1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
33 /* References searched while implementing this.
35 Compilers Principles, Techniques and Tools
39 Global Optimization by Suppression of Partial Redundancies
41 communications of the acm, Vol. 22, Num. 2, Feb. 1979
43 A Portable Machine-Independent Global Optimizer - Design and Measurements
45 Stanford Ph.D. thesis, Dec. 1983
47 A Fast Algorithm for Code Movement Optimization
49 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
51 A Solution to a Problem with Morel and Renvoise's
52 Global Optimization by Suppression of Partial Redundancies
53 K-H Drechsler, M.P. Stadel
54 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
56 Practical Adaptation of the Global Optimization
57 Algorithm of Morel and Renvoise
59 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
61 Efficiently Computing Static Single Assignment Form and the Control
63 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
64 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
67 J. Knoop, O. Ruthing, B. Steffen
68 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
70 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
71 Time for Reducible Flow Control
73 ACM Letters on Programming Languages and Systems,
74 Vol. 2, Num. 1-4, Mar-Dec 1993
76 An Efficient Representation for Sparse Sets
77 Preston Briggs, Linda Torczon
78 ACM Letters on Programming Languages and Systems,
79 Vol. 2, Num. 1-4, Mar-Dec 1993
81 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
82 K-H Drechsler, M.P. Stadel
83 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
85 Partial Dead Code Elimination
86 J. Knoop, O. Ruthing, B. Steffen
87 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89 Effective Partial Redundancy Elimination
90 P. Briggs, K.D. Cooper
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 The Program Structure Tree: Computing Control Regions in Linear Time
94 R. Johnson, D. Pearson, K. Pingali
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 Optimal Code Motion: Theory and Practice
98 J. Knoop, O. Ruthing, B. Steffen
99 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
101 The power of assignment motion
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
105 Global code motion / global value numbering
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Value Driven Redundancy Elimination
111 Rice University Ph.D. thesis, Apr. 1996
115 Massively Scalar Compiler Project, Rice University, Sep. 1996
117 High Performance Compilers for Parallel Computing
121 Advanced Compiler Design and Implementation
123 Morgan Kaufmann, 1997
125 Building an Optimizing Compiler
129 People wishing to speed up the code here should read:
130 Elimination Algorithms for Data Flow Analysis
131 B.G. Ryder, M.C. Paull
132 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
134 How to Analyze Large Programs Efficiently and Informatively
135 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
136 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
138 People wishing to do something different can find various possibilities
139 in the above papers and elsewhere.
144 #include "coretypes.h"
152 #include "hard-reg-set.h"
155 #include "insn-config.h"
157 #include "basic-block.h"
159 #include "function.h"
168 #include "tree-pass.h"
174 /* Propagate flow information through back edges and thus enable PRE's
175 moving loop invariant calculations out of loops.
177 Originally this tended to create worse overall code, but several
178 improvements during the development of PRE seem to have made following
179 back edges generally a win.
181 Note much of the loop invariant code motion done here would normally
182 be done by loop.c, which has more heuristics for when to move invariants
183 out of loops. At some point we might need to move some of those
184 heuristics into gcse.c. */
186 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
187 are a superset of those done by GCSE.
189 We perform the following steps:
191 1) Compute table of places where registers are set.
193 2) Perform copy/constant propagation.
195 3) Perform global cse using lazy code motion if not optimizing
196 for size, or code hoisting if we are.
198 4) Perform another pass of copy/constant propagation. Try to bypass
199 conditional jumps if the condition can be computed from a value of
202 5) Perform store motion.
204 Two passes of copy/constant propagation are done because the first one
205 enables more GCSE and the second one helps to clean up the copies that
206 GCSE creates. This is needed more for PRE than for Classic because Classic
207 GCSE will try to use an existing register containing the common
208 subexpression rather than create a new one. This is harder to do for PRE
209 because of the code motion (which Classic GCSE doesn't do).
211 Expressions we are interested in GCSE-ing are of the form
212 (set (pseudo-reg) (expression)).
213 Function want_to_gcse_p says what these are.
215 In addition, expressions in REG_EQUAL notes are candidates for GXSE-ing.
216 This allows PRE to hoist expressions that are expressed in multiple insns,
217 such as comprex address calculations (e.g. for PIC code, or loads with a
218 high part and as lowe part).
220 PRE handles moving invariant expressions out of loops (by treating them as
221 partially redundant).
223 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
224 assignment) based GVN (global value numbering). L. T. Simpson's paper
225 (Rice University) on value numbering is a useful reference for this.
227 **********************
229 We used to support multiple passes but there are diminishing returns in
230 doing so. The first pass usually makes 90% of the changes that are doable.
231 A second pass can make a few more changes made possible by the first pass.
232 Experiments show any further passes don't make enough changes to justify
235 A study of spec92 using an unlimited number of passes:
236 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
237 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
238 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
240 It was found doing copy propagation between each pass enables further
243 This study was done before expressions in REG_EQUAL notes were added as
244 candidate expressions for optimization, and before the GIMPLE optimizers
245 were added. Probably, multiple passes is even less efficient now than
246 at the time when the study was conducted.
248 PRE is quite expensive in complicated functions because the DFA can take
249 a while to converge. Hence we only perform one pass.
251 **********************
253 The steps for PRE are:
255 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
257 2) Perform the data flow analysis for PRE.
259 3) Delete the redundant instructions
261 4) Insert the required copies [if any] that make the partially
262 redundant instructions fully redundant.
264 5) For other reaching expressions, insert an instruction to copy the value
265 to a newly created pseudo that will reach the redundant instruction.
267 The deletion is done first so that when we do insertions we
268 know which pseudo reg to use.
270 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
271 argue it is not. The number of iterations for the algorithm to converge
272 is typically 2-4 so I don't view it as that expensive (relatively speaking).
274 PRE GCSE depends heavily on the second CSE pass to clean up the copies
275 we create. To make an expression reach the place where it's redundant,
276 the result of the expression is copied to a new register, and the redundant
277 expression is deleted by replacing it with this new register. Classic GCSE
278 doesn't have this problem as much as it computes the reaching defs of
279 each register in each block and thus can try to use an existing
282 /* GCSE global vars. */
284 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
285 int flag_rerun_cse_after_global_opts
;
287 /* An obstack for our working variables. */
288 static struct obstack gcse_obstack
;
290 struct reg_use
{rtx reg_rtx
; };
292 /* Hash table of expressions. */
296 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
298 /* Index in the available expression bitmaps. */
300 /* Next entry with the same hash. */
301 struct expr
*next_same_hash
;
302 /* List of anticipatable occurrences in basic blocks in the function.
303 An "anticipatable occurrence" is one that is the first occurrence in the
304 basic block, the operands are not modified in the basic block prior
305 to the occurrence and the output is not used between the start of
306 the block and the occurrence. */
307 struct occr
*antic_occr
;
308 /* List of available occurrence in basic blocks in the function.
309 An "available occurrence" is one that is the last occurrence in the
310 basic block and the operands are not modified by following statements in
311 the basic block [including this insn]. */
312 struct occr
*avail_occr
;
313 /* Non-null if the computation is PRE redundant.
314 The value is the newly created pseudo-reg to record a copy of the
315 expression in all the places that reach the redundant copy. */
319 /* Occurrence of an expression.
320 There is one per basic block. If a pattern appears more than once the
321 last appearance is used [or first for anticipatable expressions]. */
325 /* Next occurrence of this expression. */
327 /* The insn that computes the expression. */
329 /* Nonzero if this [anticipatable] occurrence has been deleted. */
331 /* Nonzero if this [available] occurrence has been copied to
333 /* ??? This is mutually exclusive with deleted_p, so they could share
338 /* Expression and copy propagation hash tables.
339 Each hash table is an array of buckets.
340 ??? It is known that if it were an array of entries, structure elements
341 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
342 not clear whether in the final analysis a sufficient amount of memory would
343 be saved as the size of the available expression bitmaps would be larger
344 [one could build a mapping table without holes afterwards though].
345 Someday I'll perform the computation and figure it out. */
350 This is an array of `expr_hash_table_size' elements. */
353 /* Size of the hash table, in elements. */
356 /* Number of hash table elements. */
357 unsigned int n_elems
;
359 /* Whether the table is expression of copy propagation one. */
363 /* Expression hash table. */
364 static struct hash_table_d expr_hash_table
;
366 /* Copy propagation hash table. */
367 static struct hash_table_d set_hash_table
;
369 /* This is a list of expressions which are MEMs and will be used by load
371 Load motion tracks MEMs which aren't killed by
372 anything except itself. (i.e., loads and stores to a single location).
373 We can then allow movement of these MEM refs with a little special
374 allowance. (all stores copy the same value to the reaching reg used
375 for the loads). This means all values used to store into memory must have
376 no side effects so we can re-issue the setter value.
377 Store Motion uses this structure as an expression table to track stores
378 which look interesting, and might be moveable towards the exit block. */
382 struct expr
* expr
; /* Gcse expression reference for LM. */
383 rtx pattern
; /* Pattern of this mem. */
384 rtx pattern_regs
; /* List of registers mentioned by the mem. */
385 rtx loads
; /* INSN list of loads seen. */
386 rtx stores
; /* INSN list of stores seen. */
387 struct ls_expr
* next
; /* Next in the list. */
388 int invalid
; /* Invalid for some reason. */
389 int index
; /* If it maps to a bitmap index. */
390 unsigned int hash_index
; /* Index when in a hash table. */
391 rtx reaching_reg
; /* Register to use when re-writing. */
394 /* Array of implicit set patterns indexed by basic block index. */
395 static rtx
*implicit_sets
;
397 /* Head of the list of load/store memory refs. */
398 static struct ls_expr
* pre_ldst_mems
= NULL
;
400 /* Hashtable for the load/store memory refs. */
401 static htab_t pre_ldst_table
= NULL
;
403 /* Bitmap containing one bit for each register in the program.
404 Used when performing GCSE to track which registers have been set since
405 the start of the basic block. */
406 static regset reg_set_bitmap
;
408 /* Array, indexed by basic block number for a list of insns which modify
409 memory within that block. */
410 static rtx
* modify_mem_list
;
411 static bitmap modify_mem_list_set
;
413 /* This array parallels modify_mem_list, but is kept canonicalized. */
414 static rtx
* canon_modify_mem_list
;
416 /* Bitmap indexed by block numbers to record which blocks contain
418 static bitmap blocks_with_calls
;
420 /* Various variables for statistics gathering. */
422 /* Memory used in a pass.
423 This isn't intended to be absolutely precise. Its intent is only
424 to keep an eye on memory usage. */
425 static int bytes_used
;
427 /* GCSE substitutions made. */
428 static int gcse_subst_count
;
429 /* Number of copy instructions created. */
430 static int gcse_create_count
;
431 /* Number of local constants propagated. */
432 static int local_const_prop_count
;
433 /* Number of local copies propagated. */
434 static int local_copy_prop_count
;
435 /* Number of global constants propagated. */
436 static int global_const_prop_count
;
437 /* Number of global copies propagated. */
438 static int global_copy_prop_count
;
440 /* For available exprs */
441 static sbitmap
*ae_kill
;
443 static void compute_can_copy (void);
444 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
445 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
446 static void *gcse_alloc (unsigned long);
447 static void alloc_gcse_mem (void);
448 static void free_gcse_mem (void);
449 static void hash_scan_insn (rtx
, struct hash_table_d
*);
450 static void hash_scan_set (rtx
, rtx
, struct hash_table_d
*);
451 static void hash_scan_clobber (rtx
, rtx
, struct hash_table_d
*);
452 static void hash_scan_call (rtx
, rtx
, struct hash_table_d
*);
453 static int want_to_gcse_p (rtx
);
454 static bool gcse_constant_p (const_rtx
);
455 static int oprs_unchanged_p (const_rtx
, const_rtx
, int);
456 static int oprs_anticipatable_p (const_rtx
, const_rtx
);
457 static int oprs_available_p (const_rtx
, const_rtx
);
458 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
459 struct hash_table_d
*);
460 static void insert_set_in_table (rtx
, rtx
, struct hash_table_d
*);
461 static unsigned int hash_expr (const_rtx
, enum machine_mode
, int *, int);
462 static unsigned int hash_set (int, int);
463 static int expr_equiv_p (const_rtx
, const_rtx
);
464 static void record_last_reg_set_info (rtx
, int);
465 static void record_last_mem_set_info (rtx
);
466 static void record_last_set_info (rtx
, const_rtx
, void *);
467 static void compute_hash_table (struct hash_table_d
*);
468 static void alloc_hash_table (int, struct hash_table_d
*, int);
469 static void free_hash_table (struct hash_table_d
*);
470 static void compute_hash_table_work (struct hash_table_d
*);
471 static void dump_hash_table (FILE *, const char *, struct hash_table_d
*);
472 static struct expr
*lookup_set (unsigned int, struct hash_table_d
*);
473 static struct expr
*next_set (unsigned int, struct expr
*);
474 static void reset_opr_set_tables (void);
475 static int oprs_not_set_p (const_rtx
, const_rtx
);
476 static void mark_call (rtx
);
477 static void mark_set (rtx
, rtx
);
478 static void mark_clobber (rtx
, rtx
);
479 static void mark_oprs_set (rtx
);
480 static void alloc_cprop_mem (int, int);
481 static void free_cprop_mem (void);
482 static void compute_transp (const_rtx
, int, sbitmap
*, int);
483 static void compute_transpout (void);
484 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
485 struct hash_table_d
*);
486 static void compute_cprop_data (void);
487 static void find_used_regs (rtx
*, void *);
488 static int try_replace_reg (rtx
, rtx
, rtx
);
489 static struct expr
*find_avail_set (int, rtx
);
490 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
491 static void mems_conflict_for_gcse_p (rtx
, const_rtx
, void *);
492 static int load_killed_in_block_p (const_basic_block
, int, const_rtx
, int);
493 static void canon_list_insert (rtx
, const_rtx
, void *);
494 static int cprop_insn (rtx
);
495 static void find_implicit_sets (void);
496 static int one_cprop_pass (void);
497 static bool constprop_register (rtx
, rtx
, rtx
);
498 static struct expr
*find_bypass_set (int, int);
499 static bool reg_killed_on_edge (const_rtx
, const_edge
);
500 static int bypass_block (basic_block
, rtx
, rtx
);
501 static int bypass_conditional_jumps (void);
502 static void alloc_pre_mem (int, int);
503 static void free_pre_mem (void);
504 static void compute_pre_data (void);
505 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
507 static void insert_insn_end_basic_block (struct expr
*, basic_block
, int);
508 static void pre_insert_copy_insn (struct expr
*, rtx
);
509 static void pre_insert_copies (void);
510 static int pre_delete (void);
511 static int pre_gcse (void);
512 static int one_pre_gcse_pass (void);
513 static void add_label_notes (rtx
, rtx
);
514 static void alloc_code_hoist_mem (int, int);
515 static void free_code_hoist_mem (void);
516 static void compute_code_hoist_vbeinout (void);
517 static void compute_code_hoist_data (void);
518 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
519 static int hoist_code (void);
520 static int one_code_hoisting_pass (void);
521 static rtx
process_insert_insn (struct expr
*);
522 static int pre_edge_insert (struct edge_list
*, struct expr
**);
523 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
524 basic_block
, char *);
525 static struct ls_expr
* ldst_entry (rtx
);
526 static void free_ldst_entry (struct ls_expr
*);
527 static void free_ldst_mems (void);
528 static void print_ldst_list (FILE *);
529 static struct ls_expr
* find_rtx_in_ldst (rtx
);
530 static inline struct ls_expr
* first_ls_expr (void);
531 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
532 static int simple_mem (const_rtx
);
533 static void invalidate_any_buried_refs (rtx
);
534 static void compute_ld_motion_mems (void);
535 static void trim_ld_motion_mems (void);
536 static void update_ld_motion_stores (struct expr
*);
537 static void free_insn_expr_list_list (rtx
*);
538 static void clear_modify_mem_tables (void);
539 static void free_modify_mem_tables (void);
540 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
541 static void local_cprop_find_used_regs (rtx
*, void *);
542 static bool do_local_cprop (rtx
, rtx
);
543 static int local_cprop_pass (void);
544 static bool is_too_expensive (const char *);
546 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
547 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
549 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
550 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
552 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
553 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
555 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
556 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
558 /* Misc. utilities. */
560 /* Nonzero for each mode that supports (set (reg) (reg)).
561 This is trivially true for integer and floating point values.
562 It may or may not be true for condition codes. */
563 static char can_copy
[(int) NUM_MACHINE_MODES
];
565 /* Compute which modes support reg/reg copy operations. */
568 compute_can_copy (void)
571 #ifndef AVOID_CCMODE_COPIES
574 memset (can_copy
, 0, NUM_MACHINE_MODES
);
577 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
578 if (GET_MODE_CLASS (i
) == MODE_CC
)
580 #ifdef AVOID_CCMODE_COPIES
583 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
584 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
585 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
595 /* Returns whether the mode supports reg/reg copy operations. */
598 can_copy_p (enum machine_mode mode
)
600 static bool can_copy_init_p
= false;
602 if (! can_copy_init_p
)
605 can_copy_init_p
= true;
608 return can_copy
[mode
] != 0;
612 /* Cover function to xmalloc to record bytes allocated. */
615 gmalloc (size_t size
)
618 return xmalloc (size
);
621 /* Cover function to xcalloc to record bytes allocated. */
624 gcalloc (size_t nelem
, size_t elsize
)
626 bytes_used
+= nelem
* elsize
;
627 return xcalloc (nelem
, elsize
);
630 /* Cover function to obstack_alloc. */
633 gcse_alloc (unsigned long size
)
636 return obstack_alloc (&gcse_obstack
, size
);
639 /* Allocate memory for the reg/memory set tracking tables.
640 This is called at the start of each pass. */
643 alloc_gcse_mem (void)
645 /* Allocate vars to track sets of regs. */
646 reg_set_bitmap
= BITMAP_ALLOC (NULL
);
648 /* Allocate array to keep a list of insns which modify memory in each
650 modify_mem_list
= GCNEWVEC (rtx
, last_basic_block
);
651 canon_modify_mem_list
= GCNEWVEC (rtx
, last_basic_block
);
652 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
653 blocks_with_calls
= BITMAP_ALLOC (NULL
);
656 /* Free memory allocated by alloc_gcse_mem. */
661 free_modify_mem_tables ();
662 BITMAP_FREE (modify_mem_list_set
);
663 BITMAP_FREE (blocks_with_calls
);
666 /* Compute the local properties of each recorded expression.
668 Local properties are those that are defined by the block, irrespective of
671 An expression is transparent in a block if its operands are not modified
674 An expression is computed (locally available) in a block if it is computed
675 at least once and expression would contain the same value if the
676 computation was moved to the end of the block.
678 An expression is locally anticipatable in a block if it is computed at
679 least once and expression would contain the same value if the computation
680 was moved to the beginning of the block.
682 We call this routine for cprop, pre and code hoisting. They all compute
683 basically the same information and thus can easily share this code.
685 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
686 properties. If NULL, then it is not necessary to compute or record that
689 TABLE controls which hash table to look at. If it is set hash table,
690 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
694 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
695 struct hash_table_d
*table
)
699 /* Initialize any bitmaps that were passed in. */
703 sbitmap_vector_zero (transp
, last_basic_block
);
705 sbitmap_vector_ones (transp
, last_basic_block
);
709 sbitmap_vector_zero (comp
, last_basic_block
);
711 sbitmap_vector_zero (antloc
, last_basic_block
);
713 for (i
= 0; i
< table
->size
; i
++)
717 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
719 int indx
= expr
->bitmap_index
;
722 /* The expression is transparent in this block if it is not killed.
723 We start by assuming all are transparent [none are killed], and
724 then reset the bits for those that are. */
726 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
728 /* The occurrences recorded in antic_occr are exactly those that
729 we want to set to nonzero in ANTLOC. */
731 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
733 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
735 /* While we're scanning the table, this is a good place to
740 /* The occurrences recorded in avail_occr are exactly those that
741 we want to set to nonzero in COMP. */
743 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
745 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
747 /* While we're scanning the table, this is a good place to
752 /* While we're scanning the table, this is a good place to
754 expr
->reaching_reg
= 0;
759 /* Hash table support. */
761 struct reg_avail_info
768 static struct reg_avail_info
*reg_avail_info
;
769 static basic_block current_bb
;
772 /* See whether X, the source of a set, is something we want to consider for
776 want_to_gcse_p (rtx x
)
779 /* On register stack architectures, don't GCSE constants from the
780 constant pool, as the benefits are often swamped by the overhead
781 of shuffling the register stack between basic blocks. */
782 if (IS_STACK_MODE (GET_MODE (x
)))
783 x
= avoid_constant_pool_reference (x
);
786 switch (GET_CODE (x
))
798 return can_assign_to_reg_without_clobbers_p (x
);
802 /* Used internally by can_assign_to_reg_without_clobbers_p. */
804 static GTY(()) rtx test_insn
;
806 /* Return true if we can assign X to a pseudo register such that the
807 resulting insn does not result in clobbering a hard register as a
810 Additionally, if the target requires it, check that the resulting insn
811 can be copied. If it cannot, this means that X is special and probably
812 has hidden side-effects we don't want to mess with.
814 This function is typically used by code motion passes, to verify
815 that it is safe to insert an insn without worrying about clobbering
816 maybe live hard regs. */
819 can_assign_to_reg_without_clobbers_p (rtx x
)
821 int num_clobbers
= 0;
824 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
825 if (general_operand (x
, GET_MODE (x
)))
827 else if (GET_MODE (x
) == VOIDmode
)
830 /* Otherwise, check if we can make a valid insn from it. First initialize
831 our test insn if we haven't already. */
835 = make_insn_raw (gen_rtx_SET (VOIDmode
,
836 gen_rtx_REG (word_mode
,
837 FIRST_PSEUDO_REGISTER
* 2),
839 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
842 /* Now make an insn like the one we would make when GCSE'ing and see if
844 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
845 SET_SRC (PATTERN (test_insn
)) = x
;
847 icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
);
851 if (num_clobbers
> 0 && added_clobbers_hard_reg_p (icode
))
854 if (targetm
.cannot_copy_insn_p
&& targetm
.cannot_copy_insn_p (test_insn
))
860 /* Return nonzero if the operands of expression X are unchanged from the
861 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
862 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
865 oprs_unchanged_p (const_rtx x
, const_rtx insn
, int avail_p
)
879 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
881 if (info
->last_bb
!= current_bb
)
884 return info
->last_set
< DF_INSN_LUID (insn
);
886 return info
->first_set
>= DF_INSN_LUID (insn
);
890 if (load_killed_in_block_p (current_bb
, DF_INSN_LUID (insn
),
894 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
921 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
925 /* If we are about to do the last recursive call needed at this
926 level, change it into iteration. This function is called enough
929 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
931 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
934 else if (fmt
[i
] == 'E')
935 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
936 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
943 /* Used for communication between mems_conflict_for_gcse_p and
944 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
945 conflict between two memory references. */
946 static int gcse_mems_conflict_p
;
948 /* Used for communication between mems_conflict_for_gcse_p and
949 load_killed_in_block_p. A memory reference for a load instruction,
950 mems_conflict_for_gcse_p will see if a memory store conflicts with
952 static const_rtx gcse_mem_operand
;
954 /* DEST is the output of an instruction. If it is a memory reference, and
955 possibly conflicts with the load found in gcse_mem_operand, then set
956 gcse_mems_conflict_p to a nonzero value. */
959 mems_conflict_for_gcse_p (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
960 void *data ATTRIBUTE_UNUSED
)
962 while (GET_CODE (dest
) == SUBREG
963 || GET_CODE (dest
) == ZERO_EXTRACT
964 || GET_CODE (dest
) == STRICT_LOW_PART
)
965 dest
= XEXP (dest
, 0);
967 /* If DEST is not a MEM, then it will not conflict with the load. Note
968 that function calls are assumed to clobber memory, but are handled
973 /* If we are setting a MEM in our list of specially recognized MEMs,
974 don't mark as killed this time. */
976 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
978 if (!find_rtx_in_ldst (dest
))
979 gcse_mems_conflict_p
= 1;
983 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
985 gcse_mems_conflict_p
= 1;
988 /* Return nonzero if the expression in X (a memory reference) is killed
989 in block BB before or after the insn with the LUID in UID_LIMIT.
990 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
993 To check the entire block, set UID_LIMIT to max_uid + 1 and
997 load_killed_in_block_p (const_basic_block bb
, int uid_limit
, const_rtx x
, int avail_p
)
999 rtx list_entry
= modify_mem_list
[bb
->index
];
1001 /* If this is a readonly then we aren't going to be changing it. */
1002 if (MEM_READONLY_P (x
))
1008 /* Ignore entries in the list that do not apply. */
1010 && DF_INSN_LUID (XEXP (list_entry
, 0)) < uid_limit
)
1012 && DF_INSN_LUID (XEXP (list_entry
, 0)) > uid_limit
))
1014 list_entry
= XEXP (list_entry
, 1);
1018 setter
= XEXP (list_entry
, 0);
1020 /* If SETTER is a call everything is clobbered. Note that calls
1021 to pure functions are never put on the list, so we need not
1022 worry about them. */
1023 if (CALL_P (setter
))
1026 /* SETTER must be an INSN of some kind that sets memory. Call
1027 note_stores to examine each hunk of memory that is modified.
1029 The note_stores interface is pretty limited, so we have to
1030 communicate via global variables. Yuk. */
1031 gcse_mem_operand
= x
;
1032 gcse_mems_conflict_p
= 0;
1033 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1034 if (gcse_mems_conflict_p
)
1036 list_entry
= XEXP (list_entry
, 1);
1041 /* Return nonzero if the operands of expression X are unchanged from
1042 the start of INSN's basic block up to but not including INSN. */
1045 oprs_anticipatable_p (const_rtx x
, const_rtx insn
)
1047 return oprs_unchanged_p (x
, insn
, 0);
1050 /* Return nonzero if the operands of expression X are unchanged from
1051 INSN to the end of INSN's basic block. */
1054 oprs_available_p (const_rtx x
, const_rtx insn
)
1056 return oprs_unchanged_p (x
, insn
, 1);
1059 /* Hash expression X.
1061 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1062 indicating if a volatile operand is found or if the expression contains
1063 something we don't want to insert in the table. HASH_TABLE_SIZE is
1064 the current size of the hash table to be probed. */
1067 hash_expr (const_rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1068 int hash_table_size
)
1072 *do_not_record_p
= 0;
1074 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1075 NULL
, /*have_reg_qty=*/false);
1076 return hash
% hash_table_size
;
1079 /* Hash a set of register REGNO.
1081 Sets are hashed on the register that is set. This simplifies the PRE copy
1084 ??? May need to make things more elaborate. Later, as necessary. */
1087 hash_set (int regno
, int hash_table_size
)
1092 return hash
% hash_table_size
;
1095 /* Return nonzero if exp1 is equivalent to exp2. */
1098 expr_equiv_p (const_rtx x
, const_rtx y
)
1100 return exp_equiv_p (x
, y
, 0, true);
1103 /* Insert expression X in INSN in the hash TABLE.
1104 If it is already present, record it as the last occurrence in INSN's
1107 MODE is the mode of the value X is being stored into.
1108 It is only used if X is a CONST_INT.
1110 ANTIC_P is nonzero if X is an anticipatable expression.
1111 AVAIL_P is nonzero if X is an available expression. */
1114 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1115 int avail_p
, struct hash_table_d
*table
)
1117 int found
, do_not_record_p
;
1119 struct expr
*cur_expr
, *last_expr
= NULL
;
1120 struct occr
*antic_occr
, *avail_occr
;
1122 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1124 /* Do not insert expression in table if it contains volatile operands,
1125 or if hash_expr determines the expression is something we don't want
1126 to or can't handle. */
1127 if (do_not_record_p
)
1130 cur_expr
= table
->table
[hash
];
1133 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1135 /* If the expression isn't found, save a pointer to the end of
1137 last_expr
= cur_expr
;
1138 cur_expr
= cur_expr
->next_same_hash
;
1143 cur_expr
= GOBNEW (struct expr
);
1144 bytes_used
+= sizeof (struct expr
);
1145 if (table
->table
[hash
] == NULL
)
1146 /* This is the first pattern that hashed to this index. */
1147 table
->table
[hash
] = cur_expr
;
1149 /* Add EXPR to end of this hash chain. */
1150 last_expr
->next_same_hash
= cur_expr
;
1152 /* Set the fields of the expr element. */
1154 cur_expr
->bitmap_index
= table
->n_elems
++;
1155 cur_expr
->next_same_hash
= NULL
;
1156 cur_expr
->antic_occr
= NULL
;
1157 cur_expr
->avail_occr
= NULL
;
1160 /* Now record the occurrence(s). */
1163 antic_occr
= cur_expr
->antic_occr
;
1165 if (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
1169 /* Found another instance of the expression in the same basic block.
1170 Prefer the currently recorded one. We want the first one in the
1171 block and the block is scanned from start to end. */
1172 ; /* nothing to do */
1175 /* First occurrence of this expression in this basic block. */
1176 antic_occr
= GOBNEW (struct occr
);
1177 bytes_used
+= sizeof (struct occr
);
1178 antic_occr
->insn
= insn
;
1179 antic_occr
->next
= cur_expr
->antic_occr
;
1180 antic_occr
->deleted_p
= 0;
1181 cur_expr
->antic_occr
= antic_occr
;
1187 avail_occr
= cur_expr
->avail_occr
;
1189 if (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) == BLOCK_NUM (insn
))
1191 /* Found another instance of the expression in the same basic block.
1192 Prefer this occurrence to the currently recorded one. We want
1193 the last one in the block and the block is scanned from start
1195 avail_occr
->insn
= insn
;
1199 /* First occurrence of this expression in this basic block. */
1200 avail_occr
= GOBNEW (struct occr
);
1201 bytes_used
+= sizeof (struct occr
);
1202 avail_occr
->insn
= insn
;
1203 avail_occr
->next
= cur_expr
->avail_occr
;
1204 avail_occr
->deleted_p
= 0;
1205 cur_expr
->avail_occr
= avail_occr
;
1210 /* Insert pattern X in INSN in the hash table.
1211 X is a SET of a reg to either another reg or a constant.
1212 If it is already present, record it as the last occurrence in INSN's
1216 insert_set_in_table (rtx x
, rtx insn
, struct hash_table_d
*table
)
1220 struct expr
*cur_expr
, *last_expr
= NULL
;
1221 struct occr
*cur_occr
;
1223 gcc_assert (GET_CODE (x
) == SET
&& REG_P (SET_DEST (x
)));
1225 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
1227 cur_expr
= table
->table
[hash
];
1230 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1232 /* If the expression isn't found, save a pointer to the end of
1234 last_expr
= cur_expr
;
1235 cur_expr
= cur_expr
->next_same_hash
;
1240 cur_expr
= GOBNEW (struct expr
);
1241 bytes_used
+= sizeof (struct expr
);
1242 if (table
->table
[hash
] == NULL
)
1243 /* This is the first pattern that hashed to this index. */
1244 table
->table
[hash
] = cur_expr
;
1246 /* Add EXPR to end of this hash chain. */
1247 last_expr
->next_same_hash
= cur_expr
;
1249 /* Set the fields of the expr element.
1250 We must copy X because it can be modified when copy propagation is
1251 performed on its operands. */
1252 cur_expr
->expr
= copy_rtx (x
);
1253 cur_expr
->bitmap_index
= table
->n_elems
++;
1254 cur_expr
->next_same_hash
= NULL
;
1255 cur_expr
->antic_occr
= NULL
;
1256 cur_expr
->avail_occr
= NULL
;
1259 /* Now record the occurrence. */
1260 cur_occr
= cur_expr
->avail_occr
;
1262 if (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) == BLOCK_NUM (insn
))
1264 /* Found another instance of the expression in the same basic block.
1265 Prefer this occurrence to the currently recorded one. We want
1266 the last one in the block and the block is scanned from start
1268 cur_occr
->insn
= insn
;
1272 /* First occurrence of this expression in this basic block. */
1273 cur_occr
= GOBNEW (struct occr
);
1274 bytes_used
+= sizeof (struct occr
);
1275 cur_occr
->insn
= insn
;
1276 cur_occr
->next
= cur_expr
->avail_occr
;
1277 cur_occr
->deleted_p
= 0;
1278 cur_expr
->avail_occr
= cur_occr
;
1282 /* Determine whether the rtx X should be treated as a constant for
1283 the purposes of GCSE's constant propagation. */
1286 gcse_constant_p (const_rtx x
)
1288 /* Consider a COMPARE of two integers constant. */
1289 if (GET_CODE (x
) == COMPARE
1290 && CONST_INT_P (XEXP (x
, 0))
1291 && CONST_INT_P (XEXP (x
, 1)))
1294 /* Consider a COMPARE of the same registers is a constant
1295 if they are not floating point registers. */
1296 if (GET_CODE(x
) == COMPARE
1297 && REG_P (XEXP (x
, 0)) && REG_P (XEXP (x
, 1))
1298 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
1299 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
1300 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
1303 /* Since X might be inserted more than once we have to take care that it
1305 return CONSTANT_P (x
) && (GET_CODE (x
) != CONST
|| shared_const_p (x
));
1308 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1312 hash_scan_set (rtx pat
, rtx insn
, struct hash_table_d
*table
)
1314 rtx src
= SET_SRC (pat
);
1315 rtx dest
= SET_DEST (pat
);
1318 if (GET_CODE (src
) == CALL
)
1319 hash_scan_call (src
, insn
, table
);
1321 else if (REG_P (dest
))
1323 unsigned int regno
= REGNO (dest
);
1326 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1328 This allows us to do a single GCSE pass and still eliminate
1329 redundant constants, addresses or other expressions that are
1330 constructed with multiple instructions.
1332 However, keep the original SRC if INSN is a simple reg-reg move. In
1333 In this case, there will almost always be a REG_EQUAL note on the
1334 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1335 for INSN, we miss copy propagation opportunities and we perform the
1336 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1337 do more than one PRE GCSE pass.
1339 Note that this does not impede profitable constant propagations. We
1340 "look through" reg-reg sets in lookup_avail_set. */
1341 note
= find_reg_equal_equiv_note (insn
);
1343 && REG_NOTE_KIND (note
) == REG_EQUAL
1346 ? gcse_constant_p (XEXP (note
, 0))
1347 : want_to_gcse_p (XEXP (note
, 0))))
1348 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1350 /* Only record sets of pseudo-regs in the hash table. */
1352 && regno
>= FIRST_PSEUDO_REGISTER
1353 /* Don't GCSE something if we can't do a reg/reg copy. */
1354 && can_copy_p (GET_MODE (dest
))
1355 /* GCSE commonly inserts instruction after the insn. We can't
1356 do that easily for EH_REGION notes so disable GCSE on these
1358 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1359 /* Is SET_SRC something we want to gcse? */
1360 && want_to_gcse_p (src
)
1361 /* Don't CSE a nop. */
1362 && ! set_noop_p (pat
)
1363 /* Don't GCSE if it has attached REG_EQUIV note.
1364 At this point this only function parameters should have
1365 REG_EQUIV notes and if the argument slot is used somewhere
1366 explicitly, it means address of parameter has been taken,
1367 so we should not extend the lifetime of the pseudo. */
1368 && (note
== NULL_RTX
|| ! MEM_P (XEXP (note
, 0))))
1370 /* An expression is not anticipatable if its operands are
1371 modified before this insn or if this is not the only SET in
1372 this insn. The latter condition does not have to mean that
1373 SRC itself is not anticipatable, but we just will not be
1374 able to handle code motion of insns with multiple sets. */
1375 int antic_p
= oprs_anticipatable_p (src
, insn
)
1376 && !multiple_sets (insn
);
1377 /* An expression is not available if its operands are
1378 subsequently modified, including this insn. It's also not
1379 available if this is a branch, because we can't insert
1380 a set after the branch. */
1381 int avail_p
= (oprs_available_p (src
, insn
)
1382 && ! JUMP_P (insn
));
1384 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
1387 /* Record sets for constant/copy propagation. */
1388 else if (table
->set_p
1389 && regno
>= FIRST_PSEUDO_REGISTER
1391 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1392 && can_copy_p (GET_MODE (dest
))
1393 && REGNO (src
) != regno
)
1394 || gcse_constant_p (src
))
1395 /* A copy is not available if its src or dest is subsequently
1396 modified. Here we want to search from INSN+1 on, but
1397 oprs_available_p searches from INSN on. */
1398 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
1399 || (tmp
= next_nonnote_insn (insn
)) == NULL_RTX
1400 || BLOCK_FOR_INSN (tmp
) != BLOCK_FOR_INSN (insn
)
1401 || oprs_available_p (pat
, tmp
)))
1402 insert_set_in_table (pat
, insn
, table
);
1404 /* In case of store we want to consider the memory value as available in
1405 the REG stored in that memory. This makes it possible to remove
1406 redundant loads from due to stores to the same location. */
1407 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1409 unsigned int regno
= REGNO (src
);
1411 /* Do not do this for constant/copy propagation. */
1413 /* Only record sets of pseudo-regs in the hash table. */
1414 && regno
>= FIRST_PSEUDO_REGISTER
1415 /* Don't GCSE something if we can't do a reg/reg copy. */
1416 && can_copy_p (GET_MODE (src
))
1417 /* GCSE commonly inserts instruction after the insn. We can't
1418 do that easily for EH_REGION notes so disable GCSE on these
1420 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1421 /* Is SET_DEST something we want to gcse? */
1422 && want_to_gcse_p (dest
)
1423 /* Don't CSE a nop. */
1424 && ! set_noop_p (pat
)
1425 /* Don't GCSE if it has attached REG_EQUIV note.
1426 At this point this only function parameters should have
1427 REG_EQUIV notes and if the argument slot is used somewhere
1428 explicitly, it means address of parameter has been taken,
1429 so we should not extend the lifetime of the pseudo. */
1430 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1431 || ! MEM_P (XEXP (note
, 0))))
1433 /* Stores are never anticipatable. */
1435 /* An expression is not available if its operands are
1436 subsequently modified, including this insn. It's also not
1437 available if this is a branch, because we can't insert
1438 a set after the branch. */
1439 int avail_p
= oprs_available_p (dest
, insn
)
1442 /* Record the memory expression (DEST) in the hash table. */
1443 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1444 antic_p
, avail_p
, table
);
1450 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1451 struct hash_table_d
*table ATTRIBUTE_UNUSED
)
1453 /* Currently nothing to do. */
1457 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1458 struct hash_table_d
*table ATTRIBUTE_UNUSED
)
1460 /* Currently nothing to do. */
1463 /* Process INSN and add hash table entries as appropriate.
1465 Only available expressions that set a single pseudo-reg are recorded.
1467 Single sets in a PARALLEL could be handled, but it's an extra complication
1468 that isn't dealt with right now. The trick is handling the CLOBBERs that
1469 are also in the PARALLEL. Later.
1471 If SET_P is nonzero, this is for the assignment hash table,
1472 otherwise it is for the expression hash table. */
1475 hash_scan_insn (rtx insn
, struct hash_table_d
*table
)
1477 rtx pat
= PATTERN (insn
);
1480 /* Pick out the sets of INSN and for other forms of instructions record
1481 what's been modified. */
1483 if (GET_CODE (pat
) == SET
)
1484 hash_scan_set (pat
, insn
, table
);
1485 else if (GET_CODE (pat
) == PARALLEL
)
1486 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1488 rtx x
= XVECEXP (pat
, 0, i
);
1490 if (GET_CODE (x
) == SET
)
1491 hash_scan_set (x
, insn
, table
);
1492 else if (GET_CODE (x
) == CLOBBER
)
1493 hash_scan_clobber (x
, insn
, table
);
1494 else if (GET_CODE (x
) == CALL
)
1495 hash_scan_call (x
, insn
, table
);
1498 else if (GET_CODE (pat
) == CLOBBER
)
1499 hash_scan_clobber (pat
, insn
, table
);
1500 else if (GET_CODE (pat
) == CALL
)
1501 hash_scan_call (pat
, insn
, table
);
1505 dump_hash_table (FILE *file
, const char *name
, struct hash_table_d
*table
)
1508 /* Flattened out table, so it's printed in proper order. */
1509 struct expr
**flat_table
;
1510 unsigned int *hash_val
;
1513 flat_table
= XCNEWVEC (struct expr
*, table
->n_elems
);
1514 hash_val
= XNEWVEC (unsigned int, table
->n_elems
);
1516 for (i
= 0; i
< (int) table
->size
; i
++)
1517 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1519 flat_table
[expr
->bitmap_index
] = expr
;
1520 hash_val
[expr
->bitmap_index
] = i
;
1523 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1524 name
, table
->size
, table
->n_elems
);
1526 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1527 if (flat_table
[i
] != 0)
1529 expr
= flat_table
[i
];
1530 fprintf (file
, "Index %d (hash value %d)\n ",
1531 expr
->bitmap_index
, hash_val
[i
]);
1532 print_rtl (file
, expr
->expr
);
1533 fprintf (file
, "\n");
1536 fprintf (file
, "\n");
1542 /* Record register first/last/block set information for REGNO in INSN.
1544 first_set records the first place in the block where the register
1545 is set and is used to compute "anticipatability".
1547 last_set records the last place in the block where the register
1548 is set and is used to compute "availability".
1550 last_bb records the block for which first_set and last_set are
1551 valid, as a quick test to invalidate them. */
1554 record_last_reg_set_info (rtx insn
, int regno
)
1556 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1557 int luid
= DF_INSN_LUID (insn
);
1559 info
->last_set
= luid
;
1560 if (info
->last_bb
!= current_bb
)
1562 info
->last_bb
= current_bb
;
1563 info
->first_set
= luid
;
1568 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1569 Note we store a pair of elements in the list, so they have to be
1570 taken off pairwise. */
1573 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, const_rtx unused1 ATTRIBUTE_UNUSED
,
1576 rtx dest_addr
, insn
;
1579 while (GET_CODE (dest
) == SUBREG
1580 || GET_CODE (dest
) == ZERO_EXTRACT
1581 || GET_CODE (dest
) == STRICT_LOW_PART
)
1582 dest
= XEXP (dest
, 0);
1584 /* If DEST is not a MEM, then it will not conflict with a load. Note
1585 that function calls are assumed to clobber memory, but are handled
1591 dest_addr
= get_addr (XEXP (dest
, 0));
1592 dest_addr
= canon_rtx (dest_addr
);
1593 insn
= (rtx
) v_insn
;
1594 bb
= BLOCK_NUM (insn
);
1596 canon_modify_mem_list
[bb
] =
1597 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
1598 canon_modify_mem_list
[bb
] =
1599 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
1602 /* Record memory modification information for INSN. We do not actually care
1603 about the memory location(s) that are set, or even how they are set (consider
1604 a CALL_INSN). We merely need to record which insns modify memory. */
1607 record_last_mem_set_info (rtx insn
)
1609 int bb
= BLOCK_NUM (insn
);
1611 /* load_killed_in_block_p will handle the case of calls clobbering
1613 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
1614 bitmap_set_bit (modify_mem_list_set
, bb
);
1618 /* Note that traversals of this loop (other than for free-ing)
1619 will break after encountering a CALL_INSN. So, there's no
1620 need to insert a pair of items, as canon_list_insert does. */
1621 canon_modify_mem_list
[bb
] =
1622 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
1623 bitmap_set_bit (blocks_with_calls
, bb
);
1626 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1629 /* Called from compute_hash_table via note_stores to handle one
1630 SET or CLOBBER in an insn. DATA is really the instruction in which
1631 the SET is taking place. */
1634 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
1636 rtx last_set_insn
= (rtx
) data
;
1638 if (GET_CODE (dest
) == SUBREG
)
1639 dest
= SUBREG_REG (dest
);
1642 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
1643 else if (MEM_P (dest
)
1644 /* Ignore pushes, they clobber nothing. */
1645 && ! push_operand (dest
, GET_MODE (dest
)))
1646 record_last_mem_set_info (last_set_insn
);
1649 /* Top level function to create an expression or assignment hash table.
1651 Expression entries are placed in the hash table if
1652 - they are of the form (set (pseudo-reg) src),
1653 - src is something we want to perform GCSE on,
1654 - none of the operands are subsequently modified in the block
1656 Assignment entries are placed in the hash table if
1657 - they are of the form (set (pseudo-reg) src),
1658 - src is something we want to perform const/copy propagation on,
1659 - none of the operands or target are subsequently modified in the block
1661 Currently src must be a pseudo-reg or a const_int.
1663 TABLE is the table computed. */
1666 compute_hash_table_work (struct hash_table_d
*table
)
1670 /* re-Cache any INSN_LIST nodes we have allocated. */
1671 clear_modify_mem_tables ();
1672 /* Some working arrays used to track first and last set in each block. */
1673 reg_avail_info
= GNEWVEC (struct reg_avail_info
, max_reg_num ());
1675 for (i
= 0; i
< max_reg_num (); ++i
)
1676 reg_avail_info
[i
].last_bb
= NULL
;
1678 FOR_EACH_BB (current_bb
)
1683 /* First pass over the instructions records information used to
1684 determine when registers and memory are first and last set. */
1685 FOR_BB_INSNS (current_bb
, insn
)
1687 if (! INSN_P (insn
))
1692 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1693 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1694 record_last_reg_set_info (insn
, regno
);
1699 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
1702 /* Insert implicit sets in the hash table. */
1704 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
1705 hash_scan_set (implicit_sets
[current_bb
->index
],
1706 BB_HEAD (current_bb
), table
);
1708 /* The next pass builds the hash table. */
1709 FOR_BB_INSNS (current_bb
, insn
)
1711 hash_scan_insn (insn
, table
);
1714 free (reg_avail_info
);
1715 reg_avail_info
= NULL
;
1718 /* Allocate space for the set/expr hash TABLE.
1719 N_INSNS is the number of instructions in the function.
1720 It is used to determine the number of buckets to use.
1721 SET_P determines whether set or expression table will
1725 alloc_hash_table (int n_insns
, struct hash_table_d
*table
, int set_p
)
1729 table
->size
= n_insns
/ 4;
1730 if (table
->size
< 11)
1733 /* Attempt to maintain efficient use of hash table.
1734 Making it an odd number is simplest for now.
1735 ??? Later take some measurements. */
1737 n
= table
->size
* sizeof (struct expr
*);
1738 table
->table
= GNEWVAR (struct expr
*, n
);
1739 table
->set_p
= set_p
;
1742 /* Free things allocated by alloc_hash_table. */
1745 free_hash_table (struct hash_table_d
*table
)
1747 free (table
->table
);
1750 /* Compute the hash TABLE for doing copy/const propagation or
1751 expression hash table. */
1754 compute_hash_table (struct hash_table_d
*table
)
1756 /* Initialize count of number of entries in hash table. */
1758 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
1760 compute_hash_table_work (table
);
1763 /* Expression tracking support. */
1765 /* Lookup REGNO in the set TABLE. The result is a pointer to the
1766 table entry, or NULL if not found. */
1768 static struct expr
*
1769 lookup_set (unsigned int regno
, struct hash_table_d
*table
)
1771 unsigned int hash
= hash_set (regno
, table
->size
);
1774 expr
= table
->table
[hash
];
1776 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
1777 expr
= expr
->next_same_hash
;
1782 /* Return the next entry for REGNO in list EXPR. */
1784 static struct expr
*
1785 next_set (unsigned int regno
, struct expr
*expr
)
1788 expr
= expr
->next_same_hash
;
1789 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
1794 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
1795 types may be mixed. */
1798 free_insn_expr_list_list (rtx
*listp
)
1802 for (list
= *listp
; list
; list
= next
)
1804 next
= XEXP (list
, 1);
1805 if (GET_CODE (list
) == EXPR_LIST
)
1806 free_EXPR_LIST_node (list
);
1808 free_INSN_LIST_node (list
);
1814 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1816 clear_modify_mem_tables (void)
1821 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
1823 free_INSN_LIST_list (modify_mem_list
+ i
);
1824 free_insn_expr_list_list (canon_modify_mem_list
+ i
);
1826 bitmap_clear (modify_mem_list_set
);
1827 bitmap_clear (blocks_with_calls
);
1830 /* Release memory used by modify_mem_list_set. */
1833 free_modify_mem_tables (void)
1835 clear_modify_mem_tables ();
1836 free (modify_mem_list
);
1837 free (canon_modify_mem_list
);
1838 modify_mem_list
= 0;
1839 canon_modify_mem_list
= 0;
1842 /* Reset tables used to keep track of what's still available [since the
1843 start of the block]. */
1846 reset_opr_set_tables (void)
1848 /* Maintain a bitmap of which regs have been set since beginning of
1850 CLEAR_REG_SET (reg_set_bitmap
);
1852 /* Also keep a record of the last instruction to modify memory.
1853 For now this is very trivial, we only record whether any memory
1854 location has been modified. */
1855 clear_modify_mem_tables ();
1858 /* Return nonzero if the operands of X are not set before INSN in
1859 INSN's basic block. */
1862 oprs_not_set_p (const_rtx x
, const_rtx insn
)
1871 code
= GET_CODE (x
);
1888 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
1889 DF_INSN_LUID (insn
), x
, 0))
1892 return oprs_not_set_p (XEXP (x
, 0), insn
);
1895 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
1901 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1905 /* If we are about to do the last recursive call
1906 needed at this level, change it into iteration.
1907 This function is called enough to be worth it. */
1909 return oprs_not_set_p (XEXP (x
, i
), insn
);
1911 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
1914 else if (fmt
[i
] == 'E')
1915 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1916 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
1923 /* Mark things set by a CALL. */
1926 mark_call (rtx insn
)
1928 if (! RTL_CONST_OR_PURE_CALL_P (insn
))
1929 record_last_mem_set_info (insn
);
1932 /* Mark things set by a SET. */
1935 mark_set (rtx pat
, rtx insn
)
1937 rtx dest
= SET_DEST (pat
);
1939 while (GET_CODE (dest
) == SUBREG
1940 || GET_CODE (dest
) == ZERO_EXTRACT
1941 || GET_CODE (dest
) == STRICT_LOW_PART
)
1942 dest
= XEXP (dest
, 0);
1945 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
1946 else if (MEM_P (dest
))
1947 record_last_mem_set_info (insn
);
1949 if (GET_CODE (SET_SRC (pat
)) == CALL
)
1953 /* Record things set by a CLOBBER. */
1956 mark_clobber (rtx pat
, rtx insn
)
1958 rtx clob
= XEXP (pat
, 0);
1960 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
1961 clob
= XEXP (clob
, 0);
1964 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
1966 record_last_mem_set_info (insn
);
1969 /* Record things set by INSN.
1970 This data is used by oprs_not_set_p. */
1973 mark_oprs_set (rtx insn
)
1975 rtx pat
= PATTERN (insn
);
1978 if (GET_CODE (pat
) == SET
)
1979 mark_set (pat
, insn
);
1980 else if (GET_CODE (pat
) == PARALLEL
)
1981 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1983 rtx x
= XVECEXP (pat
, 0, i
);
1985 if (GET_CODE (x
) == SET
)
1987 else if (GET_CODE (x
) == CLOBBER
)
1988 mark_clobber (x
, insn
);
1989 else if (GET_CODE (x
) == CALL
)
1993 else if (GET_CODE (pat
) == CLOBBER
)
1994 mark_clobber (pat
, insn
);
1995 else if (GET_CODE (pat
) == CALL
)
2000 /* Compute copy/constant propagation working variables. */
2002 /* Local properties of assignments. */
2003 static sbitmap
*cprop_pavloc
;
2004 static sbitmap
*cprop_absaltered
;
2006 /* Global properties of assignments (computed from the local properties). */
2007 static sbitmap
*cprop_avin
;
2008 static sbitmap
*cprop_avout
;
2010 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2011 basic blocks. N_SETS is the number of sets. */
2014 alloc_cprop_mem (int n_blocks
, int n_sets
)
2016 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2017 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2019 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2020 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2023 /* Free vars used by copy/const propagation. */
2026 free_cprop_mem (void)
2028 sbitmap_vector_free (cprop_pavloc
);
2029 sbitmap_vector_free (cprop_absaltered
);
2030 sbitmap_vector_free (cprop_avin
);
2031 sbitmap_vector_free (cprop_avout
);
2034 /* For each block, compute whether X is transparent. X is either an
2035 expression or an assignment [though we don't care which, for this context
2036 an assignment is treated as an expression]. For each block where an
2037 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2041 compute_transp (const_rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
2047 /* repeat is used to turn tail-recursion into iteration since GCC
2048 can't do it when there's no return value. */
2054 code
= GET_CODE (x
);
2061 for (def
= DF_REG_DEF_CHAIN (REGNO (x
));
2063 def
= DF_REF_NEXT_REG (def
))
2064 SET_BIT (bmap
[DF_REF_BB (def
)->index
], indx
);
2069 for (def
= DF_REG_DEF_CHAIN (REGNO (x
));
2071 def
= DF_REF_NEXT_REG (def
))
2072 RESET_BIT (bmap
[DF_REF_BB (def
)->index
], indx
);
2078 if (! MEM_READONLY_P (x
))
2083 /* First handle all the blocks with calls. We don't need to
2084 do any list walking for them. */
2085 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
2088 SET_BIT (bmap
[bb_index
], indx
);
2090 RESET_BIT (bmap
[bb_index
], indx
);
2093 /* Now iterate over the blocks which have memory modifications
2094 but which do not have any calls. */
2095 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
,
2099 rtx list_entry
= canon_modify_mem_list
[bb_index
];
2103 rtx dest
, dest_addr
;
2105 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2106 Examine each hunk of memory that is modified. */
2108 dest
= XEXP (list_entry
, 0);
2109 list_entry
= XEXP (list_entry
, 1);
2110 dest_addr
= XEXP (list_entry
, 0);
2112 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
2113 x
, NULL_RTX
, rtx_addr_varies_p
))
2116 SET_BIT (bmap
[bb_index
], indx
);
2118 RESET_BIT (bmap
[bb_index
], indx
);
2121 list_entry
= XEXP (list_entry
, 1);
2146 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2150 /* If we are about to do the last recursive call
2151 needed at this level, change it into iteration.
2152 This function is called enough to be worth it. */
2159 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
2161 else if (fmt
[i
] == 'E')
2162 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2163 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
2167 /* Top level routine to do the dataflow analysis needed by copy/const
2171 compute_cprop_data (void)
2173 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
2174 compute_available (cprop_pavloc
, cprop_absaltered
,
2175 cprop_avout
, cprop_avin
);
2178 /* Copy/constant propagation. */
2180 /* Maximum number of register uses in an insn that we handle. */
2183 /* Table of uses found in an insn.
2184 Allocated statically to avoid alloc/free complexity and overhead. */
2185 static struct reg_use reg_use_table
[MAX_USES
];
2187 /* Index into `reg_use_table' while building it. */
2188 static int reg_use_count
;
2190 /* Set up a list of register numbers used in INSN. The found uses are stored
2191 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2192 and contains the number of uses in the table upon exit.
2194 ??? If a register appears multiple times we will record it multiple times.
2195 This doesn't hurt anything but it will slow things down. */
2198 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
2205 /* repeat is used to turn tail-recursion into iteration since GCC
2206 can't do it when there's no return value. */
2211 code
= GET_CODE (x
);
2214 if (reg_use_count
== MAX_USES
)
2217 reg_use_table
[reg_use_count
].reg_rtx
= x
;
2221 /* Recursively scan the operands of this expression. */
2223 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2227 /* If we are about to do the last recursive call
2228 needed at this level, change it into iteration.
2229 This function is called enough to be worth it. */
2236 find_used_regs (&XEXP (x
, i
), data
);
2238 else if (fmt
[i
] == 'E')
2239 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2240 find_used_regs (&XVECEXP (x
, i
, j
), data
);
2244 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2245 Returns nonzero is successful. */
2248 try_replace_reg (rtx from
, rtx to
, rtx insn
)
2250 rtx note
= find_reg_equal_equiv_note (insn
);
2253 rtx set
= single_set (insn
);
2255 /* Usually we substitute easy stuff, so we won't copy everything.
2256 We however need to take care to not duplicate non-trivial CONST
2260 validate_replace_src_group (from
, to
, insn
);
2261 if (num_changes_pending () && apply_change_group ())
2264 /* Try to simplify SET_SRC if we have substituted a constant. */
2265 if (success
&& set
&& CONSTANT_P (to
))
2267 src
= simplify_rtx (SET_SRC (set
));
2270 validate_change (insn
, &SET_SRC (set
), src
, 0);
2273 /* If there is already a REG_EQUAL note, update the expression in it
2274 with our replacement. */
2275 if (note
!= 0 && REG_NOTE_KIND (note
) == REG_EQUAL
)
2276 set_unique_reg_note (insn
, REG_EQUAL
,
2277 simplify_replace_rtx (XEXP (note
, 0), from
,
2279 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
2281 /* If above failed and this is a single set, try to simplify the source of
2282 the set given our substitution. We could perhaps try this for multiple
2283 SETs, but it probably won't buy us anything. */
2284 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
2286 if (!rtx_equal_p (src
, SET_SRC (set
))
2287 && validate_change (insn
, &SET_SRC (set
), src
, 0))
2290 /* If we've failed to do replacement, have a single SET, don't already
2291 have a note, and have no special SET, add a REG_EQUAL note to not
2292 lose information. */
2293 if (!success
&& note
== 0 && set
!= 0
2294 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
2295 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
2296 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
2299 /* REG_EQUAL may get simplified into register.
2300 We don't allow that. Remove that note. This code ought
2301 not to happen, because previous code ought to synthesize
2302 reg-reg move, but be on the safe side. */
2303 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
&& REG_P (XEXP (note
, 0)))
2304 remove_note (insn
, note
);
2309 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2310 NULL no such set is found. */
2312 static struct expr
*
2313 find_avail_set (int regno
, rtx insn
)
2315 /* SET1 contains the last set found that can be returned to the caller for
2316 use in a substitution. */
2317 struct expr
*set1
= 0;
2319 /* Loops are not possible here. To get a loop we would need two sets
2320 available at the start of the block containing INSN. i.e. we would
2321 need two sets like this available at the start of the block:
2323 (set (reg X) (reg Y))
2324 (set (reg Y) (reg X))
2326 This can not happen since the set of (reg Y) would have killed the
2327 set of (reg X) making it unavailable at the start of this block. */
2331 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2333 /* Find a set that is available at the start of the block
2334 which contains INSN. */
2337 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
2339 set
= next_set (regno
, set
);
2342 /* If no available set was found we've reached the end of the
2343 (possibly empty) copy chain. */
2347 gcc_assert (GET_CODE (set
->expr
) == SET
);
2349 src
= SET_SRC (set
->expr
);
2351 /* We know the set is available.
2352 Now check that SRC is ANTLOC (i.e. none of the source operands
2353 have changed since the start of the block).
2355 If the source operand changed, we may still use it for the next
2356 iteration of this loop, but we may not use it for substitutions. */
2358 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
2361 /* If the source of the set is anything except a register, then
2362 we have reached the end of the copy chain. */
2366 /* Follow the copy chain, i.e. start another iteration of the loop
2367 and see if we have an available copy into SRC. */
2368 regno
= REGNO (src
);
2371 /* SET1 holds the last set that was available and anticipatable at
2376 /* Subroutine of cprop_insn that tries to propagate constants into
2377 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2378 it is the instruction that immediately precedes JUMP, and must be a
2379 single SET of a register. FROM is what we will try to replace,
2380 SRC is the constant we will try to substitute for it. Returns nonzero
2381 if a change was made. */
2384 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
2386 rtx new_rtx
, set_src
, note_src
;
2387 rtx set
= pc_set (jump
);
2388 rtx note
= find_reg_equal_equiv_note (jump
);
2392 note_src
= XEXP (note
, 0);
2393 if (GET_CODE (note_src
) == EXPR_LIST
)
2394 note_src
= NULL_RTX
;
2396 else note_src
= NULL_RTX
;
2398 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2399 set_src
= note_src
? note_src
: SET_SRC (set
);
2401 /* First substitute the SETCC condition into the JUMP instruction,
2402 then substitute that given values into this expanded JUMP. */
2403 if (setcc
!= NULL_RTX
2404 && !modified_between_p (from
, setcc
, jump
)
2405 && !modified_between_p (src
, setcc
, jump
))
2408 rtx setcc_set
= single_set (setcc
);
2409 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
2410 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
2411 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
2412 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
2418 new_rtx
= simplify_replace_rtx (set_src
, from
, src
);
2420 /* If no simplification can be made, then try the next register. */
2421 if (rtx_equal_p (new_rtx
, SET_SRC (set
)))
2424 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2425 if (new_rtx
== pc_rtx
)
2429 /* Ensure the value computed inside the jump insn to be equivalent
2430 to one computed by setcc. */
2431 if (setcc
&& modified_in_p (new_rtx
, setcc
))
2433 if (! validate_unshare_change (jump
, &SET_SRC (set
), new_rtx
, 0))
2435 /* When (some) constants are not valid in a comparison, and there
2436 are two registers to be replaced by constants before the entire
2437 comparison can be folded into a constant, we need to keep
2438 intermediate information in REG_EQUAL notes. For targets with
2439 separate compare insns, such notes are added by try_replace_reg.
2440 When we have a combined compare-and-branch instruction, however,
2441 we need to attach a note to the branch itself to make this
2442 optimization work. */
2444 if (!rtx_equal_p (new_rtx
, note_src
))
2445 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new_rtx
));
2449 /* Remove REG_EQUAL note after simplification. */
2451 remove_note (jump
, note
);
2455 /* Delete the cc0 setter. */
2456 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
2457 delete_insn (setcc
);
2460 global_const_prop_count
++;
2461 if (dump_file
!= NULL
)
2464 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2465 REGNO (from
), INSN_UID (jump
));
2466 print_rtl (dump_file
, src
);
2467 fprintf (dump_file
, "\n");
2469 purge_dead_edges (bb
);
2471 /* If a conditional jump has been changed into unconditional jump, remove
2472 the jump and make the edge fallthru - this is always called in
2474 if (new_rtx
!= pc_rtx
&& simplejump_p (jump
))
2479 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); ei_next (&ei
))
2480 if (e
->dest
!= EXIT_BLOCK_PTR
2481 && BB_HEAD (e
->dest
) == JUMP_LABEL (jump
))
2483 e
->flags
|= EDGE_FALLTHRU
;
2493 constprop_register (rtx insn
, rtx from
, rtx to
)
2497 /* Check for reg or cc0 setting instructions followed by
2498 conditional branch instructions first. */
2499 if ((sset
= single_set (insn
)) != NULL
2501 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
2503 rtx dest
= SET_DEST (sset
);
2504 if ((REG_P (dest
) || CC0_P (dest
))
2505 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
2509 /* Handle normal insns next. */
2510 if (NONJUMP_INSN_P (insn
)
2511 && try_replace_reg (from
, to
, insn
))
2514 /* Try to propagate a CONST_INT into a conditional jump.
2515 We're pretty specific about what we will handle in this
2516 code, we can extend this as necessary over time.
2518 Right now the insn in question must look like
2519 (set (pc) (if_then_else ...)) */
2520 else if (any_condjump_p (insn
) && onlyjump_p (insn
))
2521 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
2525 /* Perform constant and copy propagation on INSN.
2526 The result is nonzero if a change was made. */
2529 cprop_insn (rtx insn
)
2531 struct reg_use
*reg_used
;
2539 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2541 note
= find_reg_equal_equiv_note (insn
);
2543 /* We may win even when propagating constants into notes. */
2545 find_used_regs (&XEXP (note
, 0), NULL
);
2547 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2548 reg_used
++, reg_use_count
--)
2550 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
2554 /* If the register has already been set in this block, there's
2555 nothing we can do. */
2556 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
2559 /* Find an assignment that sets reg_used and is available
2560 at the start of the block. */
2561 set
= find_avail_set (regno
, insn
);
2566 /* ??? We might be able to handle PARALLELs. Later. */
2567 gcc_assert (GET_CODE (pat
) == SET
);
2569 src
= SET_SRC (pat
);
2571 /* Constant propagation. */
2572 if (gcse_constant_p (src
))
2574 if (constprop_register (insn
, reg_used
->reg_rtx
, src
))
2577 global_const_prop_count
++;
2578 if (dump_file
!= NULL
)
2580 fprintf (dump_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
2581 fprintf (dump_file
, "insn %d with constant ", INSN_UID (insn
));
2582 print_rtl (dump_file
, src
);
2583 fprintf (dump_file
, "\n");
2585 if (INSN_DELETED_P (insn
))
2589 else if (REG_P (src
)
2590 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2591 && REGNO (src
) != regno
)
2593 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
2596 global_copy_prop_count
++;
2597 if (dump_file
!= NULL
)
2599 fprintf (dump_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2600 regno
, INSN_UID (insn
));
2601 fprintf (dump_file
, " with reg %d\n", REGNO (src
));
2604 /* The original insn setting reg_used may or may not now be
2605 deletable. We leave the deletion to flow. */
2606 /* FIXME: If it turns out that the insn isn't deletable,
2607 then we may have unnecessarily extended register lifetimes
2608 and made things worse. */
2616 /* Like find_used_regs, but avoid recording uses that appear in
2617 input-output contexts such as zero_extract or pre_dec. This
2618 restricts the cases we consider to those for which local cprop
2619 can legitimately make replacements. */
2622 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
2629 switch (GET_CODE (x
))
2633 case STRICT_LOW_PART
:
2642 /* Can only legitimately appear this early in the context of
2643 stack pushes for function arguments, but handle all of the
2644 codes nonetheless. */
2648 /* Setting a subreg of a register larger than word_mode leaves
2649 the non-written words unchanged. */
2650 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
2658 find_used_regs (xptr
, data
);
2661 /* Try to perform local const/copy propagation on X in INSN. */
2664 do_local_cprop (rtx x
, rtx insn
)
2666 rtx newreg
= NULL
, newcnst
= NULL
;
2668 /* Rule out USE instructions and ASM statements as we don't want to
2669 change the hard registers mentioned. */
2671 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
2672 || (GET_CODE (PATTERN (insn
)) != USE
2673 && asm_noperands (PATTERN (insn
)) < 0)))
2675 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
2676 struct elt_loc_list
*l
;
2680 for (l
= val
->locs
; l
; l
= l
->next
)
2682 rtx this_rtx
= l
->loc
;
2685 if (gcse_constant_p (this_rtx
))
2687 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
2688 /* Don't copy propagate if it has attached REG_EQUIV note.
2689 At this point this only function parameters should have
2690 REG_EQUIV notes and if the argument slot is used somewhere
2691 explicitly, it means address of parameter has been taken,
2692 so we should not extend the lifetime of the pseudo. */
2693 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
2694 || ! MEM_P (XEXP (note
, 0))))
2697 if (newcnst
&& constprop_register (insn
, x
, newcnst
))
2699 if (dump_file
!= NULL
)
2701 fprintf (dump_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
2703 fprintf (dump_file
, "insn %d with constant ",
2705 print_rtl (dump_file
, newcnst
);
2706 fprintf (dump_file
, "\n");
2708 local_const_prop_count
++;
2711 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
2713 if (dump_file
!= NULL
)
2716 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
2717 REGNO (x
), INSN_UID (insn
));
2718 fprintf (dump_file
, " with reg %d\n", REGNO (newreg
));
2720 local_copy_prop_count
++;
2727 /* Do local const/copy propagation (i.e. within each basic block). */
2730 local_cprop_pass (void)
2734 struct reg_use
*reg_used
;
2735 bool changed
= false;
2737 cselib_init (false);
2740 FOR_BB_INSNS (bb
, insn
)
2744 rtx note
= find_reg_equal_equiv_note (insn
);
2748 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
,
2751 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
2753 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2754 reg_used
++, reg_use_count
--)
2756 if (do_local_cprop (reg_used
->reg_rtx
, insn
))
2762 if (INSN_DELETED_P (insn
))
2765 while (reg_use_count
);
2767 cselib_process_insn (insn
);
2770 /* Forget everything at the end of a basic block. */
2771 cselib_clear_table ();
2779 /* Similar to get_condition, only the resulting condition must be
2780 valid at JUMP, instead of at EARLIEST.
2782 This differs from noce_get_condition in ifcvt.c in that we prefer not to
2783 settle for the condition variable in the jump instruction being integral.
2784 We prefer to be able to record the value of a user variable, rather than
2785 the value of a temporary used in a condition. This could be solved by
2786 recording the value of *every* register scanned by canonicalize_condition,
2787 but this would require some code reorganization. */
2790 fis_get_condition (rtx jump
)
2792 return get_condition (jump
, NULL
, false, true);
2795 /* Check the comparison COND to see if we can safely form an implicit set from
2796 it. COND is either an EQ or NE comparison. */
2799 implicit_set_cond_p (const_rtx cond
)
2801 const enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
2802 const_rtx cst
= XEXP (cond
, 1);
2804 /* We can't perform this optimization if either operand might be or might
2805 contain a signed zero. */
2806 if (HONOR_SIGNED_ZEROS (mode
))
2808 /* It is sufficient to check if CST is or contains a zero. We must
2809 handle float, complex, and vector. If any subpart is a zero, then
2810 the optimization can't be performed. */
2811 /* ??? The complex and vector checks are not implemented yet. We just
2812 always return zero for them. */
2813 if (GET_CODE (cst
) == CONST_DOUBLE
)
2816 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
2817 if (REAL_VALUES_EQUAL (d
, dconst0
))
2824 return gcse_constant_p (cst
);
2827 /* Find the implicit sets of a function. An "implicit set" is a constraint
2828 on the value of a variable, implied by a conditional jump. For example,
2829 following "if (x == 2)", the then branch may be optimized as though the
2830 conditional performed an "explicit set", in this example, "x = 2". This
2831 function records the set patterns that are implicit at the start of each
2834 FIXME: This would be more effective if critical edges are pre-split. As
2835 it is now, we can't record implicit sets for blocks that have
2836 critical successor edges. This results in missed optimizations
2837 and in more (unnecessary) work in cfgcleanup.c:thread_jump(). */
2840 find_implicit_sets (void)
2842 basic_block bb
, dest
;
2848 /* Check for more than one successor. */
2849 if (EDGE_COUNT (bb
->succs
) > 1)
2851 cond
= fis_get_condition (BB_END (bb
));
2854 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
2855 && REG_P (XEXP (cond
, 0))
2856 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
2857 && implicit_set_cond_p (cond
))
2859 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
2860 : FALLTHRU_EDGE (bb
)->dest
;
2863 /* Record nothing for a critical edge. */
2864 && single_pred_p (dest
)
2865 && dest
!= EXIT_BLOCK_PTR
)
2867 new_rtx
= gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
2869 implicit_sets
[dest
->index
] = new_rtx
;
2872 fprintf(dump_file
, "Implicit set of reg %d in ",
2873 REGNO (XEXP (cond
, 0)));
2874 fprintf(dump_file
, "basic block %d\n", dest
->index
);
2882 fprintf (dump_file
, "Found %d implicit sets\n", count
);
2885 /* Bypass conditional jumps. */
2887 /* The value of last_basic_block at the beginning of the jump_bypass
2888 pass. The use of redirect_edge_and_branch_force may introduce new
2889 basic blocks, but the data flow analysis is only valid for basic
2890 block indices less than bypass_last_basic_block. */
2892 static int bypass_last_basic_block
;
2894 /* Find a set of REGNO to a constant that is available at the end of basic
2895 block BB. Returns NULL if no such set is found. Based heavily upon
2898 static struct expr
*
2899 find_bypass_set (int regno
, int bb
)
2901 struct expr
*result
= 0;
2906 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2910 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
2912 set
= next_set (regno
, set
);
2918 gcc_assert (GET_CODE (set
->expr
) == SET
);
2920 src
= SET_SRC (set
->expr
);
2921 if (gcse_constant_p (src
))
2927 regno
= REGNO (src
);
2933 /* Subroutine of bypass_block that checks whether a pseudo is killed by
2934 any of the instructions inserted on an edge. Jump bypassing places
2935 condition code setters on CFG edges using insert_insn_on_edge. This
2936 function is required to check that our data flow analysis is still
2937 valid prior to commit_edge_insertions. */
2940 reg_killed_on_edge (const_rtx reg
, const_edge e
)
2944 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
2945 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
2951 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
2952 basic block BB which has more than one predecessor. If not NULL, SETCC
2953 is the first instruction of BB, which is immediately followed by JUMP_INSN
2954 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
2955 Returns nonzero if a change was made.
2957 During the jump bypassing pass, we may place copies of SETCC instructions
2958 on CFG edges. The following routine must be careful to pay attention to
2959 these inserted insns when performing its transformations. */
2962 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
2967 int may_be_loop_header
;
2971 insn
= (setcc
!= NULL
) ? setcc
: jump
;
2973 /* Determine set of register uses in INSN. */
2975 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2976 note
= find_reg_equal_equiv_note (insn
);
2978 find_used_regs (&XEXP (note
, 0), NULL
);
2980 may_be_loop_header
= false;
2981 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2982 if (e
->flags
& EDGE_DFS_BACK
)
2984 may_be_loop_header
= true;
2989 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
2993 if (e
->flags
& EDGE_COMPLEX
)
2999 /* We can't redirect edges from new basic blocks. */
3000 if (e
->src
->index
>= bypass_last_basic_block
)
3006 /* The irreducible loops created by redirecting of edges entering the
3007 loop from outside would decrease effectiveness of some of the following
3008 optimizations, so prevent this. */
3009 if (may_be_loop_header
3010 && !(e
->flags
& EDGE_DFS_BACK
))
3016 for (i
= 0; i
< reg_use_count
; i
++)
3018 struct reg_use
*reg_used
= ®_use_table
[i
];
3019 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
3020 basic_block dest
, old_dest
;
3024 set
= find_bypass_set (regno
, e
->src
->index
);
3029 /* Check the data flow is valid after edge insertions. */
3030 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
3033 src
= SET_SRC (pc_set (jump
));
3036 src
= simplify_replace_rtx (src
,
3037 SET_DEST (PATTERN (setcc
)),
3038 SET_SRC (PATTERN (setcc
)));
3040 new_rtx
= simplify_replace_rtx (src
, reg_used
->reg_rtx
,
3041 SET_SRC (set
->expr
));
3043 /* Jump bypassing may have already placed instructions on
3044 edges of the CFG. We can't bypass an outgoing edge that
3045 has instructions associated with it, as these insns won't
3046 get executed if the incoming edge is redirected. */
3048 if (new_rtx
== pc_rtx
)
3050 edest
= FALLTHRU_EDGE (bb
);
3051 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
3053 else if (GET_CODE (new_rtx
) == LABEL_REF
)
3055 dest
= BLOCK_FOR_INSN (XEXP (new_rtx
, 0));
3056 /* Don't bypass edges containing instructions. */
3057 edest
= find_edge (bb
, dest
);
3058 if (edest
&& edest
->insns
.r
)
3064 /* Avoid unification of the edge with other edges from original
3065 branch. We would end up emitting the instruction on "both"
3068 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
3069 && find_edge (e
->src
, dest
))
3075 && dest
!= EXIT_BLOCK_PTR
)
3077 redirect_edge_and_branch_force (e
, dest
);
3079 /* Copy the register setter to the redirected edge.
3080 Don't copy CC0 setters, as CC0 is dead after jump. */
3083 rtx pat
= PATTERN (setcc
);
3084 if (!CC0_P (SET_DEST (pat
)))
3085 insert_insn_on_edge (copy_insn (pat
), e
);
3088 if (dump_file
!= NULL
)
3090 fprintf (dump_file
, "JUMP-BYPASS: Proved reg %d "
3091 "in jump_insn %d equals constant ",
3092 regno
, INSN_UID (jump
));
3093 print_rtl (dump_file
, SET_SRC (set
->expr
));
3094 fprintf (dump_file
, "\nBypass edge from %d->%d to %d\n",
3095 e
->src
->index
, old_dest
->index
, dest
->index
);
3108 /* Find basic blocks with more than one predecessor that only contain a
3109 single conditional jump. If the result of the comparison is known at
3110 compile-time from any incoming edge, redirect that edge to the
3111 appropriate target. Returns nonzero if a change was made.
3113 This function is now mis-named, because we also handle indirect jumps. */
3116 bypass_conditional_jumps (void)
3124 /* Note we start at block 1. */
3125 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3128 bypass_last_basic_block
= last_basic_block
;
3129 mark_dfs_back_edges ();
3132 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
3133 EXIT_BLOCK_PTR
, next_bb
)
3135 /* Check for more than one predecessor. */
3136 if (!single_pred_p (bb
))
3139 FOR_BB_INSNS (bb
, insn
)
3140 if (NONJUMP_INSN_P (insn
))
3144 if (GET_CODE (PATTERN (insn
)) != SET
)
3147 dest
= SET_DEST (PATTERN (insn
));
3148 if (REG_P (dest
) || CC0_P (dest
))
3153 else if (JUMP_P (insn
))
3155 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
3156 && onlyjump_p (insn
))
3157 changed
|= bypass_block (bb
, setcc
, insn
);
3160 else if (INSN_P (insn
))
3165 /* If we bypassed any register setting insns, we inserted a
3166 copy on the redirected edge. These need to be committed. */
3168 commit_edge_insertions ();
3173 /* Compute PRE+LCM working variables. */
3175 /* Local properties of expressions. */
3176 /* Nonzero for expressions that are transparent in the block. */
3177 static sbitmap
*transp
;
3179 /* Nonzero for expressions that are transparent at the end of the block.
3180 This is only zero for expressions killed by abnormal critical edge
3181 created by a calls. */
3182 static sbitmap
*transpout
;
3184 /* Nonzero for expressions that are computed (available) in the block. */
3185 static sbitmap
*comp
;
3187 /* Nonzero for expressions that are locally anticipatable in the block. */
3188 static sbitmap
*antloc
;
3190 /* Nonzero for expressions where this block is an optimal computation
3192 static sbitmap
*pre_optimal
;
3194 /* Nonzero for expressions which are redundant in a particular block. */
3195 static sbitmap
*pre_redundant
;
3197 /* Nonzero for expressions which should be inserted on a specific edge. */
3198 static sbitmap
*pre_insert_map
;
3200 /* Nonzero for expressions which should be deleted in a specific block. */
3201 static sbitmap
*pre_delete_map
;
3203 /* Contains the edge_list returned by pre_edge_lcm. */
3204 static struct edge_list
*edge_list
;
3206 /* Allocate vars used for PRE analysis. */
3209 alloc_pre_mem (int n_blocks
, int n_exprs
)
3211 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3212 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3213 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3216 pre_redundant
= NULL
;
3217 pre_insert_map
= NULL
;
3218 pre_delete_map
= NULL
;
3219 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3221 /* pre_insert and pre_delete are allocated later. */
3224 /* Free vars used for PRE analysis. */
3229 sbitmap_vector_free (transp
);
3230 sbitmap_vector_free (comp
);
3232 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3235 sbitmap_vector_free (pre_optimal
);
3237 sbitmap_vector_free (pre_redundant
);
3239 sbitmap_vector_free (pre_insert_map
);
3241 sbitmap_vector_free (pre_delete_map
);
3243 transp
= comp
= NULL
;
3244 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
3247 /* Top level routine to do the dataflow analysis needed by PRE. */
3250 compute_pre_data (void)
3252 sbitmap trapping_expr
;
3256 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
3257 sbitmap_vector_zero (ae_kill
, last_basic_block
);
3259 /* Collect expressions which might trap. */
3260 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
3261 sbitmap_zero (trapping_expr
);
3262 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
3265 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
3266 if (may_trap_p (e
->expr
))
3267 SET_BIT (trapping_expr
, e
->bitmap_index
);
3270 /* Compute ae_kill for each basic block using:
3280 /* If the current block is the destination of an abnormal edge, we
3281 kill all trapping expressions because we won't be able to properly
3282 place the instruction on the edge. So make them neither
3283 anticipatable nor transparent. This is fairly conservative. */
3284 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3285 if (e
->flags
& EDGE_ABNORMAL
)
3287 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
3288 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
3292 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
3293 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
3296 edge_list
= pre_edge_lcm (expr_hash_table
.n_elems
, transp
, comp
, antloc
,
3297 ae_kill
, &pre_insert_map
, &pre_delete_map
);
3298 sbitmap_vector_free (antloc
);
3300 sbitmap_vector_free (ae_kill
);
3302 sbitmap_free (trapping_expr
);
3307 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3310 VISITED is a pointer to a working buffer for tracking which BB's have
3311 been visited. It is NULL for the top-level call.
3313 We treat reaching expressions that go through blocks containing the same
3314 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3315 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3316 2 as not reaching. The intent is to improve the probability of finding
3317 only one reaching expression and to reduce register lifetimes by picking
3318 the closest such expression. */
3321 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
3326 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
3328 basic_block pred_bb
= pred
->src
;
3330 if (pred
->src
== ENTRY_BLOCK_PTR
3331 /* Has predecessor has already been visited? */
3332 || visited
[pred_bb
->index
])
3333 ;/* Nothing to do. */
3335 /* Does this predecessor generate this expression? */
3336 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
3338 /* Is this the occurrence we're looking for?
3339 Note that there's only one generating occurrence per block
3340 so we just need to check the block number. */
3341 if (occr_bb
== pred_bb
)
3344 visited
[pred_bb
->index
] = 1;
3346 /* Ignore this predecessor if it kills the expression. */
3347 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
3348 visited
[pred_bb
->index
] = 1;
3350 /* Neither gen nor kill. */
3353 visited
[pred_bb
->index
] = 1;
3354 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
3359 /* All paths have been checked. */
3363 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3364 memory allocated for that function is returned. */
3367 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
3370 char *visited
= XCNEWVEC (char, last_basic_block
);
3372 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
3379 /* Given an expr, generate RTL which we can insert at the end of a BB,
3380 or on an edge. Set the block number of any insns generated to
3384 process_insert_insn (struct expr
*expr
)
3386 rtx reg
= expr
->reaching_reg
;
3387 rtx exp
= copy_rtx (expr
->expr
);
3392 /* If the expression is something that's an operand, like a constant,
3393 just copy it to a register. */
3394 if (general_operand (exp
, GET_MODE (reg
)))
3395 emit_move_insn (reg
, exp
);
3397 /* Otherwise, make a new insn to compute this expression and make sure the
3398 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3399 expression to make sure we don't have any sharing issues. */
3402 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
3404 if (insn_invalid_p (insn
))
3415 /* Add EXPR to the end of basic block BB.
3417 This is used by both the PRE and code hoisting.
3419 For PRE, we want to verify that the expr is either transparent
3420 or locally anticipatable in the target block. This check makes
3421 no sense for code hoisting. */
3424 insert_insn_end_basic_block (struct expr
*expr
, basic_block bb
, int pre
)
3426 rtx insn
= BB_END (bb
);
3428 rtx reg
= expr
->reaching_reg
;
3429 int regno
= REGNO (reg
);
3432 pat
= process_insert_insn (expr
);
3433 gcc_assert (pat
&& INSN_P (pat
));
3436 while (NEXT_INSN (pat_end
) != NULL_RTX
)
3437 pat_end
= NEXT_INSN (pat_end
);
3439 /* If the last insn is a jump, insert EXPR in front [taking care to
3440 handle cc0, etc. properly]. Similarly we need to care trapping
3441 instructions in presence of non-call exceptions. */
3444 || (NONJUMP_INSN_P (insn
)
3445 && (!single_succ_p (bb
)
3446 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
)))
3451 /* It should always be the case that we can put these instructions
3452 anywhere in the basic block with performing PRE optimizations.
3454 gcc_assert (!NONJUMP_INSN_P (insn
) || !pre
3455 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
3456 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
3458 /* If this is a jump table, then we can't insert stuff here. Since
3459 we know the previous real insn must be the tablejump, we insert
3460 the new instruction just before the tablejump. */
3461 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
3462 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
3463 insn
= prev_real_insn (insn
);
3466 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
3467 if cc0 isn't set. */
3468 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3470 insn
= XEXP (note
, 0);
3473 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
3474 if (maybe_cc0_setter
3475 && INSN_P (maybe_cc0_setter
)
3476 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
3477 insn
= maybe_cc0_setter
;
3480 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3481 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
3484 /* Likewise if the last insn is a call, as will happen in the presence
3485 of exception handling. */
3486 else if (CALL_P (insn
)
3487 && (!single_succ_p (bb
)
3488 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
))
3490 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
3491 we search backward and place the instructions before the first
3492 parameter is loaded. Do this for everyone for consistency and a
3493 presumption that we'll get better code elsewhere as well.
3495 It should always be the case that we can put these instructions
3496 anywhere in the basic block with performing PRE optimizations.
3500 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
3501 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
3503 /* Since different machines initialize their parameter registers
3504 in different orders, assume nothing. Collect the set of all
3505 parameter registers. */
3506 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
3508 /* If we found all the parameter loads, then we want to insert
3509 before the first parameter load.
3511 If we did not find all the parameter loads, then we might have
3512 stopped on the head of the block, which could be a CODE_LABEL.
3513 If we inserted before the CODE_LABEL, then we would be putting
3514 the insn in the wrong basic block. In that case, put the insn
3515 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
3516 while (LABEL_P (insn
)
3517 || NOTE_INSN_BASIC_BLOCK_P (insn
))
3518 insn
= NEXT_INSN (insn
);
3520 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
3523 new_insn
= emit_insn_after_noloc (pat
, insn
, bb
);
3528 add_label_notes (PATTERN (pat
), new_insn
);
3531 pat
= NEXT_INSN (pat
);
3534 gcse_create_count
++;
3538 fprintf (dump_file
, "PRE/HOIST: end of bb %d, insn %d, ",
3539 bb
->index
, INSN_UID (new_insn
));
3540 fprintf (dump_file
, "copying expression %d to reg %d\n",
3541 expr
->bitmap_index
, regno
);
3545 /* Insert partially redundant expressions on edges in the CFG to make
3546 the expressions fully redundant. */
3549 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
3551 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
3554 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
3555 if it reaches any of the deleted expressions. */
3557 set_size
= pre_insert_map
[0]->size
;
3558 num_edges
= NUM_EDGES (edge_list
);
3559 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
3560 sbitmap_vector_zero (inserted
, num_edges
);
3562 for (e
= 0; e
< num_edges
; e
++)
3565 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
3567 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
3569 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
3571 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
3572 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
3574 struct expr
*expr
= index_map
[j
];
3577 /* Now look at each deleted occurrence of this expression. */
3578 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
3580 if (! occr
->deleted_p
)
3583 /* Insert this expression on this edge if it would
3584 reach the deleted occurrence in BB. */
3585 if (!TEST_BIT (inserted
[e
], j
))
3588 edge eg
= INDEX_EDGE (edge_list
, e
);
3590 /* We can't insert anything on an abnormal and
3591 critical edge, so we insert the insn at the end of
3592 the previous block. There are several alternatives
3593 detailed in Morgans book P277 (sec 10.5) for
3594 handling this situation. This one is easiest for
3597 if (eg
->flags
& EDGE_ABNORMAL
)
3598 insert_insn_end_basic_block (index_map
[j
], bb
, 0);
3601 insn
= process_insert_insn (index_map
[j
]);
3602 insert_insn_on_edge (insn
, eg
);
3607 fprintf (dump_file
, "PRE: edge (%d,%d), ",
3609 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
3610 fprintf (dump_file
, "copy expression %d\n",
3611 expr
->bitmap_index
);
3614 update_ld_motion_stores (expr
);
3615 SET_BIT (inserted
[e
], j
);
3617 gcse_create_count
++;
3624 sbitmap_vector_free (inserted
);
3628 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
3629 Given "old_reg <- expr" (INSN), instead of adding after it
3630 reaching_reg <- old_reg
3631 it's better to do the following:
3632 reaching_reg <- expr
3633 old_reg <- reaching_reg
3634 because this way copy propagation can discover additional PRE
3635 opportunities. But if this fails, we try the old way.
3636 When "expr" is a store, i.e.
3637 given "MEM <- old_reg", instead of adding after it
3638 reaching_reg <- old_reg
3639 it's better to add it before as follows:
3640 reaching_reg <- old_reg
3641 MEM <- reaching_reg. */
3644 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
3646 rtx reg
= expr
->reaching_reg
;
3647 int regno
= REGNO (reg
);
3648 int indx
= expr
->bitmap_index
;
3649 rtx pat
= PATTERN (insn
);
3650 rtx set
, first_set
, new_insn
;
3654 /* This block matches the logic in hash_scan_insn. */
3655 switch (GET_CODE (pat
))
3662 /* Search through the parallel looking for the set whose
3663 source was the expression that we're interested in. */
3664 first_set
= NULL_RTX
;
3666 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3668 rtx x
= XVECEXP (pat
, 0, i
);
3669 if (GET_CODE (x
) == SET
)
3671 /* If the source was a REG_EQUAL or REG_EQUIV note, we
3672 may not find an equivalent expression, but in this
3673 case the PARALLEL will have a single set. */
3674 if (first_set
== NULL_RTX
)
3676 if (expr_equiv_p (SET_SRC (x
), expr
->expr
))
3684 gcc_assert (first_set
);
3685 if (set
== NULL_RTX
)
3693 if (REG_P (SET_DEST (set
)))
3695 old_reg
= SET_DEST (set
);
3696 /* Check if we can modify the set destination in the original insn. */
3697 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
3699 new_insn
= gen_move_insn (old_reg
, reg
);
3700 new_insn
= emit_insn_after (new_insn
, insn
);
3704 new_insn
= gen_move_insn (reg
, old_reg
);
3705 new_insn
= emit_insn_after (new_insn
, insn
);
3708 else /* This is possible only in case of a store to memory. */
3710 old_reg
= SET_SRC (set
);
3711 new_insn
= gen_move_insn (reg
, old_reg
);
3713 /* Check if we can modify the set source in the original insn. */
3714 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
3715 new_insn
= emit_insn_before (new_insn
, insn
);
3717 new_insn
= emit_insn_after (new_insn
, insn
);
3720 gcse_create_count
++;
3724 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
3725 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
3726 INSN_UID (insn
), regno
);
3729 /* Copy available expressions that reach the redundant expression
3730 to `reaching_reg'. */
3733 pre_insert_copies (void)
3735 unsigned int i
, added_copy
;
3740 /* For each available expression in the table, copy the result to
3741 `reaching_reg' if the expression reaches a deleted one.
3743 ??? The current algorithm is rather brute force.
3744 Need to do some profiling. */
3746 for (i
= 0; i
< expr_hash_table
.size
; i
++)
3747 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
3749 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
3750 we don't want to insert a copy here because the expression may not
3751 really be redundant. So only insert an insn if the expression was
3752 deleted. This test also avoids further processing if the
3753 expression wasn't deleted anywhere. */
3754 if (expr
->reaching_reg
== NULL
)
3757 /* Set when we add a copy for that expression. */
3760 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
3762 if (! occr
->deleted_p
)
3765 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
3767 rtx insn
= avail
->insn
;
3769 /* No need to handle this one if handled already. */
3770 if (avail
->copied_p
)
3773 /* Don't handle this one if it's a redundant one. */
3774 if (INSN_DELETED_P (insn
))
3777 /* Or if the expression doesn't reach the deleted one. */
3778 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
3780 BLOCK_FOR_INSN (occr
->insn
)))
3785 /* Copy the result of avail to reaching_reg. */
3786 pre_insert_copy_insn (expr
, insn
);
3787 avail
->copied_p
= 1;
3792 update_ld_motion_stores (expr
);
3796 /* Emit move from SRC to DEST noting the equivalence with expression computed
3799 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
3802 rtx set
= single_set (insn
), set2
;
3806 /* This should never fail since we're creating a reg->reg copy
3807 we've verified to be valid. */
3809 new_rtx
= emit_insn_after (gen_move_insn (dest
, src
), insn
);
3811 /* Note the equivalence for local CSE pass. */
3812 set2
= single_set (new_rtx
);
3813 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
3815 if ((note
= find_reg_equal_equiv_note (insn
)))
3816 eqv
= XEXP (note
, 0);
3818 eqv
= SET_SRC (set
);
3820 set_unique_reg_note (new_rtx
, REG_EQUAL
, copy_insn_1 (eqv
));
3825 /* Delete redundant computations.
3826 Deletion is done by changing the insn to copy the `reaching_reg' of
3827 the expression into the result of the SET. It is left to later passes
3828 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
3830 Returns nonzero if a change is made. */
3841 for (i
= 0; i
< expr_hash_table
.size
; i
++)
3842 for (expr
= expr_hash_table
.table
[i
];
3844 expr
= expr
->next_same_hash
)
3846 int indx
= expr
->bitmap_index
;
3848 /* We only need to search antic_occr since we require
3851 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
3853 rtx insn
= occr
->insn
;
3855 basic_block bb
= BLOCK_FOR_INSN (insn
);
3857 /* We only delete insns that have a single_set. */
3858 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
3859 && (set
= single_set (insn
)) != 0
3860 && dbg_cnt (pre_insn
))
3862 /* Create a pseudo-reg to store the result of reaching
3863 expressions into. Get the mode for the new pseudo from
3864 the mode of the original destination pseudo. */
3865 if (expr
->reaching_reg
== NULL
)
3866 expr
->reaching_reg
= gen_reg_rtx_and_attrs (SET_DEST (set
));
3868 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
3870 occr
->deleted_p
= 1;
3877 "PRE: redundant insn %d (expression %d) in ",
3878 INSN_UID (insn
), indx
);
3879 fprintf (dump_file
, "bb %d, reaching reg is %d\n",
3880 bb
->index
, REGNO (expr
->reaching_reg
));
3889 /* Perform GCSE optimizations using PRE.
3890 This is called by one_pre_gcse_pass after all the dataflow analysis
3893 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
3894 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
3895 Compiler Design and Implementation.
3897 ??? A new pseudo reg is created to hold the reaching expression. The nice
3898 thing about the classical approach is that it would try to use an existing
3899 reg. If the register can't be adequately optimized [i.e. we introduce
3900 reload problems], one could add a pass here to propagate the new register
3903 ??? We don't handle single sets in PARALLELs because we're [currently] not
3904 able to copy the rest of the parallel when we insert copies to create full
3905 redundancies from partial redundancies. However, there's no reason why we
3906 can't handle PARALLELs in the cases where there are no partial
3913 int did_insert
, changed
;
3914 struct expr
**index_map
;
3917 /* Compute a mapping from expression number (`bitmap_index') to
3918 hash table entry. */
3920 index_map
= XCNEWVEC (struct expr
*, expr_hash_table
.n_elems
);
3921 for (i
= 0; i
< expr_hash_table
.size
; i
++)
3922 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
3923 index_map
[expr
->bitmap_index
] = expr
;
3925 /* Delete the redundant insns first so that
3926 - we know what register to use for the new insns and for the other
3927 ones with reaching expressions
3928 - we know which insns are redundant when we go to create copies */
3930 changed
= pre_delete ();
3931 did_insert
= pre_edge_insert (edge_list
, index_map
);
3933 /* In other places with reaching expressions, copy the expression to the
3934 specially allocated pseudo-reg that reaches the redundant expr. */
3935 pre_insert_copies ();
3938 commit_edge_insertions ();
3946 /* Top level routine to perform one PRE GCSE pass.
3948 Return nonzero if a change was made. */
3951 one_pre_gcse_pass (void)
3955 gcse_subst_count
= 0;
3956 gcse_create_count
= 0;
3958 /* Return if there's nothing to do, or it is too expensive. */
3959 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
3960 || is_too_expensive (_("PRE disabled")))
3963 /* We need alias. */
3964 init_alias_analysis ();
3967 gcc_obstack_init (&gcse_obstack
);
3970 alloc_hash_table (get_max_uid (), &expr_hash_table
, 0);
3971 add_noreturn_fake_exit_edges ();
3973 compute_ld_motion_mems ();
3975 compute_hash_table (&expr_hash_table
);
3976 trim_ld_motion_mems ();
3978 dump_hash_table (dump_file
, "Expression", &expr_hash_table
);
3980 if (expr_hash_table
.n_elems
> 0)
3982 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
3983 compute_pre_data ();
3984 changed
|= pre_gcse ();
3985 free_edge_list (edge_list
);
3990 remove_fake_exit_edges ();
3991 free_hash_table (&expr_hash_table
);
3994 obstack_free (&gcse_obstack
, NULL
);
3996 /* We are finished with alias. */
3997 end_alias_analysis ();
4001 fprintf (dump_file
, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
4002 current_function_name (), n_basic_blocks
, bytes_used
);
4003 fprintf (dump_file
, "%d substs, %d insns created\n",
4004 gcse_subst_count
, gcse_create_count
);
4010 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4011 to INSN. If such notes are added to an insn which references a
4012 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
4013 that note, because the following loop optimization pass requires
4016 /* ??? If there was a jump optimization pass after gcse and before loop,
4017 then we would not need to do this here, because jump would add the
4018 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
4021 add_label_notes (rtx x
, rtx insn
)
4023 enum rtx_code code
= GET_CODE (x
);
4027 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
4029 /* This code used to ignore labels that referred to dispatch tables to
4030 avoid flow generating (slightly) worse code.
4032 We no longer ignore such label references (see LABEL_REF handling in
4033 mark_jump_label for additional information). */
4035 /* There's no reason for current users to emit jump-insns with
4036 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
4038 gcc_assert (!JUMP_P (insn
));
4039 add_reg_note (insn
, REG_LABEL_OPERAND
, XEXP (x
, 0));
4041 if (LABEL_P (XEXP (x
, 0)))
4042 LABEL_NUSES (XEXP (x
, 0))++;
4047 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
4050 add_label_notes (XEXP (x
, i
), insn
);
4051 else if (fmt
[i
] == 'E')
4052 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4053 add_label_notes (XVECEXP (x
, i
, j
), insn
);
4057 /* Compute transparent outgoing information for each block.
4059 An expression is transparent to an edge unless it is killed by
4060 the edge itself. This can only happen with abnormal control flow,
4061 when the edge is traversed through a call. This happens with
4062 non-local labels and exceptions.
4064 This would not be necessary if we split the edge. While this is
4065 normally impossible for abnormal critical edges, with some effort
4066 it should be possible with exception handling, since we still have
4067 control over which handler should be invoked. But due to increased
4068 EH table sizes, this may not be worthwhile. */
4071 compute_transpout (void)
4077 sbitmap_vector_ones (transpout
, last_basic_block
);
4081 /* Note that flow inserted a nop at the end of basic blocks that
4082 end in call instructions for reasons other than abnormal
4084 if (! CALL_P (BB_END (bb
)))
4087 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4088 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
4089 if (MEM_P (expr
->expr
))
4091 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
4092 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
4095 /* ??? Optimally, we would use interprocedural alias
4096 analysis to determine if this mem is actually killed
4098 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
4103 /* Code Hoisting variables and subroutines. */
4105 /* Very busy expressions. */
4106 static sbitmap
*hoist_vbein
;
4107 static sbitmap
*hoist_vbeout
;
4109 /* Hoistable expressions. */
4110 static sbitmap
*hoist_exprs
;
4112 /* ??? We could compute post dominators and run this algorithm in
4113 reverse to perform tail merging, doing so would probably be
4114 more effective than the tail merging code in jump.c.
4116 It's unclear if tail merging could be run in parallel with
4117 code hoisting. It would be nice. */
4119 /* Allocate vars used for code hoisting analysis. */
4122 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
4124 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4125 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4126 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4128 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4129 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4130 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4131 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4134 /* Free vars used for code hoisting analysis. */
4137 free_code_hoist_mem (void)
4139 sbitmap_vector_free (antloc
);
4140 sbitmap_vector_free (transp
);
4141 sbitmap_vector_free (comp
);
4143 sbitmap_vector_free (hoist_vbein
);
4144 sbitmap_vector_free (hoist_vbeout
);
4145 sbitmap_vector_free (hoist_exprs
);
4146 sbitmap_vector_free (transpout
);
4148 free_dominance_info (CDI_DOMINATORS
);
4151 /* Compute the very busy expressions at entry/exit from each block.
4153 An expression is very busy if all paths from a given point
4154 compute the expression. */
4157 compute_code_hoist_vbeinout (void)
4159 int changed
, passes
;
4162 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
4163 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
4172 /* We scan the blocks in the reverse order to speed up
4174 FOR_EACH_BB_REVERSE (bb
)
4176 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
4177 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
],
4178 hoist_vbein
, bb
->index
);
4180 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
],
4182 hoist_vbeout
[bb
->index
],
4190 fprintf (dump_file
, "hoisting vbeinout computation: %d passes\n", passes
);
4193 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4196 compute_code_hoist_data (void)
4198 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
4199 compute_transpout ();
4200 compute_code_hoist_vbeinout ();
4201 calculate_dominance_info (CDI_DOMINATORS
);
4203 fprintf (dump_file
, "\n");
4206 /* Determine if the expression identified by EXPR_INDEX would
4207 reach BB unimpared if it was placed at the end of EXPR_BB.
4209 It's unclear exactly what Muchnick meant by "unimpared". It seems
4210 to me that the expression must either be computed or transparent in
4211 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4212 would allow the expression to be hoisted out of loops, even if
4213 the expression wasn't a loop invariant.
4215 Contrast this to reachability for PRE where an expression is
4216 considered reachable if *any* path reaches instead of *all*
4220 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
4224 int visited_allocated_locally
= 0;
4227 if (visited
== NULL
)
4229 visited_allocated_locally
= 1;
4230 visited
= XCNEWVEC (char, last_basic_block
);
4233 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
4235 basic_block pred_bb
= pred
->src
;
4237 if (pred
->src
== ENTRY_BLOCK_PTR
)
4239 else if (pred_bb
== expr_bb
)
4241 else if (visited
[pred_bb
->index
])
4244 /* Does this predecessor generate this expression? */
4245 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
4247 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
4253 visited
[pred_bb
->index
] = 1;
4254 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
4259 if (visited_allocated_locally
)
4262 return (pred
== NULL
);
4265 /* Actually perform code hoisting. */
4270 basic_block bb
, dominated
;
4271 VEC (basic_block
, heap
) *domby
;
4273 struct expr
**index_map
;
4277 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
4279 /* Compute a mapping from expression number (`bitmap_index') to
4280 hash table entry. */
4282 index_map
= XCNEWVEC (struct expr
*, expr_hash_table
.n_elems
);
4283 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4284 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4285 index_map
[expr
->bitmap_index
] = expr
;
4287 /* Walk over each basic block looking for potentially hoistable
4288 expressions, nothing gets hoisted from the entry block. */
4292 int insn_inserted_p
;
4294 domby
= get_dominated_by (CDI_DOMINATORS
, bb
);
4295 /* Examine each expression that is very busy at the exit of this
4296 block. These are the potentially hoistable expressions. */
4297 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
4301 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
4302 && TEST_BIT (transpout
[bb
->index
], i
))
4304 /* We've found a potentially hoistable expression, now
4305 we look at every block BB dominates to see if it
4306 computes the expression. */
4307 for (j
= 0; VEC_iterate (basic_block
, domby
, j
, dominated
); j
++)
4309 /* Ignore self dominance. */
4310 if (bb
== dominated
)
4312 /* We've found a dominated block, now see if it computes
4313 the busy expression and whether or not moving that
4314 expression to the "beginning" of that block is safe. */
4315 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4318 /* Note if the expression would reach the dominated block
4319 unimpared if it was placed at the end of BB.
4321 Keep track of how many times this expression is hoistable
4322 from a dominated block into BB. */
4323 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4327 /* If we found more than one hoistable occurrence of this
4328 expression, then note it in the bitmap of expressions to
4329 hoist. It makes no sense to hoist things which are computed
4330 in only one BB, and doing so tends to pessimize register
4331 allocation. One could increase this value to try harder
4332 to avoid any possible code expansion due to register
4333 allocation issues; however experiments have shown that
4334 the vast majority of hoistable expressions are only movable
4335 from two successors, so raising this threshold is likely
4336 to nullify any benefit we get from code hoisting. */
4339 SET_BIT (hoist_exprs
[bb
->index
], i
);
4344 /* If we found nothing to hoist, then quit now. */
4347 VEC_free (basic_block
, heap
, domby
);
4351 /* Loop over all the hoistable expressions. */
4352 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
4354 /* We want to insert the expression into BB only once, so
4355 note when we've inserted it. */
4356 insn_inserted_p
= 0;
4358 /* These tests should be the same as the tests above. */
4359 if (TEST_BIT (hoist_exprs
[bb
->index
], i
))
4361 /* We've found a potentially hoistable expression, now
4362 we look at every block BB dominates to see if it
4363 computes the expression. */
4364 for (j
= 0; VEC_iterate (basic_block
, domby
, j
, dominated
); j
++)
4366 /* Ignore self dominance. */
4367 if (bb
== dominated
)
4370 /* We've found a dominated block, now see if it computes
4371 the busy expression and whether or not moving that
4372 expression to the "beginning" of that block is safe. */
4373 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4376 /* The expression is computed in the dominated block and
4377 it would be safe to compute it at the start of the
4378 dominated block. Now we have to determine if the
4379 expression would reach the dominated block if it was
4380 placed at the end of BB. */
4381 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4383 struct expr
*expr
= index_map
[i
];
4384 struct occr
*occr
= expr
->antic_occr
;
4388 /* Find the right occurrence of this expression. */
4389 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
4394 set
= single_set (insn
);
4397 /* Create a pseudo-reg to store the result of reaching
4398 expressions into. Get the mode for the new pseudo
4399 from the mode of the original destination pseudo. */
4400 if (expr
->reaching_reg
== NULL
)
4402 = gen_reg_rtx_and_attrs (SET_DEST (set
));
4404 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4406 occr
->deleted_p
= 1;
4410 if (!insn_inserted_p
)
4412 insert_insn_end_basic_block (index_map
[i
], bb
, 0);
4413 insn_inserted_p
= 1;
4419 VEC_free (basic_block
, heap
, domby
);
4427 /* Top level routine to perform one code hoisting (aka unification) pass
4429 Return nonzero if a change was made. */
4432 one_code_hoisting_pass (void)
4436 gcse_subst_count
= 0;
4437 gcse_create_count
= 0;
4439 /* Return if there's nothing to do, or it is too expensive. */
4440 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
4441 || is_too_expensive (_("GCSE disabled")))
4444 /* We need alias. */
4445 init_alias_analysis ();
4448 gcc_obstack_init (&gcse_obstack
);
4451 alloc_hash_table (get_max_uid (), &expr_hash_table
, 0);
4452 compute_hash_table (&expr_hash_table
);
4454 dump_hash_table (dump_file
, "Code Hosting Expressions", &expr_hash_table
);
4456 if (expr_hash_table
.n_elems
> 0)
4458 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
4459 compute_code_hoist_data ();
4460 changed
= hoist_code ();
4461 free_code_hoist_mem ();
4464 free_hash_table (&expr_hash_table
);
4466 obstack_free (&gcse_obstack
, NULL
);
4468 /* We are finished with alias. */
4469 end_alias_analysis ();
4473 fprintf (dump_file
, "HOIST of %s, %d basic blocks, %d bytes needed, ",
4474 current_function_name (), n_basic_blocks
, bytes_used
);
4475 fprintf (dump_file
, "%d substs, %d insns created\n",
4476 gcse_subst_count
, gcse_create_count
);
4482 /* Here we provide the things required to do store motion towards
4483 the exit. In order for this to be effective, gcse also needed to
4484 be taught how to move a load when it is kill only by a store to itself.
4489 void foo(float scale)
4491 for (i=0; i<10; i++)
4495 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4496 the load out since its live around the loop, and stored at the bottom
4499 The 'Load Motion' referred to and implemented in this file is
4500 an enhancement to gcse which when using edge based lcm, recognizes
4501 this situation and allows gcse to move the load out of the loop.
4503 Once gcse has hoisted the load, store motion can then push this
4504 load towards the exit, and we end up with no loads or stores of 'i'
4508 pre_ldst_expr_hash (const void *p
)
4510 int do_not_record_p
= 0;
4511 const struct ls_expr
*const x
= (const struct ls_expr
*) p
;
4512 return hash_rtx (x
->pattern
, GET_MODE (x
->pattern
), &do_not_record_p
, NULL
, false);
4516 pre_ldst_expr_eq (const void *p1
, const void *p2
)
4518 const struct ls_expr
*const ptr1
= (const struct ls_expr
*) p1
,
4519 *const ptr2
= (const struct ls_expr
*) p2
;
4520 return expr_equiv_p (ptr1
->pattern
, ptr2
->pattern
);
4523 /* This will search the ldst list for a matching expression. If it
4524 doesn't find one, we create one and initialize it. */
4526 static struct ls_expr
*
4529 int do_not_record_p
= 0;
4530 struct ls_expr
* ptr
;
4535 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
4536 NULL
, /*have_reg_qty=*/false);
4539 slot
= htab_find_slot_with_hash (pre_ldst_table
, &e
, hash
, INSERT
);
4541 return (struct ls_expr
*)*slot
;
4543 ptr
= XNEW (struct ls_expr
);
4545 ptr
->next
= pre_ldst_mems
;
4548 ptr
->pattern_regs
= NULL_RTX
;
4549 ptr
->loads
= NULL_RTX
;
4550 ptr
->stores
= NULL_RTX
;
4551 ptr
->reaching_reg
= NULL_RTX
;
4554 ptr
->hash_index
= hash
;
4555 pre_ldst_mems
= ptr
;
4561 /* Free up an individual ldst entry. */
4564 free_ldst_entry (struct ls_expr
* ptr
)
4566 free_INSN_LIST_list (& ptr
->loads
);
4567 free_INSN_LIST_list (& ptr
->stores
);
4572 /* Free up all memory associated with the ldst list. */
4575 free_ldst_mems (void)
4578 htab_delete (pre_ldst_table
);
4579 pre_ldst_table
= NULL
;
4581 while (pre_ldst_mems
)
4583 struct ls_expr
* tmp
= pre_ldst_mems
;
4585 pre_ldst_mems
= pre_ldst_mems
->next
;
4587 free_ldst_entry (tmp
);
4590 pre_ldst_mems
= NULL
;
4593 /* Dump debugging info about the ldst list. */
4596 print_ldst_list (FILE * file
)
4598 struct ls_expr
* ptr
;
4600 fprintf (file
, "LDST list: \n");
4602 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
4604 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
4606 print_rtl (file
, ptr
->pattern
);
4608 fprintf (file
, "\n Loads : ");
4611 print_rtl (file
, ptr
->loads
);
4613 fprintf (file
, "(nil)");
4615 fprintf (file
, "\n Stores : ");
4618 print_rtl (file
, ptr
->stores
);
4620 fprintf (file
, "(nil)");
4622 fprintf (file
, "\n\n");
4625 fprintf (file
, "\n");
4628 /* Returns 1 if X is in the list of ldst only expressions. */
4630 static struct ls_expr
*
4631 find_rtx_in_ldst (rtx x
)
4635 if (!pre_ldst_table
)
4638 slot
= htab_find_slot (pre_ldst_table
, &e
, NO_INSERT
);
4639 if (!slot
|| ((struct ls_expr
*)*slot
)->invalid
)
4641 return (struct ls_expr
*) *slot
;
4644 /* Return first item in the list. */
4646 static inline struct ls_expr
*
4647 first_ls_expr (void)
4649 return pre_ldst_mems
;
4652 /* Return the next item in the list after the specified one. */
4654 static inline struct ls_expr
*
4655 next_ls_expr (struct ls_expr
* ptr
)
4660 /* Load Motion for loads which only kill themselves. */
4662 /* Return true if x is a simple MEM operation, with no registers or
4663 side effects. These are the types of loads we consider for the
4664 ld_motion list, otherwise we let the usual aliasing take care of it. */
4667 simple_mem (const_rtx x
)
4672 if (MEM_VOLATILE_P (x
))
4675 if (GET_MODE (x
) == BLKmode
)
4678 /* If we are handling exceptions, we must be careful with memory references
4679 that may trap. If we are not, the behavior is undefined, so we may just
4681 if (flag_non_call_exceptions
&& may_trap_p (x
))
4684 if (side_effects_p (x
))
4687 /* Do not consider function arguments passed on stack. */
4688 if (reg_mentioned_p (stack_pointer_rtx
, x
))
4691 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
4697 /* Make sure there isn't a buried reference in this pattern anywhere.
4698 If there is, invalidate the entry for it since we're not capable
4699 of fixing it up just yet.. We have to be sure we know about ALL
4700 loads since the aliasing code will allow all entries in the
4701 ld_motion list to not-alias itself. If we miss a load, we will get
4702 the wrong value since gcse might common it and we won't know to
4706 invalidate_any_buried_refs (rtx x
)
4710 struct ls_expr
* ptr
;
4712 /* Invalidate it in the list. */
4713 if (MEM_P (x
) && simple_mem (x
))
4715 ptr
= ldst_entry (x
);
4719 /* Recursively process the insn. */
4720 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
4722 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
4725 invalidate_any_buried_refs (XEXP (x
, i
));
4726 else if (fmt
[i
] == 'E')
4727 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4728 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
4732 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
4733 being defined as MEM loads and stores to symbols, with no side effects
4734 and no registers in the expression. For a MEM destination, we also
4735 check that the insn is still valid if we replace the destination with a
4736 REG, as is done in update_ld_motion_stores. If there are any uses/defs
4737 which don't match this criteria, they are invalidated and trimmed out
4741 compute_ld_motion_mems (void)
4743 struct ls_expr
* ptr
;
4747 pre_ldst_mems
= NULL
;
4748 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
4749 pre_ldst_expr_eq
, NULL
);
4753 FOR_BB_INSNS (bb
, insn
)
4757 if (GET_CODE (PATTERN (insn
)) == SET
)
4759 rtx src
= SET_SRC (PATTERN (insn
));
4760 rtx dest
= SET_DEST (PATTERN (insn
));
4762 /* Check for a simple LOAD... */
4763 if (MEM_P (src
) && simple_mem (src
))
4765 ptr
= ldst_entry (src
);
4767 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
4773 /* Make sure there isn't a buried load somewhere. */
4774 invalidate_any_buried_refs (src
);
4777 /* Check for stores. Don't worry about aliased ones, they
4778 will block any movement we might do later. We only care
4779 about this exact pattern since those are the only
4780 circumstance that we will ignore the aliasing info. */
4781 if (MEM_P (dest
) && simple_mem (dest
))
4783 ptr
= ldst_entry (dest
);
4786 && GET_CODE (src
) != ASM_OPERANDS
4787 /* Check for REG manually since want_to_gcse_p
4788 returns 0 for all REGs. */
4789 && can_assign_to_reg_without_clobbers_p (src
))
4790 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
4796 invalidate_any_buried_refs (PATTERN (insn
));
4802 /* Remove any references that have been either invalidated or are not in the
4803 expression list for pre gcse. */
4806 trim_ld_motion_mems (void)
4808 struct ls_expr
* * last
= & pre_ldst_mems
;
4809 struct ls_expr
* ptr
= pre_ldst_mems
;
4815 /* Delete if entry has been made invalid. */
4818 /* Delete if we cannot find this mem in the expression list. */
4819 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
4821 for (expr
= expr_hash_table
.table
[hash
];
4823 expr
= expr
->next_same_hash
)
4824 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
4828 expr
= (struct expr
*) 0;
4832 /* Set the expression field if we are keeping it. */
4840 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
4841 free_ldst_entry (ptr
);
4846 /* Show the world what we've found. */
4847 if (dump_file
&& pre_ldst_mems
!= NULL
)
4848 print_ldst_list (dump_file
);
4851 /* This routine will take an expression which we are replacing with
4852 a reaching register, and update any stores that are needed if
4853 that expression is in the ld_motion list. Stores are updated by
4854 copying their SRC to the reaching register, and then storing
4855 the reaching register into the store location. These keeps the
4856 correct value in the reaching register for the loads. */
4859 update_ld_motion_stores (struct expr
* expr
)
4861 struct ls_expr
* mem_ptr
;
4863 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
4865 /* We can try to find just the REACHED stores, but is shouldn't
4866 matter to set the reaching reg everywhere... some might be
4867 dead and should be eliminated later. */
4869 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4870 where reg is the reaching reg used in the load. We checked in
4871 compute_ld_motion_mems that we can replace (set mem expr) with
4872 (set reg expr) in that insn. */
4873 rtx list
= mem_ptr
->stores
;
4875 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
4877 rtx insn
= XEXP (list
, 0);
4878 rtx pat
= PATTERN (insn
);
4879 rtx src
= SET_SRC (pat
);
4880 rtx reg
= expr
->reaching_reg
;
4883 /* If we've already copied it, continue. */
4884 if (expr
->reaching_reg
== src
)
4889 fprintf (dump_file
, "PRE: store updated with reaching reg ");
4890 print_rtl (dump_file
, expr
->reaching_reg
);
4891 fprintf (dump_file
, ":\n ");
4892 print_inline_rtx (dump_file
, insn
, 8);
4893 fprintf (dump_file
, "\n");
4896 copy
= gen_move_insn (reg
, copy_rtx (SET_SRC (pat
)));
4897 new_rtx
= emit_insn_before (copy
, insn
);
4898 SET_SRC (pat
) = reg
;
4899 df_insn_rescan (insn
);
4901 /* un-recognize this pattern since it's probably different now. */
4902 INSN_CODE (insn
) = -1;
4903 gcse_create_count
++;
4908 /* Return true if the graph is too expensive to optimize. PASS is the
4909 optimization about to be performed. */
4912 is_too_expensive (const char *pass
)
4914 /* Trying to perform global optimizations on flow graphs which have
4915 a high connectivity will take a long time and is unlikely to be
4916 particularly useful.
4918 In normal circumstances a cfg should have about twice as many
4919 edges as blocks. But we do not want to punish small functions
4920 which have a couple switch statements. Rather than simply
4921 threshold the number of blocks, uses something with a more
4922 graceful degradation. */
4923 if (n_edges
> 20000 + n_basic_blocks
* 4)
4925 warning (OPT_Wdisabled_optimization
,
4926 "%s: %d basic blocks and %d edges/basic block",
4927 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
4932 /* If allocating memory for the cprop bitmap would take up too much
4933 storage it's better just to disable the optimization. */
4935 * SBITMAP_SET_SIZE (max_reg_num ())
4936 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
4938 warning (OPT_Wdisabled_optimization
,
4939 "%s: %d basic blocks and %d registers",
4940 pass
, n_basic_blocks
, max_reg_num ());
4949 /* Main function for the CPROP pass. */
4952 one_cprop_pass (void)
4956 /* Return if there's nothing to do, or it is too expensive. */
4957 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
4958 || is_too_expensive (_ ("const/copy propagation disabled")))
4961 global_const_prop_count
= local_const_prop_count
= 0;
4962 global_copy_prop_count
= local_copy_prop_count
= 0;
4965 gcc_obstack_init (&gcse_obstack
);
4968 /* Do a local const/copy propagation pass first. The global pass
4969 only handles global opportunities.
4970 If the local pass changes something, remove any unreachable blocks
4971 because the CPROP global dataflow analysis may get into infinite
4972 loops for CFGs with unreachable blocks.
4974 FIXME: This local pass should not be necessary after CSE (but for
4975 some reason it still is). It is also (proven) not necessary
4976 to run the local pass right after FWPWOP.
4978 FIXME: The global analysis would not get into infinite loops if it
4979 would use the DF solver (via df_simple_dataflow) instead of
4980 the solver implemented in this file. */
4981 if (local_cprop_pass ())
4983 delete_unreachable_blocks ();
4987 /* Determine implicit sets. */
4988 implicit_sets
= XCNEWVEC (rtx
, last_basic_block
);
4989 find_implicit_sets ();
4991 alloc_hash_table (get_max_uid (), &set_hash_table
, 1);
4992 compute_hash_table (&set_hash_table
);
4994 /* Free implicit_sets before peak usage. */
4995 free (implicit_sets
);
4996 implicit_sets
= NULL
;
4999 dump_hash_table (dump_file
, "SET", &set_hash_table
);
5000 if (set_hash_table
.n_elems
> 0)
5005 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
5006 compute_cprop_data ();
5008 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
5010 /* Reset tables used to keep track of what's still valid [since
5011 the start of the block]. */
5012 reset_opr_set_tables ();
5014 FOR_BB_INSNS (bb
, insn
)
5017 changed
|= cprop_insn (insn
);
5019 /* Keep track of everything modified by this insn. */
5020 /* ??? Need to be careful w.r.t. mods done to INSN.
5021 Don't call mark_oprs_set if we turned the
5022 insn into a NOTE. */
5023 if (! NOTE_P (insn
))
5024 mark_oprs_set (insn
);
5028 changed
|= bypass_conditional_jumps ();
5032 free_hash_table (&set_hash_table
);
5034 obstack_free (&gcse_obstack
, NULL
);
5038 fprintf (dump_file
, "CPROP of %s, %d basic blocks, %d bytes needed, ",
5039 current_function_name (), n_basic_blocks
, bytes_used
);
5040 fprintf (dump_file
, "%d local const props, %d local copy props, ",
5041 local_const_prop_count
, local_copy_prop_count
);
5042 fprintf (dump_file
, "%d global const props, %d global copy props\n\n",
5043 global_const_prop_count
, global_copy_prop_count
);
5050 /* All the passes implemented in this file. Each pass has its
5051 own gate and execute function, and at the end of the file a
5052 pass definition for passes.c.
5054 We do not construct an accurate cfg in functions which call
5055 setjmp, so none of these passes runs if the function calls
5057 FIXME: Should just handle setjmp via REG_SETJMP notes. */
5060 gate_rtl_cprop (void)
5062 return optimize
> 0 && flag_gcse
5063 && !cfun
->calls_setjmp
5068 execute_rtl_cprop (void)
5070 delete_unreachable_blocks ();
5071 df_note_add_problem ();
5072 df_set_flags (DF_LR_RUN_DCE
);
5074 flag_rerun_cse_after_global_opts
|= one_cprop_pass ();
5081 return optimize
> 0 && flag_gcse
5082 && !cfun
->calls_setjmp
5083 && optimize_function_for_speed_p (cfun
)
5088 execute_rtl_pre (void)
5090 delete_unreachable_blocks ();
5091 df_note_add_problem ();
5093 flag_rerun_cse_after_global_opts
|= one_pre_gcse_pass ();
5098 gate_rtl_hoist (void)
5100 return optimize
> 0 && flag_gcse
5101 && !cfun
->calls_setjmp
5102 /* It does not make sense to run code hoisting unless we are optimizing
5103 for code size -- it rarely makes programs faster, and can make then
5104 bigger if we did PRE (when optimizing for space, we don't run PRE). */
5105 && optimize_function_for_size_p (cfun
)
5110 execute_rtl_hoist (void)
5112 delete_unreachable_blocks ();
5113 df_note_add_problem ();
5115 flag_rerun_cse_after_global_opts
|= one_code_hoisting_pass ();
5119 struct rtl_opt_pass pass_rtl_cprop
=
5124 gate_rtl_cprop
, /* gate */
5125 execute_rtl_cprop
, /* execute */
5128 0, /* static_pass_number */
5129 TV_CPROP
, /* tv_id */
5130 PROP_cfglayout
, /* properties_required */
5131 0, /* properties_provided */
5132 0, /* properties_destroyed */
5133 0, /* todo_flags_start */
5134 TODO_df_finish
| TODO_verify_rtl_sharing
|
5136 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */
5140 struct rtl_opt_pass pass_rtl_pre
=
5145 gate_rtl_pre
, /* gate */
5146 execute_rtl_pre
, /* execute */
5149 0, /* static_pass_number */
5151 PROP_cfglayout
, /* properties_required */
5152 0, /* properties_provided */
5153 0, /* properties_destroyed */
5154 0, /* todo_flags_start */
5155 TODO_df_finish
| TODO_verify_rtl_sharing
|
5157 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */
5161 struct rtl_opt_pass pass_rtl_hoist
=
5166 gate_rtl_hoist
, /* gate */
5167 execute_rtl_hoist
, /* execute */
5170 0, /* static_pass_number */
5171 TV_HOIST
, /* tv_id */
5172 PROP_cfglayout
, /* properties_required */
5173 0, /* properties_provided */
5174 0, /* properties_destroyed */
5175 0, /* todo_flags_start */
5176 TODO_df_finish
| TODO_verify_rtl_sharing
|
5178 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */
5182 #include "gt-gcse.h"