1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Memory allocator, based on tcmalloc.
6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
8 // The main allocator works in runs of pages.
9 // Small allocation sizes (up to and including 32 kB) are
10 // rounded to one of about 100 size classes, each of which
11 // has its own free list of objects of exactly that size.
12 // Any free page of memory can be split into a set of objects
13 // of one size class, which are then managed using free list
16 // The allocator's data structures are:
18 // FixAlloc: a free-list allocator for fixed-size objects,
19 // used to manage storage used by the allocator.
20 // MHeap: the malloc heap, managed at page (4096-byte) granularity.
21 // MSpan: a run of pages managed by the MHeap.
22 // MCentral: a shared free list for a given size class.
23 // MCache: a per-thread (in Go, per-P) cache for small objects.
24 // MStats: allocation statistics.
26 // Allocating a small object proceeds up a hierarchy of caches:
28 // 1. Round the size up to one of the small size classes
29 // and look in the corresponding MCache free list.
30 // If the list is not empty, allocate an object from it.
31 // This can all be done without acquiring a lock.
33 // 2. If the MCache free list is empty, replenish it by
34 // taking a bunch of objects from the MCentral free list.
35 // Moving a bunch amortizes the cost of acquiring the MCentral lock.
37 // 3. If the MCentral free list is empty, replenish it by
38 // allocating a run of pages from the MHeap and then
39 // chopping that memory into a objects of the given size.
40 // Allocating many objects amortizes the cost of locking
43 // 4. If the MHeap is empty or has no page runs large enough,
44 // allocate a new group of pages (at least 1MB) from the
45 // operating system. Allocating a large run of pages
46 // amortizes the cost of talking to the operating system.
48 // Freeing a small object proceeds up the same hierarchy:
50 // 1. Look up the size class for the object and add it to
51 // the MCache free list.
53 // 2. If the MCache free list is too long or the MCache has
54 // too much memory, return some to the MCentral free lists.
56 // 3. If all the objects in a given span have returned to
57 // the MCentral list, return that span to the page heap.
59 // 4. If the heap has too much memory, return some to the
62 // TODO(rsc): Step 4 is not implemented.
64 // Allocating and freeing a large object uses the page heap
65 // directly, bypassing the MCache and MCentral free lists.
67 // The small objects on the MCache and MCentral free lists
68 // may or may not be zeroed. They are zeroed if and only if
69 // the second word of the object is zero. A span in the
70 // page heap is zeroed unless s->needzero is set. When a span
71 // is allocated to break into small objects, it is zeroed if needed
72 // and s->needzero is set. There are two main benefits to delaying the
75 // 1. stack frames allocated from the small object lists
76 // or the page heap can avoid zeroing altogether.
77 // 2. the cost of zeroing when reusing a small object is
78 // charged to the mutator, not the garbage collector.
80 // This C code was written with an eye toward translating to Go
81 // in the future. Methods have the form Type_Method(Type *t, ...).
83 typedef struct MCentral MCentral
;
84 typedef struct MHeap MHeap
;
85 typedef struct mspan MSpan
;
86 typedef struct MStats MStats
;
87 typedef struct mlink MLink
;
88 typedef struct mtypes MTypes
;
89 typedef struct gcstats GCStats
;
94 PageSize
= 1<<PageShift
,
95 PageMask
= PageSize
- 1,
97 typedef uintptr PageID
; // address >> PageShift
101 // Computed constant. The definition of MaxSmallSize and the
102 // algorithm in msize.c produce some number of different allocation
103 // size classes. _NumSizeClasses is that number. It's needed here
104 // because there are static arrays of this length; when msize runs its
105 // size choosing algorithm it double-checks that NumSizeClasses agrees.
106 // _NumSizeClasses is defined in runtime2.go as 67.
108 // Tunable constants.
109 MaxSmallSize
= 32<<10,
111 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
115 FixAllocChunk
= 16<<10, // Chunk size for FixAlloc
116 MaxMHeapList
= 1<<(20 - PageShift
), // Maximum page length for fixed-size list in MHeap.
117 HeapAllocChunk
= 1<<20, // Chunk size for heap growth
119 // Number of bits in page to span calculations (4k pages).
120 // On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
121 // On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
122 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
123 #if __SIZEOF_POINTER__ == 8
125 // Windows counts memory used by page table into committed memory
126 // of the process, so we can't reserve too much memory.
127 // See http://golang.org/issue/5402 and http://golang.org/issue/5236.
128 MHeapMap_Bits
= 35 - PageShift
,
130 MHeapMap_Bits
= 37 - PageShift
,
133 MHeapMap_Bits
= 32 - PageShift
,
136 // Max number of threads to run garbage collection.
137 // 2, 3, and 4 are all plausible maximums depending
138 // on the hardware details of the machine. The garbage
139 // collector scales well to 8 cpus.
143 // Maximum memory allocation size, a hint for callers.
144 // This must be a #define instead of an enum because it
146 #if __SIZEOF_POINTER__ == 8
147 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
149 #define MaxMem ((uintptr)-1)
151 // SysAlloc obtains a large chunk of zeroed memory from the
152 // operating system, typically on the order of a hundred kilobytes
154 // NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
155 // may use larger alignment, so the caller must be careful to realign the
156 // memory obtained by SysAlloc.
158 // SysUnused notifies the operating system that the contents
159 // of the memory region are no longer needed and can be reused
160 // for other purposes.
161 // SysUsed notifies the operating system that the contents
162 // of the memory region are needed again.
164 // SysFree returns it unconditionally; this is only used if
165 // an out-of-memory error has been detected midway through
166 // an allocation. It is okay if SysFree is a no-op.
168 // SysReserve reserves address space without allocating memory.
169 // If the pointer passed to it is non-nil, the caller wants the
170 // reservation there, but SysReserve can still choose another
171 // location if that one is unavailable. On some systems and in some
172 // cases SysReserve will simply check that the address space is
173 // available and not actually reserve it. If SysReserve returns
174 // non-nil, it sets *reserved to true if the address space is
175 // reserved, false if it has merely been checked.
176 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
177 // may use larger alignment, so the caller must be careful to realign the
178 // memory obtained by SysAlloc.
180 // SysMap maps previously reserved address space for use.
181 // The reserved argument is true if the address space was really
182 // reserved, not merely checked.
184 // SysFault marks a (already SysAlloc'd) region to fault
185 // if accessed. Used only for debugging the runtime.
187 void* runtime_SysAlloc(uintptr nbytes
, uint64
*stat
);
188 void runtime_SysFree(void *v
, uintptr nbytes
, uint64
*stat
);
189 void runtime_SysUnused(void *v
, uintptr nbytes
);
190 void runtime_SysUsed(void *v
, uintptr nbytes
);
191 void runtime_SysMap(void *v
, uintptr nbytes
, bool reserved
, uint64
*stat
);
192 void* runtime_SysReserve(void *v
, uintptr nbytes
, bool *reserved
);
193 void runtime_SysFault(void *v
, uintptr nbytes
);
195 // FixAlloc is a simple free-list allocator for fixed size objects.
196 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its
197 // MCache and MSpan objects.
199 // Memory returned by FixAlloc_Alloc is not zeroed.
200 // The caller is responsible for locking around FixAlloc calls.
201 // Callers can keep state in the object but the first word is
202 // smashed by freeing and reallocating.
206 void (*first
)(void *arg
, byte
*p
); // called first time p is returned
211 uintptr inuse
; // in-use bytes now
215 void runtime_FixAlloc_Init(FixAlloc
*f
, uintptr size
, void (*first
)(void*, byte
*), void *arg
, uint64
*stat
);
216 void* runtime_FixAlloc_Alloc(FixAlloc
*f
);
217 void runtime_FixAlloc_Free(FixAlloc
*f
, void *p
);
221 // Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
224 // General statistics.
225 uint64 alloc
; // bytes allocated and still in use
226 uint64 total_alloc
; // bytes allocated (even if freed)
227 uint64 sys
; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
228 uint64 nlookup
; // number of pointer lookups
229 uint64 nmalloc
; // number of mallocs
230 uint64 nfree
; // number of frees
232 // Statistics about malloc heap.
233 // protected by mheap.Lock
234 uint64 heap_alloc
; // bytes allocated and still in use
235 uint64 heap_sys
; // bytes obtained from system
236 uint64 heap_idle
; // bytes in idle spans
237 uint64 heap_inuse
; // bytes in non-idle spans
238 uint64 heap_released
; // bytes released to the OS
239 uint64 heap_objects
; // total number of allocated objects
241 // Statistics about allocation of low-level fixed-size structures.
242 // Protected by FixAlloc locks.
243 uint64 stacks_inuse
; // bootstrap stacks
245 uint64 mspan_inuse
; // MSpan structures
247 uint64 mcache_inuse
; // MCache structures
249 uint64 buckhash_sys
; // profiling bucket hash table
253 // Statistics about garbage collector.
254 // Protected by mheap or stopping the world during GC.
255 uint64 next_gc
; // next GC (in heap_alloc time)
256 uint64 last_gc
; // last GC (in absolute time)
257 uint64 pause_total_ns
;
258 uint64 pause_ns
[256];
259 uint64 pause_end
[256];
261 float64 gc_cpu_fraction
;
265 // Statistics about allocation size classes.
270 } by_size
[_NumSizeClasses
];
274 __asm__ (GOSYM_PREFIX
"runtime.memStats");
275 void runtime_updatememstats(GCStats
*stats
);
277 // Size classes. Computed and initialized by InitSizes.
279 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
280 // 1 <= sizeclass < _NumSizeClasses, for n.
281 // Size class 0 is reserved to mean "not small".
283 // class_to_size[i] = largest size in class i
284 // class_to_allocnpages[i] = number of pages to allocate when
285 // making new objects in class i
287 int32
runtime_SizeToClass(int32
);
288 uintptr
runtime_roundupsize(uintptr
);
289 extern int32 runtime_class_to_size
[_NumSizeClasses
];
290 extern int32 runtime_class_to_allocnpages
[_NumSizeClasses
];
291 extern int8 runtime_size_to_class8
[1024/8 + 1];
292 extern int8 runtime_size_to_class128
[(MaxSmallSize
-1024)/128 + 1];
293 extern void runtime_InitSizes(void);
296 typedef struct mcachelist MCacheList
;
298 MSpan
* runtime_MCache_Refill(MCache
*c
, int32 sizeclass
);
299 void runtime_MCache_Free(MCache
*c
, MLink
*p
, int32 sizeclass
, uintptr size
);
300 void runtime_MCache_ReleaseAll(MCache
*c
);
302 // MTypes describes the types of blocks allocated within a span.
303 // The compression field describes the layout of the data.
306 // All blocks are free, or no type information is available for
308 // The data field has no meaning.
310 // The span contains just one block.
311 // The data field holds the type information.
312 // The sysalloc field has no meaning.
314 // The span contains multiple blocks.
315 // The data field points to an array of type [NumBlocks]uintptr,
316 // and each element of the array holds the type of the corresponding
319 // The span contains at most seven different types of blocks.
320 // The data field points to the following structure:
322 // type [8]uintptr // type[0] is always 0
323 // index [NumBlocks]byte
325 // The type of the i-th block is: data.type[data.index[i]]
336 KindSpecialFinalizer
= 1,
337 KindSpecialProfile
= 2,
338 // Note: The finalizer special must be first because if we're freeing
339 // an object, a finalizer special will cause the freeing operation
340 // to abort, and we want to keep the other special records around
344 typedef struct special Special
;
346 // The described object has a finalizer set for it.
347 typedef struct SpecialFinalizer SpecialFinalizer
;
348 struct SpecialFinalizer
356 // The described object is being heap profiled.
357 typedef struct Bucket Bucket
; // from mprof.goc
358 typedef struct SpecialProfile SpecialProfile
;
359 struct SpecialProfile
365 // An MSpan is a run of pages.
374 void runtime_MSpan_Init(MSpan
*span
, PageID start
, uintptr npages
);
375 void runtime_MSpan_EnsureSwept(MSpan
*span
);
376 bool runtime_MSpan_Sweep(MSpan
*span
);
378 // Every MSpan is in one doubly-linked list,
379 // either one of the MHeap's free lists or one of the
380 // MCentral's span lists. We use empty MSpan structures as list heads.
381 void runtime_MSpanList_Init(MSpan
*list
);
382 bool runtime_MSpanList_IsEmpty(MSpan
*list
);
383 void runtime_MSpanList_Insert(MSpan
*list
, MSpan
*span
);
384 void runtime_MSpanList_InsertBack(MSpan
*list
, MSpan
*span
);
385 void runtime_MSpanList_Remove(MSpan
*span
); // from whatever list it is in
388 // Central list of free objects of a given size.
393 MSpan nonempty
; // list of spans with a free object
394 MSpan mempty
; // list of spans with no free objects (or cached in an MCache)
395 int32 nfree
; // # of objects available in nonempty spans
398 void runtime_MCentral_Init(MCentral
*c
, int32 sizeclass
);
399 MSpan
* runtime_MCentral_CacheSpan(MCentral
*c
);
400 void runtime_MCentral_UncacheSpan(MCentral
*c
, MSpan
*s
);
401 bool runtime_MCentral_FreeSpan(MCentral
*c
, MSpan
*s
, int32 n
, MLink
*start
, MLink
*end
);
402 void runtime_MCentral_FreeList(MCentral
*c
, MLink
*start
); // TODO: need this?
405 // The heap itself is the "free[]" and "large" arrays,
406 // but all the other global data is here too.
410 MSpan free
[MaxMHeapList
]; // free lists of given length
411 MSpan freelarge
; // free lists length >= MaxMHeapList
412 MSpan busy
[MaxMHeapList
]; // busy lists of large objects of given length
413 MSpan busylarge
; // busy lists of large objects length >= MaxMHeapList
414 MSpan
**allspans
; // all spans out there
415 MSpan
**sweepspans
; // copy of allspans referenced by sweeper
418 uint32 sweepgen
; // sweep generation, see comment in MSpan
419 uint32 sweepdone
; // all spans are swept
423 uintptr spans_mapped
;
425 // range of addresses we might see in the heap
427 uintptr bitmap_mapped
;
433 // central free lists for small size classes.
434 // the padding makes sure that the MCentrals are
435 // spaced CacheLineSize bytes apart, so that each MCentral.Lock
436 // gets its own cache line.
440 } central
[_NumSizeClasses
];
442 FixAlloc spanalloc
; // allocator for Span*
443 FixAlloc cachealloc
; // allocator for MCache*
444 FixAlloc specialfinalizeralloc
; // allocator for SpecialFinalizer*
445 FixAlloc specialprofilealloc
; // allocator for SpecialProfile*
446 Lock speciallock
; // lock for sepcial record allocators.
449 uint64 largefree
; // bytes freed for large objects (>MaxSmallSize)
450 uint64 nlargefree
; // number of frees for large objects (>MaxSmallSize)
451 uint64 nsmallfree
[_NumSizeClasses
]; // number of frees for small objects (<=MaxSmallSize)
453 extern MHeap runtime_mheap
;
455 void runtime_MHeap_Init(MHeap
*h
);
456 MSpan
* runtime_MHeap_Alloc(MHeap
*h
, uintptr npage
, int32 sizeclass
, bool large
, bool needzero
);
457 void runtime_MHeap_Free(MHeap
*h
, MSpan
*s
, int32 acct
);
458 MSpan
* runtime_MHeap_Lookup(MHeap
*h
, void *v
);
459 MSpan
* runtime_MHeap_LookupMaybe(MHeap
*h
, void *v
);
460 void runtime_MGetSizeClassInfo(int32 sizeclass
, uintptr
*size
, int32
*npages
, int32
*nobj
);
461 void* runtime_MHeap_SysAlloc(MHeap
*h
, uintptr n
);
462 void runtime_MHeap_MapBits(MHeap
*h
);
463 void runtime_MHeap_MapSpans(MHeap
*h
);
464 void runtime_MHeap_Scavenger(void*);
465 void runtime_MHeap_SplitSpan(MHeap
*h
, MSpan
*s
);
467 void* runtime_mallocgc(uintptr size
, uintptr typ
, uint32 flag
);
468 void* runtime_persistentalloc(uintptr size
, uintptr align
, uint64
*stat
);
469 int32
runtime_mlookup(void *v
, byte
**base
, uintptr
*size
, MSpan
**s
);
470 void runtime_gc(int32 force
);
471 uintptr
runtime_sweepone(void);
472 void runtime_markscan(void *v
);
473 void runtime_marknogc(void *v
);
474 void runtime_checkallocated(void *v
, uintptr n
);
475 void runtime_markfreed(void *v
);
476 void runtime_checkfreed(void *v
, uintptr n
);
477 extern int32 runtime_checking
;
478 void runtime_markspan(void *v
, uintptr size
, uintptr n
, bool leftover
);
479 void runtime_unmarkspan(void *v
, uintptr size
);
480 void runtime_purgecachedstats(MCache
*);
481 void* runtime_cnew(const Type
*)
482 __asm__(GOSYM_PREFIX
"runtime.newobject");
483 void* runtime_cnewarray(const Type
*, intgo
)
484 __asm__(GOSYM_PREFIX
"runtime.newarray");
485 void runtime_tracealloc(void*, uintptr
, uintptr
);
486 void runtime_tracefree(void*, uintptr
);
487 void runtime_tracegc(void);
489 uintptr
runtime_gettype(void*);
494 FlagNoScan
= 1<<0, // GC doesn't have to scan object
495 FlagNoProfiling
= 1<<1, // must not profile
496 FlagNoGC
= 1<<2, // must not free or scan for pointers
497 FlagNoZero
= 1<<3, // don't zero memory
498 FlagNoInvokeGC
= 1<<4, // don't invoke GC
501 typedef struct Obj Obj
;
504 byte
*p
; // data pointer
505 uintptr n
; // size of data in bytes
506 uintptr ti
; // type info
509 void runtime_MProf_Malloc(void*, uintptr
);
510 void runtime_MProf_Free(Bucket
*, uintptr
, bool);
511 void runtime_MProf_GC(void);
512 void runtime_iterate_memprof(void (*callback
)(Bucket
*, uintptr
, Location
*, uintptr
, uintptr
, uintptr
));
513 int32
runtime_gcprocs(void);
514 void runtime_helpgc(int32 nproc
);
515 void runtime_gchelper(void);
516 void runtime_createfing(void);
517 G
* runtime_wakefing(void);
518 extern bool runtime_fingwait
;
519 extern bool runtime_fingwake
;
521 void runtime_setprofilebucket(void *p
, Bucket
*b
);
523 struct __go_func_type
;
524 struct __go_ptr_type
;
525 bool runtime_addfinalizer(void *p
, FuncVal
*fn
, const struct __go_func_type
*, const struct __go_ptr_type
*);
526 void runtime_removefinalizer(void*);
527 void runtime_queuefinalizer(void *p
, FuncVal
*fn
, const struct __go_func_type
*ft
, const struct __go_ptr_type
*ot
);
529 void runtime_freeallspecials(MSpan
*span
, void *p
, uintptr size
);
530 bool runtime_freespecial(Special
*s
, void *p
, uintptr size
, bool freed
);
534 TypeInfo_SingleObject
= 0,
538 // Enables type information at the end of blocks allocated from heap
539 DebugTypeAtBlockEnd
= 0,
542 // Information from the compiler about the layout of stack frames.
543 typedef struct BitVector BitVector
;
546 int32 n
; // # of bits
549 typedef struct StackMap StackMap
;
552 int32 n
; // number of bitmaps
553 int32 nbit
; // number of bits in each bitmap
563 // BitsMultiWord will be set for the first word of a multi-word item.
564 // When it is set, one of the following will be set for the second word.
570 // Returns pointer map data for the given stackmap index
571 // (the index is encoded in PCDATA_StackMapIndex).
572 BitVector
runtime_stackmapdata(StackMap
*stackmap
, int32 n
);
574 // defined in mgc0.go
575 void runtime_gc_m_ptr(Eface
*);
576 void runtime_gc_g_ptr(Eface
*);
577 void runtime_gc_itab_ptr(Eface
*);
579 void runtime_memorydump(void);
580 int32
runtime_setgcpercent(int32
);
582 // Value we use to mark dead pointers when GODEBUG=gcdead=1.
583 #define PoisonGC ((uintptr)0xf969696969696969ULL)
584 #define PoisonStack ((uintptr)0x6868686868686868ULL)
587 void runtime_MProf_Mark(struct Workbuf
**, void (*)(struct Workbuf
**, Obj
));
588 void runtime_proc_scan(struct Workbuf
**, void (*)(struct Workbuf
**, Obj
));
589 void runtime_time_scan(struct Workbuf
**, void (*)(struct Workbuf
**, Obj
));
590 void runtime_netpoll_scan(struct Workbuf
**, void (*)(struct Workbuf
**, Obj
));