PR c/64423
[official-gcc.git] / gcc / ira.c
blob87ea86ddc1e058d1983acddcb30743a2fde21cef
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "tm.h"
370 #include "regs.h"
371 #include "tree.h"
372 #include "rtl.h"
373 #include "tm_p.h"
374 #include "target.h"
375 #include "flags.h"
376 #include "obstack.h"
377 #include "bitmap.h"
378 #include "hard-reg-set.h"
379 #include "predict.h"
380 #include "vec.h"
381 #include "hashtab.h"
382 #include "hash-set.h"
383 #include "machmode.h"
384 #include "input.h"
385 #include "function.h"
386 #include "dominance.h"
387 #include "cfg.h"
388 #include "cfgrtl.h"
389 #include "cfgbuild.h"
390 #include "cfgcleanup.h"
391 #include "basic-block.h"
392 #include "df.h"
393 #include "expr.h"
394 #include "recog.h"
395 #include "params.h"
396 #include "tree-pass.h"
397 #include "output.h"
398 #include "except.h"
399 #include "reload.h"
400 #include "diagnostic-core.h"
401 #include "ggc.h"
402 #include "ira-int.h"
403 #include "lra.h"
404 #include "dce.h"
405 #include "dbgcnt.h"
406 #include "rtl-iter.h"
407 #include "shrink-wrap.h"
409 struct target_ira default_target_ira;
410 struct target_ira_int default_target_ira_int;
411 #if SWITCHABLE_TARGET
412 struct target_ira *this_target_ira = &default_target_ira;
413 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
414 #endif
416 /* A modified value of flag `-fira-verbose' used internally. */
417 int internal_flag_ira_verbose;
419 /* Dump file of the allocator if it is not NULL. */
420 FILE *ira_dump_file;
422 /* The number of elements in the following array. */
423 int ira_spilled_reg_stack_slots_num;
425 /* The following array contains info about spilled pseudo-registers
426 stack slots used in current function so far. */
427 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
429 /* Correspondingly overall cost of the allocation, overall cost before
430 reload, cost of the allocnos assigned to hard-registers, cost of
431 the allocnos assigned to memory, cost of loads, stores and register
432 move insns generated for pseudo-register live range splitting (see
433 ira-emit.c). */
434 int64_t ira_overall_cost, overall_cost_before;
435 int64_t ira_reg_cost, ira_mem_cost;
436 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
437 int ira_move_loops_num, ira_additional_jumps_num;
439 /* All registers that can be eliminated. */
441 HARD_REG_SET eliminable_regset;
443 /* Value of max_reg_num () before IRA work start. This value helps
444 us to recognize a situation when new pseudos were created during
445 IRA work. */
446 static int max_regno_before_ira;
448 /* Temporary hard reg set used for a different calculation. */
449 static HARD_REG_SET temp_hard_regset;
451 #define last_mode_for_init_move_cost \
452 (this_target_ira_int->x_last_mode_for_init_move_cost)
455 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
456 static void
457 setup_reg_mode_hard_regset (void)
459 int i, m, hard_regno;
461 for (m = 0; m < NUM_MACHINE_MODES; m++)
462 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
464 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
465 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
466 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
467 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
468 hard_regno + i);
473 #define no_unit_alloc_regs \
474 (this_target_ira_int->x_no_unit_alloc_regs)
476 /* The function sets up the three arrays declared above. */
477 static void
478 setup_class_hard_regs (void)
480 int cl, i, hard_regno, n;
481 HARD_REG_SET processed_hard_reg_set;
483 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
484 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
486 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
487 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
488 CLEAR_HARD_REG_SET (processed_hard_reg_set);
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
491 ira_non_ordered_class_hard_regs[cl][i] = -1;
492 ira_class_hard_reg_index[cl][i] = -1;
494 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
496 #ifdef REG_ALLOC_ORDER
497 hard_regno = reg_alloc_order[i];
498 #else
499 hard_regno = i;
500 #endif
501 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
502 continue;
503 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
504 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
505 ira_class_hard_reg_index[cl][hard_regno] = -1;
506 else
508 ira_class_hard_reg_index[cl][hard_regno] = n;
509 ira_class_hard_regs[cl][n++] = hard_regno;
512 ira_class_hard_regs_num[cl] = n;
513 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
514 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
515 ira_non_ordered_class_hard_regs[cl][n++] = i;
516 ira_assert (ira_class_hard_regs_num[cl] == n);
520 /* Set up global variables defining info about hard registers for the
521 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
522 that we can use the hard frame pointer for the allocation. */
523 static void
524 setup_alloc_regs (bool use_hard_frame_p)
526 #ifdef ADJUST_REG_ALLOC_ORDER
527 ADJUST_REG_ALLOC_ORDER;
528 #endif
529 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
530 if (! use_hard_frame_p)
531 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
532 setup_class_hard_regs ();
537 #define alloc_reg_class_subclasses \
538 (this_target_ira_int->x_alloc_reg_class_subclasses)
540 /* Initialize the table of subclasses of each reg class. */
541 static void
542 setup_reg_subclasses (void)
544 int i, j;
545 HARD_REG_SET temp_hard_regset2;
547 for (i = 0; i < N_REG_CLASSES; i++)
548 for (j = 0; j < N_REG_CLASSES; j++)
549 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
551 for (i = 0; i < N_REG_CLASSES; i++)
553 if (i == (int) NO_REGS)
554 continue;
556 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
557 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
558 if (hard_reg_set_empty_p (temp_hard_regset))
559 continue;
560 for (j = 0; j < N_REG_CLASSES; j++)
561 if (i != j)
563 enum reg_class *p;
565 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
566 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
567 if (! hard_reg_set_subset_p (temp_hard_regset,
568 temp_hard_regset2))
569 continue;
570 p = &alloc_reg_class_subclasses[j][0];
571 while (*p != LIM_REG_CLASSES) p++;
572 *p = (enum reg_class) i;
579 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
580 static void
581 setup_class_subset_and_memory_move_costs (void)
583 int cl, cl2, mode, cost;
584 HARD_REG_SET temp_hard_regset2;
586 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
587 ira_memory_move_cost[mode][NO_REGS][0]
588 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
589 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
591 if (cl != (int) NO_REGS)
592 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
594 ira_max_memory_move_cost[mode][cl][0]
595 = ira_memory_move_cost[mode][cl][0]
596 = memory_move_cost ((machine_mode) mode,
597 (reg_class_t) cl, false);
598 ira_max_memory_move_cost[mode][cl][1]
599 = ira_memory_move_cost[mode][cl][1]
600 = memory_move_cost ((machine_mode) mode,
601 (reg_class_t) cl, true);
602 /* Costs for NO_REGS are used in cost calculation on the
603 1st pass when the preferred register classes are not
604 known yet. In this case we take the best scenario. */
605 if (ira_memory_move_cost[mode][NO_REGS][0]
606 > ira_memory_move_cost[mode][cl][0])
607 ira_max_memory_move_cost[mode][NO_REGS][0]
608 = ira_memory_move_cost[mode][NO_REGS][0]
609 = ira_memory_move_cost[mode][cl][0];
610 if (ira_memory_move_cost[mode][NO_REGS][1]
611 > ira_memory_move_cost[mode][cl][1])
612 ira_max_memory_move_cost[mode][NO_REGS][1]
613 = ira_memory_move_cost[mode][NO_REGS][1]
614 = ira_memory_move_cost[mode][cl][1];
617 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
618 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
620 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
621 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
622 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
623 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
624 ira_class_subset_p[cl][cl2]
625 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
626 if (! hard_reg_set_empty_p (temp_hard_regset2)
627 && hard_reg_set_subset_p (reg_class_contents[cl2],
628 reg_class_contents[cl]))
629 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
631 cost = ira_memory_move_cost[mode][cl2][0];
632 if (cost > ira_max_memory_move_cost[mode][cl][0])
633 ira_max_memory_move_cost[mode][cl][0] = cost;
634 cost = ira_memory_move_cost[mode][cl2][1];
635 if (cost > ira_max_memory_move_cost[mode][cl][1])
636 ira_max_memory_move_cost[mode][cl][1] = cost;
639 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
640 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
642 ira_memory_move_cost[mode][cl][0]
643 = ira_max_memory_move_cost[mode][cl][0];
644 ira_memory_move_cost[mode][cl][1]
645 = ira_max_memory_move_cost[mode][cl][1];
647 setup_reg_subclasses ();
652 /* Define the following macro if allocation through malloc if
653 preferable. */
654 #define IRA_NO_OBSTACK
656 #ifndef IRA_NO_OBSTACK
657 /* Obstack used for storing all dynamic data (except bitmaps) of the
658 IRA. */
659 static struct obstack ira_obstack;
660 #endif
662 /* Obstack used for storing all bitmaps of the IRA. */
663 static struct bitmap_obstack ira_bitmap_obstack;
665 /* Allocate memory of size LEN for IRA data. */
666 void *
667 ira_allocate (size_t len)
669 void *res;
671 #ifndef IRA_NO_OBSTACK
672 res = obstack_alloc (&ira_obstack, len);
673 #else
674 res = xmalloc (len);
675 #endif
676 return res;
679 /* Free memory ADDR allocated for IRA data. */
680 void
681 ira_free (void *addr ATTRIBUTE_UNUSED)
683 #ifndef IRA_NO_OBSTACK
684 /* do nothing */
685 #else
686 free (addr);
687 #endif
691 /* Allocate and returns bitmap for IRA. */
692 bitmap
693 ira_allocate_bitmap (void)
695 return BITMAP_ALLOC (&ira_bitmap_obstack);
698 /* Free bitmap B allocated for IRA. */
699 void
700 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
702 /* do nothing */
707 /* Output information about allocation of all allocnos (except for
708 caps) into file F. */
709 void
710 ira_print_disposition (FILE *f)
712 int i, n, max_regno;
713 ira_allocno_t a;
714 basic_block bb;
716 fprintf (f, "Disposition:");
717 max_regno = max_reg_num ();
718 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
719 for (a = ira_regno_allocno_map[i];
720 a != NULL;
721 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
723 if (n % 4 == 0)
724 fprintf (f, "\n");
725 n++;
726 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
727 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
728 fprintf (f, "b%-3d", bb->index);
729 else
730 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
731 if (ALLOCNO_HARD_REGNO (a) >= 0)
732 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
733 else
734 fprintf (f, " mem");
736 fprintf (f, "\n");
739 /* Outputs information about allocation of all allocnos into
740 stderr. */
741 void
742 ira_debug_disposition (void)
744 ira_print_disposition (stderr);
749 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
750 register class containing stack registers or NO_REGS if there are
751 no stack registers. To find this class, we iterate through all
752 register pressure classes and choose the first register pressure
753 class containing all the stack registers and having the biggest
754 size. */
755 static void
756 setup_stack_reg_pressure_class (void)
758 ira_stack_reg_pressure_class = NO_REGS;
759 #ifdef STACK_REGS
761 int i, best, size;
762 enum reg_class cl;
763 HARD_REG_SET temp_hard_regset2;
765 CLEAR_HARD_REG_SET (temp_hard_regset);
766 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
767 SET_HARD_REG_BIT (temp_hard_regset, i);
768 best = 0;
769 for (i = 0; i < ira_pressure_classes_num; i++)
771 cl = ira_pressure_classes[i];
772 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
773 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
774 size = hard_reg_set_size (temp_hard_regset2);
775 if (best < size)
777 best = size;
778 ira_stack_reg_pressure_class = cl;
782 #endif
785 /* Find pressure classes which are register classes for which we
786 calculate register pressure in IRA, register pressure sensitive
787 insn scheduling, and register pressure sensitive loop invariant
788 motion.
790 To make register pressure calculation easy, we always use
791 non-intersected register pressure classes. A move of hard
792 registers from one register pressure class is not more expensive
793 than load and store of the hard registers. Most likely an allocno
794 class will be a subset of a register pressure class and in many
795 cases a register pressure class. That makes usage of register
796 pressure classes a good approximation to find a high register
797 pressure. */
798 static void
799 setup_pressure_classes (void)
801 int cost, i, n, curr;
802 int cl, cl2;
803 enum reg_class pressure_classes[N_REG_CLASSES];
804 int m;
805 HARD_REG_SET temp_hard_regset2;
806 bool insert_p;
808 n = 0;
809 for (cl = 0; cl < N_REG_CLASSES; cl++)
811 if (ira_class_hard_regs_num[cl] == 0)
812 continue;
813 if (ira_class_hard_regs_num[cl] != 1
814 /* A register class without subclasses may contain a few
815 hard registers and movement between them is costly
816 (e.g. SPARC FPCC registers). We still should consider it
817 as a candidate for a pressure class. */
818 && alloc_reg_class_subclasses[cl][0] < cl)
820 /* Check that the moves between any hard registers of the
821 current class are not more expensive for a legal mode
822 than load/store of the hard registers of the current
823 class. Such class is a potential candidate to be a
824 register pressure class. */
825 for (m = 0; m < NUM_MACHINE_MODES; m++)
827 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
828 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
829 AND_COMPL_HARD_REG_SET (temp_hard_regset,
830 ira_prohibited_class_mode_regs[cl][m]);
831 if (hard_reg_set_empty_p (temp_hard_regset))
832 continue;
833 ira_init_register_move_cost_if_necessary ((machine_mode) m);
834 cost = ira_register_move_cost[m][cl][cl];
835 if (cost <= ira_max_memory_move_cost[m][cl][1]
836 || cost <= ira_max_memory_move_cost[m][cl][0])
837 break;
839 if (m >= NUM_MACHINE_MODES)
840 continue;
842 curr = 0;
843 insert_p = true;
844 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
845 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
846 /* Remove so far added pressure classes which are subset of the
847 current candidate class. Prefer GENERAL_REGS as a pressure
848 register class to another class containing the same
849 allocatable hard registers. We do this because machine
850 dependent cost hooks might give wrong costs for the latter
851 class but always give the right cost for the former class
852 (GENERAL_REGS). */
853 for (i = 0; i < n; i++)
855 cl2 = pressure_classes[i];
856 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
857 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
858 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
859 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
860 || cl2 == (int) GENERAL_REGS))
862 pressure_classes[curr++] = (enum reg_class) cl2;
863 insert_p = false;
864 continue;
866 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
867 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
868 || cl == (int) GENERAL_REGS))
869 continue;
870 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
871 insert_p = false;
872 pressure_classes[curr++] = (enum reg_class) cl2;
874 /* If the current candidate is a subset of a so far added
875 pressure class, don't add it to the list of the pressure
876 classes. */
877 if (insert_p)
878 pressure_classes[curr++] = (enum reg_class) cl;
879 n = curr;
881 #ifdef ENABLE_IRA_CHECKING
883 HARD_REG_SET ignore_hard_regs;
885 /* Check pressure classes correctness: here we check that hard
886 registers from all register pressure classes contains all hard
887 registers available for the allocation. */
888 CLEAR_HARD_REG_SET (temp_hard_regset);
889 CLEAR_HARD_REG_SET (temp_hard_regset2);
890 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
891 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
893 /* For some targets (like MIPS with MD_REGS), there are some
894 classes with hard registers available for allocation but
895 not able to hold value of any mode. */
896 for (m = 0; m < NUM_MACHINE_MODES; m++)
897 if (contains_reg_of_mode[cl][m])
898 break;
899 if (m >= NUM_MACHINE_MODES)
901 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
902 continue;
904 for (i = 0; i < n; i++)
905 if ((int) pressure_classes[i] == cl)
906 break;
907 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
908 if (i < n)
909 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
911 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
912 /* Some targets (like SPARC with ICC reg) have allocatable regs
913 for which no reg class is defined. */
914 if (REGNO_REG_CLASS (i) == NO_REGS)
915 SET_HARD_REG_BIT (ignore_hard_regs, i);
916 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
917 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
918 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
920 #endif
921 ira_pressure_classes_num = 0;
922 for (i = 0; i < n; i++)
924 cl = (int) pressure_classes[i];
925 ira_reg_pressure_class_p[cl] = true;
926 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
928 setup_stack_reg_pressure_class ();
931 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
932 whose register move cost between any registers of the class is the
933 same as for all its subclasses. We use the data to speed up the
934 2nd pass of calculations of allocno costs. */
935 static void
936 setup_uniform_class_p (void)
938 int i, cl, cl2, m;
940 for (cl = 0; cl < N_REG_CLASSES; cl++)
942 ira_uniform_class_p[cl] = false;
943 if (ira_class_hard_regs_num[cl] == 0)
944 continue;
945 /* We can not use alloc_reg_class_subclasses here because move
946 cost hooks does not take into account that some registers are
947 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
948 is element of alloc_reg_class_subclasses for GENERAL_REGS
949 because SSE regs are unavailable. */
950 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
952 if (ira_class_hard_regs_num[cl2] == 0)
953 continue;
954 for (m = 0; m < NUM_MACHINE_MODES; m++)
955 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
957 ira_init_register_move_cost_if_necessary ((machine_mode) m);
958 if (ira_register_move_cost[m][cl][cl]
959 != ira_register_move_cost[m][cl2][cl2])
960 break;
962 if (m < NUM_MACHINE_MODES)
963 break;
965 if (cl2 == LIM_REG_CLASSES)
966 ira_uniform_class_p[cl] = true;
970 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
971 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
973 Target may have many subtargets and not all target hard registers can
974 be used for allocation, e.g. x86 port in 32-bit mode can not use
975 hard registers introduced in x86-64 like r8-r15). Some classes
976 might have the same allocatable hard registers, e.g. INDEX_REGS
977 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
978 calculations efforts we introduce allocno classes which contain
979 unique non-empty sets of allocatable hard-registers.
981 Pseudo class cost calculation in ira-costs.c is very expensive.
982 Therefore we are trying to decrease number of classes involved in
983 such calculation. Register classes used in the cost calculation
984 are called important classes. They are allocno classes and other
985 non-empty classes whose allocatable hard register sets are inside
986 of an allocno class hard register set. From the first sight, it
987 looks like that they are just allocno classes. It is not true. In
988 example of x86-port in 32-bit mode, allocno classes will contain
989 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
990 registers are the same for the both classes). The important
991 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
992 because a machine description insn constraint may refers for
993 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
994 of the insn constraints. */
995 static void
996 setup_allocno_and_important_classes (void)
998 int i, j, n, cl;
999 bool set_p;
1000 HARD_REG_SET temp_hard_regset2;
1001 static enum reg_class classes[LIM_REG_CLASSES + 1];
1003 n = 0;
1004 /* Collect classes which contain unique sets of allocatable hard
1005 registers. Prefer GENERAL_REGS to other classes containing the
1006 same set of hard registers. */
1007 for (i = 0; i < LIM_REG_CLASSES; i++)
1009 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1010 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1011 for (j = 0; j < n; j++)
1013 cl = classes[j];
1014 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1015 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1016 no_unit_alloc_regs);
1017 if (hard_reg_set_equal_p (temp_hard_regset,
1018 temp_hard_regset2))
1019 break;
1021 if (j >= n)
1022 classes[n++] = (enum reg_class) i;
1023 else if (i == GENERAL_REGS)
1024 /* Prefer general regs. For i386 example, it means that
1025 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1026 (all of them consists of the same available hard
1027 registers). */
1028 classes[j] = (enum reg_class) i;
1030 classes[n] = LIM_REG_CLASSES;
1032 /* Set up classes which can be used for allocnos as classes
1033 containing non-empty unique sets of allocatable hard
1034 registers. */
1035 ira_allocno_classes_num = 0;
1036 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1037 if (ira_class_hard_regs_num[cl] > 0)
1038 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1039 ira_important_classes_num = 0;
1040 /* Add non-allocno classes containing to non-empty set of
1041 allocatable hard regs. */
1042 for (cl = 0; cl < N_REG_CLASSES; cl++)
1043 if (ira_class_hard_regs_num[cl] > 0)
1045 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1046 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1047 set_p = false;
1048 for (j = 0; j < ira_allocno_classes_num; j++)
1050 COPY_HARD_REG_SET (temp_hard_regset2,
1051 reg_class_contents[ira_allocno_classes[j]]);
1052 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1053 if ((enum reg_class) cl == ira_allocno_classes[j])
1054 break;
1055 else if (hard_reg_set_subset_p (temp_hard_regset,
1056 temp_hard_regset2))
1057 set_p = true;
1059 if (set_p && j >= ira_allocno_classes_num)
1060 ira_important_classes[ira_important_classes_num++]
1061 = (enum reg_class) cl;
1063 /* Now add allocno classes to the important classes. */
1064 for (j = 0; j < ira_allocno_classes_num; j++)
1065 ira_important_classes[ira_important_classes_num++]
1066 = ira_allocno_classes[j];
1067 for (cl = 0; cl < N_REG_CLASSES; cl++)
1069 ira_reg_allocno_class_p[cl] = false;
1070 ira_reg_pressure_class_p[cl] = false;
1072 for (j = 0; j < ira_allocno_classes_num; j++)
1073 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1074 setup_pressure_classes ();
1075 setup_uniform_class_p ();
1078 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1079 given by array CLASSES of length CLASSES_NUM. The function is used
1080 make translation any reg class to an allocno class or to an
1081 pressure class. This translation is necessary for some
1082 calculations when we can use only allocno or pressure classes and
1083 such translation represents an approximate representation of all
1084 classes.
1086 The translation in case when allocatable hard register set of a
1087 given class is subset of allocatable hard register set of a class
1088 in CLASSES is pretty simple. We use smallest classes from CLASSES
1089 containing a given class. If allocatable hard register set of a
1090 given class is not a subset of any corresponding set of a class
1091 from CLASSES, we use the cheapest (with load/store point of view)
1092 class from CLASSES whose set intersects with given class set. */
1093 static void
1094 setup_class_translate_array (enum reg_class *class_translate,
1095 int classes_num, enum reg_class *classes)
1097 int cl, mode;
1098 enum reg_class aclass, best_class, *cl_ptr;
1099 int i, cost, min_cost, best_cost;
1101 for (cl = 0; cl < N_REG_CLASSES; cl++)
1102 class_translate[cl] = NO_REGS;
1104 for (i = 0; i < classes_num; i++)
1106 aclass = classes[i];
1107 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1108 (cl = *cl_ptr) != LIM_REG_CLASSES;
1109 cl_ptr++)
1110 if (class_translate[cl] == NO_REGS)
1111 class_translate[cl] = aclass;
1112 class_translate[aclass] = aclass;
1114 /* For classes which are not fully covered by one of given classes
1115 (in other words covered by more one given class), use the
1116 cheapest class. */
1117 for (cl = 0; cl < N_REG_CLASSES; cl++)
1119 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1120 continue;
1121 best_class = NO_REGS;
1122 best_cost = INT_MAX;
1123 for (i = 0; i < classes_num; i++)
1125 aclass = classes[i];
1126 COPY_HARD_REG_SET (temp_hard_regset,
1127 reg_class_contents[aclass]);
1128 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1129 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1130 if (! hard_reg_set_empty_p (temp_hard_regset))
1132 min_cost = INT_MAX;
1133 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1135 cost = (ira_memory_move_cost[mode][aclass][0]
1136 + ira_memory_move_cost[mode][aclass][1]);
1137 if (min_cost > cost)
1138 min_cost = cost;
1140 if (best_class == NO_REGS || best_cost > min_cost)
1142 best_class = aclass;
1143 best_cost = min_cost;
1147 class_translate[cl] = best_class;
1151 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1152 IRA_PRESSURE_CLASS_TRANSLATE. */
1153 static void
1154 setup_class_translate (void)
1156 setup_class_translate_array (ira_allocno_class_translate,
1157 ira_allocno_classes_num, ira_allocno_classes);
1158 setup_class_translate_array (ira_pressure_class_translate,
1159 ira_pressure_classes_num, ira_pressure_classes);
1162 /* Order numbers of allocno classes in original target allocno class
1163 array, -1 for non-allocno classes. */
1164 static int allocno_class_order[N_REG_CLASSES];
1166 /* The function used to sort the important classes. */
1167 static int
1168 comp_reg_classes_func (const void *v1p, const void *v2p)
1170 enum reg_class cl1 = *(const enum reg_class *) v1p;
1171 enum reg_class cl2 = *(const enum reg_class *) v2p;
1172 enum reg_class tcl1, tcl2;
1173 int diff;
1175 tcl1 = ira_allocno_class_translate[cl1];
1176 tcl2 = ira_allocno_class_translate[cl2];
1177 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1178 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1179 return diff;
1180 return (int) cl1 - (int) cl2;
1183 /* For correct work of function setup_reg_class_relation we need to
1184 reorder important classes according to the order of their allocno
1185 classes. It places important classes containing the same
1186 allocatable hard register set adjacent to each other and allocno
1187 class with the allocatable hard register set right after the other
1188 important classes with the same set.
1190 In example from comments of function
1191 setup_allocno_and_important_classes, it places LEGACY_REGS and
1192 GENERAL_REGS close to each other and GENERAL_REGS is after
1193 LEGACY_REGS. */
1194 static void
1195 reorder_important_classes (void)
1197 int i;
1199 for (i = 0; i < N_REG_CLASSES; i++)
1200 allocno_class_order[i] = -1;
1201 for (i = 0; i < ira_allocno_classes_num; i++)
1202 allocno_class_order[ira_allocno_classes[i]] = i;
1203 qsort (ira_important_classes, ira_important_classes_num,
1204 sizeof (enum reg_class), comp_reg_classes_func);
1205 for (i = 0; i < ira_important_classes_num; i++)
1206 ira_important_class_nums[ira_important_classes[i]] = i;
1209 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1210 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1211 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1212 please see corresponding comments in ira-int.h. */
1213 static void
1214 setup_reg_class_relations (void)
1216 int i, cl1, cl2, cl3;
1217 HARD_REG_SET intersection_set, union_set, temp_set2;
1218 bool important_class_p[N_REG_CLASSES];
1220 memset (important_class_p, 0, sizeof (important_class_p));
1221 for (i = 0; i < ira_important_classes_num; i++)
1222 important_class_p[ira_important_classes[i]] = true;
1223 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1225 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1226 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1228 ira_reg_classes_intersect_p[cl1][cl2] = false;
1229 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1230 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1231 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1232 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1233 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1234 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1235 if (hard_reg_set_empty_p (temp_hard_regset)
1236 && hard_reg_set_empty_p (temp_set2))
1238 /* The both classes have no allocatable hard registers
1239 -- take all class hard registers into account and use
1240 reg_class_subunion and reg_class_superunion. */
1241 for (i = 0;; i++)
1243 cl3 = reg_class_subclasses[cl1][i];
1244 if (cl3 == LIM_REG_CLASSES)
1245 break;
1246 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1247 (enum reg_class) cl3))
1248 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1250 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1251 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1252 continue;
1254 ira_reg_classes_intersect_p[cl1][cl2]
1255 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1256 if (important_class_p[cl1] && important_class_p[cl2]
1257 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1259 /* CL1 and CL2 are important classes and CL1 allocatable
1260 hard register set is inside of CL2 allocatable hard
1261 registers -- make CL1 a superset of CL2. */
1262 enum reg_class *p;
1264 p = &ira_reg_class_super_classes[cl1][0];
1265 while (*p != LIM_REG_CLASSES)
1266 p++;
1267 *p++ = (enum reg_class) cl2;
1268 *p = LIM_REG_CLASSES;
1270 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1271 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1272 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1273 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1274 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1275 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1276 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1277 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1278 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1280 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1281 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1282 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1284 /* CL3 allocatable hard register set is inside of
1285 intersection of allocatable hard register sets
1286 of CL1 and CL2. */
1287 if (important_class_p[cl3])
1289 COPY_HARD_REG_SET
1290 (temp_set2,
1291 reg_class_contents
1292 [(int) ira_reg_class_intersect[cl1][cl2]]);
1293 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1294 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1295 /* If the allocatable hard register sets are
1296 the same, prefer GENERAL_REGS or the
1297 smallest class for debugging
1298 purposes. */
1299 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1300 && (cl3 == GENERAL_REGS
1301 || ((ira_reg_class_intersect[cl1][cl2]
1302 != GENERAL_REGS)
1303 && hard_reg_set_subset_p
1304 (reg_class_contents[cl3],
1305 reg_class_contents
1306 [(int)
1307 ira_reg_class_intersect[cl1][cl2]])))))
1308 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1310 COPY_HARD_REG_SET
1311 (temp_set2,
1312 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1313 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1314 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1315 /* Ignore unavailable hard registers and prefer
1316 smallest class for debugging purposes. */
1317 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1318 && hard_reg_set_subset_p
1319 (reg_class_contents[cl3],
1320 reg_class_contents
1321 [(int) ira_reg_class_subset[cl1][cl2]])))
1322 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1324 if (important_class_p[cl3]
1325 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1327 /* CL3 allocatable hard register set is inside of
1328 union of allocatable hard register sets of CL1
1329 and CL2. */
1330 COPY_HARD_REG_SET
1331 (temp_set2,
1332 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1333 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1334 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1335 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1337 && (! hard_reg_set_equal_p (temp_set2,
1338 temp_hard_regset)
1339 || cl3 == GENERAL_REGS
1340 /* If the allocatable hard register sets are the
1341 same, prefer GENERAL_REGS or the smallest
1342 class for debugging purposes. */
1343 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1344 && hard_reg_set_subset_p
1345 (reg_class_contents[cl3],
1346 reg_class_contents
1347 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1348 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1350 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1352 /* CL3 allocatable hard register set contains union
1353 of allocatable hard register sets of CL1 and
1354 CL2. */
1355 COPY_HARD_REG_SET
1356 (temp_set2,
1357 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1358 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1359 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1360 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1362 && (! hard_reg_set_equal_p (temp_set2,
1363 temp_hard_regset)
1364 || cl3 == GENERAL_REGS
1365 /* If the allocatable hard register sets are the
1366 same, prefer GENERAL_REGS or the smallest
1367 class for debugging purposes. */
1368 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1369 && hard_reg_set_subset_p
1370 (reg_class_contents[cl3],
1371 reg_class_contents
1372 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1373 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1380 /* Output all uniform and important classes into file F. */
1381 static void
1382 print_unform_and_important_classes (FILE *f)
1384 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1385 int i, cl;
1387 fprintf (f, "Uniform classes:\n");
1388 for (cl = 0; cl < N_REG_CLASSES; cl++)
1389 if (ira_uniform_class_p[cl])
1390 fprintf (f, " %s", reg_class_names[cl]);
1391 fprintf (f, "\nImportant classes:\n");
1392 for (i = 0; i < ira_important_classes_num; i++)
1393 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1394 fprintf (f, "\n");
1397 /* Output all possible allocno or pressure classes and their
1398 translation map into file F. */
1399 static void
1400 print_translated_classes (FILE *f, bool pressure_p)
1402 int classes_num = (pressure_p
1403 ? ira_pressure_classes_num : ira_allocno_classes_num);
1404 enum reg_class *classes = (pressure_p
1405 ? ira_pressure_classes : ira_allocno_classes);
1406 enum reg_class *class_translate = (pressure_p
1407 ? ira_pressure_class_translate
1408 : ira_allocno_class_translate);
1409 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1410 int i;
1412 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1413 for (i = 0; i < classes_num; i++)
1414 fprintf (f, " %s", reg_class_names[classes[i]]);
1415 fprintf (f, "\nClass translation:\n");
1416 for (i = 0; i < N_REG_CLASSES; i++)
1417 fprintf (f, " %s -> %s\n", reg_class_names[i],
1418 reg_class_names[class_translate[i]]);
1421 /* Output all possible allocno and translation classes and the
1422 translation maps into stderr. */
1423 void
1424 ira_debug_allocno_classes (void)
1426 print_unform_and_important_classes (stderr);
1427 print_translated_classes (stderr, false);
1428 print_translated_classes (stderr, true);
1431 /* Set up different arrays concerning class subsets, allocno and
1432 important classes. */
1433 static void
1434 find_reg_classes (void)
1436 setup_allocno_and_important_classes ();
1437 setup_class_translate ();
1438 reorder_important_classes ();
1439 setup_reg_class_relations ();
1444 /* Set up the array above. */
1445 static void
1446 setup_hard_regno_aclass (void)
1448 int i;
1450 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1452 #if 1
1453 ira_hard_regno_allocno_class[i]
1454 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1455 ? NO_REGS
1456 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1457 #else
1458 int j;
1459 enum reg_class cl;
1460 ira_hard_regno_allocno_class[i] = NO_REGS;
1461 for (j = 0; j < ira_allocno_classes_num; j++)
1463 cl = ira_allocno_classes[j];
1464 if (ira_class_hard_reg_index[cl][i] >= 0)
1466 ira_hard_regno_allocno_class[i] = cl;
1467 break;
1470 #endif
1476 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1477 static void
1478 setup_reg_class_nregs (void)
1480 int i, cl, cl2, m;
1482 for (m = 0; m < MAX_MACHINE_MODE; m++)
1484 for (cl = 0; cl < N_REG_CLASSES; cl++)
1485 ira_reg_class_max_nregs[cl][m]
1486 = ira_reg_class_min_nregs[cl][m]
1487 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1488 for (cl = 0; cl < N_REG_CLASSES; cl++)
1489 for (i = 0;
1490 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1491 i++)
1492 if (ira_reg_class_min_nregs[cl2][m]
1493 < ira_reg_class_min_nregs[cl][m])
1494 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1500 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1501 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1502 static void
1503 setup_prohibited_class_mode_regs (void)
1505 int j, k, hard_regno, cl, last_hard_regno, count;
1507 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1509 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1510 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1511 for (j = 0; j < NUM_MACHINE_MODES; j++)
1513 count = 0;
1514 last_hard_regno = -1;
1515 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1516 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1518 hard_regno = ira_class_hard_regs[cl][k];
1519 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1520 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1521 hard_regno);
1522 else if (in_hard_reg_set_p (temp_hard_regset,
1523 (machine_mode) j, hard_regno))
1525 last_hard_regno = hard_regno;
1526 count++;
1529 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1534 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1535 spanning from one register pressure class to another one. It is
1536 called after defining the pressure classes. */
1537 static void
1538 clarify_prohibited_class_mode_regs (void)
1540 int j, k, hard_regno, cl, pclass, nregs;
1542 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1543 for (j = 0; j < NUM_MACHINE_MODES; j++)
1545 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1546 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1548 hard_regno = ira_class_hard_regs[cl][k];
1549 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1550 continue;
1551 nregs = hard_regno_nregs[hard_regno][j];
1552 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1554 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1555 hard_regno);
1556 continue;
1558 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1559 for (nregs-- ;nregs >= 0; nregs--)
1560 if (((enum reg_class) pclass
1561 != ira_pressure_class_translate[REGNO_REG_CLASS
1562 (hard_regno + nregs)]))
1564 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1565 hard_regno);
1566 break;
1568 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1569 hard_regno))
1570 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1571 (machine_mode) j, hard_regno);
1576 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1577 and IRA_MAY_MOVE_OUT_COST for MODE. */
1578 void
1579 ira_init_register_move_cost (machine_mode mode)
1581 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1582 bool all_match = true;
1583 unsigned int cl1, cl2;
1585 ira_assert (ira_register_move_cost[mode] == NULL
1586 && ira_may_move_in_cost[mode] == NULL
1587 && ira_may_move_out_cost[mode] == NULL);
1588 ira_assert (have_regs_of_mode[mode]);
1589 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1590 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1592 int cost;
1593 if (!contains_reg_of_mode[cl1][mode]
1594 || !contains_reg_of_mode[cl2][mode])
1596 if ((ira_reg_class_max_nregs[cl1][mode]
1597 > ira_class_hard_regs_num[cl1])
1598 || (ira_reg_class_max_nregs[cl2][mode]
1599 > ira_class_hard_regs_num[cl2]))
1600 cost = 65535;
1601 else
1602 cost = (ira_memory_move_cost[mode][cl1][0]
1603 + ira_memory_move_cost[mode][cl2][1]) * 2;
1605 else
1607 cost = register_move_cost (mode, (enum reg_class) cl1,
1608 (enum reg_class) cl2);
1609 ira_assert (cost < 65535);
1611 all_match &= (last_move_cost[cl1][cl2] == cost);
1612 last_move_cost[cl1][cl2] = cost;
1614 if (all_match && last_mode_for_init_move_cost != -1)
1616 ira_register_move_cost[mode]
1617 = ira_register_move_cost[last_mode_for_init_move_cost];
1618 ira_may_move_in_cost[mode]
1619 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1620 ira_may_move_out_cost[mode]
1621 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1622 return;
1624 last_mode_for_init_move_cost = mode;
1625 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1626 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1627 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1628 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1629 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1631 int cost;
1632 enum reg_class *p1, *p2;
1634 if (last_move_cost[cl1][cl2] == 65535)
1636 ira_register_move_cost[mode][cl1][cl2] = 65535;
1637 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1638 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1640 else
1642 cost = last_move_cost[cl1][cl2];
1644 for (p2 = &reg_class_subclasses[cl2][0];
1645 *p2 != LIM_REG_CLASSES; p2++)
1646 if (ira_class_hard_regs_num[*p2] > 0
1647 && (ira_reg_class_max_nregs[*p2][mode]
1648 <= ira_class_hard_regs_num[*p2]))
1649 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1651 for (p1 = &reg_class_subclasses[cl1][0];
1652 *p1 != LIM_REG_CLASSES; p1++)
1653 if (ira_class_hard_regs_num[*p1] > 0
1654 && (ira_reg_class_max_nregs[*p1][mode]
1655 <= ira_class_hard_regs_num[*p1]))
1656 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1658 ira_assert (cost <= 65535);
1659 ira_register_move_cost[mode][cl1][cl2] = cost;
1661 if (ira_class_subset_p[cl1][cl2])
1662 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1663 else
1664 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1666 if (ira_class_subset_p[cl2][cl1])
1667 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1668 else
1669 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1676 /* This is called once during compiler work. It sets up
1677 different arrays whose values don't depend on the compiled
1678 function. */
1679 void
1680 ira_init_once (void)
1682 ira_init_costs_once ();
1683 lra_init_once ();
1686 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1687 ira_may_move_out_cost for each mode. */
1688 void
1689 target_ira_int::free_register_move_costs (void)
1691 int mode, i;
1693 /* Reset move_cost and friends, making sure we only free shared
1694 table entries once. */
1695 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1696 if (x_ira_register_move_cost[mode])
1698 for (i = 0;
1699 i < mode && (x_ira_register_move_cost[i]
1700 != x_ira_register_move_cost[mode]);
1701 i++)
1703 if (i == mode)
1705 free (x_ira_register_move_cost[mode]);
1706 free (x_ira_may_move_in_cost[mode]);
1707 free (x_ira_may_move_out_cost[mode]);
1710 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1711 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1712 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1713 last_mode_for_init_move_cost = -1;
1716 target_ira_int::~target_ira_int ()
1718 free_ira_costs ();
1719 free_register_move_costs ();
1722 /* This is called every time when register related information is
1723 changed. */
1724 void
1725 ira_init (void)
1727 this_target_ira_int->free_register_move_costs ();
1728 setup_reg_mode_hard_regset ();
1729 setup_alloc_regs (flag_omit_frame_pointer != 0);
1730 setup_class_subset_and_memory_move_costs ();
1731 setup_reg_class_nregs ();
1732 setup_prohibited_class_mode_regs ();
1733 find_reg_classes ();
1734 clarify_prohibited_class_mode_regs ();
1735 setup_hard_regno_aclass ();
1736 ira_init_costs ();
1740 #define ira_prohibited_mode_move_regs_initialized_p \
1741 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1743 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1744 static void
1745 setup_prohibited_mode_move_regs (void)
1747 int i, j;
1748 rtx test_reg1, test_reg2, move_pat;
1749 rtx_insn *move_insn;
1751 if (ira_prohibited_mode_move_regs_initialized_p)
1752 return;
1753 ira_prohibited_mode_move_regs_initialized_p = true;
1754 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1755 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1756 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1757 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1758 for (i = 0; i < NUM_MACHINE_MODES; i++)
1760 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1761 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1763 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1764 continue;
1765 SET_REGNO_RAW (test_reg1, j);
1766 PUT_MODE (test_reg1, (machine_mode) i);
1767 SET_REGNO_RAW (test_reg2, j);
1768 PUT_MODE (test_reg2, (machine_mode) i);
1769 INSN_CODE (move_insn) = -1;
1770 recog_memoized (move_insn);
1771 if (INSN_CODE (move_insn) < 0)
1772 continue;
1773 extract_insn (move_insn);
1774 /* We don't know whether the move will be in code that is optimized
1775 for size or speed, so consider all enabled alternatives. */
1776 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1777 continue;
1778 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1785 /* Setup possible alternatives in ALTS for INSN. */
1786 void
1787 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1789 /* MAP nalt * nop -> start of constraints for given operand and
1790 alternative. */
1791 static vec<const char *> insn_constraints;
1792 int nop, nalt;
1793 bool curr_swapped;
1794 const char *p;
1795 rtx op;
1796 int commutative = -1;
1798 extract_insn (insn);
1799 alternative_mask preferred = get_preferred_alternatives (insn);
1800 CLEAR_HARD_REG_SET (alts);
1801 insn_constraints.release ();
1802 insn_constraints.safe_grow_cleared (recog_data.n_operands
1803 * recog_data.n_alternatives + 1);
1804 /* Check that the hard reg set is enough for holding all
1805 alternatives. It is hard to imagine the situation when the
1806 assertion is wrong. */
1807 ira_assert (recog_data.n_alternatives
1808 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1809 FIRST_PSEUDO_REGISTER));
1810 for (curr_swapped = false;; curr_swapped = true)
1812 /* Calculate some data common for all alternatives to speed up the
1813 function. */
1814 for (nop = 0; nop < recog_data.n_operands; nop++)
1816 for (nalt = 0, p = recog_data.constraints[nop];
1817 nalt < recog_data.n_alternatives;
1818 nalt++)
1820 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1821 while (*p && *p != ',')
1822 p++;
1823 if (*p)
1824 p++;
1827 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1829 if (!TEST_BIT (preferred, nalt)
1830 || TEST_HARD_REG_BIT (alts, nalt))
1831 continue;
1833 for (nop = 0; nop < recog_data.n_operands; nop++)
1835 int c, len;
1837 op = recog_data.operand[nop];
1838 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1839 if (*p == 0 || *p == ',')
1840 continue;
1843 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1845 case '#':
1846 case ',':
1847 c = '\0';
1848 case '\0':
1849 len = 0;
1850 break;
1852 case '%':
1853 /* We only support one commutative marker, the
1854 first one. We already set commutative
1855 above. */
1856 if (commutative < 0)
1857 commutative = nop;
1858 break;
1860 case '0': case '1': case '2': case '3': case '4':
1861 case '5': case '6': case '7': case '8': case '9':
1862 goto op_success;
1863 break;
1865 case 'g':
1866 goto op_success;
1867 break;
1869 default:
1871 enum constraint_num cn = lookup_constraint (p);
1872 switch (get_constraint_type (cn))
1874 case CT_REGISTER:
1875 if (reg_class_for_constraint (cn) != NO_REGS)
1876 goto op_success;
1877 break;
1879 case CT_CONST_INT:
1880 if (CONST_INT_P (op)
1881 && (insn_const_int_ok_for_constraint
1882 (INTVAL (op), cn)))
1883 goto op_success;
1884 break;
1886 case CT_ADDRESS:
1887 case CT_MEMORY:
1888 goto op_success;
1890 case CT_FIXED_FORM:
1891 if (constraint_satisfied_p (op, cn))
1892 goto op_success;
1893 break;
1895 break;
1898 while (p += len, c);
1899 break;
1900 op_success:
1903 if (nop >= recog_data.n_operands)
1904 SET_HARD_REG_BIT (alts, nalt);
1906 if (commutative < 0)
1907 break;
1908 if (curr_swapped)
1909 break;
1910 op = recog_data.operand[commutative];
1911 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1912 recog_data.operand[commutative + 1] = op;
1917 /* Return the number of the output non-early clobber operand which
1918 should be the same in any case as operand with number OP_NUM (or
1919 negative value if there is no such operand). The function takes
1920 only really possible alternatives into consideration. */
1922 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1924 int curr_alt, c, original, dup;
1925 bool ignore_p, use_commut_op_p;
1926 const char *str;
1928 if (op_num < 0 || recog_data.n_alternatives == 0)
1929 return -1;
1930 /* We should find duplications only for input operands. */
1931 if (recog_data.operand_type[op_num] != OP_IN)
1932 return -1;
1933 str = recog_data.constraints[op_num];
1934 use_commut_op_p = false;
1935 for (;;)
1937 rtx op = recog_data.operand[op_num];
1939 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1940 original = -1;;)
1942 c = *str;
1943 if (c == '\0')
1944 break;
1945 if (c == '#')
1946 ignore_p = true;
1947 else if (c == ',')
1949 curr_alt++;
1950 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1952 else if (! ignore_p)
1953 switch (c)
1955 case 'g':
1956 goto fail;
1957 default:
1959 enum constraint_num cn = lookup_constraint (str);
1960 enum reg_class cl = reg_class_for_constraint (cn);
1961 if (cl != NO_REGS
1962 && !targetm.class_likely_spilled_p (cl))
1963 goto fail;
1964 if (constraint_satisfied_p (op, cn))
1965 goto fail;
1966 break;
1969 case '0': case '1': case '2': case '3': case '4':
1970 case '5': case '6': case '7': case '8': case '9':
1971 if (original != -1 && original != c)
1972 goto fail;
1973 original = c;
1974 break;
1976 str += CONSTRAINT_LEN (c, str);
1978 if (original == -1)
1979 goto fail;
1980 dup = -1;
1981 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1982 *str != 0;
1983 str++)
1984 if (ignore_p)
1986 if (*str == ',')
1987 ignore_p = false;
1989 else if (*str == '#')
1990 ignore_p = true;
1991 else if (! ignore_p)
1993 if (*str == '=')
1994 dup = original - '0';
1995 /* It is better ignore an alternative with early clobber. */
1996 else if (*str == '&')
1997 goto fail;
1999 if (dup >= 0)
2000 return dup;
2001 fail:
2002 if (use_commut_op_p)
2003 break;
2004 use_commut_op_p = true;
2005 if (recog_data.constraints[op_num][0] == '%')
2006 str = recog_data.constraints[op_num + 1];
2007 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2008 str = recog_data.constraints[op_num - 1];
2009 else
2010 break;
2012 return -1;
2017 /* Search forward to see if the source register of a copy insn dies
2018 before either it or the destination register is modified, but don't
2019 scan past the end of the basic block. If so, we can replace the
2020 source with the destination and let the source die in the copy
2021 insn.
2023 This will reduce the number of registers live in that range and may
2024 enable the destination and the source coalescing, thus often saving
2025 one register in addition to a register-register copy. */
2027 static void
2028 decrease_live_ranges_number (void)
2030 basic_block bb;
2031 rtx_insn *insn;
2032 rtx set, src, dest, dest_death, q, note;
2033 rtx_insn *p;
2034 int sregno, dregno;
2036 if (! flag_expensive_optimizations)
2037 return;
2039 if (ira_dump_file)
2040 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2042 FOR_EACH_BB_FN (bb, cfun)
2043 FOR_BB_INSNS (bb, insn)
2045 set = single_set (insn);
2046 if (! set)
2047 continue;
2048 src = SET_SRC (set);
2049 dest = SET_DEST (set);
2050 if (! REG_P (src) || ! REG_P (dest)
2051 || find_reg_note (insn, REG_DEAD, src))
2052 continue;
2053 sregno = REGNO (src);
2054 dregno = REGNO (dest);
2056 /* We don't want to mess with hard regs if register classes
2057 are small. */
2058 if (sregno == dregno
2059 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2060 && (sregno < FIRST_PSEUDO_REGISTER
2061 || dregno < FIRST_PSEUDO_REGISTER))
2062 /* We don't see all updates to SP if they are in an
2063 auto-inc memory reference, so we must disallow this
2064 optimization on them. */
2065 || sregno == STACK_POINTER_REGNUM
2066 || dregno == STACK_POINTER_REGNUM)
2067 continue;
2069 dest_death = NULL_RTX;
2071 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2073 if (! INSN_P (p))
2074 continue;
2075 if (BLOCK_FOR_INSN (p) != bb)
2076 break;
2078 if (reg_set_p (src, p) || reg_set_p (dest, p)
2079 /* If SRC is an asm-declared register, it must not be
2080 replaced in any asm. Unfortunately, the REG_EXPR
2081 tree for the asm variable may be absent in the SRC
2082 rtx, so we can't check the actual register
2083 declaration easily (the asm operand will have it,
2084 though). To avoid complicating the test for a rare
2085 case, we just don't perform register replacement
2086 for a hard reg mentioned in an asm. */
2087 || (sregno < FIRST_PSEUDO_REGISTER
2088 && asm_noperands (PATTERN (p)) >= 0
2089 && reg_overlap_mentioned_p (src, PATTERN (p)))
2090 /* Don't change hard registers used by a call. */
2091 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2092 && find_reg_fusage (p, USE, src))
2093 /* Don't change a USE of a register. */
2094 || (GET_CODE (PATTERN (p)) == USE
2095 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2096 break;
2098 /* See if all of SRC dies in P. This test is slightly
2099 more conservative than it needs to be. */
2100 if ((note = find_regno_note (p, REG_DEAD, sregno))
2101 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2103 int failed = 0;
2105 /* We can do the optimization. Scan forward from INSN
2106 again, replacing regs as we go. Set FAILED if a
2107 replacement can't be done. In that case, we can't
2108 move the death note for SRC. This should be
2109 rare. */
2111 /* Set to stop at next insn. */
2112 for (q = next_real_insn (insn);
2113 q != next_real_insn (p);
2114 q = next_real_insn (q))
2116 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2118 /* If SRC is a hard register, we might miss
2119 some overlapping registers with
2120 validate_replace_rtx, so we would have to
2121 undo it. We can't if DEST is present in
2122 the insn, so fail in that combination of
2123 cases. */
2124 if (sregno < FIRST_PSEUDO_REGISTER
2125 && reg_mentioned_p (dest, PATTERN (q)))
2126 failed = 1;
2128 /* Attempt to replace all uses. */
2129 else if (!validate_replace_rtx (src, dest, q))
2130 failed = 1;
2132 /* If this succeeded, but some part of the
2133 register is still present, undo the
2134 replacement. */
2135 else if (sregno < FIRST_PSEUDO_REGISTER
2136 && reg_overlap_mentioned_p (src, PATTERN (q)))
2138 validate_replace_rtx (dest, src, q);
2139 failed = 1;
2143 /* If DEST dies here, remove the death note and
2144 save it for later. Make sure ALL of DEST dies
2145 here; again, this is overly conservative. */
2146 if (! dest_death
2147 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2149 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2150 remove_note (q, dest_death);
2151 else
2153 failed = 1;
2154 dest_death = 0;
2159 if (! failed)
2161 /* Move death note of SRC from P to INSN. */
2162 remove_note (p, note);
2163 XEXP (note, 1) = REG_NOTES (insn);
2164 REG_NOTES (insn) = note;
2167 /* DEST is also dead if INSN has a REG_UNUSED note for
2168 DEST. */
2169 if (! dest_death
2170 && (dest_death
2171 = find_regno_note (insn, REG_UNUSED, dregno)))
2173 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2174 remove_note (insn, dest_death);
2177 /* Put death note of DEST on P if we saw it die. */
2178 if (dest_death)
2180 XEXP (dest_death, 1) = REG_NOTES (p);
2181 REG_NOTES (p) = dest_death;
2183 break;
2186 /* If SRC is a hard register which is set or killed in
2187 some other way, we can't do this optimization. */
2188 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2189 break;
2196 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2197 static bool
2198 ira_bad_reload_regno_1 (int regno, rtx x)
2200 int x_regno, n, i;
2201 ira_allocno_t a;
2202 enum reg_class pref;
2204 /* We only deal with pseudo regs. */
2205 if (! x || GET_CODE (x) != REG)
2206 return false;
2208 x_regno = REGNO (x);
2209 if (x_regno < FIRST_PSEUDO_REGISTER)
2210 return false;
2212 /* If the pseudo prefers REGNO explicitly, then do not consider
2213 REGNO a bad spill choice. */
2214 pref = reg_preferred_class (x_regno);
2215 if (reg_class_size[pref] == 1)
2216 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2218 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2219 poor choice for a reload regno. */
2220 a = ira_regno_allocno_map[x_regno];
2221 n = ALLOCNO_NUM_OBJECTS (a);
2222 for (i = 0; i < n; i++)
2224 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2225 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2226 return true;
2228 return false;
2231 /* Return nonzero if REGNO is a particularly bad choice for reloading
2232 IN or OUT. */
2233 bool
2234 ira_bad_reload_regno (int regno, rtx in, rtx out)
2236 return (ira_bad_reload_regno_1 (regno, in)
2237 || ira_bad_reload_regno_1 (regno, out));
2240 /* Add register clobbers from asm statements. */
2241 static void
2242 compute_regs_asm_clobbered (void)
2244 basic_block bb;
2246 FOR_EACH_BB_FN (bb, cfun)
2248 rtx_insn *insn;
2249 FOR_BB_INSNS_REVERSE (bb, insn)
2251 df_ref def;
2253 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2254 FOR_EACH_INSN_DEF (def, insn)
2256 unsigned int dregno = DF_REF_REGNO (def);
2257 if (HARD_REGISTER_NUM_P (dregno))
2258 add_to_hard_reg_set (&crtl->asm_clobbers,
2259 GET_MODE (DF_REF_REAL_REG (def)),
2260 dregno);
2267 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2268 REGS_EVER_LIVE. */
2269 void
2270 ira_setup_eliminable_regset (void)
2272 #ifdef ELIMINABLE_REGS
2273 int i;
2274 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2275 #endif
2276 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2277 sp for alloca. So we can't eliminate the frame pointer in that
2278 case. At some point, we should improve this by emitting the
2279 sp-adjusting insns for this case. */
2280 frame_pointer_needed
2281 = (! flag_omit_frame_pointer
2282 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2283 /* We need the frame pointer to catch stack overflow exceptions
2284 if the stack pointer is moving. */
2285 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2286 || crtl->accesses_prior_frames
2287 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2288 /* We need a frame pointer for all Cilk Plus functions that use
2289 Cilk keywords. */
2290 || (flag_cilkplus && cfun->is_cilk_function)
2291 || targetm.frame_pointer_required ());
2293 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2294 RTL is very small. So if we use frame pointer for RA and RTL
2295 actually prevents this, we will spill pseudos assigned to the
2296 frame pointer in LRA. */
2298 if (frame_pointer_needed)
2299 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2301 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2302 CLEAR_HARD_REG_SET (eliminable_regset);
2304 compute_regs_asm_clobbered ();
2306 /* Build the regset of all eliminable registers and show we can't
2307 use those that we already know won't be eliminated. */
2308 #ifdef ELIMINABLE_REGS
2309 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2311 bool cannot_elim
2312 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2313 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2315 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2317 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2319 if (cannot_elim)
2320 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2322 else if (cannot_elim)
2323 error ("%s cannot be used in asm here",
2324 reg_names[eliminables[i].from]);
2325 else
2326 df_set_regs_ever_live (eliminables[i].from, true);
2328 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2329 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2331 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2332 if (frame_pointer_needed)
2333 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2335 else if (frame_pointer_needed)
2336 error ("%s cannot be used in asm here",
2337 reg_names[HARD_FRAME_POINTER_REGNUM]);
2338 else
2339 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2340 #endif
2342 #else
2343 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2345 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2346 if (frame_pointer_needed)
2347 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2349 else if (frame_pointer_needed)
2350 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2351 else
2352 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2353 #endif
2358 /* Vector of substitutions of register numbers,
2359 used to map pseudo regs into hardware regs.
2360 This is set up as a result of register allocation.
2361 Element N is the hard reg assigned to pseudo reg N,
2362 or is -1 if no hard reg was assigned.
2363 If N is a hard reg number, element N is N. */
2364 short *reg_renumber;
2366 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2367 the allocation found by IRA. */
2368 static void
2369 setup_reg_renumber (void)
2371 int regno, hard_regno;
2372 ira_allocno_t a;
2373 ira_allocno_iterator ai;
2375 caller_save_needed = 0;
2376 FOR_EACH_ALLOCNO (a, ai)
2378 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2379 continue;
2380 /* There are no caps at this point. */
2381 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2382 if (! ALLOCNO_ASSIGNED_P (a))
2383 /* It can happen if A is not referenced but partially anticipated
2384 somewhere in a region. */
2385 ALLOCNO_ASSIGNED_P (a) = true;
2386 ira_free_allocno_updated_costs (a);
2387 hard_regno = ALLOCNO_HARD_REGNO (a);
2388 regno = ALLOCNO_REGNO (a);
2389 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2390 if (hard_regno >= 0)
2392 int i, nwords;
2393 enum reg_class pclass;
2394 ira_object_t obj;
2396 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2397 nwords = ALLOCNO_NUM_OBJECTS (a);
2398 for (i = 0; i < nwords; i++)
2400 obj = ALLOCNO_OBJECT (a, i);
2401 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2402 reg_class_contents[pclass]);
2404 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2405 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2406 call_used_reg_set))
2408 ira_assert (!optimize || flag_caller_saves
2409 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2410 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2411 || regno >= ira_reg_equiv_len
2412 || ira_equiv_no_lvalue_p (regno));
2413 caller_save_needed = 1;
2419 /* Set up allocno assignment flags for further allocation
2420 improvements. */
2421 static void
2422 setup_allocno_assignment_flags (void)
2424 int hard_regno;
2425 ira_allocno_t a;
2426 ira_allocno_iterator ai;
2428 FOR_EACH_ALLOCNO (a, ai)
2430 if (! ALLOCNO_ASSIGNED_P (a))
2431 /* It can happen if A is not referenced but partially anticipated
2432 somewhere in a region. */
2433 ira_free_allocno_updated_costs (a);
2434 hard_regno = ALLOCNO_HARD_REGNO (a);
2435 /* Don't assign hard registers to allocnos which are destination
2436 of removed store at the end of loop. It has no sense to keep
2437 the same value in different hard registers. It is also
2438 impossible to assign hard registers correctly to such
2439 allocnos because the cost info and info about intersected
2440 calls are incorrect for them. */
2441 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2442 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2443 || (ALLOCNO_MEMORY_COST (a)
2444 - ALLOCNO_CLASS_COST (a)) < 0);
2445 ira_assert
2446 (hard_regno < 0
2447 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2448 reg_class_contents[ALLOCNO_CLASS (a)]));
2452 /* Evaluate overall allocation cost and the costs for using hard
2453 registers and memory for allocnos. */
2454 static void
2455 calculate_allocation_cost (void)
2457 int hard_regno, cost;
2458 ira_allocno_t a;
2459 ira_allocno_iterator ai;
2461 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2462 FOR_EACH_ALLOCNO (a, ai)
2464 hard_regno = ALLOCNO_HARD_REGNO (a);
2465 ira_assert (hard_regno < 0
2466 || (ira_hard_reg_in_set_p
2467 (hard_regno, ALLOCNO_MODE (a),
2468 reg_class_contents[ALLOCNO_CLASS (a)])));
2469 if (hard_regno < 0)
2471 cost = ALLOCNO_MEMORY_COST (a);
2472 ira_mem_cost += cost;
2474 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2476 cost = (ALLOCNO_HARD_REG_COSTS (a)
2477 [ira_class_hard_reg_index
2478 [ALLOCNO_CLASS (a)][hard_regno]]);
2479 ira_reg_cost += cost;
2481 else
2483 cost = ALLOCNO_CLASS_COST (a);
2484 ira_reg_cost += cost;
2486 ira_overall_cost += cost;
2489 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2491 fprintf (ira_dump_file,
2492 "+++Costs: overall %"PRId64
2493 ", reg %"PRId64
2494 ", mem %"PRId64
2495 ", ld %"PRId64
2496 ", st %"PRId64
2497 ", move %"PRId64,
2498 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2499 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2500 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2501 ira_move_loops_num, ira_additional_jumps_num);
2506 #ifdef ENABLE_IRA_CHECKING
2507 /* Check the correctness of the allocation. We do need this because
2508 of complicated code to transform more one region internal
2509 representation into one region representation. */
2510 static void
2511 check_allocation (void)
2513 ira_allocno_t a;
2514 int hard_regno, nregs, conflict_nregs;
2515 ira_allocno_iterator ai;
2517 FOR_EACH_ALLOCNO (a, ai)
2519 int n = ALLOCNO_NUM_OBJECTS (a);
2520 int i;
2522 if (ALLOCNO_CAP_MEMBER (a) != NULL
2523 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2524 continue;
2525 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2526 if (nregs == 1)
2527 /* We allocated a single hard register. */
2528 n = 1;
2529 else if (n > 1)
2530 /* We allocated multiple hard registers, and we will test
2531 conflicts in a granularity of single hard regs. */
2532 nregs = 1;
2534 for (i = 0; i < n; i++)
2536 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2537 ira_object_t conflict_obj;
2538 ira_object_conflict_iterator oci;
2539 int this_regno = hard_regno;
2540 if (n > 1)
2542 if (REG_WORDS_BIG_ENDIAN)
2543 this_regno += n - i - 1;
2544 else
2545 this_regno += i;
2547 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2549 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2550 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2551 if (conflict_hard_regno < 0)
2552 continue;
2554 conflict_nregs
2555 = (hard_regno_nregs
2556 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2558 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2559 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2561 if (REG_WORDS_BIG_ENDIAN)
2562 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2563 - OBJECT_SUBWORD (conflict_obj) - 1);
2564 else
2565 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2566 conflict_nregs = 1;
2569 if ((conflict_hard_regno <= this_regno
2570 && this_regno < conflict_hard_regno + conflict_nregs)
2571 || (this_regno <= conflict_hard_regno
2572 && conflict_hard_regno < this_regno + nregs))
2574 fprintf (stderr, "bad allocation for %d and %d\n",
2575 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2576 gcc_unreachable ();
2582 #endif
2584 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2585 be already calculated. */
2586 static void
2587 setup_reg_equiv_init (void)
2589 int i;
2590 int max_regno = max_reg_num ();
2592 for (i = 0; i < max_regno; i++)
2593 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2596 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2597 are insns which were generated for such movement. It is assumed
2598 that FROM_REGNO and TO_REGNO always have the same value at the
2599 point of any move containing such registers. This function is used
2600 to update equiv info for register shuffles on the region borders
2601 and for caller save/restore insns. */
2602 void
2603 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2605 rtx_insn *insn;
2606 rtx x, note;
2608 if (! ira_reg_equiv[from_regno].defined_p
2609 && (! ira_reg_equiv[to_regno].defined_p
2610 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2611 && ! MEM_READONLY_P (x))))
2612 return;
2613 insn = insns;
2614 if (NEXT_INSN (insn) != NULL_RTX)
2616 if (! ira_reg_equiv[to_regno].defined_p)
2618 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2619 return;
2621 ira_reg_equiv[to_regno].defined_p = false;
2622 ira_reg_equiv[to_regno].memory
2623 = ira_reg_equiv[to_regno].constant
2624 = ira_reg_equiv[to_regno].invariant
2625 = ira_reg_equiv[to_regno].init_insns = NULL;
2626 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2627 fprintf (ira_dump_file,
2628 " Invalidating equiv info for reg %d\n", to_regno);
2629 return;
2631 /* It is possible that FROM_REGNO still has no equivalence because
2632 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2633 insn was not processed yet. */
2634 if (ira_reg_equiv[from_regno].defined_p)
2636 ira_reg_equiv[to_regno].defined_p = true;
2637 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2639 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2640 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2641 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2642 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2643 ira_reg_equiv[to_regno].memory = x;
2644 if (! MEM_READONLY_P (x))
2645 /* We don't add the insn to insn init list because memory
2646 equivalence is just to say what memory is better to use
2647 when the pseudo is spilled. */
2648 return;
2650 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2652 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2653 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2654 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2655 ira_reg_equiv[to_regno].constant = x;
2657 else
2659 x = ira_reg_equiv[from_regno].invariant;
2660 ira_assert (x != NULL_RTX);
2661 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2662 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2663 ira_reg_equiv[to_regno].invariant = x;
2665 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2667 note = set_unique_reg_note (insn, REG_EQUIV, x);
2668 gcc_assert (note != NULL_RTX);
2669 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2671 fprintf (ira_dump_file,
2672 " Adding equiv note to insn %u for reg %d ",
2673 INSN_UID (insn), to_regno);
2674 dump_value_slim (ira_dump_file, x, 1);
2675 fprintf (ira_dump_file, "\n");
2679 ira_reg_equiv[to_regno].init_insns
2680 = gen_rtx_INSN_LIST (VOIDmode, insn,
2681 ira_reg_equiv[to_regno].init_insns);
2682 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2683 fprintf (ira_dump_file,
2684 " Adding equiv init move insn %u to reg %d\n",
2685 INSN_UID (insn), to_regno);
2688 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2689 by IRA. */
2690 static void
2691 fix_reg_equiv_init (void)
2693 int max_regno = max_reg_num ();
2694 int i, new_regno, max;
2695 rtx x, prev, next, insn, set;
2697 if (max_regno_before_ira < max_regno)
2699 max = vec_safe_length (reg_equivs);
2700 grow_reg_equivs ();
2701 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2702 for (prev = NULL_RTX, x = reg_equiv_init (i);
2703 x != NULL_RTX;
2704 x = next)
2706 next = XEXP (x, 1);
2707 insn = XEXP (x, 0);
2708 set = single_set (as_a <rtx_insn *> (insn));
2709 ira_assert (set != NULL_RTX
2710 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2711 if (REG_P (SET_DEST (set))
2712 && ((int) REGNO (SET_DEST (set)) == i
2713 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2714 new_regno = REGNO (SET_DEST (set));
2715 else if (REG_P (SET_SRC (set))
2716 && ((int) REGNO (SET_SRC (set)) == i
2717 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2718 new_regno = REGNO (SET_SRC (set));
2719 else
2720 gcc_unreachable ();
2721 if (new_regno == i)
2722 prev = x;
2723 else
2725 /* Remove the wrong list element. */
2726 if (prev == NULL_RTX)
2727 reg_equiv_init (i) = next;
2728 else
2729 XEXP (prev, 1) = next;
2730 XEXP (x, 1) = reg_equiv_init (new_regno);
2731 reg_equiv_init (new_regno) = x;
2737 #ifdef ENABLE_IRA_CHECKING
2738 /* Print redundant memory-memory copies. */
2739 static void
2740 print_redundant_copies (void)
2742 int hard_regno;
2743 ira_allocno_t a;
2744 ira_copy_t cp, next_cp;
2745 ira_allocno_iterator ai;
2747 FOR_EACH_ALLOCNO (a, ai)
2749 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2750 /* It is a cap. */
2751 continue;
2752 hard_regno = ALLOCNO_HARD_REGNO (a);
2753 if (hard_regno >= 0)
2754 continue;
2755 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2756 if (cp->first == a)
2757 next_cp = cp->next_first_allocno_copy;
2758 else
2760 next_cp = cp->next_second_allocno_copy;
2761 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2762 && cp->insn != NULL_RTX
2763 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2764 fprintf (ira_dump_file,
2765 " Redundant move from %d(freq %d):%d\n",
2766 INSN_UID (cp->insn), cp->freq, hard_regno);
2770 #endif
2772 /* Setup preferred and alternative classes for new pseudo-registers
2773 created by IRA starting with START. */
2774 static void
2775 setup_preferred_alternate_classes_for_new_pseudos (int start)
2777 int i, old_regno;
2778 int max_regno = max_reg_num ();
2780 for (i = start; i < max_regno; i++)
2782 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2783 ira_assert (i != old_regno);
2784 setup_reg_classes (i, reg_preferred_class (old_regno),
2785 reg_alternate_class (old_regno),
2786 reg_allocno_class (old_regno));
2787 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2788 fprintf (ira_dump_file,
2789 " New r%d: setting preferred %s, alternative %s\n",
2790 i, reg_class_names[reg_preferred_class (old_regno)],
2791 reg_class_names[reg_alternate_class (old_regno)]);
2796 /* The number of entries allocated in reg_info. */
2797 static int allocated_reg_info_size;
2799 /* Regional allocation can create new pseudo-registers. This function
2800 expands some arrays for pseudo-registers. */
2801 static void
2802 expand_reg_info (void)
2804 int i;
2805 int size = max_reg_num ();
2807 resize_reg_info ();
2808 for (i = allocated_reg_info_size; i < size; i++)
2809 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2810 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2811 allocated_reg_info_size = size;
2814 /* Return TRUE if there is too high register pressure in the function.
2815 It is used to decide when stack slot sharing is worth to do. */
2816 static bool
2817 too_high_register_pressure_p (void)
2819 int i;
2820 enum reg_class pclass;
2822 for (i = 0; i < ira_pressure_classes_num; i++)
2824 pclass = ira_pressure_classes[i];
2825 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2826 return true;
2828 return false;
2833 /* Indicate that hard register number FROM was eliminated and replaced with
2834 an offset from hard register number TO. The status of hard registers live
2835 at the start of a basic block is updated by replacing a use of FROM with
2836 a use of TO. */
2838 void
2839 mark_elimination (int from, int to)
2841 basic_block bb;
2842 bitmap r;
2844 FOR_EACH_BB_FN (bb, cfun)
2846 r = DF_LR_IN (bb);
2847 if (bitmap_bit_p (r, from))
2849 bitmap_clear_bit (r, from);
2850 bitmap_set_bit (r, to);
2852 if (! df_live)
2853 continue;
2854 r = DF_LIVE_IN (bb);
2855 if (bitmap_bit_p (r, from))
2857 bitmap_clear_bit (r, from);
2858 bitmap_set_bit (r, to);
2865 /* The length of the following array. */
2866 int ira_reg_equiv_len;
2868 /* Info about equiv. info for each register. */
2869 struct ira_reg_equiv_s *ira_reg_equiv;
2871 /* Expand ira_reg_equiv if necessary. */
2872 void
2873 ira_expand_reg_equiv (void)
2875 int old = ira_reg_equiv_len;
2877 if (ira_reg_equiv_len > max_reg_num ())
2878 return;
2879 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2880 ira_reg_equiv
2881 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2882 ira_reg_equiv_len
2883 * sizeof (struct ira_reg_equiv_s));
2884 gcc_assert (old < ira_reg_equiv_len);
2885 memset (ira_reg_equiv + old, 0,
2886 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2889 static void
2890 init_reg_equiv (void)
2892 ira_reg_equiv_len = 0;
2893 ira_reg_equiv = NULL;
2894 ira_expand_reg_equiv ();
2897 static void
2898 finish_reg_equiv (void)
2900 free (ira_reg_equiv);
2905 struct equivalence
2907 /* Set when a REG_EQUIV note is found or created. Use to
2908 keep track of what memory accesses might be created later,
2909 e.g. by reload. */
2910 rtx replacement;
2911 rtx *src_p;
2913 /* The list of each instruction which initializes this register.
2915 NULL indicates we know nothing about this register's equivalence
2916 properties.
2918 An INSN_LIST with a NULL insn indicates this pseudo is already
2919 known to not have a valid equivalence. */
2920 rtx_insn_list *init_insns;
2922 /* Loop depth is used to recognize equivalences which appear
2923 to be present within the same loop (or in an inner loop). */
2924 short loop_depth;
2925 /* Nonzero if this had a preexisting REG_EQUIV note. */
2926 unsigned char is_arg_equivalence : 1;
2927 /* Set when an attempt should be made to replace a register
2928 with the associated src_p entry. */
2929 unsigned char replace : 1;
2930 /* Set if this register has no known equivalence. */
2931 unsigned char no_equiv : 1;
2934 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2935 structure for that register. */
2936 static struct equivalence *reg_equiv;
2938 /* Used for communication between the following two functions: contains
2939 a MEM that we wish to ensure remains unchanged. */
2940 static rtx equiv_mem;
2942 /* Set nonzero if EQUIV_MEM is modified. */
2943 static int equiv_mem_modified;
2945 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2946 Called via note_stores. */
2947 static void
2948 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2949 void *data ATTRIBUTE_UNUSED)
2951 if ((REG_P (dest)
2952 && reg_overlap_mentioned_p (dest, equiv_mem))
2953 || (MEM_P (dest)
2954 && anti_dependence (equiv_mem, dest)))
2955 equiv_mem_modified = 1;
2958 /* Verify that no store between START and the death of REG invalidates
2959 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2960 by storing into an overlapping memory location, or with a non-const
2961 CALL_INSN.
2963 Return 1 if MEMREF remains valid. */
2964 static int
2965 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2967 rtx_insn *insn;
2968 rtx note;
2970 equiv_mem = memref;
2971 equiv_mem_modified = 0;
2973 /* If the memory reference has side effects or is volatile, it isn't a
2974 valid equivalence. */
2975 if (side_effects_p (memref))
2976 return 0;
2978 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2980 if (! INSN_P (insn))
2981 continue;
2983 if (find_reg_note (insn, REG_DEAD, reg))
2984 return 1;
2986 /* This used to ignore readonly memory and const/pure calls. The problem
2987 is the equivalent form may reference a pseudo which gets assigned a
2988 call clobbered hard reg. When we later replace REG with its
2989 equivalent form, the value in the call-clobbered reg has been
2990 changed and all hell breaks loose. */
2991 if (CALL_P (insn))
2992 return 0;
2994 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2996 /* If a register mentioned in MEMREF is modified via an
2997 auto-increment, we lose the equivalence. Do the same if one
2998 dies; although we could extend the life, it doesn't seem worth
2999 the trouble. */
3001 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3002 if ((REG_NOTE_KIND (note) == REG_INC
3003 || REG_NOTE_KIND (note) == REG_DEAD)
3004 && REG_P (XEXP (note, 0))
3005 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3006 return 0;
3009 return 0;
3012 /* Returns zero if X is known to be invariant. */
3013 static int
3014 equiv_init_varies_p (rtx x)
3016 RTX_CODE code = GET_CODE (x);
3017 int i;
3018 const char *fmt;
3020 switch (code)
3022 case MEM:
3023 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3025 case CONST:
3026 CASE_CONST_ANY:
3027 case SYMBOL_REF:
3028 case LABEL_REF:
3029 return 0;
3031 case REG:
3032 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3034 case ASM_OPERANDS:
3035 if (MEM_VOLATILE_P (x))
3036 return 1;
3038 /* Fall through. */
3040 default:
3041 break;
3044 fmt = GET_RTX_FORMAT (code);
3045 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3046 if (fmt[i] == 'e')
3048 if (equiv_init_varies_p (XEXP (x, i)))
3049 return 1;
3051 else if (fmt[i] == 'E')
3053 int j;
3054 for (j = 0; j < XVECLEN (x, i); j++)
3055 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3056 return 1;
3059 return 0;
3062 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3063 X is only movable if the registers it uses have equivalent initializations
3064 which appear to be within the same loop (or in an inner loop) and movable
3065 or if they are not candidates for local_alloc and don't vary. */
3066 static int
3067 equiv_init_movable_p (rtx x, int regno)
3069 int i, j;
3070 const char *fmt;
3071 enum rtx_code code = GET_CODE (x);
3073 switch (code)
3075 case SET:
3076 return equiv_init_movable_p (SET_SRC (x), regno);
3078 case CC0:
3079 case CLOBBER:
3080 return 0;
3082 case PRE_INC:
3083 case PRE_DEC:
3084 case POST_INC:
3085 case POST_DEC:
3086 case PRE_MODIFY:
3087 case POST_MODIFY:
3088 return 0;
3090 case REG:
3091 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3092 && reg_equiv[REGNO (x)].replace)
3093 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3094 && ! rtx_varies_p (x, 0)));
3096 case UNSPEC_VOLATILE:
3097 return 0;
3099 case ASM_OPERANDS:
3100 if (MEM_VOLATILE_P (x))
3101 return 0;
3103 /* Fall through. */
3105 default:
3106 break;
3109 fmt = GET_RTX_FORMAT (code);
3110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3111 switch (fmt[i])
3113 case 'e':
3114 if (! equiv_init_movable_p (XEXP (x, i), regno))
3115 return 0;
3116 break;
3117 case 'E':
3118 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3119 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3120 return 0;
3121 break;
3124 return 1;
3127 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3128 true. */
3129 static int
3130 contains_replace_regs (rtx x)
3132 int i, j;
3133 const char *fmt;
3134 enum rtx_code code = GET_CODE (x);
3136 switch (code)
3138 case CONST:
3139 case LABEL_REF:
3140 case SYMBOL_REF:
3141 CASE_CONST_ANY:
3142 case PC:
3143 case CC0:
3144 case HIGH:
3145 return 0;
3147 case REG:
3148 return reg_equiv[REGNO (x)].replace;
3150 default:
3151 break;
3154 fmt = GET_RTX_FORMAT (code);
3155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3156 switch (fmt[i])
3158 case 'e':
3159 if (contains_replace_regs (XEXP (x, i)))
3160 return 1;
3161 break;
3162 case 'E':
3163 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3164 if (contains_replace_regs (XVECEXP (x, i, j)))
3165 return 1;
3166 break;
3169 return 0;
3172 /* TRUE if X references a memory location that would be affected by a store
3173 to MEMREF. */
3174 static int
3175 memref_referenced_p (rtx memref, rtx x)
3177 int i, j;
3178 const char *fmt;
3179 enum rtx_code code = GET_CODE (x);
3181 switch (code)
3183 case CONST:
3184 case LABEL_REF:
3185 case SYMBOL_REF:
3186 CASE_CONST_ANY:
3187 case PC:
3188 case CC0:
3189 case HIGH:
3190 case LO_SUM:
3191 return 0;
3193 case REG:
3194 return (reg_equiv[REGNO (x)].replacement
3195 && memref_referenced_p (memref,
3196 reg_equiv[REGNO (x)].replacement));
3198 case MEM:
3199 if (true_dependence (memref, VOIDmode, x))
3200 return 1;
3201 break;
3203 case SET:
3204 /* If we are setting a MEM, it doesn't count (its address does), but any
3205 other SET_DEST that has a MEM in it is referencing the MEM. */
3206 if (MEM_P (SET_DEST (x)))
3208 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3209 return 1;
3211 else if (memref_referenced_p (memref, SET_DEST (x)))
3212 return 1;
3214 return memref_referenced_p (memref, SET_SRC (x));
3216 default:
3217 break;
3220 fmt = GET_RTX_FORMAT (code);
3221 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3222 switch (fmt[i])
3224 case 'e':
3225 if (memref_referenced_p (memref, XEXP (x, i)))
3226 return 1;
3227 break;
3228 case 'E':
3229 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3230 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3231 return 1;
3232 break;
3235 return 0;
3238 /* TRUE if some insn in the range (START, END] references a memory location
3239 that would be affected by a store to MEMREF. */
3240 static int
3241 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3243 rtx_insn *insn;
3245 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3246 insn = NEXT_INSN (insn))
3248 if (!NONDEBUG_INSN_P (insn))
3249 continue;
3251 if (memref_referenced_p (memref, PATTERN (insn)))
3252 return 1;
3254 /* Nonconst functions may access memory. */
3255 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3256 return 1;
3259 return 0;
3262 /* Mark REG as having no known equivalence.
3263 Some instructions might have been processed before and furnished
3264 with REG_EQUIV notes for this register; these notes will have to be
3265 removed.
3266 STORE is the piece of RTL that does the non-constant / conflicting
3267 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3268 but needs to be there because this function is called from note_stores. */
3269 static void
3270 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3271 void *data ATTRIBUTE_UNUSED)
3273 int regno;
3274 rtx_insn_list *list;
3276 if (!REG_P (reg))
3277 return;
3278 regno = REGNO (reg);
3279 reg_equiv[regno].no_equiv = 1;
3280 list = reg_equiv[regno].init_insns;
3281 if (list && list->insn () == NULL)
3282 return;
3283 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3284 reg_equiv[regno].replacement = NULL_RTX;
3285 /* This doesn't matter for equivalences made for argument registers, we
3286 should keep their initialization insns. */
3287 if (reg_equiv[regno].is_arg_equivalence)
3288 return;
3289 ira_reg_equiv[regno].defined_p = false;
3290 ira_reg_equiv[regno].init_insns = NULL;
3291 for (; list; list = list->next ())
3293 rtx_insn *insn = list->insn ();
3294 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3298 /* Check whether the SUBREG is a paradoxical subreg and set the result
3299 in PDX_SUBREGS. */
3301 static void
3302 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3304 subrtx_iterator::array_type array;
3305 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3307 const_rtx subreg = *iter;
3308 if (GET_CODE (subreg) == SUBREG)
3310 const_rtx reg = SUBREG_REG (subreg);
3311 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3312 pdx_subregs[REGNO (reg)] = true;
3317 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3318 equivalent replacement. */
3320 static rtx
3321 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3323 if (REG_P (loc))
3325 bitmap cleared_regs = (bitmap) data;
3326 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3327 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3328 NULL_RTX, adjust_cleared_regs, data);
3330 return NULL_RTX;
3333 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3334 static int recorded_label_ref;
3336 /* Find registers that are equivalent to a single value throughout the
3337 compilation (either because they can be referenced in memory or are
3338 set once from a single constant). Lower their priority for a
3339 register.
3341 If such a register is only referenced once, try substituting its
3342 value into the using insn. If it succeeds, we can eliminate the
3343 register completely.
3345 Initialize init_insns in ira_reg_equiv array.
3347 Return non-zero if jump label rebuilding should be done. */
3348 static int
3349 update_equiv_regs (void)
3351 rtx_insn *insn;
3352 basic_block bb;
3353 int loop_depth;
3354 bitmap cleared_regs;
3355 bool *pdx_subregs;
3357 /* We need to keep track of whether or not we recorded a LABEL_REF so
3358 that we know if the jump optimizer needs to be rerun. */
3359 recorded_label_ref = 0;
3361 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3362 subreg. */
3363 pdx_subregs = XCNEWVEC (bool, max_regno);
3365 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3366 grow_reg_equivs ();
3368 init_alias_analysis ();
3370 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3371 paradoxical subreg. Don't set such reg equivalent to a mem,
3372 because lra will not substitute such equiv memory in order to
3373 prevent access beyond allocated memory for paradoxical memory subreg. */
3374 FOR_EACH_BB_FN (bb, cfun)
3375 FOR_BB_INSNS (bb, insn)
3376 if (NONDEBUG_INSN_P (insn))
3377 set_paradoxical_subreg (insn, pdx_subregs);
3379 /* Scan the insns and find which registers have equivalences. Do this
3380 in a separate scan of the insns because (due to -fcse-follow-jumps)
3381 a register can be set below its use. */
3382 FOR_EACH_BB_FN (bb, cfun)
3384 loop_depth = bb_loop_depth (bb);
3386 for (insn = BB_HEAD (bb);
3387 insn != NEXT_INSN (BB_END (bb));
3388 insn = NEXT_INSN (insn))
3390 rtx note;
3391 rtx set;
3392 rtx dest, src;
3393 int regno;
3395 if (! INSN_P (insn))
3396 continue;
3398 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3399 if (REG_NOTE_KIND (note) == REG_INC)
3400 no_equiv (XEXP (note, 0), note, NULL);
3402 set = single_set (insn);
3404 /* If this insn contains more (or less) than a single SET,
3405 only mark all destinations as having no known equivalence. */
3406 if (set == NULL_RTX)
3408 note_stores (PATTERN (insn), no_equiv, NULL);
3409 continue;
3411 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3413 int i;
3415 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3417 rtx part = XVECEXP (PATTERN (insn), 0, i);
3418 if (part != set)
3419 note_stores (part, no_equiv, NULL);
3423 dest = SET_DEST (set);
3424 src = SET_SRC (set);
3426 /* See if this is setting up the equivalence between an argument
3427 register and its stack slot. */
3428 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3429 if (note)
3431 gcc_assert (REG_P (dest));
3432 regno = REGNO (dest);
3434 /* Note that we don't want to clear init_insns in
3435 ira_reg_equiv even if there are multiple sets of this
3436 register. */
3437 reg_equiv[regno].is_arg_equivalence = 1;
3439 /* The insn result can have equivalence memory although
3440 the equivalence is not set up by the insn. We add
3441 this insn to init insns as it is a flag for now that
3442 regno has an equivalence. We will remove the insn
3443 from init insn list later. */
3444 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3445 ira_reg_equiv[regno].init_insns
3446 = gen_rtx_INSN_LIST (VOIDmode, insn,
3447 ira_reg_equiv[regno].init_insns);
3449 /* Continue normally in case this is a candidate for
3450 replacements. */
3453 if (!optimize)
3454 continue;
3456 /* We only handle the case of a pseudo register being set
3457 once, or always to the same value. */
3458 /* ??? The mn10200 port breaks if we add equivalences for
3459 values that need an ADDRESS_REGS register and set them equivalent
3460 to a MEM of a pseudo. The actual problem is in the over-conservative
3461 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3462 calculate_needs, but we traditionally work around this problem
3463 here by rejecting equivalences when the destination is in a register
3464 that's likely spilled. This is fragile, of course, since the
3465 preferred class of a pseudo depends on all instructions that set
3466 or use it. */
3468 if (!REG_P (dest)
3469 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3470 || (reg_equiv[regno].init_insns
3471 && reg_equiv[regno].init_insns->insn () == NULL)
3472 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3473 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3475 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3476 also set somewhere else to a constant. */
3477 note_stores (set, no_equiv, NULL);
3478 continue;
3481 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3482 if (MEM_P (src) && pdx_subregs[regno])
3484 note_stores (set, no_equiv, NULL);
3485 continue;
3488 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3490 /* cse sometimes generates function invariants, but doesn't put a
3491 REG_EQUAL note on the insn. Since this note would be redundant,
3492 there's no point creating it earlier than here. */
3493 if (! note && ! rtx_varies_p (src, 0))
3494 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3496 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3497 since it represents a function call. */
3498 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3499 note = NULL_RTX;
3501 if (DF_REG_DEF_COUNT (regno) != 1)
3503 bool equal_p = true;
3504 rtx_insn_list *list;
3506 /* If we have already processed this pseudo and determined it
3507 can not have an equivalence, then honor that decision. */
3508 if (reg_equiv[regno].no_equiv)
3509 continue;
3511 if (! note
3512 || rtx_varies_p (XEXP (note, 0), 0)
3513 || (reg_equiv[regno].replacement
3514 && ! rtx_equal_p (XEXP (note, 0),
3515 reg_equiv[regno].replacement)))
3517 no_equiv (dest, set, NULL);
3518 continue;
3521 list = reg_equiv[regno].init_insns;
3522 for (; list; list = list->next ())
3524 rtx note_tmp;
3525 rtx_insn *insn_tmp;
3527 insn_tmp = list->insn ();
3528 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3529 gcc_assert (note_tmp);
3530 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3532 equal_p = false;
3533 break;
3537 if (! equal_p)
3539 no_equiv (dest, set, NULL);
3540 continue;
3544 /* Record this insn as initializing this register. */
3545 reg_equiv[regno].init_insns
3546 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3548 /* If this register is known to be equal to a constant, record that
3549 it is always equivalent to the constant. */
3550 if (DF_REG_DEF_COUNT (regno) == 1
3551 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3553 rtx note_value = XEXP (note, 0);
3554 remove_note (insn, note);
3555 set_unique_reg_note (insn, REG_EQUIV, note_value);
3558 /* If this insn introduces a "constant" register, decrease the priority
3559 of that register. Record this insn if the register is only used once
3560 more and the equivalence value is the same as our source.
3562 The latter condition is checked for two reasons: First, it is an
3563 indication that it may be more efficient to actually emit the insn
3564 as written (if no registers are available, reload will substitute
3565 the equivalence). Secondly, it avoids problems with any registers
3566 dying in this insn whose death notes would be missed.
3568 If we don't have a REG_EQUIV note, see if this insn is loading
3569 a register used only in one basic block from a MEM. If so, and the
3570 MEM remains unchanged for the life of the register, add a REG_EQUIV
3571 note. */
3572 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3574 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3575 && MEM_P (SET_SRC (set))
3576 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3577 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3579 if (note)
3581 int regno = REGNO (dest);
3582 rtx x = XEXP (note, 0);
3584 /* If we haven't done so, record for reload that this is an
3585 equivalencing insn. */
3586 if (!reg_equiv[regno].is_arg_equivalence)
3587 ira_reg_equiv[regno].init_insns
3588 = gen_rtx_INSN_LIST (VOIDmode, insn,
3589 ira_reg_equiv[regno].init_insns);
3591 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3592 We might end up substituting the LABEL_REF for uses of the
3593 pseudo here or later. That kind of transformation may turn an
3594 indirect jump into a direct jump, in which case we must rerun the
3595 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3596 if (GET_CODE (x) == LABEL_REF
3597 || (GET_CODE (x) == CONST
3598 && GET_CODE (XEXP (x, 0)) == PLUS
3599 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3600 recorded_label_ref = 1;
3602 reg_equiv[regno].replacement = x;
3603 reg_equiv[regno].src_p = &SET_SRC (set);
3604 reg_equiv[regno].loop_depth = (short) loop_depth;
3606 /* Don't mess with things live during setjmp. */
3607 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3609 /* Note that the statement below does not affect the priority
3610 in local-alloc! */
3611 REG_LIVE_LENGTH (regno) *= 2;
3613 /* If the register is referenced exactly twice, meaning it is
3614 set once and used once, indicate that the reference may be
3615 replaced by the equivalence we computed above. Do this
3616 even if the register is only used in one block so that
3617 dependencies can be handled where the last register is
3618 used in a different block (i.e. HIGH / LO_SUM sequences)
3619 and to reduce the number of registers alive across
3620 calls. */
3622 if (REG_N_REFS (regno) == 2
3623 && (rtx_equal_p (x, src)
3624 || ! equiv_init_varies_p (src))
3625 && NONJUMP_INSN_P (insn)
3626 && equiv_init_movable_p (PATTERN (insn), regno))
3627 reg_equiv[regno].replace = 1;
3633 if (!optimize)
3634 goto out;
3636 /* A second pass, to gather additional equivalences with memory. This needs
3637 to be done after we know which registers we are going to replace. */
3639 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3641 rtx set, src, dest;
3642 unsigned regno;
3644 if (! INSN_P (insn))
3645 continue;
3647 set = single_set (insn);
3648 if (! set)
3649 continue;
3651 dest = SET_DEST (set);
3652 src = SET_SRC (set);
3654 /* If this sets a MEM to the contents of a REG that is only used
3655 in a single basic block, see if the register is always equivalent
3656 to that memory location and if moving the store from INSN to the
3657 insn that set REG is safe. If so, put a REG_EQUIV note on the
3658 initializing insn.
3660 Don't add a REG_EQUIV note if the insn already has one. The existing
3661 REG_EQUIV is likely more useful than the one we are adding.
3663 If one of the regs in the address has reg_equiv[REGNO].replace set,
3664 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3665 optimization may move the set of this register immediately before
3666 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3667 the mention in the REG_EQUIV note would be to an uninitialized
3668 pseudo. */
3670 if (MEM_P (dest) && REG_P (src)
3671 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3672 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3673 && DF_REG_DEF_COUNT (regno) == 1
3674 && reg_equiv[regno].init_insns != NULL
3675 && reg_equiv[regno].init_insns->insn () != NULL
3676 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3677 REG_EQUIV, NULL_RTX)
3678 && ! contains_replace_regs (XEXP (dest, 0))
3679 && ! pdx_subregs[regno])
3681 rtx_insn *init_insn =
3682 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3683 if (validate_equiv_mem (init_insn, src, dest)
3684 && ! memref_used_between_p (dest, init_insn, insn)
3685 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3686 multiple sets. */
3687 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3689 /* This insn makes the equivalence, not the one initializing
3690 the register. */
3691 ira_reg_equiv[regno].init_insns
3692 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3693 df_notes_rescan (init_insn);
3698 cleared_regs = BITMAP_ALLOC (NULL);
3699 /* Now scan all regs killed in an insn to see if any of them are
3700 registers only used that once. If so, see if we can replace the
3701 reference with the equivalent form. If we can, delete the
3702 initializing reference and this register will go away. If we
3703 can't replace the reference, and the initializing reference is
3704 within the same loop (or in an inner loop), then move the register
3705 initialization just before the use, so that they are in the same
3706 basic block. */
3707 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3709 loop_depth = bb_loop_depth (bb);
3710 for (insn = BB_END (bb);
3711 insn != PREV_INSN (BB_HEAD (bb));
3712 insn = PREV_INSN (insn))
3714 rtx link;
3716 if (! INSN_P (insn))
3717 continue;
3719 /* Don't substitute into a non-local goto, this confuses CFG. */
3720 if (JUMP_P (insn)
3721 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3722 continue;
3724 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3726 if (REG_NOTE_KIND (link) == REG_DEAD
3727 /* Make sure this insn still refers to the register. */
3728 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3730 int regno = REGNO (XEXP (link, 0));
3731 rtx equiv_insn;
3733 if (! reg_equiv[regno].replace
3734 || reg_equiv[regno].loop_depth < (short) loop_depth
3735 /* There is no sense to move insns if live range
3736 shrinkage or register pressure-sensitive
3737 scheduling were done because it will not
3738 improve allocation but worsen insn schedule
3739 with a big probability. */
3740 || flag_live_range_shrinkage
3741 || (flag_sched_pressure && flag_schedule_insns))
3742 continue;
3744 /* reg_equiv[REGNO].replace gets set only when
3745 REG_N_REFS[REGNO] is 2, i.e. the register is set
3746 once and used once. (If it were only set, but
3747 not used, flow would have deleted the setting
3748 insns.) Hence there can only be one insn in
3749 reg_equiv[REGNO].init_insns. */
3750 gcc_assert (reg_equiv[regno].init_insns
3751 && !XEXP (reg_equiv[regno].init_insns, 1));
3752 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3754 /* We may not move instructions that can throw, since
3755 that changes basic block boundaries and we are not
3756 prepared to adjust the CFG to match. */
3757 if (can_throw_internal (equiv_insn))
3758 continue;
3760 if (asm_noperands (PATTERN (equiv_insn)) < 0
3761 && validate_replace_rtx (regno_reg_rtx[regno],
3762 *(reg_equiv[regno].src_p), insn))
3764 rtx equiv_link;
3765 rtx last_link;
3766 rtx note;
3768 /* Find the last note. */
3769 for (last_link = link; XEXP (last_link, 1);
3770 last_link = XEXP (last_link, 1))
3773 /* Append the REG_DEAD notes from equiv_insn. */
3774 equiv_link = REG_NOTES (equiv_insn);
3775 while (equiv_link)
3777 note = equiv_link;
3778 equiv_link = XEXP (equiv_link, 1);
3779 if (REG_NOTE_KIND (note) == REG_DEAD)
3781 remove_note (equiv_insn, note);
3782 XEXP (last_link, 1) = note;
3783 XEXP (note, 1) = NULL_RTX;
3784 last_link = note;
3788 remove_death (regno, insn);
3789 SET_REG_N_REFS (regno, 0);
3790 REG_FREQ (regno) = 0;
3791 delete_insn (equiv_insn);
3793 reg_equiv[regno].init_insns
3794 = reg_equiv[regno].init_insns->next ();
3796 ira_reg_equiv[regno].init_insns = NULL;
3797 bitmap_set_bit (cleared_regs, regno);
3799 /* Move the initialization of the register to just before
3800 INSN. Update the flow information. */
3801 else if (prev_nondebug_insn (insn) != equiv_insn)
3803 rtx_insn *new_insn;
3805 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3806 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3807 REG_NOTES (equiv_insn) = 0;
3808 /* Rescan it to process the notes. */
3809 df_insn_rescan (new_insn);
3811 /* Make sure this insn is recognized before
3812 reload begins, otherwise
3813 eliminate_regs_in_insn will die. */
3814 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3816 delete_insn (equiv_insn);
3818 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3820 REG_BASIC_BLOCK (regno) = bb->index;
3821 REG_N_CALLS_CROSSED (regno) = 0;
3822 REG_FREQ_CALLS_CROSSED (regno) = 0;
3823 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3824 REG_LIVE_LENGTH (regno) = 2;
3826 if (insn == BB_HEAD (bb))
3827 BB_HEAD (bb) = PREV_INSN (insn);
3829 ira_reg_equiv[regno].init_insns
3830 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3831 bitmap_set_bit (cleared_regs, regno);
3838 if (!bitmap_empty_p (cleared_regs))
3840 FOR_EACH_BB_FN (bb, cfun)
3842 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3843 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3844 if (! df_live)
3845 continue;
3846 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3847 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3850 /* Last pass - adjust debug insns referencing cleared regs. */
3851 if (MAY_HAVE_DEBUG_INSNS)
3852 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3853 if (DEBUG_INSN_P (insn))
3855 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3856 INSN_VAR_LOCATION_LOC (insn)
3857 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3858 adjust_cleared_regs,
3859 (void *) cleared_regs);
3860 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3861 df_insn_rescan (insn);
3865 BITMAP_FREE (cleared_regs);
3867 out:
3868 /* Clean up. */
3870 end_alias_analysis ();
3871 free (reg_equiv);
3872 free (pdx_subregs);
3873 return recorded_label_ref;
3878 /* Set up fields memory, constant, and invariant from init_insns in
3879 the structures of array ira_reg_equiv. */
3880 static void
3881 setup_reg_equiv (void)
3883 int i;
3884 rtx_insn_list *elem, *prev_elem, *next_elem;
3885 rtx_insn *insn;
3886 rtx set, x;
3888 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3889 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3890 elem;
3891 prev_elem = elem, elem = next_elem)
3893 next_elem = elem->next ();
3894 insn = elem->insn ();
3895 set = single_set (insn);
3897 /* Init insns can set up equivalence when the reg is a destination or
3898 a source (in this case the destination is memory). */
3899 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3901 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3903 x = XEXP (x, 0);
3904 if (REG_P (SET_DEST (set))
3905 && REGNO (SET_DEST (set)) == (unsigned int) i
3906 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3908 /* This insn reporting the equivalence but
3909 actually not setting it. Remove it from the
3910 list. */
3911 if (prev_elem == NULL)
3912 ira_reg_equiv[i].init_insns = next_elem;
3913 else
3914 XEXP (prev_elem, 1) = next_elem;
3915 elem = prev_elem;
3918 else if (REG_P (SET_DEST (set))
3919 && REGNO (SET_DEST (set)) == (unsigned int) i)
3920 x = SET_SRC (set);
3921 else
3923 gcc_assert (REG_P (SET_SRC (set))
3924 && REGNO (SET_SRC (set)) == (unsigned int) i);
3925 x = SET_DEST (set);
3927 if (! function_invariant_p (x)
3928 || ! flag_pic
3929 /* A function invariant is often CONSTANT_P but may
3930 include a register. We promise to only pass
3931 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3932 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3934 /* It can happen that a REG_EQUIV note contains a MEM
3935 that is not a legitimate memory operand. As later
3936 stages of reload assume that all addresses found in
3937 the lra_regno_equiv_* arrays were originally
3938 legitimate, we ignore such REG_EQUIV notes. */
3939 if (memory_operand (x, VOIDmode))
3941 ira_reg_equiv[i].defined_p = true;
3942 ira_reg_equiv[i].memory = x;
3943 continue;
3945 else if (function_invariant_p (x))
3947 machine_mode mode;
3949 mode = GET_MODE (SET_DEST (set));
3950 if (GET_CODE (x) == PLUS
3951 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3952 /* This is PLUS of frame pointer and a constant,
3953 or fp, or argp. */
3954 ira_reg_equiv[i].invariant = x;
3955 else if (targetm.legitimate_constant_p (mode, x))
3956 ira_reg_equiv[i].constant = x;
3957 else
3959 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3960 if (ira_reg_equiv[i].memory == NULL_RTX)
3962 ira_reg_equiv[i].defined_p = false;
3963 ira_reg_equiv[i].init_insns = NULL;
3964 break;
3967 ira_reg_equiv[i].defined_p = true;
3968 continue;
3972 ira_reg_equiv[i].defined_p = false;
3973 ira_reg_equiv[i].init_insns = NULL;
3974 break;
3980 /* Print chain C to FILE. */
3981 static void
3982 print_insn_chain (FILE *file, struct insn_chain *c)
3984 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3985 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3986 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3990 /* Print all reload_insn_chains to FILE. */
3991 static void
3992 print_insn_chains (FILE *file)
3994 struct insn_chain *c;
3995 for (c = reload_insn_chain; c ; c = c->next)
3996 print_insn_chain (file, c);
3999 /* Return true if pseudo REGNO should be added to set live_throughout
4000 or dead_or_set of the insn chains for reload consideration. */
4001 static bool
4002 pseudo_for_reload_consideration_p (int regno)
4004 /* Consider spilled pseudos too for IRA because they still have a
4005 chance to get hard-registers in the reload when IRA is used. */
4006 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4009 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4010 REG to the number of nregs, and INIT_VALUE to get the
4011 initialization. ALLOCNUM need not be the regno of REG. */
4012 static void
4013 init_live_subregs (bool init_value, sbitmap *live_subregs,
4014 bitmap live_subregs_used, int allocnum, rtx reg)
4016 unsigned int regno = REGNO (SUBREG_REG (reg));
4017 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4019 gcc_assert (size > 0);
4021 /* Been there, done that. */
4022 if (bitmap_bit_p (live_subregs_used, allocnum))
4023 return;
4025 /* Create a new one. */
4026 if (live_subregs[allocnum] == NULL)
4027 live_subregs[allocnum] = sbitmap_alloc (size);
4029 /* If the entire reg was live before blasting into subregs, we need
4030 to init all of the subregs to ones else init to 0. */
4031 if (init_value)
4032 bitmap_ones (live_subregs[allocnum]);
4033 else
4034 bitmap_clear (live_subregs[allocnum]);
4036 bitmap_set_bit (live_subregs_used, allocnum);
4039 /* Walk the insns of the current function and build reload_insn_chain,
4040 and record register life information. */
4041 static void
4042 build_insn_chain (void)
4044 unsigned int i;
4045 struct insn_chain **p = &reload_insn_chain;
4046 basic_block bb;
4047 struct insn_chain *c = NULL;
4048 struct insn_chain *next = NULL;
4049 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4050 bitmap elim_regset = BITMAP_ALLOC (NULL);
4051 /* live_subregs is a vector used to keep accurate information about
4052 which hardregs are live in multiword pseudos. live_subregs and
4053 live_subregs_used are indexed by pseudo number. The live_subreg
4054 entry for a particular pseudo is only used if the corresponding
4055 element is non zero in live_subregs_used. The sbitmap size of
4056 live_subreg[allocno] is number of bytes that the pseudo can
4057 occupy. */
4058 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4059 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4061 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4062 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4063 bitmap_set_bit (elim_regset, i);
4064 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4066 bitmap_iterator bi;
4067 rtx_insn *insn;
4069 CLEAR_REG_SET (live_relevant_regs);
4070 bitmap_clear (live_subregs_used);
4072 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4074 if (i >= FIRST_PSEUDO_REGISTER)
4075 break;
4076 bitmap_set_bit (live_relevant_regs, i);
4079 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4080 FIRST_PSEUDO_REGISTER, i, bi)
4082 if (pseudo_for_reload_consideration_p (i))
4083 bitmap_set_bit (live_relevant_regs, i);
4086 FOR_BB_INSNS_REVERSE (bb, insn)
4088 if (!NOTE_P (insn) && !BARRIER_P (insn))
4090 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4091 df_ref def, use;
4093 c = new_insn_chain ();
4094 c->next = next;
4095 next = c;
4096 *p = c;
4097 p = &c->prev;
4099 c->insn = insn;
4100 c->block = bb->index;
4102 if (NONDEBUG_INSN_P (insn))
4103 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4105 unsigned int regno = DF_REF_REGNO (def);
4107 /* Ignore may clobbers because these are generated
4108 from calls. However, every other kind of def is
4109 added to dead_or_set. */
4110 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4112 if (regno < FIRST_PSEUDO_REGISTER)
4114 if (!fixed_regs[regno])
4115 bitmap_set_bit (&c->dead_or_set, regno);
4117 else if (pseudo_for_reload_consideration_p (regno))
4118 bitmap_set_bit (&c->dead_or_set, regno);
4121 if ((regno < FIRST_PSEUDO_REGISTER
4122 || reg_renumber[regno] >= 0
4123 || ira_conflicts_p)
4124 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4126 rtx reg = DF_REF_REG (def);
4128 /* We can model subregs, but not if they are
4129 wrapped in ZERO_EXTRACTS. */
4130 if (GET_CODE (reg) == SUBREG
4131 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4133 unsigned int start = SUBREG_BYTE (reg);
4134 unsigned int last = start
4135 + GET_MODE_SIZE (GET_MODE (reg));
4137 init_live_subregs
4138 (bitmap_bit_p (live_relevant_regs, regno),
4139 live_subregs, live_subregs_used, regno, reg);
4141 if (!DF_REF_FLAGS_IS_SET
4142 (def, DF_REF_STRICT_LOW_PART))
4144 /* Expand the range to cover entire words.
4145 Bytes added here are "don't care". */
4146 start
4147 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4148 last = ((last + UNITS_PER_WORD - 1)
4149 / UNITS_PER_WORD * UNITS_PER_WORD);
4152 /* Ignore the paradoxical bits. */
4153 if (last > SBITMAP_SIZE (live_subregs[regno]))
4154 last = SBITMAP_SIZE (live_subregs[regno]);
4156 while (start < last)
4158 bitmap_clear_bit (live_subregs[regno], start);
4159 start++;
4162 if (bitmap_empty_p (live_subregs[regno]))
4164 bitmap_clear_bit (live_subregs_used, regno);
4165 bitmap_clear_bit (live_relevant_regs, regno);
4167 else
4168 /* Set live_relevant_regs here because
4169 that bit has to be true to get us to
4170 look at the live_subregs fields. */
4171 bitmap_set_bit (live_relevant_regs, regno);
4173 else
4175 /* DF_REF_PARTIAL is generated for
4176 subregs, STRICT_LOW_PART, and
4177 ZERO_EXTRACT. We handle the subreg
4178 case above so here we have to keep from
4179 modeling the def as a killing def. */
4180 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4182 bitmap_clear_bit (live_subregs_used, regno);
4183 bitmap_clear_bit (live_relevant_regs, regno);
4189 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4190 bitmap_copy (&c->live_throughout, live_relevant_regs);
4192 if (NONDEBUG_INSN_P (insn))
4193 FOR_EACH_INSN_INFO_USE (use, insn_info)
4195 unsigned int regno = DF_REF_REGNO (use);
4196 rtx reg = DF_REF_REG (use);
4198 /* DF_REF_READ_WRITE on a use means that this use
4199 is fabricated from a def that is a partial set
4200 to a multiword reg. Here, we only model the
4201 subreg case that is not wrapped in ZERO_EXTRACT
4202 precisely so we do not need to look at the
4203 fabricated use. */
4204 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4205 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4206 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4207 continue;
4209 /* Add the last use of each var to dead_or_set. */
4210 if (!bitmap_bit_p (live_relevant_regs, regno))
4212 if (regno < FIRST_PSEUDO_REGISTER)
4214 if (!fixed_regs[regno])
4215 bitmap_set_bit (&c->dead_or_set, regno);
4217 else if (pseudo_for_reload_consideration_p (regno))
4218 bitmap_set_bit (&c->dead_or_set, regno);
4221 if (regno < FIRST_PSEUDO_REGISTER
4222 || pseudo_for_reload_consideration_p (regno))
4224 if (GET_CODE (reg) == SUBREG
4225 && !DF_REF_FLAGS_IS_SET (use,
4226 DF_REF_SIGN_EXTRACT
4227 | DF_REF_ZERO_EXTRACT))
4229 unsigned int start = SUBREG_BYTE (reg);
4230 unsigned int last = start
4231 + GET_MODE_SIZE (GET_MODE (reg));
4233 init_live_subregs
4234 (bitmap_bit_p (live_relevant_regs, regno),
4235 live_subregs, live_subregs_used, regno, reg);
4237 /* Ignore the paradoxical bits. */
4238 if (last > SBITMAP_SIZE (live_subregs[regno]))
4239 last = SBITMAP_SIZE (live_subregs[regno]);
4241 while (start < last)
4243 bitmap_set_bit (live_subregs[regno], start);
4244 start++;
4247 else
4248 /* Resetting the live_subregs_used is
4249 effectively saying do not use the subregs
4250 because we are reading the whole
4251 pseudo. */
4252 bitmap_clear_bit (live_subregs_used, regno);
4253 bitmap_set_bit (live_relevant_regs, regno);
4259 /* FIXME!! The following code is a disaster. Reload needs to see the
4260 labels and jump tables that are just hanging out in between
4261 the basic blocks. See pr33676. */
4262 insn = BB_HEAD (bb);
4264 /* Skip over the barriers and cruft. */
4265 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4266 || BLOCK_FOR_INSN (insn) == bb))
4267 insn = PREV_INSN (insn);
4269 /* While we add anything except barriers and notes, the focus is
4270 to get the labels and jump tables into the
4271 reload_insn_chain. */
4272 while (insn)
4274 if (!NOTE_P (insn) && !BARRIER_P (insn))
4276 if (BLOCK_FOR_INSN (insn))
4277 break;
4279 c = new_insn_chain ();
4280 c->next = next;
4281 next = c;
4282 *p = c;
4283 p = &c->prev;
4285 /* The block makes no sense here, but it is what the old
4286 code did. */
4287 c->block = bb->index;
4288 c->insn = insn;
4289 bitmap_copy (&c->live_throughout, live_relevant_regs);
4291 insn = PREV_INSN (insn);
4295 reload_insn_chain = c;
4296 *p = NULL;
4298 for (i = 0; i < (unsigned int) max_regno; i++)
4299 if (live_subregs[i] != NULL)
4300 sbitmap_free (live_subregs[i]);
4301 free (live_subregs);
4302 BITMAP_FREE (live_subregs_used);
4303 BITMAP_FREE (live_relevant_regs);
4304 BITMAP_FREE (elim_regset);
4306 if (dump_file)
4307 print_insn_chains (dump_file);
4310 /* Examine the rtx found in *LOC, which is read or written to as determined
4311 by TYPE. Return false if we find a reason why an insn containing this
4312 rtx should not be moved (such as accesses to non-constant memory), true
4313 otherwise. */
4314 static bool
4315 rtx_moveable_p (rtx *loc, enum op_type type)
4317 const char *fmt;
4318 rtx x = *loc;
4319 enum rtx_code code = GET_CODE (x);
4320 int i, j;
4322 code = GET_CODE (x);
4323 switch (code)
4325 case CONST:
4326 CASE_CONST_ANY:
4327 case SYMBOL_REF:
4328 case LABEL_REF:
4329 return true;
4331 case PC:
4332 return type == OP_IN;
4334 case CC0:
4335 return false;
4337 case REG:
4338 if (x == frame_pointer_rtx)
4339 return true;
4340 if (HARD_REGISTER_P (x))
4341 return false;
4343 return true;
4345 case MEM:
4346 if (type == OP_IN && MEM_READONLY_P (x))
4347 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4348 return false;
4350 case SET:
4351 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4352 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4354 case STRICT_LOW_PART:
4355 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4357 case ZERO_EXTRACT:
4358 case SIGN_EXTRACT:
4359 return (rtx_moveable_p (&XEXP (x, 0), type)
4360 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4361 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4363 case CLOBBER:
4364 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4366 case UNSPEC_VOLATILE:
4367 /* It is a bad idea to consider insns with with such rtl
4368 as moveable ones. The insn scheduler also considers them as barrier
4369 for a reason. */
4370 return false;
4372 default:
4373 break;
4376 fmt = GET_RTX_FORMAT (code);
4377 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4379 if (fmt[i] == 'e')
4381 if (!rtx_moveable_p (&XEXP (x, i), type))
4382 return false;
4384 else if (fmt[i] == 'E')
4385 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4387 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4388 return false;
4391 return true;
4394 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4395 to give dominance relationships between two insns I1 and I2. */
4396 static bool
4397 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4399 basic_block bb1 = BLOCK_FOR_INSN (i1);
4400 basic_block bb2 = BLOCK_FOR_INSN (i2);
4402 if (bb1 == bb2)
4403 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4404 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4407 /* Record the range of register numbers added by find_moveable_pseudos. */
4408 int first_moveable_pseudo, last_moveable_pseudo;
4410 /* These two vectors hold data for every register added by
4411 find_movable_pseudos, with index 0 holding data for the
4412 first_moveable_pseudo. */
4413 /* The original home register. */
4414 static vec<rtx> pseudo_replaced_reg;
4416 /* Look for instances where we have an instruction that is known to increase
4417 register pressure, and whose result is not used immediately. If it is
4418 possible to move the instruction downwards to just before its first use,
4419 split its lifetime into two ranges. We create a new pseudo to compute the
4420 value, and emit a move instruction just before the first use. If, after
4421 register allocation, the new pseudo remains unallocated, the function
4422 move_unallocated_pseudos then deletes the move instruction and places
4423 the computation just before the first use.
4425 Such a move is safe and profitable if all the input registers remain live
4426 and unchanged between the original computation and its first use. In such
4427 a situation, the computation is known to increase register pressure, and
4428 moving it is known to at least not worsen it.
4430 We restrict moves to only those cases where a register remains unallocated,
4431 in order to avoid interfering too much with the instruction schedule. As
4432 an exception, we may move insns which only modify their input register
4433 (typically induction variables), as this increases the freedom for our
4434 intended transformation, and does not limit the second instruction
4435 scheduler pass. */
4437 static void
4438 find_moveable_pseudos (void)
4440 unsigned i;
4441 int max_regs = max_reg_num ();
4442 int max_uid = get_max_uid ();
4443 basic_block bb;
4444 int *uid_luid = XNEWVEC (int, max_uid);
4445 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4446 /* A set of registers which are live but not modified throughout a block. */
4447 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4448 last_basic_block_for_fn (cfun));
4449 /* A set of registers which only exist in a given basic block. */
4450 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4451 last_basic_block_for_fn (cfun));
4452 /* A set of registers which are set once, in an instruction that can be
4453 moved freely downwards, but are otherwise transparent to a block. */
4454 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4455 last_basic_block_for_fn (cfun));
4456 bitmap_head live, used, set, interesting, unusable_as_input;
4457 bitmap_iterator bi;
4458 bitmap_initialize (&interesting, 0);
4460 first_moveable_pseudo = max_regs;
4461 pseudo_replaced_reg.release ();
4462 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4464 df_analyze ();
4465 calculate_dominance_info (CDI_DOMINATORS);
4467 i = 0;
4468 bitmap_initialize (&live, 0);
4469 bitmap_initialize (&used, 0);
4470 bitmap_initialize (&set, 0);
4471 bitmap_initialize (&unusable_as_input, 0);
4472 FOR_EACH_BB_FN (bb, cfun)
4474 rtx_insn *insn;
4475 bitmap transp = bb_transp_live + bb->index;
4476 bitmap moveable = bb_moveable_reg_sets + bb->index;
4477 bitmap local = bb_local + bb->index;
4479 bitmap_initialize (local, 0);
4480 bitmap_initialize (transp, 0);
4481 bitmap_initialize (moveable, 0);
4482 bitmap_copy (&live, df_get_live_out (bb));
4483 bitmap_and_into (&live, df_get_live_in (bb));
4484 bitmap_copy (transp, &live);
4485 bitmap_clear (moveable);
4486 bitmap_clear (&live);
4487 bitmap_clear (&used);
4488 bitmap_clear (&set);
4489 FOR_BB_INSNS (bb, insn)
4490 if (NONDEBUG_INSN_P (insn))
4492 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4493 df_ref def, use;
4495 uid_luid[INSN_UID (insn)] = i++;
4497 def = df_single_def (insn_info);
4498 use = df_single_use (insn_info);
4499 if (use
4500 && def
4501 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4502 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4503 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4505 unsigned regno = DF_REF_REGNO (use);
4506 bitmap_set_bit (moveable, regno);
4507 bitmap_set_bit (&set, regno);
4508 bitmap_set_bit (&used, regno);
4509 bitmap_clear_bit (transp, regno);
4510 continue;
4512 FOR_EACH_INSN_INFO_USE (use, insn_info)
4514 unsigned regno = DF_REF_REGNO (use);
4515 bitmap_set_bit (&used, regno);
4516 if (bitmap_clear_bit (moveable, regno))
4517 bitmap_clear_bit (transp, regno);
4520 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4522 unsigned regno = DF_REF_REGNO (def);
4523 bitmap_set_bit (&set, regno);
4524 bitmap_clear_bit (transp, regno);
4525 bitmap_clear_bit (moveable, regno);
4530 bitmap_clear (&live);
4531 bitmap_clear (&used);
4532 bitmap_clear (&set);
4534 FOR_EACH_BB_FN (bb, cfun)
4536 bitmap local = bb_local + bb->index;
4537 rtx_insn *insn;
4539 FOR_BB_INSNS (bb, insn)
4540 if (NONDEBUG_INSN_P (insn))
4542 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4543 rtx_insn *def_insn;
4544 rtx closest_use, note;
4545 df_ref def, use;
4546 unsigned regno;
4547 bool all_dominated, all_local;
4548 machine_mode mode;
4550 def = df_single_def (insn_info);
4551 /* There must be exactly one def in this insn. */
4552 if (!def || !single_set (insn))
4553 continue;
4554 /* This must be the only definition of the reg. We also limit
4555 which modes we deal with so that we can assume we can generate
4556 move instructions. */
4557 regno = DF_REF_REGNO (def);
4558 mode = GET_MODE (DF_REF_REG (def));
4559 if (DF_REG_DEF_COUNT (regno) != 1
4560 || !DF_REF_INSN_INFO (def)
4561 || HARD_REGISTER_NUM_P (regno)
4562 || DF_REG_EQ_USE_COUNT (regno) > 0
4563 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4564 continue;
4565 def_insn = DF_REF_INSN (def);
4567 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4568 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4569 break;
4571 if (note)
4573 if (dump_file)
4574 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4575 regno);
4576 bitmap_set_bit (&unusable_as_input, regno);
4577 continue;
4580 use = DF_REG_USE_CHAIN (regno);
4581 all_dominated = true;
4582 all_local = true;
4583 closest_use = NULL_RTX;
4584 for (; use; use = DF_REF_NEXT_REG (use))
4586 rtx_insn *insn;
4587 if (!DF_REF_INSN_INFO (use))
4589 all_dominated = false;
4590 all_local = false;
4591 break;
4593 insn = DF_REF_INSN (use);
4594 if (DEBUG_INSN_P (insn))
4595 continue;
4596 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4597 all_local = false;
4598 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4599 all_dominated = false;
4600 if (closest_use != insn && closest_use != const0_rtx)
4602 if (closest_use == NULL_RTX)
4603 closest_use = insn;
4604 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4605 closest_use = insn;
4606 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4607 closest_use = const0_rtx;
4610 if (!all_dominated)
4612 if (dump_file)
4613 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4614 regno);
4615 continue;
4617 if (all_local)
4618 bitmap_set_bit (local, regno);
4619 if (closest_use == const0_rtx || closest_use == NULL
4620 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4622 if (dump_file)
4623 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4624 closest_use == const0_rtx || closest_use == NULL
4625 ? " (no unique first use)" : "");
4626 continue;
4628 #ifdef HAVE_cc0
4629 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4631 if (dump_file)
4632 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4633 regno);
4634 continue;
4636 #endif
4637 bitmap_set_bit (&interesting, regno);
4638 /* If we get here, we know closest_use is a non-NULL insn
4639 (as opposed to const_0_rtx). */
4640 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4642 if (dump_file && (all_local || all_dominated))
4644 fprintf (dump_file, "Reg %u:", regno);
4645 if (all_local)
4646 fprintf (dump_file, " local to bb %d", bb->index);
4647 if (all_dominated)
4648 fprintf (dump_file, " def dominates all uses");
4649 if (closest_use != const0_rtx)
4650 fprintf (dump_file, " has unique first use");
4651 fputs ("\n", dump_file);
4656 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4658 df_ref def = DF_REG_DEF_CHAIN (i);
4659 rtx_insn *def_insn = DF_REF_INSN (def);
4660 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4661 bitmap def_bb_local = bb_local + def_block->index;
4662 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4663 bitmap def_bb_transp = bb_transp_live + def_block->index;
4664 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4665 rtx_insn *use_insn = closest_uses[i];
4666 df_ref use;
4667 bool all_ok = true;
4668 bool all_transp = true;
4670 if (!REG_P (DF_REF_REG (def)))
4671 continue;
4673 if (!local_to_bb_p)
4675 if (dump_file)
4676 fprintf (dump_file, "Reg %u not local to one basic block\n",
4678 continue;
4680 if (reg_equiv_init (i) != NULL_RTX)
4682 if (dump_file)
4683 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4685 continue;
4687 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4689 if (dump_file)
4690 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4691 INSN_UID (def_insn), i);
4692 continue;
4694 if (dump_file)
4695 fprintf (dump_file, "Examining insn %d, def for %d\n",
4696 INSN_UID (def_insn), i);
4697 FOR_EACH_INSN_USE (use, def_insn)
4699 unsigned regno = DF_REF_REGNO (use);
4700 if (bitmap_bit_p (&unusable_as_input, regno))
4702 all_ok = false;
4703 if (dump_file)
4704 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4705 break;
4707 if (!bitmap_bit_p (def_bb_transp, regno))
4709 if (bitmap_bit_p (def_bb_moveable, regno)
4710 && !control_flow_insn_p (use_insn)
4711 #ifdef HAVE_cc0
4712 && !sets_cc0_p (use_insn)
4713 #endif
4716 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4718 rtx_insn *x = NEXT_INSN (def_insn);
4719 while (!modified_in_p (DF_REF_REG (use), x))
4721 gcc_assert (x != use_insn);
4722 x = NEXT_INSN (x);
4724 if (dump_file)
4725 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4726 regno, INSN_UID (x));
4727 emit_insn_after (PATTERN (x), use_insn);
4728 set_insn_deleted (x);
4730 else
4732 if (dump_file)
4733 fprintf (dump_file, " input reg %u modified between def and use\n",
4734 regno);
4735 all_transp = false;
4738 else
4739 all_transp = false;
4742 if (!all_ok)
4743 continue;
4744 if (!dbg_cnt (ira_move))
4745 break;
4746 if (dump_file)
4747 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4749 if (all_transp)
4751 rtx def_reg = DF_REF_REG (def);
4752 rtx newreg = ira_create_new_reg (def_reg);
4753 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4755 unsigned nregno = REGNO (newreg);
4756 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4757 nregno -= max_regs;
4758 pseudo_replaced_reg[nregno] = def_reg;
4763 FOR_EACH_BB_FN (bb, cfun)
4765 bitmap_clear (bb_local + bb->index);
4766 bitmap_clear (bb_transp_live + bb->index);
4767 bitmap_clear (bb_moveable_reg_sets + bb->index);
4769 bitmap_clear (&interesting);
4770 bitmap_clear (&unusable_as_input);
4771 free (uid_luid);
4772 free (closest_uses);
4773 free (bb_local);
4774 free (bb_transp_live);
4775 free (bb_moveable_reg_sets);
4777 last_moveable_pseudo = max_reg_num ();
4779 fix_reg_equiv_init ();
4780 expand_reg_info ();
4781 regstat_free_n_sets_and_refs ();
4782 regstat_free_ri ();
4783 regstat_init_n_sets_and_refs ();
4784 regstat_compute_ri ();
4785 free_dominance_info (CDI_DOMINATORS);
4788 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4789 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4790 the destination. Otherwise return NULL. */
4792 static rtx
4793 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4795 rtx src = SET_SRC (set);
4796 rtx dest = SET_DEST (set);
4797 if (!REG_P (src) || !HARD_REGISTER_P (src)
4798 || !REG_P (dest) || HARD_REGISTER_P (dest)
4799 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4800 return NULL;
4801 return dest;
4804 /* If insn is interesting for parameter range-splitting shrink-wrapping
4805 preparation, i.e. it is a single set from a hard register to a pseudo, which
4806 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4807 parallel statement with only one such statement, return the destination.
4808 Otherwise return NULL. */
4810 static rtx
4811 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4813 if (!INSN_P (insn))
4814 return NULL;
4815 rtx pat = PATTERN (insn);
4816 if (GET_CODE (pat) == SET)
4817 return interesting_dest_for_shprep_1 (pat, call_dom);
4819 if (GET_CODE (pat) != PARALLEL)
4820 return NULL;
4821 rtx ret = NULL;
4822 for (int i = 0; i < XVECLEN (pat, 0); i++)
4824 rtx sub = XVECEXP (pat, 0, i);
4825 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4826 continue;
4827 if (GET_CODE (sub) != SET
4828 || side_effects_p (sub))
4829 return NULL;
4830 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4831 if (dest && ret)
4832 return NULL;
4833 if (dest)
4834 ret = dest;
4836 return ret;
4839 /* Split live ranges of pseudos that are loaded from hard registers in the
4840 first BB in a BB that dominates all non-sibling call if such a BB can be
4841 found and is not in a loop. Return true if the function has made any
4842 changes. */
4844 static bool
4845 split_live_ranges_for_shrink_wrap (void)
4847 basic_block bb, call_dom = NULL;
4848 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4849 rtx_insn *insn, *last_interesting_insn = NULL;
4850 bitmap_head need_new, reachable;
4851 vec<basic_block> queue;
4853 if (!SHRINK_WRAPPING_ENABLED)
4854 return false;
4856 bitmap_initialize (&need_new, 0);
4857 bitmap_initialize (&reachable, 0);
4858 queue.create (n_basic_blocks_for_fn (cfun));
4860 FOR_EACH_BB_FN (bb, cfun)
4861 FOR_BB_INSNS (bb, insn)
4862 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4864 if (bb == first)
4866 bitmap_clear (&need_new);
4867 bitmap_clear (&reachable);
4868 queue.release ();
4869 return false;
4872 bitmap_set_bit (&need_new, bb->index);
4873 bitmap_set_bit (&reachable, bb->index);
4874 queue.quick_push (bb);
4875 break;
4878 if (queue.is_empty ())
4880 bitmap_clear (&need_new);
4881 bitmap_clear (&reachable);
4882 queue.release ();
4883 return false;
4886 while (!queue.is_empty ())
4888 edge e;
4889 edge_iterator ei;
4891 bb = queue.pop ();
4892 FOR_EACH_EDGE (e, ei, bb->succs)
4893 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4894 && bitmap_set_bit (&reachable, e->dest->index))
4895 queue.quick_push (e->dest);
4897 queue.release ();
4899 FOR_BB_INSNS (first, insn)
4901 rtx dest = interesting_dest_for_shprep (insn, NULL);
4902 if (!dest)
4903 continue;
4905 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4907 bitmap_clear (&need_new);
4908 bitmap_clear (&reachable);
4909 return false;
4912 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4913 use;
4914 use = DF_REF_NEXT_REG (use))
4916 int ubbi = DF_REF_BB (use)->index;
4917 if (bitmap_bit_p (&reachable, ubbi))
4918 bitmap_set_bit (&need_new, ubbi);
4920 last_interesting_insn = insn;
4923 bitmap_clear (&reachable);
4924 if (!last_interesting_insn)
4926 bitmap_clear (&need_new);
4927 return false;
4930 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4931 bitmap_clear (&need_new);
4932 if (call_dom == first)
4933 return false;
4935 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4936 while (bb_loop_depth (call_dom) > 0)
4937 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4938 loop_optimizer_finalize ();
4940 if (call_dom == first)
4941 return false;
4943 calculate_dominance_info (CDI_POST_DOMINATORS);
4944 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4946 free_dominance_info (CDI_POST_DOMINATORS);
4947 return false;
4949 free_dominance_info (CDI_POST_DOMINATORS);
4951 if (dump_file)
4952 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4953 call_dom->index);
4955 bool ret = false;
4956 FOR_BB_INSNS (first, insn)
4958 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4959 if (!dest || dest == pic_offset_table_rtx)
4960 continue;
4962 rtx newreg = NULL_RTX;
4963 df_ref use, next;
4964 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4966 rtx_insn *uin = DF_REF_INSN (use);
4967 next = DF_REF_NEXT_REG (use);
4969 basic_block ubb = BLOCK_FOR_INSN (uin);
4970 if (ubb == call_dom
4971 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4973 if (!newreg)
4974 newreg = ira_create_new_reg (dest);
4975 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4979 if (newreg)
4981 rtx new_move = gen_move_insn (newreg, dest);
4982 emit_insn_after (new_move, bb_note (call_dom));
4983 if (dump_file)
4985 fprintf (dump_file, "Split live-range of register ");
4986 print_rtl_single (dump_file, dest);
4988 ret = true;
4991 if (insn == last_interesting_insn)
4992 break;
4994 apply_change_group ();
4995 return ret;
4998 /* Perform the second half of the transformation started in
4999 find_moveable_pseudos. We look for instances where the newly introduced
5000 pseudo remains unallocated, and remove it by moving the definition to
5001 just before its use, replacing the move instruction generated by
5002 find_moveable_pseudos. */
5003 static void
5004 move_unallocated_pseudos (void)
5006 int i;
5007 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5008 if (reg_renumber[i] < 0)
5010 int idx = i - first_moveable_pseudo;
5011 rtx other_reg = pseudo_replaced_reg[idx];
5012 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5013 /* The use must follow all definitions of OTHER_REG, so we can
5014 insert the new definition immediately after any of them. */
5015 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5016 rtx_insn *move_insn = DF_REF_INSN (other_def);
5017 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5018 rtx set;
5019 int success;
5021 if (dump_file)
5022 fprintf (dump_file, "moving def of %d (insn %d now) ",
5023 REGNO (other_reg), INSN_UID (def_insn));
5025 delete_insn (move_insn);
5026 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5027 delete_insn (DF_REF_INSN (other_def));
5028 delete_insn (def_insn);
5030 set = single_set (newinsn);
5031 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5032 gcc_assert (success);
5033 if (dump_file)
5034 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5035 INSN_UID (newinsn), i);
5036 SET_REG_N_REFS (i, 0);
5040 /* If the backend knows where to allocate pseudos for hard
5041 register initial values, register these allocations now. */
5042 static void
5043 allocate_initial_values (void)
5045 if (targetm.allocate_initial_value)
5047 rtx hreg, preg, x;
5048 int i, regno;
5050 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5052 if (! initial_value_entry (i, &hreg, &preg))
5053 break;
5055 x = targetm.allocate_initial_value (hreg);
5056 regno = REGNO (preg);
5057 if (x && REG_N_SETS (regno) <= 1)
5059 if (MEM_P (x))
5060 reg_equiv_memory_loc (regno) = x;
5061 else
5063 basic_block bb;
5064 int new_regno;
5066 gcc_assert (REG_P (x));
5067 new_regno = REGNO (x);
5068 reg_renumber[regno] = new_regno;
5069 /* Poke the regno right into regno_reg_rtx so that even
5070 fixed regs are accepted. */
5071 SET_REGNO (preg, new_regno);
5072 /* Update global register liveness information. */
5073 FOR_EACH_BB_FN (bb, cfun)
5075 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5076 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5077 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5078 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5084 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5085 &hreg, &preg));
5090 /* True when we use LRA instead of reload pass for the current
5091 function. */
5092 bool ira_use_lra_p;
5094 /* True if we have allocno conflicts. It is false for non-optimized
5095 mode or when the conflict table is too big. */
5096 bool ira_conflicts_p;
5098 /* Saved between IRA and reload. */
5099 static int saved_flag_ira_share_spill_slots;
5101 /* This is the main entry of IRA. */
5102 static void
5103 ira (FILE *f)
5105 bool loops_p;
5106 int ira_max_point_before_emit;
5107 int rebuild_p;
5108 bool saved_flag_caller_saves = flag_caller_saves;
5109 enum ira_region saved_flag_ira_region = flag_ira_region;
5111 /* Perform target specific PIC register initialization. */
5112 targetm.init_pic_reg ();
5114 ira_conflicts_p = optimize > 0;
5116 ira_use_lra_p = targetm.lra_p ();
5117 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5118 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5119 use simplified and faster algorithms in LRA. */
5120 lra_simple_p
5121 = (ira_use_lra_p
5122 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5123 if (lra_simple_p)
5125 /* It permits to skip live range splitting in LRA. */
5126 flag_caller_saves = false;
5127 /* There is no sense to do regional allocation when we use
5128 simplified LRA. */
5129 flag_ira_region = IRA_REGION_ONE;
5130 ira_conflicts_p = false;
5133 #ifndef IRA_NO_OBSTACK
5134 gcc_obstack_init (&ira_obstack);
5135 #endif
5136 bitmap_obstack_initialize (&ira_bitmap_obstack);
5138 /* LRA uses its own infrastructure to handle caller save registers. */
5139 if (flag_caller_saves && !ira_use_lra_p)
5140 init_caller_save ();
5142 if (flag_ira_verbose < 10)
5144 internal_flag_ira_verbose = flag_ira_verbose;
5145 ira_dump_file = f;
5147 else
5149 internal_flag_ira_verbose = flag_ira_verbose - 10;
5150 ira_dump_file = stderr;
5153 setup_prohibited_mode_move_regs ();
5154 decrease_live_ranges_number ();
5155 df_note_add_problem ();
5157 /* DF_LIVE can't be used in the register allocator, too many other
5158 parts of the compiler depend on using the "classic" liveness
5159 interpretation of the DF_LR problem. See PR38711.
5160 Remove the problem, so that we don't spend time updating it in
5161 any of the df_analyze() calls during IRA/LRA. */
5162 if (optimize > 1)
5163 df_remove_problem (df_live);
5164 gcc_checking_assert (df_live == NULL);
5166 #ifdef ENABLE_CHECKING
5167 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5168 #endif
5169 df_analyze ();
5171 init_reg_equiv ();
5172 if (ira_conflicts_p)
5174 calculate_dominance_info (CDI_DOMINATORS);
5176 if (split_live_ranges_for_shrink_wrap ())
5177 df_analyze ();
5179 free_dominance_info (CDI_DOMINATORS);
5182 df_clear_flags (DF_NO_INSN_RESCAN);
5184 regstat_init_n_sets_and_refs ();
5185 regstat_compute_ri ();
5187 /* If we are not optimizing, then this is the only place before
5188 register allocation where dataflow is done. And that is needed
5189 to generate these warnings. */
5190 if (warn_clobbered)
5191 generate_setjmp_warnings ();
5193 /* Determine if the current function is a leaf before running IRA
5194 since this can impact optimizations done by the prologue and
5195 epilogue thus changing register elimination offsets. */
5196 crtl->is_leaf = leaf_function_p ();
5198 if (resize_reg_info () && flag_ira_loop_pressure)
5199 ira_set_pseudo_classes (true, ira_dump_file);
5201 rebuild_p = update_equiv_regs ();
5202 setup_reg_equiv ();
5203 setup_reg_equiv_init ();
5205 if (optimize && rebuild_p)
5207 timevar_push (TV_JUMP);
5208 rebuild_jump_labels (get_insns ());
5209 if (purge_all_dead_edges ())
5210 delete_unreachable_blocks ();
5211 timevar_pop (TV_JUMP);
5214 allocated_reg_info_size = max_reg_num ();
5216 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5217 df_analyze ();
5219 /* It is not worth to do such improvement when we use a simple
5220 allocation because of -O0 usage or because the function is too
5221 big. */
5222 if (ira_conflicts_p)
5223 find_moveable_pseudos ();
5225 max_regno_before_ira = max_reg_num ();
5226 ira_setup_eliminable_regset ();
5228 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5229 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5230 ira_move_loops_num = ira_additional_jumps_num = 0;
5232 ira_assert (current_loops == NULL);
5233 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5234 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5236 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5237 fprintf (ira_dump_file, "Building IRA IR\n");
5238 loops_p = ira_build ();
5240 ira_assert (ira_conflicts_p || !loops_p);
5242 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5243 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5244 /* It is just wasting compiler's time to pack spilled pseudos into
5245 stack slots in this case -- prohibit it. We also do this if
5246 there is setjmp call because a variable not modified between
5247 setjmp and longjmp the compiler is required to preserve its
5248 value and sharing slots does not guarantee it. */
5249 flag_ira_share_spill_slots = FALSE;
5251 ira_color ();
5253 ira_max_point_before_emit = ira_max_point;
5255 ira_initiate_emit_data ();
5257 ira_emit (loops_p);
5259 max_regno = max_reg_num ();
5260 if (ira_conflicts_p)
5262 if (! loops_p)
5264 if (! ira_use_lra_p)
5265 ira_initiate_assign ();
5267 else
5269 expand_reg_info ();
5271 if (ira_use_lra_p)
5273 ira_allocno_t a;
5274 ira_allocno_iterator ai;
5276 FOR_EACH_ALLOCNO (a, ai)
5278 int old_regno = ALLOCNO_REGNO (a);
5279 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5281 ALLOCNO_REGNO (a) = new_regno;
5283 if (old_regno != new_regno)
5284 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5285 reg_alternate_class (old_regno),
5286 reg_allocno_class (old_regno));
5290 else
5292 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5293 fprintf (ira_dump_file, "Flattening IR\n");
5294 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5296 /* New insns were generated: add notes and recalculate live
5297 info. */
5298 df_analyze ();
5300 /* ??? Rebuild the loop tree, but why? Does the loop tree
5301 change if new insns were generated? Can that be handled
5302 by updating the loop tree incrementally? */
5303 loop_optimizer_finalize ();
5304 free_dominance_info (CDI_DOMINATORS);
5305 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5306 | LOOPS_HAVE_RECORDED_EXITS);
5308 if (! ira_use_lra_p)
5310 setup_allocno_assignment_flags ();
5311 ira_initiate_assign ();
5312 ira_reassign_conflict_allocnos (max_regno);
5317 ira_finish_emit_data ();
5319 setup_reg_renumber ();
5321 calculate_allocation_cost ();
5323 #ifdef ENABLE_IRA_CHECKING
5324 if (ira_conflicts_p)
5325 check_allocation ();
5326 #endif
5328 if (max_regno != max_regno_before_ira)
5330 regstat_free_n_sets_and_refs ();
5331 regstat_free_ri ();
5332 regstat_init_n_sets_and_refs ();
5333 regstat_compute_ri ();
5336 overall_cost_before = ira_overall_cost;
5337 if (! ira_conflicts_p)
5338 grow_reg_equivs ();
5339 else
5341 fix_reg_equiv_init ();
5343 #ifdef ENABLE_IRA_CHECKING
5344 print_redundant_copies ();
5345 #endif
5346 if (! ira_use_lra_p)
5348 ira_spilled_reg_stack_slots_num = 0;
5349 ira_spilled_reg_stack_slots
5350 = ((struct ira_spilled_reg_stack_slot *)
5351 ira_allocate (max_regno
5352 * sizeof (struct ira_spilled_reg_stack_slot)));
5353 memset (ira_spilled_reg_stack_slots, 0,
5354 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5357 allocate_initial_values ();
5359 /* See comment for find_moveable_pseudos call. */
5360 if (ira_conflicts_p)
5361 move_unallocated_pseudos ();
5363 /* Restore original values. */
5364 if (lra_simple_p)
5366 flag_caller_saves = saved_flag_caller_saves;
5367 flag_ira_region = saved_flag_ira_region;
5371 static void
5372 do_reload (void)
5374 basic_block bb;
5375 bool need_dce;
5376 unsigned pic_offset_table_regno = INVALID_REGNUM;
5378 if (flag_ira_verbose < 10)
5379 ira_dump_file = dump_file;
5381 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5382 after reload to avoid possible wrong usages of hard reg assigned
5383 to it. */
5384 if (pic_offset_table_rtx
5385 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5386 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5388 timevar_push (TV_RELOAD);
5389 if (ira_use_lra_p)
5391 if (current_loops != NULL)
5393 loop_optimizer_finalize ();
5394 free_dominance_info (CDI_DOMINATORS);
5396 FOR_ALL_BB_FN (bb, cfun)
5397 bb->loop_father = NULL;
5398 current_loops = NULL;
5400 ira_destroy ();
5402 lra (ira_dump_file);
5403 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5404 LRA. */
5405 vec_free (reg_equivs);
5406 reg_equivs = NULL;
5407 need_dce = false;
5409 else
5411 df_set_flags (DF_NO_INSN_RESCAN);
5412 build_insn_chain ();
5414 need_dce = reload (get_insns (), ira_conflicts_p);
5418 timevar_pop (TV_RELOAD);
5420 timevar_push (TV_IRA);
5422 if (ira_conflicts_p && ! ira_use_lra_p)
5424 ira_free (ira_spilled_reg_stack_slots);
5425 ira_finish_assign ();
5428 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5429 && overall_cost_before != ira_overall_cost)
5430 fprintf (ira_dump_file, "+++Overall after reload %"PRId64 "\n",
5431 ira_overall_cost);
5433 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5435 if (! ira_use_lra_p)
5437 ira_destroy ();
5438 if (current_loops != NULL)
5440 loop_optimizer_finalize ();
5441 free_dominance_info (CDI_DOMINATORS);
5443 FOR_ALL_BB_FN (bb, cfun)
5444 bb->loop_father = NULL;
5445 current_loops = NULL;
5447 regstat_free_ri ();
5448 regstat_free_n_sets_and_refs ();
5451 if (optimize)
5452 cleanup_cfg (CLEANUP_EXPENSIVE);
5454 finish_reg_equiv ();
5456 bitmap_obstack_release (&ira_bitmap_obstack);
5457 #ifndef IRA_NO_OBSTACK
5458 obstack_free (&ira_obstack, NULL);
5459 #endif
5461 /* The code after the reload has changed so much that at this point
5462 we might as well just rescan everything. Note that
5463 df_rescan_all_insns is not going to help here because it does not
5464 touch the artificial uses and defs. */
5465 df_finish_pass (true);
5466 df_scan_alloc (NULL);
5467 df_scan_blocks ();
5469 if (optimize > 1)
5471 df_live_add_problem ();
5472 df_live_set_all_dirty ();
5475 if (optimize)
5476 df_analyze ();
5478 if (need_dce && optimize)
5479 run_fast_dce ();
5481 /* Diagnose uses of the hard frame pointer when it is used as a global
5482 register. Often we can get away with letting the user appropriate
5483 the frame pointer, but we should let them know when code generation
5484 makes that impossible. */
5485 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5487 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5488 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5489 "frame pointer required, but reserved");
5490 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5493 if (pic_offset_table_regno != INVALID_REGNUM)
5494 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5496 timevar_pop (TV_IRA);
5499 /* Run the integrated register allocator. */
5501 namespace {
5503 const pass_data pass_data_ira =
5505 RTL_PASS, /* type */
5506 "ira", /* name */
5507 OPTGROUP_NONE, /* optinfo_flags */
5508 TV_IRA, /* tv_id */
5509 0, /* properties_required */
5510 0, /* properties_provided */
5511 0, /* properties_destroyed */
5512 0, /* todo_flags_start */
5513 TODO_do_not_ggc_collect, /* todo_flags_finish */
5516 class pass_ira : public rtl_opt_pass
5518 public:
5519 pass_ira (gcc::context *ctxt)
5520 : rtl_opt_pass (pass_data_ira, ctxt)
5523 /* opt_pass methods: */
5524 virtual bool gate (function *)
5526 return !targetm.no_register_allocation;
5528 virtual unsigned int execute (function *)
5530 ira (dump_file);
5531 return 0;
5534 }; // class pass_ira
5536 } // anon namespace
5538 rtl_opt_pass *
5539 make_pass_ira (gcc::context *ctxt)
5541 return new pass_ira (ctxt);
5544 namespace {
5546 const pass_data pass_data_reload =
5548 RTL_PASS, /* type */
5549 "reload", /* name */
5550 OPTGROUP_NONE, /* optinfo_flags */
5551 TV_RELOAD, /* tv_id */
5552 0, /* properties_required */
5553 0, /* properties_provided */
5554 0, /* properties_destroyed */
5555 0, /* todo_flags_start */
5556 0, /* todo_flags_finish */
5559 class pass_reload : public rtl_opt_pass
5561 public:
5562 pass_reload (gcc::context *ctxt)
5563 : rtl_opt_pass (pass_data_reload, ctxt)
5566 /* opt_pass methods: */
5567 virtual bool gate (function *)
5569 return !targetm.no_register_allocation;
5571 virtual unsigned int execute (function *)
5573 do_reload ();
5574 return 0;
5577 }; // class pass_reload
5579 } // anon namespace
5581 rtl_opt_pass *
5582 make_pass_reload (gcc::context *ctxt)
5584 return new pass_reload (ctxt);