re PR testsuite/40567 (Revision 149002 caused many failures)
[official-gcc.git] / gcc / emit-rtl.c
blobdf2b4b749b3bac01db34c72d4343d69b832911dd
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
78 rtx * regno_reg_rtx;
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num = 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
210 static hashval_t
211 const_int_htab_hash (const void *x)
213 return (hashval_t) INTVAL ((const_rtx) x);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
220 static int
221 const_int_htab_eq (const void *x, const void *y)
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
241 return h;
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
293 const mem_attrs *const p = (const mem_attrs *) x;
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
326 mem_attrs attrs;
327 void **slot;
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
352 return (mem_attrs *) *slot;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
360 const reg_attrs *const p = (const reg_attrs *) x;
362 return ((p->offset * 1000) ^ (long) p->decl);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
375 return (p->decl == q->decl && p->offset == q->offset);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
384 reg_attrs attrs;
385 void **slot;
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
391 attrs.decl = decl;
392 attrs.offset = offset;
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
401 return (reg_attrs *) *slot;
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
410 gen_blockage (void)
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
416 #endif
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode, int regno)
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
438 void **slot;
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
454 return (rtx) *slot;
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
460 return GEN_INT (trunc_int_for_mode (c, mode));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
477 return (rtx) *slot;
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
488 real->u.rv = value;
490 return lookup_const_double (real);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
497 static rtx
498 lookup_const_fixed (rtx fixed)
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
504 return (rtx) *slot;
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
516 fixed->u.fv = value;
518 return lookup_const_fixed (fixed);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
529 rtx value;
530 unsigned int i;
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
570 return lookup_const_double (value);
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode == Pmode && !reload_in_progress)
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
635 return gen_raw_REG (mode, regno);
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
647 return rt;
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode, rtx addr)
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
665 gen_frame_mem (enum machine_mode mode, rtx addr)
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
731 if (isize != osize)
732 return false;
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
745 unsigned int regno = REGNO (reg);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
755 return subreg_offset_representable_p (regno, imode, offset, omode);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
771 return true;
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
787 enum machine_mode inmode;
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 rtvec
800 gen_rtvec (int n, ...)
802 int i;
803 rtvec rt_val;
804 va_list p;
806 va_start (p, n);
808 /* Don't allocate an empty rtvec... */
809 if (n == 0)
810 return NULL_RTVEC;
812 rt_val = rtvec_alloc (n);
814 for (i = 0; i < n; i++)
815 rt_val->elem[i] = va_arg (p, rtx);
817 va_end (p);
818 return rt_val;
821 rtvec
822 gen_rtvec_v (int n, rtx *argp)
824 int i;
825 rtvec rt_val;
827 /* Don't allocate an empty rtvec... */
828 if (n == 0)
829 return NULL_RTVEC;
831 rt_val = rtvec_alloc (n);
833 for (i = 0; i < n; i++)
834 rt_val->elem[i] = *argp++;
836 return rt_val;
839 /* Return the number of bytes between the start of an OUTER_MODE
840 in-memory value and the start of an INNER_MODE in-memory value,
841 given that the former is a lowpart of the latter. It may be a
842 paradoxical lowpart, in which case the offset will be negative
843 on big-endian targets. */
846 byte_lowpart_offset (enum machine_mode outer_mode,
847 enum machine_mode inner_mode)
849 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
850 return subreg_lowpart_offset (outer_mode, inner_mode);
851 else
852 return -subreg_lowpart_offset (inner_mode, outer_mode);
855 /* Generate a REG rtx for a new pseudo register of mode MODE.
856 This pseudo is assigned the next sequential register number. */
859 gen_reg_rtx (enum machine_mode mode)
861 rtx val;
862 unsigned int align = GET_MODE_ALIGNMENT (mode);
864 gcc_assert (can_create_pseudo_p ());
866 /* If a virtual register with bigger mode alignment is generated,
867 increase stack alignment estimation because it might be spilled
868 to stack later. */
869 if (SUPPORTS_STACK_ALIGNMENT
870 && crtl->stack_alignment_estimated < align
871 && !crtl->stack_realign_processed)
872 crtl->stack_alignment_estimated = align;
874 if (generating_concat_p
875 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
876 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
878 /* For complex modes, don't make a single pseudo.
879 Instead, make a CONCAT of two pseudos.
880 This allows noncontiguous allocation of the real and imaginary parts,
881 which makes much better code. Besides, allocating DCmode
882 pseudos overstrains reload on some machines like the 386. */
883 rtx realpart, imagpart;
884 enum machine_mode partmode = GET_MODE_INNER (mode);
886 realpart = gen_reg_rtx (partmode);
887 imagpart = gen_reg_rtx (partmode);
888 return gen_rtx_CONCAT (mode, realpart, imagpart);
891 /* Make sure regno_pointer_align, and regno_reg_rtx are large
892 enough to have an element for this pseudo reg number. */
894 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
896 int old_size = crtl->emit.regno_pointer_align_length;
897 char *tmp;
898 rtx *new1;
900 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
901 memset (tmp + old_size, 0, old_size);
902 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
904 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
905 memset (new1 + old_size, 0, old_size * sizeof (rtx));
906 regno_reg_rtx = new1;
908 crtl->emit.regno_pointer_align_length = old_size * 2;
911 val = gen_raw_REG (mode, reg_rtx_no);
912 regno_reg_rtx[reg_rtx_no++] = val;
913 return val;
916 /* Update NEW with the same attributes as REG, but with OFFSET added
917 to the REG_OFFSET. */
919 static void
920 update_reg_offset (rtx new_rtx, rtx reg, int offset)
922 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
923 REG_OFFSET (reg) + offset);
926 /* Generate a register with same attributes as REG, but with OFFSET
927 added to the REG_OFFSET. */
930 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
931 int offset)
933 rtx new_rtx = gen_rtx_REG (mode, regno);
935 update_reg_offset (new_rtx, reg, offset);
936 return new_rtx;
939 /* Generate a new pseudo-register with the same attributes as REG, but
940 with OFFSET added to the REG_OFFSET. */
943 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
945 rtx new_rtx = gen_reg_rtx (mode);
947 update_reg_offset (new_rtx, reg, offset);
948 return new_rtx;
951 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
952 new register is a (possibly paradoxical) lowpart of the old one. */
954 void
955 adjust_reg_mode (rtx reg, enum machine_mode mode)
957 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
958 PUT_MODE (reg, mode);
961 /* Copy REG's attributes from X, if X has any attributes. If REG and X
962 have different modes, REG is a (possibly paradoxical) lowpart of X. */
964 void
965 set_reg_attrs_from_value (rtx reg, rtx x)
967 int offset;
969 /* Hard registers can be reused for multiple purposes within the same
970 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
971 on them is wrong. */
972 if (HARD_REGISTER_P (reg))
973 return;
975 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
976 if (MEM_P (x))
978 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
979 REG_ATTRS (reg)
980 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
981 if (MEM_POINTER (x))
982 mark_reg_pointer (reg, 0);
984 else if (REG_P (x))
986 if (REG_ATTRS (x))
987 update_reg_offset (reg, x, offset);
988 if (REG_POINTER (x))
989 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993 /* Generate a REG rtx for a new pseudo register, copying the mode
994 and attributes from X. */
997 gen_reg_rtx_and_attrs (rtx x)
999 rtx reg = gen_reg_rtx (GET_MODE (x));
1000 set_reg_attrs_from_value (reg, x);
1001 return reg;
1004 /* Set the register attributes for registers contained in PARM_RTX.
1005 Use needed values from memory attributes of MEM. */
1007 void
1008 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1010 if (REG_P (parm_rtx))
1011 set_reg_attrs_from_value (parm_rtx, mem);
1012 else if (GET_CODE (parm_rtx) == PARALLEL)
1014 /* Check for a NULL entry in the first slot, used to indicate that the
1015 parameter goes both on the stack and in registers. */
1016 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1017 for (; i < XVECLEN (parm_rtx, 0); i++)
1019 rtx x = XVECEXP (parm_rtx, 0, i);
1020 if (REG_P (XEXP (x, 0)))
1021 REG_ATTRS (XEXP (x, 0))
1022 = get_reg_attrs (MEM_EXPR (mem),
1023 INTVAL (XEXP (x, 1)));
1028 /* Set the REG_ATTRS for registers in value X, given that X represents
1029 decl T. */
1031 void
1032 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1034 if (GET_CODE (x) == SUBREG)
1036 gcc_assert (subreg_lowpart_p (x));
1037 x = SUBREG_REG (x);
1039 if (REG_P (x))
1040 REG_ATTRS (x)
1041 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1042 DECL_MODE (t)));
1043 if (GET_CODE (x) == CONCAT)
1045 if (REG_P (XEXP (x, 0)))
1046 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1047 if (REG_P (XEXP (x, 1)))
1048 REG_ATTRS (XEXP (x, 1))
1049 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1051 if (GET_CODE (x) == PARALLEL)
1053 int i, start;
1055 /* Check for a NULL entry, used to indicate that the parameter goes
1056 both on the stack and in registers. */
1057 if (XEXP (XVECEXP (x, 0, 0), 0))
1058 start = 0;
1059 else
1060 start = 1;
1062 for (i = start; i < XVECLEN (x, 0); i++)
1064 rtx y = XVECEXP (x, 0, i);
1065 if (REG_P (XEXP (y, 0)))
1066 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1071 /* Assign the RTX X to declaration T. */
1073 void
1074 set_decl_rtl (tree t, rtx x)
1076 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1077 if (x)
1078 set_reg_attrs_for_decl_rtl (t, x);
1081 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1082 if the ABI requires the parameter to be passed by reference. */
1084 void
1085 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1087 DECL_INCOMING_RTL (t) = x;
1088 if (x && !by_reference_p)
1089 set_reg_attrs_for_decl_rtl (t, x);
1092 /* Identify REG (which may be a CONCAT) as a user register. */
1094 void
1095 mark_user_reg (rtx reg)
1097 if (GET_CODE (reg) == CONCAT)
1099 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1100 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1102 else
1104 gcc_assert (REG_P (reg));
1105 REG_USERVAR_P (reg) = 1;
1109 /* Identify REG as a probable pointer register and show its alignment
1110 as ALIGN, if nonzero. */
1112 void
1113 mark_reg_pointer (rtx reg, int align)
1115 if (! REG_POINTER (reg))
1117 REG_POINTER (reg) = 1;
1119 if (align)
1120 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1122 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1123 /* We can no-longer be sure just how aligned this pointer is. */
1124 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 /* Return 1 plus largest pseudo reg number used in the current function. */
1130 max_reg_num (void)
1132 return reg_rtx_no;
1135 /* Return 1 + the largest label number used so far in the current function. */
1138 max_label_num (void)
1140 return label_num;
1143 /* Return first label number used in this function (if any were used). */
1146 get_first_label_num (void)
1148 return first_label_num;
1151 /* If the rtx for label was created during the expansion of a nested
1152 function, then first_label_num won't include this label number.
1153 Fix this now so that array indices work later. */
1155 void
1156 maybe_set_first_label_num (rtx x)
1158 if (CODE_LABEL_NUMBER (x) < first_label_num)
1159 first_label_num = CODE_LABEL_NUMBER (x);
1162 /* Return a value representing some low-order bits of X, where the number
1163 of low-order bits is given by MODE. Note that no conversion is done
1164 between floating-point and fixed-point values, rather, the bit
1165 representation is returned.
1167 This function handles the cases in common between gen_lowpart, below,
1168 and two variants in cse.c and combine.c. These are the cases that can
1169 be safely handled at all points in the compilation.
1171 If this is not a case we can handle, return 0. */
1174 gen_lowpart_common (enum machine_mode mode, rtx x)
1176 int msize = GET_MODE_SIZE (mode);
1177 int xsize;
1178 int offset = 0;
1179 enum machine_mode innermode;
1181 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1182 so we have to make one up. Yuk. */
1183 innermode = GET_MODE (x);
1184 if (CONST_INT_P (x)
1185 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1186 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1187 else if (innermode == VOIDmode)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1190 xsize = GET_MODE_SIZE (innermode);
1192 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1194 if (innermode == mode)
1195 return x;
1197 /* MODE must occupy no more words than the mode of X. */
1198 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1199 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1200 return 0;
1202 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1203 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1204 return 0;
1206 offset = subreg_lowpart_offset (mode, innermode);
1208 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1209 && (GET_MODE_CLASS (mode) == MODE_INT
1210 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1212 /* If we are getting the low-order part of something that has been
1213 sign- or zero-extended, we can either just use the object being
1214 extended or make a narrower extension. If we want an even smaller
1215 piece than the size of the object being extended, call ourselves
1216 recursively.
1218 This case is used mostly by combine and cse. */
1220 if (GET_MODE (XEXP (x, 0)) == mode)
1221 return XEXP (x, 0);
1222 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1223 return gen_lowpart_common (mode, XEXP (x, 0));
1224 else if (msize < xsize)
1225 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1227 else if (GET_CODE (x) == SUBREG || REG_P (x)
1228 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1229 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1230 return simplify_gen_subreg (mode, x, innermode, offset);
1232 /* Otherwise, we can't do this. */
1233 return 0;
1237 gen_highpart (enum machine_mode mode, rtx x)
1239 unsigned int msize = GET_MODE_SIZE (mode);
1240 rtx result;
1242 /* This case loses if X is a subreg. To catch bugs early,
1243 complain if an invalid MODE is used even in other cases. */
1244 gcc_assert (msize <= UNITS_PER_WORD
1245 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1247 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1248 subreg_highpart_offset (mode, GET_MODE (x)));
1249 gcc_assert (result);
1251 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1252 the target if we have a MEM. gen_highpart must return a valid operand,
1253 emitting code if necessary to do so. */
1254 if (MEM_P (result))
1256 result = validize_mem (result);
1257 gcc_assert (result);
1260 return result;
1263 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1266 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1268 if (GET_MODE (exp) != VOIDmode)
1270 gcc_assert (GET_MODE (exp) == innermode);
1271 return gen_highpart (outermode, exp);
1273 return simplify_gen_subreg (outermode, exp, innermode,
1274 subreg_highpart_offset (outermode, innermode));
1277 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1279 unsigned int
1280 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1282 unsigned int offset = 0;
1283 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1285 if (difference > 0)
1287 if (WORDS_BIG_ENDIAN)
1288 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1289 if (BYTES_BIG_ENDIAN)
1290 offset += difference % UNITS_PER_WORD;
1293 return offset;
1296 /* Return offset in bytes to get OUTERMODE high part
1297 of the value in mode INNERMODE stored in memory in target format. */
1298 unsigned int
1299 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1301 unsigned int offset = 0;
1302 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1304 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1306 if (difference > 0)
1308 if (! WORDS_BIG_ENDIAN)
1309 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1310 if (! BYTES_BIG_ENDIAN)
1311 offset += difference % UNITS_PER_WORD;
1314 return offset;
1317 /* Return 1 iff X, assumed to be a SUBREG,
1318 refers to the least significant part of its containing reg.
1319 If X is not a SUBREG, always return 1 (it is its own low part!). */
1322 subreg_lowpart_p (const_rtx x)
1324 if (GET_CODE (x) != SUBREG)
1325 return 1;
1326 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1327 return 0;
1329 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1330 == SUBREG_BYTE (x));
1333 /* Return subword OFFSET of operand OP.
1334 The word number, OFFSET, is interpreted as the word number starting
1335 at the low-order address. OFFSET 0 is the low-order word if not
1336 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1338 If we cannot extract the required word, we return zero. Otherwise,
1339 an rtx corresponding to the requested word will be returned.
1341 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1342 reload has completed, a valid address will always be returned. After
1343 reload, if a valid address cannot be returned, we return zero.
1345 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1346 it is the responsibility of the caller.
1348 MODE is the mode of OP in case it is a CONST_INT.
1350 ??? This is still rather broken for some cases. The problem for the
1351 moment is that all callers of this thing provide no 'goal mode' to
1352 tell us to work with. This exists because all callers were written
1353 in a word based SUBREG world.
1354 Now use of this function can be deprecated by simplify_subreg in most
1355 cases.
1359 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1361 if (mode == VOIDmode)
1362 mode = GET_MODE (op);
1364 gcc_assert (mode != VOIDmode);
1366 /* If OP is narrower than a word, fail. */
1367 if (mode != BLKmode
1368 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1369 return 0;
1371 /* If we want a word outside OP, return zero. */
1372 if (mode != BLKmode
1373 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1374 return const0_rtx;
1376 /* Form a new MEM at the requested address. */
1377 if (MEM_P (op))
1379 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1381 if (! validate_address)
1382 return new_rtx;
1384 else if (reload_completed)
1386 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1387 return 0;
1389 else
1390 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1393 /* Rest can be handled by simplify_subreg. */
1394 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1397 /* Similar to `operand_subword', but never return 0. If we can't
1398 extract the required subword, put OP into a register and try again.
1399 The second attempt must succeed. We always validate the address in
1400 this case.
1402 MODE is the mode of OP, in case it is CONST_INT. */
1405 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1407 rtx result = operand_subword (op, offset, 1, mode);
1409 if (result)
1410 return result;
1412 if (mode != BLKmode && mode != VOIDmode)
1414 /* If this is a register which can not be accessed by words, copy it
1415 to a pseudo register. */
1416 if (REG_P (op))
1417 op = copy_to_reg (op);
1418 else
1419 op = force_reg (mode, op);
1422 result = operand_subword (op, offset, 1, mode);
1423 gcc_assert (result);
1425 return result;
1428 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1429 or (2) a component ref of something variable. Represent the later with
1430 a NULL expression. */
1432 static tree
1433 component_ref_for_mem_expr (tree ref)
1435 tree inner = TREE_OPERAND (ref, 0);
1437 if (TREE_CODE (inner) == COMPONENT_REF)
1438 inner = component_ref_for_mem_expr (inner);
1439 else
1441 /* Now remove any conversions: they don't change what the underlying
1442 object is. Likewise for SAVE_EXPR. */
1443 while (CONVERT_EXPR_P (inner)
1444 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1445 || TREE_CODE (inner) == SAVE_EXPR)
1446 inner = TREE_OPERAND (inner, 0);
1448 if (! DECL_P (inner))
1449 inner = NULL_TREE;
1452 if (inner == TREE_OPERAND (ref, 0)
1453 /* Don't leak SSA-names in the third operand. */
1454 && (!TREE_OPERAND (ref, 2)
1455 || TREE_CODE (TREE_OPERAND (ref, 2)) != SSA_NAME))
1456 return ref;
1457 else
1458 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1459 TREE_OPERAND (ref, 1), NULL_TREE);
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1463 and 0 otherwise. */
1466 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1468 if (expr1 == expr2)
1469 return 1;
1471 if (! expr1 || ! expr2)
1472 return 0;
1474 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1475 return 0;
1477 if (TREE_CODE (expr1) == COMPONENT_REF)
1478 return
1479 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1480 TREE_OPERAND (expr2, 0))
1481 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1482 TREE_OPERAND (expr2, 1));
1484 if (INDIRECT_REF_P (expr1))
1485 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1486 TREE_OPERAND (expr2, 0));
1488 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1489 have been resolved here. */
1490 gcc_assert (DECL_P (expr1));
1492 /* Decls with different pointers can't be equal. */
1493 return 0;
1496 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1497 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1498 -1 if not known. */
1501 get_mem_align_offset (rtx mem, unsigned int align)
1503 tree expr;
1504 unsigned HOST_WIDE_INT offset;
1506 /* This function can't use
1507 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1508 || !CONST_INT_P (MEM_OFFSET (mem))
1509 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1510 < align))
1511 return -1;
1512 else
1513 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1514 for two reasons:
1515 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1516 for <variable>. get_inner_reference doesn't handle it and
1517 even if it did, the alignment in that case needs to be determined
1518 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1519 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1520 isn't sufficiently aligned, the object it is in might be. */
1521 gcc_assert (MEM_P (mem));
1522 expr = MEM_EXPR (mem);
1523 if (expr == NULL_TREE
1524 || MEM_OFFSET (mem) == NULL_RTX
1525 || !CONST_INT_P (MEM_OFFSET (mem)))
1526 return -1;
1528 offset = INTVAL (MEM_OFFSET (mem));
1529 if (DECL_P (expr))
1531 if (DECL_ALIGN (expr) < align)
1532 return -1;
1534 else if (INDIRECT_REF_P (expr))
1536 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1537 return -1;
1539 else if (TREE_CODE (expr) == COMPONENT_REF)
1541 while (1)
1543 tree inner = TREE_OPERAND (expr, 0);
1544 tree field = TREE_OPERAND (expr, 1);
1545 tree byte_offset = component_ref_field_offset (expr);
1546 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1548 if (!byte_offset
1549 || !host_integerp (byte_offset, 1)
1550 || !host_integerp (bit_offset, 1))
1551 return -1;
1553 offset += tree_low_cst (byte_offset, 1);
1554 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1556 if (inner == NULL_TREE)
1558 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1559 < (unsigned int) align)
1560 return -1;
1561 break;
1563 else if (DECL_P (inner))
1565 if (DECL_ALIGN (inner) < align)
1566 return -1;
1567 break;
1569 else if (TREE_CODE (inner) != COMPONENT_REF)
1570 return -1;
1571 expr = inner;
1574 else
1575 return -1;
1577 return offset & ((align / BITS_PER_UNIT) - 1);
1580 /* Given REF (a MEM) and T, either the type of X or the expression
1581 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1582 if we are making a new object of this type. BITPOS is nonzero if
1583 there is an offset outstanding on T that will be applied later. */
1585 void
1586 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1587 HOST_WIDE_INT bitpos)
1589 alias_set_type alias = MEM_ALIAS_SET (ref);
1590 tree expr = MEM_EXPR (ref);
1591 rtx offset = MEM_OFFSET (ref);
1592 rtx size = MEM_SIZE (ref);
1593 unsigned int align = MEM_ALIGN (ref);
1594 HOST_WIDE_INT apply_bitpos = 0;
1595 tree type;
1597 /* It can happen that type_for_mode was given a mode for which there
1598 is no language-level type. In which case it returns NULL, which
1599 we can see here. */
1600 if (t == NULL_TREE)
1601 return;
1603 type = TYPE_P (t) ? t : TREE_TYPE (t);
1604 if (type == error_mark_node)
1605 return;
1607 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1608 wrong answer, as it assumes that DECL_RTL already has the right alias
1609 info. Callers should not set DECL_RTL until after the call to
1610 set_mem_attributes. */
1611 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1613 /* Get the alias set from the expression or type (perhaps using a
1614 front-end routine) and use it. */
1615 alias = get_alias_set (t);
1617 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1618 MEM_IN_STRUCT_P (ref)
1619 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1620 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1622 /* If we are making an object of this type, or if this is a DECL, we know
1623 that it is a scalar if the type is not an aggregate. */
1624 if ((objectp || DECL_P (t))
1625 && ! AGGREGATE_TYPE_P (type)
1626 && TREE_CODE (type) != COMPLEX_TYPE)
1627 MEM_SCALAR_P (ref) = 1;
1629 /* We can set the alignment from the type if we are making an object,
1630 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1631 if (objectp || TREE_CODE (t) == INDIRECT_REF
1632 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1633 || TYPE_ALIGN_OK (type))
1634 align = MAX (align, TYPE_ALIGN (type));
1635 else
1636 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1638 if (integer_zerop (TREE_OPERAND (t, 1)))
1639 /* We don't know anything about the alignment. */
1640 align = BITS_PER_UNIT;
1641 else
1642 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1645 /* If the size is known, we can set that. */
1646 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1647 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1649 /* If T is not a type, we may be able to deduce some more information about
1650 the expression. */
1651 if (! TYPE_P (t))
1653 tree base;
1654 bool align_computed = false;
1656 if (TREE_THIS_VOLATILE (t))
1657 MEM_VOLATILE_P (ref) = 1;
1659 /* Now remove any conversions: they don't change what the underlying
1660 object is. Likewise for SAVE_EXPR. */
1661 while (CONVERT_EXPR_P (t)
1662 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1663 || TREE_CODE (t) == SAVE_EXPR)
1664 t = TREE_OPERAND (t, 0);
1666 /* We may look through structure-like accesses for the purposes of
1667 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1668 base = t;
1669 while (TREE_CODE (base) == COMPONENT_REF
1670 || TREE_CODE (base) == REALPART_EXPR
1671 || TREE_CODE (base) == IMAGPART_EXPR
1672 || TREE_CODE (base) == BIT_FIELD_REF)
1673 base = TREE_OPERAND (base, 0);
1675 if (DECL_P (base))
1677 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1678 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1679 else
1680 MEM_NOTRAP_P (ref) = 1;
1682 else
1683 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1685 base = get_base_address (base);
1686 if (base && DECL_P (base)
1687 && TREE_READONLY (base)
1688 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1690 tree base_type = TREE_TYPE (base);
1691 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1692 || DECL_ARTIFICIAL (base));
1693 MEM_READONLY_P (ref) = 1;
1696 /* If this expression uses it's parent's alias set, mark it such
1697 that we won't change it. */
1698 if (component_uses_parent_alias_set (t))
1699 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1701 /* If this is a decl, set the attributes of the MEM from it. */
1702 if (DECL_P (t))
1704 expr = t;
1705 offset = const0_rtx;
1706 apply_bitpos = bitpos;
1707 size = (DECL_SIZE_UNIT (t)
1708 && host_integerp (DECL_SIZE_UNIT (t), 1)
1709 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1710 align = DECL_ALIGN (t);
1711 align_computed = true;
1714 /* If this is a constant, we know the alignment. */
1715 else if (CONSTANT_CLASS_P (t))
1717 align = TYPE_ALIGN (type);
1718 #ifdef CONSTANT_ALIGNMENT
1719 align = CONSTANT_ALIGNMENT (t, align);
1720 #endif
1721 align_computed = true;
1724 /* If this is a field reference and not a bit-field, record it. */
1725 /* ??? There is some information that can be gleaned from bit-fields,
1726 such as the word offset in the structure that might be modified.
1727 But skip it for now. */
1728 else if (TREE_CODE (t) == COMPONENT_REF
1729 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1731 expr = component_ref_for_mem_expr (t);
1732 offset = const0_rtx;
1733 apply_bitpos = bitpos;
1734 /* ??? Any reason the field size would be different than
1735 the size we got from the type? */
1738 /* If this is an array reference, look for an outer field reference. */
1739 else if (TREE_CODE (t) == ARRAY_REF)
1741 tree off_tree = size_zero_node;
1742 /* We can't modify t, because we use it at the end of the
1743 function. */
1744 tree t2 = t;
1748 tree index = TREE_OPERAND (t2, 1);
1749 tree low_bound = array_ref_low_bound (t2);
1750 tree unit_size = array_ref_element_size (t2);
1752 /* We assume all arrays have sizes that are a multiple of a byte.
1753 First subtract the lower bound, if any, in the type of the
1754 index, then convert to sizetype and multiply by the size of
1755 the array element. */
1756 if (! integer_zerop (low_bound))
1757 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1758 index, low_bound);
1760 off_tree = size_binop (PLUS_EXPR,
1761 size_binop (MULT_EXPR,
1762 fold_convert (sizetype,
1763 index),
1764 unit_size),
1765 off_tree);
1766 t2 = TREE_OPERAND (t2, 0);
1768 while (TREE_CODE (t2) == ARRAY_REF);
1770 if (DECL_P (t2))
1772 expr = t2;
1773 offset = NULL;
1774 if (host_integerp (off_tree, 1))
1776 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1777 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1778 align = DECL_ALIGN (t2);
1779 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1780 align = aoff;
1781 align_computed = true;
1782 offset = GEN_INT (ioff);
1783 apply_bitpos = bitpos;
1786 else if (TREE_CODE (t2) == COMPONENT_REF)
1788 expr = component_ref_for_mem_expr (t2);
1789 if (host_integerp (off_tree, 1))
1791 offset = GEN_INT (tree_low_cst (off_tree, 1));
1792 apply_bitpos = bitpos;
1794 /* ??? Any reason the field size would be different than
1795 the size we got from the type? */
1797 else if (flag_argument_noalias > 1
1798 && (INDIRECT_REF_P (t2))
1799 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1801 expr = t2;
1802 offset = NULL;
1806 /* If this is a Fortran indirect argument reference, record the
1807 parameter decl. */
1808 else if (flag_argument_noalias > 1
1809 && (INDIRECT_REF_P (t))
1810 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1812 expr = t;
1813 offset = NULL;
1816 if (!align_computed && !INDIRECT_REF_P (t))
1818 unsigned int obj_align
1819 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1820 align = MAX (align, obj_align);
1824 /* If we modified OFFSET based on T, then subtract the outstanding
1825 bit position offset. Similarly, increase the size of the accessed
1826 object to contain the negative offset. */
1827 if (apply_bitpos)
1829 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1830 if (size)
1831 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1834 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1836 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1837 we're overlapping. */
1838 offset = NULL;
1839 expr = NULL;
1842 /* Now set the attributes we computed above. */
1843 MEM_ATTRS (ref)
1844 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1846 /* If this is already known to be a scalar or aggregate, we are done. */
1847 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1848 return;
1850 /* If it is a reference into an aggregate, this is part of an aggregate.
1851 Otherwise we don't know. */
1852 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1853 || TREE_CODE (t) == ARRAY_RANGE_REF
1854 || TREE_CODE (t) == BIT_FIELD_REF)
1855 MEM_IN_STRUCT_P (ref) = 1;
1858 void
1859 set_mem_attributes (rtx ref, tree t, int objectp)
1861 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1864 /* Set the alias set of MEM to SET. */
1866 void
1867 set_mem_alias_set (rtx mem, alias_set_type set)
1869 #ifdef ENABLE_CHECKING
1870 /* If the new and old alias sets don't conflict, something is wrong. */
1871 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1872 #endif
1874 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1875 MEM_SIZE (mem), MEM_ALIGN (mem),
1876 GET_MODE (mem));
1879 /* Set the alignment of MEM to ALIGN bits. */
1881 void
1882 set_mem_align (rtx mem, unsigned int align)
1884 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1885 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1886 GET_MODE (mem));
1889 /* Set the expr for MEM to EXPR. */
1891 void
1892 set_mem_expr (rtx mem, tree expr)
1894 MEM_ATTRS (mem)
1895 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1896 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1899 /* Set the offset of MEM to OFFSET. */
1901 void
1902 set_mem_offset (rtx mem, rtx offset)
1904 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1905 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1906 GET_MODE (mem));
1909 /* Set the size of MEM to SIZE. */
1911 void
1912 set_mem_size (rtx mem, rtx size)
1914 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1915 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1916 GET_MODE (mem));
1919 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1920 and its address changed to ADDR. (VOIDmode means don't change the mode.
1921 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1922 returned memory location is required to be valid. The memory
1923 attributes are not changed. */
1925 static rtx
1926 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1928 rtx new_rtx;
1930 gcc_assert (MEM_P (memref));
1931 if (mode == VOIDmode)
1932 mode = GET_MODE (memref);
1933 if (addr == 0)
1934 addr = XEXP (memref, 0);
1935 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1936 && (!validate || memory_address_p (mode, addr)))
1937 return memref;
1939 if (validate)
1941 if (reload_in_progress || reload_completed)
1942 gcc_assert (memory_address_p (mode, addr));
1943 else
1944 addr = memory_address (mode, addr);
1947 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1948 return memref;
1950 new_rtx = gen_rtx_MEM (mode, addr);
1951 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1952 return new_rtx;
1955 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1956 way we are changing MEMREF, so we only preserve the alias set. */
1959 change_address (rtx memref, enum machine_mode mode, rtx addr)
1961 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1962 enum machine_mode mmode = GET_MODE (new_rtx);
1963 unsigned int align;
1965 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1966 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1968 /* If there are no changes, just return the original memory reference. */
1969 if (new_rtx == memref)
1971 if (MEM_ATTRS (memref) == 0
1972 || (MEM_EXPR (memref) == NULL
1973 && MEM_OFFSET (memref) == NULL
1974 && MEM_SIZE (memref) == size
1975 && MEM_ALIGN (memref) == align))
1976 return new_rtx;
1978 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1979 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1982 MEM_ATTRS (new_rtx)
1983 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1985 return new_rtx;
1988 /* Return a memory reference like MEMREF, but with its mode changed
1989 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1990 nonzero, the memory address is forced to be valid.
1991 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1992 and caller is responsible for adjusting MEMREF base register. */
1995 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1996 int validate, int adjust)
1998 rtx addr = XEXP (memref, 0);
1999 rtx new_rtx;
2000 rtx memoffset = MEM_OFFSET (memref);
2001 rtx size = 0;
2002 unsigned int memalign = MEM_ALIGN (memref);
2003 int pbits;
2005 /* If there are no changes, just return the original memory reference. */
2006 if (mode == GET_MODE (memref) && !offset
2007 && (!validate || memory_address_p (mode, addr)))
2008 return memref;
2010 /* ??? Prefer to create garbage instead of creating shared rtl.
2011 This may happen even if offset is nonzero -- consider
2012 (plus (plus reg reg) const_int) -- so do this always. */
2013 addr = copy_rtx (addr);
2015 /* Convert a possibly large offset to a signed value within the
2016 range of the target address space. */
2017 pbits = GET_MODE_BITSIZE (Pmode);
2018 if (HOST_BITS_PER_WIDE_INT > pbits)
2020 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2021 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2022 >> shift);
2025 if (adjust)
2027 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2028 object, we can merge it into the LO_SUM. */
2029 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2030 && offset >= 0
2031 && (unsigned HOST_WIDE_INT) offset
2032 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2033 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2034 plus_constant (XEXP (addr, 1), offset));
2035 else
2036 addr = plus_constant (addr, offset);
2039 new_rtx = change_address_1 (memref, mode, addr, validate);
2041 /* If the address is a REG, change_address_1 rightfully returns memref,
2042 but this would destroy memref's MEM_ATTRS. */
2043 if (new_rtx == memref && offset != 0)
2044 new_rtx = copy_rtx (new_rtx);
2046 /* Compute the new values of the memory attributes due to this adjustment.
2047 We add the offsets and update the alignment. */
2048 if (memoffset)
2049 memoffset = GEN_INT (offset + INTVAL (memoffset));
2051 /* Compute the new alignment by taking the MIN of the alignment and the
2052 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2053 if zero. */
2054 if (offset != 0)
2055 memalign
2056 = MIN (memalign,
2057 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2059 /* We can compute the size in a number of ways. */
2060 if (GET_MODE (new_rtx) != BLKmode)
2061 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2062 else if (MEM_SIZE (memref))
2063 size = plus_constant (MEM_SIZE (memref), -offset);
2065 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2066 memoffset, size, memalign, GET_MODE (new_rtx));
2068 /* At some point, we should validate that this offset is within the object,
2069 if all the appropriate values are known. */
2070 return new_rtx;
2073 /* Return a memory reference like MEMREF, but with its mode changed
2074 to MODE and its address changed to ADDR, which is assumed to be
2075 MEMREF offset by OFFSET bytes. If VALIDATE is
2076 nonzero, the memory address is forced to be valid. */
2079 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2080 HOST_WIDE_INT offset, int validate)
2082 memref = change_address_1 (memref, VOIDmode, addr, validate);
2083 return adjust_address_1 (memref, mode, offset, validate, 0);
2086 /* Return a memory reference like MEMREF, but whose address is changed by
2087 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2088 known to be in OFFSET (possibly 1). */
2091 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2093 rtx new_rtx, addr = XEXP (memref, 0);
2095 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2097 /* At this point we don't know _why_ the address is invalid. It
2098 could have secondary memory references, multiplies or anything.
2100 However, if we did go and rearrange things, we can wind up not
2101 being able to recognize the magic around pic_offset_table_rtx.
2102 This stuff is fragile, and is yet another example of why it is
2103 bad to expose PIC machinery too early. */
2104 if (! memory_address_p (GET_MODE (memref), new_rtx)
2105 && GET_CODE (addr) == PLUS
2106 && XEXP (addr, 0) == pic_offset_table_rtx)
2108 addr = force_reg (GET_MODE (addr), addr);
2109 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2112 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2113 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2115 /* If there are no changes, just return the original memory reference. */
2116 if (new_rtx == memref)
2117 return new_rtx;
2119 /* Update the alignment to reflect the offset. Reset the offset, which
2120 we don't know. */
2121 MEM_ATTRS (new_rtx)
2122 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2123 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2124 GET_MODE (new_rtx));
2125 return new_rtx;
2128 /* Return a memory reference like MEMREF, but with its address changed to
2129 ADDR. The caller is asserting that the actual piece of memory pointed
2130 to is the same, just the form of the address is being changed, such as
2131 by putting something into a register. */
2134 replace_equiv_address (rtx memref, rtx addr)
2136 /* change_address_1 copies the memory attribute structure without change
2137 and that's exactly what we want here. */
2138 update_temp_slot_address (XEXP (memref, 0), addr);
2139 return change_address_1 (memref, VOIDmode, addr, 1);
2142 /* Likewise, but the reference is not required to be valid. */
2145 replace_equiv_address_nv (rtx memref, rtx addr)
2147 return change_address_1 (memref, VOIDmode, addr, 0);
2150 /* Return a memory reference like MEMREF, but with its mode widened to
2151 MODE and offset by OFFSET. This would be used by targets that e.g.
2152 cannot issue QImode memory operations and have to use SImode memory
2153 operations plus masking logic. */
2156 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2158 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2159 tree expr = MEM_EXPR (new_rtx);
2160 rtx memoffset = MEM_OFFSET (new_rtx);
2161 unsigned int size = GET_MODE_SIZE (mode);
2163 /* If there are no changes, just return the original memory reference. */
2164 if (new_rtx == memref)
2165 return new_rtx;
2167 /* If we don't know what offset we were at within the expression, then
2168 we can't know if we've overstepped the bounds. */
2169 if (! memoffset)
2170 expr = NULL_TREE;
2172 while (expr)
2174 if (TREE_CODE (expr) == COMPONENT_REF)
2176 tree field = TREE_OPERAND (expr, 1);
2177 tree offset = component_ref_field_offset (expr);
2179 if (! DECL_SIZE_UNIT (field))
2181 expr = NULL_TREE;
2182 break;
2185 /* Is the field at least as large as the access? If so, ok,
2186 otherwise strip back to the containing structure. */
2187 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2188 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2189 && INTVAL (memoffset) >= 0)
2190 break;
2192 if (! host_integerp (offset, 1))
2194 expr = NULL_TREE;
2195 break;
2198 expr = TREE_OPERAND (expr, 0);
2199 memoffset
2200 = (GEN_INT (INTVAL (memoffset)
2201 + tree_low_cst (offset, 1)
2202 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2203 / BITS_PER_UNIT)));
2205 /* Similarly for the decl. */
2206 else if (DECL_P (expr)
2207 && DECL_SIZE_UNIT (expr)
2208 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2209 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2210 && (! memoffset || INTVAL (memoffset) >= 0))
2211 break;
2212 else
2214 /* The widened memory access overflows the expression, which means
2215 that it could alias another expression. Zap it. */
2216 expr = NULL_TREE;
2217 break;
2221 if (! expr)
2222 memoffset = NULL_RTX;
2224 /* The widened memory may alias other stuff, so zap the alias set. */
2225 /* ??? Maybe use get_alias_set on any remaining expression. */
2227 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2228 MEM_ALIGN (new_rtx), mode);
2230 return new_rtx;
2233 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2234 static GTY(()) tree spill_slot_decl;
2236 tree
2237 get_spill_slot_decl (bool force_build_p)
2239 tree d = spill_slot_decl;
2240 rtx rd;
2242 if (d || !force_build_p)
2243 return d;
2245 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2246 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2247 DECL_ARTIFICIAL (d) = 1;
2248 DECL_IGNORED_P (d) = 1;
2249 TREE_USED (d) = 1;
2250 TREE_THIS_NOTRAP (d) = 1;
2251 spill_slot_decl = d;
2253 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2254 MEM_NOTRAP_P (rd) = 1;
2255 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2256 NULL_RTX, 0, BLKmode);
2257 SET_DECL_RTL (d, rd);
2259 return d;
2262 /* Given MEM, a result from assign_stack_local, fill in the memory
2263 attributes as appropriate for a register allocator spill slot.
2264 These slots are not aliasable by other memory. We arrange for
2265 them all to use a single MEM_EXPR, so that the aliasing code can
2266 work properly in the case of shared spill slots. */
2268 void
2269 set_mem_attrs_for_spill (rtx mem)
2271 alias_set_type alias;
2272 rtx addr, offset;
2273 tree expr;
2275 expr = get_spill_slot_decl (true);
2276 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2278 /* We expect the incoming memory to be of the form:
2279 (mem:MODE (plus (reg sfp) (const_int offset)))
2280 with perhaps the plus missing for offset = 0. */
2281 addr = XEXP (mem, 0);
2282 offset = const0_rtx;
2283 if (GET_CODE (addr) == PLUS
2284 && CONST_INT_P (XEXP (addr, 1)))
2285 offset = XEXP (addr, 1);
2287 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2288 MEM_SIZE (mem), MEM_ALIGN (mem),
2289 GET_MODE (mem));
2290 MEM_NOTRAP_P (mem) = 1;
2293 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2296 gen_label_rtx (void)
2298 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2299 NULL, label_num++, NULL);
2302 /* For procedure integration. */
2304 /* Install new pointers to the first and last insns in the chain.
2305 Also, set cur_insn_uid to one higher than the last in use.
2306 Used for an inline-procedure after copying the insn chain. */
2308 void
2309 set_new_first_and_last_insn (rtx first, rtx last)
2311 rtx insn;
2313 first_insn = first;
2314 last_insn = last;
2315 cur_insn_uid = 0;
2317 for (insn = first; insn; insn = NEXT_INSN (insn))
2318 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2320 cur_insn_uid++;
2323 /* Go through all the RTL insn bodies and copy any invalid shared
2324 structure. This routine should only be called once. */
2326 static void
2327 unshare_all_rtl_1 (rtx insn)
2329 /* Unshare just about everything else. */
2330 unshare_all_rtl_in_chain (insn);
2332 /* Make sure the addresses of stack slots found outside the insn chain
2333 (such as, in DECL_RTL of a variable) are not shared
2334 with the insn chain.
2336 This special care is necessary when the stack slot MEM does not
2337 actually appear in the insn chain. If it does appear, its address
2338 is unshared from all else at that point. */
2339 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2342 /* Go through all the RTL insn bodies and copy any invalid shared
2343 structure, again. This is a fairly expensive thing to do so it
2344 should be done sparingly. */
2346 void
2347 unshare_all_rtl_again (rtx insn)
2349 rtx p;
2350 tree decl;
2352 for (p = insn; p; p = NEXT_INSN (p))
2353 if (INSN_P (p))
2355 reset_used_flags (PATTERN (p));
2356 reset_used_flags (REG_NOTES (p));
2359 /* Make sure that virtual stack slots are not shared. */
2360 set_used_decls (DECL_INITIAL (cfun->decl));
2362 /* Make sure that virtual parameters are not shared. */
2363 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2364 set_used_flags (DECL_RTL (decl));
2366 reset_used_flags (stack_slot_list);
2368 unshare_all_rtl_1 (insn);
2371 unsigned int
2372 unshare_all_rtl (void)
2374 unshare_all_rtl_1 (get_insns ());
2375 return 0;
2378 struct rtl_opt_pass pass_unshare_all_rtl =
2381 RTL_PASS,
2382 "unshare", /* name */
2383 NULL, /* gate */
2384 unshare_all_rtl, /* execute */
2385 NULL, /* sub */
2386 NULL, /* next */
2387 0, /* static_pass_number */
2388 TV_NONE, /* tv_id */
2389 0, /* properties_required */
2390 0, /* properties_provided */
2391 0, /* properties_destroyed */
2392 0, /* todo_flags_start */
2393 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2398 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2399 Recursively does the same for subexpressions. */
2401 static void
2402 verify_rtx_sharing (rtx orig, rtx insn)
2404 rtx x = orig;
2405 int i;
2406 enum rtx_code code;
2407 const char *format_ptr;
2409 if (x == 0)
2410 return;
2412 code = GET_CODE (x);
2414 /* These types may be freely shared. */
2416 switch (code)
2418 case REG:
2419 case CONST_INT:
2420 case CONST_DOUBLE:
2421 case CONST_FIXED:
2422 case CONST_VECTOR:
2423 case SYMBOL_REF:
2424 case LABEL_REF:
2425 case CODE_LABEL:
2426 case PC:
2427 case CC0:
2428 case SCRATCH:
2429 return;
2430 /* SCRATCH must be shared because they represent distinct values. */
2431 case CLOBBER:
2432 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2433 return;
2434 break;
2436 case CONST:
2437 if (shared_const_p (orig))
2438 return;
2439 break;
2441 case MEM:
2442 /* A MEM is allowed to be shared if its address is constant. */
2443 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2444 || reload_completed || reload_in_progress)
2445 return;
2447 break;
2449 default:
2450 break;
2453 /* This rtx may not be shared. If it has already been seen,
2454 replace it with a copy of itself. */
2455 #ifdef ENABLE_CHECKING
2456 if (RTX_FLAG (x, used))
2458 error ("invalid rtl sharing found in the insn");
2459 debug_rtx (insn);
2460 error ("shared rtx");
2461 debug_rtx (x);
2462 internal_error ("internal consistency failure");
2464 #endif
2465 gcc_assert (!RTX_FLAG (x, used));
2467 RTX_FLAG (x, used) = 1;
2469 /* Now scan the subexpressions recursively. */
2471 format_ptr = GET_RTX_FORMAT (code);
2473 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2475 switch (*format_ptr++)
2477 case 'e':
2478 verify_rtx_sharing (XEXP (x, i), insn);
2479 break;
2481 case 'E':
2482 if (XVEC (x, i) != NULL)
2484 int j;
2485 int len = XVECLEN (x, i);
2487 for (j = 0; j < len; j++)
2489 /* We allow sharing of ASM_OPERANDS inside single
2490 instruction. */
2491 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2492 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2493 == ASM_OPERANDS))
2494 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2495 else
2496 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2499 break;
2502 return;
2505 /* Go through all the RTL insn bodies and check that there is no unexpected
2506 sharing in between the subexpressions. */
2508 void
2509 verify_rtl_sharing (void)
2511 rtx p;
2513 for (p = get_insns (); p; p = NEXT_INSN (p))
2514 if (INSN_P (p))
2516 reset_used_flags (PATTERN (p));
2517 reset_used_flags (REG_NOTES (p));
2518 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2520 int i;
2521 rtx q, sequence = PATTERN (p);
2523 for (i = 0; i < XVECLEN (sequence, 0); i++)
2525 q = XVECEXP (sequence, 0, i);
2526 gcc_assert (INSN_P (q));
2527 reset_used_flags (PATTERN (q));
2528 reset_used_flags (REG_NOTES (q));
2533 for (p = get_insns (); p; p = NEXT_INSN (p))
2534 if (INSN_P (p))
2536 verify_rtx_sharing (PATTERN (p), p);
2537 verify_rtx_sharing (REG_NOTES (p), p);
2541 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2542 Assumes the mark bits are cleared at entry. */
2544 void
2545 unshare_all_rtl_in_chain (rtx insn)
2547 for (; insn; insn = NEXT_INSN (insn))
2548 if (INSN_P (insn))
2550 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2551 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2555 /* Go through all virtual stack slots of a function and mark them as
2556 shared. We never replace the DECL_RTLs themselves with a copy,
2557 but expressions mentioned into a DECL_RTL cannot be shared with
2558 expressions in the instruction stream.
2560 Note that reload may convert pseudo registers into memories in-place.
2561 Pseudo registers are always shared, but MEMs never are. Thus if we
2562 reset the used flags on MEMs in the instruction stream, we must set
2563 them again on MEMs that appear in DECL_RTLs. */
2565 static void
2566 set_used_decls (tree blk)
2568 tree t;
2570 /* Mark decls. */
2571 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2572 if (DECL_RTL_SET_P (t))
2573 set_used_flags (DECL_RTL (t));
2575 /* Now process sub-blocks. */
2576 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2577 set_used_decls (t);
2580 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2581 Recursively does the same for subexpressions. Uses
2582 copy_rtx_if_shared_1 to reduce stack space. */
2585 copy_rtx_if_shared (rtx orig)
2587 copy_rtx_if_shared_1 (&orig);
2588 return orig;
2591 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2592 use. Recursively does the same for subexpressions. */
2594 static void
2595 copy_rtx_if_shared_1 (rtx *orig1)
2597 rtx x;
2598 int i;
2599 enum rtx_code code;
2600 rtx *last_ptr;
2601 const char *format_ptr;
2602 int copied = 0;
2603 int length;
2605 /* Repeat is used to turn tail-recursion into iteration. */
2606 repeat:
2607 x = *orig1;
2609 if (x == 0)
2610 return;
2612 code = GET_CODE (x);
2614 /* These types may be freely shared. */
2616 switch (code)
2618 case REG:
2619 case CONST_INT:
2620 case CONST_DOUBLE:
2621 case CONST_FIXED:
2622 case CONST_VECTOR:
2623 case SYMBOL_REF:
2624 case LABEL_REF:
2625 case CODE_LABEL:
2626 case PC:
2627 case CC0:
2628 case SCRATCH:
2629 /* SCRATCH must be shared because they represent distinct values. */
2630 return;
2631 case CLOBBER:
2632 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2633 return;
2634 break;
2636 case CONST:
2637 if (shared_const_p (x))
2638 return;
2639 break;
2641 case INSN:
2642 case JUMP_INSN:
2643 case CALL_INSN:
2644 case NOTE:
2645 case BARRIER:
2646 /* The chain of insns is not being copied. */
2647 return;
2649 default:
2650 break;
2653 /* This rtx may not be shared. If it has already been seen,
2654 replace it with a copy of itself. */
2656 if (RTX_FLAG (x, used))
2658 x = shallow_copy_rtx (x);
2659 copied = 1;
2661 RTX_FLAG (x, used) = 1;
2663 /* Now scan the subexpressions recursively.
2664 We can store any replaced subexpressions directly into X
2665 since we know X is not shared! Any vectors in X
2666 must be copied if X was copied. */
2668 format_ptr = GET_RTX_FORMAT (code);
2669 length = GET_RTX_LENGTH (code);
2670 last_ptr = NULL;
2672 for (i = 0; i < length; i++)
2674 switch (*format_ptr++)
2676 case 'e':
2677 if (last_ptr)
2678 copy_rtx_if_shared_1 (last_ptr);
2679 last_ptr = &XEXP (x, i);
2680 break;
2682 case 'E':
2683 if (XVEC (x, i) != NULL)
2685 int j;
2686 int len = XVECLEN (x, i);
2688 /* Copy the vector iff I copied the rtx and the length
2689 is nonzero. */
2690 if (copied && len > 0)
2691 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2693 /* Call recursively on all inside the vector. */
2694 for (j = 0; j < len; j++)
2696 if (last_ptr)
2697 copy_rtx_if_shared_1 (last_ptr);
2698 last_ptr = &XVECEXP (x, i, j);
2701 break;
2704 *orig1 = x;
2705 if (last_ptr)
2707 orig1 = last_ptr;
2708 goto repeat;
2710 return;
2713 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2714 to look for shared sub-parts. */
2716 void
2717 reset_used_flags (rtx x)
2719 int i, j;
2720 enum rtx_code code;
2721 const char *format_ptr;
2722 int length;
2724 /* Repeat is used to turn tail-recursion into iteration. */
2725 repeat:
2726 if (x == 0)
2727 return;
2729 code = GET_CODE (x);
2731 /* These types may be freely shared so we needn't do any resetting
2732 for them. */
2734 switch (code)
2736 case REG:
2737 case CONST_INT:
2738 case CONST_DOUBLE:
2739 case CONST_FIXED:
2740 case CONST_VECTOR:
2741 case SYMBOL_REF:
2742 case CODE_LABEL:
2743 case PC:
2744 case CC0:
2745 return;
2747 case INSN:
2748 case JUMP_INSN:
2749 case CALL_INSN:
2750 case NOTE:
2751 case LABEL_REF:
2752 case BARRIER:
2753 /* The chain of insns is not being copied. */
2754 return;
2756 default:
2757 break;
2760 RTX_FLAG (x, used) = 0;
2762 format_ptr = GET_RTX_FORMAT (code);
2763 length = GET_RTX_LENGTH (code);
2765 for (i = 0; i < length; i++)
2767 switch (*format_ptr++)
2769 case 'e':
2770 if (i == length-1)
2772 x = XEXP (x, i);
2773 goto repeat;
2775 reset_used_flags (XEXP (x, i));
2776 break;
2778 case 'E':
2779 for (j = 0; j < XVECLEN (x, i); j++)
2780 reset_used_flags (XVECEXP (x, i, j));
2781 break;
2786 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2787 to look for shared sub-parts. */
2789 void
2790 set_used_flags (rtx x)
2792 int i, j;
2793 enum rtx_code code;
2794 const char *format_ptr;
2796 if (x == 0)
2797 return;
2799 code = GET_CODE (x);
2801 /* These types may be freely shared so we needn't do any resetting
2802 for them. */
2804 switch (code)
2806 case REG:
2807 case CONST_INT:
2808 case CONST_DOUBLE:
2809 case CONST_FIXED:
2810 case CONST_VECTOR:
2811 case SYMBOL_REF:
2812 case CODE_LABEL:
2813 case PC:
2814 case CC0:
2815 return;
2817 case INSN:
2818 case JUMP_INSN:
2819 case CALL_INSN:
2820 case NOTE:
2821 case LABEL_REF:
2822 case BARRIER:
2823 /* The chain of insns is not being copied. */
2824 return;
2826 default:
2827 break;
2830 RTX_FLAG (x, used) = 1;
2832 format_ptr = GET_RTX_FORMAT (code);
2833 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2835 switch (*format_ptr++)
2837 case 'e':
2838 set_used_flags (XEXP (x, i));
2839 break;
2841 case 'E':
2842 for (j = 0; j < XVECLEN (x, i); j++)
2843 set_used_flags (XVECEXP (x, i, j));
2844 break;
2849 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2850 Return X or the rtx for the pseudo reg the value of X was copied into.
2851 OTHER must be valid as a SET_DEST. */
2854 make_safe_from (rtx x, rtx other)
2856 while (1)
2857 switch (GET_CODE (other))
2859 case SUBREG:
2860 other = SUBREG_REG (other);
2861 break;
2862 case STRICT_LOW_PART:
2863 case SIGN_EXTEND:
2864 case ZERO_EXTEND:
2865 other = XEXP (other, 0);
2866 break;
2867 default:
2868 goto done;
2870 done:
2871 if ((MEM_P (other)
2872 && ! CONSTANT_P (x)
2873 && !REG_P (x)
2874 && GET_CODE (x) != SUBREG)
2875 || (REG_P (other)
2876 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2877 || reg_mentioned_p (other, x))))
2879 rtx temp = gen_reg_rtx (GET_MODE (x));
2880 emit_move_insn (temp, x);
2881 return temp;
2883 return x;
2886 /* Emission of insns (adding them to the doubly-linked list). */
2888 /* Return the first insn of the current sequence or current function. */
2891 get_insns (void)
2893 return first_insn;
2896 /* Specify a new insn as the first in the chain. */
2898 void
2899 set_first_insn (rtx insn)
2901 gcc_assert (!PREV_INSN (insn));
2902 first_insn = insn;
2905 /* Return the last insn emitted in current sequence or current function. */
2908 get_last_insn (void)
2910 return last_insn;
2913 /* Specify a new insn as the last in the chain. */
2915 void
2916 set_last_insn (rtx insn)
2918 gcc_assert (!NEXT_INSN (insn));
2919 last_insn = insn;
2922 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2925 get_last_insn_anywhere (void)
2927 struct sequence_stack *stack;
2928 if (last_insn)
2929 return last_insn;
2930 for (stack = seq_stack; stack; stack = stack->next)
2931 if (stack->last != 0)
2932 return stack->last;
2933 return 0;
2936 /* Return the first nonnote insn emitted in current sequence or current
2937 function. This routine looks inside SEQUENCEs. */
2940 get_first_nonnote_insn (void)
2942 rtx insn = first_insn;
2944 if (insn)
2946 if (NOTE_P (insn))
2947 for (insn = next_insn (insn);
2948 insn && NOTE_P (insn);
2949 insn = next_insn (insn))
2950 continue;
2951 else
2953 if (NONJUMP_INSN_P (insn)
2954 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2955 insn = XVECEXP (PATTERN (insn), 0, 0);
2959 return insn;
2962 /* Return the last nonnote insn emitted in current sequence or current
2963 function. This routine looks inside SEQUENCEs. */
2966 get_last_nonnote_insn (void)
2968 rtx insn = last_insn;
2970 if (insn)
2972 if (NOTE_P (insn))
2973 for (insn = previous_insn (insn);
2974 insn && NOTE_P (insn);
2975 insn = previous_insn (insn))
2976 continue;
2977 else
2979 if (NONJUMP_INSN_P (insn)
2980 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2981 insn = XVECEXP (PATTERN (insn), 0,
2982 XVECLEN (PATTERN (insn), 0) - 1);
2986 return insn;
2989 /* Return a number larger than any instruction's uid in this function. */
2992 get_max_uid (void)
2994 return cur_insn_uid;
2997 /* Return the next insn. If it is a SEQUENCE, return the first insn
2998 of the sequence. */
3001 next_insn (rtx insn)
3003 if (insn)
3005 insn = NEXT_INSN (insn);
3006 if (insn && NONJUMP_INSN_P (insn)
3007 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3008 insn = XVECEXP (PATTERN (insn), 0, 0);
3011 return insn;
3014 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3015 of the sequence. */
3018 previous_insn (rtx insn)
3020 if (insn)
3022 insn = PREV_INSN (insn);
3023 if (insn && NONJUMP_INSN_P (insn)
3024 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3025 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3028 return insn;
3031 /* Return the next insn after INSN that is not a NOTE. This routine does not
3032 look inside SEQUENCEs. */
3035 next_nonnote_insn (rtx insn)
3037 while (insn)
3039 insn = NEXT_INSN (insn);
3040 if (insn == 0 || !NOTE_P (insn))
3041 break;
3044 return insn;
3047 /* Return the previous insn before INSN that is not a NOTE. This routine does
3048 not look inside SEQUENCEs. */
3051 prev_nonnote_insn (rtx insn)
3053 while (insn)
3055 insn = PREV_INSN (insn);
3056 if (insn == 0 || !NOTE_P (insn))
3057 break;
3060 return insn;
3063 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3064 or 0, if there is none. This routine does not look inside
3065 SEQUENCEs. */
3068 next_real_insn (rtx insn)
3070 while (insn)
3072 insn = NEXT_INSN (insn);
3073 if (insn == 0 || INSN_P (insn))
3074 break;
3077 return insn;
3080 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3081 or 0, if there is none. This routine does not look inside
3082 SEQUENCEs. */
3085 prev_real_insn (rtx insn)
3087 while (insn)
3089 insn = PREV_INSN (insn);
3090 if (insn == 0 || INSN_P (insn))
3091 break;
3094 return insn;
3097 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3098 This routine does not look inside SEQUENCEs. */
3101 last_call_insn (void)
3103 rtx insn;
3105 for (insn = get_last_insn ();
3106 insn && !CALL_P (insn);
3107 insn = PREV_INSN (insn))
3110 return insn;
3113 /* Find the next insn after INSN that really does something. This routine
3114 does not look inside SEQUENCEs. Until reload has completed, this is the
3115 same as next_real_insn. */
3118 active_insn_p (const_rtx insn)
3120 return (CALL_P (insn) || JUMP_P (insn)
3121 || (NONJUMP_INSN_P (insn)
3122 && (! reload_completed
3123 || (GET_CODE (PATTERN (insn)) != USE
3124 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3128 next_active_insn (rtx insn)
3130 while (insn)
3132 insn = NEXT_INSN (insn);
3133 if (insn == 0 || active_insn_p (insn))
3134 break;
3137 return insn;
3140 /* Find the last insn before INSN that really does something. This routine
3141 does not look inside SEQUENCEs. Until reload has completed, this is the
3142 same as prev_real_insn. */
3145 prev_active_insn (rtx insn)
3147 while (insn)
3149 insn = PREV_INSN (insn);
3150 if (insn == 0 || active_insn_p (insn))
3151 break;
3154 return insn;
3157 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3160 next_label (rtx insn)
3162 while (insn)
3164 insn = NEXT_INSN (insn);
3165 if (insn == 0 || LABEL_P (insn))
3166 break;
3169 return insn;
3172 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3175 prev_label (rtx insn)
3177 while (insn)
3179 insn = PREV_INSN (insn);
3180 if (insn == 0 || LABEL_P (insn))
3181 break;
3184 return insn;
3187 /* Return the last label to mark the same position as LABEL. Return null
3188 if LABEL itself is null. */
3191 skip_consecutive_labels (rtx label)
3193 rtx insn;
3195 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3196 if (LABEL_P (insn))
3197 label = insn;
3199 return label;
3202 #ifdef HAVE_cc0
3203 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3204 and REG_CC_USER notes so we can find it. */
3206 void
3207 link_cc0_insns (rtx insn)
3209 rtx user = next_nonnote_insn (insn);
3211 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3212 user = XVECEXP (PATTERN (user), 0, 0);
3214 add_reg_note (user, REG_CC_SETTER, insn);
3215 add_reg_note (insn, REG_CC_USER, user);
3218 /* Return the next insn that uses CC0 after INSN, which is assumed to
3219 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3220 applied to the result of this function should yield INSN).
3222 Normally, this is simply the next insn. However, if a REG_CC_USER note
3223 is present, it contains the insn that uses CC0.
3225 Return 0 if we can't find the insn. */
3228 next_cc0_user (rtx insn)
3230 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3232 if (note)
3233 return XEXP (note, 0);
3235 insn = next_nonnote_insn (insn);
3236 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3237 insn = XVECEXP (PATTERN (insn), 0, 0);
3239 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3240 return insn;
3242 return 0;
3245 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3246 note, it is the previous insn. */
3249 prev_cc0_setter (rtx insn)
3251 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3253 if (note)
3254 return XEXP (note, 0);
3256 insn = prev_nonnote_insn (insn);
3257 gcc_assert (sets_cc0_p (PATTERN (insn)));
3259 return insn;
3261 #endif
3263 #ifdef AUTO_INC_DEC
3264 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3266 static int
3267 find_auto_inc (rtx *xp, void *data)
3269 rtx x = *xp;
3270 rtx reg = (rtx) data;
3272 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3273 return 0;
3275 switch (GET_CODE (x))
3277 case PRE_DEC:
3278 case PRE_INC:
3279 case POST_DEC:
3280 case POST_INC:
3281 case PRE_MODIFY:
3282 case POST_MODIFY:
3283 if (rtx_equal_p (reg, XEXP (x, 0)))
3284 return 1;
3285 break;
3287 default:
3288 gcc_unreachable ();
3290 return -1;
3292 #endif
3294 /* Increment the label uses for all labels present in rtx. */
3296 static void
3297 mark_label_nuses (rtx x)
3299 enum rtx_code code;
3300 int i, j;
3301 const char *fmt;
3303 code = GET_CODE (x);
3304 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3305 LABEL_NUSES (XEXP (x, 0))++;
3307 fmt = GET_RTX_FORMAT (code);
3308 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3310 if (fmt[i] == 'e')
3311 mark_label_nuses (XEXP (x, i));
3312 else if (fmt[i] == 'E')
3313 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3314 mark_label_nuses (XVECEXP (x, i, j));
3319 /* Try splitting insns that can be split for better scheduling.
3320 PAT is the pattern which might split.
3321 TRIAL is the insn providing PAT.
3322 LAST is nonzero if we should return the last insn of the sequence produced.
3324 If this routine succeeds in splitting, it returns the first or last
3325 replacement insn depending on the value of LAST. Otherwise, it
3326 returns TRIAL. If the insn to be returned can be split, it will be. */
3329 try_split (rtx pat, rtx trial, int last)
3331 rtx before = PREV_INSN (trial);
3332 rtx after = NEXT_INSN (trial);
3333 int has_barrier = 0;
3334 rtx note, seq, tem;
3335 int probability;
3336 rtx insn_last, insn;
3337 int njumps = 0;
3339 /* We're not good at redistributing frame information. */
3340 if (RTX_FRAME_RELATED_P (trial))
3341 return trial;
3343 if (any_condjump_p (trial)
3344 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3345 split_branch_probability = INTVAL (XEXP (note, 0));
3346 probability = split_branch_probability;
3348 seq = split_insns (pat, trial);
3350 split_branch_probability = -1;
3352 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3353 We may need to handle this specially. */
3354 if (after && BARRIER_P (after))
3356 has_barrier = 1;
3357 after = NEXT_INSN (after);
3360 if (!seq)
3361 return trial;
3363 /* Avoid infinite loop if any insn of the result matches
3364 the original pattern. */
3365 insn_last = seq;
3366 while (1)
3368 if (INSN_P (insn_last)
3369 && rtx_equal_p (PATTERN (insn_last), pat))
3370 return trial;
3371 if (!NEXT_INSN (insn_last))
3372 break;
3373 insn_last = NEXT_INSN (insn_last);
3376 /* We will be adding the new sequence to the function. The splitters
3377 may have introduced invalid RTL sharing, so unshare the sequence now. */
3378 unshare_all_rtl_in_chain (seq);
3380 /* Mark labels. */
3381 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3383 if (JUMP_P (insn))
3385 mark_jump_label (PATTERN (insn), insn, 0);
3386 njumps++;
3387 if (probability != -1
3388 && any_condjump_p (insn)
3389 && !find_reg_note (insn, REG_BR_PROB, 0))
3391 /* We can preserve the REG_BR_PROB notes only if exactly
3392 one jump is created, otherwise the machine description
3393 is responsible for this step using
3394 split_branch_probability variable. */
3395 gcc_assert (njumps == 1);
3396 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3401 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3402 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3403 if (CALL_P (trial))
3405 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3406 if (CALL_P (insn))
3408 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3409 while (*p)
3410 p = &XEXP (*p, 1);
3411 *p = CALL_INSN_FUNCTION_USAGE (trial);
3412 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3416 /* Copy notes, particularly those related to the CFG. */
3417 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3419 switch (REG_NOTE_KIND (note))
3421 case REG_EH_REGION:
3422 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3424 if (CALL_P (insn)
3425 || (flag_non_call_exceptions && INSN_P (insn)
3426 && may_trap_p (PATTERN (insn))))
3427 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3429 break;
3431 case REG_NORETURN:
3432 case REG_SETJMP:
3433 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3435 if (CALL_P (insn))
3436 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3438 break;
3440 case REG_NON_LOCAL_GOTO:
3441 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3443 if (JUMP_P (insn))
3444 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3446 break;
3448 #ifdef AUTO_INC_DEC
3449 case REG_INC:
3450 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3452 rtx reg = XEXP (note, 0);
3453 if (!FIND_REG_INC_NOTE (insn, reg)
3454 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3455 add_reg_note (insn, REG_INC, reg);
3457 break;
3458 #endif
3460 default:
3461 break;
3465 /* If there are LABELS inside the split insns increment the
3466 usage count so we don't delete the label. */
3467 if (INSN_P (trial))
3469 insn = insn_last;
3470 while (insn != NULL_RTX)
3472 /* JUMP_P insns have already been "marked" above. */
3473 if (NONJUMP_INSN_P (insn))
3474 mark_label_nuses (PATTERN (insn));
3476 insn = PREV_INSN (insn);
3480 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3482 delete_insn (trial);
3483 if (has_barrier)
3484 emit_barrier_after (tem);
3486 /* Recursively call try_split for each new insn created; by the
3487 time control returns here that insn will be fully split, so
3488 set LAST and continue from the insn after the one returned.
3489 We can't use next_active_insn here since AFTER may be a note.
3490 Ignore deleted insns, which can be occur if not optimizing. */
3491 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3492 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3493 tem = try_split (PATTERN (tem), tem, 1);
3495 /* Return either the first or the last insn, depending on which was
3496 requested. */
3497 return last
3498 ? (after ? PREV_INSN (after) : last_insn)
3499 : NEXT_INSN (before);
3502 /* Make and return an INSN rtx, initializing all its slots.
3503 Store PATTERN in the pattern slots. */
3506 make_insn_raw (rtx pattern)
3508 rtx insn;
3510 insn = rtx_alloc (INSN);
3512 INSN_UID (insn) = cur_insn_uid++;
3513 PATTERN (insn) = pattern;
3514 INSN_CODE (insn) = -1;
3515 REG_NOTES (insn) = NULL;
3516 INSN_LOCATOR (insn) = curr_insn_locator ();
3517 BLOCK_FOR_INSN (insn) = NULL;
3519 #ifdef ENABLE_RTL_CHECKING
3520 if (insn
3521 && INSN_P (insn)
3522 && (returnjump_p (insn)
3523 || (GET_CODE (insn) == SET
3524 && SET_DEST (insn) == pc_rtx)))
3526 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3527 debug_rtx (insn);
3529 #endif
3531 return insn;
3534 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3537 make_jump_insn_raw (rtx pattern)
3539 rtx insn;
3541 insn = rtx_alloc (JUMP_INSN);
3542 INSN_UID (insn) = cur_insn_uid++;
3544 PATTERN (insn) = pattern;
3545 INSN_CODE (insn) = -1;
3546 REG_NOTES (insn) = NULL;
3547 JUMP_LABEL (insn) = NULL;
3548 INSN_LOCATOR (insn) = curr_insn_locator ();
3549 BLOCK_FOR_INSN (insn) = NULL;
3551 return insn;
3554 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3556 static rtx
3557 make_call_insn_raw (rtx pattern)
3559 rtx insn;
3561 insn = rtx_alloc (CALL_INSN);
3562 INSN_UID (insn) = cur_insn_uid++;
3564 PATTERN (insn) = pattern;
3565 INSN_CODE (insn) = -1;
3566 REG_NOTES (insn) = NULL;
3567 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3568 INSN_LOCATOR (insn) = curr_insn_locator ();
3569 BLOCK_FOR_INSN (insn) = NULL;
3571 return insn;
3574 /* Add INSN to the end of the doubly-linked list.
3575 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3577 void
3578 add_insn (rtx insn)
3580 PREV_INSN (insn) = last_insn;
3581 NEXT_INSN (insn) = 0;
3583 if (NULL != last_insn)
3584 NEXT_INSN (last_insn) = insn;
3586 if (NULL == first_insn)
3587 first_insn = insn;
3589 last_insn = insn;
3592 /* Add INSN into the doubly-linked list after insn AFTER. This and
3593 the next should be the only functions called to insert an insn once
3594 delay slots have been filled since only they know how to update a
3595 SEQUENCE. */
3597 void
3598 add_insn_after (rtx insn, rtx after, basic_block bb)
3600 rtx next = NEXT_INSN (after);
3602 gcc_assert (!optimize || !INSN_DELETED_P (after));
3604 NEXT_INSN (insn) = next;
3605 PREV_INSN (insn) = after;
3607 if (next)
3609 PREV_INSN (next) = insn;
3610 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3611 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3613 else if (last_insn == after)
3614 last_insn = insn;
3615 else
3617 struct sequence_stack *stack = seq_stack;
3618 /* Scan all pending sequences too. */
3619 for (; stack; stack = stack->next)
3620 if (after == stack->last)
3622 stack->last = insn;
3623 break;
3626 gcc_assert (stack);
3629 if (!BARRIER_P (after)
3630 && !BARRIER_P (insn)
3631 && (bb = BLOCK_FOR_INSN (after)))
3633 set_block_for_insn (insn, bb);
3634 if (INSN_P (insn))
3635 df_insn_rescan (insn);
3636 /* Should not happen as first in the BB is always
3637 either NOTE or LABEL. */
3638 if (BB_END (bb) == after
3639 /* Avoid clobbering of structure when creating new BB. */
3640 && !BARRIER_P (insn)
3641 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3642 BB_END (bb) = insn;
3645 NEXT_INSN (after) = insn;
3646 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3648 rtx sequence = PATTERN (after);
3649 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3653 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3654 the previous should be the only functions called to insert an insn
3655 once delay slots have been filled since only they know how to
3656 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3657 bb from before. */
3659 void
3660 add_insn_before (rtx insn, rtx before, basic_block bb)
3662 rtx prev = PREV_INSN (before);
3664 gcc_assert (!optimize || !INSN_DELETED_P (before));
3666 PREV_INSN (insn) = prev;
3667 NEXT_INSN (insn) = before;
3669 if (prev)
3671 NEXT_INSN (prev) = insn;
3672 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3674 rtx sequence = PATTERN (prev);
3675 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3678 else if (first_insn == before)
3679 first_insn = insn;
3680 else
3682 struct sequence_stack *stack = seq_stack;
3683 /* Scan all pending sequences too. */
3684 for (; stack; stack = stack->next)
3685 if (before == stack->first)
3687 stack->first = insn;
3688 break;
3691 gcc_assert (stack);
3694 if (!bb
3695 && !BARRIER_P (before)
3696 && !BARRIER_P (insn))
3697 bb = BLOCK_FOR_INSN (before);
3699 if (bb)
3701 set_block_for_insn (insn, bb);
3702 if (INSN_P (insn))
3703 df_insn_rescan (insn);
3704 /* Should not happen as first in the BB is always either NOTE or
3705 LABEL. */
3706 gcc_assert (BB_HEAD (bb) != insn
3707 /* Avoid clobbering of structure when creating new BB. */
3708 || BARRIER_P (insn)
3709 || NOTE_INSN_BASIC_BLOCK_P (insn));
3712 PREV_INSN (before) = insn;
3713 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3714 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3718 /* Replace insn with an deleted instruction note. */
3720 void
3721 set_insn_deleted (rtx insn)
3723 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3724 PUT_CODE (insn, NOTE);
3725 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3729 /* Remove an insn from its doubly-linked list. This function knows how
3730 to handle sequences. */
3731 void
3732 remove_insn (rtx insn)
3734 rtx next = NEXT_INSN (insn);
3735 rtx prev = PREV_INSN (insn);
3736 basic_block bb;
3738 /* Later in the code, the block will be marked dirty. */
3739 df_insn_delete (NULL, INSN_UID (insn));
3741 if (prev)
3743 NEXT_INSN (prev) = next;
3744 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3746 rtx sequence = PATTERN (prev);
3747 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3750 else if (first_insn == insn)
3751 first_insn = next;
3752 else
3754 struct sequence_stack *stack = seq_stack;
3755 /* Scan all pending sequences too. */
3756 for (; stack; stack = stack->next)
3757 if (insn == stack->first)
3759 stack->first = next;
3760 break;
3763 gcc_assert (stack);
3766 if (next)
3768 PREV_INSN (next) = prev;
3769 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3770 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3772 else if (last_insn == insn)
3773 last_insn = prev;
3774 else
3776 struct sequence_stack *stack = seq_stack;
3777 /* Scan all pending sequences too. */
3778 for (; stack; stack = stack->next)
3779 if (insn == stack->last)
3781 stack->last = prev;
3782 break;
3785 gcc_assert (stack);
3787 if (!BARRIER_P (insn)
3788 && (bb = BLOCK_FOR_INSN (insn)))
3790 if (INSN_P (insn))
3791 df_set_bb_dirty (bb);
3792 if (BB_HEAD (bb) == insn)
3794 /* Never ever delete the basic block note without deleting whole
3795 basic block. */
3796 gcc_assert (!NOTE_P (insn));
3797 BB_HEAD (bb) = next;
3799 if (BB_END (bb) == insn)
3800 BB_END (bb) = prev;
3804 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3806 void
3807 add_function_usage_to (rtx call_insn, rtx call_fusage)
3809 gcc_assert (call_insn && CALL_P (call_insn));
3811 /* Put the register usage information on the CALL. If there is already
3812 some usage information, put ours at the end. */
3813 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3815 rtx link;
3817 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3818 link = XEXP (link, 1))
3821 XEXP (link, 1) = call_fusage;
3823 else
3824 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3827 /* Delete all insns made since FROM.
3828 FROM becomes the new last instruction. */
3830 void
3831 delete_insns_since (rtx from)
3833 if (from == 0)
3834 first_insn = 0;
3835 else
3836 NEXT_INSN (from) = 0;
3837 last_insn = from;
3840 /* This function is deprecated, please use sequences instead.
3842 Move a consecutive bunch of insns to a different place in the chain.
3843 The insns to be moved are those between FROM and TO.
3844 They are moved to a new position after the insn AFTER.
3845 AFTER must not be FROM or TO or any insn in between.
3847 This function does not know about SEQUENCEs and hence should not be
3848 called after delay-slot filling has been done. */
3850 void
3851 reorder_insns_nobb (rtx from, rtx to, rtx after)
3853 /* Splice this bunch out of where it is now. */
3854 if (PREV_INSN (from))
3855 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3856 if (NEXT_INSN (to))
3857 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3858 if (last_insn == to)
3859 last_insn = PREV_INSN (from);
3860 if (first_insn == from)
3861 first_insn = NEXT_INSN (to);
3863 /* Make the new neighbors point to it and it to them. */
3864 if (NEXT_INSN (after))
3865 PREV_INSN (NEXT_INSN (after)) = to;
3867 NEXT_INSN (to) = NEXT_INSN (after);
3868 PREV_INSN (from) = after;
3869 NEXT_INSN (after) = from;
3870 if (after == last_insn)
3871 last_insn = to;
3874 /* Same as function above, but take care to update BB boundaries. */
3875 void
3876 reorder_insns (rtx from, rtx to, rtx after)
3878 rtx prev = PREV_INSN (from);
3879 basic_block bb, bb2;
3881 reorder_insns_nobb (from, to, after);
3883 if (!BARRIER_P (after)
3884 && (bb = BLOCK_FOR_INSN (after)))
3886 rtx x;
3887 df_set_bb_dirty (bb);
3889 if (!BARRIER_P (from)
3890 && (bb2 = BLOCK_FOR_INSN (from)))
3892 if (BB_END (bb2) == to)
3893 BB_END (bb2) = prev;
3894 df_set_bb_dirty (bb2);
3897 if (BB_END (bb) == after)
3898 BB_END (bb) = to;
3900 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3901 if (!BARRIER_P (x))
3902 df_insn_change_bb (x, bb);
3907 /* Emit insn(s) of given code and pattern
3908 at a specified place within the doubly-linked list.
3910 All of the emit_foo global entry points accept an object
3911 X which is either an insn list or a PATTERN of a single
3912 instruction.
3914 There are thus a few canonical ways to generate code and
3915 emit it at a specific place in the instruction stream. For
3916 example, consider the instruction named SPOT and the fact that
3917 we would like to emit some instructions before SPOT. We might
3918 do it like this:
3920 start_sequence ();
3921 ... emit the new instructions ...
3922 insns_head = get_insns ();
3923 end_sequence ();
3925 emit_insn_before (insns_head, SPOT);
3927 It used to be common to generate SEQUENCE rtl instead, but that
3928 is a relic of the past which no longer occurs. The reason is that
3929 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3930 generated would almost certainly die right after it was created. */
3932 /* Make X be output before the instruction BEFORE. */
3935 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3937 rtx last = before;
3938 rtx insn;
3940 gcc_assert (before);
3942 if (x == NULL_RTX)
3943 return last;
3945 switch (GET_CODE (x))
3947 case INSN:
3948 case JUMP_INSN:
3949 case CALL_INSN:
3950 case CODE_LABEL:
3951 case BARRIER:
3952 case NOTE:
3953 insn = x;
3954 while (insn)
3956 rtx next = NEXT_INSN (insn);
3957 add_insn_before (insn, before, bb);
3958 last = insn;
3959 insn = next;
3961 break;
3963 #ifdef ENABLE_RTL_CHECKING
3964 case SEQUENCE:
3965 gcc_unreachable ();
3966 break;
3967 #endif
3969 default:
3970 last = make_insn_raw (x);
3971 add_insn_before (last, before, bb);
3972 break;
3975 return last;
3978 /* Make an instruction with body X and code JUMP_INSN
3979 and output it before the instruction BEFORE. */
3982 emit_jump_insn_before_noloc (rtx x, rtx before)
3984 rtx insn, last = NULL_RTX;
3986 gcc_assert (before);
3988 switch (GET_CODE (x))
3990 case INSN:
3991 case JUMP_INSN:
3992 case CALL_INSN:
3993 case CODE_LABEL:
3994 case BARRIER:
3995 case NOTE:
3996 insn = x;
3997 while (insn)
3999 rtx next = NEXT_INSN (insn);
4000 add_insn_before (insn, before, NULL);
4001 last = insn;
4002 insn = next;
4004 break;
4006 #ifdef ENABLE_RTL_CHECKING
4007 case SEQUENCE:
4008 gcc_unreachable ();
4009 break;
4010 #endif
4012 default:
4013 last = make_jump_insn_raw (x);
4014 add_insn_before (last, before, NULL);
4015 break;
4018 return last;
4021 /* Make an instruction with body X and code CALL_INSN
4022 and output it before the instruction BEFORE. */
4025 emit_call_insn_before_noloc (rtx x, rtx before)
4027 rtx last = NULL_RTX, insn;
4029 gcc_assert (before);
4031 switch (GET_CODE (x))
4033 case INSN:
4034 case JUMP_INSN:
4035 case CALL_INSN:
4036 case CODE_LABEL:
4037 case BARRIER:
4038 case NOTE:
4039 insn = x;
4040 while (insn)
4042 rtx next = NEXT_INSN (insn);
4043 add_insn_before (insn, before, NULL);
4044 last = insn;
4045 insn = next;
4047 break;
4049 #ifdef ENABLE_RTL_CHECKING
4050 case SEQUENCE:
4051 gcc_unreachable ();
4052 break;
4053 #endif
4055 default:
4056 last = make_call_insn_raw (x);
4057 add_insn_before (last, before, NULL);
4058 break;
4061 return last;
4064 /* Make an insn of code BARRIER
4065 and output it before the insn BEFORE. */
4068 emit_barrier_before (rtx before)
4070 rtx insn = rtx_alloc (BARRIER);
4072 INSN_UID (insn) = cur_insn_uid++;
4074 add_insn_before (insn, before, NULL);
4075 return insn;
4078 /* Emit the label LABEL before the insn BEFORE. */
4081 emit_label_before (rtx label, rtx before)
4083 /* This can be called twice for the same label as a result of the
4084 confusion that follows a syntax error! So make it harmless. */
4085 if (INSN_UID (label) == 0)
4087 INSN_UID (label) = cur_insn_uid++;
4088 add_insn_before (label, before, NULL);
4091 return label;
4094 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4097 emit_note_before (enum insn_note subtype, rtx before)
4099 rtx note = rtx_alloc (NOTE);
4100 INSN_UID (note) = cur_insn_uid++;
4101 NOTE_KIND (note) = subtype;
4102 BLOCK_FOR_INSN (note) = NULL;
4103 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4105 add_insn_before (note, before, NULL);
4106 return note;
4109 /* Helper for emit_insn_after, handles lists of instructions
4110 efficiently. */
4112 static rtx
4113 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4115 rtx last;
4116 rtx after_after;
4117 if (!bb && !BARRIER_P (after))
4118 bb = BLOCK_FOR_INSN (after);
4120 if (bb)
4122 df_set_bb_dirty (bb);
4123 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4124 if (!BARRIER_P (last))
4126 set_block_for_insn (last, bb);
4127 df_insn_rescan (last);
4129 if (!BARRIER_P (last))
4131 set_block_for_insn (last, bb);
4132 df_insn_rescan (last);
4134 if (BB_END (bb) == after)
4135 BB_END (bb) = last;
4137 else
4138 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4139 continue;
4141 after_after = NEXT_INSN (after);
4143 NEXT_INSN (after) = first;
4144 PREV_INSN (first) = after;
4145 NEXT_INSN (last) = after_after;
4146 if (after_after)
4147 PREV_INSN (after_after) = last;
4149 if (after == last_insn)
4150 last_insn = last;
4152 return last;
4155 /* Make X be output after the insn AFTER and set the BB of insn. If
4156 BB is NULL, an attempt is made to infer the BB from AFTER. */
4159 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4161 rtx last = after;
4163 gcc_assert (after);
4165 if (x == NULL_RTX)
4166 return last;
4168 switch (GET_CODE (x))
4170 case INSN:
4171 case JUMP_INSN:
4172 case CALL_INSN:
4173 case CODE_LABEL:
4174 case BARRIER:
4175 case NOTE:
4176 last = emit_insn_after_1 (x, after, bb);
4177 break;
4179 #ifdef ENABLE_RTL_CHECKING
4180 case SEQUENCE:
4181 gcc_unreachable ();
4182 break;
4183 #endif
4185 default:
4186 last = make_insn_raw (x);
4187 add_insn_after (last, after, bb);
4188 break;
4191 return last;
4195 /* Make an insn of code JUMP_INSN with body X
4196 and output it after the insn AFTER. */
4199 emit_jump_insn_after_noloc (rtx x, rtx after)
4201 rtx last;
4203 gcc_assert (after);
4205 switch (GET_CODE (x))
4207 case INSN:
4208 case JUMP_INSN:
4209 case CALL_INSN:
4210 case CODE_LABEL:
4211 case BARRIER:
4212 case NOTE:
4213 last = emit_insn_after_1 (x, after, NULL);
4214 break;
4216 #ifdef ENABLE_RTL_CHECKING
4217 case SEQUENCE:
4218 gcc_unreachable ();
4219 break;
4220 #endif
4222 default:
4223 last = make_jump_insn_raw (x);
4224 add_insn_after (last, after, NULL);
4225 break;
4228 return last;
4231 /* Make an instruction with body X and code CALL_INSN
4232 and output it after the instruction AFTER. */
4235 emit_call_insn_after_noloc (rtx x, rtx after)
4237 rtx last;
4239 gcc_assert (after);
4241 switch (GET_CODE (x))
4243 case INSN:
4244 case JUMP_INSN:
4245 case CALL_INSN:
4246 case CODE_LABEL:
4247 case BARRIER:
4248 case NOTE:
4249 last = emit_insn_after_1 (x, after, NULL);
4250 break;
4252 #ifdef ENABLE_RTL_CHECKING
4253 case SEQUENCE:
4254 gcc_unreachable ();
4255 break;
4256 #endif
4258 default:
4259 last = make_call_insn_raw (x);
4260 add_insn_after (last, after, NULL);
4261 break;
4264 return last;
4267 /* Make an insn of code BARRIER
4268 and output it after the insn AFTER. */
4271 emit_barrier_after (rtx after)
4273 rtx insn = rtx_alloc (BARRIER);
4275 INSN_UID (insn) = cur_insn_uid++;
4277 add_insn_after (insn, after, NULL);
4278 return insn;
4281 /* Emit the label LABEL after the insn AFTER. */
4284 emit_label_after (rtx label, rtx after)
4286 /* This can be called twice for the same label
4287 as a result of the confusion that follows a syntax error!
4288 So make it harmless. */
4289 if (INSN_UID (label) == 0)
4291 INSN_UID (label) = cur_insn_uid++;
4292 add_insn_after (label, after, NULL);
4295 return label;
4298 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4301 emit_note_after (enum insn_note subtype, rtx after)
4303 rtx note = rtx_alloc (NOTE);
4304 INSN_UID (note) = cur_insn_uid++;
4305 NOTE_KIND (note) = subtype;
4306 BLOCK_FOR_INSN (note) = NULL;
4307 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4308 add_insn_after (note, after, NULL);
4309 return note;
4312 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4314 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4316 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4318 if (pattern == NULL_RTX || !loc)
4319 return last;
4321 after = NEXT_INSN (after);
4322 while (1)
4324 if (active_insn_p (after) && !INSN_LOCATOR (after))
4325 INSN_LOCATOR (after) = loc;
4326 if (after == last)
4327 break;
4328 after = NEXT_INSN (after);
4330 return last;
4333 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4335 emit_insn_after (rtx pattern, rtx after)
4337 if (INSN_P (after))
4338 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4339 else
4340 return emit_insn_after_noloc (pattern, after, NULL);
4343 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4345 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4347 rtx last = emit_jump_insn_after_noloc (pattern, after);
4349 if (pattern == NULL_RTX || !loc)
4350 return last;
4352 after = NEXT_INSN (after);
4353 while (1)
4355 if (active_insn_p (after) && !INSN_LOCATOR (after))
4356 INSN_LOCATOR (after) = loc;
4357 if (after == last)
4358 break;
4359 after = NEXT_INSN (after);
4361 return last;
4364 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4366 emit_jump_insn_after (rtx pattern, rtx after)
4368 if (INSN_P (after))
4369 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4370 else
4371 return emit_jump_insn_after_noloc (pattern, after);
4374 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4376 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4378 rtx last = emit_call_insn_after_noloc (pattern, after);
4380 if (pattern == NULL_RTX || !loc)
4381 return last;
4383 after = NEXT_INSN (after);
4384 while (1)
4386 if (active_insn_p (after) && !INSN_LOCATOR (after))
4387 INSN_LOCATOR (after) = loc;
4388 if (after == last)
4389 break;
4390 after = NEXT_INSN (after);
4392 return last;
4395 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4397 emit_call_insn_after (rtx pattern, rtx after)
4399 if (INSN_P (after))
4400 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4401 else
4402 return emit_call_insn_after_noloc (pattern, after);
4405 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4407 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4409 rtx first = PREV_INSN (before);
4410 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4412 if (pattern == NULL_RTX || !loc)
4413 return last;
4415 if (!first)
4416 first = get_insns ();
4417 else
4418 first = NEXT_INSN (first);
4419 while (1)
4421 if (active_insn_p (first) && !INSN_LOCATOR (first))
4422 INSN_LOCATOR (first) = loc;
4423 if (first == last)
4424 break;
4425 first = NEXT_INSN (first);
4427 return last;
4430 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4432 emit_insn_before (rtx pattern, rtx before)
4434 if (INSN_P (before))
4435 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4436 else
4437 return emit_insn_before_noloc (pattern, before, NULL);
4440 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4442 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4444 rtx first = PREV_INSN (before);
4445 rtx last = emit_jump_insn_before_noloc (pattern, before);
4447 if (pattern == NULL_RTX)
4448 return last;
4450 first = NEXT_INSN (first);
4451 while (1)
4453 if (active_insn_p (first) && !INSN_LOCATOR (first))
4454 INSN_LOCATOR (first) = loc;
4455 if (first == last)
4456 break;
4457 first = NEXT_INSN (first);
4459 return last;
4462 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4464 emit_jump_insn_before (rtx pattern, rtx before)
4466 if (INSN_P (before))
4467 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4468 else
4469 return emit_jump_insn_before_noloc (pattern, before);
4472 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4474 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4476 rtx first = PREV_INSN (before);
4477 rtx last = emit_call_insn_before_noloc (pattern, before);
4479 if (pattern == NULL_RTX)
4480 return last;
4482 first = NEXT_INSN (first);
4483 while (1)
4485 if (active_insn_p (first) && !INSN_LOCATOR (first))
4486 INSN_LOCATOR (first) = loc;
4487 if (first == last)
4488 break;
4489 first = NEXT_INSN (first);
4491 return last;
4494 /* like emit_call_insn_before_noloc,
4495 but set insn_locator according to before. */
4497 emit_call_insn_before (rtx pattern, rtx before)
4499 if (INSN_P (before))
4500 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4501 else
4502 return emit_call_insn_before_noloc (pattern, before);
4505 /* Take X and emit it at the end of the doubly-linked
4506 INSN list.
4508 Returns the last insn emitted. */
4511 emit_insn (rtx x)
4513 rtx last = last_insn;
4514 rtx insn;
4516 if (x == NULL_RTX)
4517 return last;
4519 switch (GET_CODE (x))
4521 case INSN:
4522 case JUMP_INSN:
4523 case CALL_INSN:
4524 case CODE_LABEL:
4525 case BARRIER:
4526 case NOTE:
4527 insn = x;
4528 while (insn)
4530 rtx next = NEXT_INSN (insn);
4531 add_insn (insn);
4532 last = insn;
4533 insn = next;
4535 break;
4537 #ifdef ENABLE_RTL_CHECKING
4538 case SEQUENCE:
4539 gcc_unreachable ();
4540 break;
4541 #endif
4543 default:
4544 last = make_insn_raw (x);
4545 add_insn (last);
4546 break;
4549 return last;
4552 /* Make an insn of code JUMP_INSN with pattern X
4553 and add it to the end of the doubly-linked list. */
4556 emit_jump_insn (rtx x)
4558 rtx last = NULL_RTX, insn;
4560 switch (GET_CODE (x))
4562 case INSN:
4563 case JUMP_INSN:
4564 case CALL_INSN:
4565 case CODE_LABEL:
4566 case BARRIER:
4567 case NOTE:
4568 insn = x;
4569 while (insn)
4571 rtx next = NEXT_INSN (insn);
4572 add_insn (insn);
4573 last = insn;
4574 insn = next;
4576 break;
4578 #ifdef ENABLE_RTL_CHECKING
4579 case SEQUENCE:
4580 gcc_unreachable ();
4581 break;
4582 #endif
4584 default:
4585 last = make_jump_insn_raw (x);
4586 add_insn (last);
4587 break;
4590 return last;
4593 /* Make an insn of code CALL_INSN with pattern X
4594 and add it to the end of the doubly-linked list. */
4597 emit_call_insn (rtx x)
4599 rtx insn;
4601 switch (GET_CODE (x))
4603 case INSN:
4604 case JUMP_INSN:
4605 case CALL_INSN:
4606 case CODE_LABEL:
4607 case BARRIER:
4608 case NOTE:
4609 insn = emit_insn (x);
4610 break;
4612 #ifdef ENABLE_RTL_CHECKING
4613 case SEQUENCE:
4614 gcc_unreachable ();
4615 break;
4616 #endif
4618 default:
4619 insn = make_call_insn_raw (x);
4620 add_insn (insn);
4621 break;
4624 return insn;
4627 /* Add the label LABEL to the end of the doubly-linked list. */
4630 emit_label (rtx label)
4632 /* This can be called twice for the same label
4633 as a result of the confusion that follows a syntax error!
4634 So make it harmless. */
4635 if (INSN_UID (label) == 0)
4637 INSN_UID (label) = cur_insn_uid++;
4638 add_insn (label);
4640 return label;
4643 /* Make an insn of code BARRIER
4644 and add it to the end of the doubly-linked list. */
4647 emit_barrier (void)
4649 rtx barrier = rtx_alloc (BARRIER);
4650 INSN_UID (barrier) = cur_insn_uid++;
4651 add_insn (barrier);
4652 return barrier;
4655 /* Emit a copy of note ORIG. */
4658 emit_note_copy (rtx orig)
4660 rtx note;
4662 note = rtx_alloc (NOTE);
4664 INSN_UID (note) = cur_insn_uid++;
4665 NOTE_DATA (note) = NOTE_DATA (orig);
4666 NOTE_KIND (note) = NOTE_KIND (orig);
4667 BLOCK_FOR_INSN (note) = NULL;
4668 add_insn (note);
4670 return note;
4673 /* Make an insn of code NOTE or type NOTE_NO
4674 and add it to the end of the doubly-linked list. */
4677 emit_note (enum insn_note kind)
4679 rtx note;
4681 note = rtx_alloc (NOTE);
4682 INSN_UID (note) = cur_insn_uid++;
4683 NOTE_KIND (note) = kind;
4684 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4685 BLOCK_FOR_INSN (note) = NULL;
4686 add_insn (note);
4687 return note;
4690 /* Emit a clobber of lvalue X. */
4693 emit_clobber (rtx x)
4695 /* CONCATs should not appear in the insn stream. */
4696 if (GET_CODE (x) == CONCAT)
4698 emit_clobber (XEXP (x, 0));
4699 return emit_clobber (XEXP (x, 1));
4701 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4704 /* Return a sequence of insns to clobber lvalue X. */
4707 gen_clobber (rtx x)
4709 rtx seq;
4711 start_sequence ();
4712 emit_clobber (x);
4713 seq = get_insns ();
4714 end_sequence ();
4715 return seq;
4718 /* Emit a use of rvalue X. */
4721 emit_use (rtx x)
4723 /* CONCATs should not appear in the insn stream. */
4724 if (GET_CODE (x) == CONCAT)
4726 emit_use (XEXP (x, 0));
4727 return emit_use (XEXP (x, 1));
4729 return emit_insn (gen_rtx_USE (VOIDmode, x));
4732 /* Return a sequence of insns to use rvalue X. */
4735 gen_use (rtx x)
4737 rtx seq;
4739 start_sequence ();
4740 emit_use (x);
4741 seq = get_insns ();
4742 end_sequence ();
4743 return seq;
4746 /* Cause next statement to emit a line note even if the line number
4747 has not changed. */
4749 void
4750 force_next_line_note (void)
4752 last_location = -1;
4755 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4756 note of this type already exists, remove it first. */
4759 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4761 rtx note = find_reg_note (insn, kind, NULL_RTX);
4763 switch (kind)
4765 case REG_EQUAL:
4766 case REG_EQUIV:
4767 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4768 has multiple sets (some callers assume single_set
4769 means the insn only has one set, when in fact it
4770 means the insn only has one * useful * set). */
4771 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4773 gcc_assert (!note);
4774 return NULL_RTX;
4777 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4778 It serves no useful purpose and breaks eliminate_regs. */
4779 if (GET_CODE (datum) == ASM_OPERANDS)
4780 return NULL_RTX;
4782 if (note)
4784 XEXP (note, 0) = datum;
4785 df_notes_rescan (insn);
4786 return note;
4788 break;
4790 default:
4791 if (note)
4793 XEXP (note, 0) = datum;
4794 return note;
4796 break;
4799 add_reg_note (insn, kind, datum);
4801 switch (kind)
4803 case REG_EQUAL:
4804 case REG_EQUIV:
4805 df_notes_rescan (insn);
4806 break;
4807 default:
4808 break;
4811 return REG_NOTES (insn);
4814 /* Return an indication of which type of insn should have X as a body.
4815 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4817 static enum rtx_code
4818 classify_insn (rtx x)
4820 if (LABEL_P (x))
4821 return CODE_LABEL;
4822 if (GET_CODE (x) == CALL)
4823 return CALL_INSN;
4824 if (GET_CODE (x) == RETURN)
4825 return JUMP_INSN;
4826 if (GET_CODE (x) == SET)
4828 if (SET_DEST (x) == pc_rtx)
4829 return JUMP_INSN;
4830 else if (GET_CODE (SET_SRC (x)) == CALL)
4831 return CALL_INSN;
4832 else
4833 return INSN;
4835 if (GET_CODE (x) == PARALLEL)
4837 int j;
4838 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4839 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4840 return CALL_INSN;
4841 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4842 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4843 return JUMP_INSN;
4844 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4845 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4846 return CALL_INSN;
4848 return INSN;
4851 /* Emit the rtl pattern X as an appropriate kind of insn.
4852 If X is a label, it is simply added into the insn chain. */
4855 emit (rtx x)
4857 enum rtx_code code = classify_insn (x);
4859 switch (code)
4861 case CODE_LABEL:
4862 return emit_label (x);
4863 case INSN:
4864 return emit_insn (x);
4865 case JUMP_INSN:
4867 rtx insn = emit_jump_insn (x);
4868 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4869 return emit_barrier ();
4870 return insn;
4872 case CALL_INSN:
4873 return emit_call_insn (x);
4874 default:
4875 gcc_unreachable ();
4879 /* Space for free sequence stack entries. */
4880 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4882 /* Begin emitting insns to a sequence. If this sequence will contain
4883 something that might cause the compiler to pop arguments to function
4884 calls (because those pops have previously been deferred; see
4885 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4886 before calling this function. That will ensure that the deferred
4887 pops are not accidentally emitted in the middle of this sequence. */
4889 void
4890 start_sequence (void)
4892 struct sequence_stack *tem;
4894 if (free_sequence_stack != NULL)
4896 tem = free_sequence_stack;
4897 free_sequence_stack = tem->next;
4899 else
4900 tem = GGC_NEW (struct sequence_stack);
4902 tem->next = seq_stack;
4903 tem->first = first_insn;
4904 tem->last = last_insn;
4906 seq_stack = tem;
4908 first_insn = 0;
4909 last_insn = 0;
4912 /* Set up the insn chain starting with FIRST as the current sequence,
4913 saving the previously current one. See the documentation for
4914 start_sequence for more information about how to use this function. */
4916 void
4917 push_to_sequence (rtx first)
4919 rtx last;
4921 start_sequence ();
4923 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4925 first_insn = first;
4926 last_insn = last;
4929 /* Like push_to_sequence, but take the last insn as an argument to avoid
4930 looping through the list. */
4932 void
4933 push_to_sequence2 (rtx first, rtx last)
4935 start_sequence ();
4937 first_insn = first;
4938 last_insn = last;
4941 /* Set up the outer-level insn chain
4942 as the current sequence, saving the previously current one. */
4944 void
4945 push_topmost_sequence (void)
4947 struct sequence_stack *stack, *top = NULL;
4949 start_sequence ();
4951 for (stack = seq_stack; stack; stack = stack->next)
4952 top = stack;
4954 first_insn = top->first;
4955 last_insn = top->last;
4958 /* After emitting to the outer-level insn chain, update the outer-level
4959 insn chain, and restore the previous saved state. */
4961 void
4962 pop_topmost_sequence (void)
4964 struct sequence_stack *stack, *top = NULL;
4966 for (stack = seq_stack; stack; stack = stack->next)
4967 top = stack;
4969 top->first = first_insn;
4970 top->last = last_insn;
4972 end_sequence ();
4975 /* After emitting to a sequence, restore previous saved state.
4977 To get the contents of the sequence just made, you must call
4978 `get_insns' *before* calling here.
4980 If the compiler might have deferred popping arguments while
4981 generating this sequence, and this sequence will not be immediately
4982 inserted into the instruction stream, use do_pending_stack_adjust
4983 before calling get_insns. That will ensure that the deferred
4984 pops are inserted into this sequence, and not into some random
4985 location in the instruction stream. See INHIBIT_DEFER_POP for more
4986 information about deferred popping of arguments. */
4988 void
4989 end_sequence (void)
4991 struct sequence_stack *tem = seq_stack;
4993 first_insn = tem->first;
4994 last_insn = tem->last;
4995 seq_stack = tem->next;
4997 memset (tem, 0, sizeof (*tem));
4998 tem->next = free_sequence_stack;
4999 free_sequence_stack = tem;
5002 /* Return 1 if currently emitting into a sequence. */
5005 in_sequence_p (void)
5007 return seq_stack != 0;
5010 /* Put the various virtual registers into REGNO_REG_RTX. */
5012 static void
5013 init_virtual_regs (void)
5015 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5016 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5017 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5018 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5019 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5023 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5024 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5025 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5026 static int copy_insn_n_scratches;
5028 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5029 copied an ASM_OPERANDS.
5030 In that case, it is the original input-operand vector. */
5031 static rtvec orig_asm_operands_vector;
5033 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5034 copied an ASM_OPERANDS.
5035 In that case, it is the copied input-operand vector. */
5036 static rtvec copy_asm_operands_vector;
5038 /* Likewise for the constraints vector. */
5039 static rtvec orig_asm_constraints_vector;
5040 static rtvec copy_asm_constraints_vector;
5042 /* Recursively create a new copy of an rtx for copy_insn.
5043 This function differs from copy_rtx in that it handles SCRATCHes and
5044 ASM_OPERANDs properly.
5045 Normally, this function is not used directly; use copy_insn as front end.
5046 However, you could first copy an insn pattern with copy_insn and then use
5047 this function afterwards to properly copy any REG_NOTEs containing
5048 SCRATCHes. */
5051 copy_insn_1 (rtx orig)
5053 rtx copy;
5054 int i, j;
5055 RTX_CODE code;
5056 const char *format_ptr;
5058 if (orig == NULL)
5059 return NULL;
5061 code = GET_CODE (orig);
5063 switch (code)
5065 case REG:
5066 case CONST_INT:
5067 case CONST_DOUBLE:
5068 case CONST_FIXED:
5069 case CONST_VECTOR:
5070 case SYMBOL_REF:
5071 case CODE_LABEL:
5072 case PC:
5073 case CC0:
5074 return orig;
5075 case CLOBBER:
5076 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5077 return orig;
5078 break;
5080 case SCRATCH:
5081 for (i = 0; i < copy_insn_n_scratches; i++)
5082 if (copy_insn_scratch_in[i] == orig)
5083 return copy_insn_scratch_out[i];
5084 break;
5086 case CONST:
5087 if (shared_const_p (orig))
5088 return orig;
5089 break;
5091 /* A MEM with a constant address is not sharable. The problem is that
5092 the constant address may need to be reloaded. If the mem is shared,
5093 then reloading one copy of this mem will cause all copies to appear
5094 to have been reloaded. */
5096 default:
5097 break;
5100 /* Copy the various flags, fields, and other information. We assume
5101 that all fields need copying, and then clear the fields that should
5102 not be copied. That is the sensible default behavior, and forces
5103 us to explicitly document why we are *not* copying a flag. */
5104 copy = shallow_copy_rtx (orig);
5106 /* We do not copy the USED flag, which is used as a mark bit during
5107 walks over the RTL. */
5108 RTX_FLAG (copy, used) = 0;
5110 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5111 if (INSN_P (orig))
5113 RTX_FLAG (copy, jump) = 0;
5114 RTX_FLAG (copy, call) = 0;
5115 RTX_FLAG (copy, frame_related) = 0;
5118 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5120 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5121 switch (*format_ptr++)
5123 case 'e':
5124 if (XEXP (orig, i) != NULL)
5125 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5126 break;
5128 case 'E':
5129 case 'V':
5130 if (XVEC (orig, i) == orig_asm_constraints_vector)
5131 XVEC (copy, i) = copy_asm_constraints_vector;
5132 else if (XVEC (orig, i) == orig_asm_operands_vector)
5133 XVEC (copy, i) = copy_asm_operands_vector;
5134 else if (XVEC (orig, i) != NULL)
5136 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5137 for (j = 0; j < XVECLEN (copy, i); j++)
5138 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5140 break;
5142 case 't':
5143 case 'w':
5144 case 'i':
5145 case 's':
5146 case 'S':
5147 case 'u':
5148 case '0':
5149 /* These are left unchanged. */
5150 break;
5152 default:
5153 gcc_unreachable ();
5156 if (code == SCRATCH)
5158 i = copy_insn_n_scratches++;
5159 gcc_assert (i < MAX_RECOG_OPERANDS);
5160 copy_insn_scratch_in[i] = orig;
5161 copy_insn_scratch_out[i] = copy;
5163 else if (code == ASM_OPERANDS)
5165 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5166 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5167 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5168 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5171 return copy;
5174 /* Create a new copy of an rtx.
5175 This function differs from copy_rtx in that it handles SCRATCHes and
5176 ASM_OPERANDs properly.
5177 INSN doesn't really have to be a full INSN; it could be just the
5178 pattern. */
5180 copy_insn (rtx insn)
5182 copy_insn_n_scratches = 0;
5183 orig_asm_operands_vector = 0;
5184 orig_asm_constraints_vector = 0;
5185 copy_asm_operands_vector = 0;
5186 copy_asm_constraints_vector = 0;
5187 return copy_insn_1 (insn);
5190 /* Initialize data structures and variables in this file
5191 before generating rtl for each function. */
5193 void
5194 init_emit (void)
5196 first_insn = NULL;
5197 last_insn = NULL;
5198 cur_insn_uid = 1;
5199 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5200 last_location = UNKNOWN_LOCATION;
5201 first_label_num = label_num;
5202 seq_stack = NULL;
5204 /* Init the tables that describe all the pseudo regs. */
5206 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5208 crtl->emit.regno_pointer_align
5209 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5211 regno_reg_rtx
5212 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5214 /* Put copies of all the hard registers into regno_reg_rtx. */
5215 memcpy (regno_reg_rtx,
5216 static_regno_reg_rtx,
5217 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5219 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5220 init_virtual_regs ();
5222 /* Indicate that the virtual registers and stack locations are
5223 all pointers. */
5224 REG_POINTER (stack_pointer_rtx) = 1;
5225 REG_POINTER (frame_pointer_rtx) = 1;
5226 REG_POINTER (hard_frame_pointer_rtx) = 1;
5227 REG_POINTER (arg_pointer_rtx) = 1;
5229 REG_POINTER (virtual_incoming_args_rtx) = 1;
5230 REG_POINTER (virtual_stack_vars_rtx) = 1;
5231 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5232 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5233 REG_POINTER (virtual_cfa_rtx) = 1;
5235 #ifdef STACK_BOUNDARY
5236 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5237 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5238 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5239 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5241 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5242 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5243 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5244 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5245 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5246 #endif
5248 #ifdef INIT_EXPANDERS
5249 INIT_EXPANDERS;
5250 #endif
5253 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5255 static rtx
5256 gen_const_vector (enum machine_mode mode, int constant)
5258 rtx tem;
5259 rtvec v;
5260 int units, i;
5261 enum machine_mode inner;
5263 units = GET_MODE_NUNITS (mode);
5264 inner = GET_MODE_INNER (mode);
5266 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5268 v = rtvec_alloc (units);
5270 /* We need to call this function after we set the scalar const_tiny_rtx
5271 entries. */
5272 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5274 for (i = 0; i < units; ++i)
5275 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5277 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5278 return tem;
5281 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5282 all elements are zero, and the one vector when all elements are one. */
5284 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5286 enum machine_mode inner = GET_MODE_INNER (mode);
5287 int nunits = GET_MODE_NUNITS (mode);
5288 rtx x;
5289 int i;
5291 /* Check to see if all of the elements have the same value. */
5292 x = RTVEC_ELT (v, nunits - 1);
5293 for (i = nunits - 2; i >= 0; i--)
5294 if (RTVEC_ELT (v, i) != x)
5295 break;
5297 /* If the values are all the same, check to see if we can use one of the
5298 standard constant vectors. */
5299 if (i == -1)
5301 if (x == CONST0_RTX (inner))
5302 return CONST0_RTX (mode);
5303 else if (x == CONST1_RTX (inner))
5304 return CONST1_RTX (mode);
5307 return gen_rtx_raw_CONST_VECTOR (mode, v);
5310 /* Initialise global register information required by all functions. */
5312 void
5313 init_emit_regs (void)
5315 int i;
5317 /* Reset register attributes */
5318 htab_empty (reg_attrs_htab);
5320 /* We need reg_raw_mode, so initialize the modes now. */
5321 init_reg_modes_target ();
5323 /* Assign register numbers to the globally defined register rtx. */
5324 pc_rtx = gen_rtx_PC (VOIDmode);
5325 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5326 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5327 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5328 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5329 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5330 virtual_incoming_args_rtx =
5331 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5332 virtual_stack_vars_rtx =
5333 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5334 virtual_stack_dynamic_rtx =
5335 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5336 virtual_outgoing_args_rtx =
5337 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5338 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5340 /* Initialize RTL for commonly used hard registers. These are
5341 copied into regno_reg_rtx as we begin to compile each function. */
5342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5343 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5345 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5346 return_address_pointer_rtx
5347 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5348 #endif
5350 #ifdef STATIC_CHAIN_REGNUM
5351 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5353 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5354 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5355 static_chain_incoming_rtx
5356 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5357 else
5358 #endif
5359 static_chain_incoming_rtx = static_chain_rtx;
5360 #endif
5362 #ifdef STATIC_CHAIN
5363 static_chain_rtx = STATIC_CHAIN;
5365 #ifdef STATIC_CHAIN_INCOMING
5366 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5367 #else
5368 static_chain_incoming_rtx = static_chain_rtx;
5369 #endif
5370 #endif
5372 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5373 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5374 else
5375 pic_offset_table_rtx = NULL_RTX;
5378 /* Create some permanent unique rtl objects shared between all functions.
5379 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5381 void
5382 init_emit_once (int line_numbers)
5384 int i;
5385 enum machine_mode mode;
5386 enum machine_mode double_mode;
5388 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5389 hash tables. */
5390 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5391 const_int_htab_eq, NULL);
5393 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5394 const_double_htab_eq, NULL);
5396 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5397 const_fixed_htab_eq, NULL);
5399 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5400 mem_attrs_htab_eq, NULL);
5401 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5402 reg_attrs_htab_eq, NULL);
5404 no_line_numbers = ! line_numbers;
5406 /* Compute the word and byte modes. */
5408 byte_mode = VOIDmode;
5409 word_mode = VOIDmode;
5410 double_mode = VOIDmode;
5412 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5413 mode != VOIDmode;
5414 mode = GET_MODE_WIDER_MODE (mode))
5416 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5417 && byte_mode == VOIDmode)
5418 byte_mode = mode;
5420 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5421 && word_mode == VOIDmode)
5422 word_mode = mode;
5425 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5426 mode != VOIDmode;
5427 mode = GET_MODE_WIDER_MODE (mode))
5429 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5430 && double_mode == VOIDmode)
5431 double_mode = mode;
5434 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5436 #ifdef INIT_EXPANDERS
5437 /* This is to initialize {init|mark|free}_machine_status before the first
5438 call to push_function_context_to. This is needed by the Chill front
5439 end which calls push_function_context_to before the first call to
5440 init_function_start. */
5441 INIT_EXPANDERS;
5442 #endif
5444 /* Create the unique rtx's for certain rtx codes and operand values. */
5446 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5447 tries to use these variables. */
5448 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5449 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5450 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5452 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5453 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5454 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5455 else
5456 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5458 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5459 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5460 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5462 dconstm1 = dconst1;
5463 dconstm1.sign = 1;
5465 dconsthalf = dconst1;
5466 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5468 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5470 const REAL_VALUE_TYPE *const r =
5471 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5473 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5474 mode != VOIDmode;
5475 mode = GET_MODE_WIDER_MODE (mode))
5476 const_tiny_rtx[i][(int) mode] =
5477 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5479 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5480 mode != VOIDmode;
5481 mode = GET_MODE_WIDER_MODE (mode))
5482 const_tiny_rtx[i][(int) mode] =
5483 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5485 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5487 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5488 mode != VOIDmode;
5489 mode = GET_MODE_WIDER_MODE (mode))
5490 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5492 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5493 mode != VOIDmode;
5494 mode = GET_MODE_WIDER_MODE (mode))
5495 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5498 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5499 mode != VOIDmode;
5500 mode = GET_MODE_WIDER_MODE (mode))
5502 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5503 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5506 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5507 mode != VOIDmode;
5508 mode = GET_MODE_WIDER_MODE (mode))
5510 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5511 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5514 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5515 mode != VOIDmode;
5516 mode = GET_MODE_WIDER_MODE (mode))
5518 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5519 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5522 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5523 mode != VOIDmode;
5524 mode = GET_MODE_WIDER_MODE (mode))
5526 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5527 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5530 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5531 mode != VOIDmode;
5532 mode = GET_MODE_WIDER_MODE (mode))
5534 FCONST0(mode).data.high = 0;
5535 FCONST0(mode).data.low = 0;
5536 FCONST0(mode).mode = mode;
5537 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5538 FCONST0 (mode), mode);
5541 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5542 mode != VOIDmode;
5543 mode = GET_MODE_WIDER_MODE (mode))
5545 FCONST0(mode).data.high = 0;
5546 FCONST0(mode).data.low = 0;
5547 FCONST0(mode).mode = mode;
5548 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5549 FCONST0 (mode), mode);
5552 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5553 mode != VOIDmode;
5554 mode = GET_MODE_WIDER_MODE (mode))
5556 FCONST0(mode).data.high = 0;
5557 FCONST0(mode).data.low = 0;
5558 FCONST0(mode).mode = mode;
5559 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5560 FCONST0 (mode), mode);
5562 /* We store the value 1. */
5563 FCONST1(mode).data.high = 0;
5564 FCONST1(mode).data.low = 0;
5565 FCONST1(mode).mode = mode;
5566 lshift_double (1, 0, GET_MODE_FBIT (mode),
5567 2 * HOST_BITS_PER_WIDE_INT,
5568 &FCONST1(mode).data.low,
5569 &FCONST1(mode).data.high,
5570 SIGNED_FIXED_POINT_MODE_P (mode));
5571 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5572 FCONST1 (mode), mode);
5575 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5576 mode != VOIDmode;
5577 mode = GET_MODE_WIDER_MODE (mode))
5579 FCONST0(mode).data.high = 0;
5580 FCONST0(mode).data.low = 0;
5581 FCONST0(mode).mode = mode;
5582 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5583 FCONST0 (mode), mode);
5585 /* We store the value 1. */
5586 FCONST1(mode).data.high = 0;
5587 FCONST1(mode).data.low = 0;
5588 FCONST1(mode).mode = mode;
5589 lshift_double (1, 0, GET_MODE_FBIT (mode),
5590 2 * HOST_BITS_PER_WIDE_INT,
5591 &FCONST1(mode).data.low,
5592 &FCONST1(mode).data.high,
5593 SIGNED_FIXED_POINT_MODE_P (mode));
5594 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5595 FCONST1 (mode), mode);
5598 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5599 mode != VOIDmode;
5600 mode = GET_MODE_WIDER_MODE (mode))
5602 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5605 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5606 mode != VOIDmode;
5607 mode = GET_MODE_WIDER_MODE (mode))
5609 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5612 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5613 mode != VOIDmode;
5614 mode = GET_MODE_WIDER_MODE (mode))
5616 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5617 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5620 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5621 mode != VOIDmode;
5622 mode = GET_MODE_WIDER_MODE (mode))
5624 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5625 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5628 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5629 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5630 const_tiny_rtx[0][i] = const0_rtx;
5632 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5633 if (STORE_FLAG_VALUE == 1)
5634 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5637 /* Produce exact duplicate of insn INSN after AFTER.
5638 Care updating of libcall regions if present. */
5641 emit_copy_of_insn_after (rtx insn, rtx after)
5643 rtx new_rtx, link;
5645 switch (GET_CODE (insn))
5647 case INSN:
5648 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5649 break;
5651 case JUMP_INSN:
5652 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5653 break;
5655 case CALL_INSN:
5656 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5657 if (CALL_INSN_FUNCTION_USAGE (insn))
5658 CALL_INSN_FUNCTION_USAGE (new_rtx)
5659 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5660 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5661 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5662 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5663 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5664 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5665 break;
5667 default:
5668 gcc_unreachable ();
5671 /* Update LABEL_NUSES. */
5672 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5674 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5676 /* If the old insn is frame related, then so is the new one. This is
5677 primarily needed for IA-64 unwind info which marks epilogue insns,
5678 which may be duplicated by the basic block reordering code. */
5679 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5681 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5682 will make them. REG_LABEL_TARGETs are created there too, but are
5683 supposed to be sticky, so we copy them. */
5684 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5685 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5687 if (GET_CODE (link) == EXPR_LIST)
5688 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5689 copy_insn_1 (XEXP (link, 0)));
5690 else
5691 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5694 INSN_CODE (new_rtx) = INSN_CODE (insn);
5695 return new_rtx;
5698 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5700 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5702 if (hard_reg_clobbers[mode][regno])
5703 return hard_reg_clobbers[mode][regno];
5704 else
5705 return (hard_reg_clobbers[mode][regno] =
5706 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5709 #include "gt-emit-rtl.h"