gcc/testsuite/
[official-gcc.git] / gcc / stor-layout.c
blob237cf6926e29bd65d616ef8eb0d90627081d105e
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "vec.h"
36 #include "machmode.h"
37 #include "hard-reg-set.h"
38 #include "input.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "diagnostic-core.h"
42 #include "target.h"
43 #include "langhooks.h"
44 #include "regs.h"
45 #include "params.h"
46 #include "cgraph.h"
47 #include "tree-inline.h"
48 #include "tree-dump.h"
49 #include "gimplify.h"
51 /* Data type for the expressions representing sizes of data types.
52 It is the first integer type laid out. */
53 tree sizetype_tab[(int) stk_type_kind_last];
55 /* If nonzero, this is an upper limit on alignment of structure fields.
56 The value is measured in bits. */
57 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
59 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
60 in the address spaces' address_mode, not pointer_mode. Set only by
61 internal_reference_types called only by a front end. */
62 static int reference_types_internal = 0;
64 static tree self_referential_size (tree);
65 static void finalize_record_size (record_layout_info);
66 static void finalize_type_size (tree);
67 static void place_union_field (record_layout_info, tree);
68 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
69 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
70 HOST_WIDE_INT, tree);
71 #endif
72 extern void debug_rli (record_layout_info);
74 /* Show that REFERENCE_TYPES are internal and should use address_mode.
75 Called only by front end. */
77 void
78 internal_reference_types (void)
80 reference_types_internal = 1;
83 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
84 to serve as the actual size-expression for a type or decl. */
86 tree
87 variable_size (tree size)
89 /* Obviously. */
90 if (TREE_CONSTANT (size))
91 return size;
93 /* If the size is self-referential, we can't make a SAVE_EXPR (see
94 save_expr for the rationale). But we can do something else. */
95 if (CONTAINS_PLACEHOLDER_P (size))
96 return self_referential_size (size);
98 /* If we are in the global binding level, we can't make a SAVE_EXPR
99 since it may end up being shared across functions, so it is up
100 to the front-end to deal with this case. */
101 if (lang_hooks.decls.global_bindings_p ())
102 return size;
104 return save_expr (size);
107 /* An array of functions used for self-referential size computation. */
108 static GTY(()) vec<tree, va_gc> *size_functions;
110 /* Similar to copy_tree_r but do not copy component references involving
111 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
112 and substituted in substitute_in_expr. */
114 static tree
115 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
117 enum tree_code code = TREE_CODE (*tp);
119 /* Stop at types, decls, constants like copy_tree_r. */
120 if (TREE_CODE_CLASS (code) == tcc_type
121 || TREE_CODE_CLASS (code) == tcc_declaration
122 || TREE_CODE_CLASS (code) == tcc_constant)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* This is the pattern built in ada/make_aligning_type. */
129 else if (code == ADDR_EXPR
130 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
132 *walk_subtrees = 0;
133 return NULL_TREE;
136 /* Default case: the component reference. */
137 else if (code == COMPONENT_REF)
139 tree inner;
140 for (inner = TREE_OPERAND (*tp, 0);
141 REFERENCE_CLASS_P (inner);
142 inner = TREE_OPERAND (inner, 0))
145 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
147 *walk_subtrees = 0;
148 return NULL_TREE;
152 /* We're not supposed to have them in self-referential size trees
153 because we wouldn't properly control when they are evaluated.
154 However, not creating superfluous SAVE_EXPRs requires accurate
155 tracking of readonly-ness all the way down to here, which we
156 cannot always guarantee in practice. So punt in this case. */
157 else if (code == SAVE_EXPR)
158 return error_mark_node;
160 else if (code == STATEMENT_LIST)
161 gcc_unreachable ();
163 return copy_tree_r (tp, walk_subtrees, data);
166 /* Given a SIZE expression that is self-referential, return an equivalent
167 expression to serve as the actual size expression for a type. */
169 static tree
170 self_referential_size (tree size)
172 static unsigned HOST_WIDE_INT fnno = 0;
173 vec<tree> self_refs = vNULL;
174 tree param_type_list = NULL, param_decl_list = NULL;
175 tree t, ref, return_type, fntype, fnname, fndecl;
176 unsigned int i;
177 char buf[128];
178 vec<tree, va_gc> *args = NULL;
180 /* Do not factor out simple operations. */
181 t = skip_simple_constant_arithmetic (size);
182 if (TREE_CODE (t) == CALL_EXPR)
183 return size;
185 /* Collect the list of self-references in the expression. */
186 find_placeholder_in_expr (size, &self_refs);
187 gcc_assert (self_refs.length () > 0);
189 /* Obtain a private copy of the expression. */
190 t = size;
191 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
192 return size;
193 size = t;
195 /* Build the parameter and argument lists in parallel; also
196 substitute the former for the latter in the expression. */
197 vec_alloc (args, self_refs.length ());
198 FOR_EACH_VEC_ELT (self_refs, i, ref)
200 tree subst, param_name, param_type, param_decl;
202 if (DECL_P (ref))
204 /* We shouldn't have true variables here. */
205 gcc_assert (TREE_READONLY (ref));
206 subst = ref;
208 /* This is the pattern built in ada/make_aligning_type. */
209 else if (TREE_CODE (ref) == ADDR_EXPR)
210 subst = ref;
211 /* Default case: the component reference. */
212 else
213 subst = TREE_OPERAND (ref, 1);
215 sprintf (buf, "p%d", i);
216 param_name = get_identifier (buf);
217 param_type = TREE_TYPE (ref);
218 param_decl
219 = build_decl (input_location, PARM_DECL, param_name, param_type);
220 DECL_ARG_TYPE (param_decl) = param_type;
221 DECL_ARTIFICIAL (param_decl) = 1;
222 TREE_READONLY (param_decl) = 1;
224 size = substitute_in_expr (size, subst, param_decl);
226 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
227 param_decl_list = chainon (param_decl, param_decl_list);
228 args->quick_push (ref);
231 self_refs.release ();
233 /* Append 'void' to indicate that the number of parameters is fixed. */
234 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
236 /* The 3 lists have been created in reverse order. */
237 param_type_list = nreverse (param_type_list);
238 param_decl_list = nreverse (param_decl_list);
240 /* Build the function type. */
241 return_type = TREE_TYPE (size);
242 fntype = build_function_type (return_type, param_type_list);
244 /* Build the function declaration. */
245 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
246 fnname = get_file_function_name (buf);
247 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
248 for (t = param_decl_list; t; t = DECL_CHAIN (t))
249 DECL_CONTEXT (t) = fndecl;
250 DECL_ARGUMENTS (fndecl) = param_decl_list;
251 DECL_RESULT (fndecl)
252 = build_decl (input_location, RESULT_DECL, 0, return_type);
253 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
255 /* The function has been created by the compiler and we don't
256 want to emit debug info for it. */
257 DECL_ARTIFICIAL (fndecl) = 1;
258 DECL_IGNORED_P (fndecl) = 1;
260 /* It is supposed to be "const" and never throw. */
261 TREE_READONLY (fndecl) = 1;
262 TREE_NOTHROW (fndecl) = 1;
264 /* We want it to be inlined when this is deemed profitable, as
265 well as discarded if every call has been integrated. */
266 DECL_DECLARED_INLINE_P (fndecl) = 1;
268 /* It is made up of a unique return statement. */
269 DECL_INITIAL (fndecl) = make_node (BLOCK);
270 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
271 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
272 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
273 TREE_STATIC (fndecl) = 1;
275 /* Put it onto the list of size functions. */
276 vec_safe_push (size_functions, fndecl);
278 /* Replace the original expression with a call to the size function. */
279 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
282 /* Take, queue and compile all the size functions. It is essential that
283 the size functions be gimplified at the very end of the compilation
284 in order to guarantee transparent handling of self-referential sizes.
285 Otherwise the GENERIC inliner would not be able to inline them back
286 at each of their call sites, thus creating artificial non-constant
287 size expressions which would trigger nasty problems later on. */
289 void
290 finalize_size_functions (void)
292 unsigned int i;
293 tree fndecl;
295 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
297 allocate_struct_function (fndecl, false);
298 set_cfun (NULL);
299 dump_function (TDI_original, fndecl);
300 gimplify_function_tree (fndecl);
301 dump_function (TDI_generic, fndecl);
302 cgraph_node::finalize_function (fndecl, false);
305 vec_free (size_functions);
308 /* Return the machine mode to use for a nonscalar of SIZE bits. The
309 mode must be in class MCLASS, and have exactly that many value bits;
310 it may have padding as well. If LIMIT is nonzero, modes of wider
311 than MAX_FIXED_MODE_SIZE will not be used. */
313 enum machine_mode
314 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
316 enum machine_mode mode;
317 int i;
319 if (limit && size > MAX_FIXED_MODE_SIZE)
320 return BLKmode;
322 /* Get the first mode which has this size, in the specified class. */
323 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
324 mode = GET_MODE_WIDER_MODE (mode))
325 if (GET_MODE_PRECISION (mode) == size)
326 return mode;
328 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
329 for (i = 0; i < NUM_INT_N_ENTS; i ++)
330 if (int_n_data[i].bitsize == size
331 && int_n_enabled_p[i])
332 return int_n_data[i].m;
334 return BLKmode;
337 /* Similar, except passed a tree node. */
339 enum machine_mode
340 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
342 unsigned HOST_WIDE_INT uhwi;
343 unsigned int ui;
345 if (!tree_fits_uhwi_p (size))
346 return BLKmode;
347 uhwi = tree_to_uhwi (size);
348 ui = uhwi;
349 if (uhwi != ui)
350 return BLKmode;
351 return mode_for_size (ui, mclass, limit);
354 /* Similar, but never return BLKmode; return the narrowest mode that
355 contains at least the requested number of value bits. */
357 enum machine_mode
358 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
360 enum machine_mode mode = VOIDmode;
361 int i;
363 /* Get the first mode which has at least this size, in the
364 specified class. */
365 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
366 mode = GET_MODE_WIDER_MODE (mode))
367 if (GET_MODE_PRECISION (mode) >= size)
368 break;
370 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
371 for (i = 0; i < NUM_INT_N_ENTS; i ++)
372 if (int_n_data[i].bitsize >= size
373 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
374 && int_n_enabled_p[i])
375 mode = int_n_data[i].m;
377 if (mode == VOIDmode)
378 gcc_unreachable ();
380 return mode;
383 /* Find an integer mode of the exact same size, or BLKmode on failure. */
385 enum machine_mode
386 int_mode_for_mode (enum machine_mode mode)
388 switch (GET_MODE_CLASS (mode))
390 case MODE_INT:
391 case MODE_PARTIAL_INT:
392 break;
394 case MODE_COMPLEX_INT:
395 case MODE_COMPLEX_FLOAT:
396 case MODE_FLOAT:
397 case MODE_DECIMAL_FLOAT:
398 case MODE_VECTOR_INT:
399 case MODE_VECTOR_FLOAT:
400 case MODE_FRACT:
401 case MODE_ACCUM:
402 case MODE_UFRACT:
403 case MODE_UACCUM:
404 case MODE_VECTOR_FRACT:
405 case MODE_VECTOR_ACCUM:
406 case MODE_VECTOR_UFRACT:
407 case MODE_VECTOR_UACCUM:
408 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
409 break;
411 case MODE_RANDOM:
412 if (mode == BLKmode)
413 break;
415 /* ... fall through ... */
417 case MODE_CC:
418 default:
419 gcc_unreachable ();
422 return mode;
425 /* Find a mode that can be used for efficient bitwise operations on MODE.
426 Return BLKmode if no such mode exists. */
428 enum machine_mode
429 bitwise_mode_for_mode (enum machine_mode mode)
431 /* Quick exit if we already have a suitable mode. */
432 unsigned int bitsize = GET_MODE_BITSIZE (mode);
433 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
434 return mode;
436 /* Reuse the sanity checks from int_mode_for_mode. */
437 gcc_checking_assert ((int_mode_for_mode (mode), true));
439 /* Try to replace complex modes with complex modes. In general we
440 expect both components to be processed independently, so we only
441 care whether there is a register for the inner mode. */
442 if (COMPLEX_MODE_P (mode))
444 enum machine_mode trial = mode;
445 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
446 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
447 if (trial != BLKmode
448 && have_regs_of_mode[GET_MODE_INNER (trial)])
449 return trial;
452 /* Try to replace vector modes with vector modes. Also try using vector
453 modes if an integer mode would be too big. */
454 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
456 enum machine_mode trial = mode;
457 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
458 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
459 if (trial != BLKmode
460 && have_regs_of_mode[trial]
461 && targetm.vector_mode_supported_p (trial))
462 return trial;
465 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
466 return mode_for_size (bitsize, MODE_INT, true);
469 /* Find a type that can be used for efficient bitwise operations on MODE.
470 Return null if no such mode exists. */
472 tree
473 bitwise_type_for_mode (enum machine_mode mode)
475 mode = bitwise_mode_for_mode (mode);
476 if (mode == BLKmode)
477 return NULL_TREE;
479 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
480 tree inner_type = build_nonstandard_integer_type (inner_size, true);
482 if (VECTOR_MODE_P (mode))
483 return build_vector_type_for_mode (inner_type, mode);
485 if (COMPLEX_MODE_P (mode))
486 return build_complex_type (inner_type);
488 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
489 return inner_type;
492 /* Find a mode that is suitable for representing a vector with
493 NUNITS elements of mode INNERMODE. Returns BLKmode if there
494 is no suitable mode. */
496 enum machine_mode
497 mode_for_vector (enum machine_mode innermode, unsigned nunits)
499 enum machine_mode mode;
501 /* First, look for a supported vector type. */
502 if (SCALAR_FLOAT_MODE_P (innermode))
503 mode = MIN_MODE_VECTOR_FLOAT;
504 else if (SCALAR_FRACT_MODE_P (innermode))
505 mode = MIN_MODE_VECTOR_FRACT;
506 else if (SCALAR_UFRACT_MODE_P (innermode))
507 mode = MIN_MODE_VECTOR_UFRACT;
508 else if (SCALAR_ACCUM_MODE_P (innermode))
509 mode = MIN_MODE_VECTOR_ACCUM;
510 else if (SCALAR_UACCUM_MODE_P (innermode))
511 mode = MIN_MODE_VECTOR_UACCUM;
512 else
513 mode = MIN_MODE_VECTOR_INT;
515 /* Do not check vector_mode_supported_p here. We'll do that
516 later in vector_type_mode. */
517 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
518 if (GET_MODE_NUNITS (mode) == nunits
519 && GET_MODE_INNER (mode) == innermode)
520 break;
522 /* For integers, try mapping it to a same-sized scalar mode. */
523 if (mode == VOIDmode
524 && GET_MODE_CLASS (innermode) == MODE_INT)
525 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
526 MODE_INT, 0);
528 if (mode == VOIDmode
529 || (GET_MODE_CLASS (mode) == MODE_INT
530 && !have_regs_of_mode[mode]))
531 return BLKmode;
533 return mode;
536 /* Return the alignment of MODE. This will be bounded by 1 and
537 BIGGEST_ALIGNMENT. */
539 unsigned int
540 get_mode_alignment (enum machine_mode mode)
542 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
545 /* Return the precision of the mode, or for a complex or vector mode the
546 precision of the mode of its elements. */
548 unsigned int
549 element_precision (enum machine_mode mode)
551 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
552 mode = GET_MODE_INNER (mode);
554 return GET_MODE_PRECISION (mode);
557 /* Return the natural mode of an array, given that it is SIZE bytes in
558 total and has elements of type ELEM_TYPE. */
560 static enum machine_mode
561 mode_for_array (tree elem_type, tree size)
563 tree elem_size;
564 unsigned HOST_WIDE_INT int_size, int_elem_size;
565 bool limit_p;
567 /* One-element arrays get the component type's mode. */
568 elem_size = TYPE_SIZE (elem_type);
569 if (simple_cst_equal (size, elem_size))
570 return TYPE_MODE (elem_type);
572 limit_p = true;
573 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
575 int_size = tree_to_uhwi (size);
576 int_elem_size = tree_to_uhwi (elem_size);
577 if (int_elem_size > 0
578 && int_size % int_elem_size == 0
579 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
580 int_size / int_elem_size))
581 limit_p = false;
583 return mode_for_size_tree (size, MODE_INT, limit_p);
586 /* Subroutine of layout_decl: Force alignment required for the data type.
587 But if the decl itself wants greater alignment, don't override that. */
589 static inline void
590 do_type_align (tree type, tree decl)
592 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
594 DECL_ALIGN (decl) = TYPE_ALIGN (type);
595 if (TREE_CODE (decl) == FIELD_DECL)
596 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
600 /* Set the size, mode and alignment of a ..._DECL node.
601 TYPE_DECL does need this for C++.
602 Note that LABEL_DECL and CONST_DECL nodes do not need this,
603 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
604 Don't call layout_decl for them.
606 KNOWN_ALIGN is the amount of alignment we can assume this
607 decl has with no special effort. It is relevant only for FIELD_DECLs
608 and depends on the previous fields.
609 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
610 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
611 the record will be aligned to suit. */
613 void
614 layout_decl (tree decl, unsigned int known_align)
616 tree type = TREE_TYPE (decl);
617 enum tree_code code = TREE_CODE (decl);
618 rtx rtl = NULL_RTX;
619 location_t loc = DECL_SOURCE_LOCATION (decl);
621 if (code == CONST_DECL)
622 return;
624 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
625 || code == TYPE_DECL ||code == FIELD_DECL);
627 rtl = DECL_RTL_IF_SET (decl);
629 if (type == error_mark_node)
630 type = void_type_node;
632 /* Usually the size and mode come from the data type without change,
633 however, the front-end may set the explicit width of the field, so its
634 size may not be the same as the size of its type. This happens with
635 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
636 also happens with other fields. For example, the C++ front-end creates
637 zero-sized fields corresponding to empty base classes, and depends on
638 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
639 size in bytes from the size in bits. If we have already set the mode,
640 don't set it again since we can be called twice for FIELD_DECLs. */
642 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
643 if (DECL_MODE (decl) == VOIDmode)
644 DECL_MODE (decl) = TYPE_MODE (type);
646 if (DECL_SIZE (decl) == 0)
648 DECL_SIZE (decl) = TYPE_SIZE (type);
649 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
651 else if (DECL_SIZE_UNIT (decl) == 0)
652 DECL_SIZE_UNIT (decl)
653 = fold_convert_loc (loc, sizetype,
654 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
655 bitsize_unit_node));
657 if (code != FIELD_DECL)
658 /* For non-fields, update the alignment from the type. */
659 do_type_align (type, decl);
660 else
661 /* For fields, it's a bit more complicated... */
663 bool old_user_align = DECL_USER_ALIGN (decl);
664 bool zero_bitfield = false;
665 bool packed_p = DECL_PACKED (decl);
666 unsigned int mfa;
668 if (DECL_BIT_FIELD (decl))
670 DECL_BIT_FIELD_TYPE (decl) = type;
672 /* A zero-length bit-field affects the alignment of the next
673 field. In essence such bit-fields are not influenced by
674 any packing due to #pragma pack or attribute packed. */
675 if (integer_zerop (DECL_SIZE (decl))
676 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
678 zero_bitfield = true;
679 packed_p = false;
680 #ifdef PCC_BITFIELD_TYPE_MATTERS
681 if (PCC_BITFIELD_TYPE_MATTERS)
682 do_type_align (type, decl);
683 else
684 #endif
686 #ifdef EMPTY_FIELD_BOUNDARY
687 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
689 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
690 DECL_USER_ALIGN (decl) = 0;
692 #endif
696 /* See if we can use an ordinary integer mode for a bit-field.
697 Conditions are: a fixed size that is correct for another mode,
698 occupying a complete byte or bytes on proper boundary. */
699 if (TYPE_SIZE (type) != 0
700 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
701 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
703 enum machine_mode xmode
704 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
705 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
707 if (xmode != BLKmode
708 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
709 && (known_align == 0 || known_align >= xalign))
711 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
712 DECL_MODE (decl) = xmode;
713 DECL_BIT_FIELD (decl) = 0;
717 /* Turn off DECL_BIT_FIELD if we won't need it set. */
718 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
719 && known_align >= TYPE_ALIGN (type)
720 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
721 DECL_BIT_FIELD (decl) = 0;
723 else if (packed_p && DECL_USER_ALIGN (decl))
724 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
725 round up; we'll reduce it again below. We want packing to
726 supersede USER_ALIGN inherited from the type, but defer to
727 alignment explicitly specified on the field decl. */;
728 else
729 do_type_align (type, decl);
731 /* If the field is packed and not explicitly aligned, give it the
732 minimum alignment. Note that do_type_align may set
733 DECL_USER_ALIGN, so we need to check old_user_align instead. */
734 if (packed_p
735 && !old_user_align)
736 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
738 if (! packed_p && ! DECL_USER_ALIGN (decl))
740 /* Some targets (i.e. i386, VMS) limit struct field alignment
741 to a lower boundary than alignment of variables unless
742 it was overridden by attribute aligned. */
743 #ifdef BIGGEST_FIELD_ALIGNMENT
744 DECL_ALIGN (decl)
745 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
746 #endif
747 #ifdef ADJUST_FIELD_ALIGN
748 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
749 #endif
752 if (zero_bitfield)
753 mfa = initial_max_fld_align * BITS_PER_UNIT;
754 else
755 mfa = maximum_field_alignment;
756 /* Should this be controlled by DECL_USER_ALIGN, too? */
757 if (mfa != 0)
758 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
761 /* Evaluate nonconstant size only once, either now or as soon as safe. */
762 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
763 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
764 if (DECL_SIZE_UNIT (decl) != 0
765 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
766 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
768 /* If requested, warn about definitions of large data objects. */
769 if (warn_larger_than
770 && (code == VAR_DECL || code == PARM_DECL)
771 && ! DECL_EXTERNAL (decl))
773 tree size = DECL_SIZE_UNIT (decl);
775 if (size != 0 && TREE_CODE (size) == INTEGER_CST
776 && compare_tree_int (size, larger_than_size) > 0)
778 int size_as_int = TREE_INT_CST_LOW (size);
780 if (compare_tree_int (size, size_as_int) == 0)
781 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
782 else
783 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
784 decl, larger_than_size);
788 /* If the RTL was already set, update its mode and mem attributes. */
789 if (rtl)
791 PUT_MODE (rtl, DECL_MODE (decl));
792 SET_DECL_RTL (decl, 0);
793 set_mem_attributes (rtl, decl, 1);
794 SET_DECL_RTL (decl, rtl);
798 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
799 a previous call to layout_decl and calls it again. */
801 void
802 relayout_decl (tree decl)
804 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
805 DECL_MODE (decl) = VOIDmode;
806 if (!DECL_USER_ALIGN (decl))
807 DECL_ALIGN (decl) = 0;
808 SET_DECL_RTL (decl, 0);
810 layout_decl (decl, 0);
813 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
814 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
815 is to be passed to all other layout functions for this record. It is the
816 responsibility of the caller to call `free' for the storage returned.
817 Note that garbage collection is not permitted until we finish laying
818 out the record. */
820 record_layout_info
821 start_record_layout (tree t)
823 record_layout_info rli = XNEW (struct record_layout_info_s);
825 rli->t = t;
827 /* If the type has a minimum specified alignment (via an attribute
828 declaration, for example) use it -- otherwise, start with a
829 one-byte alignment. */
830 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
831 rli->unpacked_align = rli->record_align;
832 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
834 #ifdef STRUCTURE_SIZE_BOUNDARY
835 /* Packed structures don't need to have minimum size. */
836 if (! TYPE_PACKED (t))
838 unsigned tmp;
840 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
841 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
842 if (maximum_field_alignment != 0)
843 tmp = MIN (tmp, maximum_field_alignment);
844 rli->record_align = MAX (rli->record_align, tmp);
846 #endif
848 rli->offset = size_zero_node;
849 rli->bitpos = bitsize_zero_node;
850 rli->prev_field = 0;
851 rli->pending_statics = 0;
852 rli->packed_maybe_necessary = 0;
853 rli->remaining_in_alignment = 0;
855 return rli;
858 /* Return the combined bit position for the byte offset OFFSET and the
859 bit position BITPOS.
861 These functions operate on byte and bit positions present in FIELD_DECLs
862 and assume that these expressions result in no (intermediate) overflow.
863 This assumption is necessary to fold the expressions as much as possible,
864 so as to avoid creating artificially variable-sized types in languages
865 supporting variable-sized types like Ada. */
867 tree
868 bit_from_pos (tree offset, tree bitpos)
870 if (TREE_CODE (offset) == PLUS_EXPR)
871 offset = size_binop (PLUS_EXPR,
872 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
873 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
874 else
875 offset = fold_convert (bitsizetype, offset);
876 return size_binop (PLUS_EXPR, bitpos,
877 size_binop (MULT_EXPR, offset, bitsize_unit_node));
880 /* Return the combined truncated byte position for the byte offset OFFSET and
881 the bit position BITPOS. */
883 tree
884 byte_from_pos (tree offset, tree bitpos)
886 tree bytepos;
887 if (TREE_CODE (bitpos) == MULT_EXPR
888 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
889 bytepos = TREE_OPERAND (bitpos, 0);
890 else
891 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
892 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
895 /* Split the bit position POS into a byte offset *POFFSET and a bit
896 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
898 void
899 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
900 tree pos)
902 tree toff_align = bitsize_int (off_align);
903 if (TREE_CODE (pos) == MULT_EXPR
904 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
906 *poffset = size_binop (MULT_EXPR,
907 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
908 size_int (off_align / BITS_PER_UNIT));
909 *pbitpos = bitsize_zero_node;
911 else
913 *poffset = size_binop (MULT_EXPR,
914 fold_convert (sizetype,
915 size_binop (FLOOR_DIV_EXPR, pos,
916 toff_align)),
917 size_int (off_align / BITS_PER_UNIT));
918 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
922 /* Given a pointer to bit and byte offsets and an offset alignment,
923 normalize the offsets so they are within the alignment. */
925 void
926 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
928 /* If the bit position is now larger than it should be, adjust it
929 downwards. */
930 if (compare_tree_int (*pbitpos, off_align) >= 0)
932 tree offset, bitpos;
933 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
934 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
935 *pbitpos = bitpos;
939 /* Print debugging information about the information in RLI. */
941 DEBUG_FUNCTION void
942 debug_rli (record_layout_info rli)
944 print_node_brief (stderr, "type", rli->t, 0);
945 print_node_brief (stderr, "\noffset", rli->offset, 0);
946 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
948 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
949 rli->record_align, rli->unpacked_align,
950 rli->offset_align);
952 /* The ms_struct code is the only that uses this. */
953 if (targetm.ms_bitfield_layout_p (rli->t))
954 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
956 if (rli->packed_maybe_necessary)
957 fprintf (stderr, "packed may be necessary\n");
959 if (!vec_safe_is_empty (rli->pending_statics))
961 fprintf (stderr, "pending statics:\n");
962 debug_vec_tree (rli->pending_statics);
966 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
967 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
969 void
970 normalize_rli (record_layout_info rli)
972 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
975 /* Returns the size in bytes allocated so far. */
977 tree
978 rli_size_unit_so_far (record_layout_info rli)
980 return byte_from_pos (rli->offset, rli->bitpos);
983 /* Returns the size in bits allocated so far. */
985 tree
986 rli_size_so_far (record_layout_info rli)
988 return bit_from_pos (rli->offset, rli->bitpos);
991 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
992 the next available location within the record is given by KNOWN_ALIGN.
993 Update the variable alignment fields in RLI, and return the alignment
994 to give the FIELD. */
996 unsigned int
997 update_alignment_for_field (record_layout_info rli, tree field,
998 unsigned int known_align)
1000 /* The alignment required for FIELD. */
1001 unsigned int desired_align;
1002 /* The type of this field. */
1003 tree type = TREE_TYPE (field);
1004 /* True if the field was explicitly aligned by the user. */
1005 bool user_align;
1006 bool is_bitfield;
1008 /* Do not attempt to align an ERROR_MARK node */
1009 if (TREE_CODE (type) == ERROR_MARK)
1010 return 0;
1012 /* Lay out the field so we know what alignment it needs. */
1013 layout_decl (field, known_align);
1014 desired_align = DECL_ALIGN (field);
1015 user_align = DECL_USER_ALIGN (field);
1017 is_bitfield = (type != error_mark_node
1018 && DECL_BIT_FIELD_TYPE (field)
1019 && ! integer_zerop (TYPE_SIZE (type)));
1021 /* Record must have at least as much alignment as any field.
1022 Otherwise, the alignment of the field within the record is
1023 meaningless. */
1024 if (targetm.ms_bitfield_layout_p (rli->t))
1026 /* Here, the alignment of the underlying type of a bitfield can
1027 affect the alignment of a record; even a zero-sized field
1028 can do this. The alignment should be to the alignment of
1029 the type, except that for zero-size bitfields this only
1030 applies if there was an immediately prior, nonzero-size
1031 bitfield. (That's the way it is, experimentally.) */
1032 if ((!is_bitfield && !DECL_PACKED (field))
1033 || ((DECL_SIZE (field) == NULL_TREE
1034 || !integer_zerop (DECL_SIZE (field)))
1035 ? !DECL_PACKED (field)
1036 : (rli->prev_field
1037 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1038 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1040 unsigned int type_align = TYPE_ALIGN (type);
1041 type_align = MAX (type_align, desired_align);
1042 if (maximum_field_alignment != 0)
1043 type_align = MIN (type_align, maximum_field_alignment);
1044 rli->record_align = MAX (rli->record_align, type_align);
1045 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1048 #ifdef PCC_BITFIELD_TYPE_MATTERS
1049 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1051 /* Named bit-fields cause the entire structure to have the
1052 alignment implied by their type. Some targets also apply the same
1053 rules to unnamed bitfields. */
1054 if (DECL_NAME (field) != 0
1055 || targetm.align_anon_bitfield ())
1057 unsigned int type_align = TYPE_ALIGN (type);
1059 #ifdef ADJUST_FIELD_ALIGN
1060 if (! TYPE_USER_ALIGN (type))
1061 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1062 #endif
1064 /* Targets might chose to handle unnamed and hence possibly
1065 zero-width bitfield. Those are not influenced by #pragmas
1066 or packed attributes. */
1067 if (integer_zerop (DECL_SIZE (field)))
1069 if (initial_max_fld_align)
1070 type_align = MIN (type_align,
1071 initial_max_fld_align * BITS_PER_UNIT);
1073 else if (maximum_field_alignment != 0)
1074 type_align = MIN (type_align, maximum_field_alignment);
1075 else if (DECL_PACKED (field))
1076 type_align = MIN (type_align, BITS_PER_UNIT);
1078 /* The alignment of the record is increased to the maximum
1079 of the current alignment, the alignment indicated on the
1080 field (i.e., the alignment specified by an __aligned__
1081 attribute), and the alignment indicated by the type of
1082 the field. */
1083 rli->record_align = MAX (rli->record_align, desired_align);
1084 rli->record_align = MAX (rli->record_align, type_align);
1086 if (warn_packed)
1087 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1088 user_align |= TYPE_USER_ALIGN (type);
1091 #endif
1092 else
1094 rli->record_align = MAX (rli->record_align, desired_align);
1095 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1098 TYPE_USER_ALIGN (rli->t) |= user_align;
1100 return desired_align;
1103 /* Called from place_field to handle unions. */
1105 static void
1106 place_union_field (record_layout_info rli, tree field)
1108 update_alignment_for_field (rli, field, /*known_align=*/0);
1110 DECL_FIELD_OFFSET (field) = size_zero_node;
1111 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1112 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1114 /* If this is an ERROR_MARK return *after* having set the
1115 field at the start of the union. This helps when parsing
1116 invalid fields. */
1117 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1118 return;
1120 /* We assume the union's size will be a multiple of a byte so we don't
1121 bother with BITPOS. */
1122 if (TREE_CODE (rli->t) == UNION_TYPE)
1123 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1124 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1125 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1126 DECL_SIZE_UNIT (field), rli->offset);
1129 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1130 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1131 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1132 units of alignment than the underlying TYPE. */
1133 static int
1134 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1135 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1137 /* Note that the calculation of OFFSET might overflow; we calculate it so
1138 that we still get the right result as long as ALIGN is a power of two. */
1139 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1141 offset = offset % align;
1142 return ((offset + size + align - 1) / align
1143 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1145 #endif
1147 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1148 is a FIELD_DECL to be added after those fields already present in
1149 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1150 callers that desire that behavior must manually perform that step.) */
1152 void
1153 place_field (record_layout_info rli, tree field)
1155 /* The alignment required for FIELD. */
1156 unsigned int desired_align;
1157 /* The alignment FIELD would have if we just dropped it into the
1158 record as it presently stands. */
1159 unsigned int known_align;
1160 unsigned int actual_align;
1161 /* The type of this field. */
1162 tree type = TREE_TYPE (field);
1164 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1166 /* If FIELD is static, then treat it like a separate variable, not
1167 really like a structure field. If it is a FUNCTION_DECL, it's a
1168 method. In both cases, all we do is lay out the decl, and we do
1169 it *after* the record is laid out. */
1170 if (TREE_CODE (field) == VAR_DECL)
1172 vec_safe_push (rli->pending_statics, field);
1173 return;
1176 /* Enumerators and enum types which are local to this class need not
1177 be laid out. Likewise for initialized constant fields. */
1178 else if (TREE_CODE (field) != FIELD_DECL)
1179 return;
1181 /* Unions are laid out very differently than records, so split
1182 that code off to another function. */
1183 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1185 place_union_field (rli, field);
1186 return;
1189 else if (TREE_CODE (type) == ERROR_MARK)
1191 /* Place this field at the current allocation position, so we
1192 maintain monotonicity. */
1193 DECL_FIELD_OFFSET (field) = rli->offset;
1194 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1195 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1196 return;
1199 /* Work out the known alignment so far. Note that A & (-A) is the
1200 value of the least-significant bit in A that is one. */
1201 if (! integer_zerop (rli->bitpos))
1202 known_align = (tree_to_uhwi (rli->bitpos)
1203 & - tree_to_uhwi (rli->bitpos));
1204 else if (integer_zerop (rli->offset))
1205 known_align = 0;
1206 else if (tree_fits_uhwi_p (rli->offset))
1207 known_align = (BITS_PER_UNIT
1208 * (tree_to_uhwi (rli->offset)
1209 & - tree_to_uhwi (rli->offset)));
1210 else
1211 known_align = rli->offset_align;
1213 desired_align = update_alignment_for_field (rli, field, known_align);
1214 if (known_align == 0)
1215 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1217 if (warn_packed && DECL_PACKED (field))
1219 if (known_align >= TYPE_ALIGN (type))
1221 if (TYPE_ALIGN (type) > desired_align)
1223 if (STRICT_ALIGNMENT)
1224 warning (OPT_Wattributes, "packed attribute causes "
1225 "inefficient alignment for %q+D", field);
1226 /* Don't warn if DECL_PACKED was set by the type. */
1227 else if (!TYPE_PACKED (rli->t))
1228 warning (OPT_Wattributes, "packed attribute is "
1229 "unnecessary for %q+D", field);
1232 else
1233 rli->packed_maybe_necessary = 1;
1236 /* Does this field automatically have alignment it needs by virtue
1237 of the fields that precede it and the record's own alignment? */
1238 if (known_align < desired_align)
1240 /* No, we need to skip space before this field.
1241 Bump the cumulative size to multiple of field alignment. */
1243 if (!targetm.ms_bitfield_layout_p (rli->t)
1244 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1245 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1247 /* If the alignment is still within offset_align, just align
1248 the bit position. */
1249 if (desired_align < rli->offset_align)
1250 rli->bitpos = round_up (rli->bitpos, desired_align);
1251 else
1253 /* First adjust OFFSET by the partial bits, then align. */
1254 rli->offset
1255 = size_binop (PLUS_EXPR, rli->offset,
1256 fold_convert (sizetype,
1257 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1258 bitsize_unit_node)));
1259 rli->bitpos = bitsize_zero_node;
1261 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1264 if (! TREE_CONSTANT (rli->offset))
1265 rli->offset_align = desired_align;
1266 if (targetm.ms_bitfield_layout_p (rli->t))
1267 rli->prev_field = NULL;
1270 /* Handle compatibility with PCC. Note that if the record has any
1271 variable-sized fields, we need not worry about compatibility. */
1272 #ifdef PCC_BITFIELD_TYPE_MATTERS
1273 if (PCC_BITFIELD_TYPE_MATTERS
1274 && ! targetm.ms_bitfield_layout_p (rli->t)
1275 && TREE_CODE (field) == FIELD_DECL
1276 && type != error_mark_node
1277 && DECL_BIT_FIELD (field)
1278 && (! DECL_PACKED (field)
1279 /* Enter for these packed fields only to issue a warning. */
1280 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1281 && maximum_field_alignment == 0
1282 && ! integer_zerop (DECL_SIZE (field))
1283 && tree_fits_uhwi_p (DECL_SIZE (field))
1284 && tree_fits_uhwi_p (rli->offset)
1285 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1287 unsigned int type_align = TYPE_ALIGN (type);
1288 tree dsize = DECL_SIZE (field);
1289 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1290 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1291 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1293 #ifdef ADJUST_FIELD_ALIGN
1294 if (! TYPE_USER_ALIGN (type))
1295 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1296 #endif
1298 /* A bit field may not span more units of alignment of its type
1299 than its type itself. Advance to next boundary if necessary. */
1300 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1302 if (DECL_PACKED (field))
1304 if (warn_packed_bitfield_compat == 1)
1305 inform
1306 (input_location,
1307 "offset of packed bit-field %qD has changed in GCC 4.4",
1308 field);
1310 else
1311 rli->bitpos = round_up (rli->bitpos, type_align);
1314 if (! DECL_PACKED (field))
1315 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1317 #endif
1319 #ifdef BITFIELD_NBYTES_LIMITED
1320 if (BITFIELD_NBYTES_LIMITED
1321 && ! targetm.ms_bitfield_layout_p (rli->t)
1322 && TREE_CODE (field) == FIELD_DECL
1323 && type != error_mark_node
1324 && DECL_BIT_FIELD_TYPE (field)
1325 && ! DECL_PACKED (field)
1326 && ! integer_zerop (DECL_SIZE (field))
1327 && tree_fits_uhwi_p (DECL_SIZE (field))
1328 && tree_fits_uhwi_p (rli->offset)
1329 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1331 unsigned int type_align = TYPE_ALIGN (type);
1332 tree dsize = DECL_SIZE (field);
1333 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1334 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1335 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1337 #ifdef ADJUST_FIELD_ALIGN
1338 if (! TYPE_USER_ALIGN (type))
1339 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1340 #endif
1342 if (maximum_field_alignment != 0)
1343 type_align = MIN (type_align, maximum_field_alignment);
1344 /* ??? This test is opposite the test in the containing if
1345 statement, so this code is unreachable currently. */
1346 else if (DECL_PACKED (field))
1347 type_align = MIN (type_align, BITS_PER_UNIT);
1349 /* A bit field may not span the unit of alignment of its type.
1350 Advance to next boundary if necessary. */
1351 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1352 rli->bitpos = round_up (rli->bitpos, type_align);
1354 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1356 #endif
1358 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1359 A subtlety:
1360 When a bit field is inserted into a packed record, the whole
1361 size of the underlying type is used by one or more same-size
1362 adjacent bitfields. (That is, if its long:3, 32 bits is
1363 used in the record, and any additional adjacent long bitfields are
1364 packed into the same chunk of 32 bits. However, if the size
1365 changes, a new field of that size is allocated.) In an unpacked
1366 record, this is the same as using alignment, but not equivalent
1367 when packing.
1369 Note: for compatibility, we use the type size, not the type alignment
1370 to determine alignment, since that matches the documentation */
1372 if (targetm.ms_bitfield_layout_p (rli->t))
1374 tree prev_saved = rli->prev_field;
1375 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1377 /* This is a bitfield if it exists. */
1378 if (rli->prev_field)
1380 /* If both are bitfields, nonzero, and the same size, this is
1381 the middle of a run. Zero declared size fields are special
1382 and handled as "end of run". (Note: it's nonzero declared
1383 size, but equal type sizes!) (Since we know that both
1384 the current and previous fields are bitfields by the
1385 time we check it, DECL_SIZE must be present for both.) */
1386 if (DECL_BIT_FIELD_TYPE (field)
1387 && !integer_zerop (DECL_SIZE (field))
1388 && !integer_zerop (DECL_SIZE (rli->prev_field))
1389 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1390 && tree_fits_uhwi_p (TYPE_SIZE (type))
1391 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1393 /* We're in the middle of a run of equal type size fields; make
1394 sure we realign if we run out of bits. (Not decl size,
1395 type size!) */
1396 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1398 if (rli->remaining_in_alignment < bitsize)
1400 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1402 /* out of bits; bump up to next 'word'. */
1403 rli->bitpos
1404 = size_binop (PLUS_EXPR, rli->bitpos,
1405 bitsize_int (rli->remaining_in_alignment));
1406 rli->prev_field = field;
1407 if (typesize < bitsize)
1408 rli->remaining_in_alignment = 0;
1409 else
1410 rli->remaining_in_alignment = typesize - bitsize;
1412 else
1413 rli->remaining_in_alignment -= bitsize;
1415 else
1417 /* End of a run: if leaving a run of bitfields of the same type
1418 size, we have to "use up" the rest of the bits of the type
1419 size.
1421 Compute the new position as the sum of the size for the prior
1422 type and where we first started working on that type.
1423 Note: since the beginning of the field was aligned then
1424 of course the end will be too. No round needed. */
1426 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1428 rli->bitpos
1429 = size_binop (PLUS_EXPR, rli->bitpos,
1430 bitsize_int (rli->remaining_in_alignment));
1432 else
1433 /* We "use up" size zero fields; the code below should behave
1434 as if the prior field was not a bitfield. */
1435 prev_saved = NULL;
1437 /* Cause a new bitfield to be captured, either this time (if
1438 currently a bitfield) or next time we see one. */
1439 if (!DECL_BIT_FIELD_TYPE (field)
1440 || integer_zerop (DECL_SIZE (field)))
1441 rli->prev_field = NULL;
1444 normalize_rli (rli);
1447 /* If we're starting a new run of same type size bitfields
1448 (or a run of non-bitfields), set up the "first of the run"
1449 fields.
1451 That is, if the current field is not a bitfield, or if there
1452 was a prior bitfield the type sizes differ, or if there wasn't
1453 a prior bitfield the size of the current field is nonzero.
1455 Note: we must be sure to test ONLY the type size if there was
1456 a prior bitfield and ONLY for the current field being zero if
1457 there wasn't. */
1459 if (!DECL_BIT_FIELD_TYPE (field)
1460 || (prev_saved != NULL
1461 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1462 : !integer_zerop (DECL_SIZE (field)) ))
1464 /* Never smaller than a byte for compatibility. */
1465 unsigned int type_align = BITS_PER_UNIT;
1467 /* (When not a bitfield), we could be seeing a flex array (with
1468 no DECL_SIZE). Since we won't be using remaining_in_alignment
1469 until we see a bitfield (and come by here again) we just skip
1470 calculating it. */
1471 if (DECL_SIZE (field) != NULL
1472 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1473 && tree_fits_uhwi_p (DECL_SIZE (field)))
1475 unsigned HOST_WIDE_INT bitsize
1476 = tree_to_uhwi (DECL_SIZE (field));
1477 unsigned HOST_WIDE_INT typesize
1478 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1480 if (typesize < bitsize)
1481 rli->remaining_in_alignment = 0;
1482 else
1483 rli->remaining_in_alignment = typesize - bitsize;
1486 /* Now align (conventionally) for the new type. */
1487 type_align = TYPE_ALIGN (TREE_TYPE (field));
1489 if (maximum_field_alignment != 0)
1490 type_align = MIN (type_align, maximum_field_alignment);
1492 rli->bitpos = round_up (rli->bitpos, type_align);
1494 /* If we really aligned, don't allow subsequent bitfields
1495 to undo that. */
1496 rli->prev_field = NULL;
1500 /* Offset so far becomes the position of this field after normalizing. */
1501 normalize_rli (rli);
1502 DECL_FIELD_OFFSET (field) = rli->offset;
1503 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1504 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1506 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1507 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1508 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1510 /* If this field ended up more aligned than we thought it would be (we
1511 approximate this by seeing if its position changed), lay out the field
1512 again; perhaps we can use an integral mode for it now. */
1513 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1514 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1515 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1516 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1517 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1518 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1519 actual_align = (BITS_PER_UNIT
1520 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1521 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1522 else
1523 actual_align = DECL_OFFSET_ALIGN (field);
1524 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1525 store / extract bit field operations will check the alignment of the
1526 record against the mode of bit fields. */
1528 if (known_align != actual_align)
1529 layout_decl (field, actual_align);
1531 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1532 rli->prev_field = field;
1534 /* Now add size of this field to the size of the record. If the size is
1535 not constant, treat the field as being a multiple of bytes and just
1536 adjust the offset, resetting the bit position. Otherwise, apportion the
1537 size amongst the bit position and offset. First handle the case of an
1538 unspecified size, which can happen when we have an invalid nested struct
1539 definition, such as struct j { struct j { int i; } }. The error message
1540 is printed in finish_struct. */
1541 if (DECL_SIZE (field) == 0)
1542 /* Do nothing. */;
1543 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1544 || TREE_OVERFLOW (DECL_SIZE (field)))
1546 rli->offset
1547 = size_binop (PLUS_EXPR, rli->offset,
1548 fold_convert (sizetype,
1549 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1550 bitsize_unit_node)));
1551 rli->offset
1552 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1553 rli->bitpos = bitsize_zero_node;
1554 rli->offset_align = MIN (rli->offset_align, desired_align);
1556 else if (targetm.ms_bitfield_layout_p (rli->t))
1558 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1560 /* If we ended a bitfield before the full length of the type then
1561 pad the struct out to the full length of the last type. */
1562 if ((DECL_CHAIN (field) == NULL
1563 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1564 && DECL_BIT_FIELD_TYPE (field)
1565 && !integer_zerop (DECL_SIZE (field)))
1566 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1567 bitsize_int (rli->remaining_in_alignment));
1569 normalize_rli (rli);
1571 else
1573 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1574 normalize_rli (rli);
1578 /* Assuming that all the fields have been laid out, this function uses
1579 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1580 indicated by RLI. */
1582 static void
1583 finalize_record_size (record_layout_info rli)
1585 tree unpadded_size, unpadded_size_unit;
1587 /* Now we want just byte and bit offsets, so set the offset alignment
1588 to be a byte and then normalize. */
1589 rli->offset_align = BITS_PER_UNIT;
1590 normalize_rli (rli);
1592 /* Determine the desired alignment. */
1593 #ifdef ROUND_TYPE_ALIGN
1594 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1595 rli->record_align);
1596 #else
1597 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1598 #endif
1600 /* Compute the size so far. Be sure to allow for extra bits in the
1601 size in bytes. We have guaranteed above that it will be no more
1602 than a single byte. */
1603 unpadded_size = rli_size_so_far (rli);
1604 unpadded_size_unit = rli_size_unit_so_far (rli);
1605 if (! integer_zerop (rli->bitpos))
1606 unpadded_size_unit
1607 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1609 if (TREE_CODE (unpadded_size_unit) == INTEGER_CST
1610 && !TREE_OVERFLOW (unpadded_size_unit)
1611 && !valid_constant_size_p (unpadded_size_unit))
1612 error ("type %qT is too large", rli->t);
1614 /* Round the size up to be a multiple of the required alignment. */
1615 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1616 TYPE_SIZE_UNIT (rli->t)
1617 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1619 if (TREE_CONSTANT (unpadded_size)
1620 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1621 && input_location != BUILTINS_LOCATION)
1622 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1624 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1625 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1626 && TREE_CONSTANT (unpadded_size))
1628 tree unpacked_size;
1630 #ifdef ROUND_TYPE_ALIGN
1631 rli->unpacked_align
1632 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1633 #else
1634 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1635 #endif
1637 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1638 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1640 if (TYPE_NAME (rli->t))
1642 tree name;
1644 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1645 name = TYPE_NAME (rli->t);
1646 else
1647 name = DECL_NAME (TYPE_NAME (rli->t));
1649 if (STRICT_ALIGNMENT)
1650 warning (OPT_Wpacked, "packed attribute causes inefficient "
1651 "alignment for %qE", name);
1652 else
1653 warning (OPT_Wpacked,
1654 "packed attribute is unnecessary for %qE", name);
1656 else
1658 if (STRICT_ALIGNMENT)
1659 warning (OPT_Wpacked,
1660 "packed attribute causes inefficient alignment");
1661 else
1662 warning (OPT_Wpacked, "packed attribute is unnecessary");
1668 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1670 void
1671 compute_record_mode (tree type)
1673 tree field;
1674 enum machine_mode mode = VOIDmode;
1676 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1677 However, if possible, we use a mode that fits in a register
1678 instead, in order to allow for better optimization down the
1679 line. */
1680 SET_TYPE_MODE (type, BLKmode);
1682 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1683 return;
1685 /* A record which has any BLKmode members must itself be
1686 BLKmode; it can't go in a register. Unless the member is
1687 BLKmode only because it isn't aligned. */
1688 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1690 if (TREE_CODE (field) != FIELD_DECL)
1691 continue;
1693 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1694 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1695 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1696 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1697 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1698 || ! tree_fits_uhwi_p (bit_position (field))
1699 || DECL_SIZE (field) == 0
1700 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1701 return;
1703 /* If this field is the whole struct, remember its mode so
1704 that, say, we can put a double in a class into a DF
1705 register instead of forcing it to live in the stack. */
1706 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1707 mode = DECL_MODE (field);
1709 /* With some targets, it is sub-optimal to access an aligned
1710 BLKmode structure as a scalar. */
1711 if (targetm.member_type_forces_blk (field, mode))
1712 return;
1715 /* If we only have one real field; use its mode if that mode's size
1716 matches the type's size. This only applies to RECORD_TYPE. This
1717 does not apply to unions. */
1718 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1719 && tree_fits_uhwi_p (TYPE_SIZE (type))
1720 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1721 SET_TYPE_MODE (type, mode);
1722 else
1723 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1725 /* If structure's known alignment is less than what the scalar
1726 mode would need, and it matters, then stick with BLKmode. */
1727 if (TYPE_MODE (type) != BLKmode
1728 && STRICT_ALIGNMENT
1729 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1730 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1732 /* If this is the only reason this type is BLKmode, then
1733 don't force containing types to be BLKmode. */
1734 TYPE_NO_FORCE_BLK (type) = 1;
1735 SET_TYPE_MODE (type, BLKmode);
1739 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1740 out. */
1742 static void
1743 finalize_type_size (tree type)
1745 /* Normally, use the alignment corresponding to the mode chosen.
1746 However, where strict alignment is not required, avoid
1747 over-aligning structures, since most compilers do not do this
1748 alignment. */
1750 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1751 && (STRICT_ALIGNMENT
1752 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1753 && TREE_CODE (type) != QUAL_UNION_TYPE
1754 && TREE_CODE (type) != ARRAY_TYPE)))
1756 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1758 /* Don't override a larger alignment requirement coming from a user
1759 alignment of one of the fields. */
1760 if (mode_align >= TYPE_ALIGN (type))
1762 TYPE_ALIGN (type) = mode_align;
1763 TYPE_USER_ALIGN (type) = 0;
1767 /* Do machine-dependent extra alignment. */
1768 #ifdef ROUND_TYPE_ALIGN
1769 TYPE_ALIGN (type)
1770 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1771 #endif
1773 /* If we failed to find a simple way to calculate the unit size
1774 of the type, find it by division. */
1775 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1776 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1777 result will fit in sizetype. We will get more efficient code using
1778 sizetype, so we force a conversion. */
1779 TYPE_SIZE_UNIT (type)
1780 = fold_convert (sizetype,
1781 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1782 bitsize_unit_node));
1784 if (TYPE_SIZE (type) != 0)
1786 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1787 TYPE_SIZE_UNIT (type)
1788 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1791 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1792 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1793 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1794 if (TYPE_SIZE_UNIT (type) != 0
1795 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1796 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1798 /* Also layout any other variants of the type. */
1799 if (TYPE_NEXT_VARIANT (type)
1800 || type != TYPE_MAIN_VARIANT (type))
1802 tree variant;
1803 /* Record layout info of this variant. */
1804 tree size = TYPE_SIZE (type);
1805 tree size_unit = TYPE_SIZE_UNIT (type);
1806 unsigned int align = TYPE_ALIGN (type);
1807 unsigned int precision = TYPE_PRECISION (type);
1808 unsigned int user_align = TYPE_USER_ALIGN (type);
1809 enum machine_mode mode = TYPE_MODE (type);
1811 /* Copy it into all variants. */
1812 for (variant = TYPE_MAIN_VARIANT (type);
1813 variant != 0;
1814 variant = TYPE_NEXT_VARIANT (variant))
1816 TYPE_SIZE (variant) = size;
1817 TYPE_SIZE_UNIT (variant) = size_unit;
1818 TYPE_ALIGN (variant) = align;
1819 TYPE_PRECISION (variant) = precision;
1820 TYPE_USER_ALIGN (variant) = user_align;
1821 SET_TYPE_MODE (variant, mode);
1826 /* Return a new underlying object for a bitfield started with FIELD. */
1828 static tree
1829 start_bitfield_representative (tree field)
1831 tree repr = make_node (FIELD_DECL);
1832 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1833 /* Force the representative to begin at a BITS_PER_UNIT aligned
1834 boundary - C++ may use tail-padding of a base object to
1835 continue packing bits so the bitfield region does not start
1836 at bit zero (see g++.dg/abi/bitfield5.C for example).
1837 Unallocated bits may happen for other reasons as well,
1838 for example Ada which allows explicit bit-granular structure layout. */
1839 DECL_FIELD_BIT_OFFSET (repr)
1840 = size_binop (BIT_AND_EXPR,
1841 DECL_FIELD_BIT_OFFSET (field),
1842 bitsize_int (~(BITS_PER_UNIT - 1)));
1843 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1844 DECL_SIZE (repr) = DECL_SIZE (field);
1845 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1846 DECL_PACKED (repr) = DECL_PACKED (field);
1847 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1848 return repr;
1851 /* Finish up a bitfield group that was started by creating the underlying
1852 object REPR with the last field in the bitfield group FIELD. */
1854 static void
1855 finish_bitfield_representative (tree repr, tree field)
1857 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1858 enum machine_mode mode;
1859 tree nextf, size;
1861 size = size_diffop (DECL_FIELD_OFFSET (field),
1862 DECL_FIELD_OFFSET (repr));
1863 gcc_assert (tree_fits_uhwi_p (size));
1864 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1865 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1866 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1867 + tree_to_uhwi (DECL_SIZE (field)));
1869 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1870 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1872 /* Now nothing tells us how to pad out bitsize ... */
1873 nextf = DECL_CHAIN (field);
1874 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1875 nextf = DECL_CHAIN (nextf);
1876 if (nextf)
1878 tree maxsize;
1879 /* If there was an error, the field may be not laid out
1880 correctly. Don't bother to do anything. */
1881 if (TREE_TYPE (nextf) == error_mark_node)
1882 return;
1883 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1884 DECL_FIELD_OFFSET (repr));
1885 if (tree_fits_uhwi_p (maxsize))
1887 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1888 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1889 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1890 /* If the group ends within a bitfield nextf does not need to be
1891 aligned to BITS_PER_UNIT. Thus round up. */
1892 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1894 else
1895 maxbitsize = bitsize;
1897 else
1899 /* ??? If you consider that tail-padding of this struct might be
1900 re-used when deriving from it we cannot really do the following
1901 and thus need to set maxsize to bitsize? Also we cannot
1902 generally rely on maxsize to fold to an integer constant, so
1903 use bitsize as fallback for this case. */
1904 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1905 DECL_FIELD_OFFSET (repr));
1906 if (tree_fits_uhwi_p (maxsize))
1907 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1908 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1909 else
1910 maxbitsize = bitsize;
1913 /* Only if we don't artificially break up the representative in
1914 the middle of a large bitfield with different possibly
1915 overlapping representatives. And all representatives start
1916 at byte offset. */
1917 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1919 /* Find the smallest nice mode to use. */
1920 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1921 mode = GET_MODE_WIDER_MODE (mode))
1922 if (GET_MODE_BITSIZE (mode) >= bitsize)
1923 break;
1924 if (mode != VOIDmode
1925 && (GET_MODE_BITSIZE (mode) > maxbitsize
1926 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1927 mode = VOIDmode;
1929 if (mode == VOIDmode)
1931 /* We really want a BLKmode representative only as a last resort,
1932 considering the member b in
1933 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1934 Otherwise we simply want to split the representative up
1935 allowing for overlaps within the bitfield region as required for
1936 struct { int a : 7; int b : 7;
1937 int c : 10; int d; } __attribute__((packed));
1938 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1939 DECL_SIZE (repr) = bitsize_int (bitsize);
1940 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1941 DECL_MODE (repr) = BLKmode;
1942 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1943 bitsize / BITS_PER_UNIT);
1945 else
1947 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1948 DECL_SIZE (repr) = bitsize_int (modesize);
1949 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1950 DECL_MODE (repr) = mode;
1951 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1954 /* Remember whether the bitfield group is at the end of the
1955 structure or not. */
1956 DECL_CHAIN (repr) = nextf;
1959 /* Compute and set FIELD_DECLs for the underlying objects we should
1960 use for bitfield access for the structure laid out with RLI. */
1962 static void
1963 finish_bitfield_layout (record_layout_info rli)
1965 tree field, prev;
1966 tree repr = NULL_TREE;
1968 /* Unions would be special, for the ease of type-punning optimizations
1969 we could use the underlying type as hint for the representative
1970 if the bitfield would fit and the representative would not exceed
1971 the union in size. */
1972 if (TREE_CODE (rli->t) != RECORD_TYPE)
1973 return;
1975 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1976 field; field = DECL_CHAIN (field))
1978 if (TREE_CODE (field) != FIELD_DECL)
1979 continue;
1981 /* In the C++ memory model, consecutive bit fields in a structure are
1982 considered one memory location and updating a memory location
1983 may not store into adjacent memory locations. */
1984 if (!repr
1985 && DECL_BIT_FIELD_TYPE (field))
1987 /* Start new representative. */
1988 repr = start_bitfield_representative (field);
1990 else if (repr
1991 && ! DECL_BIT_FIELD_TYPE (field))
1993 /* Finish off new representative. */
1994 finish_bitfield_representative (repr, prev);
1995 repr = NULL_TREE;
1997 else if (DECL_BIT_FIELD_TYPE (field))
1999 gcc_assert (repr != NULL_TREE);
2001 /* Zero-size bitfields finish off a representative and
2002 do not have a representative themselves. This is
2003 required by the C++ memory model. */
2004 if (integer_zerop (DECL_SIZE (field)))
2006 finish_bitfield_representative (repr, prev);
2007 repr = NULL_TREE;
2010 /* We assume that either DECL_FIELD_OFFSET of the representative
2011 and each bitfield member is a constant or they are equal.
2012 This is because we need to be able to compute the bit-offset
2013 of each field relative to the representative in get_bit_range
2014 during RTL expansion.
2015 If these constraints are not met, simply force a new
2016 representative to be generated. That will at most
2017 generate worse code but still maintain correctness with
2018 respect to the C++ memory model. */
2019 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2020 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2021 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2022 DECL_FIELD_OFFSET (field), 0)))
2024 finish_bitfield_representative (repr, prev);
2025 repr = start_bitfield_representative (field);
2028 else
2029 continue;
2031 if (repr)
2032 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2034 prev = field;
2037 if (repr)
2038 finish_bitfield_representative (repr, prev);
2041 /* Do all of the work required to layout the type indicated by RLI,
2042 once the fields have been laid out. This function will call `free'
2043 for RLI, unless FREE_P is false. Passing a value other than false
2044 for FREE_P is bad practice; this option only exists to support the
2045 G++ 3.2 ABI. */
2047 void
2048 finish_record_layout (record_layout_info rli, int free_p)
2050 tree variant;
2052 /* Compute the final size. */
2053 finalize_record_size (rli);
2055 /* Compute the TYPE_MODE for the record. */
2056 compute_record_mode (rli->t);
2058 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2059 finalize_type_size (rli->t);
2061 /* Compute bitfield representatives. */
2062 finish_bitfield_layout (rli);
2064 /* Propagate TYPE_PACKED to variants. With C++ templates,
2065 handle_packed_attribute is too early to do this. */
2066 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2067 variant = TYPE_NEXT_VARIANT (variant))
2068 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2070 /* Lay out any static members. This is done now because their type
2071 may use the record's type. */
2072 while (!vec_safe_is_empty (rli->pending_statics))
2073 layout_decl (rli->pending_statics->pop (), 0);
2075 /* Clean up. */
2076 if (free_p)
2078 vec_free (rli->pending_statics);
2079 free (rli);
2084 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2085 NAME, its fields are chained in reverse on FIELDS.
2087 If ALIGN_TYPE is non-null, it is given the same alignment as
2088 ALIGN_TYPE. */
2090 void
2091 finish_builtin_struct (tree type, const char *name, tree fields,
2092 tree align_type)
2094 tree tail, next;
2096 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2098 DECL_FIELD_CONTEXT (fields) = type;
2099 next = DECL_CHAIN (fields);
2100 DECL_CHAIN (fields) = tail;
2102 TYPE_FIELDS (type) = tail;
2104 if (align_type)
2106 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2107 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2110 layout_type (type);
2111 #if 0 /* not yet, should get fixed properly later */
2112 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2113 #else
2114 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2115 TYPE_DECL, get_identifier (name), type);
2116 #endif
2117 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2118 layout_decl (TYPE_NAME (type), 0);
2121 /* Calculate the mode, size, and alignment for TYPE.
2122 For an array type, calculate the element separation as well.
2123 Record TYPE on the chain of permanent or temporary types
2124 so that dbxout will find out about it.
2126 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2127 layout_type does nothing on such a type.
2129 If the type is incomplete, its TYPE_SIZE remains zero. */
2131 void
2132 layout_type (tree type)
2134 gcc_assert (type);
2136 if (type == error_mark_node)
2137 return;
2139 /* Do nothing if type has been laid out before. */
2140 if (TYPE_SIZE (type))
2141 return;
2143 switch (TREE_CODE (type))
2145 case LANG_TYPE:
2146 /* This kind of type is the responsibility
2147 of the language-specific code. */
2148 gcc_unreachable ();
2150 case BOOLEAN_TYPE:
2151 case INTEGER_TYPE:
2152 case ENUMERAL_TYPE:
2153 SET_TYPE_MODE (type,
2154 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2155 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2156 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2157 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2158 break;
2160 case REAL_TYPE:
2161 SET_TYPE_MODE (type,
2162 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2163 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2164 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2165 break;
2167 case FIXED_POINT_TYPE:
2168 /* TYPE_MODE (type) has been set already. */
2169 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2170 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2171 break;
2173 case COMPLEX_TYPE:
2174 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2175 SET_TYPE_MODE (type,
2176 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2177 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2178 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2179 0));
2180 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2181 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2182 break;
2184 case VECTOR_TYPE:
2186 int nunits = TYPE_VECTOR_SUBPARTS (type);
2187 tree innertype = TREE_TYPE (type);
2189 gcc_assert (!(nunits & (nunits - 1)));
2191 /* Find an appropriate mode for the vector type. */
2192 if (TYPE_MODE (type) == VOIDmode)
2193 SET_TYPE_MODE (type,
2194 mode_for_vector (TYPE_MODE (innertype), nunits));
2196 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2197 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2198 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2199 TYPE_SIZE_UNIT (innertype),
2200 size_int (nunits));
2201 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2202 bitsize_int (nunits));
2204 /* For vector types, we do not default to the mode's alignment.
2205 Instead, query a target hook, defaulting to natural alignment.
2206 This prevents ABI changes depending on whether or not native
2207 vector modes are supported. */
2208 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2210 /* However, if the underlying mode requires a bigger alignment than
2211 what the target hook provides, we cannot use the mode. For now,
2212 simply reject that case. */
2213 gcc_assert (TYPE_ALIGN (type)
2214 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2215 break;
2218 case VOID_TYPE:
2219 /* This is an incomplete type and so doesn't have a size. */
2220 TYPE_ALIGN (type) = 1;
2221 TYPE_USER_ALIGN (type) = 0;
2222 SET_TYPE_MODE (type, VOIDmode);
2223 break;
2225 case OFFSET_TYPE:
2226 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2227 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2228 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2229 integral, which may be an __intN. */
2230 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2231 TYPE_PRECISION (type) = POINTER_SIZE;
2232 break;
2234 case FUNCTION_TYPE:
2235 case METHOD_TYPE:
2236 /* It's hard to see what the mode and size of a function ought to
2237 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2238 make it consistent with that. */
2239 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2240 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2241 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2242 break;
2244 case POINTER_TYPE:
2245 case REFERENCE_TYPE:
2247 enum machine_mode mode = TYPE_MODE (type);
2248 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2250 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2251 mode = targetm.addr_space.address_mode (as);
2254 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2255 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2256 TYPE_UNSIGNED (type) = 1;
2257 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2259 break;
2261 case ARRAY_TYPE:
2263 tree index = TYPE_DOMAIN (type);
2264 tree element = TREE_TYPE (type);
2266 build_pointer_type (element);
2268 /* We need to know both bounds in order to compute the size. */
2269 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2270 && TYPE_SIZE (element))
2272 tree ub = TYPE_MAX_VALUE (index);
2273 tree lb = TYPE_MIN_VALUE (index);
2274 tree element_size = TYPE_SIZE (element);
2275 tree length;
2277 /* Make sure that an array of zero-sized element is zero-sized
2278 regardless of its extent. */
2279 if (integer_zerop (element_size))
2280 length = size_zero_node;
2282 /* The computation should happen in the original signedness so
2283 that (possible) negative values are handled appropriately
2284 when determining overflow. */
2285 else
2287 /* ??? When it is obvious that the range is signed
2288 represent it using ssizetype. */
2289 if (TREE_CODE (lb) == INTEGER_CST
2290 && TREE_CODE (ub) == INTEGER_CST
2291 && TYPE_UNSIGNED (TREE_TYPE (lb))
2292 && tree_int_cst_lt (ub, lb))
2294 lb = wide_int_to_tree (ssizetype,
2295 offset_int::from (lb, SIGNED));
2296 ub = wide_int_to_tree (ssizetype,
2297 offset_int::from (ub, SIGNED));
2299 length
2300 = fold_convert (sizetype,
2301 size_binop (PLUS_EXPR,
2302 build_int_cst (TREE_TYPE (lb), 1),
2303 size_binop (MINUS_EXPR, ub, lb)));
2306 /* ??? We have no way to distinguish a null-sized array from an
2307 array spanning the whole sizetype range, so we arbitrarily
2308 decide that [0, -1] is the only valid representation. */
2309 if (integer_zerop (length)
2310 && TREE_OVERFLOW (length)
2311 && integer_zerop (lb))
2312 length = size_zero_node;
2314 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2315 fold_convert (bitsizetype,
2316 length));
2318 /* If we know the size of the element, calculate the total size
2319 directly, rather than do some division thing below. This
2320 optimization helps Fortran assumed-size arrays (where the
2321 size of the array is determined at runtime) substantially. */
2322 if (TYPE_SIZE_UNIT (element))
2323 TYPE_SIZE_UNIT (type)
2324 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2327 /* Now round the alignment and size,
2328 using machine-dependent criteria if any. */
2330 #ifdef ROUND_TYPE_ALIGN
2331 TYPE_ALIGN (type)
2332 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2333 #else
2334 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2335 #endif
2336 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2337 SET_TYPE_MODE (type, BLKmode);
2338 if (TYPE_SIZE (type) != 0
2339 && ! targetm.member_type_forces_blk (type, VOIDmode)
2340 /* BLKmode elements force BLKmode aggregate;
2341 else extract/store fields may lose. */
2342 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2343 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2345 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2346 TYPE_SIZE (type)));
2347 if (TYPE_MODE (type) != BLKmode
2348 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2349 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2351 TYPE_NO_FORCE_BLK (type) = 1;
2352 SET_TYPE_MODE (type, BLKmode);
2355 /* When the element size is constant, check that it is at least as
2356 large as the element alignment. */
2357 if (TYPE_SIZE_UNIT (element)
2358 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2359 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2360 TYPE_ALIGN_UNIT. */
2361 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2362 && !integer_zerop (TYPE_SIZE_UNIT (element))
2363 && compare_tree_int (TYPE_SIZE_UNIT (element),
2364 TYPE_ALIGN_UNIT (element)) < 0)
2365 error ("alignment of array elements is greater than element size");
2366 break;
2369 case RECORD_TYPE:
2370 case UNION_TYPE:
2371 case QUAL_UNION_TYPE:
2373 tree field;
2374 record_layout_info rli;
2376 /* Initialize the layout information. */
2377 rli = start_record_layout (type);
2379 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2380 in the reverse order in building the COND_EXPR that denotes
2381 its size. We reverse them again later. */
2382 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2383 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2385 /* Place all the fields. */
2386 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2387 place_field (rli, field);
2389 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2390 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2392 /* Finish laying out the record. */
2393 finish_record_layout (rli, /*free_p=*/true);
2395 break;
2397 default:
2398 gcc_unreachable ();
2401 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2402 records and unions, finish_record_layout already called this
2403 function. */
2404 if (TREE_CODE (type) != RECORD_TYPE
2405 && TREE_CODE (type) != UNION_TYPE
2406 && TREE_CODE (type) != QUAL_UNION_TYPE)
2407 finalize_type_size (type);
2409 /* We should never see alias sets on incomplete aggregates. And we
2410 should not call layout_type on not incomplete aggregates. */
2411 if (AGGREGATE_TYPE_P (type))
2412 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2415 /* Return the least alignment required for type TYPE. */
2417 unsigned int
2418 min_align_of_type (tree type)
2420 unsigned int align = TYPE_ALIGN (type);
2421 align = MIN (align, BIGGEST_ALIGNMENT);
2422 if (!TYPE_USER_ALIGN (type))
2424 #ifdef BIGGEST_FIELD_ALIGNMENT
2425 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2426 #endif
2427 unsigned int field_align = align;
2428 #ifdef ADJUST_FIELD_ALIGN
2429 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2430 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2431 ggc_free (field);
2432 #endif
2433 align = MIN (align, field_align);
2435 return align / BITS_PER_UNIT;
2438 /* Vector types need to re-check the target flags each time we report
2439 the machine mode. We need to do this because attribute target can
2440 change the result of vector_mode_supported_p and have_regs_of_mode
2441 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2442 change on a per-function basis. */
2443 /* ??? Possibly a better solution is to run through all the types
2444 referenced by a function and re-compute the TYPE_MODE once, rather
2445 than make the TYPE_MODE macro call a function. */
2447 enum machine_mode
2448 vector_type_mode (const_tree t)
2450 enum machine_mode mode;
2452 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2454 mode = t->type_common.mode;
2455 if (VECTOR_MODE_P (mode)
2456 && (!targetm.vector_mode_supported_p (mode)
2457 || !have_regs_of_mode[mode]))
2459 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2461 /* For integers, try mapping it to a same-sized scalar mode. */
2462 if (GET_MODE_CLASS (innermode) == MODE_INT)
2464 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2465 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2467 if (mode != VOIDmode && have_regs_of_mode[mode])
2468 return mode;
2471 return BLKmode;
2474 return mode;
2477 /* Create and return a type for signed integers of PRECISION bits. */
2479 tree
2480 make_signed_type (int precision)
2482 tree type = make_node (INTEGER_TYPE);
2484 TYPE_PRECISION (type) = precision;
2486 fixup_signed_type (type);
2487 return type;
2490 /* Create and return a type for unsigned integers of PRECISION bits. */
2492 tree
2493 make_unsigned_type (int precision)
2495 tree type = make_node (INTEGER_TYPE);
2497 TYPE_PRECISION (type) = precision;
2499 fixup_unsigned_type (type);
2500 return type;
2503 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2504 and SATP. */
2506 tree
2507 make_fract_type (int precision, int unsignedp, int satp)
2509 tree type = make_node (FIXED_POINT_TYPE);
2511 TYPE_PRECISION (type) = precision;
2513 if (satp)
2514 TYPE_SATURATING (type) = 1;
2516 /* Lay out the type: set its alignment, size, etc. */
2517 if (unsignedp)
2519 TYPE_UNSIGNED (type) = 1;
2520 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2522 else
2523 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2524 layout_type (type);
2526 return type;
2529 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2530 and SATP. */
2532 tree
2533 make_accum_type (int precision, int unsignedp, int satp)
2535 tree type = make_node (FIXED_POINT_TYPE);
2537 TYPE_PRECISION (type) = precision;
2539 if (satp)
2540 TYPE_SATURATING (type) = 1;
2542 /* Lay out the type: set its alignment, size, etc. */
2543 if (unsignedp)
2545 TYPE_UNSIGNED (type) = 1;
2546 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2548 else
2549 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2550 layout_type (type);
2552 return type;
2555 /* Initialize sizetypes so layout_type can use them. */
2557 void
2558 initialize_sizetypes (void)
2560 int precision, bprecision;
2562 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2563 if (strcmp (SIZETYPE, "unsigned int") == 0)
2564 precision = INT_TYPE_SIZE;
2565 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2566 precision = LONG_TYPE_SIZE;
2567 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2568 precision = LONG_LONG_TYPE_SIZE;
2569 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2570 precision = SHORT_TYPE_SIZE;
2571 else
2573 int i;
2575 precision = -1;
2576 for (i = 0; i < NUM_INT_N_ENTS; i++)
2577 if (int_n_enabled_p[i])
2579 char name[50];
2580 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2582 if (strcmp (name, SIZETYPE) == 0)
2584 precision = int_n_data[i].bitsize;
2587 if (precision == -1)
2588 gcc_unreachable ();
2591 bprecision
2592 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2593 bprecision
2594 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2595 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2596 bprecision = HOST_BITS_PER_DOUBLE_INT;
2598 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2599 sizetype = make_node (INTEGER_TYPE);
2600 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2601 TYPE_PRECISION (sizetype) = precision;
2602 TYPE_UNSIGNED (sizetype) = 1;
2603 bitsizetype = make_node (INTEGER_TYPE);
2604 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2605 TYPE_PRECISION (bitsizetype) = bprecision;
2606 TYPE_UNSIGNED (bitsizetype) = 1;
2608 /* Now layout both types manually. */
2609 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2610 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2611 TYPE_SIZE (sizetype) = bitsize_int (precision);
2612 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2613 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2615 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2616 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2617 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2618 TYPE_SIZE_UNIT (bitsizetype)
2619 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2620 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2622 /* Create the signed variants of *sizetype. */
2623 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2624 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2625 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2626 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2629 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2630 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2631 for TYPE, based on the PRECISION and whether or not the TYPE
2632 IS_UNSIGNED. PRECISION need not correspond to a width supported
2633 natively by the hardware; for example, on a machine with 8-bit,
2634 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2635 61. */
2637 void
2638 set_min_and_max_values_for_integral_type (tree type,
2639 int precision,
2640 signop sgn)
2642 /* For bitfields with zero width we end up creating integer types
2643 with zero precision. Don't assign any minimum/maximum values
2644 to those types, they don't have any valid value. */
2645 if (precision < 1)
2646 return;
2648 TYPE_MIN_VALUE (type)
2649 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2650 TYPE_MAX_VALUE (type)
2651 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2654 /* Set the extreme values of TYPE based on its precision in bits,
2655 then lay it out. Used when make_signed_type won't do
2656 because the tree code is not INTEGER_TYPE.
2657 E.g. for Pascal, when the -fsigned-char option is given. */
2659 void
2660 fixup_signed_type (tree type)
2662 int precision = TYPE_PRECISION (type);
2664 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2666 /* Lay out the type: set its alignment, size, etc. */
2667 layout_type (type);
2670 /* Set the extreme values of TYPE based on its precision in bits,
2671 then lay it out. This is used both in `make_unsigned_type'
2672 and for enumeral types. */
2674 void
2675 fixup_unsigned_type (tree type)
2677 int precision = TYPE_PRECISION (type);
2679 TYPE_UNSIGNED (type) = 1;
2681 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2683 /* Lay out the type: set its alignment, size, etc. */
2684 layout_type (type);
2687 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2688 starting at BITPOS.
2690 BITREGION_START is the bit position of the first bit in this
2691 sequence of bit fields. BITREGION_END is the last bit in this
2692 sequence. If these two fields are non-zero, we should restrict the
2693 memory access to that range. Otherwise, we are allowed to touch
2694 any adjacent non bit-fields.
2696 ALIGN is the alignment of the underlying object in bits.
2697 VOLATILEP says whether the bitfield is volatile. */
2699 bit_field_mode_iterator
2700 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2701 HOST_WIDE_INT bitregion_start,
2702 HOST_WIDE_INT bitregion_end,
2703 unsigned int align, bool volatilep)
2704 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2705 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2706 m_bitregion_end (bitregion_end), m_align (align),
2707 m_volatilep (volatilep), m_count (0)
2709 if (!m_bitregion_end)
2711 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2712 the bitfield is mapped and won't trap, provided that ALIGN isn't
2713 too large. The cap is the biggest required alignment for data,
2714 or at least the word size. And force one such chunk at least. */
2715 unsigned HOST_WIDE_INT units
2716 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2717 if (bitsize <= 0)
2718 bitsize = 1;
2719 m_bitregion_end = bitpos + bitsize + units - 1;
2720 m_bitregion_end -= m_bitregion_end % units + 1;
2724 /* Calls to this function return successively larger modes that can be used
2725 to represent the bitfield. Return true if another bitfield mode is
2726 available, storing it in *OUT_MODE if so. */
2728 bool
2729 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2731 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2733 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2735 /* Skip modes that don't have full precision. */
2736 if (unit != GET_MODE_PRECISION (m_mode))
2737 continue;
2739 /* Stop if the mode is too wide to handle efficiently. */
2740 if (unit > MAX_FIXED_MODE_SIZE)
2741 break;
2743 /* Don't deliver more than one multiword mode; the smallest one
2744 should be used. */
2745 if (m_count > 0 && unit > BITS_PER_WORD)
2746 break;
2748 /* Skip modes that are too small. */
2749 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2750 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2751 if (subend > unit)
2752 continue;
2754 /* Stop if the mode goes outside the bitregion. */
2755 HOST_WIDE_INT start = m_bitpos - substart;
2756 if (m_bitregion_start && start < m_bitregion_start)
2757 break;
2758 HOST_WIDE_INT end = start + unit;
2759 if (end > m_bitregion_end + 1)
2760 break;
2762 /* Stop if the mode requires too much alignment. */
2763 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2764 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2765 break;
2767 *out_mode = m_mode;
2768 m_mode = GET_MODE_WIDER_MODE (m_mode);
2769 m_count++;
2770 return true;
2772 return false;
2775 /* Return true if smaller modes are generally preferred for this kind
2776 of bitfield. */
2778 bool
2779 bit_field_mode_iterator::prefer_smaller_modes ()
2781 return (m_volatilep
2782 ? targetm.narrow_volatile_bitfield ()
2783 : !SLOW_BYTE_ACCESS);
2786 /* Find the best machine mode to use when referencing a bit field of length
2787 BITSIZE bits starting at BITPOS.
2789 BITREGION_START is the bit position of the first bit in this
2790 sequence of bit fields. BITREGION_END is the last bit in this
2791 sequence. If these two fields are non-zero, we should restrict the
2792 memory access to that range. Otherwise, we are allowed to touch
2793 any adjacent non bit-fields.
2795 The underlying object is known to be aligned to a boundary of ALIGN bits.
2796 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2797 larger than LARGEST_MODE (usually SImode).
2799 If no mode meets all these conditions, we return VOIDmode.
2801 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2802 smallest mode meeting these conditions.
2804 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2805 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2806 all the conditions.
2808 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2809 decide which of the above modes should be used. */
2811 enum machine_mode
2812 get_best_mode (int bitsize, int bitpos,
2813 unsigned HOST_WIDE_INT bitregion_start,
2814 unsigned HOST_WIDE_INT bitregion_end,
2815 unsigned int align,
2816 enum machine_mode largest_mode, bool volatilep)
2818 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2819 bitregion_end, align, volatilep);
2820 enum machine_mode widest_mode = VOIDmode;
2821 enum machine_mode mode;
2822 while (iter.next_mode (&mode)
2823 /* ??? For historical reasons, reject modes that would normally
2824 receive greater alignment, even if unaligned accesses are
2825 acceptable. This has both advantages and disadvantages.
2826 Removing this check means that something like:
2828 struct s { unsigned int x; unsigned int y; };
2829 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2831 can be implemented using a single load and compare on
2832 64-bit machines that have no alignment restrictions.
2833 For example, on powerpc64-linux-gnu, we would generate:
2835 ld 3,0(3)
2836 cntlzd 3,3
2837 srdi 3,3,6
2840 rather than:
2842 lwz 9,0(3)
2843 cmpwi 7,9,0
2844 bne 7,.L3
2845 lwz 3,4(3)
2846 cntlzw 3,3
2847 srwi 3,3,5
2848 extsw 3,3
2850 .p2align 4,,15
2851 .L3:
2852 li 3,0
2855 However, accessing more than one field can make life harder
2856 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2857 has a series of unsigned short copies followed by a series of
2858 unsigned short comparisons. With this check, both the copies
2859 and comparisons remain 16-bit accesses and FRE is able
2860 to eliminate the latter. Without the check, the comparisons
2861 can be done using 2 64-bit operations, which FRE isn't able
2862 to handle in the same way.
2864 Either way, it would probably be worth disabling this check
2865 during expand. One particular example where removing the
2866 check would help is the get_best_mode call in store_bit_field.
2867 If we are given a memory bitregion of 128 bits that is aligned
2868 to a 64-bit boundary, and the bitfield we want to modify is
2869 in the second half of the bitregion, this check causes
2870 store_bitfield to turn the memory into a 64-bit reference
2871 to the _first_ half of the region. We later use
2872 adjust_bitfield_address to get a reference to the correct half,
2873 but doing so looks to adjust_bitfield_address as though we are
2874 moving past the end of the original object, so it drops the
2875 associated MEM_EXPR and MEM_OFFSET. Removing the check
2876 causes store_bit_field to keep a 128-bit memory reference,
2877 so that the final bitfield reference still has a MEM_EXPR
2878 and MEM_OFFSET. */
2879 && GET_MODE_ALIGNMENT (mode) <= align
2880 && (largest_mode == VOIDmode
2881 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2883 widest_mode = mode;
2884 if (iter.prefer_smaller_modes ())
2885 break;
2887 return widest_mode;
2890 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2891 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2893 void
2894 get_mode_bounds (enum machine_mode mode, int sign,
2895 enum machine_mode target_mode,
2896 rtx *mmin, rtx *mmax)
2898 unsigned size = GET_MODE_PRECISION (mode);
2899 unsigned HOST_WIDE_INT min_val, max_val;
2901 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2903 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2904 if (mode == BImode)
2906 if (STORE_FLAG_VALUE < 0)
2908 min_val = STORE_FLAG_VALUE;
2909 max_val = 0;
2911 else
2913 min_val = 0;
2914 max_val = STORE_FLAG_VALUE;
2917 else if (sign)
2919 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2920 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2922 else
2924 min_val = 0;
2925 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2928 *mmin = gen_int_mode (min_val, target_mode);
2929 *mmax = gen_int_mode (max_val, target_mode);
2932 #include "gt-stor-layout.h"