zerop (TREE_OPERAND (arg0, 1))
11413 && integer_pow2p (arg1)
11414 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11415 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11416 arg1, OEP_ONLY_CONST))
11417 return pedantic_non_lvalue_loc (loc,
11418 fold_convert_loc (loc, type,
11419 TREE_OPERAND (arg0, 0)));
11421 /* Disable the transformations below for vectors, since
11422 fold_binary_op_with_conditional_arg may undo them immediately,
11423 yielding an infinite loop. */
11424 if (code == VEC_COND_EXPR)
11425 return NULL_TREE;
11427 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11428 if (integer_zerop (op2)
11429 && truth_value_p (TREE_CODE (arg0))
11430 && truth_value_p (TREE_CODE (arg1))
11431 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11432 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11433 : TRUTH_ANDIF_EXPR,
11434 type, fold_convert_loc (loc, type, arg0), arg1);
11436 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11437 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11438 && truth_value_p (TREE_CODE (arg0))
11439 && truth_value_p (TREE_CODE (arg1))
11440 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11442 location_t loc0 = expr_location_or (arg0, loc);
11443 /* Only perform transformation if ARG0 is easily inverted. */
11444 tem = fold_invert_truthvalue (loc0, arg0);
11445 if (tem)
11446 return fold_build2_loc (loc, code == VEC_COND_EXPR
11447 ? BIT_IOR_EXPR
11448 : TRUTH_ORIF_EXPR,
11449 type, fold_convert_loc (loc, type, tem),
11450 arg1);
11453 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11454 if (integer_zerop (arg1)
11455 && truth_value_p (TREE_CODE (arg0))
11456 && truth_value_p (TREE_CODE (op2))
11457 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11459 location_t loc0 = expr_location_or (arg0, loc);
11460 /* Only perform transformation if ARG0 is easily inverted. */
11461 tem = fold_invert_truthvalue (loc0, arg0);
11462 if (tem)
11463 return fold_build2_loc (loc, code == VEC_COND_EXPR
11464 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11465 type, fold_convert_loc (loc, type, tem),
11466 op2);
11469 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11470 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11471 && truth_value_p (TREE_CODE (arg0))
11472 && truth_value_p (TREE_CODE (op2))
11473 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11474 return fold_build2_loc (loc, code == VEC_COND_EXPR
11475 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11476 type, fold_convert_loc (loc, type, arg0), op2);
11478 return NULL_TREE;
11480 case CALL_EXPR:
11481 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11482 of fold_ternary on them. */
11483 gcc_unreachable ();
11485 case BIT_FIELD_REF:
11486 if (TREE_CODE (arg0) == VECTOR_CST
11487 && (type == TREE_TYPE (TREE_TYPE (arg0))
11488 || (TREE_CODE (type) == VECTOR_TYPE
11489 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11491 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11492 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11493 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11494 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11496 if (n != 0
11497 && (idx % width) == 0
11498 && (n % width) == 0
11499 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11501 idx = idx / width;
11502 n = n / width;
11504 if (TREE_CODE (arg0) == VECTOR_CST)
11506 if (n == 1)
11507 return VECTOR_CST_ELT (arg0, idx);
11509 tree *vals = XALLOCAVEC (tree, n);
11510 for (unsigned i = 0; i < n; ++i)
11511 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11512 return build_vector (type, vals);
11517 /* On constants we can use native encode/interpret to constant
11518 fold (nearly) all BIT_FIELD_REFs. */
11519 if (CONSTANT_CLASS_P (arg0)
11520 && can_native_interpret_type_p (type)
11521 && BITS_PER_UNIT == 8)
11523 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11524 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11525 /* Limit us to a reasonable amount of work. To relax the
11526 other limitations we need bit-shifting of the buffer
11527 and rounding up the size. */
11528 if (bitpos % BITS_PER_UNIT == 0
11529 && bitsize % BITS_PER_UNIT == 0
11530 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11532 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11533 unsigned HOST_WIDE_INT len
11534 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11535 bitpos / BITS_PER_UNIT);
11536 if (len > 0
11537 && len * BITS_PER_UNIT >= bitsize)
11539 tree v = native_interpret_expr (type, b,
11540 bitsize / BITS_PER_UNIT);
11541 if (v)
11542 return v;
11547 return NULL_TREE;
11549 case FMA_EXPR:
11550 /* For integers we can decompose the FMA if possible. */
11551 if (TREE_CODE (arg0) == INTEGER_CST
11552 && TREE_CODE (arg1) == INTEGER_CST)
11553 return fold_build2_loc (loc, PLUS_EXPR, type,
11554 const_binop (MULT_EXPR, arg0, arg1), arg2);
11555 if (integer_zerop (arg2))
11556 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11558 return fold_fma (loc, type, arg0, arg1, arg2);
11560 case VEC_PERM_EXPR:
11561 if (TREE_CODE (arg2) == VECTOR_CST)
11563 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11564 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11565 unsigned char *sel2 = sel + nelts;
11566 bool need_mask_canon = false;
11567 bool need_mask_canon2 = false;
11568 bool all_in_vec0 = true;
11569 bool all_in_vec1 = true;
11570 bool maybe_identity = true;
11571 bool single_arg = (op0 == op1);
11572 bool changed = false;
11574 mask2 = 2 * nelts - 1;
11575 mask = single_arg ? (nelts - 1) : mask2;
11576 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11577 for (i = 0; i < nelts; i++)
11579 tree val = VECTOR_CST_ELT (arg2, i);
11580 if (TREE_CODE (val) != INTEGER_CST)
11581 return NULL_TREE;
11583 /* Make sure that the perm value is in an acceptable
11584 range. */
11585 wide_int t = val;
11586 need_mask_canon |= wi::gtu_p (t, mask);
11587 need_mask_canon2 |= wi::gtu_p (t, mask2);
11588 sel[i] = t.to_uhwi () & mask;
11589 sel2[i] = t.to_uhwi () & mask2;
11591 if (sel[i] < nelts)
11592 all_in_vec1 = false;
11593 else
11594 all_in_vec0 = false;
11596 if ((sel[i] & (nelts-1)) != i)
11597 maybe_identity = false;
11600 if (maybe_identity)
11602 if (all_in_vec0)
11603 return op0;
11604 if (all_in_vec1)
11605 return op1;
11608 if (all_in_vec0)
11609 op1 = op0;
11610 else if (all_in_vec1)
11612 op0 = op1;
11613 for (i = 0; i < nelts; i++)
11614 sel[i] -= nelts;
11615 need_mask_canon = true;
11618 if ((TREE_CODE (op0) == VECTOR_CST
11619 || TREE_CODE (op0) == CONSTRUCTOR)
11620 && (TREE_CODE (op1) == VECTOR_CST
11621 || TREE_CODE (op1) == CONSTRUCTOR))
11623 tree t = fold_vec_perm (type, op0, op1, sel);
11624 if (t != NULL_TREE)
11625 return t;
11628 if (op0 == op1 && !single_arg)
11629 changed = true;
11631 /* Some targets are deficient and fail to expand a single
11632 argument permutation while still allowing an equivalent
11633 2-argument version. */
11634 if (need_mask_canon && arg2 == op2
11635 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11636 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11638 need_mask_canon = need_mask_canon2;
11639 sel = sel2;
11642 if (need_mask_canon && arg2 == op2)
11644 tree *tsel = XALLOCAVEC (tree, nelts);
11645 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11646 for (i = 0; i < nelts; i++)
11647 tsel[i] = build_int_cst (eltype, sel[i]);
11648 op2 = build_vector (TREE_TYPE (arg2), tsel);
11649 changed = true;
11652 if (changed)
11653 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11655 return NULL_TREE;
11657 case BIT_INSERT_EXPR:
11658 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11659 if (TREE_CODE (arg0) == INTEGER_CST
11660 && TREE_CODE (arg1) == INTEGER_CST)
11662 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11663 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11664 wide_int tem = wi::bit_and (arg0,
11665 wi::shifted_mask (bitpos, bitsize, true,
11666 TYPE_PRECISION (type)));
11667 wide_int tem2
11668 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11669 bitsize), bitpos);
11670 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11672 else if (TREE_CODE (arg0) == VECTOR_CST
11673 && CONSTANT_CLASS_P (arg1)
11674 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11675 TREE_TYPE (arg1)))
11677 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11678 unsigned HOST_WIDE_INT elsize
11679 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11680 if (bitpos % elsize == 0)
11682 unsigned k = bitpos / elsize;
11683 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11684 return arg0;
11685 else
11687 tree *elts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
11688 memcpy (elts, VECTOR_CST_ELTS (arg0),
11689 sizeof (tree) * TYPE_VECTOR_SUBPARTS (type));
11690 elts[k] = arg1;
11691 return build_vector (type, elts);
11695 return NULL_TREE;
11697 default:
11698 return NULL_TREE;
11699 } /* switch (code) */
11702 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11703 of an array (or vector). */
11705 tree
11706 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11708 tree index_type = NULL_TREE;
11709 offset_int low_bound = 0;
11711 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11713 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11714 if (domain_type && TYPE_MIN_VALUE (domain_type))
11716 /* Static constructors for variably sized objects makes no sense. */
11717 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11718 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11719 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11723 if (index_type)
11724 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11725 TYPE_SIGN (index_type));
11727 offset_int index = low_bound - 1;
11728 if (index_type)
11729 index = wi::ext (index, TYPE_PRECISION (index_type),
11730 TYPE_SIGN (index_type));
11732 offset_int max_index;
11733 unsigned HOST_WIDE_INT cnt;
11734 tree cfield, cval;
11736 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11738 /* Array constructor might explicitly set index, or specify a range,
11739 or leave index NULL meaning that it is next index after previous
11740 one. */
11741 if (cfield)
11743 if (TREE_CODE (cfield) == INTEGER_CST)
11744 max_index = index = wi::to_offset (cfield);
11745 else
11747 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11748 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11749 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11752 else
11754 index += 1;
11755 if (index_type)
11756 index = wi::ext (index, TYPE_PRECISION (index_type),
11757 TYPE_SIGN (index_type));
11758 max_index = index;
11761 /* Do we have match? */
11762 if (wi::cmpu (access_index, index) >= 0
11763 && wi::cmpu (access_index, max_index) <= 0)
11764 return cval;
11766 return NULL_TREE;
11769 /* Perform constant folding and related simplification of EXPR.
11770 The related simplifications include x*1 => x, x*0 => 0, etc.,
11771 and application of the associative law.
11772 NOP_EXPR conversions may be removed freely (as long as we
11773 are careful not to change the type of the overall expression).
11774 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11775 but we can constant-fold them if they have constant operands. */
11777 #ifdef ENABLE_FOLD_CHECKING
11778 # define fold(x) fold_1 (x)
11779 static tree fold_1 (tree);
11780 static
11781 #endif
11782 tree
11783 fold (tree expr)
11785 const tree t = expr;
11786 enum tree_code code = TREE_CODE (t);
11787 enum tree_code_class kind = TREE_CODE_CLASS (code);
11788 tree tem;
11789 location_t loc = EXPR_LOCATION (expr);
11791 /* Return right away if a constant. */
11792 if (kind == tcc_constant)
11793 return t;
11795 /* CALL_EXPR-like objects with variable numbers of operands are
11796 treated specially. */
11797 if (kind == tcc_vl_exp)
11799 if (code == CALL_EXPR)
11801 tem = fold_call_expr (loc, expr, false);
11802 return tem ? tem : expr;
11804 return expr;
11807 if (IS_EXPR_CODE_CLASS (kind))
11809 tree type = TREE_TYPE (t);
11810 tree op0, op1, op2;
11812 switch (TREE_CODE_LENGTH (code))
11814 case 1:
11815 op0 = TREE_OPERAND (t, 0);
11816 tem = fold_unary_loc (loc, code, type, op0);
11817 return tem ? tem : expr;
11818 case 2:
11819 op0 = TREE_OPERAND (t, 0);
11820 op1 = TREE_OPERAND (t, 1);
11821 tem = fold_binary_loc (loc, code, type, op0, op1);
11822 return tem ? tem : expr;
11823 case 3:
11824 op0 = TREE_OPERAND (t, 0);
11825 op1 = TREE_OPERAND (t, 1);
11826 op2 = TREE_OPERAND (t, 2);
11827 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11828 return tem ? tem : expr;
11829 default:
11830 break;
11834 switch (code)
11836 case ARRAY_REF:
11838 tree op0 = TREE_OPERAND (t, 0);
11839 tree op1 = TREE_OPERAND (t, 1);
11841 if (TREE_CODE (op1) == INTEGER_CST
11842 && TREE_CODE (op0) == CONSTRUCTOR
11843 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11845 tree val = get_array_ctor_element_at_index (op0,
11846 wi::to_offset (op1));
11847 if (val)
11848 return val;
11851 return t;
11854 /* Return a VECTOR_CST if possible. */
11855 case CONSTRUCTOR:
11857 tree type = TREE_TYPE (t);
11858 if (TREE_CODE (type) != VECTOR_TYPE)
11859 return t;
11861 unsigned i;
11862 tree val;
11863 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11864 if (! CONSTANT_CLASS_P (val))
11865 return t;
11867 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11870 case CONST_DECL:
11871 return fold (DECL_INITIAL (t));
11873 default:
11874 return t;
11875 } /* switch (code) */
11878 #ifdef ENABLE_FOLD_CHECKING
11879 #undef fold
11881 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11882 hash_table<nofree_ptr_hash<const tree_node> > *);
11883 static void fold_check_failed (const_tree, const_tree);
11884 void print_fold_checksum (const_tree);
11886 /* When --enable-checking=fold, compute a digest of expr before
11887 and after actual fold call to see if fold did not accidentally
11888 change original expr. */
11890 tree
11891 fold (tree expr)
11893 tree ret;
11894 struct md5_ctx ctx;
11895 unsigned char checksum_before[16], checksum_after[16];
11896 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11898 md5_init_ctx (&ctx);
11899 fold_checksum_tree (expr, &ctx, &ht);
11900 md5_finish_ctx (&ctx, checksum_before);
11901 ht.empty ();
11903 ret = fold_1 (expr);
11905 md5_init_ctx (&ctx);
11906 fold_checksum_tree (expr, &ctx, &ht);
11907 md5_finish_ctx (&ctx, checksum_after);
11909 if (memcmp (checksum_before, checksum_after, 16))
11910 fold_check_failed (expr, ret);
11912 return ret;
11915 void
11916 print_fold_checksum (const_tree expr)
11918 struct md5_ctx ctx;
11919 unsigned char checksum[16], cnt;
11920 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11922 md5_init_ctx (&ctx);
11923 fold_checksum_tree (expr, &ctx, &ht);
11924 md5_finish_ctx (&ctx, checksum);
11925 for (cnt = 0; cnt < 16; ++cnt)
11926 fprintf (stderr, "%02x", checksum[cnt]);
11927 putc ('\n', stderr);
11930 static void
11931 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
11933 internal_error ("fold check: original tree changed by fold");
11936 static void
11937 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
11938 hash_table<nofree_ptr_hash <const tree_node> > *ht)
11940 const tree_node **slot;
11941 enum tree_code code;
11942 union tree_node buf;
11943 int i, len;
11945 recursive_label:
11946 if (expr == NULL)
11947 return;
11948 slot = ht->find_slot (expr, INSERT);
11949 if (*slot != NULL)
11950 return;
11951 *slot = expr;
11952 code = TREE_CODE (expr);
11953 if (TREE_CODE_CLASS (code) == tcc_declaration
11954 && HAS_DECL_ASSEMBLER_NAME_P (expr))
11956 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
11957 memcpy ((char *) &buf, expr, tree_size (expr));
11958 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
11959 buf.decl_with_vis.symtab_node = NULL;
11960 expr = (tree) &buf;
11962 else if (TREE_CODE_CLASS (code) == tcc_type
11963 && (TYPE_POINTER_TO (expr)
11964 || TYPE_REFERENCE_TO (expr)
11965 || TYPE_CACHED_VALUES_P (expr)
11966 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
11967 || TYPE_NEXT_VARIANT (expr)
11968 || TYPE_ALIAS_SET_KNOWN_P (expr)))
11970 /* Allow these fields to be modified. */
11971 tree tmp;
11972 memcpy ((char *) &buf, expr, tree_size (expr));
11973 expr = tmp = (tree) &buf;
11974 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
11975 TYPE_POINTER_TO (tmp) = NULL;
11976 TYPE_REFERENCE_TO (tmp) = NULL;
11977 TYPE_NEXT_VARIANT (tmp) = NULL;
11978 TYPE_ALIAS_SET (tmp) = -1;
11979 if (TYPE_CACHED_VALUES_P (tmp))
11981 TYPE_CACHED_VALUES_P (tmp) = 0;
11982 TYPE_CACHED_VALUES (tmp) = NULL;
11985 md5_process_bytes (expr, tree_size (expr), ctx);
11986 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
11987 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
11988 if (TREE_CODE_CLASS (code) != tcc_type
11989 && TREE_CODE_CLASS (code) != tcc_declaration
11990 && code != TREE_LIST
11991 && code != SSA_NAME
11992 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
11993 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
11994 switch (TREE_CODE_CLASS (code))
11996 case tcc_constant:
11997 switch (code)
11999 case STRING_CST:
12000 md5_process_bytes (TREE_STRING_POINTER (expr),
12001 TREE_STRING_LENGTH (expr), ctx);
12002 break;
12003 case COMPLEX_CST:
12004 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12005 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12006 break;
12007 case VECTOR_CST:
12008 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12009 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12010 break;
12011 default:
12012 break;
12014 break;
12015 case tcc_exceptional:
12016 switch (code)
12018 case TREE_LIST:
12019 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12020 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12021 expr = TREE_CHAIN (expr);
12022 goto recursive_label;
12023 break;
12024 case TREE_VEC:
12025 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12026 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12027 break;
12028 default:
12029 break;
12031 break;
12032 case tcc_expression:
12033 case tcc_reference:
12034 case tcc_comparison:
12035 case tcc_unary:
12036 case tcc_binary:
12037 case tcc_statement:
12038 case tcc_vl_exp:
12039 len = TREE_OPERAND_LENGTH (expr);
12040 for (i = 0; i < len; ++i)
12041 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12042 break;
12043 case tcc_declaration:
12044 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12045 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12046 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12048 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12049 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12050 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12051 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12052 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12055 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12057 if (TREE_CODE (expr) == FUNCTION_DECL)
12059 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12060 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12062 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12064 break;
12065 case tcc_type:
12066 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12067 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12068 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12069 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12070 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12071 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12072 if (INTEGRAL_TYPE_P (expr)
12073 || SCALAR_FLOAT_TYPE_P (expr))
12075 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12076 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12078 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12079 if (TREE_CODE (expr) == RECORD_TYPE
12080 || TREE_CODE (expr) == UNION_TYPE
12081 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12082 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12083 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12084 break;
12085 default:
12086 break;
12090 /* Helper function for outputting the checksum of a tree T. When
12091 debugging with gdb, you can "define mynext" to be "next" followed
12092 by "call debug_fold_checksum (op0)", then just trace down till the
12093 outputs differ. */
12095 DEBUG_FUNCTION void
12096 debug_fold_checksum (const_tree t)
12098 int i;
12099 unsigned char checksum[16];
12100 struct md5_ctx ctx;
12101 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12103 md5_init_ctx (&ctx);
12104 fold_checksum_tree (t, &ctx, &ht);
12105 md5_finish_ctx (&ctx, checksum);
12106 ht.empty ();
12108 for (i = 0; i < 16; i++)
12109 fprintf (stderr, "%d ", checksum[i]);
12111 fprintf (stderr, "\n");
12114 #endif
12116 /* Fold a unary tree expression with code CODE of type TYPE with an
12117 operand OP0. LOC is the location of the resulting expression.
12118 Return a folded expression if successful. Otherwise, return a tree
12119 expression with code CODE of type TYPE with an operand OP0. */
12121 tree
12122 fold_build1_stat_loc (location_t loc,
12123 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12125 tree tem;
12126 #ifdef ENABLE_FOLD_CHECKING
12127 unsigned char checksum_before[16], checksum_after[16];
12128 struct md5_ctx ctx;
12129 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12131 md5_init_ctx (&ctx);
12132 fold_checksum_tree (op0, &ctx, &ht);
12133 md5_finish_ctx (&ctx, checksum_before);
12134 ht.empty ();
12135 #endif
12137 tem = fold_unary_loc (loc, code, type, op0);
12138 if (!tem)
12139 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12141 #ifdef ENABLE_FOLD_CHECKING
12142 md5_init_ctx (&ctx);
12143 fold_checksum_tree (op0, &ctx, &ht);
12144 md5_finish_ctx (&ctx, checksum_after);
12146 if (memcmp (checksum_before, checksum_after, 16))
12147 fold_check_failed (op0, tem);
12148 #endif
12149 return tem;
12152 /* Fold a binary tree expression with code CODE of type TYPE with
12153 operands OP0 and OP1. LOC is the location of the resulting
12154 expression. Return a folded expression if successful. Otherwise,
12155 return a tree expression with code CODE of type TYPE with operands
12156 OP0 and OP1. */
12158 tree
12159 fold_build2_stat_loc (location_t loc,
12160 enum tree_code code, tree type, tree op0, tree op1
12161 MEM_STAT_DECL)
12163 tree tem;
12164 #ifdef ENABLE_FOLD_CHECKING
12165 unsigned char checksum_before_op0[16],
12166 checksum_before_op1[16],
12167 checksum_after_op0[16],
12168 checksum_after_op1[16];
12169 struct md5_ctx ctx;
12170 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12172 md5_init_ctx (&ctx);
12173 fold_checksum_tree (op0, &ctx, &ht);
12174 md5_finish_ctx (&ctx, checksum_before_op0);
12175 ht.empty ();
12177 md5_init_ctx (&ctx);
12178 fold_checksum_tree (op1, &ctx, &ht);
12179 md5_finish_ctx (&ctx, checksum_before_op1);
12180 ht.empty ();
12181 #endif
12183 tem = fold_binary_loc (loc, code, type, op0, op1);
12184 if (!tem)
12185 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12187 #ifdef ENABLE_FOLD_CHECKING
12188 md5_init_ctx (&ctx);
12189 fold_checksum_tree (op0, &ctx, &ht);
12190 md5_finish_ctx (&ctx, checksum_after_op0);
12191 ht.empty ();
12193 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12194 fold_check_failed (op0, tem);
12196 md5_init_ctx (&ctx);
12197 fold_checksum_tree (op1, &ctx, &ht);
12198 md5_finish_ctx (&ctx, checksum_after_op1);
12200 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12201 fold_check_failed (op1, tem);
12202 #endif
12203 return tem;
12206 /* Fold a ternary tree expression with code CODE of type TYPE with
12207 operands OP0, OP1, and OP2. Return a folded expression if
12208 successful. Otherwise, return a tree expression with code CODE of
12209 type TYPE with operands OP0, OP1, and OP2. */
12211 tree
12212 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
12213 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12215 tree tem;
12216 #ifdef ENABLE_FOLD_CHECKING
12217 unsigned char checksum_before_op0[16],
12218 checksum_before_op1[16],
12219 checksum_before_op2[16],
12220 checksum_after_op0[16],
12221 checksum_after_op1[16],
12222 checksum_after_op2[16];
12223 struct md5_ctx ctx;
12224 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12226 md5_init_ctx (&ctx);
12227 fold_checksum_tree (op0, &ctx, &ht);
12228 md5_finish_ctx (&ctx, checksum_before_op0);
12229 ht.empty ();
12231 md5_init_ctx (&ctx);
12232 fold_checksum_tree (op1, &ctx, &ht);
12233 md5_finish_ctx (&ctx, checksum_before_op1);
12234 ht.empty ();
12236 md5_init_ctx (&ctx);
12237 fold_checksum_tree (op2, &ctx, &ht);
12238 md5_finish_ctx (&ctx, checksum_before_op2);
12239 ht.empty ();
12240 #endif
12242 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12243 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12244 if (!tem)
12245 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12247 #ifdef ENABLE_FOLD_CHECKING
12248 md5_init_ctx (&ctx);
12249 fold_checksum_tree (op0, &ctx, &ht);
12250 md5_finish_ctx (&ctx, checksum_after_op0);
12251 ht.empty ();
12253 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12254 fold_check_failed (op0, tem);
12256 md5_init_ctx (&ctx);
12257 fold_checksum_tree (op1, &ctx, &ht);
12258 md5_finish_ctx (&ctx, checksum_after_op1);
12259 ht.empty ();
12261 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12262 fold_check_failed (op1, tem);
12264 md5_init_ctx (&ctx);
12265 fold_checksum_tree (op2, &ctx, &ht);
12266 md5_finish_ctx (&ctx, checksum_after_op2);
12268 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12269 fold_check_failed (op2, tem);
12270 #endif
12271 return tem;
12274 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12275 arguments in ARGARRAY, and a null static chain.
12276 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12277 of type TYPE from the given operands as constructed by build_call_array. */
12279 tree
12280 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12281 int nargs, tree *argarray)
12283 tree tem;
12284 #ifdef ENABLE_FOLD_CHECKING
12285 unsigned char checksum_before_fn[16],
12286 checksum_before_arglist[16],
12287 checksum_after_fn[16],
12288 checksum_after_arglist[16];
12289 struct md5_ctx ctx;
12290 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12291 int i;
12293 md5_init_ctx (&ctx);
12294 fold_checksum_tree (fn, &ctx, &ht);
12295 md5_finish_ctx (&ctx, checksum_before_fn);
12296 ht.empty ();
12298 md5_init_ctx (&ctx);
12299 for (i = 0; i < nargs; i++)
12300 fold_checksum_tree (argarray[i], &ctx, &ht);
12301 md5_finish_ctx (&ctx, checksum_before_arglist);
12302 ht.empty ();
12303 #endif
12305 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12306 if (!tem)
12307 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12309 #ifdef ENABLE_FOLD_CHECKING
12310 md5_init_ctx (&ctx);
12311 fold_checksum_tree (fn, &ctx, &ht);
12312 md5_finish_ctx (&ctx, checksum_after_fn);
12313 ht.empty ();
12315 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12316 fold_check_failed (fn, tem);
12318 md5_init_ctx (&ctx);
12319 for (i = 0; i < nargs; i++)
12320 fold_checksum_tree (argarray[i], &ctx, &ht);
12321 md5_finish_ctx (&ctx, checksum_after_arglist);
12323 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12324 fold_check_failed (NULL_TREE, tem);
12325 #endif
12326 return tem;
12329 /* Perform constant folding and related simplification of initializer
12330 expression EXPR. These behave identically to "fold_buildN" but ignore
12331 potential run-time traps and exceptions that fold must preserve. */
12333 #define START_FOLD_INIT \
12334 int saved_signaling_nans = flag_signaling_nans;\
12335 int saved_trapping_math = flag_trapping_math;\
12336 int saved_rounding_math = flag_rounding_math;\
12337 int saved_trapv = flag_trapv;\
12338 int saved_folding_initializer = folding_initializer;\
12339 flag_signaling_nans = 0;\
12340 flag_trapping_math = 0;\
12341 flag_rounding_math = 0;\
12342 flag_trapv = 0;\
12343 folding_initializer = 1;
12345 #define END_FOLD_INIT \
12346 flag_signaling_nans = saved_signaling_nans;\
12347 flag_trapping_math = saved_trapping_math;\
12348 flag_rounding_math = saved_rounding_math;\
12349 flag_trapv = saved_trapv;\
12350 folding_initializer = saved_folding_initializer;
12352 tree
12353 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12354 tree type, tree op)
12356 tree result;
12357 START_FOLD_INIT;
12359 result = fold_build1_loc (loc, code, type, op);
12361 END_FOLD_INIT;
12362 return result;
12365 tree
12366 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12367 tree type, tree op0, tree op1)
12369 tree result;
12370 START_FOLD_INIT;
12372 result = fold_build2_loc (loc, code, type, op0, op1);
12374 END_FOLD_INIT;
12375 return result;
12378 tree
12379 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12380 int nargs, tree *argarray)
12382 tree result;
12383 START_FOLD_INIT;
12385 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12387 END_FOLD_INIT;
12388 return result;
12391 #undef START_FOLD_INIT
12392 #undef END_FOLD_INIT
12394 /* Determine if first argument is a multiple of second argument. Return 0 if
12395 it is not, or we cannot easily determined it to be.
12397 An example of the sort of thing we care about (at this point; this routine
12398 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12399 fold cases do now) is discovering that
12401 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12403 is a multiple of
12405 SAVE_EXPR (J * 8)
12407 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12409 This code also handles discovering that
12411 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12413 is a multiple of 8 so we don't have to worry about dealing with a
12414 possible remainder.
12416 Note that we *look* inside a SAVE_EXPR only to determine how it was
12417 calculated; it is not safe for fold to do much of anything else with the
12418 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12419 at run time. For example, the latter example above *cannot* be implemented
12420 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12421 evaluation time of the original SAVE_EXPR is not necessarily the same at
12422 the time the new expression is evaluated. The only optimization of this
12423 sort that would be valid is changing
12425 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12427 divided by 8 to
12429 SAVE_EXPR (I) * SAVE_EXPR (J)
12431 (where the same SAVE_EXPR (J) is used in the original and the
12432 transformed version). */
12435 multiple_of_p (tree type, const_tree top, const_tree bottom)
12437 gimple *stmt;
12438 tree t1, op1, op2;
12440 if (operand_equal_p (top, bottom, 0))
12441 return 1;
12443 if (TREE_CODE (type) != INTEGER_TYPE)
12444 return 0;
12446 switch (TREE_CODE (top))
12448 case BIT_AND_EXPR:
12449 /* Bitwise and provides a power of two multiple. If the mask is
12450 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12451 if (!integer_pow2p (bottom))
12452 return 0;
12453 /* FALLTHRU */
12455 case MULT_EXPR:
12456 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12457 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12459 case MINUS_EXPR:
12460 /* It is impossible to prove if op0 - op1 is multiple of bottom
12461 precisely, so be conservative here checking if both op0 and op1
12462 are multiple of bottom. Note we check the second operand first
12463 since it's usually simpler. */
12464 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12465 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12467 case PLUS_EXPR:
12468 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12469 as op0 - 3 if the expression has unsigned type. For example,
12470 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12471 op1 = TREE_OPERAND (top, 1);
12472 if (TYPE_UNSIGNED (type)
12473 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12474 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12475 return (multiple_of_p (type, op1, bottom)
12476 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12478 case LSHIFT_EXPR:
12479 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12481 op1 = TREE_OPERAND (top, 1);
12482 /* const_binop may not detect overflow correctly,
12483 so check for it explicitly here. */
12484 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12485 && 0 != (t1 = fold_convert (type,
12486 const_binop (LSHIFT_EXPR,
12487 size_one_node,
12488 op1)))
12489 && !TREE_OVERFLOW (t1))
12490 return multiple_of_p (type, t1, bottom);
12492 return 0;
12494 case NOP_EXPR:
12495 /* Can't handle conversions from non-integral or wider integral type. */
12496 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12497 || (TYPE_PRECISION (type)
12498 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12499 return 0;
12501 /* fall through */
12503 case SAVE_EXPR:
12504 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12506 case COND_EXPR:
12507 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12508 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12510 case INTEGER_CST:
12511 if (TREE_CODE (bottom) != INTEGER_CST
12512 || integer_zerop (bottom)
12513 || (TYPE_UNSIGNED (type)
12514 && (tree_int_cst_sgn (top) < 0
12515 || tree_int_cst_sgn (bottom) < 0)))
12516 return 0;
12517 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12518 SIGNED);
12520 case SSA_NAME:
12521 if (TREE_CODE (bottom) == INTEGER_CST
12522 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12523 && gimple_code (stmt) == GIMPLE_ASSIGN)
12525 enum tree_code code = gimple_assign_rhs_code (stmt);
12527 /* Check for special cases to see if top is defined as multiple
12528 of bottom:
12530 top = (X & ~(bottom - 1) ; bottom is power of 2
12534 Y = X % bottom
12535 top = X - Y. */
12536 if (code == BIT_AND_EXPR
12537 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12538 && TREE_CODE (op2) == INTEGER_CST
12539 && integer_pow2p (bottom)
12540 && wi::multiple_of_p (wi::to_widest (op2),
12541 wi::to_widest (bottom), UNSIGNED))
12542 return 1;
12544 op1 = gimple_assign_rhs1 (stmt);
12545 if (code == MINUS_EXPR
12546 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12547 && TREE_CODE (op2) == SSA_NAME
12548 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12549 && gimple_code (stmt) == GIMPLE_ASSIGN
12550 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12551 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12552 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12553 return 1;
12556 /* fall through */
12558 default:
12559 return 0;
12563 #define tree_expr_nonnegative_warnv_p(X, Y) \
12564 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12566 #define RECURSE(X) \
12567 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12569 /* Return true if CODE or TYPE is known to be non-negative. */
12571 static bool
12572 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12574 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12575 && truth_value_p (code))
12576 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12577 have a signed:1 type (where the value is -1 and 0). */
12578 return true;
12579 return false;
12582 /* Return true if (CODE OP0) is known to be non-negative. If the return
12583 value is based on the assumption that signed overflow is undefined,
12584 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12585 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12587 bool
12588 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12589 bool *strict_overflow_p, int depth)
12591 if (TYPE_UNSIGNED (type))
12592 return true;
12594 switch (code)
12596 case ABS_EXPR:
12597 /* We can't return 1 if flag_wrapv is set because
12598 ABS_EXPR<INT_MIN> = INT_MIN. */
12599 if (!ANY_INTEGRAL_TYPE_P (type))
12600 return true;
12601 if (TYPE_OVERFLOW_UNDEFINED (type))
12603 *strict_overflow_p = true;
12604 return true;
12606 break;
12608 case NON_LVALUE_EXPR:
12609 case FLOAT_EXPR:
12610 case FIX_TRUNC_EXPR:
12611 return RECURSE (op0);
12613 CASE_CONVERT:
12615 tree inner_type = TREE_TYPE (op0);
12616 tree outer_type = type;
12618 if (TREE_CODE (outer_type) == REAL_TYPE)
12620 if (TREE_CODE (inner_type) == REAL_TYPE)
12621 return RECURSE (op0);
12622 if (INTEGRAL_TYPE_P (inner_type))
12624 if (TYPE_UNSIGNED (inner_type))
12625 return true;
12626 return RECURSE (op0);
12629 else if (INTEGRAL_TYPE_P (outer_type))
12631 if (TREE_CODE (inner_type) == REAL_TYPE)
12632 return RECURSE (op0);
12633 if (INTEGRAL_TYPE_P (inner_type))
12634 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12635 && TYPE_UNSIGNED (inner_type);
12638 break;
12640 default:
12641 return tree_simple_nonnegative_warnv_p (code, type);
12644 /* We don't know sign of `t', so be conservative and return false. */
12645 return false;
12648 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12649 value is based on the assumption that signed overflow is undefined,
12650 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12651 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12653 bool
12654 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12655 tree op1, bool *strict_overflow_p,
12656 int depth)
12658 if (TYPE_UNSIGNED (type))
12659 return true;
12661 switch (code)
12663 case POINTER_PLUS_EXPR:
12664 case PLUS_EXPR:
12665 if (FLOAT_TYPE_P (type))
12666 return RECURSE (op0) && RECURSE (op1);
12668 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12669 both unsigned and at least 2 bits shorter than the result. */
12670 if (TREE_CODE (type) == INTEGER_TYPE
12671 && TREE_CODE (op0) == NOP_EXPR
12672 && TREE_CODE (op1) == NOP_EXPR)
12674 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12675 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12676 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12677 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12679 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12680 TYPE_PRECISION (inner2)) + 1;
12681 return prec < TYPE_PRECISION (type);
12684 break;
12686 case MULT_EXPR:
12687 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12689 /* x * x is always non-negative for floating point x
12690 or without overflow. */
12691 if (operand_equal_p (op0, op1, 0)
12692 || (RECURSE (op0) && RECURSE (op1)))
12694 if (ANY_INTEGRAL_TYPE_P (type)
12695 && TYPE_OVERFLOW_UNDEFINED (type))
12696 *strict_overflow_p = true;
12697 return true;
12701 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12702 both unsigned and their total bits is shorter than the result. */
12703 if (TREE_CODE (type) == INTEGER_TYPE
12704 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12705 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12707 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12708 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12709 : TREE_TYPE (op0);
12710 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12711 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12712 : TREE_TYPE (op1);
12714 bool unsigned0 = TYPE_UNSIGNED (inner0);
12715 bool unsigned1 = TYPE_UNSIGNED (inner1);
12717 if (TREE_CODE (op0) == INTEGER_CST)
12718 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12720 if (TREE_CODE (op1) == INTEGER_CST)
12721 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12723 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12724 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12726 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12727 ? tree_int_cst_min_precision (op0, UNSIGNED)
12728 : TYPE_PRECISION (inner0);
12730 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12731 ? tree_int_cst_min_precision (op1, UNSIGNED)
12732 : TYPE_PRECISION (inner1);
12734 return precision0 + precision1 < TYPE_PRECISION (type);
12737 return false;
12739 case BIT_AND_EXPR:
12740 case MAX_EXPR:
12741 return RECURSE (op0) || RECURSE (op1);
12743 case BIT_IOR_EXPR:
12744 case BIT_XOR_EXPR:
12745 case MIN_EXPR:
12746 case RDIV_EXPR:
12747 case TRUNC_DIV_EXPR:
12748 case CEIL_DIV_EXPR:
12749 case FLOOR_DIV_EXPR:
12750 case ROUND_DIV_EXPR:
12751 return RECURSE (op0) && RECURSE (op1);
12753 case TRUNC_MOD_EXPR:
12754 return RECURSE (op0);
12756 case FLOOR_MOD_EXPR:
12757 return RECURSE (op1);
12759 case CEIL_MOD_EXPR:
12760 case ROUND_MOD_EXPR:
12761 default:
12762 return tree_simple_nonnegative_warnv_p (code, type);
12765 /* We don't know sign of `t', so be conservative and return false. */
12766 return false;
12769 /* Return true if T is known to be non-negative. If the return
12770 value is based on the assumption that signed overflow is undefined,
12771 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12772 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12774 bool
12775 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12777 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12778 return true;
12780 switch (TREE_CODE (t))
12782 case INTEGER_CST:
12783 return tree_int_cst_sgn (t) >= 0;
12785 case REAL_CST:
12786 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12788 case FIXED_CST:
12789 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12791 case COND_EXPR:
12792 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12794 case SSA_NAME:
12795 /* Limit the depth of recursion to avoid quadratic behavior.
12796 This is expected to catch almost all occurrences in practice.
12797 If this code misses important cases that unbounded recursion
12798 would not, passes that need this information could be revised
12799 to provide it through dataflow propagation. */
12800 return (!name_registered_for_update_p (t)
12801 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12802 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12803 strict_overflow_p, depth));
12805 default:
12806 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12810 /* Return true if T is known to be non-negative. If the return
12811 value is based on the assumption that signed overflow is undefined,
12812 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12813 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12815 bool
12816 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12817 bool *strict_overflow_p, int depth)
12819 switch (fn)
12821 CASE_CFN_ACOS:
12822 CASE_CFN_ACOSH:
12823 CASE_CFN_CABS:
12824 CASE_CFN_COSH:
12825 CASE_CFN_ERFC:
12826 CASE_CFN_EXP:
12827 CASE_CFN_EXP10:
12828 CASE_CFN_EXP2:
12829 CASE_CFN_FABS:
12830 CASE_CFN_FDIM:
12831 CASE_CFN_HYPOT:
12832 CASE_CFN_POW10:
12833 CASE_CFN_FFS:
12834 CASE_CFN_PARITY:
12835 CASE_CFN_POPCOUNT:
12836 CASE_CFN_CLZ:
12837 CASE_CFN_CLRSB:
12838 case CFN_BUILT_IN_BSWAP32:
12839 case CFN_BUILT_IN_BSWAP64:
12840 /* Always true. */
12841 return true;
12843 CASE_CFN_SQRT:
12844 /* sqrt(-0.0) is -0.0. */
12845 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12846 return true;
12847 return RECURSE (arg0);
12849 CASE_CFN_ASINH:
12850 CASE_CFN_ATAN:
12851 CASE_CFN_ATANH:
12852 CASE_CFN_CBRT:
12853 CASE_CFN_CEIL:
12854 CASE_CFN_ERF:
12855 CASE_CFN_EXPM1:
12856 CASE_CFN_FLOOR:
12857 CASE_CFN_FMOD:
12858 CASE_CFN_FREXP:
12859 CASE_CFN_ICEIL:
12860 CASE_CFN_IFLOOR:
12861 CASE_CFN_IRINT:
12862 CASE_CFN_IROUND:
12863 CASE_CFN_LCEIL:
12864 CASE_CFN_LDEXP:
12865 CASE_CFN_LFLOOR:
12866 CASE_CFN_LLCEIL:
12867 CASE_CFN_LLFLOOR:
12868 CASE_CFN_LLRINT:
12869 CASE_CFN_LLROUND:
12870 CASE_CFN_LRINT:
12871 CASE_CFN_LROUND:
12872 CASE_CFN_MODF:
12873 CASE_CFN_NEARBYINT:
12874 CASE_CFN_RINT:
12875 CASE_CFN_ROUND:
12876 CASE_CFN_SCALB:
12877 CASE_CFN_SCALBLN:
12878 CASE_CFN_SCALBN:
12879 CASE_CFN_SIGNBIT:
12880 CASE_CFN_SIGNIFICAND:
12881 CASE_CFN_SINH:
12882 CASE_CFN_TANH:
12883 CASE_CFN_TRUNC:
12884 /* True if the 1st argument is nonnegative. */
12885 return RECURSE (arg0);
12887 CASE_CFN_FMAX:
12888 /* True if the 1st OR 2nd arguments are nonnegative. */
12889 return RECURSE (arg0) || RECURSE (arg1);
12891 CASE_CFN_FMIN:
12892 /* True if the 1st AND 2nd arguments are nonnegative. */
12893 return RECURSE (arg0) && RECURSE (arg1);
12895 CASE_CFN_COPYSIGN:
12896 /* True if the 2nd argument is nonnegative. */
12897 return RECURSE (arg1);
12899 CASE_CFN_POWI:
12900 /* True if the 1st argument is nonnegative or the second
12901 argument is an even integer. */
12902 if (TREE_CODE (arg1) == INTEGER_CST
12903 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
12904 return true;
12905 return RECURSE (arg0);
12907 CASE_CFN_POW:
12908 /* True if the 1st argument is nonnegative or the second
12909 argument is an even integer valued real. */
12910 if (TREE_CODE (arg1) == REAL_CST)
12912 REAL_VALUE_TYPE c;
12913 HOST_WIDE_INT n;
12915 c = TREE_REAL_CST (arg1);
12916 n = real_to_integer (&c);
12917 if ((n & 1) == 0)
12919 REAL_VALUE_TYPE cint;
12920 real_from_integer (&cint, VOIDmode, n, SIGNED);
12921 if (real_identical (&c, &cint))
12922 return true;
12925 return RECURSE (arg0);
12927 default:
12928 break;
12930 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
12933 /* Return true if T is known to be non-negative. If the return
12934 value is based on the assumption that signed overflow is undefined,
12935 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12936 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12938 static bool
12939 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12941 enum tree_code code = TREE_CODE (t);
12942 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12943 return true;
12945 switch (code)
12947 case TARGET_EXPR:
12949 tree temp = TARGET_EXPR_SLOT (t);
12950 t = TARGET_EXPR_INITIAL (t);
12952 /* If the initializer is non-void, then it's a normal expression
12953 that will be assigned to the slot. */
12954 if (!VOID_TYPE_P (t))
12955 return RECURSE (t);
12957 /* Otherwise, the initializer sets the slot in some way. One common
12958 way is an assignment statement at the end of the initializer. */
12959 while (1)
12961 if (TREE_CODE (t) == BIND_EXPR)
12962 t = expr_last (BIND_EXPR_BODY (t));
12963 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
12964 || TREE_CODE (t) == TRY_CATCH_EXPR)
12965 t = expr_last (TREE_OPERAND (t, 0));
12966 else if (TREE_CODE (t) == STATEMENT_LIST)
12967 t = expr_last (t);
12968 else
12969 break;
12971 if (TREE_CODE (t) == MODIFY_EXPR
12972 && TREE_OPERAND (t, 0) == temp)
12973 return RECURSE (TREE_OPERAND (t, 1));
12975 return false;
12978 case CALL_EXPR:
12980 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
12981 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
12983 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
12984 get_call_combined_fn (t),
12985 arg0,
12986 arg1,
12987 strict_overflow_p, depth);
12989 case COMPOUND_EXPR:
12990 case MODIFY_EXPR:
12991 return RECURSE (TREE_OPERAND (t, 1));
12993 case BIND_EXPR:
12994 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
12996 case SAVE_EXPR:
12997 return RECURSE (TREE_OPERAND (t, 0));
12999 default:
13000 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13004 #undef RECURSE
13005 #undef tree_expr_nonnegative_warnv_p
13007 /* Return true if T is known to be non-negative. If the return
13008 value is based on the assumption that signed overflow is undefined,
13009 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13010 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13012 bool
13013 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13015 enum tree_code code;
13016 if (t == error_mark_node)
13017 return false;
13019 code = TREE_CODE (t);
13020 switch (TREE_CODE_CLASS (code))
13022 case tcc_binary:
13023 case tcc_comparison:
13024 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13025 TREE_TYPE (t),
13026 TREE_OPERAND (t, 0),
13027 TREE_OPERAND (t, 1),
13028 strict_overflow_p, depth);
13030 case tcc_unary:
13031 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13032 TREE_TYPE (t),
13033 TREE_OPERAND (t, 0),
13034 strict_overflow_p, depth);
13036 case tcc_constant:
13037 case tcc_declaration:
13038 case tcc_reference:
13039 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13041 default:
13042 break;
13045 switch (code)
13047 case TRUTH_AND_EXPR:
13048 case TRUTH_OR_EXPR:
13049 case TRUTH_XOR_EXPR:
13050 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13051 TREE_TYPE (t),
13052 TREE_OPERAND (t, 0),
13053 TREE_OPERAND (t, 1),
13054 strict_overflow_p, depth);
13055 case TRUTH_NOT_EXPR:
13056 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13057 TREE_TYPE (t),
13058 TREE_OPERAND (t, 0),
13059 strict_overflow_p, depth);
13061 case COND_EXPR:
13062 case CONSTRUCTOR:
13063 case OBJ_TYPE_REF:
13064 case ASSERT_EXPR:
13065 case ADDR_EXPR:
13066 case WITH_SIZE_EXPR:
13067 case SSA_NAME:
13068 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13070 default:
13071 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13075 /* Return true if `t' is known to be non-negative. Handle warnings
13076 about undefined signed overflow. */
13078 bool
13079 tree_expr_nonnegative_p (tree t)
13081 bool ret, strict_overflow_p;
13083 strict_overflow_p = false;
13084 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13085 if (strict_overflow_p)
13086 fold_overflow_warning (("assuming signed overflow does not occur when "
13087 "determining that expression is always "
13088 "non-negative"),
13089 WARN_STRICT_OVERFLOW_MISC);
13090 return ret;
13094 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13095 For floating point we further ensure that T is not denormal.
13096 Similar logic is present in nonzero_address in rtlanal.h.
13098 If the return value is based on the assumption that signed overflow
13099 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13100 change *STRICT_OVERFLOW_P. */
13102 bool
13103 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13104 bool *strict_overflow_p)
13106 switch (code)
13108 case ABS_EXPR:
13109 return tree_expr_nonzero_warnv_p (op0,
13110 strict_overflow_p);
13112 case NOP_EXPR:
13114 tree inner_type = TREE_TYPE (op0);
13115 tree outer_type = type;
13117 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13118 && tree_expr_nonzero_warnv_p (op0,
13119 strict_overflow_p));
13121 break;
13123 case NON_LVALUE_EXPR:
13124 return tree_expr_nonzero_warnv_p (op0,
13125 strict_overflow_p);
13127 default:
13128 break;
13131 return false;
13134 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13135 For floating point we further ensure that T is not denormal.
13136 Similar logic is present in nonzero_address in rtlanal.h.
13138 If the return value is based on the assumption that signed overflow
13139 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13140 change *STRICT_OVERFLOW_P. */
13142 bool
13143 tree_binary_nonzero_warnv_p (enum tree_code code,
13144 tree type,
13145 tree op0,
13146 tree op1, bool *strict_overflow_p)
13148 bool sub_strict_overflow_p;
13149 switch (code)
13151 case POINTER_PLUS_EXPR:
13152 case PLUS_EXPR:
13153 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13155 /* With the presence of negative values it is hard
13156 to say something. */
13157 sub_strict_overflow_p = false;
13158 if (!tree_expr_nonnegative_warnv_p (op0,
13159 &sub_strict_overflow_p)
13160 || !tree_expr_nonnegative_warnv_p (op1,
13161 &sub_strict_overflow_p))
13162 return false;
13163 /* One of operands must be positive and the other non-negative. */
13164 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13165 overflows, on a twos-complement machine the sum of two
13166 nonnegative numbers can never be zero. */
13167 return (tree_expr_nonzero_warnv_p (op0,
13168 strict_overflow_p)
13169 || tree_expr_nonzero_warnv_p (op1,
13170 strict_overflow_p));
13172 break;
13174 case MULT_EXPR:
13175 if (TYPE_OVERFLOW_UNDEFINED (type))
13177 if (tree_expr_nonzero_warnv_p (op0,
13178 strict_overflow_p)
13179 && tree_expr_nonzero_warnv_p (op1,
13180 strict_overflow_p))
13182 *strict_overflow_p = true;
13183 return true;
13186 break;
13188 case MIN_EXPR:
13189 sub_strict_overflow_p = false;
13190 if (tree_expr_nonzero_warnv_p (op0,
13191 &sub_strict_overflow_p)
13192 && tree_expr_nonzero_warnv_p (op1,
13193 &sub_strict_overflow_p))
13195 if (sub_strict_overflow_p)
13196 *strict_overflow_p = true;
13198 break;
13200 case MAX_EXPR:
13201 sub_strict_overflow_p = false;
13202 if (tree_expr_nonzero_warnv_p (op0,
13203 &sub_strict_overflow_p))
13205 if (sub_strict_overflow_p)
13206 *strict_overflow_p = true;
13208 /* When both operands are nonzero, then MAX must be too. */
13209 if (tree_expr_nonzero_warnv_p (op1,
13210 strict_overflow_p))
13211 return true;
13213 /* MAX where operand 0 is positive is positive. */
13214 return tree_expr_nonnegative_warnv_p (op0,
13215 strict_overflow_p);
13217 /* MAX where operand 1 is positive is positive. */
13218 else if (tree_expr_nonzero_warnv_p (op1,
13219 &sub_strict_overflow_p)
13220 && tree_expr_nonnegative_warnv_p (op1,
13221 &sub_strict_overflow_p))
13223 if (sub_strict_overflow_p)
13224 *strict_overflow_p = true;
13225 return true;
13227 break;
13229 case BIT_IOR_EXPR:
13230 return (tree_expr_nonzero_warnv_p (op1,
13231 strict_overflow_p)
13232 || tree_expr_nonzero_warnv_p (op0,
13233 strict_overflow_p));
13235 default:
13236 break;
13239 return false;
13242 /* Return true when T is an address and is known to be nonzero.
13243 For floating point we further ensure that T is not denormal.
13244 Similar logic is present in nonzero_address in rtlanal.h.
13246 If the return value is based on the assumption that signed overflow
13247 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13248 change *STRICT_OVERFLOW_P. */
13250 bool
13251 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13253 bool sub_strict_overflow_p;
13254 switch (TREE_CODE (t))
13256 case INTEGER_CST:
13257 return !integer_zerop (t);
13259 case ADDR_EXPR:
13261 tree base = TREE_OPERAND (t, 0);
13263 if (!DECL_P (base))
13264 base = get_base_address (base);
13266 if (base && TREE_CODE (base) == TARGET_EXPR)
13267 base = TARGET_EXPR_SLOT (base);
13269 if (!base)
13270 return false;
13272 /* For objects in symbol table check if we know they are non-zero.
13273 Don't do anything for variables and functions before symtab is built;
13274 it is quite possible that they will be declared weak later. */
13275 int nonzero_addr = maybe_nonzero_address (base);
13276 if (nonzero_addr >= 0)
13277 return nonzero_addr;
13279 /* Function local objects are never NULL. */
13280 if (DECL_P (base)
13281 && (DECL_CONTEXT (base)
13282 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
13283 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
13284 return true;
13286 /* Constants are never weak. */
13287 if (CONSTANT_CLASS_P (base))
13288 return true;
13290 return false;
13293 case COND_EXPR:
13294 sub_strict_overflow_p = false;
13295 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13296 &sub_strict_overflow_p)
13297 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13298 &sub_strict_overflow_p))
13300 if (sub_strict_overflow_p)
13301 *strict_overflow_p = true;
13302 return true;
13304 break;
13306 default:
13307 break;
13309 return false;
13312 #define integer_valued_real_p(X) \
13313 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13315 #define RECURSE(X) \
13316 ((integer_valued_real_p) (X, depth + 1))
13318 /* Return true if the floating point result of (CODE OP0) has an
13319 integer value. We also allow +Inf, -Inf and NaN to be considered
13320 integer values. Return false for signaling NaN.
13322 DEPTH is the current nesting depth of the query. */
13324 bool
13325 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13327 switch (code)
13329 case FLOAT_EXPR:
13330 return true;
13332 case ABS_EXPR:
13333 return RECURSE (op0);
13335 CASE_CONVERT:
13337 tree type = TREE_TYPE (op0);
13338 if (TREE_CODE (type) == INTEGER_TYPE)
13339 return true;
13340 if (TREE_CODE (type) == REAL_TYPE)
13341 return RECURSE (op0);
13342 break;
13345 default:
13346 break;
13348 return false;
13351 /* Return true if the floating point result of (CODE OP0 OP1) has an
13352 integer value. We also allow +Inf, -Inf and NaN to be considered
13353 integer values. Return false for signaling NaN.
13355 DEPTH is the current nesting depth of the query. */
13357 bool
13358 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13360 switch (code)
13362 case PLUS_EXPR:
13363 case MINUS_EXPR:
13364 case MULT_EXPR:
13365 case MIN_EXPR:
13366 case MAX_EXPR:
13367 return RECURSE (op0) && RECURSE (op1);
13369 default:
13370 break;
13372 return false;
13375 /* Return true if the floating point result of calling FNDECL with arguments
13376 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13377 considered integer values. Return false for signaling NaN. If FNDECL
13378 takes fewer than 2 arguments, the remaining ARGn are null.
13380 DEPTH is the current nesting depth of the query. */
13382 bool
13383 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13385 switch (fn)
13387 CASE_CFN_CEIL:
13388 CASE_CFN_FLOOR:
13389 CASE_CFN_NEARBYINT:
13390 CASE_CFN_RINT:
13391 CASE_CFN_ROUND:
13392 CASE_CFN_TRUNC:
13393 return true;
13395 CASE_CFN_FMIN:
13396 CASE_CFN_FMAX:
13397 return RECURSE (arg0) && RECURSE (arg1);
13399 default:
13400 break;
13402 return false;
13405 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13406 has an integer value. We also allow +Inf, -Inf and NaN to be
13407 considered integer values. Return false for signaling NaN.
13409 DEPTH is the current nesting depth of the query. */
13411 bool
13412 integer_valued_real_single_p (tree t, int depth)
13414 switch (TREE_CODE (t))
13416 case REAL_CST:
13417 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13419 case COND_EXPR:
13420 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13422 case SSA_NAME:
13423 /* Limit the depth of recursion to avoid quadratic behavior.
13424 This is expected to catch almost all occurrences in practice.
13425 If this code misses important cases that unbounded recursion
13426 would not, passes that need this information could be revised
13427 to provide it through dataflow propagation. */
13428 return (!name_registered_for_update_p (t)
13429 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13430 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13431 depth));
13433 default:
13434 break;
13436 return false;
13439 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13440 has an integer value. We also allow +Inf, -Inf and NaN to be
13441 considered integer values. Return false for signaling NaN.
13443 DEPTH is the current nesting depth of the query. */
13445 static bool
13446 integer_valued_real_invalid_p (tree t, int depth)
13448 switch (TREE_CODE (t))
13450 case COMPOUND_EXPR:
13451 case MODIFY_EXPR:
13452 case BIND_EXPR:
13453 return RECURSE (TREE_OPERAND (t, 1));
13455 case SAVE_EXPR:
13456 return RECURSE (TREE_OPERAND (t, 0));
13458 default:
13459 break;
13461 return false;
13464 #undef RECURSE
13465 #undef integer_valued_real_p
13467 /* Return true if the floating point expression T has an integer value.
13468 We also allow +Inf, -Inf and NaN to be considered integer values.
13469 Return false for signaling NaN.
13471 DEPTH is the current nesting depth of the query. */
13473 bool
13474 integer_valued_real_p (tree t, int depth)
13476 if (t == error_mark_node)
13477 return false;
13479 tree_code code = TREE_CODE (t);
13480 switch (TREE_CODE_CLASS (code))
13482 case tcc_binary:
13483 case tcc_comparison:
13484 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13485 TREE_OPERAND (t, 1), depth);
13487 case tcc_unary:
13488 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13490 case tcc_constant:
13491 case tcc_declaration:
13492 case tcc_reference:
13493 return integer_valued_real_single_p (t, depth);
13495 default:
13496 break;
13499 switch (code)
13501 case COND_EXPR:
13502 case SSA_NAME:
13503 return integer_valued_real_single_p (t, depth);
13505 case CALL_EXPR:
13507 tree arg0 = (call_expr_nargs (t) > 0
13508 ? CALL_EXPR_ARG (t, 0)
13509 : NULL_TREE);
13510 tree arg1 = (call_expr_nargs (t) > 1
13511 ? CALL_EXPR_ARG (t, 1)
13512 : NULL_TREE);
13513 return integer_valued_real_call_p (get_call_combined_fn (t),
13514 arg0, arg1, depth);
13517 default:
13518 return integer_valued_real_invalid_p (t, depth);
13522 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13523 attempt to fold the expression to a constant without modifying TYPE,
13524 OP0 or OP1.
13526 If the expression could be simplified to a constant, then return
13527 the constant. If the expression would not be simplified to a
13528 constant, then return NULL_TREE. */
13530 tree
13531 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13533 tree tem = fold_binary (code, type, op0, op1);
13534 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13537 /* Given the components of a unary expression CODE, TYPE and OP0,
13538 attempt to fold the expression to a constant without modifying
13539 TYPE or OP0.
13541 If the expression could be simplified to a constant, then return
13542 the constant. If the expression would not be simplified to a
13543 constant, then return NULL_TREE. */
13545 tree
13546 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13548 tree tem = fold_unary (code, type, op0);
13549 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13552 /* If EXP represents referencing an element in a constant string
13553 (either via pointer arithmetic or array indexing), return the
13554 tree representing the value accessed, otherwise return NULL. */
13556 tree
13557 fold_read_from_constant_string (tree exp)
13559 if ((TREE_CODE (exp) == INDIRECT_REF
13560 || TREE_CODE (exp) == ARRAY_REF)
13561 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13563 tree exp1 = TREE_OPERAND (exp, 0);
13564 tree index;
13565 tree string;
13566 location_t loc = EXPR_LOCATION (exp);
13568 if (TREE_CODE (exp) == INDIRECT_REF)
13569 string = string_constant (exp1, &index);
13570 else
13572 tree low_bound = array_ref_low_bound (exp);
13573 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13575 /* Optimize the special-case of a zero lower bound.
13577 We convert the low_bound to sizetype to avoid some problems
13578 with constant folding. (E.g. suppose the lower bound is 1,
13579 and its mode is QI. Without the conversion,l (ARRAY
13580 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13581 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13582 if (! integer_zerop (low_bound))
13583 index = size_diffop_loc (loc, index,
13584 fold_convert_loc (loc, sizetype, low_bound));
13586 string = exp1;
13589 if (string
13590 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13591 && TREE_CODE (string) == STRING_CST
13592 && TREE_CODE (index) == INTEGER_CST
13593 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13594 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13595 == MODE_INT)
13596 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13597 return build_int_cst_type (TREE_TYPE (exp),
13598 (TREE_STRING_POINTER (string)
13599 [TREE_INT_CST_LOW (index)]));
13601 return NULL;
13604 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13605 an integer constant, real, or fixed-point constant.
13607 TYPE is the type of the result. */
13609 static tree
13610 fold_negate_const (tree arg0, tree type)
13612 tree t = NULL_TREE;
13614 switch (TREE_CODE (arg0))
13616 case INTEGER_CST:
13618 bool overflow;
13619 wide_int val = wi::neg (arg0, &overflow);
13620 t = force_fit_type (type, val, 1,
13621 (overflow | TREE_OVERFLOW (arg0))
13622 && !TYPE_UNSIGNED (type));
13623 break;
13626 case REAL_CST:
13627 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13628 break;
13630 case FIXED_CST:
13632 FIXED_VALUE_TYPE f;
13633 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13634 &(TREE_FIXED_CST (arg0)), NULL,
13635 TYPE_SATURATING (type));
13636 t = build_fixed (type, f);
13637 /* Propagate overflow flags. */
13638 if (overflow_p | TREE_OVERFLOW (arg0))
13639 TREE_OVERFLOW (t) = 1;
13640 break;
13643 default:
13644 gcc_unreachable ();
13647 return t;
13650 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13651 an integer constant or real constant.
13653 TYPE is the type of the result. */
13655 tree
13656 fold_abs_const (tree arg0, tree type)
13658 tree t = NULL_TREE;
13660 switch (TREE_CODE (arg0))
13662 case INTEGER_CST:
13664 /* If the value is unsigned or non-negative, then the absolute value
13665 is the same as the ordinary value. */
13666 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13667 t = arg0;
13669 /* If the value is negative, then the absolute value is
13670 its negation. */
13671 else
13673 bool overflow;
13674 wide_int val = wi::neg (arg0, &overflow);
13675 t = force_fit_type (type, val, -1,
13676 overflow | TREE_OVERFLOW (arg0));
13679 break;
13681 case REAL_CST:
13682 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13683 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13684 else
13685 t = arg0;
13686 break;
13688 default:
13689 gcc_unreachable ();
13692 return t;
13695 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13696 constant. TYPE is the type of the result. */
13698 static tree
13699 fold_not_const (const_tree arg0, tree type)
13701 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13703 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13706 /* Given CODE, a relational operator, the target type, TYPE and two
13707 constant operands OP0 and OP1, return the result of the
13708 relational operation. If the result is not a compile time
13709 constant, then return NULL_TREE. */
13711 static tree
13712 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13714 int result, invert;
13716 /* From here on, the only cases we handle are when the result is
13717 known to be a constant. */
13719 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13721 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13722 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13724 /* Handle the cases where either operand is a NaN. */
13725 if (real_isnan (c0) || real_isnan (c1))
13727 switch (code)
13729 case EQ_EXPR:
13730 case ORDERED_EXPR:
13731 result = 0;
13732 break;
13734 case NE_EXPR:
13735 case UNORDERED_EXPR:
13736 case UNLT_EXPR:
13737 case UNLE_EXPR:
13738 case UNGT_EXPR:
13739 case UNGE_EXPR:
13740 case UNEQ_EXPR:
13741 result = 1;
13742 break;
13744 case LT_EXPR:
13745 case LE_EXPR:
13746 case GT_EXPR:
13747 case GE_EXPR:
13748 case LTGT_EXPR:
13749 if (flag_trapping_math)
13750 return NULL_TREE;
13751 result = 0;
13752 break;
13754 default:
13755 gcc_unreachable ();
13758 return constant_boolean_node (result, type);
13761 return constant_boolean_node (real_compare (code, c0, c1), type);
13764 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13766 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13767 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13768 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13771 /* Handle equality/inequality of complex constants. */
13772 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13774 tree rcond = fold_relational_const (code, type,
13775 TREE_REALPART (op0),
13776 TREE_REALPART (op1));
13777 tree icond = fold_relational_const (code, type,
13778 TREE_IMAGPART (op0),
13779 TREE_IMAGPART (op1));
13780 if (code == EQ_EXPR)
13781 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13782 else if (code == NE_EXPR)
13783 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13784 else
13785 return NULL_TREE;
13788 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13790 if (!VECTOR_TYPE_P (type))
13792 /* Have vector comparison with scalar boolean result. */
13793 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13794 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13795 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13797 tree elem0 = VECTOR_CST_ELT (op0, i);
13798 tree elem1 = VECTOR_CST_ELT (op1, i);
13799 tree tmp = fold_relational_const (code, type, elem0, elem1);
13800 if (tmp == NULL_TREE)
13801 return NULL_TREE;
13802 if (integer_zerop (tmp))
13803 return constant_boolean_node (false, type);
13805 return constant_boolean_node (true, type);
13807 unsigned count = VECTOR_CST_NELTS (op0);
13808 tree *elts = XALLOCAVEC (tree, count);
13809 gcc_assert (VECTOR_CST_NELTS (op1) == count
13810 && TYPE_VECTOR_SUBPARTS (type) == count);
13812 for (unsigned i = 0; i < count; i++)
13814 tree elem_type = TREE_TYPE (type);
13815 tree elem0 = VECTOR_CST_ELT (op0, i);
13816 tree elem1 = VECTOR_CST_ELT (op1, i);
13818 tree tem = fold_relational_const (code, elem_type,
13819 elem0, elem1);
13821 if (tem == NULL_TREE)
13822 return NULL_TREE;
13824 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13827 return build_vector (type, elts);
13830 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13832 To compute GT, swap the arguments and do LT.
13833 To compute GE, do LT and invert the result.
13834 To compute LE, swap the arguments, do LT and invert the result.
13835 To compute NE, do EQ and invert the result.
13837 Therefore, the code below must handle only EQ and LT. */
13839 if (code == LE_EXPR || code == GT_EXPR)
13841 std::swap (op0, op1);
13842 code = swap_tree_comparison (code);
13845 /* Note that it is safe to invert for real values here because we
13846 have already handled the one case that it matters. */
13848 invert = 0;
13849 if (code == NE_EXPR || code == GE_EXPR)
13851 invert = 1;
13852 code = invert_tree_comparison (code, false);
13855 /* Compute a result for LT or EQ if args permit;
13856 Otherwise return T. */
13857 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13859 if (code == EQ_EXPR)
13860 result = tree_int_cst_equal (op0, op1);
13861 else
13862 result = tree_int_cst_lt (op0, op1);
13864 else
13865 return NULL_TREE;
13867 if (invert)
13868 result ^= 1;
13869 return constant_boolean_node (result, type);
13872 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13873 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13874 itself. */
13876 tree
13877 fold_build_cleanup_point_expr (tree type, tree expr)
13879 /* If the expression does not have side effects then we don't have to wrap
13880 it with a cleanup point expression. */
13881 if (!TREE_SIDE_EFFECTS (expr))
13882 return expr;
13884 /* If the expression is a return, check to see if the expression inside the
13885 return has no side effects or the right hand side of the modify expression
13886 inside the return. If either don't have side effects set we don't need to
13887 wrap the expression in a cleanup point expression. Note we don't check the
13888 left hand side of the modify because it should always be a return decl. */
13889 if (TREE_CODE (expr) == RETURN_EXPR)
13891 tree op = TREE_OPERAND (expr, 0);
13892 if (!op || !TREE_SIDE_EFFECTS (op))
13893 return expr;
13894 op = TREE_OPERAND (op, 1);
13895 if (!TREE_SIDE_EFFECTS (op))
13896 return expr;
13899 return build1 (CLEANUP_POINT_EXPR, type, expr);
13902 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13903 of an indirection through OP0, or NULL_TREE if no simplification is
13904 possible. */
13906 tree
13907 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
13909 tree sub = op0;
13910 tree subtype;
13912 STRIP_NOPS (sub);
13913 subtype = TREE_TYPE (sub);
13914 if (!POINTER_TYPE_P (subtype))
13915 return NULL_TREE;
13917 if (TREE_CODE (sub) == ADDR_EXPR)
13919 tree op = TREE_OPERAND (sub, 0);
13920 tree optype = TREE_TYPE (op);
13921 /* *&CONST_DECL -> to the value of the const decl. */
13922 if (TREE_CODE (op) == CONST_DECL)
13923 return DECL_INITIAL (op);
13924 /* *&p => p; make sure to handle *&"str"[cst] here. */
13925 if (type == optype)
13927 tree fop = fold_read_from_constant_string (op);
13928 if (fop)
13929 return fop;
13930 else
13931 return op;
13933 /* *(foo *)&fooarray => fooarray[0] */
13934 else if (TREE_CODE (optype) == ARRAY_TYPE
13935 && type == TREE_TYPE (optype)
13936 && (!in_gimple_form
13937 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
13939 tree type_domain = TYPE_DOMAIN (optype);
13940 tree min_val = size_zero_node;
13941 if (type_domain && TYPE_MIN_VALUE (type_domain))
13942 min_val = TYPE_MIN_VALUE (type_domain);
13943 if (in_gimple_form
13944 && TREE_CODE (min_val) != INTEGER_CST)
13945 return NULL_TREE;
13946 return build4_loc (loc, ARRAY_REF, type, op, min_val,
13947 NULL_TREE, NULL_TREE);
13949 /* *(foo *)&complexfoo => __real__ complexfoo */
13950 else if (TREE_CODE (optype) == COMPLEX_TYPE
13951 && type == TREE_TYPE (optype))
13952 return fold_build1_loc (loc, REALPART_EXPR, type, op);
13953 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
13954 else if (TREE_CODE (optype) == VECTOR_TYPE
13955 && type == TREE_TYPE (optype))
13957 tree part_width = TYPE_SIZE (type);
13958 tree index = bitsize_int (0);
13959 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
13963 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
13964 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
13966 tree op00 = TREE_OPERAND (sub, 0);
13967 tree op01 = TREE_OPERAND (sub, 1);
13969 STRIP_NOPS (op00);
13970 if (TREE_CODE (op00) == ADDR_EXPR)
13972 tree op00type;
13973 op00 = TREE_OPERAND (op00, 0);
13974 op00type = TREE_TYPE (op00);
13976 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
13977 if (TREE_CODE (op00type) == VECTOR_TYPE
13978 && type == TREE_TYPE (op00type))
13980 tree part_width = TYPE_SIZE (type);
13981 unsigned HOST_WIDE_INT max_offset
13982 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
13983 * TYPE_VECTOR_SUBPARTS (op00type));
13984 if (tree_int_cst_sign_bit (op01) == 0
13985 && compare_tree_int (op01, max_offset) == -1)
13987 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
13988 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
13989 tree index = bitsize_int (indexi);
13990 return fold_build3_loc (loc,
13991 BIT_FIELD_REF, type, op00,
13992 part_width, index);
13995 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
13996 else if (TREE_CODE (op00type) == COMPLEX_TYPE
13997 && type == TREE_TYPE (op00type))
13999 tree size = TYPE_SIZE_UNIT (type);
14000 if (tree_int_cst_equal (size, op01))
14001 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14003 /* ((foo *)&fooarray)[1] => fooarray[1] */
14004 else if (TREE_CODE (op00type) == ARRAY_TYPE
14005 && type == TREE_TYPE (op00type))
14007 tree type_domain = TYPE_DOMAIN (op00type);
14008 tree min_val = size_zero_node;
14009 if (type_domain && TYPE_MIN_VALUE (type_domain))
14010 min_val = TYPE_MIN_VALUE (type_domain);
14011 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14012 TYPE_SIZE_UNIT (type));
14013 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14014 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14015 NULL_TREE, NULL_TREE);
14020 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14021 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14022 && type == TREE_TYPE (TREE_TYPE (subtype))
14023 && (!in_gimple_form
14024 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14026 tree type_domain;
14027 tree min_val = size_zero_node;
14028 sub = build_fold_indirect_ref_loc (loc, sub);
14029 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14030 if (type_domain && TYPE_MIN_VALUE (type_domain))
14031 min_val = TYPE_MIN_VALUE (type_domain);
14032 if (in_gimple_form
14033 && TREE_CODE (min_val) != INTEGER_CST)
14034 return NULL_TREE;
14035 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14036 NULL_TREE);
14039 return NULL_TREE;
14042 /* Builds an expression for an indirection through T, simplifying some
14043 cases. */
14045 tree
14046 build_fold_indirect_ref_loc (location_t loc, tree t)
14048 tree type = TREE_TYPE (TREE_TYPE (t));
14049 tree sub = fold_indirect_ref_1 (loc, type, t);
14051 if (sub)
14052 return sub;
14054 return build1_loc (loc, INDIRECT_REF, type, t);
14057 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14059 tree
14060 fold_indirect_ref_loc (location_t loc, tree t)
14062 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14064 if (sub)
14065 return sub;
14066 else
14067 return t;
14070 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14071 whose result is ignored. The type of the returned tree need not be
14072 the same as the original expression. */
14074 tree
14075 fold_ignored_result (tree t)
14077 if (!TREE_SIDE_EFFECTS (t))
14078 return integer_zero_node;
14080 for (;;)
14081 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14083 case tcc_unary:
14084 t = TREE_OPERAND (t, 0);
14085 break;
14087 case tcc_binary:
14088 case tcc_comparison:
14089 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14090 t = TREE_OPERAND (t, 0);
14091 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14092 t = TREE_OPERAND (t, 1);
14093 else
14094 return t;
14095 break;
14097 case tcc_expression:
14098 switch (TREE_CODE (t))
14100 case COMPOUND_EXPR:
14101 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14102 return t;
14103 t = TREE_OPERAND (t, 0);
14104 break;
14106 case COND_EXPR:
14107 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14108 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14109 return t;
14110 t = TREE_OPERAND (t, 0);
14111 break;
14113 default:
14114 return t;
14116 break;
14118 default:
14119 return t;
14123 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14125 tree
14126 round_up_loc (location_t loc, tree value, unsigned int divisor)
14128 tree div = NULL_TREE;
14130 if (divisor == 1)
14131 return value;
14133 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14134 have to do anything. Only do this when we are not given a const,
14135 because in that case, this check is more expensive than just
14136 doing it. */
14137 if (TREE_CODE (value) != INTEGER_CST)
14139 div = build_int_cst (TREE_TYPE (value), divisor);
14141 if (multiple_of_p (TREE_TYPE (value), value, div))
14142 return value;
14145 /* If divisor is a power of two, simplify this to bit manipulation. */
14146 if (pow2_or_zerop (divisor))
14148 if (TREE_CODE (value) == INTEGER_CST)
14150 wide_int val = value;
14151 bool overflow_p;
14153 if ((val & (divisor - 1)) == 0)
14154 return value;
14156 overflow_p = TREE_OVERFLOW (value);
14157 val += divisor - 1;
14158 val &= - (int) divisor;
14159 if (val == 0)
14160 overflow_p = true;
14162 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14164 else
14166 tree t;
14168 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14169 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14170 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14171 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14174 else
14176 if (!div)
14177 div = build_int_cst (TREE_TYPE (value), divisor);
14178 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14179 value = size_binop_loc (loc, MULT_EXPR, value, div);
14182 return value;
14185 /* Likewise, but round down. */
14187 tree
14188 round_down_loc (location_t loc, tree value, int divisor)
14190 tree div = NULL_TREE;
14192 gcc_assert (divisor > 0);
14193 if (divisor == 1)
14194 return value;
14196 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14197 have to do anything. Only do this when we are not given a const,
14198 because in that case, this check is more expensive than just
14199 doing it. */
14200 if (TREE_CODE (value) != INTEGER_CST)
14202 div = build_int_cst (TREE_TYPE (value), divisor);
14204 if (multiple_of_p (TREE_TYPE (value), value, div))
14205 return value;
14208 /* If divisor is a power of two, simplify this to bit manipulation. */
14209 if (pow2_or_zerop (divisor))
14211 tree t;
14213 t = build_int_cst (TREE_TYPE (value), -divisor);
14214 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14216 else
14218 if (!div)
14219 div = build_int_cst (TREE_TYPE (value), divisor);
14220 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14221 value = size_binop_loc (loc, MULT_EXPR, value, div);
14224 return value;
14227 /* Returns the pointer to the base of the object addressed by EXP and
14228 extracts the information about the offset of the access, storing it
14229 to PBITPOS and POFFSET. */
14231 static tree
14232 split_address_to_core_and_offset (tree exp,
14233 HOST_WIDE_INT *pbitpos, tree *poffset)
14235 tree core;
14236 machine_mode mode;
14237 int unsignedp, reversep, volatilep;
14238 HOST_WIDE_INT bitsize;
14239 location_t loc = EXPR_LOCATION (exp);
14241 if (TREE_CODE (exp) == ADDR_EXPR)
14243 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14244 poffset, &mode, &unsignedp, &reversep,
14245 &volatilep);
14246 core = build_fold_addr_expr_loc (loc, core);
14248 else
14250 core = exp;
14251 *pbitpos = 0;
14252 *poffset = NULL_TREE;
14255 return core;
14258 /* Returns true if addresses of E1 and E2 differ by a constant, false
14259 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14261 bool
14262 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14264 tree core1, core2;
14265 HOST_WIDE_INT bitpos1, bitpos2;
14266 tree toffset1, toffset2, tdiff, type;
14268 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14269 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14271 if (bitpos1 % BITS_PER_UNIT != 0
14272 || bitpos2 % BITS_PER_UNIT != 0
14273 || !operand_equal_p (core1, core2, 0))
14274 return false;
14276 if (toffset1 && toffset2)
14278 type = TREE_TYPE (toffset1);
14279 if (type != TREE_TYPE (toffset2))
14280 toffset2 = fold_convert (type, toffset2);
14282 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14283 if (!cst_and_fits_in_hwi (tdiff))
14284 return false;
14286 *diff = int_cst_value (tdiff);
14288 else if (toffset1 || toffset2)
14290 /* If only one of the offsets is non-constant, the difference cannot
14291 be a constant. */
14292 return false;
14294 else
14295 *diff = 0;
14297 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14298 return true;
14301 /* Return OFF converted to a pointer offset type suitable as offset for
14302 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14303 tree
14304 convert_to_ptrofftype_loc (location_t loc, tree off)
14306 return fold_convert_loc (loc, sizetype, off);
14309 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14310 tree
14311 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14313 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14314 ptr, convert_to_ptrofftype_loc (loc, off));
14317 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14318 tree
14319 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14321 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14322 ptr, size_int (off));
14325 /* Return a char pointer for a C string if it is a string constant
14326 or sum of string constant and integer constant. We only support
14327 string constants properly terminated with '\0' character.
14328 If STRLEN is a valid pointer, length (including terminating character)
14329 of returned string is stored to the argument. */
14331 const char *
14332 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen)
14334 tree offset_node;
14336 if (strlen)
14337 *strlen = 0;
14339 src = string_constant (src, &offset_node);
14340 if (src == 0)
14341 return NULL;
14343 unsigned HOST_WIDE_INT offset = 0;
14344 if (offset_node != NULL_TREE)
14346 if (!tree_fits_uhwi_p (offset_node))
14347 return NULL;
14348 else
14349 offset = tree_to_uhwi (offset_node);
14352 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14353 const char *string = TREE_STRING_POINTER (src);
14355 /* Support only properly null-terminated strings. */
14356 if (string_length == 0
14357 || string[string_length - 1] != '\0'
14358 || offset >= string_length)
14359 return NULL;
14361 if (strlen)
14362 *strlen = string_length - offset;
14363 return string + offset;
14366 #if CHECKING_P
14368 namespace selftest {
14370 /* Helper functions for writing tests of folding trees. */
14372 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14374 static void
14375 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14376 tree constant)
14378 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14381 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14382 wrapping WRAPPED_EXPR. */
14384 static void
14385 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14386 tree wrapped_expr)
14388 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14389 ASSERT_NE (wrapped_expr, result);
14390 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14391 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14394 /* Verify that various arithmetic binary operations are folded
14395 correctly. */
14397 static void
14398 test_arithmetic_folding ()
14400 tree type = integer_type_node;
14401 tree x = create_tmp_var_raw (type, "x");
14402 tree zero = build_zero_cst (type);
14403 tree one = build_int_cst (type, 1);
14405 /* Addition. */
14406 /* 1 <-- (0 + 1) */
14407 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14408 one);
14409 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14410 one);
14412 /* (nonlvalue)x <-- (x + 0) */
14413 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14416 /* Subtraction. */
14417 /* 0 <-- (x - x) */
14418 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14419 zero);
14420 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14423 /* Multiplication. */
14424 /* 0 <-- (x * 0) */
14425 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14426 zero);
14428 /* (nonlvalue)x <-- (x * 1) */
14429 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14433 /* Verify that various binary operations on vectors are folded
14434 correctly. */
14436 static void
14437 test_vector_folding ()
14439 tree inner_type = integer_type_node;
14440 tree type = build_vector_type (inner_type, 4);
14441 tree zero = build_zero_cst (type);
14442 tree one = build_one_cst (type);
14444 /* Verify equality tests that return a scalar boolean result. */
14445 tree res_type = boolean_type_node;
14446 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14447 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14448 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14449 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14452 /* Run all of the selftests within this file. */
14454 void
14455 fold_const_c_tests ()
14457 test_arithmetic_folding ();
14458 test_vector_folding ();
14461 } // namespace selftest
14463 #endif /* CHECKING_P */