1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
34 #include "coretypes.h"
43 #include "insn-config.h"
47 #include "tree-pass.h"
52 #include "cfgcleanup.h"
57 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59 /* Set to true when we are running first pass of try_optimize_cfg loop. */
60 static bool first_pass
;
62 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
63 static bool crossjumps_occurred
;
65 /* Set to true if we couldn't run an optimization due to stale liveness
66 information; we should run df_analyze to enable more opportunities. */
67 static bool block_was_dirty
;
69 static bool try_crossjump_to_edge (int, edge
, edge
, enum replace_direction
);
70 static bool try_crossjump_bb (int, basic_block
);
71 static bool outgoing_edges_match (int, basic_block
, basic_block
);
72 static enum replace_direction
old_insns_match_p (int, rtx_insn
*, rtx_insn
*);
74 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
75 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block
);
78 static bool try_forward_edges (int, basic_block
);
79 static edge
thread_jump (edge
, basic_block
);
80 static bool mark_effect (rtx
, bitmap
);
81 static void notice_new_block (basic_block
);
82 static void update_forwarder_flag (basic_block
);
83 static void merge_memattrs (rtx
, rtx
);
85 /* Set flags for newly created block. */
88 notice_new_block (basic_block bb
)
93 if (forwarder_block_p (bb
))
94 bb
->flags
|= BB_FORWARDER_BLOCK
;
97 /* Recompute forwarder flag after block has been modified. */
100 update_forwarder_flag (basic_block bb
)
102 if (forwarder_block_p (bb
))
103 bb
->flags
|= BB_FORWARDER_BLOCK
;
105 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
108 /* Simplify a conditional jump around an unconditional jump.
109 Return true if something changed. */
112 try_simplify_condjump (basic_block cbranch_block
)
114 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
115 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
116 rtx_insn
*cbranch_insn
;
118 /* Verify that there are exactly two successors. */
119 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
122 /* Verify that we've got a normal conditional branch at the end
124 cbranch_insn
= BB_END (cbranch_block
);
125 if (!any_condjump_p (cbranch_insn
))
128 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
129 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
131 /* The next block must not have multiple predecessors, must not
132 be the last block in the function, and must contain just the
133 unconditional jump. */
134 jump_block
= cbranch_fallthru_edge
->dest
;
135 if (!single_pred_p (jump_block
)
136 || jump_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
137 || !FORWARDER_BLOCK_P (jump_block
))
139 jump_dest_block
= single_succ (jump_block
);
141 /* If we are partitioning hot/cold basic blocks, we don't want to
142 mess up unconditional or indirect jumps that cross between hot
145 Basic block partitioning may result in some jumps that appear to
146 be optimizable (or blocks that appear to be mergeable), but which really
147 must be left untouched (they are required to make it safely across
148 partition boundaries). See the comments at the top of
149 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
151 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
152 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
155 /* The conditional branch must target the block after the
156 unconditional branch. */
157 cbranch_dest_block
= cbranch_jump_edge
->dest
;
159 if (cbranch_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
160 || jump_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
161 || !can_fallthru (jump_block
, cbranch_dest_block
))
164 /* Invert the conditional branch. */
165 if (!invert_jump (as_a
<rtx_jump_insn
*> (cbranch_insn
),
166 block_label (jump_dest_block
), 0))
170 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
171 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
173 /* Success. Update the CFG to match. Note that after this point
174 the edge variable names appear backwards; the redirection is done
175 this way to preserve edge profile data. */
176 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
178 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
180 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
181 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
182 update_br_prob_note (cbranch_block
);
184 /* Delete the block with the unconditional jump, and clean up the mess. */
185 delete_basic_block (jump_block
);
186 tidy_fallthru_edge (cbranch_jump_edge
);
187 update_forwarder_flag (cbranch_block
);
192 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
193 on register. Used by jump threading. */
196 mark_effect (rtx exp
, regset nonequal
)
199 switch (GET_CODE (exp
))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
204 dest
= XEXP (exp
, 0);
206 bitmap_clear_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
210 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
212 dest
= SET_DEST (exp
);
217 bitmap_set_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
225 /* Return true if X contains a register in NONEQUAL. */
227 mentions_nonequal_regs (const_rtx x
, regset nonequal
)
229 subrtx_iterator::array_type array
;
230 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
235 unsigned int end_regno
= END_REGNO (x
);
236 for (unsigned int regno
= REGNO (x
); regno
< end_regno
; ++regno
)
237 if (REGNO_REG_SET_P (nonequal
, regno
))
244 /* Attempt to prove that the basic block B will have no side effects and
245 always continues in the same edge if reached via E. Return the edge
246 if exist, NULL otherwise. */
249 thread_jump (edge e
, basic_block b
)
251 rtx set1
, set2
, cond1
, cond2
;
253 enum rtx_code code1
, code2
, reversed_code2
;
254 bool reverse1
= false;
258 reg_set_iterator rsi
;
260 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
263 /* At the moment, we do handle only conditional jumps, but later we may
264 want to extend this code to tablejumps and others. */
265 if (EDGE_COUNT (e
->src
->succs
) != 2)
267 if (EDGE_COUNT (b
->succs
) != 2)
269 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
273 /* Second branch must end with onlyjump, as we will eliminate the jump. */
274 if (!any_condjump_p (BB_END (e
->src
)))
277 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
279 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
283 set1
= pc_set (BB_END (e
->src
));
284 set2
= pc_set (BB_END (b
));
285 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
286 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
289 cond1
= XEXP (SET_SRC (set1
), 0);
290 cond2
= XEXP (SET_SRC (set2
), 0);
292 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
294 code1
= GET_CODE (cond1
);
296 code2
= GET_CODE (cond2
);
297 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
299 if (!comparison_dominates_p (code1
, code2
)
300 && !comparison_dominates_p (code1
, reversed_code2
))
303 /* Ensure that the comparison operators are equivalent.
304 ??? This is far too pessimistic. We should allow swapped operands,
305 different CCmodes, or for example comparisons for interval, that
306 dominate even when operands are not equivalent. */
307 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
308 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
311 /* Short circuit cases where block B contains some side effects, as we can't
313 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
314 insn
= NEXT_INSN (insn
))
315 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
317 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
323 /* First process all values computed in the source basic block. */
324 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
325 insn
!= NEXT_INSN (BB_END (e
->src
));
326 insn
= NEXT_INSN (insn
))
328 cselib_process_insn (insn
);
330 nonequal
= BITMAP_ALLOC (NULL
);
331 CLEAR_REG_SET (nonequal
);
333 /* Now assume that we've continued by the edge E to B and continue
334 processing as if it were same basic block.
335 Our goal is to prove that whole block is an NOOP. */
337 for (insn
= NEXT_INSN (BB_HEAD (b
));
338 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
339 insn
= NEXT_INSN (insn
))
343 rtx pat
= PATTERN (insn
);
345 if (GET_CODE (pat
) == PARALLEL
)
347 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
348 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
351 failed
|= mark_effect (pat
, nonequal
);
354 cselib_process_insn (insn
);
357 /* Later we should clear nonequal of dead registers. So far we don't
358 have life information in cfg_cleanup. */
361 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
365 /* cond2 must not mention any register that is not equal to the
367 if (mentions_nonequal_regs (cond2
, nonequal
))
370 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
373 BITMAP_FREE (nonequal
);
375 if ((comparison_dominates_p (code1
, code2
) != 0)
376 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
377 return BRANCH_EDGE (b
);
379 return FALLTHRU_EDGE (b
);
382 BITMAP_FREE (nonequal
);
387 /* Attempt to forward edges leaving basic block B.
388 Return true if successful. */
391 try_forward_edges (int mode
, basic_block b
)
393 bool changed
= false;
395 edge e
, *threaded_edges
= NULL
;
397 /* If we are partitioning hot/cold basic blocks, we don't want to
398 mess up unconditional or indirect jumps that cross between hot
401 Basic block partitioning may result in some jumps that appear to
402 be optimizable (or blocks that appear to be mergeable), but which really
403 must be left untouched (they are required to make it safely across
404 partition boundaries). See the comments at the top of
405 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
407 if (JUMP_P (BB_END (b
)) && CROSSING_JUMP_P (BB_END (b
)))
410 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
412 basic_block target
, first
;
413 location_t goto_locus
;
415 bool threaded
= false;
416 int nthreaded_edges
= 0;
417 bool may_thread
= first_pass
|| (b
->flags
& BB_MODIFIED
) != 0;
419 /* Skip complex edges because we don't know how to update them.
421 Still handle fallthru edges, as we can succeed to forward fallthru
422 edge to the same place as the branch edge of conditional branch
423 and turn conditional branch to an unconditional branch. */
424 if (e
->flags
& EDGE_COMPLEX
)
430 target
= first
= e
->dest
;
431 counter
= NUM_FIXED_BLOCKS
;
432 goto_locus
= e
->goto_locus
;
434 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
435 up jumps that cross between hot/cold sections.
437 Basic block partitioning may result in some jumps that appear
438 to be optimizable (or blocks that appear to be mergeable), but which
439 really must be left untouched (they are required to make it safely
440 across partition boundaries). See the comments at the top of
441 bb-reorder.c:partition_hot_cold_basic_blocks for complete
444 if (first
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
445 && JUMP_P (BB_END (first
))
446 && CROSSING_JUMP_P (BB_END (first
)))
449 while (counter
< n_basic_blocks_for_fn (cfun
))
451 basic_block new_target
= NULL
;
452 bool new_target_threaded
= false;
453 may_thread
|= (target
->flags
& BB_MODIFIED
) != 0;
455 if (FORWARDER_BLOCK_P (target
)
456 && !(single_succ_edge (target
)->flags
& EDGE_CROSSING
)
457 && single_succ (target
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
459 /* Bypass trivial infinite loops. */
460 new_target
= single_succ (target
);
461 if (target
== new_target
)
462 counter
= n_basic_blocks_for_fn (cfun
);
465 /* When not optimizing, ensure that edges or forwarder
466 blocks with different locus are not optimized out. */
467 location_t new_locus
= single_succ_edge (target
)->goto_locus
;
468 location_t locus
= goto_locus
;
470 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
471 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
472 && new_locus
!= locus
)
476 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
479 rtx_insn
*last
= BB_END (target
);
480 if (DEBUG_INSN_P (last
))
481 last
= prev_nondebug_insn (last
);
482 if (last
&& INSN_P (last
))
483 new_locus
= INSN_LOCATION (last
);
485 new_locus
= UNKNOWN_LOCATION
;
487 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
488 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
489 && new_locus
!= locus
)
493 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
502 /* Allow to thread only over one edge at time to simplify updating
504 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
506 edge t
= thread_jump (e
, target
);
510 threaded_edges
= XNEWVEC (edge
,
511 n_basic_blocks_for_fn (cfun
));
516 /* Detect an infinite loop across blocks not
517 including the start block. */
518 for (i
= 0; i
< nthreaded_edges
; ++i
)
519 if (threaded_edges
[i
] == t
)
521 if (i
< nthreaded_edges
)
523 counter
= n_basic_blocks_for_fn (cfun
);
528 /* Detect an infinite loop across the start block. */
532 gcc_assert (nthreaded_edges
533 < (n_basic_blocks_for_fn (cfun
)
534 - NUM_FIXED_BLOCKS
));
535 threaded_edges
[nthreaded_edges
++] = t
;
537 new_target
= t
->dest
;
538 new_target_threaded
= true;
547 threaded
|= new_target_threaded
;
550 if (counter
>= n_basic_blocks_for_fn (cfun
))
553 fprintf (dump_file
, "Infinite loop in BB %i.\n",
556 else if (target
== first
)
557 ; /* We didn't do anything. */
560 /* Save the values now, as the edge may get removed. */
561 profile_count edge_count
= e
->count
;
562 profile_probability edge_probability
= e
->probability
;
566 e
->goto_locus
= goto_locus
;
568 /* Don't force if target is exit block. */
569 if (threaded
&& target
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
571 notice_new_block (redirect_edge_and_branch_force (e
, target
));
573 fprintf (dump_file
, "Conditionals threaded.\n");
575 else if (!redirect_edge_and_branch (e
, target
))
579 "Forwarding edge %i->%i to %i failed.\n",
580 b
->index
, e
->dest
->index
, target
->index
);
585 /* We successfully forwarded the edge. Now update profile
586 data: for each edge we traversed in the chain, remove
587 the original edge's execution count. */
588 edge_frequency
= edge_probability
.apply (b
->frequency
);
594 if (!single_succ_p (first
))
596 gcc_assert (n
< nthreaded_edges
);
597 t
= threaded_edges
[n
++];
598 gcc_assert (t
->src
== first
);
599 update_bb_profile_for_threading (first
, edge_frequency
,
601 update_br_prob_note (first
);
605 first
->count
-= edge_count
;
606 first
->frequency
-= edge_frequency
;
607 if (first
->frequency
< 0)
608 first
->frequency
= 0;
609 /* It is possible that as the result of
610 threading we've removed edge as it is
611 threaded to the fallthru edge. Avoid
612 getting out of sync. */
613 if (n
< nthreaded_edges
614 && first
== threaded_edges
[n
]->src
)
616 t
= single_succ_edge (first
);
619 t
->count
-= edge_count
;
622 while (first
!= target
);
630 free (threaded_edges
);
635 /* Blocks A and B are to be merged into a single block. A has no incoming
636 fallthru edge, so it can be moved before B without adding or modifying
637 any jumps (aside from the jump from A to B). */
640 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
644 /* If we are partitioning hot/cold basic blocks, we don't want to
645 mess up unconditional or indirect jumps that cross between hot
648 Basic block partitioning may result in some jumps that appear to
649 be optimizable (or blocks that appear to be mergeable), but which really
650 must be left untouched (they are required to make it safely across
651 partition boundaries). See the comments at the top of
652 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
654 if (BB_PARTITION (a
) != BB_PARTITION (b
))
657 barrier
= next_nonnote_insn (BB_END (a
));
658 gcc_assert (BARRIER_P (barrier
));
659 delete_insn (barrier
);
661 /* Scramble the insn chain. */
662 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
663 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
667 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
670 /* Swap the records for the two blocks around. */
673 link_block (a
, b
->prev_bb
);
675 /* Now blocks A and B are contiguous. Merge them. */
679 /* Blocks A and B are to be merged into a single block. B has no outgoing
680 fallthru edge, so it can be moved after A without adding or modifying
681 any jumps (aside from the jump from A to B). */
684 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
686 rtx_insn
*barrier
, *real_b_end
;
688 rtx_jump_table_data
*table
;
690 /* If we are partitioning hot/cold basic blocks, we don't want to
691 mess up unconditional or indirect jumps that cross between hot
694 Basic block partitioning may result in some jumps that appear to
695 be optimizable (or blocks that appear to be mergeable), but which really
696 must be left untouched (they are required to make it safely across
697 partition boundaries). See the comments at the top of
698 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
700 if (BB_PARTITION (a
) != BB_PARTITION (b
))
703 real_b_end
= BB_END (b
);
705 /* If there is a jump table following block B temporarily add the jump table
706 to block B so that it will also be moved to the correct location. */
707 if (tablejump_p (BB_END (b
), &label
, &table
)
708 && prev_active_insn (label
) == BB_END (b
))
713 /* There had better have been a barrier there. Delete it. */
714 barrier
= NEXT_INSN (BB_END (b
));
715 if (barrier
&& BARRIER_P (barrier
))
716 delete_insn (barrier
);
719 /* Scramble the insn chain. */
720 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
722 /* Restore the real end of b. */
723 BB_END (b
) = real_b_end
;
726 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
729 /* Now blocks A and B are contiguous. Merge them. */
733 /* Attempt to merge basic blocks that are potentially non-adjacent.
734 Return NULL iff the attempt failed, otherwise return basic block
735 where cleanup_cfg should continue. Because the merging commonly
736 moves basic block away or introduces another optimization
737 possibility, return basic block just before B so cleanup_cfg don't
740 It may be good idea to return basic block before C in the case
741 C has been moved after B and originally appeared earlier in the
742 insn sequence, but we have no information available about the
743 relative ordering of these two. Hopefully it is not too common. */
746 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
750 /* If we are partitioning hot/cold basic blocks, we don't want to
751 mess up unconditional or indirect jumps that cross between hot
754 Basic block partitioning may result in some jumps that appear to
755 be optimizable (or blocks that appear to be mergeable), but which really
756 must be left untouched (they are required to make it safely across
757 partition boundaries). See the comments at the top of
758 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
760 if (BB_PARTITION (b
) != BB_PARTITION (c
))
763 /* If B has a fallthru edge to C, no need to move anything. */
764 if (e
->flags
& EDGE_FALLTHRU
)
766 int b_index
= b
->index
, c_index
= c
->index
;
768 /* Protect the loop latches. */
769 if (current_loops
&& c
->loop_father
->latch
== c
)
773 update_forwarder_flag (b
);
776 fprintf (dump_file
, "Merged %d and %d without moving.\n",
779 return b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? b
: b
->prev_bb
;
782 /* Otherwise we will need to move code around. Do that only if expensive
783 transformations are allowed. */
784 else if (mode
& CLEANUP_EXPENSIVE
)
786 edge tmp_edge
, b_fallthru_edge
;
787 bool c_has_outgoing_fallthru
;
788 bool b_has_incoming_fallthru
;
790 /* Avoid overactive code motion, as the forwarder blocks should be
791 eliminated by edge redirection instead. One exception might have
792 been if B is a forwarder block and C has no fallthru edge, but
793 that should be cleaned up by bb-reorder instead. */
794 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
797 /* We must make sure to not munge nesting of lexical blocks,
798 and loop notes. This is done by squeezing out all the notes
799 and leaving them there to lie. Not ideal, but functional. */
801 tmp_edge
= find_fallthru_edge (c
->succs
);
802 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
804 tmp_edge
= find_fallthru_edge (b
->preds
);
805 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
806 b_fallthru_edge
= tmp_edge
;
809 next
= next
->prev_bb
;
811 /* Otherwise, we're going to try to move C after B. If C does
812 not have an outgoing fallthru, then it can be moved
813 immediately after B without introducing or modifying jumps. */
814 if (! c_has_outgoing_fallthru
)
816 merge_blocks_move_successor_nojumps (b
, c
);
817 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
820 /* If B does not have an incoming fallthru, then it can be moved
821 immediately before C without introducing or modifying jumps.
822 C cannot be the first block, so we do not have to worry about
823 accessing a non-existent block. */
825 if (b_has_incoming_fallthru
)
829 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
831 bb
= force_nonfallthru (b_fallthru_edge
);
833 notice_new_block (bb
);
836 merge_blocks_move_predecessor_nojumps (b
, c
);
837 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
844 /* Removes the memory attributes of MEM expression
845 if they are not equal. */
848 merge_memattrs (rtx x
, rtx y
)
857 if (x
== 0 || y
== 0)
862 if (code
!= GET_CODE (y
))
865 if (GET_MODE (x
) != GET_MODE (y
))
868 if (code
== MEM
&& !mem_attrs_eq_p (MEM_ATTRS (x
), MEM_ATTRS (y
)))
872 else if (! MEM_ATTRS (y
))
876 HOST_WIDE_INT mem_size
;
878 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
880 set_mem_alias_set (x
, 0);
881 set_mem_alias_set (y
, 0);
884 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
888 clear_mem_offset (x
);
889 clear_mem_offset (y
);
891 else if (MEM_OFFSET_KNOWN_P (x
) != MEM_OFFSET_KNOWN_P (y
)
892 || (MEM_OFFSET_KNOWN_P (x
)
893 && MEM_OFFSET (x
) != MEM_OFFSET (y
)))
895 clear_mem_offset (x
);
896 clear_mem_offset (y
);
899 if (MEM_SIZE_KNOWN_P (x
) && MEM_SIZE_KNOWN_P (y
))
901 mem_size
= MAX (MEM_SIZE (x
), MEM_SIZE (y
));
902 set_mem_size (x
, mem_size
);
903 set_mem_size (y
, mem_size
);
911 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
912 set_mem_align (y
, MEM_ALIGN (x
));
917 if (MEM_READONLY_P (x
) != MEM_READONLY_P (y
))
919 MEM_READONLY_P (x
) = 0;
920 MEM_READONLY_P (y
) = 0;
922 if (MEM_NOTRAP_P (x
) != MEM_NOTRAP_P (y
))
924 MEM_NOTRAP_P (x
) = 0;
925 MEM_NOTRAP_P (y
) = 0;
927 if (MEM_VOLATILE_P (x
) != MEM_VOLATILE_P (y
))
929 MEM_VOLATILE_P (x
) = 1;
930 MEM_VOLATILE_P (y
) = 1;
934 fmt
= GET_RTX_FORMAT (code
);
935 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
940 /* Two vectors must have the same length. */
941 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
944 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
945 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
950 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
957 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
958 different single sets S1 and S2. */
961 equal_different_set_p (rtx p1
, rtx s1
, rtx p2
, rtx s2
)
966 if (p1
== s1
&& p2
== s2
)
969 if (GET_CODE (p1
) != PARALLEL
|| GET_CODE (p2
) != PARALLEL
)
972 if (XVECLEN (p1
, 0) != XVECLEN (p2
, 0))
975 for (i
= 0; i
< XVECLEN (p1
, 0); i
++)
977 e1
= XVECEXP (p1
, 0, i
);
978 e2
= XVECEXP (p2
, 0, i
);
979 if (e1
== s1
&& e2
== s2
)
982 ? rtx_renumbered_equal_p (e1
, e2
) : rtx_equal_p (e1
, e2
))
992 /* NOTE1 is the REG_EQUAL note, if any, attached to an insn
993 that is a single_set with a SET_SRC of SRC1. Similarly
996 So effectively NOTE1/NOTE2 are an alternate form of
997 SRC1/SRC2 respectively.
999 Return nonzero if SRC1 or NOTE1 has the same constant
1000 integer value as SRC2 or NOTE2. Else return zero. */
1002 values_equal_p (rtx note1
, rtx note2
, rtx src1
, rtx src2
)
1006 && CONST_INT_P (XEXP (note1
, 0))
1007 && rtx_equal_p (XEXP (note1
, 0), XEXP (note2
, 0)))
1012 && CONST_INT_P (src1
)
1013 && CONST_INT_P (src2
)
1014 && rtx_equal_p (src1
, src2
))
1018 && CONST_INT_P (src2
)
1019 && rtx_equal_p (XEXP (note1
, 0), src2
))
1023 && CONST_INT_P (src1
)
1024 && rtx_equal_p (XEXP (note2
, 0), src1
))
1030 /* Examine register notes on I1 and I2 and return:
1031 - dir_forward if I1 can be replaced by I2, or
1032 - dir_backward if I2 can be replaced by I1, or
1033 - dir_both if both are the case. */
1035 static enum replace_direction
1036 can_replace_by (rtx_insn
*i1
, rtx_insn
*i2
)
1038 rtx s1
, s2
, d1
, d2
, src1
, src2
, note1
, note2
;
1041 /* Check for 2 sets. */
1042 s1
= single_set (i1
);
1043 s2
= single_set (i2
);
1044 if (s1
== NULL_RTX
|| s2
== NULL_RTX
)
1047 /* Check that the 2 sets set the same dest. */
1050 if (!(reload_completed
1051 ? rtx_renumbered_equal_p (d1
, d2
) : rtx_equal_p (d1
, d2
)))
1054 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1055 set dest to the same value. */
1056 note1
= find_reg_equal_equiv_note (i1
);
1057 note2
= find_reg_equal_equiv_note (i2
);
1059 src1
= SET_SRC (s1
);
1060 src2
= SET_SRC (s2
);
1062 if (!values_equal_p (note1
, note2
, src1
, src2
))
1065 if (!equal_different_set_p (PATTERN (i1
), s1
, PATTERN (i2
), s2
))
1068 /* Although the 2 sets set dest to the same value, we cannot replace
1069 (set (dest) (const_int))
1072 because we don't know if the reg is live and has the same value at the
1073 location of replacement. */
1074 c1
= CONST_INT_P (src1
);
1075 c2
= CONST_INT_P (src2
);
1081 return dir_backward
;
1086 /* Merges directions A and B. */
1088 static enum replace_direction
1089 merge_dir (enum replace_direction a
, enum replace_direction b
)
1091 /* Implements the following table:
1110 /* Array of flags indexed by reg note kind, true if the given
1111 reg note is CFA related. */
1112 static const bool reg_note_cfa_p
[] = {
1114 #define DEF_REG_NOTE(NAME) false,
1115 #define REG_CFA_NOTE(NAME) true,
1116 #include "reg-notes.def"
1122 /* Return true if I1 and I2 have identical CFA notes (the same order
1123 and equivalent content). */
1126 insns_have_identical_cfa_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1129 for (n1
= REG_NOTES (i1
), n2
= REG_NOTES (i2
); ;
1130 n1
= XEXP (n1
, 1), n2
= XEXP (n2
, 1))
1132 /* Skip over reg notes not related to CFI information. */
1133 while (n1
&& !reg_note_cfa_p
[REG_NOTE_KIND (n1
)])
1135 while (n2
&& !reg_note_cfa_p
[REG_NOTE_KIND (n2
)])
1137 if (n1
== NULL_RTX
&& n2
== NULL_RTX
)
1139 if (n1
== NULL_RTX
|| n2
== NULL_RTX
)
1141 if (XEXP (n1
, 0) == XEXP (n2
, 0))
1143 else if (XEXP (n1
, 0) == NULL_RTX
|| XEXP (n2
, 0) == NULL_RTX
)
1145 else if (!(reload_completed
1146 ? rtx_renumbered_equal_p (XEXP (n1
, 0), XEXP (n2
, 0))
1147 : rtx_equal_p (XEXP (n1
, 0), XEXP (n2
, 0))))
1152 /* Examine I1 and I2 and return:
1153 - dir_forward if I1 can be replaced by I2, or
1154 - dir_backward if I2 can be replaced by I1, or
1155 - dir_both if both are the case. */
1157 static enum replace_direction
1158 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx_insn
*i1
, rtx_insn
*i2
)
1162 /* Verify that I1 and I2 are equivalent. */
1163 if (GET_CODE (i1
) != GET_CODE (i2
))
1166 /* __builtin_unreachable() may lead to empty blocks (ending with
1167 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1168 if (NOTE_INSN_BASIC_BLOCK_P (i1
) && NOTE_INSN_BASIC_BLOCK_P (i2
))
1171 /* ??? Do not allow cross-jumping between different stack levels. */
1172 p1
= find_reg_note (i1
, REG_ARGS_SIZE
, NULL
);
1173 p2
= find_reg_note (i2
, REG_ARGS_SIZE
, NULL
);
1178 if (!rtx_equal_p (p1
, p2
))
1181 /* ??? Worse, this adjustment had better be constant lest we
1182 have differing incoming stack levels. */
1183 if (!frame_pointer_needed
1184 && find_args_size_adjust (i1
) == HOST_WIDE_INT_MIN
)
1190 /* Do not allow cross-jumping between frame related insns and other
1192 if (RTX_FRAME_RELATED_P (i1
) != RTX_FRAME_RELATED_P (i2
))
1198 if (GET_CODE (p1
) != GET_CODE (p2
))
1201 /* If this is a CALL_INSN, compare register usage information.
1202 If we don't check this on stack register machines, the two
1203 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1204 numbers of stack registers in the same basic block.
1205 If we don't check this on machines with delay slots, a delay slot may
1206 be filled that clobbers a parameter expected by the subroutine.
1208 ??? We take the simple route for now and assume that if they're
1209 equal, they were constructed identically.
1211 Also check for identical exception regions. */
1215 /* Ensure the same EH region. */
1216 rtx n1
= find_reg_note (i1
, REG_EH_REGION
, 0);
1217 rtx n2
= find_reg_note (i2
, REG_EH_REGION
, 0);
1222 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1225 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1226 CALL_INSN_FUNCTION_USAGE (i2
))
1227 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
))
1230 /* For address sanitizer, never crossjump __asan_report_* builtins,
1231 otherwise errors might be reported on incorrect lines. */
1232 if (flag_sanitize
& SANITIZE_ADDRESS
)
1234 rtx call
= get_call_rtx_from (i1
);
1235 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
1237 rtx symbol
= XEXP (XEXP (call
, 0), 0);
1238 if (SYMBOL_REF_DECL (symbol
)
1239 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
1241 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
1243 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1244 >= BUILT_IN_ASAN_REPORT_LOAD1
1245 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1246 <= BUILT_IN_ASAN_STOREN
)
1253 /* If both i1 and i2 are frame related, verify all the CFA notes
1254 in the same order and with the same content. */
1255 if (RTX_FRAME_RELATED_P (i1
) && !insns_have_identical_cfa_notes (i1
, i2
))
1259 /* If cross_jump_death_matters is not 0, the insn's mode
1260 indicates whether or not the insn contains any stack-like
1263 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1265 /* If register stack conversion has already been done, then
1266 death notes must also be compared before it is certain that
1267 the two instruction streams match. */
1270 HARD_REG_SET i1_regset
, i2_regset
;
1272 CLEAR_HARD_REG_SET (i1_regset
);
1273 CLEAR_HARD_REG_SET (i2_regset
);
1275 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1276 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1277 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1279 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1280 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1281 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1283 if (!hard_reg_set_equal_p (i1_regset
, i2_regset
))
1288 if (reload_completed
1289 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1292 return can_replace_by (i1
, i2
);
1295 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1296 flow_find_head_matching_sequence, ensure the notes match. */
1299 merge_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1301 /* If the merged insns have different REG_EQUAL notes, then
1303 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1304 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1306 if (equiv1
&& !equiv2
)
1307 remove_note (i1
, equiv1
);
1308 else if (!equiv1
&& equiv2
)
1309 remove_note (i2
, equiv2
);
1310 else if (equiv1
&& equiv2
1311 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1313 remove_note (i1
, equiv1
);
1314 remove_note (i2
, equiv2
);
1318 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1319 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1320 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1321 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1322 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1325 walk_to_nondebug_insn (rtx_insn
**i1
, basic_block
*bb1
, bool follow_fallthru
,
1330 *did_fallthru
= false;
1333 while (!NONDEBUG_INSN_P (*i1
))
1335 if (*i1
!= BB_HEAD (*bb1
))
1337 *i1
= PREV_INSN (*i1
);
1341 if (!follow_fallthru
)
1344 fallthru
= find_fallthru_edge ((*bb1
)->preds
);
1345 if (!fallthru
|| fallthru
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1346 || !single_succ_p (fallthru
->src
))
1349 *bb1
= fallthru
->src
;
1350 *i1
= BB_END (*bb1
);
1351 *did_fallthru
= true;
1355 /* Look through the insns at the end of BB1 and BB2 and find the longest
1356 sequence that are either equivalent, or allow forward or backward
1357 replacement. Store the first insns for that sequence in *F1 and *F2 and
1358 return the sequence length.
1360 DIR_P indicates the allowed replacement direction on function entry, and
1361 the actual replacement direction on function exit. If NULL, only equivalent
1362 sequences are allowed.
1364 To simplify callers of this function, if the blocks match exactly,
1365 store the head of the blocks in *F1 and *F2. */
1368 flow_find_cross_jump (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1369 rtx_insn
**f2
, enum replace_direction
*dir_p
)
1371 rtx_insn
*i1
, *i2
, *last1
, *last2
, *afterlast1
, *afterlast2
;
1373 enum replace_direction dir
, last_dir
, afterlast_dir
;
1374 bool follow_fallthru
, did_fallthru
;
1380 afterlast_dir
= dir
;
1381 last_dir
= afterlast_dir
;
1383 /* Skip simple jumps at the end of the blocks. Complex jumps still
1384 need to be compared for equivalence, which we'll do below. */
1387 last1
= afterlast1
= last2
= afterlast2
= NULL
;
1389 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1392 i1
= PREV_INSN (i1
);
1397 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1400 /* Count everything except for unconditional jump as insn.
1401 Don't count any jumps if dir_p is NULL. */
1402 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
&& dir_p
)
1404 i2
= PREV_INSN (i2
);
1409 /* In the following example, we can replace all jumps to C by jumps to A.
1411 This removes 4 duplicate insns.
1412 [bb A] insn1 [bb C] insn1
1418 We could also replace all jumps to A by jumps to C, but that leaves B
1419 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1420 step, all jumps to B would be replaced with jumps to the middle of C,
1421 achieving the same result with more effort.
1422 So we allow only the first possibility, which means that we don't allow
1423 fallthru in the block that's being replaced. */
1425 follow_fallthru
= dir_p
&& dir
!= dir_forward
;
1426 walk_to_nondebug_insn (&i1
, &bb1
, follow_fallthru
, &did_fallthru
);
1430 follow_fallthru
= dir_p
&& dir
!= dir_backward
;
1431 walk_to_nondebug_insn (&i2
, &bb2
, follow_fallthru
, &did_fallthru
);
1435 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1438 /* Do not turn corssing edge to non-crossing or vice versa after
1440 if (BB_PARTITION (BLOCK_FOR_INSN (i1
))
1441 != BB_PARTITION (BLOCK_FOR_INSN (i2
))
1442 && reload_completed
)
1445 dir
= merge_dir (dir
, old_insns_match_p (0, i1
, i2
));
1446 if (dir
== dir_none
|| (!dir_p
&& dir
!= dir_both
))
1449 merge_memattrs (i1
, i2
);
1451 /* Don't begin a cross-jump with a NOTE insn. */
1454 merge_notes (i1
, i2
);
1456 afterlast1
= last1
, afterlast2
= last2
;
1457 last1
= i1
, last2
= i2
;
1458 afterlast_dir
= last_dir
;
1460 if (active_insn_p (i1
))
1464 i1
= PREV_INSN (i1
);
1465 i2
= PREV_INSN (i2
);
1468 /* Don't allow the insn after a compare to be shared by
1469 cross-jumping unless the compare is also shared. */
1470 if (HAVE_cc0
&& ninsns
&& reg_mentioned_p (cc0_rtx
, last1
)
1471 && ! sets_cc0_p (last1
))
1472 last1
= afterlast1
, last2
= afterlast2
, last_dir
= afterlast_dir
, ninsns
--;
1474 /* Include preceding notes and labels in the cross-jump. One,
1475 this may bring us to the head of the blocks as requested above.
1476 Two, it keeps line number notes as matched as may be. */
1479 bb1
= BLOCK_FOR_INSN (last1
);
1480 while (last1
!= BB_HEAD (bb1
) && !NONDEBUG_INSN_P (PREV_INSN (last1
)))
1481 last1
= PREV_INSN (last1
);
1483 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1484 last1
= PREV_INSN (last1
);
1486 bb2
= BLOCK_FOR_INSN (last2
);
1487 while (last2
!= BB_HEAD (bb2
) && !NONDEBUG_INSN_P (PREV_INSN (last2
)))
1488 last2
= PREV_INSN (last2
);
1490 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1491 last2
= PREV_INSN (last2
);
1502 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1503 the head of the two blocks. Do not include jumps at the end.
1504 If STOP_AFTER is nonzero, stop after finding that many matching
1505 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1506 non-zero, only count active insns. */
1509 flow_find_head_matching_sequence (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1510 rtx_insn
**f2
, int stop_after
)
1512 rtx_insn
*i1
, *i2
, *last1
, *last2
, *beforelast1
, *beforelast2
;
1516 int nehedges1
= 0, nehedges2
= 0;
1518 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
1519 if (e
->flags
& EDGE_EH
)
1521 FOR_EACH_EDGE (e
, ei
, bb2
->succs
)
1522 if (e
->flags
& EDGE_EH
)
1527 last1
= beforelast1
= last2
= beforelast2
= NULL
;
1531 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1532 while (!NONDEBUG_INSN_P (i1
) && i1
!= BB_END (bb1
))
1534 if (NOTE_P (i1
) && NOTE_KIND (i1
) == NOTE_INSN_EPILOGUE_BEG
)
1536 i1
= NEXT_INSN (i1
);
1539 while (!NONDEBUG_INSN_P (i2
) && i2
!= BB_END (bb2
))
1541 if (NOTE_P (i2
) && NOTE_KIND (i2
) == NOTE_INSN_EPILOGUE_BEG
)
1543 i2
= NEXT_INSN (i2
);
1546 if ((i1
== BB_END (bb1
) && !NONDEBUG_INSN_P (i1
))
1547 || (i2
== BB_END (bb2
) && !NONDEBUG_INSN_P (i2
)))
1550 if (NOTE_P (i1
) || NOTE_P (i2
)
1551 || JUMP_P (i1
) || JUMP_P (i2
))
1554 /* A sanity check to make sure we're not merging insns with different
1555 effects on EH. If only one of them ends a basic block, it shouldn't
1556 have an EH edge; if both end a basic block, there should be the same
1557 number of EH edges. */
1558 if ((i1
== BB_END (bb1
) && i2
!= BB_END (bb2
)
1560 || (i2
== BB_END (bb2
) && i1
!= BB_END (bb1
)
1562 || (i1
== BB_END (bb1
) && i2
== BB_END (bb2
)
1563 && nehedges1
!= nehedges2
))
1566 if (old_insns_match_p (0, i1
, i2
) != dir_both
)
1569 merge_memattrs (i1
, i2
);
1571 /* Don't begin a cross-jump with a NOTE insn. */
1574 merge_notes (i1
, i2
);
1576 beforelast1
= last1
, beforelast2
= last2
;
1577 last1
= i1
, last2
= i2
;
1578 if (!stop_after
|| active_insn_p (i1
))
1582 if (i1
== BB_END (bb1
) || i2
== BB_END (bb2
)
1583 || (stop_after
> 0 && ninsns
== stop_after
))
1586 i1
= NEXT_INSN (i1
);
1587 i2
= NEXT_INSN (i2
);
1590 /* Don't allow a compare to be shared by cross-jumping unless the insn
1591 after the compare is also shared. */
1592 if (HAVE_cc0
&& ninsns
&& reg_mentioned_p (cc0_rtx
, last1
)
1593 && sets_cc0_p (last1
))
1594 last1
= beforelast1
, last2
= beforelast2
, ninsns
--;
1605 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1606 the branch instruction. This means that if we commonize the control
1607 flow before end of the basic block, the semantic remains unchanged.
1609 We may assume that there exists one edge with a common destination. */
1612 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1614 int nehedges1
= 0, nehedges2
= 0;
1615 edge fallthru1
= 0, fallthru2
= 0;
1619 /* If we performed shrink-wrapping, edges to the exit block can
1620 only be distinguished for JUMP_INSNs. The two paths may differ in
1621 whether they went through the prologue. Sibcalls are fine, we know
1622 that we either didn't need or inserted an epilogue before them. */
1623 if (crtl
->shrink_wrapped
1624 && single_succ_p (bb1
)
1625 && single_succ (bb1
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
1626 && !JUMP_P (BB_END (bb1
))
1627 && !(CALL_P (BB_END (bb1
)) && SIBLING_CALL_P (BB_END (bb1
))))
1630 /* If BB1 has only one successor, we may be looking at either an
1631 unconditional jump, or a fake edge to exit. */
1632 if (single_succ_p (bb1
)
1633 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1634 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1635 return (single_succ_p (bb2
)
1636 && (single_succ_edge (bb2
)->flags
1637 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1638 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1640 /* Match conditional jumps - this may get tricky when fallthru and branch
1641 edges are crossed. */
1642 if (EDGE_COUNT (bb1
->succs
) == 2
1643 && any_condjump_p (BB_END (bb1
))
1644 && onlyjump_p (BB_END (bb1
)))
1646 edge b1
, f1
, b2
, f2
;
1647 bool reverse
, match
;
1648 rtx set1
, set2
, cond1
, cond2
;
1649 enum rtx_code code1
, code2
;
1651 if (EDGE_COUNT (bb2
->succs
) != 2
1652 || !any_condjump_p (BB_END (bb2
))
1653 || !onlyjump_p (BB_END (bb2
)))
1656 b1
= BRANCH_EDGE (bb1
);
1657 b2
= BRANCH_EDGE (bb2
);
1658 f1
= FALLTHRU_EDGE (bb1
);
1659 f2
= FALLTHRU_EDGE (bb2
);
1661 /* Get around possible forwarders on fallthru edges. Other cases
1662 should be optimized out already. */
1663 if (FORWARDER_BLOCK_P (f1
->dest
))
1664 f1
= single_succ_edge (f1
->dest
);
1666 if (FORWARDER_BLOCK_P (f2
->dest
))
1667 f2
= single_succ_edge (f2
->dest
);
1669 /* To simplify use of this function, return false if there are
1670 unneeded forwarder blocks. These will get eliminated later
1671 during cleanup_cfg. */
1672 if (FORWARDER_BLOCK_P (f1
->dest
)
1673 || FORWARDER_BLOCK_P (f2
->dest
)
1674 || FORWARDER_BLOCK_P (b1
->dest
)
1675 || FORWARDER_BLOCK_P (b2
->dest
))
1678 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1680 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1685 set1
= pc_set (BB_END (bb1
));
1686 set2
= pc_set (BB_END (bb2
));
1687 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1688 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1691 cond1
= XEXP (SET_SRC (set1
), 0);
1692 cond2
= XEXP (SET_SRC (set2
), 0);
1693 code1
= GET_CODE (cond1
);
1695 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1697 code2
= GET_CODE (cond2
);
1699 if (code2
== UNKNOWN
)
1702 /* Verify codes and operands match. */
1703 match
= ((code1
== code2
1704 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1705 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1706 || (code1
== swap_condition (code2
)
1707 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1709 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1712 /* If we return true, we will join the blocks. Which means that
1713 we will only have one branch prediction bit to work with. Thus
1714 we require the existing branches to have probabilities that are
1717 && optimize_bb_for_speed_p (bb1
)
1718 && optimize_bb_for_speed_p (bb2
))
1720 profile_probability prob2
;
1722 if (b1
->dest
== b2
->dest
)
1723 prob2
= b2
->probability
;
1725 /* Do not use f2 probability as f2 may be forwarded. */
1726 prob2
= b2
->probability
.invert ();
1728 /* Fail if the difference in probabilities is greater than 50%.
1729 This rules out two well-predicted branches with opposite
1731 if (b1
->probability
.differs_lot_from_p (prob2
))
1736 "Outcomes of branch in bb %i and %i differ too"
1737 " much (", bb1
->index
, bb2
->index
);
1738 b1
->probability
.dump (dump_file
);
1739 prob2
.dump (dump_file
);
1740 fprintf (dump_file
, ")\n");
1746 if (dump_file
&& match
)
1747 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1748 bb1
->index
, bb2
->index
);
1753 /* Generic case - we are seeing a computed jump, table jump or trapping
1756 /* Check whether there are tablejumps in the end of BB1 and BB2.
1757 Return true if they are identical. */
1759 rtx_insn
*label1
, *label2
;
1760 rtx_jump_table_data
*table1
, *table2
;
1762 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1763 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1764 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1766 /* The labels should never be the same rtx. If they really are same
1767 the jump tables are same too. So disable crossjumping of blocks BB1
1768 and BB2 because when deleting the common insns in the end of BB1
1769 by delete_basic_block () the jump table would be deleted too. */
1770 /* If LABEL2 is referenced in BB1->END do not do anything
1771 because we would loose information when replacing
1772 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1773 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1775 /* Set IDENTICAL to true when the tables are identical. */
1776 bool identical
= false;
1779 p1
= PATTERN (table1
);
1780 p2
= PATTERN (table2
);
1781 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1785 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1786 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1787 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1788 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1793 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1794 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1802 /* Temporarily replace references to LABEL1 with LABEL2
1803 in BB1->END so that we could compare the instructions. */
1804 replace_label_in_insn (BB_END (bb1
), label1
, label2
, false);
1806 match
= (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
))
1808 if (dump_file
&& match
)
1810 "Tablejumps in bb %i and %i match.\n",
1811 bb1
->index
, bb2
->index
);
1813 /* Set the original label in BB1->END because when deleting
1814 a block whose end is a tablejump, the tablejump referenced
1815 from the instruction is deleted too. */
1816 replace_label_in_insn (BB_END (bb1
), label2
, label1
, false);
1825 /* Find the last non-debug non-note instruction in each bb, except
1826 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1827 handles that case specially. old_insns_match_p does not handle
1828 other types of instruction notes. */
1829 rtx_insn
*last1
= BB_END (bb1
);
1830 rtx_insn
*last2
= BB_END (bb2
);
1831 while (!NOTE_INSN_BASIC_BLOCK_P (last1
) &&
1832 (DEBUG_INSN_P (last1
) || NOTE_P (last1
)))
1833 last1
= PREV_INSN (last1
);
1834 while (!NOTE_INSN_BASIC_BLOCK_P (last2
) &&
1835 (DEBUG_INSN_P (last2
) || NOTE_P (last2
)))
1836 last2
= PREV_INSN (last2
);
1837 gcc_assert (last1
&& last2
);
1839 /* First ensure that the instructions match. There may be many outgoing
1840 edges so this test is generally cheaper. */
1841 if (old_insns_match_p (mode
, last1
, last2
) != dir_both
)
1844 /* Search the outgoing edges, ensure that the counts do match, find possible
1845 fallthru and exception handling edges since these needs more
1847 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1850 bool nonfakeedges
= false;
1851 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1853 e2
= EDGE_SUCC (bb2
, ei
.index
);
1855 if ((e1
->flags
& EDGE_FAKE
) == 0)
1856 nonfakeedges
= true;
1858 if (e1
->flags
& EDGE_EH
)
1861 if (e2
->flags
& EDGE_EH
)
1864 if (e1
->flags
& EDGE_FALLTHRU
)
1866 if (e2
->flags
& EDGE_FALLTHRU
)
1870 /* If number of edges of various types does not match, fail. */
1871 if (nehedges1
!= nehedges2
1872 || (fallthru1
!= 0) != (fallthru2
!= 0))
1875 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1876 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1877 attempt to optimize, as the two basic blocks might have different
1878 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1879 traps there should be REG_ARG_SIZE notes, they could be missing
1880 for __builtin_unreachable () uses though. */
1882 && !ACCUMULATE_OUTGOING_ARGS
1884 || !find_reg_note (last1
, REG_ARGS_SIZE
, NULL
)))
1887 /* fallthru edges must be forwarded to the same destination. */
1890 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1891 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1892 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1893 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1899 /* Ensure the same EH region. */
1901 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1902 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1907 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1911 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1912 version of sequence abstraction. */
1913 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1917 basic_block d1
= e1
->dest
;
1919 if (FORWARDER_BLOCK_P (d1
))
1920 d1
= EDGE_SUCC (d1
, 0)->dest
;
1922 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1924 basic_block d2
= e2
->dest
;
1925 if (FORWARDER_BLOCK_P (d2
))
1926 d2
= EDGE_SUCC (d2
, 0)->dest
;
1938 /* Returns true if BB basic block has a preserve label. */
1941 block_has_preserve_label (basic_block bb
)
1945 && LABEL_PRESERVE_P (block_label (bb
)));
1948 /* E1 and E2 are edges with the same destination block. Search their
1949 predecessors for common code. If found, redirect control flow from
1950 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1951 or the other way around (dir_backward). DIR specifies the allowed
1952 replacement direction. */
1955 try_crossjump_to_edge (int mode
, edge e1
, edge e2
,
1956 enum replace_direction dir
)
1959 basic_block src1
= e1
->src
, src2
= e2
->src
;
1960 basic_block redirect_to
, redirect_from
, to_remove
;
1961 basic_block osrc1
, osrc2
, redirect_edges_to
, tmp
;
1962 rtx_insn
*newpos1
, *newpos2
;
1966 newpos1
= newpos2
= NULL
;
1968 /* Search backward through forwarder blocks. We don't need to worry
1969 about multiple entry or chained forwarders, as they will be optimized
1970 away. We do this to look past the unconditional jump following a
1971 conditional jump that is required due to the current CFG shape. */
1972 if (single_pred_p (src1
)
1973 && FORWARDER_BLOCK_P (src1
))
1974 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1976 if (single_pred_p (src2
)
1977 && FORWARDER_BLOCK_P (src2
))
1978 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1980 /* Nothing to do if we reach ENTRY, or a common source block. */
1981 if (src1
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) || src2
1982 == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1987 /* Seeing more than 1 forwarder blocks would confuse us later... */
1988 if (FORWARDER_BLOCK_P (e1
->dest
)
1989 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1992 if (FORWARDER_BLOCK_P (e2
->dest
)
1993 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1996 /* Likewise with dead code (possibly newly created by the other optimizations
1998 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
2001 /* Do not turn corssing edge to non-crossing or vice versa after reload. */
2002 if (BB_PARTITION (src1
) != BB_PARTITION (src2
)
2003 && reload_completed
)
2006 /* Look for the common insn sequence, part the first ... */
2007 if (!outgoing_edges_match (mode
, src1
, src2
))
2010 /* ... and part the second. */
2011 nmatch
= flow_find_cross_jump (src1
, src2
, &newpos1
, &newpos2
, &dir
);
2015 if (newpos1
!= NULL_RTX
)
2016 src1
= BLOCK_FOR_INSN (newpos1
);
2017 if (newpos2
!= NULL_RTX
)
2018 src2
= BLOCK_FOR_INSN (newpos2
);
2020 /* Check that SRC1 and SRC2 have preds again. They may have changed
2021 above due to the call to flow_find_cross_jump. */
2022 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
2025 if (dir
== dir_backward
)
2027 std::swap (osrc1
, osrc2
);
2028 std::swap (src1
, src2
);
2030 std::swap (newpos1
, newpos2
);
2033 /* Don't proceed with the crossjump unless we found a sufficient number
2034 of matching instructions or the 'from' block was totally matched
2035 (such that its predecessors will hopefully be redirected and the
2037 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
2038 && (newpos1
!= BB_HEAD (src1
)))
2041 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
2042 if (block_has_preserve_label (e1
->dest
)
2043 && (e1
->flags
& EDGE_ABNORMAL
))
2046 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2048 If we have tablejumps in the end of SRC1 and SRC2
2049 they have been already compared for equivalence in outgoing_edges_match ()
2050 so replace the references to TABLE1 by references to TABLE2. */
2052 rtx_insn
*label1
, *label2
;
2053 rtx_jump_table_data
*table1
, *table2
;
2055 if (tablejump_p (BB_END (osrc1
), &label1
, &table1
)
2056 && tablejump_p (BB_END (osrc2
), &label2
, &table2
)
2057 && label1
!= label2
)
2061 /* Replace references to LABEL1 with LABEL2. */
2062 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2064 /* Do not replace the label in SRC1->END because when deleting
2065 a block whose end is a tablejump, the tablejump referenced
2066 from the instruction is deleted too. */
2067 if (insn
!= BB_END (osrc1
))
2068 replace_label_in_insn (insn
, label1
, label2
, true);
2073 /* Avoid splitting if possible. We must always split when SRC2 has
2074 EH predecessor edges, or we may end up with basic blocks with both
2075 normal and EH predecessor edges. */
2076 if (newpos2
== BB_HEAD (src2
)
2077 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
2081 if (newpos2
== BB_HEAD (src2
))
2083 /* Skip possible basic block header. */
2084 if (LABEL_P (newpos2
))
2085 newpos2
= NEXT_INSN (newpos2
);
2086 while (DEBUG_INSN_P (newpos2
))
2087 newpos2
= NEXT_INSN (newpos2
);
2088 if (NOTE_P (newpos2
))
2089 newpos2
= NEXT_INSN (newpos2
);
2090 while (DEBUG_INSN_P (newpos2
))
2091 newpos2
= NEXT_INSN (newpos2
);
2095 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
2096 src2
->index
, nmatch
);
2097 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
2102 "Cross jumping from bb %i to bb %i; %i common insns\n",
2103 src1
->index
, src2
->index
, nmatch
);
2105 /* We may have some registers visible through the block. */
2106 df_set_bb_dirty (redirect_to
);
2109 redirect_edges_to
= redirect_to
;
2111 redirect_edges_to
= osrc2
;
2113 /* Recompute the frequencies and counts of outgoing edges. */
2114 FOR_EACH_EDGE (s
, ei
, redirect_edges_to
->succs
)
2118 basic_block d
= s
->dest
;
2120 if (FORWARDER_BLOCK_P (d
))
2121 d
= single_succ (d
);
2123 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
2125 basic_block d2
= s2
->dest
;
2126 if (FORWARDER_BLOCK_P (d2
))
2127 d2
= single_succ (d2
);
2132 s
->count
+= s2
->count
;
2134 /* Take care to update possible forwarder blocks. We verified
2135 that there is no more than one in the chain, so we can't run
2136 into infinite loop. */
2137 if (FORWARDER_BLOCK_P (s
->dest
))
2139 single_succ_edge (s
->dest
)->count
+= s2
->count
;
2140 s
->dest
->count
+= s2
->count
;
2141 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
2144 if (FORWARDER_BLOCK_P (s2
->dest
))
2146 single_succ_edge (s2
->dest
)->count
-= s2
->count
;
2147 s2
->dest
->count
-= s2
->count
;
2148 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
2149 if (s2
->dest
->frequency
< 0)
2150 s2
->dest
->frequency
= 0;
2153 if (!redirect_edges_to
->frequency
&& !src1
->frequency
)
2154 s
->probability
= s
->probability
.combine_with_freq
2155 (redirect_edges_to
->frequency
,
2156 s2
->probability
, src1
->frequency
);
2159 /* Adjust count and frequency for the block. An earlier jump
2160 threading pass may have left the profile in an inconsistent
2161 state (see update_bb_profile_for_threading) so we must be
2162 prepared for overflows. */
2166 tmp
->count
+= src1
->count
;
2167 tmp
->frequency
+= src1
->frequency
;
2168 if (tmp
->frequency
> BB_FREQ_MAX
)
2169 tmp
->frequency
= BB_FREQ_MAX
;
2170 if (tmp
== redirect_edges_to
)
2172 tmp
= find_fallthru_edge (tmp
->succs
)->dest
;
2175 update_br_prob_note (redirect_edges_to
);
2177 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2179 /* Skip possible basic block header. */
2180 if (LABEL_P (newpos1
))
2181 newpos1
= NEXT_INSN (newpos1
);
2183 while (DEBUG_INSN_P (newpos1
))
2184 newpos1
= NEXT_INSN (newpos1
);
2186 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
2187 newpos1
= NEXT_INSN (newpos1
);
2189 while (DEBUG_INSN_P (newpos1
))
2190 newpos1
= NEXT_INSN (newpos1
);
2192 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
2193 to_remove
= single_succ (redirect_from
);
2195 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
2196 delete_basic_block (to_remove
);
2198 update_forwarder_flag (redirect_from
);
2199 if (redirect_to
!= src2
)
2200 update_forwarder_flag (src2
);
2205 /* Search the predecessors of BB for common insn sequences. When found,
2206 share code between them by redirecting control flow. Return true if
2207 any changes made. */
2210 try_crossjump_bb (int mode
, basic_block bb
)
2212 edge e
, e2
, fallthru
;
2214 unsigned max
, ix
, ix2
;
2216 /* Nothing to do if there is not at least two incoming edges. */
2217 if (EDGE_COUNT (bb
->preds
) < 2)
2220 /* Don't crossjump if this block ends in a computed jump,
2221 unless we are optimizing for size. */
2222 if (optimize_bb_for_size_p (bb
)
2223 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2224 && computed_jump_p (BB_END (bb
)))
2227 /* If we are partitioning hot/cold basic blocks, we don't want to
2228 mess up unconditional or indirect jumps that cross between hot
2231 Basic block partitioning may result in some jumps that appear to
2232 be optimizable (or blocks that appear to be mergeable), but which really
2233 must be left untouched (they are required to make it safely across
2234 partition boundaries). See the comments at the top of
2235 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2237 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
2238 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
2239 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
2242 /* It is always cheapest to redirect a block that ends in a branch to
2243 a block that falls through into BB, as that adds no branches to the
2244 program. We'll try that combination first. */
2246 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
2248 if (EDGE_COUNT (bb
->preds
) > max
)
2251 fallthru
= find_fallthru_edge (bb
->preds
);
2254 for (ix
= 0; ix
< EDGE_COUNT (bb
->preds
);)
2256 e
= EDGE_PRED (bb
, ix
);
2259 /* As noted above, first try with the fallthru predecessor (or, a
2260 fallthru predecessor if we are in cfglayout mode). */
2263 /* Don't combine the fallthru edge into anything else.
2264 If there is a match, we'll do it the other way around. */
2267 /* If nothing changed since the last attempt, there is nothing
2270 && !((e
->src
->flags
& BB_MODIFIED
)
2271 || (fallthru
->src
->flags
& BB_MODIFIED
)))
2274 if (try_crossjump_to_edge (mode
, e
, fallthru
, dir_forward
))
2282 /* Non-obvious work limiting check: Recognize that we're going
2283 to call try_crossjump_bb on every basic block. So if we have
2284 two blocks with lots of outgoing edges (a switch) and they
2285 share lots of common destinations, then we would do the
2286 cross-jump check once for each common destination.
2288 Now, if the blocks actually are cross-jump candidates, then
2289 all of their destinations will be shared. Which means that
2290 we only need check them for cross-jump candidacy once. We
2291 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2292 choosing to do the check from the block for which the edge
2293 in question is the first successor of A. */
2294 if (EDGE_SUCC (e
->src
, 0) != e
)
2297 for (ix2
= 0; ix2
< EDGE_COUNT (bb
->preds
); ix2
++)
2299 e2
= EDGE_PRED (bb
, ix2
);
2304 /* We've already checked the fallthru edge above. */
2308 /* The "first successor" check above only prevents multiple
2309 checks of crossjump(A,B). In order to prevent redundant
2310 checks of crossjump(B,A), require that A be the block
2311 with the lowest index. */
2312 if (e
->src
->index
> e2
->src
->index
)
2315 /* If nothing changed since the last attempt, there is nothing
2318 && !((e
->src
->flags
& BB_MODIFIED
)
2319 || (e2
->src
->flags
& BB_MODIFIED
)))
2322 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2324 if (try_crossjump_to_edge (mode
, e
, e2
, dir_both
))
2334 crossjumps_occurred
= true;
2339 /* Search the successors of BB for common insn sequences. When found,
2340 share code between them by moving it across the basic block
2341 boundary. Return true if any changes made. */
2344 try_head_merge_bb (basic_block bb
)
2346 basic_block final_dest_bb
= NULL
;
2347 int max_match
= INT_MAX
;
2349 rtx_insn
**headptr
, **currptr
, **nextptr
;
2350 bool changed
, moveall
;
2352 rtx_insn
*e0_last_head
;
2354 rtx_insn
*move_before
;
2355 unsigned nedges
= EDGE_COUNT (bb
->succs
);
2356 rtx_insn
*jump
= BB_END (bb
);
2357 regset live
, live_union
;
2359 /* Nothing to do if there is not at least two outgoing edges. */
2363 /* Don't crossjump if this block ends in a computed jump,
2364 unless we are optimizing for size. */
2365 if (optimize_bb_for_size_p (bb
)
2366 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2367 && computed_jump_p (BB_END (bb
)))
2370 cond
= get_condition (jump
, &move_before
, true, false);
2371 if (cond
== NULL_RTX
)
2373 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2374 move_before
= prev_nonnote_nondebug_insn (jump
);
2379 for (ix
= 0; ix
< nedges
; ix
++)
2380 if (EDGE_SUCC (bb
, ix
)->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2383 for (ix
= 0; ix
< nedges
; ix
++)
2385 edge e
= EDGE_SUCC (bb
, ix
);
2386 basic_block other_bb
= e
->dest
;
2388 if (df_get_bb_dirty (other_bb
))
2390 block_was_dirty
= true;
2394 if (e
->flags
& EDGE_ABNORMAL
)
2397 /* Normally, all destination blocks must only be reachable from this
2398 block, i.e. they must have one incoming edge.
2400 There is one special case we can handle, that of multiple consecutive
2401 jumps where the first jumps to one of the targets of the second jump.
2402 This happens frequently in switch statements for default labels.
2403 The structure is as follows:
2409 jump with targets A, B, C, D...
2411 has two incoming edges, from FINAL_DEST_BB and BB
2413 In this case, we can try to move the insns through BB and into
2415 if (EDGE_COUNT (other_bb
->preds
) != 1)
2417 edge incoming_edge
, incoming_bb_other_edge
;
2420 if (final_dest_bb
!= NULL
2421 || EDGE_COUNT (other_bb
->preds
) != 2)
2424 /* We must be able to move the insns across the whole block. */
2425 move_before
= BB_HEAD (bb
);
2426 while (!NONDEBUG_INSN_P (move_before
))
2427 move_before
= NEXT_INSN (move_before
);
2429 if (EDGE_COUNT (bb
->preds
) != 1)
2431 incoming_edge
= EDGE_PRED (bb
, 0);
2432 final_dest_bb
= incoming_edge
->src
;
2433 if (EDGE_COUNT (final_dest_bb
->succs
) != 2)
2435 FOR_EACH_EDGE (incoming_bb_other_edge
, ei
, final_dest_bb
->succs
)
2436 if (incoming_bb_other_edge
!= incoming_edge
)
2438 if (incoming_bb_other_edge
->dest
!= other_bb
)
2443 e0
= EDGE_SUCC (bb
, 0);
2444 e0_last_head
= NULL
;
2447 for (ix
= 1; ix
< nedges
; ix
++)
2449 edge e
= EDGE_SUCC (bb
, ix
);
2450 rtx_insn
*e0_last
, *e_last
;
2453 nmatch
= flow_find_head_matching_sequence (e0
->dest
, e
->dest
,
2454 &e0_last
, &e_last
, 0);
2458 if (nmatch
< max_match
)
2461 e0_last_head
= e0_last
;
2465 /* If we matched an entire block, we probably have to avoid moving the
2468 && e0_last_head
== BB_END (e0
->dest
)
2469 && (find_reg_note (e0_last_head
, REG_EH_REGION
, 0)
2470 || control_flow_insn_p (e0_last_head
)))
2476 e0_last_head
= prev_real_insn (e0_last_head
);
2477 while (DEBUG_INSN_P (e0_last_head
));
2483 /* We must find a union of the live registers at each of the end points. */
2484 live
= BITMAP_ALLOC (NULL
);
2485 live_union
= BITMAP_ALLOC (NULL
);
2487 currptr
= XNEWVEC (rtx_insn
*, nedges
);
2488 headptr
= XNEWVEC (rtx_insn
*, nedges
);
2489 nextptr
= XNEWVEC (rtx_insn
*, nedges
);
2491 for (ix
= 0; ix
< nedges
; ix
++)
2494 basic_block merge_bb
= EDGE_SUCC (bb
, ix
)->dest
;
2495 rtx_insn
*head
= BB_HEAD (merge_bb
);
2497 while (!NONDEBUG_INSN_P (head
))
2498 head
= NEXT_INSN (head
);
2502 /* Compute the end point and live information */
2503 for (j
= 1; j
< max_match
; j
++)
2505 head
= NEXT_INSN (head
);
2506 while (!NONDEBUG_INSN_P (head
));
2507 simulate_backwards_to_point (merge_bb
, live
, head
);
2508 IOR_REG_SET (live_union
, live
);
2511 /* If we're moving across two blocks, verify the validity of the
2512 first move, then adjust the target and let the loop below deal
2513 with the final move. */
2514 if (final_dest_bb
!= NULL
)
2516 rtx_insn
*move_upto
;
2518 moveall
= can_move_insns_across (currptr
[0], e0_last_head
, move_before
,
2519 jump
, e0
->dest
, live_union
,
2523 if (move_upto
== NULL_RTX
)
2526 while (e0_last_head
!= move_upto
)
2528 df_simulate_one_insn_backwards (e0
->dest
, e0_last_head
,
2530 e0_last_head
= PREV_INSN (e0_last_head
);
2533 if (e0_last_head
== NULL_RTX
)
2536 jump
= BB_END (final_dest_bb
);
2537 cond
= get_condition (jump
, &move_before
, true, false);
2538 if (cond
== NULL_RTX
)
2540 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2541 move_before
= prev_nonnote_nondebug_insn (jump
);
2549 rtx_insn
*move_upto
;
2550 moveall
= can_move_insns_across (currptr
[0], e0_last_head
,
2551 move_before
, jump
, e0
->dest
, live_union
,
2553 if (!moveall
&& move_upto
== NULL_RTX
)
2555 if (jump
== move_before
)
2558 /* Try again, using a different insertion point. */
2561 /* Don't try moving before a cc0 user, as that may invalidate
2563 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2569 if (final_dest_bb
&& !moveall
)
2570 /* We haven't checked whether a partial move would be OK for the first
2571 move, so we have to fail this case. */
2577 if (currptr
[0] == move_upto
)
2579 for (ix
= 0; ix
< nedges
; ix
++)
2581 rtx_insn
*curr
= currptr
[ix
];
2583 curr
= NEXT_INSN (curr
);
2584 while (!NONDEBUG_INSN_P (curr
));
2589 /* If we can't currently move all of the identical insns, remember
2590 each insn after the range that we'll merge. */
2592 for (ix
= 0; ix
< nedges
; ix
++)
2594 rtx_insn
*curr
= currptr
[ix
];
2596 curr
= NEXT_INSN (curr
);
2597 while (!NONDEBUG_INSN_P (curr
));
2601 reorder_insns (headptr
[0], currptr
[0], PREV_INSN (move_before
));
2602 df_set_bb_dirty (EDGE_SUCC (bb
, 0)->dest
);
2603 if (final_dest_bb
!= NULL
)
2604 df_set_bb_dirty (final_dest_bb
);
2605 df_set_bb_dirty (bb
);
2606 for (ix
= 1; ix
< nedges
; ix
++)
2608 df_set_bb_dirty (EDGE_SUCC (bb
, ix
)->dest
);
2609 delete_insn_chain (headptr
[ix
], currptr
[ix
], false);
2613 if (jump
== move_before
)
2616 /* For the unmerged insns, try a different insertion point. */
2619 /* Don't try moving before a cc0 user, as that may invalidate
2621 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2624 for (ix
= 0; ix
< nedges
; ix
++)
2625 currptr
[ix
] = headptr
[ix
] = nextptr
[ix
];
2635 crossjumps_occurred
|= changed
;
2640 /* Return true if BB contains just bb note, or bb note followed
2641 by only DEBUG_INSNs. */
2644 trivially_empty_bb_p (basic_block bb
)
2646 rtx_insn
*insn
= BB_END (bb
);
2650 if (insn
== BB_HEAD (bb
))
2652 if (!DEBUG_INSN_P (insn
))
2654 insn
= PREV_INSN (insn
);
2658 /* Return true if BB contains just a return and possibly a USE of the
2659 return value. Fill in *RET and *USE with the return and use insns
2660 if any found, otherwise NULL. All CLOBBERs are ignored. */
2663 bb_is_just_return (basic_block bb
, rtx_insn
**ret
, rtx_insn
**use
)
2668 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2671 FOR_BB_INSNS (bb
, insn
)
2672 if (NONDEBUG_INSN_P (insn
))
2674 rtx pat
= PATTERN (insn
);
2676 if (!*ret
&& ANY_RETURN_P (pat
))
2678 else if (!*ret
&& !*use
&& GET_CODE (pat
) == USE
2679 && REG_P (XEXP (pat
, 0))
2680 && REG_FUNCTION_VALUE_P (XEXP (pat
, 0)))
2682 else if (GET_CODE (pat
) != CLOBBER
)
2689 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2690 instructions etc. Return nonzero if changes were made. */
2693 try_optimize_cfg (int mode
)
2695 bool changed_overall
= false;
2698 basic_block bb
, b
, next
;
2700 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
2703 crossjumps_occurred
= false;
2705 FOR_EACH_BB_FN (bb
, cfun
)
2706 update_forwarder_flag (bb
);
2708 if (! targetm
.cannot_modify_jumps_p ())
2711 /* Attempt to merge blocks as made possible by edge removal. If
2712 a block has only one successor, and the successor has only
2713 one predecessor, they may be combined. */
2716 block_was_dirty
= false;
2722 "\n\ntry_optimize_cfg iteration %i\n\n",
2725 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
2726 != EXIT_BLOCK_PTR_FOR_FN (cfun
);)
2730 bool changed_here
= false;
2732 /* Delete trivially dead basic blocks. This is either
2733 blocks with no predecessors, or empty blocks with no
2734 successors. However if the empty block with no
2735 successors is the successor of the ENTRY_BLOCK, it is
2736 kept. This ensures that the ENTRY_BLOCK will have a
2737 successor which is a precondition for many RTL
2738 passes. Empty blocks may result from expanding
2739 __builtin_unreachable (). */
2740 if (EDGE_COUNT (b
->preds
) == 0
2741 || (EDGE_COUNT (b
->succs
) == 0
2742 && trivially_empty_bb_p (b
)
2743 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->dest
2747 if (EDGE_COUNT (b
->preds
) > 0)
2752 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2755 && BARRIER_P (BB_FOOTER (b
)))
2756 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2757 if ((e
->flags
& EDGE_FALLTHRU
)
2758 && BB_FOOTER (e
->src
) == NULL
)
2762 BB_FOOTER (e
->src
) = BB_FOOTER (b
);
2763 BB_FOOTER (b
) = NULL
;
2768 BB_FOOTER (e
->src
) = emit_barrier ();
2775 rtx_insn
*last
= get_last_bb_insn (b
);
2776 if (last
&& BARRIER_P (last
))
2777 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2778 if ((e
->flags
& EDGE_FALLTHRU
))
2779 emit_barrier_after (BB_END (e
->src
));
2782 delete_basic_block (b
);
2784 /* Avoid trying to remove the exit block. */
2785 b
= (c
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? c
->next_bb
: c
);
2789 /* Remove code labels no longer used. */
2790 if (single_pred_p (b
)
2791 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2792 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2793 && LABEL_P (BB_HEAD (b
))
2794 && !LABEL_PRESERVE_P (BB_HEAD (b
))
2795 /* If the previous block ends with a branch to this
2796 block, we can't delete the label. Normally this
2797 is a condjump that is yet to be simplified, but
2798 if CASE_DROPS_THRU, this can be a tablejump with
2799 some element going to the same place as the
2800 default (fallthru). */
2801 && (single_pred (b
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
)
2802 || !JUMP_P (BB_END (single_pred (b
)))
2803 || ! label_is_jump_target_p (BB_HEAD (b
),
2804 BB_END (single_pred (b
)))))
2806 delete_insn (BB_HEAD (b
));
2808 fprintf (dump_file
, "Deleted label in block %i.\n",
2812 /* If we fall through an empty block, we can remove it. */
2813 if (!(mode
& (CLEANUP_CFGLAYOUT
| CLEANUP_NO_INSN_DEL
))
2814 && single_pred_p (b
)
2815 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2816 && !LABEL_P (BB_HEAD (b
))
2817 && FORWARDER_BLOCK_P (b
)
2818 /* Note that forwarder_block_p true ensures that
2819 there is a successor for this block. */
2820 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2821 && n_basic_blocks_for_fn (cfun
) > NUM_FIXED_BLOCKS
+ 1)
2825 "Deleting fallthru block %i.\n",
2828 c
= ((b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2829 ? b
->next_bb
: b
->prev_bb
);
2830 redirect_edge_succ_nodup (single_pred_edge (b
),
2832 delete_basic_block (b
);
2838 /* Merge B with its single successor, if any. */
2839 if (single_succ_p (b
)
2840 && (s
= single_succ_edge (b
))
2841 && !(s
->flags
& EDGE_COMPLEX
)
2842 && (c
= s
->dest
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2843 && single_pred_p (c
)
2846 /* When not in cfg_layout mode use code aware of reordering
2847 INSN. This code possibly creates new basic blocks so it
2848 does not fit merge_blocks interface and is kept here in
2849 hope that it will become useless once more of compiler
2850 is transformed to use cfg_layout mode. */
2852 if ((mode
& CLEANUP_CFGLAYOUT
)
2853 && can_merge_blocks_p (b
, c
))
2855 merge_blocks (b
, c
);
2856 update_forwarder_flag (b
);
2857 changed_here
= true;
2859 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2860 /* If the jump insn has side effects,
2861 we can't kill the edge. */
2862 && (!JUMP_P (BB_END (b
))
2863 || (reload_completed
2864 ? simplejump_p (BB_END (b
))
2865 : (onlyjump_p (BB_END (b
))
2866 && !tablejump_p (BB_END (b
),
2868 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2871 changed_here
= true;
2875 /* Try to change a branch to a return to just that return. */
2876 rtx_insn
*ret
, *use
;
2877 if (single_succ_p (b
)
2878 && onlyjump_p (BB_END (b
))
2879 && bb_is_just_return (single_succ (b
), &ret
, &use
))
2881 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2885 emit_insn_before (copy_insn (PATTERN (use
)),
2888 fprintf (dump_file
, "Changed jump %d->%d to return.\n",
2889 b
->index
, single_succ (b
)->index
);
2890 redirect_edge_succ (single_succ_edge (b
),
2891 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2892 single_succ_edge (b
)->flags
&= ~EDGE_CROSSING
;
2893 changed_here
= true;
2897 /* Try to change a conditional branch to a return to the
2898 respective conditional return. */
2899 if (EDGE_COUNT (b
->succs
) == 2
2900 && any_condjump_p (BB_END (b
))
2901 && bb_is_just_return (BRANCH_EDGE (b
)->dest
, &ret
, &use
))
2903 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2907 emit_insn_before (copy_insn (PATTERN (use
)),
2910 fprintf (dump_file
, "Changed conditional jump %d->%d "
2911 "to conditional return.\n",
2912 b
->index
, BRANCH_EDGE (b
)->dest
->index
);
2913 redirect_edge_succ (BRANCH_EDGE (b
),
2914 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2915 BRANCH_EDGE (b
)->flags
&= ~EDGE_CROSSING
;
2916 changed_here
= true;
2920 /* Try to flip a conditional branch that falls through to
2921 a return so that it becomes a conditional return and a
2922 new jump to the original branch target. */
2923 if (EDGE_COUNT (b
->succs
) == 2
2924 && BRANCH_EDGE (b
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2925 && any_condjump_p (BB_END (b
))
2926 && bb_is_just_return (FALLTHRU_EDGE (b
)->dest
, &ret
, &use
))
2928 if (invert_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2929 JUMP_LABEL (BB_END (b
)), 0))
2931 basic_block new_ft
= BRANCH_EDGE (b
)->dest
;
2932 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2936 emit_insn_before (copy_insn (PATTERN (use
)),
2939 fprintf (dump_file
, "Changed conditional jump "
2940 "%d->%d to conditional return, adding "
2941 "fall-through jump.\n",
2942 b
->index
, BRANCH_EDGE (b
)->dest
->index
);
2943 redirect_edge_succ (BRANCH_EDGE (b
),
2944 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2945 BRANCH_EDGE (b
)->flags
&= ~EDGE_CROSSING
;
2946 std::swap (BRANCH_EDGE (b
)->probability
,
2947 FALLTHRU_EDGE (b
)->probability
);
2948 update_br_prob_note (b
);
2949 basic_block jb
= force_nonfallthru (FALLTHRU_EDGE (b
));
2950 notice_new_block (jb
);
2951 if (!redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (jb
)),
2952 block_label (new_ft
), 0))
2954 redirect_edge_succ (single_succ_edge (jb
), new_ft
);
2955 changed_here
= true;
2959 /* Invert the jump back to what it was. This should
2961 if (!invert_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2962 JUMP_LABEL (BB_END (b
)), 0))
2968 /* Simplify branch over branch. */
2969 if ((mode
& CLEANUP_EXPENSIVE
)
2970 && !(mode
& CLEANUP_CFGLAYOUT
)
2971 && try_simplify_condjump (b
))
2972 changed_here
= true;
2974 /* If B has a single outgoing edge, but uses a
2975 non-trivial jump instruction without side-effects, we
2976 can either delete the jump entirely, or replace it
2977 with a simple unconditional jump. */
2978 if (single_succ_p (b
)
2979 && single_succ (b
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2980 && onlyjump_p (BB_END (b
))
2981 && !CROSSING_JUMP_P (BB_END (b
))
2982 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2984 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2986 update_forwarder_flag (b
);
2987 changed_here
= true;
2990 /* Simplify branch to branch. */
2991 if (try_forward_edges (mode
, b
))
2993 update_forwarder_flag (b
);
2994 changed_here
= true;
2997 /* Look for shared code between blocks. */
2998 if ((mode
& CLEANUP_CROSSJUMP
)
2999 && try_crossjump_bb (mode
, b
))
3000 changed_here
= true;
3002 if ((mode
& CLEANUP_CROSSJUMP
)
3003 /* This can lengthen register lifetimes. Do it only after
3006 && try_head_merge_bb (b
))
3007 changed_here
= true;
3009 /* Don't get confused by the index shift caused by
3017 if ((mode
& CLEANUP_CROSSJUMP
)
3018 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR_FOR_FN (cfun
)))
3021 if (block_was_dirty
)
3023 /* This should only be set by head-merging. */
3024 gcc_assert (mode
& CLEANUP_CROSSJUMP
);
3030 /* Edge forwarding in particular can cause hot blocks previously
3031 reached by both hot and cold blocks to become dominated only
3032 by cold blocks. This will cause the verification below to fail,
3033 and lead to now cold code in the hot section. This is not easy
3034 to detect and fix during edge forwarding, and in some cases
3035 is only visible after newly unreachable blocks are deleted,
3036 which will be done in fixup_partitions. */
3037 fixup_partitions ();
3038 checking_verify_flow_info ();
3041 changed_overall
|= changed
;
3047 FOR_ALL_BB_FN (b
, cfun
)
3048 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
3050 return changed_overall
;
3053 /* Delete all unreachable basic blocks. */
3056 delete_unreachable_blocks (void)
3058 bool changed
= false;
3059 basic_block b
, prev_bb
;
3061 find_unreachable_blocks ();
3063 /* When we're in GIMPLE mode and there may be debug insns, we should
3064 delete blocks in reverse dominator order, so as to get a chance
3065 to substitute all released DEFs into debug stmts. If we don't
3066 have dominators information, walking blocks backward gets us a
3067 better chance of retaining most debug information than
3069 if (MAY_HAVE_DEBUG_INSNS
&& current_ir_type () == IR_GIMPLE
3070 && dom_info_available_p (CDI_DOMINATORS
))
3072 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
3073 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
3075 prev_bb
= b
->prev_bb
;
3077 if (!(b
->flags
& BB_REACHABLE
))
3079 /* Speed up the removal of blocks that don't dominate
3080 others. Walking backwards, this should be the common
3082 if (!first_dom_son (CDI_DOMINATORS
, b
))
3083 delete_basic_block (b
);
3087 = get_all_dominated_blocks (CDI_DOMINATORS
, b
);
3093 prev_bb
= b
->prev_bb
;
3095 gcc_assert (!(b
->flags
& BB_REACHABLE
));
3097 delete_basic_block (b
);
3109 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
3110 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
3112 prev_bb
= b
->prev_bb
;
3114 if (!(b
->flags
& BB_REACHABLE
))
3116 delete_basic_block (b
);
3123 tidy_fallthru_edges ();
3127 /* Delete any jump tables never referenced. We can't delete them at the
3128 time of removing tablejump insn as they are referenced by the preceding
3129 insns computing the destination, so we delay deleting and garbagecollect
3130 them once life information is computed. */
3132 delete_dead_jumptables (void)
3136 /* A dead jump table does not belong to any basic block. Scan insns
3137 between two adjacent basic blocks. */
3138 FOR_EACH_BB_FN (bb
, cfun
)
3140 rtx_insn
*insn
, *next
;
3142 for (insn
= NEXT_INSN (BB_END (bb
));
3143 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
3146 next
= NEXT_INSN (insn
);
3148 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
3149 && JUMP_TABLE_DATA_P (next
))
3151 rtx_insn
*label
= insn
, *jump
= next
;
3154 fprintf (dump_file
, "Dead jumptable %i removed\n",
3157 next
= NEXT_INSN (next
);
3159 delete_insn (label
);
3166 /* Tidy the CFG by deleting unreachable code and whatnot. */
3169 cleanup_cfg (int mode
)
3171 bool changed
= false;
3173 /* Set the cfglayout mode flag here. We could update all the callers
3174 but that is just inconvenient, especially given that we eventually
3175 want to have cfglayout mode as the default. */
3176 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3177 mode
|= CLEANUP_CFGLAYOUT
;
3179 timevar_push (TV_CLEANUP_CFG
);
3180 if (delete_unreachable_blocks ())
3183 /* We've possibly created trivially dead code. Cleanup it right
3184 now to introduce more opportunities for try_optimize_cfg. */
3185 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
3186 && !reload_completed
)
3187 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3192 /* To tail-merge blocks ending in the same noreturn function (e.g.
3193 a call to abort) we have to insert fake edges to exit. Do this
3194 here once. The fake edges do not interfere with any other CFG
3196 if (mode
& CLEANUP_CROSSJUMP
)
3197 add_noreturn_fake_exit_edges ();
3199 if (!dbg_cnt (cfg_cleanup
))
3202 while (try_optimize_cfg (mode
))
3204 delete_unreachable_blocks (), changed
= true;
3205 if (!(mode
& CLEANUP_NO_INSN_DEL
))
3207 /* Try to remove some trivially dead insns when doing an expensive
3208 cleanup. But delete_trivially_dead_insns doesn't work after
3209 reload (it only handles pseudos) and run_fast_dce is too costly
3210 to run in every iteration.
3212 For effective cross jumping, we really want to run a fast DCE to
3213 clean up any dead conditions, or they get in the way of performing
3216 Other transformations in cleanup_cfg are not so sensitive to dead
3217 code, so delete_trivially_dead_insns or even doing nothing at all
3219 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
3220 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3222 if ((mode
& CLEANUP_CROSSJUMP
) && crossjumps_occurred
)
3229 if (mode
& CLEANUP_CROSSJUMP
)
3230 remove_fake_exit_edges ();
3232 /* Don't call delete_dead_jumptables in cfglayout mode, because
3233 that function assumes that jump tables are in the insns stream.
3234 But we also don't _have_ to delete dead jumptables in cfglayout
3235 mode because we shouldn't even be looking at things that are
3236 not in a basic block. Dead jumptables are cleaned up when
3237 going out of cfglayout mode. */
3238 if (!(mode
& CLEANUP_CFGLAYOUT
))
3239 delete_dead_jumptables ();
3241 /* ??? We probably do this way too often. */
3244 || (mode
& CLEANUP_CFG_CHANGED
)))
3246 timevar_push (TV_REPAIR_LOOPS
);
3247 /* The above doesn't preserve dominance info if available. */
3248 gcc_assert (!dom_info_available_p (CDI_DOMINATORS
));
3249 calculate_dominance_info (CDI_DOMINATORS
);
3250 fix_loop_structure (NULL
);
3251 free_dominance_info (CDI_DOMINATORS
);
3252 timevar_pop (TV_REPAIR_LOOPS
);
3255 timevar_pop (TV_CLEANUP_CFG
);
3262 const pass_data pass_data_jump
=
3264 RTL_PASS
, /* type */
3266 OPTGROUP_NONE
, /* optinfo_flags */
3267 TV_JUMP
, /* tv_id */
3268 0, /* properties_required */
3269 0, /* properties_provided */
3270 0, /* properties_destroyed */
3271 0, /* todo_flags_start */
3272 0, /* todo_flags_finish */
3275 class pass_jump
: public rtl_opt_pass
3278 pass_jump (gcc::context
*ctxt
)
3279 : rtl_opt_pass (pass_data_jump
, ctxt
)
3282 /* opt_pass methods: */
3283 virtual unsigned int execute (function
*);
3285 }; // class pass_jump
3288 pass_jump::execute (function
*)
3290 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3292 dump_flow_info (dump_file
, dump_flags
);
3293 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
3294 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
3301 make_pass_jump (gcc::context
*ctxt
)
3303 return new pass_jump (ctxt
);
3308 const pass_data pass_data_jump2
=
3310 RTL_PASS
, /* type */
3312 OPTGROUP_NONE
, /* optinfo_flags */
3313 TV_JUMP
, /* tv_id */
3314 0, /* properties_required */
3315 0, /* properties_provided */
3316 0, /* properties_destroyed */
3317 0, /* todo_flags_start */
3318 0, /* todo_flags_finish */
3321 class pass_jump2
: public rtl_opt_pass
3324 pass_jump2 (gcc::context
*ctxt
)
3325 : rtl_opt_pass (pass_data_jump2
, ctxt
)
3328 /* opt_pass methods: */
3329 virtual unsigned int execute (function
*)
3331 cleanup_cfg (flag_crossjumping
? CLEANUP_CROSSJUMP
: 0);
3335 }; // class pass_jump2
3340 make_pass_jump2 (gcc::context
*ctxt
)
3342 return new pass_jump2 (ctxt
);