xregex2.h (_RE_ARGS): Remove definition and uses.
[official-gcc.git] / boehm-gc / malloc.c
blobcb3f37663861a634d0bf100c0f15a4831b0d21f3
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
6 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 * Permission is hereby granted to use or copy this program
10 * for any purpose, provided the above notices are retained on all copies.
11 * Permission to modify the code and to distribute modified code is granted,
12 * provided the above notices are retained, and a notice that the code was
13 * modified is included with the above copyright notice.
15 /* Boehm, February 7, 1996 4:32 pm PST */
17 #include <stdio.h>
18 #include "private/gc_priv.h"
20 extern ptr_t GC_clear_stack(); /* in misc.c, behaves like identity */
21 void GC_extend_size_map(); /* in misc.c. */
23 /* Allocate reclaim list for kind: */
24 /* Return TRUE on success */
25 GC_bool GC_alloc_reclaim_list(kind)
26 register struct obj_kind * kind;
28 struct hblk ** result = (struct hblk **)
29 GC_scratch_alloc((MAXOBJSZ+1) * sizeof(struct hblk *));
30 if (result == 0) return(FALSE);
31 BZERO(result, (MAXOBJSZ+1)*sizeof(struct hblk *));
32 kind -> ok_reclaim_list = result;
33 return(TRUE);
36 /* Allocate a large block of size lw words. */
37 /* The block is not cleared. */
38 /* Flags is 0 or IGNORE_OFF_PAGE. */
39 /* We hold the allocation lock. */
40 ptr_t GC_alloc_large(lw, k, flags)
41 word lw;
42 int k;
43 unsigned flags;
45 struct hblk * h;
46 word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
47 ptr_t result;
49 if (!GC_is_initialized) GC_init_inner();
50 /* Do our share of marking work */
51 if(GC_incremental && !GC_dont_gc)
52 GC_collect_a_little_inner((int)n_blocks);
53 h = GC_allochblk(lw, k, flags);
54 # ifdef USE_MUNMAP
55 if (0 == h) {
56 GC_merge_unmapped();
57 h = GC_allochblk(lw, k, flags);
59 # endif
60 while (0 == h && GC_collect_or_expand(n_blocks, (flags != 0))) {
61 h = GC_allochblk(lw, k, flags);
63 if (h == 0) {
64 result = 0;
65 } else {
66 int total_bytes = n_blocks * HBLKSIZE;
67 if (n_blocks > 1) {
68 GC_large_allocd_bytes += total_bytes;
69 if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)
70 GC_max_large_allocd_bytes = GC_large_allocd_bytes;
72 result = (ptr_t) (h -> hb_body);
73 GC_words_wasted += BYTES_TO_WORDS(total_bytes) - lw;
75 return result;
79 /* Allocate a large block of size lb bytes. Clear if appropriate. */
80 /* We hold the allocation lock. */
81 ptr_t GC_alloc_large_and_clear(lw, k, flags)
82 word lw;
83 int k;
84 unsigned flags;
86 ptr_t result = GC_alloc_large(lw, k, flags);
87 word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
89 if (0 == result) return 0;
90 if (GC_debugging_started || GC_obj_kinds[k].ok_init) {
91 /* Clear the whole block, in case of GC_realloc call. */
92 BZERO(result, n_blocks * HBLKSIZE);
94 return result;
97 /* allocate lb bytes for an object of kind k. */
98 /* Should not be used to directly to allocate */
99 /* objects such as STUBBORN objects that */
100 /* require special handling on allocation. */
101 /* First a version that assumes we already */
102 /* hold lock: */
103 ptr_t GC_generic_malloc_inner(lb, k)
104 register word lb;
105 register int k;
107 register word lw;
108 register ptr_t op;
109 register ptr_t *opp;
111 if( SMALL_OBJ(lb) ) {
112 register struct obj_kind * kind = GC_obj_kinds + k;
113 # ifdef MERGE_SIZES
114 lw = GC_size_map[lb];
115 # else
116 lw = ALIGNED_WORDS(lb);
117 if (lw == 0) lw = MIN_WORDS;
118 # endif
119 opp = &(kind -> ok_freelist[lw]);
120 if( (op = *opp) == 0 ) {
121 # ifdef MERGE_SIZES
122 if (GC_size_map[lb] == 0) {
123 if (!GC_is_initialized) GC_init_inner();
124 if (GC_size_map[lb] == 0) GC_extend_size_map(lb);
125 return(GC_generic_malloc_inner(lb, k));
127 # else
128 if (!GC_is_initialized) {
129 GC_init_inner();
130 return(GC_generic_malloc_inner(lb, k));
132 # endif
133 if (kind -> ok_reclaim_list == 0) {
134 if (!GC_alloc_reclaim_list(kind)) goto out;
136 op = GC_allocobj(lw, k);
137 if (op == 0) goto out;
139 /* Here everything is in a consistent state. */
140 /* We assume the following assignment is */
141 /* atomic. If we get aborted */
142 /* after the assignment, we lose an object, */
143 /* but that's benign. */
144 /* Volatile declarations may need to be added */
145 /* to prevent the compiler from breaking things.*/
146 /* If we only execute the second of the */
147 /* following assignments, we lose the free */
148 /* list, but that should still be OK, at least */
149 /* for garbage collected memory. */
150 *opp = obj_link(op);
151 obj_link(op) = 0;
152 } else {
153 lw = ROUNDED_UP_WORDS(lb);
154 op = (ptr_t)GC_alloc_large_and_clear(lw, k, 0);
156 GC_words_allocd += lw;
158 out:
159 return op;
162 /* Allocate a composite object of size n bytes. The caller guarantees */
163 /* that pointers past the first page are not relevant. Caller holds */
164 /* allocation lock. */
165 ptr_t GC_generic_malloc_inner_ignore_off_page(lb, k)
166 register size_t lb;
167 register int k;
169 register word lw;
170 ptr_t op;
172 if (lb <= HBLKSIZE)
173 return(GC_generic_malloc_inner((word)lb, k));
174 lw = ROUNDED_UP_WORDS(lb);
175 op = (ptr_t)GC_alloc_large_and_clear(lw, k, IGNORE_OFF_PAGE);
176 GC_words_allocd += lw;
177 return op;
180 ptr_t GC_generic_malloc(lb, k)
181 register word lb;
182 register int k;
184 ptr_t result;
185 DCL_LOCK_STATE;
187 if (GC_have_errors) GC_print_all_errors();
188 GC_INVOKE_FINALIZERS();
189 if (SMALL_OBJ(lb)) {
190 DISABLE_SIGNALS();
191 LOCK();
192 result = GC_generic_malloc_inner((word)lb, k);
193 UNLOCK();
194 ENABLE_SIGNALS();
195 } else {
196 word lw;
197 word n_blocks;
198 GC_bool init;
199 lw = ROUNDED_UP_WORDS(lb);
200 n_blocks = OBJ_SZ_TO_BLOCKS(lw);
201 init = GC_obj_kinds[k].ok_init;
202 DISABLE_SIGNALS();
203 LOCK();
204 result = (ptr_t)GC_alloc_large(lw, k, 0);
205 if (0 != result) {
206 if (GC_debugging_started) {
207 BZERO(result, n_blocks * HBLKSIZE);
208 } else {
209 # ifdef THREADS
210 /* Clear any memory that might be used for GC descriptors */
211 /* before we release the lock. */
212 ((word *)result)[0] = 0;
213 ((word *)result)[1] = 0;
214 ((word *)result)[lw-1] = 0;
215 ((word *)result)[lw-2] = 0;
216 # endif
219 GC_words_allocd += lw;
220 UNLOCK();
221 ENABLE_SIGNALS();
222 if (init && !GC_debugging_started && 0 != result) {
223 BZERO(result, n_blocks * HBLKSIZE);
226 if (0 == result) {
227 return((*GC_oom_fn)(lb));
228 } else {
229 return(result);
234 #define GENERAL_MALLOC(lb,k) \
235 (GC_PTR)GC_clear_stack(GC_generic_malloc((word)lb, k))
236 /* We make the GC_clear_stack_call a tail call, hoping to get more of */
237 /* the stack. */
239 /* Allocate lb bytes of atomic (pointerfree) data */
240 # ifdef __STDC__
241 GC_PTR GC_malloc_atomic(size_t lb)
242 # else
243 GC_PTR GC_malloc_atomic(lb)
244 size_t lb;
245 # endif
247 register ptr_t op;
248 register ptr_t * opp;
249 register word lw;
250 DCL_LOCK_STATE;
252 if( EXPECT(SMALL_OBJ(lb), 1) ) {
253 # ifdef MERGE_SIZES
254 lw = GC_size_map[lb];
255 # else
256 lw = ALIGNED_WORDS(lb);
257 # endif
258 opp = &(GC_aobjfreelist[lw]);
259 FASTLOCK();
260 if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
261 FASTUNLOCK();
262 return(GENERAL_MALLOC((word)lb, PTRFREE));
264 /* See above comment on signals. */
265 *opp = obj_link(op);
266 GC_words_allocd += lw;
267 FASTUNLOCK();
268 return((GC_PTR) op);
269 } else {
270 return(GENERAL_MALLOC((word)lb, PTRFREE));
274 /* Allocate lb bytes of composite (pointerful) data */
275 # ifdef __STDC__
276 GC_PTR GC_malloc(size_t lb)
277 # else
278 GC_PTR GC_malloc(lb)
279 size_t lb;
280 # endif
282 register ptr_t op;
283 register ptr_t *opp;
284 register word lw;
285 DCL_LOCK_STATE;
287 if( EXPECT(SMALL_OBJ(lb), 1) ) {
288 # ifdef MERGE_SIZES
289 lw = GC_size_map[lb];
290 # else
291 lw = ALIGNED_WORDS(lb);
292 # endif
293 opp = &(GC_objfreelist[lw]);
294 FASTLOCK();
295 if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
296 FASTUNLOCK();
297 return(GENERAL_MALLOC((word)lb, NORMAL));
299 /* See above comment on signals. */
300 GC_ASSERT(0 == obj_link(op)
301 || (word)obj_link(op)
302 <= (word)GC_greatest_plausible_heap_addr
303 && (word)obj_link(op)
304 >= (word)GC_least_plausible_heap_addr);
305 *opp = obj_link(op);
306 obj_link(op) = 0;
307 GC_words_allocd += lw;
308 FASTUNLOCK();
309 return((GC_PTR) op);
310 } else {
311 return(GENERAL_MALLOC((word)lb, NORMAL));
315 # ifdef REDIRECT_MALLOC
317 /* Avoid unnecessary nested procedure calls here, by #defining some */
318 /* malloc replacements. Otherwise we end up saving a */
319 /* meaningless return address in the object. It also speeds things up, */
320 /* but it is admittedly quite ugly. */
321 # ifdef GC_ADD_CALLER
322 # define RA GC_RETURN_ADDR,
323 # else
324 # define RA
325 # endif
326 # define GC_debug_malloc_replacement(lb) \
327 GC_debug_malloc(lb, RA "unknown", 0)
329 # ifdef __STDC__
330 GC_PTR malloc(size_t lb)
331 # else
332 GC_PTR malloc(lb)
333 size_t lb;
334 # endif
336 /* It might help to manually inline the GC_malloc call here. */
337 /* But any decent compiler should reduce the extra procedure call */
338 /* to at most a jump instruction in this case. */
339 # if defined(I386) && defined(GC_SOLARIS_THREADS)
341 * Thread initialisation can call malloc before
342 * we're ready for it.
343 * It's not clear that this is enough to help matters.
344 * The thread implementation may well call malloc at other
345 * inopportune times.
347 if (!GC_is_initialized) return sbrk(lb);
348 # endif /* I386 && GC_SOLARIS_THREADS */
349 return((GC_PTR)REDIRECT_MALLOC(lb));
352 # ifdef __STDC__
353 GC_PTR calloc(size_t n, size_t lb)
354 # else
355 GC_PTR calloc(n, lb)
356 size_t n, lb;
357 # endif
359 return((GC_PTR)REDIRECT_MALLOC(n*lb));
362 #ifndef strdup
363 # include <string.h>
364 # ifdef __STDC__
365 char *strdup(const char *s)
366 # else
367 char *strdup(s)
368 char *s;
369 # endif
371 size_t len = strlen(s) + 1;
372 char * result = ((char *)REDIRECT_MALLOC(len+1));
373 BCOPY(s, result, len+1);
374 return result;
376 #endif /* !defined(strdup) */
377 /* If strdup is macro defined, we assume that it actually calls malloc, */
378 /* and thus the right thing will happen even without overriding it. */
379 /* This seems to be true on most Linux systems. */
381 #undef GC_debug_malloc_replacement
383 # endif /* REDIRECT_MALLOC */
385 /* Explicitly deallocate an object p. */
386 # ifdef __STDC__
387 void GC_free(GC_PTR p)
388 # else
389 void GC_free(p)
390 GC_PTR p;
391 # endif
393 register struct hblk *h;
394 register hdr *hhdr;
395 register signed_word sz;
396 register ptr_t * flh;
397 register int knd;
398 register struct obj_kind * ok;
399 DCL_LOCK_STATE;
401 if (p == 0) return;
402 /* Required by ANSI. It's not my fault ... */
403 h = HBLKPTR(p);
404 hhdr = HDR(h);
405 GC_ASSERT(GC_base(p) == p);
406 # if defined(REDIRECT_MALLOC) && \
407 (defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \
408 || defined(__MINGW32__)) /* Should this be MSWIN32 in general? */
409 /* For Solaris, we have to redirect malloc calls during */
410 /* initialization. For the others, this seems to happen */
411 /* implicitly. */
412 /* Don't try to deallocate that memory. */
413 if (0 == hhdr) return;
414 # endif
415 knd = hhdr -> hb_obj_kind;
416 sz = hhdr -> hb_sz;
417 ok = &GC_obj_kinds[knd];
418 if (EXPECT((sz <= MAXOBJSZ), 1)) {
419 # ifdef THREADS
420 DISABLE_SIGNALS();
421 LOCK();
422 # endif
423 GC_mem_freed += sz;
424 /* A signal here can make GC_mem_freed and GC_non_gc_bytes */
425 /* inconsistent. We claim this is benign. */
426 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
427 /* Its unnecessary to clear the mark bit. If the */
428 /* object is reallocated, it doesn't matter. O.w. the */
429 /* collector will do it, since it's on a free list. */
430 if (ok -> ok_init) {
431 BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
433 flh = &(ok -> ok_freelist[sz]);
434 obj_link(p) = *flh;
435 *flh = (ptr_t)p;
436 # ifdef THREADS
437 UNLOCK();
438 ENABLE_SIGNALS();
439 # endif
440 } else {
441 DISABLE_SIGNALS();
442 LOCK();
443 GC_mem_freed += sz;
444 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
445 GC_freehblk(h);
446 UNLOCK();
447 ENABLE_SIGNALS();
451 /* Explicitly deallocate an object p when we already hold lock. */
452 /* Only used for internally allocated objects, so we can take some */
453 /* shortcuts. */
454 #ifdef THREADS
455 void GC_free_inner(GC_PTR p)
457 register struct hblk *h;
458 register hdr *hhdr;
459 register signed_word sz;
460 register ptr_t * flh;
461 register int knd;
462 register struct obj_kind * ok;
463 DCL_LOCK_STATE;
465 h = HBLKPTR(p);
466 hhdr = HDR(h);
467 knd = hhdr -> hb_obj_kind;
468 sz = hhdr -> hb_sz;
469 ok = &GC_obj_kinds[knd];
470 if (sz <= MAXOBJSZ) {
471 GC_mem_freed += sz;
472 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
473 if (ok -> ok_init) {
474 BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
476 flh = &(ok -> ok_freelist[sz]);
477 obj_link(p) = *flh;
478 *flh = (ptr_t)p;
479 } else {
480 GC_mem_freed += sz;
481 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
482 GC_freehblk(h);
485 #endif /* THREADS */
487 # if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE)
488 # define REDIRECT_FREE GC_free
489 # endif
490 # ifdef REDIRECT_FREE
491 # ifdef __STDC__
492 void free(GC_PTR p)
493 # else
494 void free(p)
495 GC_PTR p;
496 # endif
498 # ifndef IGNORE_FREE
499 REDIRECT_FREE(p);
500 # endif
502 # endif /* REDIRECT_MALLOC */