007-01-29 Manuel Lopez-Ibanez <manu@gcc.gnu.org>
[official-gcc.git] / gcc / tree-ssa-structalias.c
blob0340a8039185316dd1abcc5b75fe46f88edc1ea5
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "errors.h"
36 #include "diagnostic.h"
37 #include "tree.h"
38 #include "c-common.h"
39 #include "tree-flow.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "c-tree.h"
43 #include "tree-gimple.h"
44 #include "hashtab.h"
45 #include "function.h"
46 #include "cgraph.h"
47 #include "tree-pass.h"
48 #include "timevar.h"
49 #include "alloc-pool.h"
50 #include "splay-tree.h"
51 #include "params.h"
52 #include "tree-ssa-structalias.h"
53 #include "cgraph.h"
54 #include "alias.h"
55 #include "pointer-set.h"
57 /* The idea behind this analyzer is to generate set constraints from the
58 program, then solve the resulting constraints in order to generate the
59 points-to sets.
61 Set constraints are a way of modeling program analysis problems that
62 involve sets. They consist of an inclusion constraint language,
63 describing the variables (each variable is a set) and operations that
64 are involved on the variables, and a set of rules that derive facts
65 from these operations. To solve a system of set constraints, you derive
66 all possible facts under the rules, which gives you the correct sets
67 as a consequence.
69 See "Efficient Field-sensitive pointer analysis for C" by "David
70 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
71 http://citeseer.ist.psu.edu/pearce04efficient.html
73 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
74 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
75 http://citeseer.ist.psu.edu/heintze01ultrafast.html
77 There are three types of real constraint expressions, DEREF,
78 ADDRESSOF, and SCALAR. Each constraint expression consists
79 of a constraint type, a variable, and an offset.
81 SCALAR is a constraint expression type used to represent x, whether
82 it appears on the LHS or the RHS of a statement.
83 DEREF is a constraint expression type used to represent *x, whether
84 it appears on the LHS or the RHS of a statement.
85 ADDRESSOF is a constraint expression used to represent &x, whether
86 it appears on the LHS or the RHS of a statement.
88 Each pointer variable in the program is assigned an integer id, and
89 each field of a structure variable is assigned an integer id as well.
91 Structure variables are linked to their list of fields through a "next
92 field" in each variable that points to the next field in offset
93 order.
94 Each variable for a structure field has
96 1. "size", that tells the size in bits of that field.
97 2. "fullsize, that tells the size in bits of the entire structure.
98 3. "offset", that tells the offset in bits from the beginning of the
99 structure to this field.
101 Thus,
102 struct f
104 int a;
105 int b;
106 } foo;
107 int *bar;
109 looks like
111 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
112 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
113 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
116 In order to solve the system of set constraints, the following is
117 done:
119 1. Each constraint variable x has a solution set associated with it,
120 Sol(x).
122 2. Constraints are separated into direct, copy, and complex.
123 Direct constraints are ADDRESSOF constraints that require no extra
124 processing, such as P = &Q
125 Copy constraints are those of the form P = Q.
126 Complex constraints are all the constraints involving dereferences
127 and offsets (including offsetted copies).
129 3. All direct constraints of the form P = &Q are processed, such
130 that Q is added to Sol(P)
132 4. All complex constraints for a given constraint variable are stored in a
133 linked list attached to that variable's node.
135 5. A directed graph is built out of the copy constraints. Each
136 constraint variable is a node in the graph, and an edge from
137 Q to P is added for each copy constraint of the form P = Q
139 6. The graph is then walked, and solution sets are
140 propagated along the copy edges, such that an edge from Q to P
141 causes Sol(P) <- Sol(P) union Sol(Q).
143 7. As we visit each node, all complex constraints associated with
144 that node are processed by adding appropriate copy edges to the graph, or the
145 appropriate variables to the solution set.
147 8. The process of walking the graph is iterated until no solution
148 sets change.
150 Prior to walking the graph in steps 6 and 7, We perform static
151 cycle elimination on the constraint graph, as well
152 as off-line variable substitution.
154 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
155 on and turned into anything), but isn't. You can just see what offset
156 inside the pointed-to struct it's going to access.
158 TODO: Constant bounded arrays can be handled as if they were structs of the
159 same number of elements.
161 TODO: Modeling heap and incoming pointers becomes much better if we
162 add fields to them as we discover them, which we could do.
164 TODO: We could handle unions, but to be honest, it's probably not
165 worth the pain or slowdown. */
167 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
168 htab_t heapvar_for_stmt;
170 static bool use_field_sensitive = true;
171 static int in_ipa_mode = 0;
173 /* Used for predecessor bitmaps. */
174 static bitmap_obstack predbitmap_obstack;
176 /* Used for points-to sets. */
177 static bitmap_obstack pta_obstack;
179 /* Used for oldsolution members of variables. */
180 static bitmap_obstack oldpta_obstack;
182 /* Used for per-solver-iteration bitmaps. */
183 static bitmap_obstack iteration_obstack;
185 static unsigned int create_variable_info_for (tree, const char *);
186 typedef struct constraint_graph *constraint_graph_t;
187 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
189 DEF_VEC_P(constraint_t);
190 DEF_VEC_ALLOC_P(constraint_t,heap);
192 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
193 if (a) \
194 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
196 static struct constraint_stats
198 unsigned int total_vars;
199 unsigned int nonpointer_vars;
200 unsigned int unified_vars_static;
201 unsigned int unified_vars_dynamic;
202 unsigned int iterations;
203 unsigned int num_edges;
204 unsigned int num_implicit_edges;
205 unsigned int points_to_sets_created;
206 } stats;
208 struct variable_info
210 /* ID of this variable */
211 unsigned int id;
213 /* Name of this variable */
214 const char *name;
216 /* Tree that this variable is associated with. */
217 tree decl;
219 /* Offset of this variable, in bits, from the base variable */
220 unsigned HOST_WIDE_INT offset;
222 /* Size of the variable, in bits. */
223 unsigned HOST_WIDE_INT size;
225 /* Full size of the base variable, in bits. */
226 unsigned HOST_WIDE_INT fullsize;
228 /* A link to the variable for the next field in this structure. */
229 struct variable_info *next;
231 /* True if the variable is directly the target of a dereference.
232 This is used to track which variables are *actually* dereferenced
233 so we can prune their points to listed. */
234 unsigned int directly_dereferenced:1;
236 /* True if this is a variable created by the constraint analysis, such as
237 heap variables and constraints we had to break up. */
238 unsigned int is_artificial_var:1;
240 /* True if this is a special variable whose solution set should not be
241 changed. */
242 unsigned int is_special_var:1;
244 /* True for variables whose size is not known or variable. */
245 unsigned int is_unknown_size_var:1;
247 /* True for variables that have unions somewhere in them. */
248 unsigned int has_union:1;
250 /* True if this is a heap variable. */
251 unsigned int is_heap_var:1;
253 /* Points-to set for this variable. */
254 bitmap solution;
256 /* Old points-to set for this variable. */
257 bitmap oldsolution;
259 /* Finished points-to set for this variable (IE what is returned
260 from find_what_p_points_to. */
261 bitmap finished_solution;
263 /* Variable ids represented by this node. */
264 bitmap variables;
266 /* Variable id this was collapsed to due to type unsafety. This
267 should be unused completely after build_succ_graph, or something
268 is broken. */
269 struct variable_info *collapsed_to;
271 typedef struct variable_info *varinfo_t;
273 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
275 /* Pool of variable info structures. */
276 static alloc_pool variable_info_pool;
278 DEF_VEC_P(varinfo_t);
280 DEF_VEC_ALLOC_P(varinfo_t, heap);
282 /* Table of variable info structures for constraint variables.
283 Indexed directly by variable info id. */
284 static VEC(varinfo_t,heap) *varmap;
286 /* Return the varmap element N */
288 static inline varinfo_t
289 get_varinfo (unsigned int n)
291 return VEC_index(varinfo_t, varmap, n);
294 /* Return the varmap element N, following the collapsed_to link. */
296 static inline varinfo_t
297 get_varinfo_fc (unsigned int n)
299 varinfo_t v = VEC_index(varinfo_t, varmap, n);
301 if (v->collapsed_to)
302 return v->collapsed_to;
303 return v;
306 /* Variable that represents the unknown pointer. */
307 static varinfo_t var_anything;
308 static tree anything_tree;
309 static unsigned int anything_id;
311 /* Variable that represents the NULL pointer. */
312 static varinfo_t var_nothing;
313 static tree nothing_tree;
314 static unsigned int nothing_id;
316 /* Variable that represents read only memory. */
317 static varinfo_t var_readonly;
318 static tree readonly_tree;
319 static unsigned int readonly_id;
321 /* Variable that represents integers. This is used for when people do things
322 like &0->a.b. */
323 static varinfo_t var_integer;
324 static tree integer_tree;
325 static unsigned int integer_id;
327 /* Lookup a heap var for FROM, and return it if we find one. */
329 static tree
330 heapvar_lookup (tree from)
332 struct tree_map *h, in;
333 in.from = from;
335 h = htab_find_with_hash (heapvar_for_stmt, &in, htab_hash_pointer (from));
336 if (h)
337 return h->to;
338 return NULL_TREE;
341 /* Insert a mapping FROM->TO in the heap var for statement
342 hashtable. */
344 static void
345 heapvar_insert (tree from, tree to)
347 struct tree_map *h;
348 void **loc;
350 h = ggc_alloc (sizeof (struct tree_map));
351 h->hash = htab_hash_pointer (from);
352 h->from = from;
353 h->to = to;
354 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
355 *(struct tree_map **) loc = h;
358 /* Return a new variable info structure consisting for a variable
359 named NAME, and using constraint graph node NODE. */
361 static varinfo_t
362 new_var_info (tree t, unsigned int id, const char *name)
364 varinfo_t ret = pool_alloc (variable_info_pool);
366 ret->id = id;
367 ret->name = name;
368 ret->decl = t;
369 ret->directly_dereferenced = false;
370 ret->is_artificial_var = false;
371 ret->is_heap_var = false;
372 ret->is_special_var = false;
373 ret->is_unknown_size_var = false;
374 ret->has_union = false;
375 ret->solution = BITMAP_ALLOC (&pta_obstack);
376 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
377 ret->finished_solution = NULL;
378 ret->next = NULL;
379 ret->collapsed_to = NULL;
380 return ret;
383 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
385 /* An expression that appears in a constraint. */
387 struct constraint_expr
389 /* Constraint type. */
390 constraint_expr_type type;
392 /* Variable we are referring to in the constraint. */
393 unsigned int var;
395 /* Offset, in bits, of this constraint from the beginning of
396 variables it ends up referring to.
398 IOW, in a deref constraint, we would deref, get the result set,
399 then add OFFSET to each member. */
400 unsigned HOST_WIDE_INT offset;
403 typedef struct constraint_expr ce_s;
404 DEF_VEC_O(ce_s);
405 DEF_VEC_ALLOC_O(ce_s, heap);
406 static void get_constraint_for (tree, VEC(ce_s, heap) **);
407 static void do_deref (VEC (ce_s, heap) **);
409 /* Our set constraints are made up of two constraint expressions, one
410 LHS, and one RHS.
412 As described in the introduction, our set constraints each represent an
413 operation between set valued variables.
415 struct constraint
417 struct constraint_expr lhs;
418 struct constraint_expr rhs;
421 /* List of constraints that we use to build the constraint graph from. */
423 static VEC(constraint_t,heap) *constraints;
424 static alloc_pool constraint_pool;
427 DEF_VEC_I(int);
428 DEF_VEC_ALLOC_I(int, heap);
430 /* The constraint graph is represented as an array of bitmaps
431 containing successor nodes. */
433 struct constraint_graph
435 /* Size of this graph, which may be different than the number of
436 nodes in the variable map. */
437 unsigned int size;
439 /* Explicit successors of each node. */
440 bitmap *succs;
442 /* Implicit predecessors of each node (Used for variable
443 substitution). */
444 bitmap *implicit_preds;
446 /* Explicit predecessors of each node (Used for variable substitution). */
447 bitmap *preds;
449 /* Indirect cycle representatives, or -1 if the node has no indirect
450 cycles. */
451 int *indirect_cycles;
453 /* Representative node for a node. rep[a] == a unless the node has
454 been unified. */
455 unsigned int *rep;
457 /* Equivalence class representative for a node. This is used for
458 variable substitution. */
459 int *eq_rep;
461 /* Label for each node, used during variable substitution. */
462 unsigned int *label;
464 /* Bitmap of nodes where the bit is set if the node is a direct
465 node. Used for variable substitution. */
466 sbitmap direct_nodes;
468 /* Vector of complex constraints for each graph node. Complex
469 constraints are those involving dereferences or offsets that are
470 not 0. */
471 VEC(constraint_t,heap) **complex;
474 static constraint_graph_t graph;
476 /* During variable substitution and the offline version of indirect
477 cycle finding, we create nodes to represent dereferences and
478 address taken constraints. These represent where these start and
479 end. */
480 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
481 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
482 #define FIRST_ADDR_NODE (LAST_REF_NODE + 1)
484 /* Return the representative node for NODE, if NODE has been unioned
485 with another NODE.
486 This function performs path compression along the way to finding
487 the representative. */
489 static unsigned int
490 find (unsigned int node)
492 gcc_assert (node < graph->size);
493 if (graph->rep[node] != node)
494 return graph->rep[node] = find (graph->rep[node]);
495 return node;
498 /* Union the TO and FROM nodes to the TO nodes.
499 Note that at some point in the future, we may want to do
500 union-by-rank, in which case we are going to have to return the
501 node we unified to. */
503 static bool
504 unite (unsigned int to, unsigned int from)
506 gcc_assert (to < graph->size && from < graph->size);
507 if (to != from && graph->rep[from] != to)
509 graph->rep[from] = to;
510 return true;
512 return false;
515 /* Create a new constraint consisting of LHS and RHS expressions. */
517 static constraint_t
518 new_constraint (const struct constraint_expr lhs,
519 const struct constraint_expr rhs)
521 constraint_t ret = pool_alloc (constraint_pool);
522 ret->lhs = lhs;
523 ret->rhs = rhs;
524 return ret;
527 /* Print out constraint C to FILE. */
529 void
530 dump_constraint (FILE *file, constraint_t c)
532 if (c->lhs.type == ADDRESSOF)
533 fprintf (file, "&");
534 else if (c->lhs.type == DEREF)
535 fprintf (file, "*");
536 fprintf (file, "%s", get_varinfo_fc (c->lhs.var)->name);
537 if (c->lhs.offset != 0)
538 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
539 fprintf (file, " = ");
540 if (c->rhs.type == ADDRESSOF)
541 fprintf (file, "&");
542 else if (c->rhs.type == DEREF)
543 fprintf (file, "*");
544 fprintf (file, "%s", get_varinfo_fc (c->rhs.var)->name);
545 if (c->rhs.offset != 0)
546 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
547 fprintf (file, "\n");
550 /* Print out constraint C to stderr. */
552 void
553 debug_constraint (constraint_t c)
555 dump_constraint (stderr, c);
558 /* Print out all constraints to FILE */
560 void
561 dump_constraints (FILE *file)
563 int i;
564 constraint_t c;
565 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
566 dump_constraint (file, c);
569 /* Print out all constraints to stderr. */
571 void
572 debug_constraints (void)
574 dump_constraints (stderr);
577 /* SOLVER FUNCTIONS
579 The solver is a simple worklist solver, that works on the following
580 algorithm:
582 sbitmap changed_nodes = all zeroes;
583 changed_count = 0;
584 For each node that is not already collapsed:
585 changed_count++;
586 set bit in changed nodes
588 while (changed_count > 0)
590 compute topological ordering for constraint graph
592 find and collapse cycles in the constraint graph (updating
593 changed if necessary)
595 for each node (n) in the graph in topological order:
596 changed_count--;
598 Process each complex constraint associated with the node,
599 updating changed if necessary.
601 For each outgoing edge from n, propagate the solution from n to
602 the destination of the edge, updating changed as necessary.
604 } */
606 /* Return true if two constraint expressions A and B are equal. */
608 static bool
609 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
611 return a.type == b.type && a.var == b.var && a.offset == b.offset;
614 /* Return true if constraint expression A is less than constraint expression
615 B. This is just arbitrary, but consistent, in order to give them an
616 ordering. */
618 static bool
619 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
621 if (a.type == b.type)
623 if (a.var == b.var)
624 return a.offset < b.offset;
625 else
626 return a.var < b.var;
628 else
629 return a.type < b.type;
632 /* Return true if constraint A is less than constraint B. This is just
633 arbitrary, but consistent, in order to give them an ordering. */
635 static bool
636 constraint_less (const constraint_t a, const constraint_t b)
638 if (constraint_expr_less (a->lhs, b->lhs))
639 return true;
640 else if (constraint_expr_less (b->lhs, a->lhs))
641 return false;
642 else
643 return constraint_expr_less (a->rhs, b->rhs);
646 /* Return true if two constraints A and B are equal. */
648 static bool
649 constraint_equal (struct constraint a, struct constraint b)
651 return constraint_expr_equal (a.lhs, b.lhs)
652 && constraint_expr_equal (a.rhs, b.rhs);
656 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
658 static constraint_t
659 constraint_vec_find (VEC(constraint_t,heap) *vec,
660 struct constraint lookfor)
662 unsigned int place;
663 constraint_t found;
665 if (vec == NULL)
666 return NULL;
668 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
669 if (place >= VEC_length (constraint_t, vec))
670 return NULL;
671 found = VEC_index (constraint_t, vec, place);
672 if (!constraint_equal (*found, lookfor))
673 return NULL;
674 return found;
677 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
679 static void
680 constraint_set_union (VEC(constraint_t,heap) **to,
681 VEC(constraint_t,heap) **from)
683 int i;
684 constraint_t c;
686 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
688 if (constraint_vec_find (*to, *c) == NULL)
690 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
691 constraint_less);
692 VEC_safe_insert (constraint_t, heap, *to, place, c);
697 /* Take a solution set SET, add OFFSET to each member of the set, and
698 overwrite SET with the result when done. */
700 static void
701 solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
703 bitmap result = BITMAP_ALLOC (&iteration_obstack);
704 unsigned int i;
705 bitmap_iterator bi;
707 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
709 /* If this is a properly sized variable, only add offset if it's
710 less than end. Otherwise, it is globbed to a single
711 variable. */
713 if ((get_varinfo (i)->offset + offset) < get_varinfo (i)->fullsize)
715 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (i)->offset + offset;
716 varinfo_t v = first_vi_for_offset (get_varinfo (i), fieldoffset);
717 if (!v)
718 continue;
719 bitmap_set_bit (result, v->id);
721 else if (get_varinfo (i)->is_artificial_var
722 || get_varinfo (i)->has_union
723 || get_varinfo (i)->is_unknown_size_var)
725 bitmap_set_bit (result, i);
729 bitmap_copy (set, result);
730 BITMAP_FREE (result);
733 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
734 process. */
736 static bool
737 set_union_with_increment (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
739 if (inc == 0)
740 return bitmap_ior_into (to, from);
741 else
743 bitmap tmp;
744 bool res;
746 tmp = BITMAP_ALLOC (&iteration_obstack);
747 bitmap_copy (tmp, from);
748 solution_set_add (tmp, inc);
749 res = bitmap_ior_into (to, tmp);
750 BITMAP_FREE (tmp);
751 return res;
755 /* Insert constraint C into the list of complex constraints for graph
756 node VAR. */
758 static void
759 insert_into_complex (constraint_graph_t graph,
760 unsigned int var, constraint_t c)
762 VEC (constraint_t, heap) *complex = graph->complex[var];
763 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
764 constraint_less);
766 /* Only insert constraints that do not already exist. */
767 if (place >= VEC_length (constraint_t, complex)
768 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
769 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
773 /* Condense two variable nodes into a single variable node, by moving
774 all associated info from SRC to TO. */
776 static void
777 merge_node_constraints (constraint_graph_t graph, unsigned int to,
778 unsigned int from)
780 unsigned int i;
781 constraint_t c;
783 gcc_assert (find (from) == to);
785 /* Move all complex constraints from src node into to node */
786 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
788 /* In complex constraints for node src, we may have either
789 a = *src, and *src = a, or an offseted constraint which are
790 always added to the rhs node's constraints. */
792 if (c->rhs.type == DEREF)
793 c->rhs.var = to;
794 else if (c->lhs.type == DEREF)
795 c->lhs.var = to;
796 else
797 c->rhs.var = to;
799 constraint_set_union (&graph->complex[to], &graph->complex[from]);
800 VEC_free (constraint_t, heap, graph->complex[from]);
801 graph->complex[from] = NULL;
805 /* Remove edges involving NODE from GRAPH. */
807 static void
808 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
810 if (graph->succs[node])
811 BITMAP_FREE (graph->succs[node]);
814 /* Merge GRAPH nodes FROM and TO into node TO. */
816 static void
817 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
818 unsigned int from)
820 if (graph->indirect_cycles[from] != -1)
822 /* If we have indirect cycles with the from node, and we have
823 none on the to node, the to node has indirect cycles from the
824 from node now that they are unified.
825 If indirect cycles exist on both, unify the nodes that they
826 are in a cycle with, since we know they are in a cycle with
827 each other. */
828 if (graph->indirect_cycles[to] == -1)
830 graph->indirect_cycles[to] = graph->indirect_cycles[from];
832 else
834 unsigned int tonode = find (graph->indirect_cycles[to]);
835 unsigned int fromnode = find (graph->indirect_cycles[from]);
837 if (unite (tonode, fromnode))
838 unify_nodes (graph, tonode, fromnode, true);
842 /* Merge all the successor edges. */
843 if (graph->succs[from])
845 if (!graph->succs[to])
846 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
847 bitmap_ior_into (graph->succs[to],
848 graph->succs[from]);
851 clear_edges_for_node (graph, from);
855 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
856 it doesn't exist in the graph already. */
858 static void
859 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
860 unsigned int from)
862 if (to == from)
863 return;
865 if (!graph->implicit_preds[to])
866 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
868 if (!bitmap_bit_p (graph->implicit_preds[to], from))
870 stats.num_implicit_edges++;
871 bitmap_set_bit (graph->implicit_preds[to], from);
875 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
876 it doesn't exist in the graph already.
877 Return false if the edge already existed, true otherwise. */
879 static void
880 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
881 unsigned int from)
883 if (!graph->preds[to])
884 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
885 if (!bitmap_bit_p (graph->preds[to], from))
886 bitmap_set_bit (graph->preds[to], from);
889 /* Add a graph edge to GRAPH, going from FROM to TO if
890 it doesn't exist in the graph already.
891 Return false if the edge already existed, true otherwise. */
893 static bool
894 add_graph_edge (constraint_graph_t graph, unsigned int to,
895 unsigned int from)
897 if (to == from)
899 return false;
901 else
903 bool r = false;
905 if (!graph->succs[from])
906 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
907 if (!bitmap_bit_p (graph->succs[from], to))
909 r = true;
910 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
911 stats.num_edges++;
912 bitmap_set_bit (graph->succs[from], to);
914 return r;
919 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
921 static bool
922 valid_graph_edge (constraint_graph_t graph, unsigned int src,
923 unsigned int dest)
925 return (graph->succs[dest]
926 && bitmap_bit_p (graph->succs[dest], src));
929 /* Build the constraint graph, adding only predecessor edges right now. */
931 static void
932 build_pred_graph (void)
934 int i;
935 constraint_t c;
936 unsigned int j;
938 graph = XNEW (struct constraint_graph);
939 graph->size = (VEC_length (varinfo_t, varmap)) * 3;
940 graph->succs = XCNEWVEC (bitmap, graph->size);
941 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
942 graph->preds = XCNEWVEC (bitmap, graph->size);
943 graph->indirect_cycles = XNEWVEC (int, VEC_length (varinfo_t, varmap));
944 graph->label = XCNEWVEC (unsigned int, graph->size);
945 graph->rep = XNEWVEC (unsigned int, graph->size);
946 graph->eq_rep = XNEWVEC (int, graph->size);
947 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *,
948 VEC_length (varinfo_t, varmap));
949 graph->direct_nodes = sbitmap_alloc (graph->size);
950 sbitmap_zero (graph->direct_nodes);
952 for (j = 0; j < FIRST_REF_NODE; j++)
954 if (!get_varinfo (j)->is_special_var)
955 SET_BIT (graph->direct_nodes, j);
958 for (j = 0; j < graph->size; j++)
960 graph->rep[j] = j;
961 graph->eq_rep[j] = -1;
964 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
965 graph->indirect_cycles[j] = -1;
967 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
969 struct constraint_expr lhs = c->lhs;
970 struct constraint_expr rhs = c->rhs;
971 unsigned int lhsvar = get_varinfo_fc (lhs.var)->id;
972 unsigned int rhsvar = get_varinfo_fc (rhs.var)->id;
974 if (lhs.type == DEREF)
976 /* *x = y. */
977 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
978 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
979 if (rhs.type == ADDRESSOF)
980 RESET_BIT (graph->direct_nodes, rhsvar);
982 else if (rhs.type == DEREF)
984 /* x = *y */
985 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
986 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
987 else
988 RESET_BIT (graph->direct_nodes, lhsvar);
990 else if (rhs.type == ADDRESSOF)
992 /* x = &y */
993 add_pred_graph_edge (graph, lhsvar, FIRST_ADDR_NODE + rhsvar);
994 /* Implicitly, *x = y */
995 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
997 RESET_BIT (graph->direct_nodes, rhsvar);
999 else if (lhsvar > anything_id
1000 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1002 /* x = y */
1003 add_pred_graph_edge (graph, lhsvar, rhsvar);
1004 /* Implicitly, *x = *y */
1005 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1006 FIRST_REF_NODE + rhsvar);
1008 else if (lhs.offset != 0 || rhs.offset != 0)
1010 if (rhs.offset != 0)
1011 RESET_BIT (graph->direct_nodes, lhs.var);
1012 if (lhs.offset != 0)
1013 RESET_BIT (graph->direct_nodes, rhs.var);
1018 /* Build the constraint graph, adding successor edges. */
1020 static void
1021 build_succ_graph (void)
1023 int i;
1024 constraint_t c;
1026 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1028 struct constraint_expr lhs;
1029 struct constraint_expr rhs;
1030 unsigned int lhsvar;
1031 unsigned int rhsvar;
1033 if (!c)
1034 continue;
1036 lhs = c->lhs;
1037 rhs = c->rhs;
1038 lhsvar = find (get_varinfo_fc (lhs.var)->id);
1039 rhsvar = find (get_varinfo_fc (rhs.var)->id);
1041 if (lhs.type == DEREF)
1043 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1044 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1046 else if (rhs.type == DEREF)
1048 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1049 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1051 else if (rhs.type == ADDRESSOF)
1053 /* x = &y */
1054 gcc_assert (find (get_varinfo_fc (rhs.var)->id)
1055 == get_varinfo_fc (rhs.var)->id);
1056 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1058 else if (lhsvar > anything_id
1059 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1061 add_graph_edge (graph, lhsvar, rhsvar);
1067 /* Changed variables on the last iteration. */
1068 static unsigned int changed_count;
1069 static sbitmap changed;
1071 DEF_VEC_I(unsigned);
1072 DEF_VEC_ALLOC_I(unsigned,heap);
1075 /* Strongly Connected Component visitation info. */
1077 struct scc_info
1079 sbitmap visited;
1080 sbitmap roots;
1081 unsigned int *dfs;
1082 unsigned int *node_mapping;
1083 int current_index;
1084 VEC(unsigned,heap) *scc_stack;
1088 /* Recursive routine to find strongly connected components in GRAPH.
1089 SI is the SCC info to store the information in, and N is the id of current
1090 graph node we are processing.
1092 This is Tarjan's strongly connected component finding algorithm, as
1093 modified by Nuutila to keep only non-root nodes on the stack.
1094 The algorithm can be found in "On finding the strongly connected
1095 connected components in a directed graph" by Esko Nuutila and Eljas
1096 Soisalon-Soininen, in Information Processing Letters volume 49,
1097 number 1, pages 9-14. */
1099 static void
1100 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1102 unsigned int i;
1103 bitmap_iterator bi;
1104 unsigned int my_dfs;
1106 SET_BIT (si->visited, n);
1107 si->dfs[n] = si->current_index ++;
1108 my_dfs = si->dfs[n];
1110 /* Visit all the successors. */
1111 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1113 unsigned int w;
1115 if (i > LAST_REF_NODE)
1116 break;
1118 w = find (i);
1119 if (TEST_BIT (si->roots, w))
1120 continue;
1122 if (!TEST_BIT (si->visited, w))
1123 scc_visit (graph, si, w);
1125 unsigned int t = find (w);
1126 unsigned int nnode = find (n);
1127 gcc_assert(nnode == n);
1129 if (si->dfs[t] < si->dfs[nnode])
1130 si->dfs[n] = si->dfs[t];
1134 /* See if any components have been identified. */
1135 if (si->dfs[n] == my_dfs)
1137 if (VEC_length (unsigned, si->scc_stack) > 0
1138 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1140 bitmap scc = BITMAP_ALLOC (NULL);
1141 bool have_ref_node = n >= FIRST_REF_NODE;
1142 unsigned int lowest_node;
1143 bitmap_iterator bi;
1145 bitmap_set_bit (scc, n);
1147 while (VEC_length (unsigned, si->scc_stack) != 0
1148 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1150 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1152 bitmap_set_bit (scc, w);
1153 if (w >= FIRST_REF_NODE)
1154 have_ref_node = true;
1157 lowest_node = bitmap_first_set_bit (scc);
1158 gcc_assert (lowest_node < FIRST_REF_NODE);
1159 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1161 if (i < FIRST_REF_NODE)
1163 /* Mark this node for collapsing. */
1164 if (unite (lowest_node, i))
1165 unify_nodes (graph, lowest_node, i, false);
1167 else
1169 unite (lowest_node, i);
1170 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1174 SET_BIT (si->roots, n);
1176 else
1177 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1180 /* Unify node FROM into node TO, updating the changed count if
1181 necessary when UPDATE_CHANGED is true. */
1183 static void
1184 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1185 bool update_changed)
1188 gcc_assert (to != from && find (to) == to);
1189 if (dump_file && (dump_flags & TDF_DETAILS))
1190 fprintf (dump_file, "Unifying %s to %s\n",
1191 get_varinfo (from)->name,
1192 get_varinfo (to)->name);
1194 if (update_changed)
1195 stats.unified_vars_dynamic++;
1196 else
1197 stats.unified_vars_static++;
1199 merge_graph_nodes (graph, to, from);
1200 merge_node_constraints (graph, to, from);
1202 if (update_changed && TEST_BIT (changed, from))
1204 RESET_BIT (changed, from);
1205 if (!TEST_BIT (changed, to))
1206 SET_BIT (changed, to);
1207 else
1209 gcc_assert (changed_count > 0);
1210 changed_count--;
1214 /* If the solution changes because of the merging, we need to mark
1215 the variable as changed. */
1216 if (bitmap_ior_into (get_varinfo (to)->solution,
1217 get_varinfo (from)->solution))
1219 if (update_changed && !TEST_BIT (changed, to))
1221 SET_BIT (changed, to);
1222 changed_count++;
1226 BITMAP_FREE (get_varinfo (from)->solution);
1227 BITMAP_FREE (get_varinfo (from)->oldsolution);
1229 if (stats.iterations > 0)
1231 BITMAP_FREE (get_varinfo (to)->oldsolution);
1232 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1235 if (valid_graph_edge (graph, to, to))
1237 if (graph->succs[to])
1238 bitmap_clear_bit (graph->succs[to], to);
1242 /* Information needed to compute the topological ordering of a graph. */
1244 struct topo_info
1246 /* sbitmap of visited nodes. */
1247 sbitmap visited;
1248 /* Array that stores the topological order of the graph, *in
1249 reverse*. */
1250 VEC(unsigned,heap) *topo_order;
1254 /* Initialize and return a topological info structure. */
1256 static struct topo_info *
1257 init_topo_info (void)
1259 size_t size = VEC_length (varinfo_t, varmap);
1260 struct topo_info *ti = XNEW (struct topo_info);
1261 ti->visited = sbitmap_alloc (size);
1262 sbitmap_zero (ti->visited);
1263 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1264 return ti;
1268 /* Free the topological sort info pointed to by TI. */
1270 static void
1271 free_topo_info (struct topo_info *ti)
1273 sbitmap_free (ti->visited);
1274 VEC_free (unsigned, heap, ti->topo_order);
1275 free (ti);
1278 /* Visit the graph in topological order, and store the order in the
1279 topo_info structure. */
1281 static void
1282 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1283 unsigned int n)
1285 bitmap_iterator bi;
1286 unsigned int j;
1288 SET_BIT (ti->visited, n);
1290 if (graph->succs[n])
1291 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1293 if (!TEST_BIT (ti->visited, j))
1294 topo_visit (graph, ti, j);
1297 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1300 /* Return true if variable N + OFFSET is a legal field of N. */
1302 static bool
1303 type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
1305 varinfo_t ninfo = get_varinfo (n);
1307 /* For things we've globbed to single variables, any offset into the
1308 variable acts like the entire variable, so that it becomes offset
1309 0. */
1310 if (ninfo->is_special_var
1311 || ninfo->is_artificial_var
1312 || ninfo->is_unknown_size_var)
1314 *offset = 0;
1315 return true;
1317 return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
1320 /* Process a constraint C that represents *x = &y. */
1322 static void
1323 do_da_constraint (constraint_graph_t graph ATTRIBUTE_UNUSED,
1324 constraint_t c, bitmap delta)
1326 unsigned int rhs = c->rhs.var;
1327 unsigned int j;
1328 bitmap_iterator bi;
1330 /* For each member j of Delta (Sol(x)), add x to Sol(j) */
1331 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1333 unsigned HOST_WIDE_INT offset = c->lhs.offset;
1334 if (type_safe (j, &offset) && !(get_varinfo (j)->is_special_var))
1336 /* *x != NULL && *x != ANYTHING*/
1337 varinfo_t v;
1338 unsigned int t;
1339 bitmap sol;
1340 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + offset;
1342 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1343 if (!v)
1344 continue;
1345 t = find (v->id);
1346 sol = get_varinfo (t)->solution;
1347 if (!bitmap_bit_p (sol, rhs))
1349 bitmap_set_bit (sol, rhs);
1350 if (!TEST_BIT (changed, t))
1352 SET_BIT (changed, t);
1353 changed_count++;
1357 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1358 fprintf (dump_file, "Untypesafe usage in do_da_constraint.\n");
1363 /* Process a constraint C that represents x = *y, using DELTA as the
1364 starting solution. */
1366 static void
1367 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1368 bitmap delta)
1370 unsigned int lhs = find (c->lhs.var);
1371 bool flag = false;
1372 bitmap sol = get_varinfo (lhs)->solution;
1373 unsigned int j;
1374 bitmap_iterator bi;
1376 if (bitmap_bit_p (delta, anything_id))
1378 flag = !bitmap_bit_p (sol, anything_id);
1379 if (flag)
1380 bitmap_set_bit (sol, anything_id);
1381 goto done;
1383 /* For each variable j in delta (Sol(y)), add
1384 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1385 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1387 unsigned HOST_WIDE_INT roffset = c->rhs.offset;
1388 if (type_safe (j, &roffset))
1390 varinfo_t v;
1391 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
1392 unsigned int t;
1394 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1395 if (!v)
1396 continue;
1397 t = find (v->id);
1399 /* Adding edges from the special vars is pointless.
1400 They don't have sets that can change. */
1401 if (get_varinfo (t) ->is_special_var)
1402 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1403 else if (add_graph_edge (graph, lhs, t))
1404 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1406 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1407 fprintf (dump_file, "Untypesafe usage in do_sd_constraint\n");
1411 done:
1412 /* If the LHS solution changed, mark the var as changed. */
1413 if (flag)
1415 get_varinfo (lhs)->solution = sol;
1416 if (!TEST_BIT (changed, lhs))
1418 SET_BIT (changed, lhs);
1419 changed_count++;
1424 /* Process a constraint C that represents *x = y. */
1426 static void
1427 do_ds_constraint (constraint_t c, bitmap delta)
1429 unsigned int rhs = find (c->rhs.var);
1430 unsigned HOST_WIDE_INT roff = c->rhs.offset;
1431 bitmap sol = get_varinfo (rhs)->solution;
1432 unsigned int j;
1433 bitmap_iterator bi;
1435 if (bitmap_bit_p (sol, anything_id))
1437 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1439 varinfo_t jvi = get_varinfo (j);
1440 unsigned int t;
1441 unsigned int loff = c->lhs.offset;
1442 unsigned HOST_WIDE_INT fieldoffset = jvi->offset + loff;
1443 varinfo_t v;
1445 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1446 if (!v)
1447 continue;
1448 t = find (v->id);
1450 if (!bitmap_bit_p (get_varinfo (t)->solution, anything_id))
1452 bitmap_set_bit (get_varinfo (t)->solution, anything_id);
1453 if (!TEST_BIT (changed, t))
1455 SET_BIT (changed, t);
1456 changed_count++;
1460 return;
1463 /* For each member j of delta (Sol(x)), add an edge from y to j and
1464 union Sol(y) into Sol(j) */
1465 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1467 unsigned HOST_WIDE_INT loff = c->lhs.offset;
1468 if (type_safe (j, &loff) && !(get_varinfo(j)->is_special_var))
1470 varinfo_t v;
1471 unsigned int t;
1472 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;
1473 bitmap tmp;
1475 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1476 if (!v)
1477 continue;
1478 t = find (v->id);
1479 tmp = get_varinfo (t)->solution;
1481 if (set_union_with_increment (tmp, sol, roff))
1483 get_varinfo (t)->solution = tmp;
1484 if (t == rhs)
1485 sol = get_varinfo (rhs)->solution;
1486 if (!TEST_BIT (changed, t))
1488 SET_BIT (changed, t);
1489 changed_count++;
1493 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1494 fprintf (dump_file, "Untypesafe usage in do_ds_constraint\n");
1498 /* Handle a non-simple (simple meaning requires no iteration),
1499 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1501 static void
1502 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1504 if (c->lhs.type == DEREF)
1506 if (c->rhs.type == ADDRESSOF)
1508 /* *x = &y */
1509 do_da_constraint (graph, c, delta);
1511 else
1513 /* *x = y */
1514 do_ds_constraint (c, delta);
1517 else if (c->rhs.type == DEREF)
1519 /* x = *y */
1520 if (!(get_varinfo (c->lhs.var)->is_special_var))
1521 do_sd_constraint (graph, c, delta);
1523 else
1525 bitmap tmp;
1526 bitmap solution;
1527 bool flag = false;
1528 unsigned int t;
1530 gcc_assert(c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1531 t = find (c->rhs.var);
1532 solution = get_varinfo (t)->solution;
1533 t = find (c->lhs.var);
1534 tmp = get_varinfo (t)->solution;
1536 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1538 if (flag)
1540 get_varinfo (t)->solution = tmp;
1541 if (!TEST_BIT (changed, t))
1543 SET_BIT (changed, t);
1544 changed_count++;
1550 /* Initialize and return a new SCC info structure. */
1552 static struct scc_info *
1553 init_scc_info (size_t size)
1555 struct scc_info *si = XNEW (struct scc_info);
1556 size_t i;
1558 si->current_index = 0;
1559 si->visited = sbitmap_alloc (size);
1560 sbitmap_zero (si->visited);
1561 si->roots = sbitmap_alloc (size);
1562 sbitmap_zero (si->roots);
1563 si->node_mapping = XNEWVEC (unsigned int, size);
1564 si->dfs = XCNEWVEC (unsigned int, size);
1566 for (i = 0; i < size; i++)
1567 si->node_mapping[i] = i;
1569 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1570 return si;
1573 /* Free an SCC info structure pointed to by SI */
1575 static void
1576 free_scc_info (struct scc_info *si)
1578 sbitmap_free (si->visited);
1579 sbitmap_free (si->roots);
1580 free (si->node_mapping);
1581 free (si->dfs);
1582 VEC_free (unsigned, heap, si->scc_stack);
1583 free (si);
1587 /* Find indirect cycles in GRAPH that occur, using strongly connected
1588 components, and note them in the indirect cycles map.
1590 This technique comes from Ben Hardekopf and Calvin Lin,
1591 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1592 Lines of Code", submitted to PLDI 2007. */
1594 static void
1595 find_indirect_cycles (constraint_graph_t graph)
1597 unsigned int i;
1598 unsigned int size = graph->size;
1599 struct scc_info *si = init_scc_info (size);
1601 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1602 if (!TEST_BIT (si->visited, i) && find (i) == i)
1603 scc_visit (graph, si, i);
1605 free_scc_info (si);
1608 /* Compute a topological ordering for GRAPH, and store the result in the
1609 topo_info structure TI. */
1611 static void
1612 compute_topo_order (constraint_graph_t graph,
1613 struct topo_info *ti)
1615 unsigned int i;
1616 unsigned int size = VEC_length (varinfo_t, varmap);
1618 for (i = 0; i != size; ++i)
1619 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1620 topo_visit (graph, ti, i);
1623 /* Perform offline variable substitution.
1625 This is a linear time way of identifying variables that must have
1626 equivalent points-to sets, including those caused by static cycles,
1627 and single entry subgraphs, in the constraint graph.
1629 The technique is described in "Off-line variable substitution for
1630 scaling points-to analysis" by Atanas Rountev and Satish Chandra,
1631 in "ACM SIGPLAN Notices" volume 35, number 5, pages 47-56.
1633 There is an optimal way to do this involving hash based value
1634 numbering, once the technique is published i will implement it
1635 here.
1637 The general method of finding equivalence classes is as follows:
1638 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1639 Add fake nodes (ADDRESS nodes) and edges for a = &b constraints.
1640 Initialize all non-REF/ADDRESS nodes to be direct nodes
1641 For each SCC in the predecessor graph:
1642 for each member (x) of the SCC
1643 if x is not a direct node:
1644 set rootnode(SCC) to be not a direct node
1645 collapse node x into rootnode(SCC).
1646 if rootnode(SCC) is not a direct node:
1647 label rootnode(SCC) with a new equivalence class
1648 else:
1649 if all labeled predecessors of rootnode(SCC) have the same
1650 label:
1651 label rootnode(SCC) with this label
1652 else:
1653 label rootnode(SCC) with a new equivalence class
1655 All direct nodes with the same equivalence class can be replaced
1656 with a single representative node.
1657 All unlabeled nodes (label == 0) are not pointers and all edges
1658 involving them can be eliminated.
1659 We perform these optimizations during move_complex_constraints.
1662 static int equivalence_class;
1664 /* Recursive routine to find strongly connected components in GRAPH,
1665 and label it's nodes with equivalence classes.
1666 This is used during variable substitution to find cycles involving
1667 the regular or implicit predecessors, and label them as equivalent.
1668 The SCC finding algorithm used is the same as that for scc_visit. */
1670 static void
1671 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1673 unsigned int i;
1674 bitmap_iterator bi;
1675 unsigned int my_dfs;
1677 gcc_assert (si->node_mapping[n] == n);
1678 SET_BIT (si->visited, n);
1679 si->dfs[n] = si->current_index ++;
1680 my_dfs = si->dfs[n];
1682 /* Visit all the successors. */
1683 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
1685 unsigned int w = si->node_mapping[i];
1687 if (TEST_BIT (si->roots, w))
1688 continue;
1690 if (!TEST_BIT (si->visited, w))
1691 label_visit (graph, si, w);
1693 unsigned int t = si->node_mapping[w];
1694 unsigned int nnode = si->node_mapping[n];
1695 gcc_assert(nnode == n);
1697 if (si->dfs[t] < si->dfs[nnode])
1698 si->dfs[n] = si->dfs[t];
1702 /* Visit all the implicit predecessors. */
1703 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
1705 unsigned int w = si->node_mapping[i];
1707 if (TEST_BIT (si->roots, w))
1708 continue;
1710 if (!TEST_BIT (si->visited, w))
1711 label_visit (graph, si, w);
1713 unsigned int t = si->node_mapping[w];
1714 unsigned int nnode = si->node_mapping[n];
1715 gcc_assert (nnode == n);
1717 if (si->dfs[t] < si->dfs[nnode])
1718 si->dfs[n] = si->dfs[t];
1722 /* See if any components have been identified. */
1723 if (si->dfs[n] == my_dfs)
1725 while (VEC_length (unsigned, si->scc_stack) != 0
1726 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1728 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1729 si->node_mapping[w] = n;
1731 if (!TEST_BIT (graph->direct_nodes, w))
1732 RESET_BIT (graph->direct_nodes, n);
1734 SET_BIT (si->roots, n);
1736 if (!TEST_BIT (graph->direct_nodes, n))
1738 graph->label[n] = equivalence_class++;
1740 else
1742 unsigned int size = 0;
1743 unsigned int firstlabel = ~0;
1745 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
1747 unsigned int j = si->node_mapping[i];
1749 if (j == n || graph->label[j] == 0)
1750 continue;
1752 if (firstlabel == (unsigned int)~0)
1754 firstlabel = graph->label[j];
1755 size++;
1757 else if (graph->label[j] != firstlabel)
1758 size++;
1761 if (size == 0)
1762 graph->label[n] = 0;
1763 else if (size == 1)
1764 graph->label[n] = firstlabel;
1765 else
1766 graph->label[n] = equivalence_class++;
1769 else
1770 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1773 /* Perform offline variable substitution, discovering equivalence
1774 classes, and eliminating non-pointer variables. */
1776 static struct scc_info *
1777 perform_var_substitution (constraint_graph_t graph)
1779 unsigned int i;
1780 unsigned int size = graph->size;
1781 struct scc_info *si = init_scc_info (size);
1783 bitmap_obstack_initialize (&iteration_obstack);
1784 equivalence_class = 0;
1786 /* We only need to visit the non-address nodes for labeling
1787 purposes, as the address nodes will never have any predecessors,
1788 because &x never appears on the LHS of a constraint. */
1789 for (i = 0; i < LAST_REF_NODE; i++)
1790 if (!TEST_BIT (si->visited, si->node_mapping[i]))
1791 label_visit (graph, si, si->node_mapping[i]);
1793 if (dump_file && (dump_flags & TDF_DETAILS))
1794 for (i = 0; i < FIRST_REF_NODE; i++)
1796 bool direct_node = TEST_BIT (graph->direct_nodes, i);
1797 fprintf (dump_file,
1798 "Equivalence class for %s node id %d:%s is %d\n",
1799 direct_node ? "Direct node" : "Indirect node", i,
1800 get_varinfo(i)->name,
1801 graph->label[si->node_mapping[i]]);
1804 /* Quickly eliminate our non-pointer variables. */
1806 for (i = 0; i < FIRST_REF_NODE; i++)
1808 unsigned int node = si->node_mapping[i];
1810 if (graph->label[node] == 0 && TEST_BIT (graph->direct_nodes, node))
1812 if (dump_file && (dump_flags & TDF_DETAILS))
1813 fprintf (dump_file,
1814 "%s is a non-pointer variable, eliminating edges.\n",
1815 get_varinfo (node)->name);
1816 stats.nonpointer_vars++;
1817 clear_edges_for_node (graph, node);
1820 return si;
1823 /* Free information that was only necessary for variable
1824 substitution. */
1826 static void
1827 free_var_substitution_info (struct scc_info *si)
1829 free_scc_info (si);
1830 free (graph->label);
1831 free (graph->eq_rep);
1832 sbitmap_free (graph->direct_nodes);
1833 bitmap_obstack_release (&iteration_obstack);
1836 /* Return an existing node that is equivalent to NODE, which has
1837 equivalence class LABEL, if one exists. Return NODE otherwise. */
1839 static unsigned int
1840 find_equivalent_node (constraint_graph_t graph,
1841 unsigned int node, unsigned int label)
1843 /* If the address version of this variable is unused, we can
1844 substitute it for anything else with the same label.
1845 Otherwise, we know the pointers are equivalent, but not the
1846 locations. */
1848 if (graph->label[FIRST_ADDR_NODE + node] == 0)
1850 gcc_assert (label < graph->size);
1852 if (graph->eq_rep[label] != -1)
1854 /* Unify the two variables since we know they are equivalent. */
1855 if (unite (graph->eq_rep[label], node))
1856 unify_nodes (graph, graph->eq_rep[label], node, false);
1857 return graph->eq_rep[label];
1859 else
1861 graph->eq_rep[label] = node;
1864 return node;
1867 /* Move complex constraints to the appropriate nodes, and collapse
1868 variables we've discovered are equivalent during variable
1869 substitution. SI is the SCC_INFO that is the result of
1870 perform_variable_substitution. */
1872 static void
1873 move_complex_constraints (constraint_graph_t graph,
1874 struct scc_info *si)
1876 int i;
1877 unsigned int j;
1878 constraint_t c;
1880 for (j = 0; j < graph->size; j++)
1881 gcc_assert (find (j) == j);
1883 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1885 struct constraint_expr lhs = c->lhs;
1886 struct constraint_expr rhs = c->rhs;
1887 unsigned int lhsvar = find (get_varinfo_fc (lhs.var)->id);
1888 unsigned int rhsvar = find (get_varinfo_fc (rhs.var)->id);
1889 unsigned int lhsnode, rhsnode;
1890 unsigned int lhslabel, rhslabel;
1892 lhsnode = si->node_mapping[lhsvar];
1893 rhsnode = si->node_mapping[rhsvar];
1894 lhslabel = graph->label[lhsnode];
1895 rhslabel = graph->label[rhsnode];
1897 /* See if it is really a non-pointer variable, and if so, ignore
1898 the constraint. */
1899 if (lhslabel == 0)
1901 if (!TEST_BIT (graph->direct_nodes, lhsnode))
1902 lhslabel = graph->label[lhsnode] = equivalence_class++;
1903 else
1905 if (dump_file && (dump_flags & TDF_DETAILS))
1908 fprintf (dump_file, "%s is a non-pointer variable,"
1909 "ignoring constraint:",
1910 get_varinfo (lhs.var)->name);
1911 dump_constraint (dump_file, c);
1913 VEC_replace (constraint_t, constraints, i, NULL);
1914 continue;
1918 if (rhslabel == 0)
1920 if (!TEST_BIT (graph->direct_nodes, rhsnode))
1921 rhslabel = graph->label[rhsnode] = equivalence_class++;
1922 else
1924 if (dump_file && (dump_flags & TDF_DETAILS))
1927 fprintf (dump_file, "%s is a non-pointer variable,"
1928 "ignoring constraint:",
1929 get_varinfo (rhs.var)->name);
1930 dump_constraint (dump_file, c);
1932 VEC_replace (constraint_t, constraints, i, NULL);
1933 continue;
1937 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
1938 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
1939 c->lhs.var = lhsvar;
1940 c->rhs.var = rhsvar;
1942 if (lhs.type == DEREF)
1944 if (rhs.type == ADDRESSOF || rhsvar > anything_id)
1945 insert_into_complex (graph, lhsvar, c);
1947 else if (rhs.type == DEREF)
1949 if (!(get_varinfo (lhsvar)->is_special_var))
1950 insert_into_complex (graph, rhsvar, c);
1952 else if (rhs.type != ADDRESSOF && lhsvar > anything_id
1953 && (lhs.offset != 0 || rhs.offset != 0))
1955 insert_into_complex (graph, rhsvar, c);
1961 /* Eliminate indirect cycles involving NODE. Return true if NODE was
1962 part of an SCC, false otherwise. */
1964 static bool
1965 eliminate_indirect_cycles (unsigned int node)
1967 if (graph->indirect_cycles[node] != -1
1968 && !bitmap_empty_p (get_varinfo (node)->solution))
1970 unsigned int i;
1971 VEC(unsigned,heap) *queue = NULL;
1972 int queuepos;
1973 unsigned int to = find (graph->indirect_cycles[node]);
1974 bitmap_iterator bi;
1976 /* We can't touch the solution set and call unify_nodes
1977 at the same time, because unify_nodes is going to do
1978 bitmap unions into it. */
1980 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
1982 if (find (i) == i && i != to)
1984 if (unite (to, i))
1985 VEC_safe_push (unsigned, heap, queue, i);
1989 for (queuepos = 0;
1990 VEC_iterate (unsigned, queue, queuepos, i);
1991 queuepos++)
1993 unify_nodes (graph, to, i, true);
1995 VEC_free (unsigned, heap, queue);
1996 return true;
1998 return false;
2001 /* Solve the constraint graph GRAPH using our worklist solver.
2002 This is based on the PW* family of solvers from the "Efficient Field
2003 Sensitive Pointer Analysis for C" paper.
2004 It works by iterating over all the graph nodes, processing the complex
2005 constraints and propagating the copy constraints, until everything stops
2006 changed. This corresponds to steps 6-8 in the solving list given above. */
2008 static void
2009 solve_graph (constraint_graph_t graph)
2011 unsigned int size = VEC_length (varinfo_t, varmap);
2012 unsigned int i;
2013 bitmap pts;
2015 changed_count = 0;
2016 changed = sbitmap_alloc (size);
2017 sbitmap_zero (changed);
2019 /* Mark all initial non-collapsed nodes as changed. */
2020 for (i = 0; i < size; i++)
2022 varinfo_t ivi = get_varinfo (i);
2023 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2024 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2025 || VEC_length (constraint_t, graph->complex[i]) > 0))
2027 SET_BIT (changed, i);
2028 changed_count++;
2032 /* Allocate a bitmap to be used to store the changed bits. */
2033 pts = BITMAP_ALLOC (&pta_obstack);
2035 while (changed_count > 0)
2037 unsigned int i;
2038 struct topo_info *ti = init_topo_info ();
2039 stats.iterations++;
2041 bitmap_obstack_initialize (&iteration_obstack);
2043 compute_topo_order (graph, ti);
2045 while (VEC_length (unsigned, ti->topo_order) != 0)
2048 i = VEC_pop (unsigned, ti->topo_order);
2050 /* If this variable is not a representative, skip it. */
2051 if (find (i) != i)
2052 continue;
2054 /* In certain indirect cycle cases, we may merge this
2055 variable to another. */
2056 if (eliminate_indirect_cycles (i) && find(i) != i)
2057 continue;
2059 /* If the node has changed, we need to process the
2060 complex constraints and outgoing edges again. */
2061 if (TEST_BIT (changed, i))
2063 unsigned int j;
2064 constraint_t c;
2065 bitmap solution;
2066 VEC(constraint_t,heap) *complex = graph->complex[i];
2067 bool solution_empty;
2069 RESET_BIT (changed, i);
2070 changed_count--;
2072 /* Compute the changed set of solution bits. */
2073 bitmap_and_compl (pts, get_varinfo (i)->solution,
2074 get_varinfo (i)->oldsolution);
2076 if (bitmap_empty_p (pts))
2077 continue;
2079 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2081 solution = get_varinfo (i)->solution;
2082 solution_empty = bitmap_empty_p (solution);
2084 /* Process the complex constraints */
2085 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2087 /* The only complex constraint that can change our
2088 solution to non-empty, given an empty solution,
2089 is a constraint where the lhs side is receiving
2090 some set from elsewhere. */
2091 if (!solution_empty || c->lhs.type != DEREF)
2092 do_complex_constraint (graph, c, pts);
2095 solution_empty = bitmap_empty_p (solution);
2097 if (!solution_empty)
2099 bitmap_iterator bi;
2101 /* Propagate solution to all successors. */
2102 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2103 0, j, bi)
2105 bitmap tmp;
2106 bool flag;
2108 unsigned int to = find (j);
2109 tmp = get_varinfo (to)->solution;
2110 flag = false;
2112 /* Don't try to propagate to ourselves. */
2113 if (to == i)
2114 continue;
2116 flag = set_union_with_increment (tmp, pts, 0);
2118 if (flag)
2120 get_varinfo (to)->solution = tmp;
2121 if (!TEST_BIT (changed, to))
2123 SET_BIT (changed, to);
2124 changed_count++;
2131 free_topo_info (ti);
2132 bitmap_obstack_release (&iteration_obstack);
2135 BITMAP_FREE (pts);
2136 sbitmap_free (changed);
2137 bitmap_obstack_release (&oldpta_obstack);
2140 /* Map from trees to variable infos. */
2141 static htab_t vi_for_tree;
2143 typedef struct tree_vi
2145 tree t;
2146 varinfo_t vi;
2147 } *tree_vi_t;
2149 /* Hash a tree id structure. */
2151 static hashval_t
2152 tree_vi_hash (const void *p)
2154 const tree_vi_t ta = (tree_vi_t) p;
2155 return htab_hash_pointer (ta->t);
2158 /* Return true if the tree in P1 and the tree in P2 are the same. */
2160 static int
2161 tree_vi_eq (const void *p1, const void *p2)
2163 const tree_vi_t ta1 = (tree_vi_t) p1;
2164 const tree_vi_t ta2 = (tree_vi_t) p2;
2165 return ta1->t == ta2->t;
2168 /* Insert ID as the variable id for tree T in the hashtable. */
2170 static void
2171 insert_vi_for_tree (tree t, varinfo_t vi)
2173 void **slot;
2174 struct tree_vi finder;
2175 tree_vi_t new_pair;
2177 finder.t = t;
2178 slot = htab_find_slot (vi_for_tree, &finder, INSERT);
2179 gcc_assert (*slot == NULL);
2180 new_pair = XNEW (struct tree_vi);
2181 new_pair->t = t;
2182 new_pair->vi = vi;
2183 *slot = (void *)new_pair;
2186 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2187 exist in the hash table, return false, otherwise, return true and
2188 set *VI to the varinfo we found. */
2190 static bool
2191 lookup_vi_for_tree (tree t, varinfo_t *vi)
2193 tree_vi_t pair;
2194 struct tree_vi finder;
2196 finder.t = t;
2197 pair = htab_find (vi_for_tree, &finder);
2198 if (pair == NULL)
2199 return false;
2200 *vi = pair->vi;
2201 return true;
2204 /* Return a printable name for DECL */
2206 static const char *
2207 alias_get_name (tree decl)
2209 const char *res = get_name (decl);
2210 char *temp;
2211 int num_printed = 0;
2213 if (res != NULL)
2214 return res;
2216 res = "NULL";
2217 if (!dump_file)
2218 return res;
2220 if (TREE_CODE (decl) == SSA_NAME)
2222 num_printed = asprintf (&temp, "%s_%u",
2223 alias_get_name (SSA_NAME_VAR (decl)),
2224 SSA_NAME_VERSION (decl));
2226 else if (DECL_P (decl))
2228 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2230 if (num_printed > 0)
2232 res = ggc_strdup (temp);
2233 free (temp);
2235 return res;
2238 /* Find the variable id for tree T in the hashtable.
2239 If T doesn't exist in the hash table, create an entry for it. */
2241 static varinfo_t
2242 get_vi_for_tree (tree t)
2244 tree_vi_t pair;
2245 struct tree_vi finder;
2247 finder.t = t;
2248 pair = htab_find (vi_for_tree, &finder);
2249 if (pair == NULL)
2250 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2252 return pair->vi;
2255 /* Get a constraint expression from an SSA_VAR_P node. */
2257 static struct constraint_expr
2258 get_constraint_exp_from_ssa_var (tree t)
2260 struct constraint_expr cexpr;
2262 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2264 /* For parameters, get at the points-to set for the actual parm
2265 decl. */
2266 if (TREE_CODE (t) == SSA_NAME
2267 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2268 && SSA_NAME_IS_DEFAULT_DEF (t))
2269 return get_constraint_exp_from_ssa_var (SSA_NAME_VAR (t));
2271 cexpr.type = SCALAR;
2273 cexpr.var = get_vi_for_tree (t)->id;
2274 /* If we determine the result is "anything", and we know this is readonly,
2275 say it points to readonly memory instead. */
2276 if (cexpr.var == anything_id && TREE_READONLY (t))
2278 cexpr.type = ADDRESSOF;
2279 cexpr.var = readonly_id;
2282 cexpr.offset = 0;
2283 return cexpr;
2286 /* Process a completed constraint T, and add it to the constraint
2287 list. */
2289 static void
2290 process_constraint (constraint_t t)
2292 struct constraint_expr rhs = t->rhs;
2293 struct constraint_expr lhs = t->lhs;
2295 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2296 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2298 if (lhs.type == DEREF)
2299 get_varinfo (lhs.var)->directly_dereferenced = true;
2300 if (rhs.type == DEREF)
2301 get_varinfo (rhs.var)->directly_dereferenced = true;
2303 if (!use_field_sensitive)
2305 t->rhs.offset = 0;
2306 t->lhs.offset = 0;
2309 /* ANYTHING == ANYTHING is pointless. */
2310 if (lhs.var == anything_id && rhs.var == anything_id)
2311 return;
2313 /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
2314 else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
2316 rhs = t->lhs;
2317 t->lhs = t->rhs;
2318 t->rhs = rhs;
2319 process_constraint (t);
2321 /* This can happen in our IR with things like n->a = *p */
2322 else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2324 /* Split into tmp = *rhs, *lhs = tmp */
2325 tree rhsdecl = get_varinfo (rhs.var)->decl;
2326 tree pointertype = TREE_TYPE (rhsdecl);
2327 tree pointedtotype = TREE_TYPE (pointertype);
2328 tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
2329 struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
2331 /* If this is an aggregate of known size, we should have passed
2332 this off to do_structure_copy, and it should have broken it
2333 up. */
2334 gcc_assert (!AGGREGATE_TYPE_P (pointedtotype)
2335 || get_varinfo (rhs.var)->is_unknown_size_var);
2337 process_constraint (new_constraint (tmplhs, rhs));
2338 process_constraint (new_constraint (lhs, tmplhs));
2340 else
2342 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2343 VEC_safe_push (constraint_t, heap, constraints, t);
2347 /* Return true if T is a variable of a type that could contain
2348 pointers. */
2350 static bool
2351 could_have_pointers (tree t)
2353 tree type = TREE_TYPE (t);
2355 if (POINTER_TYPE_P (type) || AGGREGATE_TYPE_P (type)
2356 || TREE_CODE (type) == COMPLEX_TYPE)
2357 return true;
2358 return false;
2361 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2362 structure. */
2364 static unsigned HOST_WIDE_INT
2365 bitpos_of_field (const tree fdecl)
2368 if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
2369 || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
2370 return -1;
2372 return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8)
2373 + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
2377 /* Return true if an access to [ACCESSPOS, ACCESSSIZE]
2378 overlaps with a field at [FIELDPOS, FIELDSIZE] */
2380 static bool
2381 offset_overlaps_with_access (const unsigned HOST_WIDE_INT fieldpos,
2382 const unsigned HOST_WIDE_INT fieldsize,
2383 const unsigned HOST_WIDE_INT accesspos,
2384 const unsigned HOST_WIDE_INT accesssize)
2386 if (fieldpos == accesspos && fieldsize == accesssize)
2387 return true;
2388 if (accesspos >= fieldpos && accesspos < (fieldpos + fieldsize))
2389 return true;
2390 if (accesspos < fieldpos && (accesspos + accesssize > fieldpos))
2391 return true;
2393 return false;
2396 /* Given a COMPONENT_REF T, return the constraint_expr for it. */
2398 static void
2399 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results)
2401 tree orig_t = t;
2402 HOST_WIDE_INT bitsize = -1;
2403 HOST_WIDE_INT bitmaxsize = -1;
2404 HOST_WIDE_INT bitpos;
2405 tree forzero;
2406 struct constraint_expr *result;
2407 unsigned int beforelength = VEC_length (ce_s, *results);
2409 /* Some people like to do cute things like take the address of
2410 &0->a.b */
2411 forzero = t;
2412 while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
2413 forzero = TREE_OPERAND (forzero, 0);
2415 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
2417 struct constraint_expr temp;
2419 temp.offset = 0;
2420 temp.var = integer_id;
2421 temp.type = SCALAR;
2422 VEC_safe_push (ce_s, heap, *results, &temp);
2423 return;
2426 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
2428 /* String constants are readonly, so there is nothing to really do
2429 here. */
2430 if (TREE_CODE (t) == STRING_CST)
2431 return;
2433 get_constraint_for (t, results);
2434 result = VEC_last (ce_s, *results);
2435 result->offset = bitpos;
2437 gcc_assert (beforelength + 1 == VEC_length (ce_s, *results));
2439 /* This can also happen due to weird offsetof type macros. */
2440 if (TREE_CODE (t) != ADDR_EXPR && result->type == ADDRESSOF)
2441 result->type = SCALAR;
2443 if (result->type == SCALAR)
2445 /* In languages like C, you can access one past the end of an
2446 array. You aren't allowed to dereference it, so we can
2447 ignore this constraint. When we handle pointer subtraction,
2448 we may have to do something cute here. */
2450 if (result->offset < get_varinfo (result->var)->fullsize
2451 && bitmaxsize != 0)
2453 /* It's also not true that the constraint will actually start at the
2454 right offset, it may start in some padding. We only care about
2455 setting the constraint to the first actual field it touches, so
2456 walk to find it. */
2457 varinfo_t curr;
2458 for (curr = get_varinfo (result->var); curr; curr = curr->next)
2460 if (offset_overlaps_with_access (curr->offset, curr->size,
2461 result->offset, bitmaxsize))
2463 result->var = curr->id;
2464 break;
2467 /* assert that we found *some* field there. The user couldn't be
2468 accessing *only* padding. */
2469 /* Still the user could access one past the end of an array
2470 embedded in a struct resulting in accessing *only* padding. */
2471 gcc_assert (curr || ref_contains_array_ref (orig_t));
2473 else if (bitmaxsize == 0)
2475 if (dump_file && (dump_flags & TDF_DETAILS))
2476 fprintf (dump_file, "Access to zero-sized part of variable,"
2477 "ignoring\n");
2479 else
2480 if (dump_file && (dump_flags & TDF_DETAILS))
2481 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
2483 result->offset = 0;
2488 /* Dereference the constraint expression CONS, and return the result.
2489 DEREF (ADDRESSOF) = SCALAR
2490 DEREF (SCALAR) = DEREF
2491 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
2492 This is needed so that we can handle dereferencing DEREF constraints. */
2494 static void
2495 do_deref (VEC (ce_s, heap) **constraints)
2497 struct constraint_expr *c;
2498 unsigned int i = 0;
2500 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
2502 if (c->type == SCALAR)
2503 c->type = DEREF;
2504 else if (c->type == ADDRESSOF)
2505 c->type = SCALAR;
2506 else if (c->type == DEREF)
2508 tree tmpvar = create_tmp_var_raw (ptr_type_node, "dereftmp");
2509 struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
2510 process_constraint (new_constraint (tmplhs, *c));
2511 c->var = tmplhs.var;
2513 else
2514 gcc_unreachable ();
2518 /* Given a tree T, return the constraint expression for it. */
2520 static void
2521 get_constraint_for (tree t, VEC (ce_s, heap) **results)
2523 struct constraint_expr temp;
2525 /* x = integer is all glommed to a single variable, which doesn't
2526 point to anything by itself. That is, of course, unless it is an
2527 integer constant being treated as a pointer, in which case, we
2528 will return that this is really the addressof anything. This
2529 happens below, since it will fall into the default case. The only
2530 case we know something about an integer treated like a pointer is
2531 when it is the NULL pointer, and then we just say it points to
2532 NULL. */
2533 if (TREE_CODE (t) == INTEGER_CST
2534 && !POINTER_TYPE_P (TREE_TYPE (t)))
2536 temp.var = integer_id;
2537 temp.type = SCALAR;
2538 temp.offset = 0;
2539 VEC_safe_push (ce_s, heap, *results, &temp);
2540 return;
2542 else if (TREE_CODE (t) == INTEGER_CST
2543 && integer_zerop (t))
2545 temp.var = nothing_id;
2546 temp.type = ADDRESSOF;
2547 temp.offset = 0;
2548 VEC_safe_push (ce_s, heap, *results, &temp);
2549 return;
2552 switch (TREE_CODE_CLASS (TREE_CODE (t)))
2554 case tcc_expression:
2556 switch (TREE_CODE (t))
2558 case ADDR_EXPR:
2560 struct constraint_expr *c;
2561 unsigned int i;
2562 tree exp = TREE_OPERAND (t, 0);
2563 tree pttype = TREE_TYPE (TREE_TYPE (t));
2565 get_constraint_for (exp, results);
2566 /* Make sure we capture constraints to all elements
2567 of an array. */
2568 if ((handled_component_p (exp)
2569 && ref_contains_array_ref (exp))
2570 || TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE)
2572 struct constraint_expr *origrhs;
2573 varinfo_t origvar;
2574 struct constraint_expr tmp;
2576 if (VEC_length (ce_s, *results) == 0)
2577 return;
2579 gcc_assert (VEC_length (ce_s, *results) == 1);
2580 origrhs = VEC_last (ce_s, *results);
2581 tmp = *origrhs;
2582 VEC_pop (ce_s, *results);
2583 origvar = get_varinfo (origrhs->var);
2584 for (; origvar; origvar = origvar->next)
2586 tmp.var = origvar->id;
2587 VEC_safe_push (ce_s, heap, *results, &tmp);
2590 else if (VEC_length (ce_s, *results) == 1
2591 && (AGGREGATE_TYPE_P (pttype)
2592 || TREE_CODE (pttype) == COMPLEX_TYPE))
2594 struct constraint_expr *origrhs;
2595 varinfo_t origvar;
2596 struct constraint_expr tmp;
2598 gcc_assert (VEC_length (ce_s, *results) == 1);
2599 origrhs = VEC_last (ce_s, *results);
2600 tmp = *origrhs;
2601 VEC_pop (ce_s, *results);
2602 origvar = get_varinfo (origrhs->var);
2603 for (; origvar; origvar = origvar->next)
2605 tmp.var = origvar->id;
2606 VEC_safe_push (ce_s, heap, *results, &tmp);
2610 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
2612 if (c->type == DEREF)
2613 c->type = SCALAR;
2614 else
2615 c->type = ADDRESSOF;
2617 return;
2619 break;
2620 case CALL_EXPR:
2621 /* XXX: In interprocedural mode, if we didn't have the
2622 body, we would need to do *each pointer argument =
2623 &ANYTHING added. */
2624 if (call_expr_flags (t) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA))
2626 varinfo_t vi;
2627 tree heapvar = heapvar_lookup (t);
2629 if (heapvar == NULL)
2631 heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
2632 DECL_EXTERNAL (heapvar) = 1;
2633 get_var_ann (heapvar)->is_heapvar = 1;
2634 if (gimple_referenced_vars (cfun))
2635 add_referenced_var (heapvar);
2636 heapvar_insert (t, heapvar);
2639 temp.var = create_variable_info_for (heapvar,
2640 alias_get_name (heapvar));
2642 vi = get_varinfo (temp.var);
2643 vi->is_artificial_var = 1;
2644 vi->is_heap_var = 1;
2645 temp.type = ADDRESSOF;
2646 temp.offset = 0;
2647 VEC_safe_push (ce_s, heap, *results, &temp);
2648 return;
2650 else
2652 temp.var = anything_id;
2653 temp.type = SCALAR;
2654 temp.offset = 0;
2655 VEC_safe_push (ce_s, heap, *results, &temp);
2656 return;
2658 break;
2659 default:
2661 temp.type = ADDRESSOF;
2662 temp.var = anything_id;
2663 temp.offset = 0;
2664 VEC_safe_push (ce_s, heap, *results, &temp);
2665 return;
2669 case tcc_reference:
2671 switch (TREE_CODE (t))
2673 case INDIRECT_REF:
2675 get_constraint_for (TREE_OPERAND (t, 0), results);
2676 do_deref (results);
2677 return;
2679 case ARRAY_REF:
2680 case ARRAY_RANGE_REF:
2681 case COMPONENT_REF:
2682 get_constraint_for_component_ref (t, results);
2683 return;
2684 default:
2686 temp.type = ADDRESSOF;
2687 temp.var = anything_id;
2688 temp.offset = 0;
2689 VEC_safe_push (ce_s, heap, *results, &temp);
2690 return;
2694 case tcc_unary:
2696 switch (TREE_CODE (t))
2698 case NOP_EXPR:
2699 case CONVERT_EXPR:
2700 case NON_LVALUE_EXPR:
2702 tree op = TREE_OPERAND (t, 0);
2704 /* Cast from non-pointer to pointers are bad news for us.
2705 Anything else, we see through */
2706 if (!(POINTER_TYPE_P (TREE_TYPE (t))
2707 && ! POINTER_TYPE_P (TREE_TYPE (op))))
2709 get_constraint_for (op, results);
2710 return;
2713 /* FALLTHRU */
2715 default:
2717 temp.type = ADDRESSOF;
2718 temp.var = anything_id;
2719 temp.offset = 0;
2720 VEC_safe_push (ce_s, heap, *results, &temp);
2721 return;
2725 case tcc_exceptional:
2727 switch (TREE_CODE (t))
2729 case PHI_NODE:
2731 get_constraint_for (PHI_RESULT (t), results);
2732 return;
2734 break;
2735 case SSA_NAME:
2737 struct constraint_expr temp;
2738 temp = get_constraint_exp_from_ssa_var (t);
2739 VEC_safe_push (ce_s, heap, *results, &temp);
2740 return;
2742 break;
2743 default:
2745 temp.type = ADDRESSOF;
2746 temp.var = anything_id;
2747 temp.offset = 0;
2748 VEC_safe_push (ce_s, heap, *results, &temp);
2749 return;
2753 case tcc_declaration:
2755 struct constraint_expr temp;
2756 temp = get_constraint_exp_from_ssa_var (t);
2757 VEC_safe_push (ce_s, heap, *results, &temp);
2758 return;
2760 default:
2762 temp.type = ADDRESSOF;
2763 temp.var = anything_id;
2764 temp.offset = 0;
2765 VEC_safe_push (ce_s, heap, *results, &temp);
2766 return;
2772 /* Handle the structure copy case where we have a simple structure copy
2773 between LHS and RHS that is of SIZE (in bits)
2775 For each field of the lhs variable (lhsfield)
2776 For each field of the rhs variable at lhsfield.offset (rhsfield)
2777 add the constraint lhsfield = rhsfield
2779 If we fail due to some kind of type unsafety or other thing we
2780 can't handle, return false. We expect the caller to collapse the
2781 variable in that case. */
2783 static bool
2784 do_simple_structure_copy (const struct constraint_expr lhs,
2785 const struct constraint_expr rhs,
2786 const unsigned HOST_WIDE_INT size)
2788 varinfo_t p = get_varinfo (lhs.var);
2789 unsigned HOST_WIDE_INT pstart, last;
2790 pstart = p->offset;
2791 last = p->offset + size;
2792 for (; p && p->offset < last; p = p->next)
2794 varinfo_t q;
2795 struct constraint_expr templhs = lhs;
2796 struct constraint_expr temprhs = rhs;
2797 unsigned HOST_WIDE_INT fieldoffset;
2799 templhs.var = p->id;
2800 q = get_varinfo (temprhs.var);
2801 fieldoffset = p->offset - pstart;
2802 q = first_vi_for_offset (q, q->offset + fieldoffset);
2803 if (!q)
2804 return false;
2805 temprhs.var = q->id;
2806 process_constraint (new_constraint (templhs, temprhs));
2808 return true;
2812 /* Handle the structure copy case where we have a structure copy between a
2813 aggregate on the LHS and a dereference of a pointer on the RHS
2814 that is of SIZE (in bits)
2816 For each field of the lhs variable (lhsfield)
2817 rhs.offset = lhsfield->offset
2818 add the constraint lhsfield = rhs
2821 static void
2822 do_rhs_deref_structure_copy (const struct constraint_expr lhs,
2823 const struct constraint_expr rhs,
2824 const unsigned HOST_WIDE_INT size)
2826 varinfo_t p = get_varinfo (lhs.var);
2827 unsigned HOST_WIDE_INT pstart,last;
2828 pstart = p->offset;
2829 last = p->offset + size;
2831 for (; p && p->offset < last; p = p->next)
2833 varinfo_t q;
2834 struct constraint_expr templhs = lhs;
2835 struct constraint_expr temprhs = rhs;
2836 unsigned HOST_WIDE_INT fieldoffset;
2839 if (templhs.type == SCALAR)
2840 templhs.var = p->id;
2841 else
2842 templhs.offset = p->offset;
2844 q = get_varinfo (temprhs.var);
2845 fieldoffset = p->offset - pstart;
2846 temprhs.offset += fieldoffset;
2847 process_constraint (new_constraint (templhs, temprhs));
2851 /* Handle the structure copy case where we have a structure copy
2852 between a aggregate on the RHS and a dereference of a pointer on
2853 the LHS that is of SIZE (in bits)
2855 For each field of the rhs variable (rhsfield)
2856 lhs.offset = rhsfield->offset
2857 add the constraint lhs = rhsfield
2860 static void
2861 do_lhs_deref_structure_copy (const struct constraint_expr lhs,
2862 const struct constraint_expr rhs,
2863 const unsigned HOST_WIDE_INT size)
2865 varinfo_t p = get_varinfo (rhs.var);
2866 unsigned HOST_WIDE_INT pstart,last;
2867 pstart = p->offset;
2868 last = p->offset + size;
2870 for (; p && p->offset < last; p = p->next)
2872 varinfo_t q;
2873 struct constraint_expr templhs = lhs;
2874 struct constraint_expr temprhs = rhs;
2875 unsigned HOST_WIDE_INT fieldoffset;
2878 if (temprhs.type == SCALAR)
2879 temprhs.var = p->id;
2880 else
2881 temprhs.offset = p->offset;
2883 q = get_varinfo (templhs.var);
2884 fieldoffset = p->offset - pstart;
2885 templhs.offset += fieldoffset;
2886 process_constraint (new_constraint (templhs, temprhs));
2890 /* Sometimes, frontends like to give us bad type information. This
2891 function will collapse all the fields from VAR to the end of VAR,
2892 into VAR, so that we treat those fields as a single variable.
2893 We return the variable they were collapsed into. */
2895 static unsigned int
2896 collapse_rest_of_var (unsigned int var)
2898 varinfo_t currvar = get_varinfo (var);
2899 varinfo_t field;
2901 for (field = currvar->next; field; field = field->next)
2903 if (dump_file)
2904 fprintf (dump_file, "Type safety: Collapsing var %s into %s\n",
2905 field->name, currvar->name);
2907 gcc_assert (!field->collapsed_to);
2908 field->collapsed_to = currvar;
2911 currvar->next = NULL;
2912 currvar->size = currvar->fullsize - currvar->offset;
2914 return currvar->id;
2917 /* Handle aggregate copies by expanding into copies of the respective
2918 fields of the structures. */
2920 static void
2921 do_structure_copy (tree lhsop, tree rhsop)
2923 struct constraint_expr lhs, rhs, tmp;
2924 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
2925 varinfo_t p;
2926 unsigned HOST_WIDE_INT lhssize;
2927 unsigned HOST_WIDE_INT rhssize;
2929 get_constraint_for (lhsop, &lhsc);
2930 get_constraint_for (rhsop, &rhsc);
2931 gcc_assert (VEC_length (ce_s, lhsc) == 1);
2932 gcc_assert (VEC_length (ce_s, rhsc) == 1);
2933 lhs = *(VEC_last (ce_s, lhsc));
2934 rhs = *(VEC_last (ce_s, rhsc));
2936 VEC_free (ce_s, heap, lhsc);
2937 VEC_free (ce_s, heap, rhsc);
2939 /* If we have special var = x, swap it around. */
2940 if (lhs.var <= integer_id && !(get_varinfo (rhs.var)->is_special_var))
2942 tmp = lhs;
2943 lhs = rhs;
2944 rhs = tmp;
2947 /* This is fairly conservative for the RHS == ADDRESSOF case, in that it's
2948 possible it's something we could handle. However, most cases falling
2949 into this are dealing with transparent unions, which are slightly
2950 weird. */
2951 if (rhs.type == ADDRESSOF && !(get_varinfo (rhs.var)->is_special_var))
2953 rhs.type = ADDRESSOF;
2954 rhs.var = anything_id;
2957 /* If the RHS is a special var, or an addressof, set all the LHS fields to
2958 that special var. */
2959 if (rhs.var <= integer_id)
2961 for (p = get_varinfo (lhs.var); p; p = p->next)
2963 struct constraint_expr templhs = lhs;
2964 struct constraint_expr temprhs = rhs;
2966 if (templhs.type == SCALAR )
2967 templhs.var = p->id;
2968 else
2969 templhs.offset += p->offset;
2970 process_constraint (new_constraint (templhs, temprhs));
2973 else
2975 tree rhstype = TREE_TYPE (rhsop);
2976 tree lhstype = TREE_TYPE (lhsop);
2977 tree rhstypesize;
2978 tree lhstypesize;
2980 lhstypesize = DECL_P (lhsop) ? DECL_SIZE (lhsop) : TYPE_SIZE (lhstype);
2981 rhstypesize = DECL_P (rhsop) ? DECL_SIZE (rhsop) : TYPE_SIZE (rhstype);
2983 /* If we have a variably sized types on the rhs or lhs, and a deref
2984 constraint, add the constraint, lhsconstraint = &ANYTHING.
2985 This is conservatively correct because either the lhs is an unknown
2986 sized var (if the constraint is SCALAR), or the lhs is a DEREF
2987 constraint, and every variable it can point to must be unknown sized
2988 anyway, so we don't need to worry about fields at all. */
2989 if ((rhs.type == DEREF && TREE_CODE (rhstypesize) != INTEGER_CST)
2990 || (lhs.type == DEREF && TREE_CODE (lhstypesize) != INTEGER_CST))
2992 rhs.var = anything_id;
2993 rhs.type = ADDRESSOF;
2994 rhs.offset = 0;
2995 process_constraint (new_constraint (lhs, rhs));
2996 return;
2999 /* The size only really matters insofar as we don't set more or less of
3000 the variable. If we hit an unknown size var, the size should be the
3001 whole darn thing. */
3002 if (get_varinfo (rhs.var)->is_unknown_size_var)
3003 rhssize = ~0;
3004 else
3005 rhssize = TREE_INT_CST_LOW (rhstypesize);
3007 if (get_varinfo (lhs.var)->is_unknown_size_var)
3008 lhssize = ~0;
3009 else
3010 lhssize = TREE_INT_CST_LOW (lhstypesize);
3013 if (rhs.type == SCALAR && lhs.type == SCALAR)
3015 if (!do_simple_structure_copy (lhs, rhs, MIN (lhssize, rhssize)))
3017 lhs.var = collapse_rest_of_var (lhs.var);
3018 rhs.var = collapse_rest_of_var (rhs.var);
3019 lhs.offset = 0;
3020 rhs.offset = 0;
3021 lhs.type = SCALAR;
3022 rhs.type = SCALAR;
3023 process_constraint (new_constraint (lhs, rhs));
3026 else if (lhs.type != DEREF && rhs.type == DEREF)
3027 do_rhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
3028 else if (lhs.type == DEREF && rhs.type != DEREF)
3029 do_lhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
3030 else
3032 tree pointedtotype = lhstype;
3033 tree tmpvar;
3035 gcc_assert (rhs.type == DEREF && lhs.type == DEREF);
3036 tmpvar = create_tmp_var_raw (pointedtotype, "structcopydereftmp");
3037 do_structure_copy (tmpvar, rhsop);
3038 do_structure_copy (lhsop, tmpvar);
3043 /* Update related alias information kept in AI. This is used when
3044 building name tags, alias sets and deciding grouping heuristics.
3045 STMT is the statement to process. This function also updates
3046 ADDRESSABLE_VARS. */
3048 static void
3049 update_alias_info (tree stmt, struct alias_info *ai)
3051 bitmap addr_taken;
3052 use_operand_p use_p;
3053 ssa_op_iter iter;
3054 enum escape_type stmt_escape_type = is_escape_site (stmt);
3056 if (stmt_escape_type == ESCAPE_TO_CALL
3057 || stmt_escape_type == ESCAPE_TO_PURE_CONST)
3059 ai->num_calls_found++;
3060 if (stmt_escape_type == ESCAPE_TO_PURE_CONST)
3061 ai->num_pure_const_calls_found++;
3064 /* Mark all the variables whose address are taken by the statement. */
3065 addr_taken = addresses_taken (stmt);
3066 if (addr_taken)
3068 bitmap_ior_into (gimple_addressable_vars (cfun), addr_taken);
3070 /* If STMT is an escape point, all the addresses taken by it are
3071 call-clobbered. */
3072 if (stmt_escape_type != NO_ESCAPE)
3074 bitmap_iterator bi;
3075 unsigned i;
3077 EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
3079 tree rvar = referenced_var (i);
3080 if (!unmodifiable_var_p (rvar))
3081 mark_call_clobbered (rvar, stmt_escape_type);
3086 /* Process each operand use. If an operand may be aliased, keep
3087 track of how many times it's being used. For pointers, determine
3088 whether they are dereferenced by the statement, or whether their
3089 value escapes, etc. */
3090 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
3092 tree op, var;
3093 var_ann_t v_ann;
3094 struct ptr_info_def *pi;
3095 bool is_store, is_potential_deref;
3096 unsigned num_uses, num_derefs;
3098 op = USE_FROM_PTR (use_p);
3100 /* If STMT is a PHI node, OP may be an ADDR_EXPR. If so, add it
3101 to the set of addressable variables. */
3102 if (TREE_CODE (op) == ADDR_EXPR)
3104 bitmap addressable_vars = gimple_addressable_vars (cfun);
3106 gcc_assert (TREE_CODE (stmt) == PHI_NODE);
3107 gcc_assert (addressable_vars);
3109 /* PHI nodes don't have annotations for pinning the set
3110 of addresses taken, so we collect them here.
3112 FIXME, should we allow PHI nodes to have annotations
3113 so that they can be treated like regular statements?
3114 Currently, they are treated as second-class
3115 statements. */
3116 add_to_addressable_set (TREE_OPERAND (op, 0),
3117 &addressable_vars);
3118 continue;
3121 /* Ignore constants. */
3122 if (TREE_CODE (op) != SSA_NAME)
3123 continue;
3125 var = SSA_NAME_VAR (op);
3126 v_ann = var_ann (var);
3128 /* The base variable of an SSA name must be a GIMPLE register, and thus
3129 it cannot be aliased. */
3130 gcc_assert (!may_be_aliased (var));
3132 /* We are only interested in pointers. */
3133 if (!POINTER_TYPE_P (TREE_TYPE (op)))
3134 continue;
3136 pi = get_ptr_info (op);
3138 /* Add OP to AI->PROCESSED_PTRS, if it's not there already. */
3139 if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op)))
3141 SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op));
3142 VEC_safe_push (tree, heap, ai->processed_ptrs, op);
3145 /* If STMT is a PHI node, then it will not have pointer
3146 dereferences and it will not be an escape point. */
3147 if (TREE_CODE (stmt) == PHI_NODE)
3148 continue;
3150 /* Determine whether OP is a dereferenced pointer, and if STMT
3151 is an escape point, whether OP escapes. */
3152 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3154 /* Handle a corner case involving address expressions of the
3155 form '&PTR->FLD'. The problem with these expressions is that
3156 they do not represent a dereference of PTR. However, if some
3157 other transformation propagates them into an INDIRECT_REF
3158 expression, we end up with '*(&PTR->FLD)' which is folded
3159 into 'PTR->FLD'.
3161 So, if the original code had no other dereferences of PTR,
3162 the aliaser will not create memory tags for it, and when
3163 &PTR->FLD gets propagated to INDIRECT_REF expressions, the
3164 memory operations will receive no VDEF/VUSE operands.
3166 One solution would be to have count_uses_and_derefs consider
3167 &PTR->FLD a dereference of PTR. But that is wrong, since it
3168 is not really a dereference but an offset calculation.
3170 What we do here is to recognize these special ADDR_EXPR
3171 nodes. Since these expressions are never GIMPLE values (they
3172 are not GIMPLE invariants), they can only appear on the RHS
3173 of an assignment and their base address is always an
3174 INDIRECT_REF expression. */
3175 is_potential_deref = false;
3176 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3177 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ADDR_EXPR
3178 && !is_gimple_val (GIMPLE_STMT_OPERAND (stmt, 1)))
3180 /* If the RHS if of the form &PTR->FLD and PTR == OP, then
3181 this represents a potential dereference of PTR. */
3182 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
3183 tree base = get_base_address (TREE_OPERAND (rhs, 0));
3184 if (TREE_CODE (base) == INDIRECT_REF
3185 && TREE_OPERAND (base, 0) == op)
3186 is_potential_deref = true;
3189 if (num_derefs > 0 || is_potential_deref)
3191 /* Mark OP as dereferenced. In a subsequent pass,
3192 dereferenced pointers that point to a set of
3193 variables will be assigned a name tag to alias
3194 all the variables OP points to. */
3195 pi->is_dereferenced = 1;
3197 /* If this is a store operation, mark OP as being
3198 dereferenced to store, otherwise mark it as being
3199 dereferenced to load. */
3200 if (is_store)
3201 pointer_set_insert (ai->dereferenced_ptrs_store, var);
3202 else
3203 pointer_set_insert (ai->dereferenced_ptrs_load, var);
3206 if (stmt_escape_type != NO_ESCAPE && num_derefs < num_uses)
3208 /* If STMT is an escape point and STMT contains at
3209 least one direct use of OP, then the value of OP
3210 escapes and so the pointed-to variables need to
3211 be marked call-clobbered. */
3212 pi->value_escapes_p = 1;
3213 pi->escape_mask |= stmt_escape_type;
3215 /* If the statement makes a function call, assume
3216 that pointer OP will be dereferenced in a store
3217 operation inside the called function. */
3218 if (get_call_expr_in (stmt)
3219 || stmt_escape_type == ESCAPE_STORED_IN_GLOBAL)
3221 pointer_set_insert (ai->dereferenced_ptrs_store, var);
3222 pi->is_dereferenced = 1;
3227 if (TREE_CODE (stmt) == PHI_NODE)
3228 return;
3230 /* Mark stored variables in STMT as being written to and update the
3231 reference counter for potentially aliased symbols in STMT. */
3232 if (stmt_references_memory_p (stmt) && STORED_SYMS (stmt))
3234 unsigned i;
3235 bitmap_iterator bi;
3236 EXECUTE_IF_SET_IN_BITMAP (STORED_SYMS (stmt), 0, i, bi)
3237 pointer_set_insert (ai->written_vars, referenced_var (i));
3242 /* Handle pointer arithmetic EXPR when creating aliasing constraints.
3243 Expressions of the type PTR + CST can be handled in two ways:
3245 1- If the constraint for PTR is ADDRESSOF for a non-structure
3246 variable, then we can use it directly because adding or
3247 subtracting a constant may not alter the original ADDRESSOF
3248 constraint (i.e., pointer arithmetic may not legally go outside
3249 an object's boundaries).
3251 2- If the constraint for PTR is ADDRESSOF for a structure variable,
3252 then if CST is a compile-time constant that can be used as an
3253 offset, we can determine which sub-variable will be pointed-to
3254 by the expression.
3256 Return true if the expression is handled. For any other kind of
3257 expression, return false so that each operand can be added as a
3258 separate constraint by the caller. */
3260 static bool
3261 handle_ptr_arith (VEC (ce_s, heap) *lhsc, tree expr)
3263 tree op0, op1;
3264 struct constraint_expr *c, *c2;
3265 unsigned int i = 0;
3266 unsigned int j = 0;
3267 VEC (ce_s, heap) *temp = NULL;
3268 unsigned int rhsoffset = 0;
3270 if (TREE_CODE (expr) != PLUS_EXPR
3271 && TREE_CODE (expr) != MINUS_EXPR)
3272 return false;
3274 op0 = TREE_OPERAND (expr, 0);
3275 op1 = TREE_OPERAND (expr, 1);
3277 get_constraint_for (op0, &temp);
3278 if (POINTER_TYPE_P (TREE_TYPE (op0))
3279 && TREE_CODE (op1) == INTEGER_CST
3280 && TREE_CODE (expr) == PLUS_EXPR)
3282 rhsoffset = TREE_INT_CST_LOW (op1) * BITS_PER_UNIT;
3284 else
3285 return false;
3288 for (i = 0; VEC_iterate (ce_s, lhsc, i, c); i++)
3289 for (j = 0; VEC_iterate (ce_s, temp, j, c2); j++)
3291 if (c2->type == ADDRESSOF && rhsoffset != 0)
3293 varinfo_t temp = get_varinfo (c2->var);
3295 /* An access one after the end of an array is valid,
3296 so simply punt on accesses we cannot resolve. */
3297 temp = first_vi_for_offset (temp, rhsoffset);
3298 if (temp == NULL)
3299 continue;
3300 c2->var = temp->id;
3301 c2->offset = 0;
3303 else
3304 c2->offset = rhsoffset;
3305 process_constraint (new_constraint (*c, *c2));
3308 VEC_free (ce_s, heap, temp);
3310 return true;
3314 /* Walk statement T setting up aliasing constraints according to the
3315 references found in T. This function is the main part of the
3316 constraint builder. AI points to auxiliary alias information used
3317 when building alias sets and computing alias grouping heuristics. */
3319 static void
3320 find_func_aliases (tree origt)
3322 tree t = origt;
3323 VEC(ce_s, heap) *lhsc = NULL;
3324 VEC(ce_s, heap) *rhsc = NULL;
3325 struct constraint_expr *c;
3327 if (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0))
3328 t = TREE_OPERAND (t, 0);
3330 /* Now build constraints expressions. */
3331 if (TREE_CODE (t) == PHI_NODE)
3333 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (PHI_RESULT (t))));
3335 /* Only care about pointers and structures containing
3336 pointers. */
3337 if (could_have_pointers (PHI_RESULT (t)))
3339 int i;
3340 unsigned int j;
3342 /* For a phi node, assign all the arguments to
3343 the result. */
3344 get_constraint_for (PHI_RESULT (t), &lhsc);
3345 for (i = 0; i < PHI_NUM_ARGS (t); i++)
3347 tree rhstype;
3348 tree strippedrhs = PHI_ARG_DEF (t, i);
3350 STRIP_NOPS (strippedrhs);
3351 rhstype = TREE_TYPE (strippedrhs);
3352 get_constraint_for (PHI_ARG_DEF (t, i), &rhsc);
3354 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3356 struct constraint_expr *c2;
3357 while (VEC_length (ce_s, rhsc) > 0)
3359 c2 = VEC_last (ce_s, rhsc);
3360 process_constraint (new_constraint (*c, *c2));
3361 VEC_pop (ce_s, rhsc);
3367 /* In IPA mode, we need to generate constraints to pass call
3368 arguments through their calls. There are two case, either a
3369 modify_expr when we are returning a value, or just a plain
3370 call_expr when we are not. */
3371 else if (in_ipa_mode
3372 && ((TREE_CODE (t) == GIMPLE_MODIFY_STMT
3373 && TREE_CODE (GIMPLE_STMT_OPERAND (t, 1)) == CALL_EXPR
3374 && !(call_expr_flags (GIMPLE_STMT_OPERAND (t, 1))
3375 & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))
3376 || (TREE_CODE (t) == CALL_EXPR
3377 && !(call_expr_flags (t)
3378 & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))))
3380 tree lhsop;
3381 tree rhsop;
3382 tree arglist;
3383 varinfo_t fi;
3384 int i = 1;
3385 tree decl;
3386 if (TREE_CODE (t) == GIMPLE_MODIFY_STMT)
3388 lhsop = GIMPLE_STMT_OPERAND (t, 0);
3389 rhsop = GIMPLE_STMT_OPERAND (t, 1);
3391 else
3393 lhsop = NULL;
3394 rhsop = t;
3396 decl = get_callee_fndecl (rhsop);
3398 /* If we can directly resolve the function being called, do so.
3399 Otherwise, it must be some sort of indirect expression that
3400 we should still be able to handle. */
3401 if (decl)
3403 fi = get_vi_for_tree (decl);
3405 else
3407 decl = TREE_OPERAND (rhsop, 0);
3408 fi = get_vi_for_tree (decl);
3411 /* Assign all the passed arguments to the appropriate incoming
3412 parameters of the function. */
3413 arglist = TREE_OPERAND (rhsop, 1);
3415 for (;arglist; arglist = TREE_CHAIN (arglist))
3417 tree arg = TREE_VALUE (arglist);
3418 struct constraint_expr lhs ;
3419 struct constraint_expr *rhsp;
3421 get_constraint_for (arg, &rhsc);
3422 if (TREE_CODE (decl) != FUNCTION_DECL)
3424 lhs.type = DEREF;
3425 lhs.var = fi->id;
3426 lhs.offset = i;
3428 else
3430 lhs.type = SCALAR;
3431 lhs.var = first_vi_for_offset (fi, i)->id;
3432 lhs.offset = 0;
3434 while (VEC_length (ce_s, rhsc) != 0)
3436 rhsp = VEC_last (ce_s, rhsc);
3437 process_constraint (new_constraint (lhs, *rhsp));
3438 VEC_pop (ce_s, rhsc);
3440 i++;
3442 /* If we are returning a value, assign it to the result. */
3443 if (lhsop)
3445 struct constraint_expr rhs;
3446 struct constraint_expr *lhsp;
3447 unsigned int j = 0;
3449 get_constraint_for (lhsop, &lhsc);
3450 if (TREE_CODE (decl) != FUNCTION_DECL)
3452 rhs.type = DEREF;
3453 rhs.var = fi->id;
3454 rhs.offset = i;
3456 else
3458 rhs.type = SCALAR;
3459 rhs.var = first_vi_for_offset (fi, i)->id;
3460 rhs.offset = 0;
3462 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3463 process_constraint (new_constraint (*lhsp, rhs));
3466 /* Otherwise, just a regular assignment statement. */
3467 else if (TREE_CODE (t) == GIMPLE_MODIFY_STMT)
3469 tree lhsop = GIMPLE_STMT_OPERAND (t, 0);
3470 tree rhsop = GIMPLE_STMT_OPERAND (t, 1);
3471 int i;
3473 if ((AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
3474 || TREE_CODE (TREE_TYPE (lhsop)) == COMPLEX_TYPE)
3475 && (AGGREGATE_TYPE_P (TREE_TYPE (rhsop))
3476 || TREE_CODE (TREE_TYPE (lhsop)) == COMPLEX_TYPE))
3478 do_structure_copy (lhsop, rhsop);
3480 else
3482 /* Only care about operations with pointers, structures
3483 containing pointers, dereferences, and call expressions. */
3484 if (could_have_pointers (lhsop)
3485 || TREE_CODE (rhsop) == CALL_EXPR)
3487 get_constraint_for (lhsop, &lhsc);
3488 switch (TREE_CODE_CLASS (TREE_CODE (rhsop)))
3490 /* RHS that consist of unary operations,
3491 exceptional types, or bare decls/constants, get
3492 handled directly by get_constraint_for. */
3493 case tcc_reference:
3494 case tcc_declaration:
3495 case tcc_constant:
3496 case tcc_exceptional:
3497 case tcc_expression:
3498 case tcc_unary:
3500 unsigned int j;
3502 get_constraint_for (rhsop, &rhsc);
3503 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3505 struct constraint_expr *c2;
3506 unsigned int k;
3508 for (k = 0; VEC_iterate (ce_s, rhsc, k, c2); k++)
3509 process_constraint (new_constraint (*c, *c2));
3513 break;
3515 case tcc_binary:
3517 /* For pointer arithmetic of the form
3518 PTR + CST, we can simply use PTR's
3519 constraint because pointer arithmetic is
3520 not allowed to go out of bounds. */
3521 if (handle_ptr_arith (lhsc, rhsop))
3522 break;
3524 /* FALLTHRU */
3526 /* Otherwise, walk each operand. Notice that we
3527 can't use the operand interface because we need
3528 to process expressions other than simple operands
3529 (e.g. INDIRECT_REF, ADDR_EXPR, CALL_EXPR). */
3530 default:
3531 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (rhsop)); i++)
3533 tree op = TREE_OPERAND (rhsop, i);
3534 unsigned int j;
3536 gcc_assert (VEC_length (ce_s, rhsc) == 0);
3537 get_constraint_for (op, &rhsc);
3538 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3540 struct constraint_expr *c2;
3541 while (VEC_length (ce_s, rhsc) > 0)
3543 c2 = VEC_last (ce_s, rhsc);
3544 process_constraint (new_constraint (*c, *c2));
3545 VEC_pop (ce_s, rhsc);
3554 /* After promoting variables and computing aliasing we will
3555 need to re-scan most statements. FIXME: Try to minimize the
3556 number of statements re-scanned. It's not really necessary to
3557 re-scan *all* statements. */
3558 mark_stmt_modified (origt);
3559 VEC_free (ce_s, heap, rhsc);
3560 VEC_free (ce_s, heap, lhsc);
3564 /* Find the first varinfo in the same variable as START that overlaps with
3565 OFFSET.
3566 Effectively, walk the chain of fields for the variable START to find the
3567 first field that overlaps with OFFSET.
3568 Return NULL if we can't find one. */
3570 static varinfo_t
3571 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
3573 varinfo_t curr = start;
3574 while (curr)
3576 /* We may not find a variable in the field list with the actual
3577 offset when when we have glommed a structure to a variable.
3578 In that case, however, offset should still be within the size
3579 of the variable. */
3580 if (offset >= curr->offset && offset < (curr->offset + curr->size))
3581 return curr;
3582 curr = curr->next;
3584 return NULL;
3588 /* Insert the varinfo FIELD into the field list for BASE, at the front
3589 of the list. */
3591 static void
3592 insert_into_field_list (varinfo_t base, varinfo_t field)
3594 varinfo_t prev = base;
3595 varinfo_t curr = base->next;
3597 field->next = curr;
3598 prev->next = field;
3601 /* Insert the varinfo FIELD into the field list for BASE, ordered by
3602 offset. */
3604 static void
3605 insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
3607 varinfo_t prev = base;
3608 varinfo_t curr = base->next;
3610 if (curr == NULL)
3612 prev->next = field;
3613 field->next = NULL;
3615 else
3617 while (curr)
3619 if (field->offset <= curr->offset)
3620 break;
3621 prev = curr;
3622 curr = curr->next;
3624 field->next = prev->next;
3625 prev->next = field;
3629 /* qsort comparison function for two fieldoff's PA and PB */
3631 static int
3632 fieldoff_compare (const void *pa, const void *pb)
3634 const fieldoff_s *foa = (const fieldoff_s *)pa;
3635 const fieldoff_s *fob = (const fieldoff_s *)pb;
3636 HOST_WIDE_INT foasize, fobsize;
3638 if (foa->offset != fob->offset)
3639 return foa->offset - fob->offset;
3641 foasize = TREE_INT_CST_LOW (foa->size);
3642 fobsize = TREE_INT_CST_LOW (fob->size);
3643 return foasize - fobsize;
3646 /* Sort a fieldstack according to the field offset and sizes. */
3647 void
3648 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
3650 qsort (VEC_address (fieldoff_s, fieldstack),
3651 VEC_length (fieldoff_s, fieldstack),
3652 sizeof (fieldoff_s),
3653 fieldoff_compare);
3656 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
3657 of TYPE onto fieldstack, recording their offsets along the way.
3658 OFFSET is used to keep track of the offset in this entire structure, rather
3659 than just the immediately containing structure. Returns the number
3660 of fields pushed.
3661 HAS_UNION is set to true if we find a union type as a field of
3662 TYPE. */
3665 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
3666 HOST_WIDE_INT offset, bool *has_union)
3668 tree field;
3669 int count = 0;
3671 if (TREE_CODE (type) == COMPLEX_TYPE)
3673 fieldoff_s *real_part, *img_part;
3674 real_part = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3675 real_part->type = TREE_TYPE (type);
3676 real_part->size = TYPE_SIZE (TREE_TYPE (type));
3677 real_part->offset = offset;
3678 real_part->decl = NULL_TREE;
3680 img_part = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3681 img_part->type = TREE_TYPE (type);
3682 img_part->size = TYPE_SIZE (TREE_TYPE (type));
3683 img_part->offset = offset + TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (type)));
3684 img_part->decl = NULL_TREE;
3686 return 2;
3689 if (TREE_CODE (type) == ARRAY_TYPE)
3691 tree sz = TYPE_SIZE (type);
3692 tree elsz = TYPE_SIZE (TREE_TYPE (type));
3693 HOST_WIDE_INT nr;
3694 int i;
3696 if (! sz
3697 || ! host_integerp (sz, 1)
3698 || TREE_INT_CST_LOW (sz) == 0
3699 || ! elsz
3700 || ! host_integerp (elsz, 1)
3701 || TREE_INT_CST_LOW (elsz) == 0)
3702 return 0;
3704 nr = TREE_INT_CST_LOW (sz) / TREE_INT_CST_LOW (elsz);
3705 if (nr > SALIAS_MAX_ARRAY_ELEMENTS)
3706 return 0;
3708 for (i = 0; i < nr; ++i)
3710 bool push = false;
3711 int pushed = 0;
3713 if (has_union
3714 && (TREE_CODE (TREE_TYPE (type)) == QUAL_UNION_TYPE
3715 || TREE_CODE (TREE_TYPE (type)) == UNION_TYPE))
3716 *has_union = true;
3718 if (!AGGREGATE_TYPE_P (TREE_TYPE (type))) /* var_can_have_subvars */
3719 push = true;
3720 else if (!(pushed = push_fields_onto_fieldstack
3721 (TREE_TYPE (type), fieldstack,
3722 offset + i * TREE_INT_CST_LOW (elsz), has_union)))
3723 /* Empty structures may have actual size, like in C++. So
3724 see if we didn't push any subfields and the size is
3725 nonzero, push the field onto the stack */
3726 push = true;
3728 if (push)
3730 fieldoff_s *pair;
3732 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3733 pair->type = TREE_TYPE (type);
3734 pair->size = elsz;
3735 pair->decl = NULL_TREE;
3736 pair->offset = offset + i * TREE_INT_CST_LOW (elsz);
3737 count++;
3739 else
3740 count += pushed;
3743 return count;
3746 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3747 if (TREE_CODE (field) == FIELD_DECL)
3749 bool push = false;
3750 int pushed = 0;
3752 if (has_union
3753 && (TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
3754 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
3755 *has_union = true;
3757 if (!var_can_have_subvars (field))
3758 push = true;
3759 else if (!(pushed = push_fields_onto_fieldstack
3760 (TREE_TYPE (field), fieldstack,
3761 offset + bitpos_of_field (field), has_union))
3762 && DECL_SIZE (field)
3763 && !integer_zerop (DECL_SIZE (field)))
3764 /* Empty structures may have actual size, like in C++. So
3765 see if we didn't push any subfields and the size is
3766 nonzero, push the field onto the stack */
3767 push = true;
3769 if (push)
3771 fieldoff_s *pair;
3773 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3774 pair->type = TREE_TYPE (field);
3775 pair->size = DECL_SIZE (field);
3776 pair->decl = field;
3777 pair->offset = offset + bitpos_of_field (field);
3778 count++;
3780 else
3781 count += pushed;
3784 return count;
3787 /* Create a constraint from ANYTHING variable to VI. */
3788 static void
3789 make_constraint_from_anything (varinfo_t vi)
3791 struct constraint_expr lhs, rhs;
3793 lhs.var = vi->id;
3794 lhs.offset = 0;
3795 lhs.type = SCALAR;
3797 rhs.var = anything_id;
3798 rhs.offset = 0;
3799 rhs.type = ADDRESSOF;
3800 process_constraint (new_constraint (lhs, rhs));
3803 /* Count the number of arguments DECL has, and set IS_VARARGS to true
3804 if it is a varargs function. */
3806 static unsigned int
3807 count_num_arguments (tree decl, bool *is_varargs)
3809 unsigned int i = 0;
3810 tree t;
3812 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl));
3814 t = TREE_CHAIN (t))
3816 if (TREE_VALUE (t) == void_type_node)
3817 break;
3818 i++;
3821 if (!t)
3822 *is_varargs = true;
3823 return i;
3826 /* Creation function node for DECL, using NAME, and return the index
3827 of the variable we've created for the function. */
3829 static unsigned int
3830 create_function_info_for (tree decl, const char *name)
3832 unsigned int index = VEC_length (varinfo_t, varmap);
3833 varinfo_t vi;
3834 tree arg;
3835 unsigned int i;
3836 bool is_varargs = false;
3838 /* Create the variable info. */
3840 vi = new_var_info (decl, index, name);
3841 vi->decl = decl;
3842 vi->offset = 0;
3843 vi->has_union = 0;
3844 vi->size = 1;
3845 vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
3846 insert_vi_for_tree (vi->decl, vi);
3847 VEC_safe_push (varinfo_t, heap, varmap, vi);
3849 stats.total_vars++;
3851 /* If it's varargs, we don't know how many arguments it has, so we
3852 can't do much.
3854 if (is_varargs)
3856 vi->fullsize = ~0;
3857 vi->size = ~0;
3858 vi->is_unknown_size_var = true;
3859 return index;
3863 arg = DECL_ARGUMENTS (decl);
3865 /* Set up variables for each argument. */
3866 for (i = 1; i < vi->fullsize; i++)
3868 varinfo_t argvi;
3869 const char *newname;
3870 char *tempname;
3871 unsigned int newindex;
3872 tree argdecl = decl;
3874 if (arg)
3875 argdecl = arg;
3877 newindex = VEC_length (varinfo_t, varmap);
3878 asprintf (&tempname, "%s.arg%d", name, i-1);
3879 newname = ggc_strdup (tempname);
3880 free (tempname);
3882 argvi = new_var_info (argdecl, newindex, newname);
3883 argvi->decl = argdecl;
3884 VEC_safe_push (varinfo_t, heap, varmap, argvi);
3885 argvi->offset = i;
3886 argvi->size = 1;
3887 argvi->fullsize = vi->fullsize;
3888 argvi->has_union = false;
3889 insert_into_field_list_sorted (vi, argvi);
3890 stats.total_vars ++;
3891 if (arg)
3893 insert_vi_for_tree (arg, argvi);
3894 arg = TREE_CHAIN (arg);
3898 /* Create a variable for the return var. */
3899 if (DECL_RESULT (decl) != NULL
3900 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
3902 varinfo_t resultvi;
3903 const char *newname;
3904 char *tempname;
3905 unsigned int newindex;
3906 tree resultdecl = decl;
3908 vi->fullsize ++;
3910 if (DECL_RESULT (decl))
3911 resultdecl = DECL_RESULT (decl);
3913 newindex = VEC_length (varinfo_t, varmap);
3914 asprintf (&tempname, "%s.result", name);
3915 newname = ggc_strdup (tempname);
3916 free (tempname);
3918 resultvi = new_var_info (resultdecl, newindex, newname);
3919 resultvi->decl = resultdecl;
3920 VEC_safe_push (varinfo_t, heap, varmap, resultvi);
3921 resultvi->offset = i;
3922 resultvi->size = 1;
3923 resultvi->fullsize = vi->fullsize;
3924 resultvi->has_union = false;
3925 insert_into_field_list_sorted (vi, resultvi);
3926 stats.total_vars ++;
3927 if (DECL_RESULT (decl))
3928 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
3930 return index;
3934 /* Return true if FIELDSTACK contains fields that overlap.
3935 FIELDSTACK is assumed to be sorted by offset. */
3937 static bool
3938 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
3940 fieldoff_s *fo = NULL;
3941 unsigned int i;
3942 HOST_WIDE_INT lastoffset = -1;
3944 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
3946 if (fo->offset == lastoffset)
3947 return true;
3948 lastoffset = fo->offset;
3950 return false;
3953 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
3954 This will also create any varinfo structures necessary for fields
3955 of DECL. */
3957 static unsigned int
3958 create_variable_info_for (tree decl, const char *name)
3960 unsigned int index = VEC_length (varinfo_t, varmap);
3961 varinfo_t vi;
3962 tree decltype = TREE_TYPE (decl);
3963 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decltype);
3964 bool notokay = false;
3965 bool hasunion;
3966 bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
3967 VEC (fieldoff_s,heap) *fieldstack = NULL;
3969 if (TREE_CODE (decl) == FUNCTION_DECL && in_ipa_mode)
3970 return create_function_info_for (decl, name);
3972 hasunion = TREE_CODE (decltype) == UNION_TYPE
3973 || TREE_CODE (decltype) == QUAL_UNION_TYPE;
3974 if (var_can_have_subvars (decl) && use_field_sensitive && !hasunion)
3976 push_fields_onto_fieldstack (decltype, &fieldstack, 0, &hasunion);
3977 if (hasunion)
3979 VEC_free (fieldoff_s, heap, fieldstack);
3980 notokay = true;
3985 /* If the variable doesn't have subvars, we may end up needing to
3986 sort the field list and create fake variables for all the
3987 fields. */
3988 vi = new_var_info (decl, index, name);
3989 vi->decl = decl;
3990 vi->offset = 0;
3991 vi->has_union = hasunion;
3992 if (!declsize
3993 || TREE_CODE (declsize) != INTEGER_CST
3994 || TREE_CODE (decltype) == UNION_TYPE
3995 || TREE_CODE (decltype) == QUAL_UNION_TYPE)
3997 vi->is_unknown_size_var = true;
3998 vi->fullsize = ~0;
3999 vi->size = ~0;
4001 else
4003 vi->fullsize = TREE_INT_CST_LOW (declsize);
4004 vi->size = vi->fullsize;
4007 insert_vi_for_tree (vi->decl, vi);
4008 VEC_safe_push (varinfo_t, heap, varmap, vi);
4009 if (is_global && (!flag_whole_program || !in_ipa_mode))
4010 make_constraint_from_anything (vi);
4012 stats.total_vars++;
4013 if (use_field_sensitive
4014 && !notokay
4015 && !vi->is_unknown_size_var
4016 && var_can_have_subvars (decl)
4017 && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
4019 unsigned int newindex = VEC_length (varinfo_t, varmap);
4020 fieldoff_s *fo = NULL;
4021 unsigned int i;
4023 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4025 if (! fo->size
4026 || TREE_CODE (fo->size) != INTEGER_CST
4027 || fo->offset < 0)
4029 notokay = true;
4030 break;
4034 /* We can't sort them if we have a field with a variable sized type,
4035 which will make notokay = true. In that case, we are going to return
4036 without creating varinfos for the fields anyway, so sorting them is a
4037 waste to boot. */
4038 if (!notokay)
4040 sort_fieldstack (fieldstack);
4041 /* Due to some C++ FE issues, like PR 22488, we might end up
4042 what appear to be overlapping fields even though they,
4043 in reality, do not overlap. Until the C++ FE is fixed,
4044 we will simply disable field-sensitivity for these cases. */
4045 notokay = check_for_overlaps (fieldstack);
4049 if (VEC_length (fieldoff_s, fieldstack) != 0)
4050 fo = VEC_index (fieldoff_s, fieldstack, 0);
4052 if (fo == NULL || notokay)
4054 vi->is_unknown_size_var = 1;
4055 vi->fullsize = ~0;
4056 vi->size = ~0;
4057 VEC_free (fieldoff_s, heap, fieldstack);
4058 return index;
4061 vi->size = TREE_INT_CST_LOW (fo->size);
4062 vi->offset = fo->offset;
4063 for (i = VEC_length (fieldoff_s, fieldstack) - 1;
4064 i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
4065 i--)
4067 varinfo_t newvi;
4068 const char *newname = "NULL";
4069 char *tempname;
4071 newindex = VEC_length (varinfo_t, varmap);
4072 if (dump_file)
4074 if (fo->decl)
4075 asprintf (&tempname, "%s.%s",
4076 vi->name, alias_get_name (fo->decl));
4077 else
4078 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC,
4079 vi->name, fo->offset);
4080 newname = ggc_strdup (tempname);
4081 free (tempname);
4083 newvi = new_var_info (decl, newindex, newname);
4084 newvi->offset = fo->offset;
4085 newvi->size = TREE_INT_CST_LOW (fo->size);
4086 newvi->fullsize = vi->fullsize;
4087 insert_into_field_list (vi, newvi);
4088 VEC_safe_push (varinfo_t, heap, varmap, newvi);
4089 if (is_global && (!flag_whole_program || !in_ipa_mode))
4090 make_constraint_from_anything (newvi);
4092 stats.total_vars++;
4094 VEC_free (fieldoff_s, heap, fieldstack);
4096 return index;
4099 /* Print out the points-to solution for VAR to FILE. */
4101 void
4102 dump_solution_for_var (FILE *file, unsigned int var)
4104 varinfo_t vi = get_varinfo (var);
4105 unsigned int i;
4106 bitmap_iterator bi;
4108 if (find (var) != var)
4110 varinfo_t vipt = get_varinfo (find (var));
4111 fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
4113 else
4115 fprintf (file, "%s = { ", vi->name);
4116 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4118 fprintf (file, "%s ", get_varinfo (i)->name);
4120 fprintf (file, "}\n");
4124 /* Print the points-to solution for VAR to stdout. */
4126 void
4127 debug_solution_for_var (unsigned int var)
4129 dump_solution_for_var (stdout, var);
4132 /* Create varinfo structures for all of the variables in the
4133 function for intraprocedural mode. */
4135 static void
4136 intra_create_variable_infos (void)
4138 tree t;
4139 struct constraint_expr lhs, rhs;
4141 /* For each incoming pointer argument arg, ARG = ANYTHING or a
4142 dummy variable if flag_argument_noalias > 2. */
4143 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
4145 varinfo_t p;
4147 if (!could_have_pointers (t))
4148 continue;
4150 /* With flag_argument_noalias greater than two means that the incoming
4151 argument cannot alias anything except for itself so create a HEAP
4152 variable. */
4153 if (POINTER_TYPE_P (TREE_TYPE (t))
4154 && flag_argument_noalias > 2)
4156 varinfo_t vi;
4157 tree heapvar = heapvar_lookup (t);
4159 lhs.offset = 0;
4160 lhs.type = SCALAR;
4161 lhs.var = get_vi_for_tree (t)->id;
4163 if (heapvar == NULL_TREE)
4165 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
4166 "PARM_NOALIAS");
4167 get_var_ann (heapvar)->is_heapvar = 1;
4168 DECL_EXTERNAL (heapvar) = 1;
4169 if (gimple_referenced_vars (cfun))
4170 add_referenced_var (heapvar);
4171 heapvar_insert (t, heapvar);
4173 vi = get_vi_for_tree (heapvar);
4174 vi->is_artificial_var = 1;
4175 vi->is_heap_var = 1;
4176 rhs.var = vi->id;
4177 rhs.type = ADDRESSOF;
4178 rhs.offset = 0;
4179 for (p = get_varinfo (lhs.var); p; p = p->next)
4181 struct constraint_expr temp = lhs;
4182 temp.var = p->id;
4183 process_constraint (new_constraint (temp, rhs));
4186 else
4188 varinfo_t arg_vi = get_vi_for_tree (t);
4190 for (p = arg_vi; p; p = p->next)
4191 make_constraint_from_anything (p);
4196 /* Set bits in INTO corresponding to the variable uids in solution set
4197 FROM, which came from variable PTR.
4198 For variables that are actually dereferenced, we also use type
4199 based alias analysis to prune the points-to sets. */
4201 static void
4202 set_uids_in_ptset (tree ptr, bitmap into, bitmap from)
4204 unsigned int i;
4205 bitmap_iterator bi;
4206 subvar_t sv;
4207 HOST_WIDE_INT ptr_alias_set = get_alias_set (TREE_TYPE (ptr));
4209 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4211 varinfo_t vi = get_varinfo (i);
4212 unsigned HOST_WIDE_INT var_alias_set;
4214 /* The only artificial variables that are allowed in a may-alias
4215 set are heap variables. */
4216 if (vi->is_artificial_var && !vi->is_heap_var)
4217 continue;
4219 if (vi->has_union && get_subvars_for_var (vi->decl) != NULL)
4221 /* Variables containing unions may need to be converted to
4222 their SFT's, because SFT's can have unions and we cannot. */
4223 for (sv = get_subvars_for_var (vi->decl); sv; sv = sv->next)
4224 bitmap_set_bit (into, DECL_UID (sv->var));
4226 else if (TREE_CODE (vi->decl) == VAR_DECL
4227 || TREE_CODE (vi->decl) == PARM_DECL)
4229 if (var_can_have_subvars (vi->decl)
4230 && get_subvars_for_var (vi->decl))
4232 /* If VI->DECL is an aggregate for which we created
4233 SFTs, add the SFT corresponding to VI->OFFSET. */
4234 tree sft = get_subvar_at (vi->decl, vi->offset);
4235 if (sft)
4237 var_alias_set = get_alias_set (sft);
4238 if (!vi->directly_dereferenced
4239 || alias_sets_conflict_p (ptr_alias_set, var_alias_set))
4240 bitmap_set_bit (into, DECL_UID (sft));
4243 else
4245 /* Otherwise, just add VI->DECL to the alias set.
4246 Don't type prune artificial vars. */
4247 if (vi->is_artificial_var)
4248 bitmap_set_bit (into, DECL_UID (vi->decl));
4249 else
4251 var_alias_set = get_alias_set (vi->decl);
4252 if (!vi->directly_dereferenced
4253 || alias_sets_conflict_p (ptr_alias_set, var_alias_set))
4254 bitmap_set_bit (into, DECL_UID (vi->decl));
4262 static bool have_alias_info = false;
4264 /* The list of SMT's that are in use by our pointer variables. This
4265 is the set of SMT's for all pointers that can point to anything. */
4266 static bitmap used_smts;
4268 /* Due to the ordering of points-to set calculation and SMT
4269 calculation being a bit co-dependent, we can't just calculate SMT
4270 used info whenever we want, we have to calculate it around the time
4271 that find_what_p_points_to is called. */
4273 /* Mark which SMT's are in use by points-to anything variables. */
4275 void
4276 set_used_smts (void)
4278 int i;
4279 varinfo_t vi;
4280 used_smts = BITMAP_ALLOC (&pta_obstack);
4282 for (i = 0; VEC_iterate (varinfo_t, varmap, i, vi); i++)
4284 tree var = vi->decl;
4285 tree smt;
4286 var_ann_t va;
4287 struct ptr_info_def *pi = NULL;
4289 /* For parm decls, the pointer info may be under the default
4290 def. */
4291 if (TREE_CODE (vi->decl) == PARM_DECL
4292 && gimple_default_def (cfun, var))
4293 pi = SSA_NAME_PTR_INFO (gimple_default_def (cfun, var));
4294 else if (TREE_CODE (var) == SSA_NAME)
4295 pi = SSA_NAME_PTR_INFO (var);
4297 /* Skip the special variables and those without their own
4298 solution set. */
4299 if (vi->is_special_var || find (vi->id) != vi->id
4300 || !SSA_VAR_P (var)
4301 || (pi && !pi->is_dereferenced)
4302 || (TREE_CODE (var) == VAR_DECL && !may_be_aliased (var))
4303 || !POINTER_TYPE_P (TREE_TYPE (var)))
4304 continue;
4306 if (TREE_CODE (var) == SSA_NAME)
4307 var = SSA_NAME_VAR (var);
4309 va = var_ann (var);
4310 if (!va)
4311 continue;
4313 smt = va->symbol_mem_tag;
4314 if (smt && bitmap_bit_p (vi->solution, anything_id))
4315 bitmap_set_bit (used_smts, DECL_UID (smt));
4319 /* Merge the necessary SMT's into the solution set for VI, which is
4320 P's varinfo. This involves merging all SMT's that are a subset of
4321 the SMT necessary for P. */
4323 static void
4324 merge_smts_into (tree p, varinfo_t vi)
4326 unsigned int i;
4327 bitmap_iterator bi;
4328 tree smt;
4329 bitmap aliases;
4330 tree var = p;
4332 if (TREE_CODE (p) == SSA_NAME)
4333 var = SSA_NAME_VAR (p);
4335 smt = var_ann (var)->symbol_mem_tag;
4336 if (smt)
4338 HOST_WIDE_INT smtset = get_alias_set (TREE_TYPE (smt));
4340 /* Need to set the SMT subsets first before this
4341 will work properly. */
4342 bitmap_set_bit (vi->finished_solution, DECL_UID (smt));
4343 EXECUTE_IF_SET_IN_BITMAP (used_smts, 0, i, bi)
4345 tree newsmt = referenced_var (i);
4346 tree newsmttype = TREE_TYPE (newsmt);
4348 if (alias_set_subset_of (get_alias_set (newsmttype),
4349 smtset))
4350 bitmap_set_bit (vi->finished_solution, i);
4353 aliases = MTAG_ALIASES (smt);
4354 if (aliases)
4355 bitmap_ior_into (vi->finished_solution, aliases);
4359 /* Given a pointer variable P, fill in its points-to set, or return
4360 false if we can't.
4361 Rather than return false for variables that point-to anything, we
4362 instead find the corresponding SMT, and merge in it's aliases. In
4363 addition to these aliases, we also set the bits for the SMT's
4364 themselves and their subsets, as SMT's are still in use by
4365 non-SSA_NAME's, and pruning may eliminate every one of their
4366 aliases. In such a case, if we did not include the right set of
4367 SMT's in the points-to set of the variable, we'd end up with
4368 statements that do not conflict but should. */
4370 bool
4371 find_what_p_points_to (tree p)
4373 tree lookup_p = p;
4374 varinfo_t vi;
4376 if (!have_alias_info)
4377 return false;
4379 /* For parameters, get at the points-to set for the actual parm
4380 decl. */
4381 if (TREE_CODE (p) == SSA_NAME
4382 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
4383 && SSA_NAME_IS_DEFAULT_DEF (p))
4384 lookup_p = SSA_NAME_VAR (p);
4386 if (lookup_vi_for_tree (lookup_p, &vi))
4389 if (vi->is_artificial_var)
4390 return false;
4392 /* See if this is a field or a structure. */
4393 if (vi->size != vi->fullsize)
4395 /* Nothing currently asks about structure fields directly,
4396 but when they do, we need code here to hand back the
4397 points-to set. */
4398 if (!var_can_have_subvars (vi->decl)
4399 || get_subvars_for_var (vi->decl) == NULL)
4400 return false;
4402 else
4404 struct ptr_info_def *pi = get_ptr_info (p);
4405 unsigned int i;
4406 bitmap_iterator bi;
4407 bool was_pt_anything = false;
4409 if (!pi->is_dereferenced)
4410 return false;
4412 /* This variable may have been collapsed, let's get the real
4413 variable. */
4414 vi = get_varinfo (find (vi->id));
4416 /* Translate artificial variables into SSA_NAME_PTR_INFO
4417 attributes. */
4418 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4420 varinfo_t vi = get_varinfo (i);
4422 if (vi->is_artificial_var)
4424 /* FIXME. READONLY should be handled better so that
4425 flow insensitive aliasing can disregard writable
4426 aliases. */
4427 if (vi->id == nothing_id)
4428 pi->pt_null = 1;
4429 else if (vi->id == anything_id)
4430 was_pt_anything = 1;
4431 else if (vi->id == readonly_id)
4432 was_pt_anything = 1;
4433 else if (vi->id == integer_id)
4434 was_pt_anything = 1;
4435 else if (vi->is_heap_var)
4436 pi->pt_global_mem = 1;
4440 /* Share the final set of variables between the SSA_NAME
4441 pointer infos for collapsed nodes that are collapsed to
4442 non-special variables. This is because special vars have
4443 no real types associated with them, so while we know the
4444 pointers are equivalent to them, we need to generate the
4445 solution separately since it will include SMT's from the
4446 original non-collapsed variable. */
4447 if (!vi->is_special_var && vi->finished_solution)
4449 pi->pt_vars = vi->finished_solution;
4451 else
4453 vi->finished_solution = BITMAP_GGC_ALLOC ();
4454 stats.points_to_sets_created++;
4456 /* Instead of using pt_anything, we instead merge in the SMT
4457 aliases for the underlying SMT. */
4458 if (was_pt_anything)
4460 merge_smts_into (p, vi);
4461 pi->pt_global_mem = 1;
4464 set_uids_in_ptset (vi->decl, vi->finished_solution, vi->solution);
4465 pi->pt_vars = vi->finished_solution;
4468 if (bitmap_empty_p (pi->pt_vars))
4469 pi->pt_vars = NULL;
4471 return true;
4475 return false;
4480 /* Dump points-to information to OUTFILE. */
4482 void
4483 dump_sa_points_to_info (FILE *outfile)
4485 unsigned int i;
4487 fprintf (outfile, "\nPoints-to sets\n\n");
4489 if (dump_flags & TDF_STATS)
4491 fprintf (outfile, "Stats:\n");
4492 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
4493 fprintf (outfile, "Non-pointer vars: %d\n",
4494 stats.nonpointer_vars);
4495 fprintf (outfile, "Statically unified vars: %d\n",
4496 stats.unified_vars_static);
4497 fprintf (outfile, "Dynamically unified vars: %d\n",
4498 stats.unified_vars_dynamic);
4499 fprintf (outfile, "Iterations: %d\n", stats.iterations);
4500 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
4501 fprintf (outfile, "Number of implicit edges: %d\n",
4502 stats.num_implicit_edges);
4505 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
4506 dump_solution_for_var (outfile, i);
4510 /* Debug points-to information to stderr. */
4512 void
4513 debug_sa_points_to_info (void)
4515 dump_sa_points_to_info (stderr);
4519 /* Initialize the always-existing constraint variables for NULL
4520 ANYTHING, READONLY, and INTEGER */
4522 static void
4523 init_base_vars (void)
4525 struct constraint_expr lhs, rhs;
4527 /* Create the NULL variable, used to represent that a variable points
4528 to NULL. */
4529 nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
4530 var_nothing = new_var_info (nothing_tree, 0, "NULL");
4531 insert_vi_for_tree (nothing_tree, var_nothing);
4532 var_nothing->is_artificial_var = 1;
4533 var_nothing->offset = 0;
4534 var_nothing->size = ~0;
4535 var_nothing->fullsize = ~0;
4536 var_nothing->is_special_var = 1;
4537 nothing_id = 0;
4538 VEC_safe_push (varinfo_t, heap, varmap, var_nothing);
4540 /* Create the ANYTHING variable, used to represent that a variable
4541 points to some unknown piece of memory. */
4542 anything_tree = create_tmp_var_raw (void_type_node, "ANYTHING");
4543 var_anything = new_var_info (anything_tree, 1, "ANYTHING");
4544 insert_vi_for_tree (anything_tree, var_anything);
4545 var_anything->is_artificial_var = 1;
4546 var_anything->size = ~0;
4547 var_anything->offset = 0;
4548 var_anything->next = NULL;
4549 var_anything->fullsize = ~0;
4550 var_anything->is_special_var = 1;
4551 anything_id = 1;
4553 /* Anything points to anything. This makes deref constraints just
4554 work in the presence of linked list and other p = *p type loops,
4555 by saying that *ANYTHING = ANYTHING. */
4556 VEC_safe_push (varinfo_t, heap, varmap, var_anything);
4557 lhs.type = SCALAR;
4558 lhs.var = anything_id;
4559 lhs.offset = 0;
4560 rhs.type = ADDRESSOF;
4561 rhs.var = anything_id;
4562 rhs.offset = 0;
4564 /* This specifically does not use process_constraint because
4565 process_constraint ignores all anything = anything constraints, since all
4566 but this one are redundant. */
4567 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
4569 /* Create the READONLY variable, used to represent that a variable
4570 points to readonly memory. */
4571 readonly_tree = create_tmp_var_raw (void_type_node, "READONLY");
4572 var_readonly = new_var_info (readonly_tree, 2, "READONLY");
4573 var_readonly->is_artificial_var = 1;
4574 var_readonly->offset = 0;
4575 var_readonly->size = ~0;
4576 var_readonly->fullsize = ~0;
4577 var_readonly->next = NULL;
4578 var_readonly->is_special_var = 1;
4579 insert_vi_for_tree (readonly_tree, var_readonly);
4580 readonly_id = 2;
4581 VEC_safe_push (varinfo_t, heap, varmap, var_readonly);
4583 /* readonly memory points to anything, in order to make deref
4584 easier. In reality, it points to anything the particular
4585 readonly variable can point to, but we don't track this
4586 separately. */
4587 lhs.type = SCALAR;
4588 lhs.var = readonly_id;
4589 lhs.offset = 0;
4590 rhs.type = ADDRESSOF;
4591 rhs.var = anything_id;
4592 rhs.offset = 0;
4594 process_constraint (new_constraint (lhs, rhs));
4596 /* Create the INTEGER variable, used to represent that a variable points
4597 to an INTEGER. */
4598 integer_tree = create_tmp_var_raw (void_type_node, "INTEGER");
4599 var_integer = new_var_info (integer_tree, 3, "INTEGER");
4600 insert_vi_for_tree (integer_tree, var_integer);
4601 var_integer->is_artificial_var = 1;
4602 var_integer->size = ~0;
4603 var_integer->fullsize = ~0;
4604 var_integer->offset = 0;
4605 var_integer->next = NULL;
4606 var_integer->is_special_var = 1;
4607 integer_id = 3;
4608 VEC_safe_push (varinfo_t, heap, varmap, var_integer);
4610 /* INTEGER = ANYTHING, because we don't know where a dereference of
4611 a random integer will point to. */
4612 lhs.type = SCALAR;
4613 lhs.var = integer_id;
4614 lhs.offset = 0;
4615 rhs.type = ADDRESSOF;
4616 rhs.var = anything_id;
4617 rhs.offset = 0;
4618 process_constraint (new_constraint (lhs, rhs));
4621 /* Initialize things necessary to perform PTA */
4623 static void
4624 init_alias_vars (void)
4626 bitmap_obstack_initialize (&pta_obstack);
4627 bitmap_obstack_initialize (&oldpta_obstack);
4628 bitmap_obstack_initialize (&predbitmap_obstack);
4630 constraint_pool = create_alloc_pool ("Constraint pool",
4631 sizeof (struct constraint), 30);
4632 variable_info_pool = create_alloc_pool ("Variable info pool",
4633 sizeof (struct variable_info), 30);
4634 constraints = VEC_alloc (constraint_t, heap, 8);
4635 varmap = VEC_alloc (varinfo_t, heap, 8);
4636 vi_for_tree = htab_create (10, tree_vi_hash, tree_vi_eq, free);
4638 memset (&stats, 0, sizeof (stats));
4640 init_base_vars ();
4643 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
4644 predecessor edges. */
4646 static void
4647 remove_preds_and_fake_succs (constraint_graph_t graph)
4649 unsigned int i;
4651 /* Clear the implicit ref and address nodes from the successor
4652 lists. */
4653 for (i = 0; i < FIRST_REF_NODE; i++)
4655 if (graph->succs[i])
4656 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
4657 FIRST_REF_NODE * 2);
4660 /* Free the successor list for the non-ref nodes. */
4661 for (i = FIRST_REF_NODE; i < graph->size; i++)
4663 if (graph->succs[i])
4664 BITMAP_FREE (graph->succs[i]);
4667 /* Now reallocate the size of the successor list as, and blow away
4668 the predecessor bitmaps. */
4669 graph->size = VEC_length (varinfo_t, varmap);
4670 graph->succs = xrealloc (graph->succs, graph->size * sizeof (bitmap));
4672 free (graph->implicit_preds);
4673 graph->implicit_preds = NULL;
4674 free (graph->preds);
4675 graph->preds = NULL;
4676 bitmap_obstack_release (&predbitmap_obstack);
4679 /* Create points-to sets for the current function. See the comments
4680 at the start of the file for an algorithmic overview. */
4682 void
4683 compute_points_to_sets (struct alias_info *ai)
4685 struct scc_info *si;
4686 basic_block bb;
4688 timevar_push (TV_TREE_PTA);
4690 init_alias_vars ();
4691 init_alias_heapvars ();
4693 intra_create_variable_infos ();
4695 /* Now walk all statements and derive aliases. */
4696 FOR_EACH_BB (bb)
4698 block_stmt_iterator bsi;
4699 tree phi;
4701 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
4703 if (is_gimple_reg (PHI_RESULT (phi)))
4705 find_func_aliases (phi);
4706 /* Update various related attributes like escaped
4707 addresses, pointer dereferences for loads and stores.
4708 This is used when creating name tags and alias
4709 sets. */
4710 update_alias_info (phi, ai);
4714 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4716 tree stmt = bsi_stmt (bsi);
4718 find_func_aliases (stmt);
4720 /* Update various related attributes like escaped
4721 addresses, pointer dereferences for loads and stores.
4722 This is used when creating name tags and alias
4723 sets. */
4724 update_alias_info (stmt, ai);
4729 if (dump_file)
4731 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
4732 dump_constraints (dump_file);
4735 if (dump_file)
4736 fprintf (dump_file,
4737 "\nCollapsing static cycles and doing variable "
4738 "substitution:\n");
4739 build_pred_graph ();
4740 si = perform_var_substitution (graph);
4741 move_complex_constraints (graph, si);
4742 free_var_substitution_info (si);
4744 build_succ_graph ();
4745 find_indirect_cycles (graph);
4747 /* Implicit nodes and predecessors are no longer necessary at this
4748 point. */
4749 remove_preds_and_fake_succs (graph);
4751 if (dump_file)
4752 fprintf (dump_file, "\nSolving graph:\n");
4754 solve_graph (graph);
4756 if (dump_file)
4757 dump_sa_points_to_info (dump_file);
4759 have_alias_info = true;
4761 timevar_pop (TV_TREE_PTA);
4765 /* Delete created points-to sets. */
4767 void
4768 delete_points_to_sets (void)
4770 varinfo_t v;
4771 int i;
4773 if (dump_file && (dump_flags & TDF_STATS))
4774 fprintf (dump_file, "Points to sets created:%d\n",
4775 stats.points_to_sets_created);
4777 htab_delete (vi_for_tree);
4778 bitmap_obstack_release (&pta_obstack);
4779 VEC_free (constraint_t, heap, constraints);
4781 for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
4782 VEC_free (constraint_t, heap, graph->complex[i]);
4784 free (graph->rep);
4785 free (graph->succs);
4786 free (graph->indirect_cycles);
4787 free (graph);
4789 VEC_free (varinfo_t, heap, varmap);
4790 free_alloc_pool (variable_info_pool);
4791 free_alloc_pool (constraint_pool);
4792 have_alias_info = false;
4795 /* Return true if we should execute IPA PTA. */
4796 static bool
4797 gate_ipa_pta (void)
4799 return (flag_unit_at_a_time != 0
4800 && flag_ipa_pta
4801 /* Don't bother doing anything if the program has errors. */
4802 && !(errorcount || sorrycount));
4805 /* Execute the driver for IPA PTA. */
4806 static unsigned int
4807 ipa_pta_execute (void)
4809 struct cgraph_node *node;
4810 struct scc_info *si;
4812 in_ipa_mode = 1;
4813 init_alias_heapvars ();
4814 init_alias_vars ();
4816 for (node = cgraph_nodes; node; node = node->next)
4818 if (!node->analyzed || cgraph_is_master_clone (node))
4820 unsigned int varid;
4822 varid = create_function_info_for (node->decl,
4823 cgraph_node_name (node));
4824 if (node->local.externally_visible)
4826 varinfo_t fi = get_varinfo (varid);
4827 for (; fi; fi = fi->next)
4828 make_constraint_from_anything (fi);
4832 for (node = cgraph_nodes; node; node = node->next)
4834 if (node->analyzed && cgraph_is_master_clone (node))
4836 struct function *cfun = DECL_STRUCT_FUNCTION (node->decl);
4837 basic_block bb;
4838 tree old_func_decl = current_function_decl;
4839 if (dump_file)
4840 fprintf (dump_file,
4841 "Generating constraints for %s\n",
4842 cgraph_node_name (node));
4843 push_cfun (cfun);
4844 current_function_decl = node->decl;
4846 FOR_EACH_BB_FN (bb, cfun)
4848 block_stmt_iterator bsi;
4849 tree phi;
4851 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
4853 if (is_gimple_reg (PHI_RESULT (phi)))
4855 find_func_aliases (phi);
4859 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4861 tree stmt = bsi_stmt (bsi);
4862 find_func_aliases (stmt);
4865 current_function_decl = old_func_decl;
4866 pop_cfun ();
4868 else
4870 /* Make point to anything. */
4876 if (dump_file)
4878 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
4879 dump_constraints (dump_file);
4882 if (dump_file)
4883 fprintf (dump_file,
4884 "\nCollapsing static cycles and doing variable "
4885 "substitution:\n");
4887 build_pred_graph ();
4888 si = perform_var_substitution (graph);
4889 move_complex_constraints (graph, si);
4890 free_var_substitution_info (si);
4892 build_succ_graph ();
4893 find_indirect_cycles (graph);
4895 /* Implicit nodes and predecessors are no longer necessary at this
4896 point. */
4897 remove_preds_and_fake_succs (graph);
4899 if (dump_file)
4900 fprintf (dump_file, "\nSolving graph:\n");
4902 solve_graph (graph);
4904 if (dump_file)
4905 dump_sa_points_to_info (dump_file);
4907 in_ipa_mode = 0;
4908 delete_alias_heapvars ();
4909 delete_points_to_sets ();
4910 return 0;
4913 struct tree_opt_pass pass_ipa_pta =
4915 "pta", /* name */
4916 gate_ipa_pta, /* gate */
4917 ipa_pta_execute, /* execute */
4918 NULL, /* sub */
4919 NULL, /* next */
4920 0, /* static_pass_number */
4921 TV_IPA_PTA, /* tv_id */
4922 0, /* properties_required */
4923 0, /* properties_provided */
4924 0, /* properties_destroyed */
4925 0, /* todo_flags_start */
4926 0, /* todo_flags_finish */
4927 0 /* letter */
4930 /* Initialize the heapvar for statement mapping. */
4931 void
4932 init_alias_heapvars (void)
4934 if (!heapvar_for_stmt)
4935 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, tree_map_eq,
4936 NULL);
4939 void
4940 delete_alias_heapvars (void)
4942 htab_delete (heapvar_for_stmt);
4943 heapvar_for_stmt = NULL;
4947 #include "gt-tree-ssa-structalias.h"