PR tree-optimization/80631
[official-gcc.git] / gcc / tree-vect-loop.c
bloba66c8cfccad3c010aaa9be804a0ce4b7fb62ec8d
1 /* Loop Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
53 #include "internal-fn.h"
54 #include "tree-vector-builder.h"
56 /* Loop Vectorization Pass.
58 This pass tries to vectorize loops.
60 For example, the vectorizer transforms the following simple loop:
62 short a[N]; short b[N]; short c[N]; int i;
64 for (i=0; i<N; i++){
65 a[i] = b[i] + c[i];
68 as if it was manually vectorized by rewriting the source code into:
70 typedef int __attribute__((mode(V8HI))) v8hi;
71 short a[N]; short b[N]; short c[N]; int i;
72 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
73 v8hi va, vb, vc;
75 for (i=0; i<N/8; i++){
76 vb = pb[i];
77 vc = pc[i];
78 va = vb + vc;
79 pa[i] = va;
82 The main entry to this pass is vectorize_loops(), in which
83 the vectorizer applies a set of analyses on a given set of loops,
84 followed by the actual vectorization transformation for the loops that
85 had successfully passed the analysis phase.
86 Throughout this pass we make a distinction between two types of
87 data: scalars (which are represented by SSA_NAMES), and memory references
88 ("data-refs"). These two types of data require different handling both
89 during analysis and transformation. The types of data-refs that the
90 vectorizer currently supports are ARRAY_REFS which base is an array DECL
91 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
92 accesses are required to have a simple (consecutive) access pattern.
94 Analysis phase:
95 ===============
96 The driver for the analysis phase is vect_analyze_loop().
97 It applies a set of analyses, some of which rely on the scalar evolution
98 analyzer (scev) developed by Sebastian Pop.
100 During the analysis phase the vectorizer records some information
101 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
102 loop, as well as general information about the loop as a whole, which is
103 recorded in a "loop_vec_info" struct attached to each loop.
105 Transformation phase:
106 =====================
107 The loop transformation phase scans all the stmts in the loop, and
108 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
109 the loop that needs to be vectorized. It inserts the vector code sequence
110 just before the scalar stmt S, and records a pointer to the vector code
111 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
112 attached to S). This pointer will be used for the vectorization of following
113 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
114 otherwise, we rely on dead code elimination for removing it.
116 For example, say stmt S1 was vectorized into stmt VS1:
118 VS1: vb = px[i];
119 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
120 S2: a = b;
122 To vectorize stmt S2, the vectorizer first finds the stmt that defines
123 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
124 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
125 resulting sequence would be:
127 VS1: vb = px[i];
128 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
129 VS2: va = vb;
130 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
132 Operands that are not SSA_NAMEs, are data-refs that appear in
133 load/store operations (like 'x[i]' in S1), and are handled differently.
135 Target modeling:
136 =================
137 Currently the only target specific information that is used is the
138 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
139 Targets that can support different sizes of vectors, for now will need
140 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
141 flexibility will be added in the future.
143 Since we only vectorize operations which vector form can be
144 expressed using existing tree codes, to verify that an operation is
145 supported, the vectorizer checks the relevant optab at the relevant
146 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
147 the value found is CODE_FOR_nothing, then there's no target support, and
148 we can't vectorize the stmt.
150 For additional information on this project see:
151 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
154 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
156 /* Function vect_determine_vectorization_factor
158 Determine the vectorization factor (VF). VF is the number of data elements
159 that are operated upon in parallel in a single iteration of the vectorized
160 loop. For example, when vectorizing a loop that operates on 4byte elements,
161 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
162 elements can fit in a single vector register.
164 We currently support vectorization of loops in which all types operated upon
165 are of the same size. Therefore this function currently sets VF according to
166 the size of the types operated upon, and fails if there are multiple sizes
167 in the loop.
169 VF is also the factor by which the loop iterations are strip-mined, e.g.:
170 original loop:
171 for (i=0; i<N; i++){
172 a[i] = b[i] + c[i];
175 vectorized loop:
176 for (i=0; i<N; i+=VF){
177 a[i:VF] = b[i:VF] + c[i:VF];
181 static bool
182 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
184 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
185 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
186 unsigned nbbs = loop->num_nodes;
187 unsigned int vectorization_factor = 0;
188 tree scalar_type = NULL_TREE;
189 gphi *phi;
190 tree vectype;
191 unsigned int nunits;
192 stmt_vec_info stmt_info;
193 unsigned i;
194 HOST_WIDE_INT dummy;
195 gimple *stmt, *pattern_stmt = NULL;
196 gimple_seq pattern_def_seq = NULL;
197 gimple_stmt_iterator pattern_def_si = gsi_none ();
198 bool analyze_pattern_stmt = false;
199 bool bool_result;
200 auto_vec<stmt_vec_info> mask_producers;
202 if (dump_enabled_p ())
203 dump_printf_loc (MSG_NOTE, vect_location,
204 "=== vect_determine_vectorization_factor ===\n");
206 for (i = 0; i < nbbs; i++)
208 basic_block bb = bbs[i];
210 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
211 gsi_next (&si))
213 phi = si.phi ();
214 stmt_info = vinfo_for_stmt (phi);
215 if (dump_enabled_p ())
217 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
218 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
221 gcc_assert (stmt_info);
223 if (STMT_VINFO_RELEVANT_P (stmt_info)
224 || STMT_VINFO_LIVE_P (stmt_info))
226 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
227 scalar_type = TREE_TYPE (PHI_RESULT (phi));
229 if (dump_enabled_p ())
231 dump_printf_loc (MSG_NOTE, vect_location,
232 "get vectype for scalar type: ");
233 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
234 dump_printf (MSG_NOTE, "\n");
237 vectype = get_vectype_for_scalar_type (scalar_type);
238 if (!vectype)
240 if (dump_enabled_p ())
242 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
243 "not vectorized: unsupported "
244 "data-type ");
245 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
246 scalar_type);
247 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
249 return false;
251 STMT_VINFO_VECTYPE (stmt_info) = vectype;
253 if (dump_enabled_p ())
255 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
256 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
257 dump_printf (MSG_NOTE, "\n");
260 nunits = TYPE_VECTOR_SUBPARTS (vectype);
261 if (dump_enabled_p ())
262 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
263 nunits);
265 if (!vectorization_factor
266 || (nunits > vectorization_factor))
267 vectorization_factor = nunits;
271 for (gimple_stmt_iterator si = gsi_start_bb (bb);
272 !gsi_end_p (si) || analyze_pattern_stmt;)
274 tree vf_vectype;
276 if (analyze_pattern_stmt)
277 stmt = pattern_stmt;
278 else
279 stmt = gsi_stmt (si);
281 stmt_info = vinfo_for_stmt (stmt);
283 if (dump_enabled_p ())
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
290 gcc_assert (stmt_info);
292 /* Skip stmts which do not need to be vectorized. */
293 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
294 && !STMT_VINFO_LIVE_P (stmt_info))
295 || gimple_clobber_p (stmt))
297 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
298 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
299 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
300 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
302 stmt = pattern_stmt;
303 stmt_info = vinfo_for_stmt (pattern_stmt);
304 if (dump_enabled_p ())
306 dump_printf_loc (MSG_NOTE, vect_location,
307 "==> examining pattern statement: ");
308 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
311 else
313 if (dump_enabled_p ())
314 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
315 gsi_next (&si);
316 continue;
319 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
320 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
321 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
322 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
323 analyze_pattern_stmt = true;
325 /* If a pattern statement has def stmts, analyze them too. */
326 if (is_pattern_stmt_p (stmt_info))
328 if (pattern_def_seq == NULL)
330 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
331 pattern_def_si = gsi_start (pattern_def_seq);
333 else if (!gsi_end_p (pattern_def_si))
334 gsi_next (&pattern_def_si);
335 if (pattern_def_seq != NULL)
337 gimple *pattern_def_stmt = NULL;
338 stmt_vec_info pattern_def_stmt_info = NULL;
340 while (!gsi_end_p (pattern_def_si))
342 pattern_def_stmt = gsi_stmt (pattern_def_si);
343 pattern_def_stmt_info
344 = vinfo_for_stmt (pattern_def_stmt);
345 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
346 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
347 break;
348 gsi_next (&pattern_def_si);
351 if (!gsi_end_p (pattern_def_si))
353 if (dump_enabled_p ())
355 dump_printf_loc (MSG_NOTE, vect_location,
356 "==> examining pattern def stmt: ");
357 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
358 pattern_def_stmt, 0);
361 stmt = pattern_def_stmt;
362 stmt_info = pattern_def_stmt_info;
364 else
366 pattern_def_si = gsi_none ();
367 analyze_pattern_stmt = false;
370 else
371 analyze_pattern_stmt = false;
374 if (gimple_get_lhs (stmt) == NULL_TREE
375 /* MASK_STORE has no lhs, but is ok. */
376 && (!is_gimple_call (stmt)
377 || !gimple_call_internal_p (stmt)
378 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
380 if (is_gimple_call (stmt))
382 /* Ignore calls with no lhs. These must be calls to
383 #pragma omp simd functions, and what vectorization factor
384 it really needs can't be determined until
385 vectorizable_simd_clone_call. */
386 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
388 pattern_def_seq = NULL;
389 gsi_next (&si);
391 continue;
393 if (dump_enabled_p ())
395 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
396 "not vectorized: irregular stmt.");
397 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
400 return false;
403 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
405 if (dump_enabled_p ())
407 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
408 "not vectorized: vector stmt in loop:");
409 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
411 return false;
414 bool_result = false;
416 if (STMT_VINFO_VECTYPE (stmt_info))
418 /* The only case when a vectype had been already set is for stmts
419 that contain a dataref, or for "pattern-stmts" (stmts
420 generated by the vectorizer to represent/replace a certain
421 idiom). */
422 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
423 || is_pattern_stmt_p (stmt_info)
424 || !gsi_end_p (pattern_def_si));
425 vectype = STMT_VINFO_VECTYPE (stmt_info);
427 else
429 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
430 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
431 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
432 else
433 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
435 /* Bool ops don't participate in vectorization factor
436 computation. For comparison use compared types to
437 compute a factor. */
438 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)
439 && is_gimple_assign (stmt)
440 && gimple_assign_rhs_code (stmt) != COND_EXPR)
442 if (STMT_VINFO_RELEVANT_P (stmt_info)
443 || STMT_VINFO_LIVE_P (stmt_info))
444 mask_producers.safe_push (stmt_info);
445 bool_result = true;
447 if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
448 == tcc_comparison
449 && !VECT_SCALAR_BOOLEAN_TYPE_P
450 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
451 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
452 else
454 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
456 pattern_def_seq = NULL;
457 gsi_next (&si);
459 continue;
463 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE, vect_location,
466 "get vectype for scalar type: ");
467 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
468 dump_printf (MSG_NOTE, "\n");
470 vectype = get_vectype_for_scalar_type (scalar_type);
471 if (!vectype)
473 if (dump_enabled_p ())
475 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
476 "not vectorized: unsupported "
477 "data-type ");
478 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
479 scalar_type);
480 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
482 return false;
485 if (!bool_result)
486 STMT_VINFO_VECTYPE (stmt_info) = vectype;
488 if (dump_enabled_p ())
490 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
491 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
492 dump_printf (MSG_NOTE, "\n");
496 /* Don't try to compute VF out scalar types if we stmt
497 produces boolean vector. Use result vectype instead. */
498 if (VECTOR_BOOLEAN_TYPE_P (vectype))
499 vf_vectype = vectype;
500 else
502 /* The vectorization factor is according to the smallest
503 scalar type (or the largest vector size, but we only
504 support one vector size per loop). */
505 if (!bool_result)
506 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
507 &dummy);
508 if (dump_enabled_p ())
510 dump_printf_loc (MSG_NOTE, vect_location,
511 "get vectype for scalar type: ");
512 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
513 dump_printf (MSG_NOTE, "\n");
515 vf_vectype = get_vectype_for_scalar_type (scalar_type);
517 if (!vf_vectype)
519 if (dump_enabled_p ())
521 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
522 "not vectorized: unsupported data-type ");
523 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
524 scalar_type);
525 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
527 return false;
530 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
531 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
533 if (dump_enabled_p ())
535 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
536 "not vectorized: different sized vector "
537 "types in statement, ");
538 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
539 vectype);
540 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
541 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
542 vf_vectype);
543 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
545 return false;
548 if (dump_enabled_p ())
550 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
551 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
552 dump_printf (MSG_NOTE, "\n");
555 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
556 if (dump_enabled_p ())
557 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
558 if (!vectorization_factor
559 || (nunits > vectorization_factor))
560 vectorization_factor = nunits;
562 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
564 pattern_def_seq = NULL;
565 gsi_next (&si);
570 /* TODO: Analyze cost. Decide if worth while to vectorize. */
571 if (dump_enabled_p ())
572 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
573 vectorization_factor);
574 if (vectorization_factor <= 1)
576 if (dump_enabled_p ())
577 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
578 "not vectorized: unsupported data-type\n");
579 return false;
581 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
583 for (i = 0; i < mask_producers.length (); i++)
585 tree mask_type = NULL;
587 stmt = STMT_VINFO_STMT (mask_producers[i]);
589 if (is_gimple_assign (stmt)
590 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
591 && !VECT_SCALAR_BOOLEAN_TYPE_P
592 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
594 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
595 mask_type = get_mask_type_for_scalar_type (scalar_type);
597 if (!mask_type)
599 if (dump_enabled_p ())
600 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
601 "not vectorized: unsupported mask\n");
602 return false;
605 else
607 tree rhs;
608 ssa_op_iter iter;
609 gimple *def_stmt;
610 enum vect_def_type dt;
612 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
614 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
615 &def_stmt, &dt, &vectype))
617 if (dump_enabled_p ())
619 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
620 "not vectorized: can't compute mask type "
621 "for statement, ");
622 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
625 return false;
628 /* No vectype probably means external definition.
629 Allow it in case there is another operand which
630 allows to determine mask type. */
631 if (!vectype)
632 continue;
634 if (!mask_type)
635 mask_type = vectype;
636 else if (TYPE_VECTOR_SUBPARTS (mask_type)
637 != TYPE_VECTOR_SUBPARTS (vectype))
639 if (dump_enabled_p ())
641 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
642 "not vectorized: different sized masks "
643 "types in statement, ");
644 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
645 mask_type);
646 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
647 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
648 vectype);
649 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
651 return false;
653 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
654 != VECTOR_BOOLEAN_TYPE_P (vectype))
656 if (dump_enabled_p ())
658 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
659 "not vectorized: mixed mask and "
660 "nonmask vector types in statement, ");
661 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
662 mask_type);
663 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
664 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
665 vectype);
666 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
668 return false;
672 /* We may compare boolean value loaded as vector of integers.
673 Fix mask_type in such case. */
674 if (mask_type
675 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
676 && gimple_code (stmt) == GIMPLE_ASSIGN
677 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
678 mask_type = build_same_sized_truth_vector_type (mask_type);
681 /* No mask_type should mean loop invariant predicate.
682 This is probably a subject for optimization in
683 if-conversion. */
684 if (!mask_type)
686 if (dump_enabled_p ())
688 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
689 "not vectorized: can't compute mask type "
690 "for statement, ");
691 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
694 return false;
697 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
700 return true;
704 /* Function vect_is_simple_iv_evolution.
706 FORNOW: A simple evolution of an induction variables in the loop is
707 considered a polynomial evolution. */
709 static bool
710 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
711 tree * step)
713 tree init_expr;
714 tree step_expr;
715 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
716 basic_block bb;
718 /* When there is no evolution in this loop, the evolution function
719 is not "simple". */
720 if (evolution_part == NULL_TREE)
721 return false;
723 /* When the evolution is a polynomial of degree >= 2
724 the evolution function is not "simple". */
725 if (tree_is_chrec (evolution_part))
726 return false;
728 step_expr = evolution_part;
729 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
731 if (dump_enabled_p ())
733 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
734 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
735 dump_printf (MSG_NOTE, ", init: ");
736 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
737 dump_printf (MSG_NOTE, "\n");
740 *init = init_expr;
741 *step = step_expr;
743 if (TREE_CODE (step_expr) != INTEGER_CST
744 && (TREE_CODE (step_expr) != SSA_NAME
745 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
746 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
747 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
748 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
749 || !flag_associative_math)))
750 && (TREE_CODE (step_expr) != REAL_CST
751 || !flag_associative_math))
753 if (dump_enabled_p ())
754 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
755 "step unknown.\n");
756 return false;
759 return true;
762 /* Function vect_analyze_scalar_cycles_1.
764 Examine the cross iteration def-use cycles of scalar variables
765 in LOOP. LOOP_VINFO represents the loop that is now being
766 considered for vectorization (can be LOOP, or an outer-loop
767 enclosing LOOP). */
769 static void
770 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
772 basic_block bb = loop->header;
773 tree init, step;
774 auto_vec<gimple *, 64> worklist;
775 gphi_iterator gsi;
776 bool double_reduc;
778 if (dump_enabled_p ())
779 dump_printf_loc (MSG_NOTE, vect_location,
780 "=== vect_analyze_scalar_cycles ===\n");
782 /* First - identify all inductions. Reduction detection assumes that all the
783 inductions have been identified, therefore, this order must not be
784 changed. */
785 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
787 gphi *phi = gsi.phi ();
788 tree access_fn = NULL;
789 tree def = PHI_RESULT (phi);
790 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
792 if (dump_enabled_p ())
794 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
795 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
798 /* Skip virtual phi's. The data dependences that are associated with
799 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
800 if (virtual_operand_p (def))
801 continue;
803 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
805 /* Analyze the evolution function. */
806 access_fn = analyze_scalar_evolution (loop, def);
807 if (access_fn)
809 STRIP_NOPS (access_fn);
810 if (dump_enabled_p ())
812 dump_printf_loc (MSG_NOTE, vect_location,
813 "Access function of PHI: ");
814 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
815 dump_printf (MSG_NOTE, "\n");
817 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
818 = initial_condition_in_loop_num (access_fn, loop->num);
819 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
820 = evolution_part_in_loop_num (access_fn, loop->num);
823 if (!access_fn
824 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
825 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
826 && TREE_CODE (step) != INTEGER_CST))
828 worklist.safe_push (phi);
829 continue;
832 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
833 != NULL_TREE);
834 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
836 if (dump_enabled_p ())
837 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
838 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
842 /* Second - identify all reductions and nested cycles. */
843 while (worklist.length () > 0)
845 gimple *phi = worklist.pop ();
846 tree def = PHI_RESULT (phi);
847 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
848 gimple *reduc_stmt;
850 if (dump_enabled_p ())
852 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
853 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
856 gcc_assert (!virtual_operand_p (def)
857 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
859 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
860 &double_reduc, false);
861 if (reduc_stmt)
863 if (double_reduc)
865 if (dump_enabled_p ())
866 dump_printf_loc (MSG_NOTE, vect_location,
867 "Detected double reduction.\n");
869 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
870 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
871 vect_double_reduction_def;
873 else
875 if (loop != LOOP_VINFO_LOOP (loop_vinfo))
877 if (dump_enabled_p ())
878 dump_printf_loc (MSG_NOTE, vect_location,
879 "Detected vectorizable nested cycle.\n");
881 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
882 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
883 vect_nested_cycle;
885 else
887 if (dump_enabled_p ())
888 dump_printf_loc (MSG_NOTE, vect_location,
889 "Detected reduction.\n");
891 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
892 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
893 vect_reduction_def;
894 /* Store the reduction cycles for possible vectorization in
895 loop-aware SLP if it was not detected as reduction
896 chain. */
897 if (! GROUP_FIRST_ELEMENT (vinfo_for_stmt (reduc_stmt)))
898 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
902 else
903 if (dump_enabled_p ())
904 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
905 "Unknown def-use cycle pattern.\n");
910 /* Function vect_analyze_scalar_cycles.
912 Examine the cross iteration def-use cycles of scalar variables, by
913 analyzing the loop-header PHIs of scalar variables. Classify each
914 cycle as one of the following: invariant, induction, reduction, unknown.
915 We do that for the loop represented by LOOP_VINFO, and also to its
916 inner-loop, if exists.
917 Examples for scalar cycles:
919 Example1: reduction:
921 loop1:
922 for (i=0; i<N; i++)
923 sum += a[i];
925 Example2: induction:
927 loop2:
928 for (i=0; i<N; i++)
929 a[i] = i; */
931 static void
932 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
934 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
936 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
938 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
939 Reductions in such inner-loop therefore have different properties than
940 the reductions in the nest that gets vectorized:
941 1. When vectorized, they are executed in the same order as in the original
942 scalar loop, so we can't change the order of computation when
943 vectorizing them.
944 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
945 current checks are too strict. */
947 if (loop->inner)
948 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
951 /* Transfer group and reduction information from STMT to its pattern stmt. */
953 static void
954 vect_fixup_reduc_chain (gimple *stmt)
956 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
957 gimple *stmtp;
958 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
959 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
960 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
963 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
964 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
965 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
966 if (stmt)
967 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
968 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
970 while (stmt);
971 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
974 /* Fixup scalar cycles that now have their stmts detected as patterns. */
976 static void
977 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
979 gimple *first;
980 unsigned i;
982 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
983 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
985 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
986 while (next)
988 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
989 break;
990 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
992 /* If not all stmt in the chain are patterns try to handle
993 the chain without patterns. */
994 if (! next)
996 vect_fixup_reduc_chain (first);
997 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
998 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
1003 /* Function vect_get_loop_niters.
1005 Determine how many iterations the loop is executed and place it
1006 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1007 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
1008 niter information holds in ASSUMPTIONS.
1010 Return the loop exit condition. */
1013 static gcond *
1014 vect_get_loop_niters (struct loop *loop, tree *assumptions,
1015 tree *number_of_iterations, tree *number_of_iterationsm1)
1017 edge exit = single_exit (loop);
1018 struct tree_niter_desc niter_desc;
1019 tree niter_assumptions, niter, may_be_zero;
1020 gcond *cond = get_loop_exit_condition (loop);
1022 *assumptions = boolean_true_node;
1023 *number_of_iterationsm1 = chrec_dont_know;
1024 *number_of_iterations = chrec_dont_know;
1025 if (dump_enabled_p ())
1026 dump_printf_loc (MSG_NOTE, vect_location,
1027 "=== get_loop_niters ===\n");
1029 if (!exit)
1030 return cond;
1032 niter = chrec_dont_know;
1033 may_be_zero = NULL_TREE;
1034 niter_assumptions = boolean_true_node;
1035 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
1036 || chrec_contains_undetermined (niter_desc.niter))
1037 return cond;
1039 niter_assumptions = niter_desc.assumptions;
1040 may_be_zero = niter_desc.may_be_zero;
1041 niter = niter_desc.niter;
1043 if (may_be_zero && integer_zerop (may_be_zero))
1044 may_be_zero = NULL_TREE;
1046 if (may_be_zero)
1048 if (COMPARISON_CLASS_P (may_be_zero))
1050 /* Try to combine may_be_zero with assumptions, this can simplify
1051 computation of niter expression. */
1052 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
1053 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1054 niter_assumptions,
1055 fold_build1 (TRUTH_NOT_EXPR,
1056 boolean_type_node,
1057 may_be_zero));
1058 else
1059 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
1060 build_int_cst (TREE_TYPE (niter), 0), niter);
1062 may_be_zero = NULL_TREE;
1064 else if (integer_nonzerop (may_be_zero))
1066 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
1067 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
1068 return cond;
1070 else
1071 return cond;
1074 *assumptions = niter_assumptions;
1075 *number_of_iterationsm1 = niter;
1077 /* We want the number of loop header executions which is the number
1078 of latch executions plus one.
1079 ??? For UINT_MAX latch executions this number overflows to zero
1080 for loops like do { n++; } while (n != 0); */
1081 if (niter && !chrec_contains_undetermined (niter))
1082 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
1083 build_int_cst (TREE_TYPE (niter), 1));
1084 *number_of_iterations = niter;
1086 return cond;
1089 /* Function bb_in_loop_p
1091 Used as predicate for dfs order traversal of the loop bbs. */
1093 static bool
1094 bb_in_loop_p (const_basic_block bb, const void *data)
1096 const struct loop *const loop = (const struct loop *)data;
1097 if (flow_bb_inside_loop_p (loop, bb))
1098 return true;
1099 return false;
1103 /* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
1104 stmt_vec_info structs for all the stmts in LOOP_IN. */
1106 _loop_vec_info::_loop_vec_info (struct loop *loop_in)
1107 : vec_info (vec_info::loop, init_cost (loop_in)),
1108 loop (loop_in),
1109 bbs (XCNEWVEC (basic_block, loop->num_nodes)),
1110 num_itersm1 (NULL_TREE),
1111 num_iters (NULL_TREE),
1112 num_iters_unchanged (NULL_TREE),
1113 num_iters_assumptions (NULL_TREE),
1114 th (0),
1115 vectorization_factor (0),
1116 max_vectorization_factor (0),
1117 unaligned_dr (NULL),
1118 peeling_for_alignment (0),
1119 ptr_mask (0),
1120 slp_unrolling_factor (1),
1121 single_scalar_iteration_cost (0),
1122 vectorizable (false),
1123 peeling_for_gaps (false),
1124 peeling_for_niter (false),
1125 operands_swapped (false),
1126 no_data_dependencies (false),
1127 has_mask_store (false),
1128 scalar_loop (NULL),
1129 orig_loop_info (NULL)
1131 /* Create/Update stmt_info for all stmts in the loop. */
1132 basic_block *body = get_loop_body (loop);
1133 for (unsigned int i = 0; i < loop->num_nodes; i++)
1135 basic_block bb = body[i];
1136 gimple_stmt_iterator si;
1138 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1140 gimple *phi = gsi_stmt (si);
1141 gimple_set_uid (phi, 0);
1142 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, this));
1145 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1147 gimple *stmt = gsi_stmt (si);
1148 gimple_set_uid (stmt, 0);
1149 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, this));
1152 free (body);
1154 /* CHECKME: We want to visit all BBs before their successors (except for
1155 latch blocks, for which this assertion wouldn't hold). In the simple
1156 case of the loop forms we allow, a dfs order of the BBs would the same
1157 as reversed postorder traversal, so we are safe. */
1159 unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1160 bbs, loop->num_nodes, loop);
1161 gcc_assert (nbbs == loop->num_nodes);
1165 /* Free all memory used by the _loop_vec_info, as well as all the
1166 stmt_vec_info structs of all the stmts in the loop. */
1168 _loop_vec_info::~_loop_vec_info ()
1170 int nbbs;
1171 gimple_stmt_iterator si;
1172 int j;
1174 nbbs = loop->num_nodes;
1175 for (j = 0; j < nbbs; j++)
1177 basic_block bb = bbs[j];
1178 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1179 free_stmt_vec_info (gsi_stmt (si));
1181 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1183 gimple *stmt = gsi_stmt (si);
1185 /* We may have broken canonical form by moving a constant
1186 into RHS1 of a commutative op. Fix such occurrences. */
1187 if (operands_swapped && is_gimple_assign (stmt))
1189 enum tree_code code = gimple_assign_rhs_code (stmt);
1191 if ((code == PLUS_EXPR
1192 || code == POINTER_PLUS_EXPR
1193 || code == MULT_EXPR)
1194 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1195 swap_ssa_operands (stmt,
1196 gimple_assign_rhs1_ptr (stmt),
1197 gimple_assign_rhs2_ptr (stmt));
1198 else if (code == COND_EXPR
1199 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
1201 tree cond_expr = gimple_assign_rhs1 (stmt);
1202 enum tree_code cond_code = TREE_CODE (cond_expr);
1204 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1206 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
1207 0));
1208 cond_code = invert_tree_comparison (cond_code,
1209 honor_nans);
1210 if (cond_code != ERROR_MARK)
1212 TREE_SET_CODE (cond_expr, cond_code);
1213 swap_ssa_operands (stmt,
1214 gimple_assign_rhs2_ptr (stmt),
1215 gimple_assign_rhs3_ptr (stmt));
1221 /* Free stmt_vec_info. */
1222 free_stmt_vec_info (stmt);
1223 gsi_next (&si);
1227 free (bbs);
1229 loop->aux = NULL;
1233 /* Calculate the cost of one scalar iteration of the loop. */
1234 static void
1235 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1237 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1238 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1239 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1240 int innerloop_iters, i;
1242 /* Count statements in scalar loop. Using this as scalar cost for a single
1243 iteration for now.
1245 TODO: Add outer loop support.
1247 TODO: Consider assigning different costs to different scalar
1248 statements. */
1250 /* FORNOW. */
1251 innerloop_iters = 1;
1252 if (loop->inner)
1253 innerloop_iters = 50; /* FIXME */
1255 for (i = 0; i < nbbs; i++)
1257 gimple_stmt_iterator si;
1258 basic_block bb = bbs[i];
1260 if (bb->loop_father == loop->inner)
1261 factor = innerloop_iters;
1262 else
1263 factor = 1;
1265 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1267 gimple *stmt = gsi_stmt (si);
1268 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1270 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1271 continue;
1273 /* Skip stmts that are not vectorized inside the loop. */
1274 if (stmt_info
1275 && !STMT_VINFO_RELEVANT_P (stmt_info)
1276 && (!STMT_VINFO_LIVE_P (stmt_info)
1277 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1278 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1279 continue;
1281 vect_cost_for_stmt kind;
1282 if (STMT_VINFO_DATA_REF (stmt_info))
1284 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1285 kind = scalar_load;
1286 else
1287 kind = scalar_store;
1289 else
1290 kind = scalar_stmt;
1292 scalar_single_iter_cost
1293 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1294 factor, kind, stmt_info, 0, vect_prologue);
1297 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1298 = scalar_single_iter_cost;
1302 /* Function vect_analyze_loop_form_1.
1304 Verify that certain CFG restrictions hold, including:
1305 - the loop has a pre-header
1306 - the loop has a single entry and exit
1307 - the loop exit condition is simple enough
1308 - the number of iterations can be analyzed, i.e, a countable loop. The
1309 niter could be analyzed under some assumptions. */
1311 bool
1312 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1313 tree *assumptions, tree *number_of_iterationsm1,
1314 tree *number_of_iterations, gcond **inner_loop_cond)
1316 if (dump_enabled_p ())
1317 dump_printf_loc (MSG_NOTE, vect_location,
1318 "=== vect_analyze_loop_form ===\n");
1320 /* Different restrictions apply when we are considering an inner-most loop,
1321 vs. an outer (nested) loop.
1322 (FORNOW. May want to relax some of these restrictions in the future). */
1324 if (!loop->inner)
1326 /* Inner-most loop. We currently require that the number of BBs is
1327 exactly 2 (the header and latch). Vectorizable inner-most loops
1328 look like this:
1330 (pre-header)
1332 header <--------+
1333 | | |
1334 | +--> latch --+
1336 (exit-bb) */
1338 if (loop->num_nodes != 2)
1340 if (dump_enabled_p ())
1341 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1342 "not vectorized: control flow in loop.\n");
1343 return false;
1346 if (empty_block_p (loop->header))
1348 if (dump_enabled_p ())
1349 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1350 "not vectorized: empty loop.\n");
1351 return false;
1354 else
1356 struct loop *innerloop = loop->inner;
1357 edge entryedge;
1359 /* Nested loop. We currently require that the loop is doubly-nested,
1360 contains a single inner loop, and the number of BBs is exactly 5.
1361 Vectorizable outer-loops look like this:
1363 (pre-header)
1365 header <---+
1367 inner-loop |
1369 tail ------+
1371 (exit-bb)
1373 The inner-loop has the properties expected of inner-most loops
1374 as described above. */
1376 if ((loop->inner)->inner || (loop->inner)->next)
1378 if (dump_enabled_p ())
1379 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1380 "not vectorized: multiple nested loops.\n");
1381 return false;
1384 if (loop->num_nodes != 5)
1386 if (dump_enabled_p ())
1387 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1388 "not vectorized: control flow in loop.\n");
1389 return false;
1392 entryedge = loop_preheader_edge (innerloop);
1393 if (entryedge->src != loop->header
1394 || !single_exit (innerloop)
1395 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1397 if (dump_enabled_p ())
1398 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1399 "not vectorized: unsupported outerloop form.\n");
1400 return false;
1403 /* Analyze the inner-loop. */
1404 tree inner_niterm1, inner_niter, inner_assumptions;
1405 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1406 &inner_assumptions, &inner_niterm1,
1407 &inner_niter, NULL)
1408 /* Don't support analyzing niter under assumptions for inner
1409 loop. */
1410 || !integer_onep (inner_assumptions))
1412 if (dump_enabled_p ())
1413 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1414 "not vectorized: Bad inner loop.\n");
1415 return false;
1418 if (!expr_invariant_in_loop_p (loop, inner_niter))
1420 if (dump_enabled_p ())
1421 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1422 "not vectorized: inner-loop count not"
1423 " invariant.\n");
1424 return false;
1427 if (dump_enabled_p ())
1428 dump_printf_loc (MSG_NOTE, vect_location,
1429 "Considering outer-loop vectorization.\n");
1432 if (!single_exit (loop)
1433 || EDGE_COUNT (loop->header->preds) != 2)
1435 if (dump_enabled_p ())
1437 if (!single_exit (loop))
1438 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1439 "not vectorized: multiple exits.\n");
1440 else if (EDGE_COUNT (loop->header->preds) != 2)
1441 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1442 "not vectorized: too many incoming edges.\n");
1444 return false;
1447 /* We assume that the loop exit condition is at the end of the loop. i.e,
1448 that the loop is represented as a do-while (with a proper if-guard
1449 before the loop if needed), where the loop header contains all the
1450 executable statements, and the latch is empty. */
1451 if (!empty_block_p (loop->latch)
1452 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1454 if (dump_enabled_p ())
1455 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1456 "not vectorized: latch block not empty.\n");
1457 return false;
1460 /* Make sure the exit is not abnormal. */
1461 edge e = single_exit (loop);
1462 if (e->flags & EDGE_ABNORMAL)
1464 if (dump_enabled_p ())
1465 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1466 "not vectorized: abnormal loop exit edge.\n");
1467 return false;
1470 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1471 number_of_iterationsm1);
1472 if (!*loop_cond)
1474 if (dump_enabled_p ())
1475 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1476 "not vectorized: complicated exit condition.\n");
1477 return false;
1480 if (integer_zerop (*assumptions)
1481 || !*number_of_iterations
1482 || chrec_contains_undetermined (*number_of_iterations))
1484 if (dump_enabled_p ())
1485 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1486 "not vectorized: number of iterations cannot be "
1487 "computed.\n");
1488 return false;
1491 if (integer_zerop (*number_of_iterations))
1493 if (dump_enabled_p ())
1494 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1495 "not vectorized: number of iterations = 0.\n");
1496 return false;
1499 return true;
1502 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1504 loop_vec_info
1505 vect_analyze_loop_form (struct loop *loop)
1507 tree assumptions, number_of_iterations, number_of_iterationsm1;
1508 gcond *loop_cond, *inner_loop_cond = NULL;
1510 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1511 &assumptions, &number_of_iterationsm1,
1512 &number_of_iterations, &inner_loop_cond))
1513 return NULL;
1515 loop_vec_info loop_vinfo = new _loop_vec_info (loop);
1516 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1517 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1518 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1519 if (!integer_onep (assumptions))
1521 /* We consider to vectorize this loop by versioning it under
1522 some assumptions. In order to do this, we need to clear
1523 existing information computed by scev and niter analyzer. */
1524 scev_reset_htab ();
1525 free_numbers_of_iterations_estimates (loop);
1526 /* Also set flag for this loop so that following scev and niter
1527 analysis are done under the assumptions. */
1528 loop_constraint_set (loop, LOOP_C_FINITE);
1529 /* Also record the assumptions for versioning. */
1530 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1533 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1535 if (dump_enabled_p ())
1537 dump_printf_loc (MSG_NOTE, vect_location,
1538 "Symbolic number of iterations is ");
1539 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1540 dump_printf (MSG_NOTE, "\n");
1544 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1545 if (inner_loop_cond)
1546 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1547 = loop_exit_ctrl_vec_info_type;
1549 gcc_assert (!loop->aux);
1550 loop->aux = loop_vinfo;
1551 return loop_vinfo;
1556 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1557 statements update the vectorization factor. */
1559 static void
1560 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1562 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1563 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1564 int nbbs = loop->num_nodes;
1565 unsigned int vectorization_factor;
1566 int i;
1568 if (dump_enabled_p ())
1569 dump_printf_loc (MSG_NOTE, vect_location,
1570 "=== vect_update_vf_for_slp ===\n");
1572 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1573 gcc_assert (vectorization_factor != 0);
1575 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1576 vectorization factor of the loop is the unrolling factor required by
1577 the SLP instances. If that unrolling factor is 1, we say, that we
1578 perform pure SLP on loop - cross iteration parallelism is not
1579 exploited. */
1580 bool only_slp_in_loop = true;
1581 for (i = 0; i < nbbs; i++)
1583 basic_block bb = bbs[i];
1584 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1585 gsi_next (&si))
1587 gimple *stmt = gsi_stmt (si);
1588 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1589 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1590 && STMT_VINFO_RELATED_STMT (stmt_info))
1592 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1593 stmt_info = vinfo_for_stmt (stmt);
1595 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1596 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1597 && !PURE_SLP_STMT (stmt_info))
1598 /* STMT needs both SLP and loop-based vectorization. */
1599 only_slp_in_loop = false;
1603 if (only_slp_in_loop)
1605 dump_printf_loc (MSG_NOTE, vect_location,
1606 "Loop contains only SLP stmts\n");
1607 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1609 else
1611 dump_printf_loc (MSG_NOTE, vect_location,
1612 "Loop contains SLP and non-SLP stmts\n");
1613 vectorization_factor
1614 = least_common_multiple (vectorization_factor,
1615 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1618 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1619 if (dump_enabled_p ())
1620 dump_printf_loc (MSG_NOTE, vect_location,
1621 "Updating vectorization factor to %d\n",
1622 vectorization_factor);
1625 /* Function vect_analyze_loop_operations.
1627 Scan the loop stmts and make sure they are all vectorizable. */
1629 static bool
1630 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1632 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1633 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1634 int nbbs = loop->num_nodes;
1635 int i;
1636 stmt_vec_info stmt_info;
1637 bool need_to_vectorize = false;
1638 bool ok;
1640 if (dump_enabled_p ())
1641 dump_printf_loc (MSG_NOTE, vect_location,
1642 "=== vect_analyze_loop_operations ===\n");
1644 for (i = 0; i < nbbs; i++)
1646 basic_block bb = bbs[i];
1648 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1649 gsi_next (&si))
1651 gphi *phi = si.phi ();
1652 ok = true;
1654 stmt_info = vinfo_for_stmt (phi);
1655 if (dump_enabled_p ())
1657 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1658 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1660 if (virtual_operand_p (gimple_phi_result (phi)))
1661 continue;
1663 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1664 (i.e., a phi in the tail of the outer-loop). */
1665 if (! is_loop_header_bb_p (bb))
1667 /* FORNOW: we currently don't support the case that these phis
1668 are not used in the outerloop (unless it is double reduction,
1669 i.e., this phi is vect_reduction_def), cause this case
1670 requires to actually do something here. */
1671 if (STMT_VINFO_LIVE_P (stmt_info)
1672 && STMT_VINFO_DEF_TYPE (stmt_info)
1673 != vect_double_reduction_def)
1675 if (dump_enabled_p ())
1676 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1677 "Unsupported loop-closed phi in "
1678 "outer-loop.\n");
1679 return false;
1682 /* If PHI is used in the outer loop, we check that its operand
1683 is defined in the inner loop. */
1684 if (STMT_VINFO_RELEVANT_P (stmt_info))
1686 tree phi_op;
1687 gimple *op_def_stmt;
1689 if (gimple_phi_num_args (phi) != 1)
1690 return false;
1692 phi_op = PHI_ARG_DEF (phi, 0);
1693 if (TREE_CODE (phi_op) != SSA_NAME)
1694 return false;
1696 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1697 if (gimple_nop_p (op_def_stmt)
1698 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1699 || !vinfo_for_stmt (op_def_stmt))
1700 return false;
1702 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1703 != vect_used_in_outer
1704 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1705 != vect_used_in_outer_by_reduction)
1706 return false;
1709 continue;
1712 gcc_assert (stmt_info);
1714 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1715 || STMT_VINFO_LIVE_P (stmt_info))
1716 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1718 /* A scalar-dependence cycle that we don't support. */
1719 if (dump_enabled_p ())
1720 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1721 "not vectorized: scalar dependence cycle.\n");
1722 return false;
1725 if (STMT_VINFO_RELEVANT_P (stmt_info))
1727 need_to_vectorize = true;
1728 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
1729 && ! PURE_SLP_STMT (stmt_info))
1730 ok = vectorizable_induction (phi, NULL, NULL, NULL);
1731 else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1732 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
1733 && ! PURE_SLP_STMT (stmt_info))
1734 ok = vectorizable_reduction (phi, NULL, NULL, NULL, NULL);
1737 if (ok && STMT_VINFO_LIVE_P (stmt_info))
1738 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL);
1740 if (!ok)
1742 if (dump_enabled_p ())
1744 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1745 "not vectorized: relevant phi not "
1746 "supported: ");
1747 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1749 return false;
1753 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1754 gsi_next (&si))
1756 gimple *stmt = gsi_stmt (si);
1757 if (!gimple_clobber_p (stmt)
1758 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL, NULL))
1759 return false;
1761 } /* bbs */
1763 /* All operations in the loop are either irrelevant (deal with loop
1764 control, or dead), or only used outside the loop and can be moved
1765 out of the loop (e.g. invariants, inductions). The loop can be
1766 optimized away by scalar optimizations. We're better off not
1767 touching this loop. */
1768 if (!need_to_vectorize)
1770 if (dump_enabled_p ())
1771 dump_printf_loc (MSG_NOTE, vect_location,
1772 "All the computation can be taken out of the loop.\n");
1773 if (dump_enabled_p ())
1774 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1775 "not vectorized: redundant loop. no profit to "
1776 "vectorize.\n");
1777 return false;
1780 return true;
1784 /* Function vect_analyze_loop_2.
1786 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1787 for it. The different analyses will record information in the
1788 loop_vec_info struct. */
1789 static bool
1790 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1792 bool ok;
1793 int max_vf = MAX_VECTORIZATION_FACTOR;
1794 int min_vf = 2;
1795 unsigned int n_stmts = 0;
1797 /* The first group of checks is independent of the vector size. */
1798 fatal = true;
1800 /* Find all data references in the loop (which correspond to vdefs/vuses)
1801 and analyze their evolution in the loop. */
1803 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1805 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1806 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1808 if (dump_enabled_p ())
1809 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1810 "not vectorized: loop nest containing two "
1811 "or more consecutive inner loops cannot be "
1812 "vectorized\n");
1813 return false;
1816 for (unsigned i = 0; i < loop->num_nodes; i++)
1817 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1818 !gsi_end_p (gsi); gsi_next (&gsi))
1820 gimple *stmt = gsi_stmt (gsi);
1821 if (is_gimple_debug (stmt))
1822 continue;
1823 ++n_stmts;
1824 if (!find_data_references_in_stmt (loop, stmt,
1825 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1827 if (is_gimple_call (stmt) && loop->safelen)
1829 tree fndecl = gimple_call_fndecl (stmt), op;
1830 if (fndecl != NULL_TREE)
1832 cgraph_node *node = cgraph_node::get (fndecl);
1833 if (node != NULL && node->simd_clones != NULL)
1835 unsigned int j, n = gimple_call_num_args (stmt);
1836 for (j = 0; j < n; j++)
1838 op = gimple_call_arg (stmt, j);
1839 if (DECL_P (op)
1840 || (REFERENCE_CLASS_P (op)
1841 && get_base_address (op)))
1842 break;
1844 op = gimple_call_lhs (stmt);
1845 /* Ignore #pragma omp declare simd functions
1846 if they don't have data references in the
1847 call stmt itself. */
1848 if (j == n
1849 && !(op
1850 && (DECL_P (op)
1851 || (REFERENCE_CLASS_P (op)
1852 && get_base_address (op)))))
1853 continue;
1857 if (dump_enabled_p ())
1858 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1859 "not vectorized: loop contains function "
1860 "calls or data references that cannot "
1861 "be analyzed\n");
1862 return false;
1866 /* Analyze the data references and also adjust the minimal
1867 vectorization factor according to the loads and stores. */
1869 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1870 if (!ok)
1872 if (dump_enabled_p ())
1873 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1874 "bad data references.\n");
1875 return false;
1878 /* Classify all cross-iteration scalar data-flow cycles.
1879 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1880 vect_analyze_scalar_cycles (loop_vinfo);
1882 vect_pattern_recog (loop_vinfo);
1884 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1886 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1887 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1889 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1890 if (!ok)
1892 if (dump_enabled_p ())
1893 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1894 "bad data access.\n");
1895 return false;
1898 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1900 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1901 if (!ok)
1903 if (dump_enabled_p ())
1904 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1905 "unexpected pattern.\n");
1906 return false;
1909 /* While the rest of the analysis below depends on it in some way. */
1910 fatal = false;
1912 /* Analyze data dependences between the data-refs in the loop
1913 and adjust the maximum vectorization factor according to
1914 the dependences.
1915 FORNOW: fail at the first data dependence that we encounter. */
1917 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1918 if (!ok
1919 || max_vf < min_vf)
1921 if (dump_enabled_p ())
1922 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1923 "bad data dependence.\n");
1924 return false;
1926 LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) = max_vf;
1928 ok = vect_determine_vectorization_factor (loop_vinfo);
1929 if (!ok)
1931 if (dump_enabled_p ())
1932 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1933 "can't determine vectorization factor.\n");
1934 return false;
1936 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1938 if (dump_enabled_p ())
1939 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1940 "bad data dependence.\n");
1941 return false;
1944 /* Compute the scalar iteration cost. */
1945 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1947 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1948 HOST_WIDE_INT estimated_niter;
1949 unsigned th;
1950 int min_scalar_loop_bound;
1952 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1953 ok = vect_analyze_slp (loop_vinfo, n_stmts);
1954 if (!ok)
1955 return false;
1957 /* If there are any SLP instances mark them as pure_slp. */
1958 bool slp = vect_make_slp_decision (loop_vinfo);
1959 if (slp)
1961 /* Find stmts that need to be both vectorized and SLPed. */
1962 vect_detect_hybrid_slp (loop_vinfo);
1964 /* Update the vectorization factor based on the SLP decision. */
1965 vect_update_vf_for_slp (loop_vinfo);
1968 /* This is the point where we can re-start analysis with SLP forced off. */
1969 start_over:
1971 /* Now the vectorization factor is final. */
1972 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1973 gcc_assert (vectorization_factor != 0);
1975 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1976 dump_printf_loc (MSG_NOTE, vect_location,
1977 "vectorization_factor = %d, niters = "
1978 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1979 LOOP_VINFO_INT_NITERS (loop_vinfo));
1981 HOST_WIDE_INT max_niter
1982 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
1983 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1984 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1985 || (max_niter != -1
1986 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1988 if (dump_enabled_p ())
1989 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1990 "not vectorized: iteration count smaller than "
1991 "vectorization factor.\n");
1992 return false;
1995 /* Analyze the alignment of the data-refs in the loop.
1996 Fail if a data reference is found that cannot be vectorized. */
1998 ok = vect_analyze_data_refs_alignment (loop_vinfo);
1999 if (!ok)
2001 if (dump_enabled_p ())
2002 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2003 "bad data alignment.\n");
2004 return false;
2007 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2008 It is important to call pruning after vect_analyze_data_ref_accesses,
2009 since we use grouping information gathered by interleaving analysis. */
2010 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2011 if (!ok)
2012 return false;
2014 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2015 vectorization. */
2016 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2018 /* This pass will decide on using loop versioning and/or loop peeling in
2019 order to enhance the alignment of data references in the loop. */
2020 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2021 if (!ok)
2023 if (dump_enabled_p ())
2024 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2025 "bad data alignment.\n");
2026 return false;
2030 if (slp)
2032 /* Analyze operations in the SLP instances. Note this may
2033 remove unsupported SLP instances which makes the above
2034 SLP kind detection invalid. */
2035 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2036 vect_slp_analyze_operations (loop_vinfo);
2037 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2038 goto again;
2041 /* Scan all the remaining operations in the loop that are not subject
2042 to SLP and make sure they are vectorizable. */
2043 ok = vect_analyze_loop_operations (loop_vinfo);
2044 if (!ok)
2046 if (dump_enabled_p ())
2047 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2048 "bad operation or unsupported loop bound.\n");
2049 return false;
2052 /* If epilog loop is required because of data accesses with gaps,
2053 one additional iteration needs to be peeled. Check if there is
2054 enough iterations for vectorization. */
2055 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2056 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2058 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2059 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2061 if (wi::to_widest (scalar_niters) < vf)
2063 if (dump_enabled_p ())
2064 dump_printf_loc (MSG_NOTE, vect_location,
2065 "loop has no enough iterations to support"
2066 " peeling for gaps.\n");
2067 return false;
2071 /* Analyze cost. Decide if worth while to vectorize. */
2072 int min_profitable_estimate, min_profitable_iters;
2073 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2074 &min_profitable_estimate);
2076 if (min_profitable_iters < 0)
2078 if (dump_enabled_p ())
2079 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2080 "not vectorized: vectorization not profitable.\n");
2081 if (dump_enabled_p ())
2082 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2083 "not vectorized: vector version will never be "
2084 "profitable.\n");
2085 goto again;
2088 min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2089 * vectorization_factor);
2091 /* Use the cost model only if it is more conservative than user specified
2092 threshold. */
2093 th = (unsigned) MAX (min_scalar_loop_bound, min_profitable_iters);
2095 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2097 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2098 && LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
2100 if (dump_enabled_p ())
2101 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2102 "not vectorized: vectorization not profitable.\n");
2103 if (dump_enabled_p ())
2104 dump_printf_loc (MSG_NOTE, vect_location,
2105 "not vectorized: iteration count smaller than user "
2106 "specified loop bound parameter or minimum profitable "
2107 "iterations (whichever is more conservative).\n");
2108 goto again;
2111 estimated_niter
2112 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2113 if (estimated_niter == -1)
2114 estimated_niter = max_niter;
2115 if (estimated_niter != -1
2116 && ((unsigned HOST_WIDE_INT) estimated_niter
2117 < MAX (th, (unsigned) min_profitable_estimate)))
2119 if (dump_enabled_p ())
2120 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2121 "not vectorized: estimated iteration count too "
2122 "small.\n");
2123 if (dump_enabled_p ())
2124 dump_printf_loc (MSG_NOTE, vect_location,
2125 "not vectorized: estimated iteration count smaller "
2126 "than specified loop bound parameter or minimum "
2127 "profitable iterations (whichever is more "
2128 "conservative).\n");
2129 goto again;
2132 /* Decide whether we need to create an epilogue loop to handle
2133 remaining scalar iterations. */
2134 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo)
2135 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2136 * LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2138 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2139 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2141 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2142 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2143 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2144 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2146 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2147 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2148 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2149 /* In case of versioning, check if the maximum number of
2150 iterations is greater than th. If they are identical,
2151 the epilogue is unnecessary. */
2152 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2153 || (unsigned HOST_WIDE_INT) max_niter > th)))
2154 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2156 /* If an epilogue loop is required make sure we can create one. */
2157 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2158 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2160 if (dump_enabled_p ())
2161 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2162 if (!vect_can_advance_ivs_p (loop_vinfo)
2163 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2164 single_exit (LOOP_VINFO_LOOP
2165 (loop_vinfo))))
2167 if (dump_enabled_p ())
2168 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2169 "not vectorized: can't create required "
2170 "epilog loop\n");
2171 goto again;
2175 /* During peeling, we need to check if number of loop iterations is
2176 enough for both peeled prolog loop and vector loop. This check
2177 can be merged along with threshold check of loop versioning, so
2178 increase threshold for this case if necessary. */
2179 if (LOOP_REQUIRES_VERSIONING (loop_vinfo)
2180 && (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2181 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
2183 unsigned niters_th;
2185 /* Niters for peeled prolog loop. */
2186 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2188 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2189 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
2191 niters_th = TYPE_VECTOR_SUBPARTS (vectype) - 1;
2193 else
2194 niters_th = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2196 /* Niters for at least one iteration of vectorized loop. */
2197 niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2198 /* One additional iteration because of peeling for gap. */
2199 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2200 niters_th++;
2201 if (LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) < niters_th)
2202 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = niters_th;
2205 gcc_assert (vectorization_factor
2206 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2208 /* Ok to vectorize! */
2209 return true;
2211 again:
2212 /* Try again with SLP forced off but if we didn't do any SLP there is
2213 no point in re-trying. */
2214 if (!slp)
2215 return false;
2217 /* If there are reduction chains re-trying will fail anyway. */
2218 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2219 return false;
2221 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2222 via interleaving or lane instructions. */
2223 slp_instance instance;
2224 slp_tree node;
2225 unsigned i, j;
2226 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2228 stmt_vec_info vinfo;
2229 vinfo = vinfo_for_stmt
2230 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2231 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2232 continue;
2233 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2234 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2235 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2236 if (! vect_store_lanes_supported (vectype, size)
2237 && ! vect_grouped_store_supported (vectype, size))
2238 return false;
2239 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2241 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2242 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2243 bool single_element_p = !STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo);
2244 size = STMT_VINFO_GROUP_SIZE (vinfo);
2245 vectype = STMT_VINFO_VECTYPE (vinfo);
2246 if (! vect_load_lanes_supported (vectype, size)
2247 && ! vect_grouped_load_supported (vectype, single_element_p,
2248 size))
2249 return false;
2253 if (dump_enabled_p ())
2254 dump_printf_loc (MSG_NOTE, vect_location,
2255 "re-trying with SLP disabled\n");
2257 /* Roll back state appropriately. No SLP this time. */
2258 slp = false;
2259 /* Restore vectorization factor as it were without SLP. */
2260 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2261 /* Free the SLP instances. */
2262 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2263 vect_free_slp_instance (instance);
2264 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2265 /* Reset SLP type to loop_vect on all stmts. */
2266 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2268 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2269 for (gimple_stmt_iterator si = gsi_start_phis (bb);
2270 !gsi_end_p (si); gsi_next (&si))
2272 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2273 STMT_SLP_TYPE (stmt_info) = loop_vect;
2275 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2276 !gsi_end_p (si); gsi_next (&si))
2278 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2279 STMT_SLP_TYPE (stmt_info) = loop_vect;
2280 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2282 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2283 STMT_SLP_TYPE (stmt_info) = loop_vect;
2284 for (gimple_stmt_iterator pi
2285 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2286 !gsi_end_p (pi); gsi_next (&pi))
2288 gimple *pstmt = gsi_stmt (pi);
2289 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2294 /* Free optimized alias test DDRS. */
2295 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2296 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
2297 /* Reset target cost data. */
2298 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2299 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2300 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2301 /* Reset assorted flags. */
2302 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2303 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2304 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2306 goto start_over;
2309 /* Function vect_analyze_loop.
2311 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2312 for it. The different analyses will record information in the
2313 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2314 be vectorized. */
2315 loop_vec_info
2316 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo)
2318 loop_vec_info loop_vinfo;
2319 unsigned int vector_sizes;
2321 /* Autodetect first vector size we try. */
2322 current_vector_size = 0;
2323 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2325 if (dump_enabled_p ())
2326 dump_printf_loc (MSG_NOTE, vect_location,
2327 "===== analyze_loop_nest =====\n");
2329 if (loop_outer (loop)
2330 && loop_vec_info_for_loop (loop_outer (loop))
2331 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2333 if (dump_enabled_p ())
2334 dump_printf_loc (MSG_NOTE, vect_location,
2335 "outer-loop already vectorized.\n");
2336 return NULL;
2339 while (1)
2341 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2342 loop_vinfo = vect_analyze_loop_form (loop);
2343 if (!loop_vinfo)
2345 if (dump_enabled_p ())
2346 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2347 "bad loop form.\n");
2348 return NULL;
2351 bool fatal = false;
2353 if (orig_loop_vinfo)
2354 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2356 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2358 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2360 return loop_vinfo;
2363 delete loop_vinfo;
2365 vector_sizes &= ~current_vector_size;
2366 if (fatal
2367 || vector_sizes == 0
2368 || current_vector_size == 0)
2369 return NULL;
2371 /* Try the next biggest vector size. */
2372 current_vector_size = 1 << floor_log2 (vector_sizes);
2373 if (dump_enabled_p ())
2374 dump_printf_loc (MSG_NOTE, vect_location,
2375 "***** Re-trying analysis with "
2376 "vector size %d\n", current_vector_size);
2381 /* Function reduction_fn_for_scalar_code
2383 Input:
2384 CODE - tree_code of a reduction operations.
2386 Output:
2387 REDUC_FN - the corresponding internal function to be used to reduce the
2388 vector of partial results into a single scalar result, or IFN_LAST
2389 if the operation is a supported reduction operation, but does not have
2390 such an internal function.
2392 Return FALSE if CODE currently cannot be vectorized as reduction. */
2394 static bool
2395 reduction_fn_for_scalar_code (enum tree_code code, internal_fn *reduc_fn)
2397 switch (code)
2399 case MAX_EXPR:
2400 *reduc_fn = IFN_REDUC_MAX;
2401 return true;
2403 case MIN_EXPR:
2404 *reduc_fn = IFN_REDUC_MIN;
2405 return true;
2407 case PLUS_EXPR:
2408 *reduc_fn = IFN_REDUC_PLUS;
2409 return true;
2411 case MULT_EXPR:
2412 case MINUS_EXPR:
2413 case BIT_IOR_EXPR:
2414 case BIT_XOR_EXPR:
2415 case BIT_AND_EXPR:
2416 *reduc_fn = IFN_LAST;
2417 return true;
2419 default:
2420 return false;
2425 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2426 STMT is printed with a message MSG. */
2428 static void
2429 report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
2431 dump_printf_loc (msg_type, vect_location, "%s", msg);
2432 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2436 /* Detect SLP reduction of the form:
2438 #a1 = phi <a5, a0>
2439 a2 = operation (a1)
2440 a3 = operation (a2)
2441 a4 = operation (a3)
2442 a5 = operation (a4)
2444 #a = phi <a5>
2446 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2447 FIRST_STMT is the first reduction stmt in the chain
2448 (a2 = operation (a1)).
2450 Return TRUE if a reduction chain was detected. */
2452 static bool
2453 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2454 gimple *first_stmt)
2456 struct loop *loop = (gimple_bb (phi))->loop_father;
2457 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2458 enum tree_code code;
2459 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2460 stmt_vec_info use_stmt_info, current_stmt_info;
2461 tree lhs;
2462 imm_use_iterator imm_iter;
2463 use_operand_p use_p;
2464 int nloop_uses, size = 0, n_out_of_loop_uses;
2465 bool found = false;
2467 if (loop != vect_loop)
2468 return false;
2470 lhs = PHI_RESULT (phi);
2471 code = gimple_assign_rhs_code (first_stmt);
2472 while (1)
2474 nloop_uses = 0;
2475 n_out_of_loop_uses = 0;
2476 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2478 gimple *use_stmt = USE_STMT (use_p);
2479 if (is_gimple_debug (use_stmt))
2480 continue;
2482 /* Check if we got back to the reduction phi. */
2483 if (use_stmt == phi)
2485 loop_use_stmt = use_stmt;
2486 found = true;
2487 break;
2490 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2492 loop_use_stmt = use_stmt;
2493 nloop_uses++;
2495 else
2496 n_out_of_loop_uses++;
2498 /* There are can be either a single use in the loop or two uses in
2499 phi nodes. */
2500 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2501 return false;
2504 if (found)
2505 break;
2507 /* We reached a statement with no loop uses. */
2508 if (nloop_uses == 0)
2509 return false;
2511 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2512 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2513 return false;
2515 if (!is_gimple_assign (loop_use_stmt)
2516 || code != gimple_assign_rhs_code (loop_use_stmt)
2517 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2518 return false;
2520 /* Insert USE_STMT into reduction chain. */
2521 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2522 if (current_stmt)
2524 current_stmt_info = vinfo_for_stmt (current_stmt);
2525 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2526 GROUP_FIRST_ELEMENT (use_stmt_info)
2527 = GROUP_FIRST_ELEMENT (current_stmt_info);
2529 else
2530 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2532 lhs = gimple_assign_lhs (loop_use_stmt);
2533 current_stmt = loop_use_stmt;
2534 size++;
2537 if (!found || loop_use_stmt != phi || size < 2)
2538 return false;
2540 /* Swap the operands, if needed, to make the reduction operand be the second
2541 operand. */
2542 lhs = PHI_RESULT (phi);
2543 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2544 while (next_stmt)
2546 if (gimple_assign_rhs2 (next_stmt) == lhs)
2548 tree op = gimple_assign_rhs1 (next_stmt);
2549 gimple *def_stmt = NULL;
2551 if (TREE_CODE (op) == SSA_NAME)
2552 def_stmt = SSA_NAME_DEF_STMT (op);
2554 /* Check that the other def is either defined in the loop
2555 ("vect_internal_def"), or it's an induction (defined by a
2556 loop-header phi-node). */
2557 if (def_stmt
2558 && gimple_bb (def_stmt)
2559 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2560 && (is_gimple_assign (def_stmt)
2561 || is_gimple_call (def_stmt)
2562 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2563 == vect_induction_def
2564 || (gimple_code (def_stmt) == GIMPLE_PHI
2565 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2566 == vect_internal_def
2567 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2569 lhs = gimple_assign_lhs (next_stmt);
2570 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2571 continue;
2574 return false;
2576 else
2578 tree op = gimple_assign_rhs2 (next_stmt);
2579 gimple *def_stmt = NULL;
2581 if (TREE_CODE (op) == SSA_NAME)
2582 def_stmt = SSA_NAME_DEF_STMT (op);
2584 /* Check that the other def is either defined in the loop
2585 ("vect_internal_def"), or it's an induction (defined by a
2586 loop-header phi-node). */
2587 if (def_stmt
2588 && gimple_bb (def_stmt)
2589 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2590 && (is_gimple_assign (def_stmt)
2591 || is_gimple_call (def_stmt)
2592 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2593 == vect_induction_def
2594 || (gimple_code (def_stmt) == GIMPLE_PHI
2595 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2596 == vect_internal_def
2597 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2599 if (dump_enabled_p ())
2601 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2602 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2605 swap_ssa_operands (next_stmt,
2606 gimple_assign_rhs1_ptr (next_stmt),
2607 gimple_assign_rhs2_ptr (next_stmt));
2608 update_stmt (next_stmt);
2610 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2611 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2613 else
2614 return false;
2617 lhs = gimple_assign_lhs (next_stmt);
2618 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2621 /* Save the chain for further analysis in SLP detection. */
2622 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2623 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2624 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2626 return true;
2630 /* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
2631 reduction operation CODE has a handled computation expression. */
2633 bool
2634 check_reduction_path (location_t loc, loop_p loop, gphi *phi, tree loop_arg,
2635 enum tree_code code)
2637 auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
2638 auto_bitmap visited;
2639 tree lookfor = PHI_RESULT (phi);
2640 ssa_op_iter curri;
2641 use_operand_p curr = op_iter_init_phiuse (&curri, phi, SSA_OP_USE);
2642 while (USE_FROM_PTR (curr) != loop_arg)
2643 curr = op_iter_next_use (&curri);
2644 curri.i = curri.numops;
2647 path.safe_push (std::make_pair (curri, curr));
2648 tree use = USE_FROM_PTR (curr);
2649 if (use == lookfor)
2650 break;
2651 gimple *def = SSA_NAME_DEF_STMT (use);
2652 if (gimple_nop_p (def)
2653 || ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
2655 pop:
2658 std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
2659 curri = x.first;
2660 curr = x.second;
2662 curr = op_iter_next_use (&curri);
2663 /* Skip already visited or non-SSA operands (from iterating
2664 over PHI args). */
2665 while (curr != NULL_USE_OPERAND_P
2666 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
2667 || ! bitmap_set_bit (visited,
2668 SSA_NAME_VERSION
2669 (USE_FROM_PTR (curr)))));
2671 while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
2672 if (curr == NULL_USE_OPERAND_P)
2673 break;
2675 else
2677 if (gimple_code (def) == GIMPLE_PHI)
2678 curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
2679 else
2680 curr = op_iter_init_use (&curri, def, SSA_OP_USE);
2681 while (curr != NULL_USE_OPERAND_P
2682 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
2683 || ! bitmap_set_bit (visited,
2684 SSA_NAME_VERSION
2685 (USE_FROM_PTR (curr)))))
2686 curr = op_iter_next_use (&curri);
2687 if (curr == NULL_USE_OPERAND_P)
2688 goto pop;
2691 while (1);
2692 if (dump_file && (dump_flags & TDF_DETAILS))
2694 dump_printf_loc (MSG_NOTE, loc, "reduction path: ");
2695 unsigned i;
2696 std::pair<ssa_op_iter, use_operand_p> *x;
2697 FOR_EACH_VEC_ELT (path, i, x)
2699 dump_generic_expr (MSG_NOTE, TDF_SLIM, USE_FROM_PTR (x->second));
2700 dump_printf (MSG_NOTE, " ");
2702 dump_printf (MSG_NOTE, "\n");
2705 /* Check whether the reduction path detected is valid. */
2706 bool fail = path.length () == 0;
2707 bool neg = false;
2708 for (unsigned i = 1; i < path.length (); ++i)
2710 gimple *use_stmt = USE_STMT (path[i].second);
2711 tree op = USE_FROM_PTR (path[i].second);
2712 if (! has_single_use (op)
2713 || ! is_gimple_assign (use_stmt))
2715 fail = true;
2716 break;
2718 if (gimple_assign_rhs_code (use_stmt) != code)
2720 if (code == PLUS_EXPR
2721 && gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2723 /* Track whether we negate the reduction value each iteration. */
2724 if (gimple_assign_rhs2 (use_stmt) == op)
2725 neg = ! neg;
2727 else
2729 fail = true;
2730 break;
2734 return ! fail && ! neg;
2738 /* Function vect_is_simple_reduction
2740 (1) Detect a cross-iteration def-use cycle that represents a simple
2741 reduction computation. We look for the following pattern:
2743 loop_header:
2744 a1 = phi < a0, a2 >
2745 a3 = ...
2746 a2 = operation (a3, a1)
2750 a3 = ...
2751 loop_header:
2752 a1 = phi < a0, a2 >
2753 a2 = operation (a3, a1)
2755 such that:
2756 1. operation is commutative and associative and it is safe to
2757 change the order of the computation
2758 2. no uses for a2 in the loop (a2 is used out of the loop)
2759 3. no uses of a1 in the loop besides the reduction operation
2760 4. no uses of a1 outside the loop.
2762 Conditions 1,4 are tested here.
2763 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2765 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2766 nested cycles.
2768 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2769 reductions:
2771 a1 = phi < a0, a2 >
2772 inner loop (def of a3)
2773 a2 = phi < a3 >
2775 (4) Detect condition expressions, ie:
2776 for (int i = 0; i < N; i++)
2777 if (a[i] < val)
2778 ret_val = a[i];
2782 static gimple *
2783 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2784 bool *double_reduc,
2785 bool need_wrapping_integral_overflow,
2786 enum vect_reduction_type *v_reduc_type)
2788 struct loop *loop = (gimple_bb (phi))->loop_father;
2789 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2790 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2791 enum tree_code orig_code, code;
2792 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2793 tree type;
2794 int nloop_uses;
2795 tree name;
2796 imm_use_iterator imm_iter;
2797 use_operand_p use_p;
2798 bool phi_def;
2800 *double_reduc = false;
2801 *v_reduc_type = TREE_CODE_REDUCTION;
2803 tree phi_name = PHI_RESULT (phi);
2804 /* ??? If there are no uses of the PHI result the inner loop reduction
2805 won't be detected as possibly double-reduction by vectorizable_reduction
2806 because that tries to walk the PHI arg from the preheader edge which
2807 can be constant. See PR60382. */
2808 if (has_zero_uses (phi_name))
2809 return NULL;
2810 nloop_uses = 0;
2811 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
2813 gimple *use_stmt = USE_STMT (use_p);
2814 if (is_gimple_debug (use_stmt))
2815 continue;
2817 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2819 if (dump_enabled_p ())
2820 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2821 "intermediate value used outside loop.\n");
2823 return NULL;
2826 nloop_uses++;
2827 if (nloop_uses > 1)
2829 if (dump_enabled_p ())
2830 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2831 "reduction value used in loop.\n");
2832 return NULL;
2835 phi_use_stmt = use_stmt;
2838 edge latch_e = loop_latch_edge (loop);
2839 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2840 if (TREE_CODE (loop_arg) != SSA_NAME)
2842 if (dump_enabled_p ())
2844 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2845 "reduction: not ssa_name: ");
2846 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2847 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2849 return NULL;
2852 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2853 if (is_gimple_assign (def_stmt))
2855 name = gimple_assign_lhs (def_stmt);
2856 phi_def = false;
2858 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2860 name = PHI_RESULT (def_stmt);
2861 phi_def = true;
2863 else
2865 if (dump_enabled_p ())
2867 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2868 "reduction: unhandled reduction operation: ");
2869 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def_stmt, 0);
2871 return NULL;
2874 if (! flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
2875 return NULL;
2877 nloop_uses = 0;
2878 auto_vec<gphi *, 3> lcphis;
2879 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2881 gimple *use_stmt = USE_STMT (use_p);
2882 if (is_gimple_debug (use_stmt))
2883 continue;
2884 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2885 nloop_uses++;
2886 else
2887 /* We can have more than one loop-closed PHI. */
2888 lcphis.safe_push (as_a <gphi *> (use_stmt));
2889 if (nloop_uses > 1)
2891 if (dump_enabled_p ())
2892 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2893 "reduction used in loop.\n");
2894 return NULL;
2898 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2899 defined in the inner loop. */
2900 if (phi_def)
2902 op1 = PHI_ARG_DEF (def_stmt, 0);
2904 if (gimple_phi_num_args (def_stmt) != 1
2905 || TREE_CODE (op1) != SSA_NAME)
2907 if (dump_enabled_p ())
2908 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2909 "unsupported phi node definition.\n");
2911 return NULL;
2914 def1 = SSA_NAME_DEF_STMT (op1);
2915 if (gimple_bb (def1)
2916 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2917 && loop->inner
2918 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2919 && is_gimple_assign (def1)
2920 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2922 if (dump_enabled_p ())
2923 report_vect_op (MSG_NOTE, def_stmt,
2924 "detected double reduction: ");
2926 *double_reduc = true;
2927 return def_stmt;
2930 return NULL;
2933 /* If we are vectorizing an inner reduction we are executing that
2934 in the original order only in case we are not dealing with a
2935 double reduction. */
2936 bool check_reduction = true;
2937 if (flow_loop_nested_p (vect_loop, loop))
2939 gphi *lcphi;
2940 unsigned i;
2941 check_reduction = false;
2942 FOR_EACH_VEC_ELT (lcphis, i, lcphi)
2943 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
2945 gimple *use_stmt = USE_STMT (use_p);
2946 if (is_gimple_debug (use_stmt))
2947 continue;
2948 if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
2949 check_reduction = true;
2953 bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
2954 code = orig_code = gimple_assign_rhs_code (def_stmt);
2956 /* We can handle "res -= x[i]", which is non-associative by
2957 simply rewriting this into "res += -x[i]". Avoid changing
2958 gimple instruction for the first simple tests and only do this
2959 if we're allowed to change code at all. */
2960 if (code == MINUS_EXPR && gimple_assign_rhs2 (def_stmt) != phi_name)
2961 code = PLUS_EXPR;
2963 if (code == COND_EXPR)
2965 if (! nested_in_vect_loop)
2966 *v_reduc_type = COND_REDUCTION;
2968 op3 = gimple_assign_rhs1 (def_stmt);
2969 if (COMPARISON_CLASS_P (op3))
2971 op4 = TREE_OPERAND (op3, 1);
2972 op3 = TREE_OPERAND (op3, 0);
2974 if (op3 == phi_name || op4 == phi_name)
2976 if (dump_enabled_p ())
2977 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2978 "reduction: condition depends on previous"
2979 " iteration: ");
2980 return NULL;
2983 op1 = gimple_assign_rhs2 (def_stmt);
2984 op2 = gimple_assign_rhs3 (def_stmt);
2986 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2988 if (dump_enabled_p ())
2989 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2990 "reduction: not commutative/associative: ");
2991 return NULL;
2993 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2995 op1 = gimple_assign_rhs1 (def_stmt);
2996 op2 = gimple_assign_rhs2 (def_stmt);
2998 else
3000 if (dump_enabled_p ())
3001 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3002 "reduction: not handled operation: ");
3003 return NULL;
3006 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
3008 if (dump_enabled_p ())
3009 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3010 "reduction: both uses not ssa_names: ");
3012 return NULL;
3015 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
3016 if ((TREE_CODE (op1) == SSA_NAME
3017 && !types_compatible_p (type,TREE_TYPE (op1)))
3018 || (TREE_CODE (op2) == SSA_NAME
3019 && !types_compatible_p (type, TREE_TYPE (op2)))
3020 || (op3 && TREE_CODE (op3) == SSA_NAME
3021 && !types_compatible_p (type, TREE_TYPE (op3)))
3022 || (op4 && TREE_CODE (op4) == SSA_NAME
3023 && !types_compatible_p (type, TREE_TYPE (op4))))
3025 if (dump_enabled_p ())
3027 dump_printf_loc (MSG_NOTE, vect_location,
3028 "reduction: multiple types: operation type: ");
3029 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
3030 dump_printf (MSG_NOTE, ", operands types: ");
3031 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3032 TREE_TYPE (op1));
3033 dump_printf (MSG_NOTE, ",");
3034 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3035 TREE_TYPE (op2));
3036 if (op3)
3038 dump_printf (MSG_NOTE, ",");
3039 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3040 TREE_TYPE (op3));
3043 if (op4)
3045 dump_printf (MSG_NOTE, ",");
3046 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3047 TREE_TYPE (op4));
3049 dump_printf (MSG_NOTE, "\n");
3052 return NULL;
3055 /* Check that it's ok to change the order of the computation.
3056 Generally, when vectorizing a reduction we change the order of the
3057 computation. This may change the behavior of the program in some
3058 cases, so we need to check that this is ok. One exception is when
3059 vectorizing an outer-loop: the inner-loop is executed sequentially,
3060 and therefore vectorizing reductions in the inner-loop during
3061 outer-loop vectorization is safe. */
3063 if (*v_reduc_type != COND_REDUCTION
3064 && check_reduction)
3066 /* CHECKME: check for !flag_finite_math_only too? */
3067 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
3069 /* Changing the order of operations changes the semantics. */
3070 if (dump_enabled_p ())
3071 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3072 "reduction: unsafe fp math optimization: ");
3073 return NULL;
3075 else if (INTEGRAL_TYPE_P (type))
3077 if (!operation_no_trapping_overflow (type, code))
3079 /* Changing the order of operations changes the semantics. */
3080 if (dump_enabled_p ())
3081 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3082 "reduction: unsafe int math optimization"
3083 " (overflow traps): ");
3084 return NULL;
3086 if (need_wrapping_integral_overflow
3087 && !TYPE_OVERFLOW_WRAPS (type)
3088 && operation_can_overflow (code))
3090 /* Changing the order of operations changes the semantics. */
3091 if (dump_enabled_p ())
3092 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3093 "reduction: unsafe int math optimization"
3094 " (overflow doesn't wrap): ");
3095 return NULL;
3098 else if (SAT_FIXED_POINT_TYPE_P (type))
3100 /* Changing the order of operations changes the semantics. */
3101 if (dump_enabled_p ())
3102 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3103 "reduction: unsafe fixed-point math optimization: ");
3104 return NULL;
3108 /* Reduction is safe. We're dealing with one of the following:
3109 1) integer arithmetic and no trapv
3110 2) floating point arithmetic, and special flags permit this optimization
3111 3) nested cycle (i.e., outer loop vectorization). */
3112 if (TREE_CODE (op1) == SSA_NAME)
3113 def1 = SSA_NAME_DEF_STMT (op1);
3115 if (TREE_CODE (op2) == SSA_NAME)
3116 def2 = SSA_NAME_DEF_STMT (op2);
3118 if (code != COND_EXPR
3119 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
3121 if (dump_enabled_p ())
3122 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3123 return NULL;
3126 /* Check that one def is the reduction def, defined by PHI,
3127 the other def is either defined in the loop ("vect_internal_def"),
3128 or it's an induction (defined by a loop-header phi-node). */
3130 if (def2 && def2 == phi
3131 && (code == COND_EXPR
3132 || !def1 || gimple_nop_p (def1)
3133 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
3134 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
3135 && (is_gimple_assign (def1)
3136 || is_gimple_call (def1)
3137 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3138 == vect_induction_def
3139 || (gimple_code (def1) == GIMPLE_PHI
3140 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3141 == vect_internal_def
3142 && !is_loop_header_bb_p (gimple_bb (def1)))))))
3144 if (dump_enabled_p ())
3145 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3146 return def_stmt;
3149 if (def1 && def1 == phi
3150 && (code == COND_EXPR
3151 || !def2 || gimple_nop_p (def2)
3152 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
3153 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
3154 && (is_gimple_assign (def2)
3155 || is_gimple_call (def2)
3156 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3157 == vect_induction_def
3158 || (gimple_code (def2) == GIMPLE_PHI
3159 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3160 == vect_internal_def
3161 && !is_loop_header_bb_p (gimple_bb (def2)))))))
3163 if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
3165 /* Check if we can swap operands (just for simplicity - so that
3166 the rest of the code can assume that the reduction variable
3167 is always the last (second) argument). */
3168 if (code == COND_EXPR)
3170 /* Swap cond_expr by inverting the condition. */
3171 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3172 enum tree_code invert_code = ERROR_MARK;
3173 enum tree_code cond_code = TREE_CODE (cond_expr);
3175 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3177 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3178 invert_code = invert_tree_comparison (cond_code, honor_nans);
3180 if (invert_code != ERROR_MARK)
3182 TREE_SET_CODE (cond_expr, invert_code);
3183 swap_ssa_operands (def_stmt,
3184 gimple_assign_rhs2_ptr (def_stmt),
3185 gimple_assign_rhs3_ptr (def_stmt));
3187 else
3189 if (dump_enabled_p ())
3190 report_vect_op (MSG_NOTE, def_stmt,
3191 "detected reduction: cannot swap operands "
3192 "for cond_expr");
3193 return NULL;
3196 else
3197 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3198 gimple_assign_rhs2_ptr (def_stmt));
3200 if (dump_enabled_p ())
3201 report_vect_op (MSG_NOTE, def_stmt,
3202 "detected reduction: need to swap operands: ");
3204 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3205 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3207 else
3209 if (dump_enabled_p ())
3210 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3213 return def_stmt;
3216 /* Try to find SLP reduction chain. */
3217 if (! nested_in_vect_loop
3218 && code != COND_EXPR
3219 && orig_code != MINUS_EXPR
3220 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3222 if (dump_enabled_p ())
3223 report_vect_op (MSG_NOTE, def_stmt,
3224 "reduction: detected reduction chain: ");
3226 return def_stmt;
3229 /* Dissolve group eventually half-built by vect_is_slp_reduction. */
3230 gimple *first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (def_stmt));
3231 while (first)
3233 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
3234 GROUP_FIRST_ELEMENT (vinfo_for_stmt (first)) = NULL;
3235 GROUP_NEXT_ELEMENT (vinfo_for_stmt (first)) = NULL;
3236 first = next;
3239 /* Look for the expression computing loop_arg from loop PHI result. */
3240 if (check_reduction_path (vect_location, loop, as_a <gphi *> (phi), loop_arg,
3241 code))
3242 return def_stmt;
3244 if (dump_enabled_p ())
3246 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3247 "reduction: unknown pattern: ");
3250 return NULL;
3253 /* Wrapper around vect_is_simple_reduction, which will modify code
3254 in-place if it enables detection of more reductions. Arguments
3255 as there. */
3257 gimple *
3258 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3259 bool *double_reduc,
3260 bool need_wrapping_integral_overflow)
3262 enum vect_reduction_type v_reduc_type;
3263 gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
3264 need_wrapping_integral_overflow,
3265 &v_reduc_type);
3266 if (def)
3268 stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
3269 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3270 STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
3271 reduc_def_info = vinfo_for_stmt (def);
3272 STMT_VINFO_REDUC_DEF (reduc_def_info) = phi;
3274 return def;
3277 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3279 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3280 int *peel_iters_epilogue,
3281 stmt_vector_for_cost *scalar_cost_vec,
3282 stmt_vector_for_cost *prologue_cost_vec,
3283 stmt_vector_for_cost *epilogue_cost_vec)
3285 int retval = 0;
3286 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3288 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3290 *peel_iters_epilogue = vf/2;
3291 if (dump_enabled_p ())
3292 dump_printf_loc (MSG_NOTE, vect_location,
3293 "cost model: epilogue peel iters set to vf/2 "
3294 "because loop iterations are unknown .\n");
3296 /* If peeled iterations are known but number of scalar loop
3297 iterations are unknown, count a taken branch per peeled loop. */
3298 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3299 NULL, 0, vect_prologue);
3300 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3301 NULL, 0, vect_epilogue);
3303 else
3305 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3306 peel_iters_prologue = niters < peel_iters_prologue ?
3307 niters : peel_iters_prologue;
3308 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3309 /* If we need to peel for gaps, but no peeling is required, we have to
3310 peel VF iterations. */
3311 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3312 *peel_iters_epilogue = vf;
3315 stmt_info_for_cost *si;
3316 int j;
3317 if (peel_iters_prologue)
3318 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3320 stmt_vec_info stmt_info
3321 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3322 retval += record_stmt_cost (prologue_cost_vec,
3323 si->count * peel_iters_prologue,
3324 si->kind, stmt_info, si->misalign,
3325 vect_prologue);
3327 if (*peel_iters_epilogue)
3328 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3330 stmt_vec_info stmt_info
3331 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3332 retval += record_stmt_cost (epilogue_cost_vec,
3333 si->count * *peel_iters_epilogue,
3334 si->kind, stmt_info, si->misalign,
3335 vect_epilogue);
3338 return retval;
3341 /* Function vect_estimate_min_profitable_iters
3343 Return the number of iterations required for the vector version of the
3344 loop to be profitable relative to the cost of the scalar version of the
3345 loop.
3347 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3348 of iterations for vectorization. -1 value means loop vectorization
3349 is not profitable. This returned value may be used for dynamic
3350 profitability check.
3352 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3353 for static check against estimated number of iterations. */
3355 static void
3356 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3357 int *ret_min_profitable_niters,
3358 int *ret_min_profitable_estimate)
3360 int min_profitable_iters;
3361 int min_profitable_estimate;
3362 int peel_iters_prologue;
3363 int peel_iters_epilogue;
3364 unsigned vec_inside_cost = 0;
3365 int vec_outside_cost = 0;
3366 unsigned vec_prologue_cost = 0;
3367 unsigned vec_epilogue_cost = 0;
3368 int scalar_single_iter_cost = 0;
3369 int scalar_outside_cost = 0;
3370 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3371 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3372 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3374 /* Cost model disabled. */
3375 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3377 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3378 *ret_min_profitable_niters = 0;
3379 *ret_min_profitable_estimate = 0;
3380 return;
3383 /* Requires loop versioning tests to handle misalignment. */
3384 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3386 /* FIXME: Make cost depend on complexity of individual check. */
3387 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3388 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3389 vect_prologue);
3390 dump_printf (MSG_NOTE,
3391 "cost model: Adding cost of checks for loop "
3392 "versioning to treat misalignment.\n");
3395 /* Requires loop versioning with alias checks. */
3396 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3398 /* FIXME: Make cost depend on complexity of individual check. */
3399 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3400 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3401 vect_prologue);
3402 len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
3403 if (len)
3404 /* Count LEN - 1 ANDs and LEN comparisons. */
3405 (void) add_stmt_cost (target_cost_data, len * 2 - 1, scalar_stmt,
3406 NULL, 0, vect_prologue);
3407 dump_printf (MSG_NOTE,
3408 "cost model: Adding cost of checks for loop "
3409 "versioning aliasing.\n");
3412 /* Requires loop versioning with niter checks. */
3413 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3415 /* FIXME: Make cost depend on complexity of individual check. */
3416 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3417 vect_prologue);
3418 dump_printf (MSG_NOTE,
3419 "cost model: Adding cost of checks for loop "
3420 "versioning niters.\n");
3423 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3424 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3425 vect_prologue);
3427 /* Count statements in scalar loop. Using this as scalar cost for a single
3428 iteration for now.
3430 TODO: Add outer loop support.
3432 TODO: Consider assigning different costs to different scalar
3433 statements. */
3435 scalar_single_iter_cost
3436 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3438 /* Add additional cost for the peeled instructions in prologue and epilogue
3439 loop.
3441 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3442 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3444 TODO: Build an expression that represents peel_iters for prologue and
3445 epilogue to be used in a run-time test. */
3447 if (npeel < 0)
3449 peel_iters_prologue = vf/2;
3450 dump_printf (MSG_NOTE, "cost model: "
3451 "prologue peel iters set to vf/2.\n");
3453 /* If peeling for alignment is unknown, loop bound of main loop becomes
3454 unknown. */
3455 peel_iters_epilogue = vf/2;
3456 dump_printf (MSG_NOTE, "cost model: "
3457 "epilogue peel iters set to vf/2 because "
3458 "peeling for alignment is unknown.\n");
3460 /* If peeled iterations are unknown, count a taken branch and a not taken
3461 branch per peeled loop. Even if scalar loop iterations are known,
3462 vector iterations are not known since peeled prologue iterations are
3463 not known. Hence guards remain the same. */
3464 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3465 NULL, 0, vect_prologue);
3466 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3467 NULL, 0, vect_prologue);
3468 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3469 NULL, 0, vect_epilogue);
3470 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3471 NULL, 0, vect_epilogue);
3472 stmt_info_for_cost *si;
3473 int j;
3474 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3476 struct _stmt_vec_info *stmt_info
3477 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3478 (void) add_stmt_cost (target_cost_data,
3479 si->count * peel_iters_prologue,
3480 si->kind, stmt_info, si->misalign,
3481 vect_prologue);
3482 (void) add_stmt_cost (target_cost_data,
3483 si->count * peel_iters_epilogue,
3484 si->kind, stmt_info, si->misalign,
3485 vect_epilogue);
3488 else
3490 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3491 stmt_info_for_cost *si;
3492 int j;
3493 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3495 prologue_cost_vec.create (2);
3496 epilogue_cost_vec.create (2);
3497 peel_iters_prologue = npeel;
3499 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3500 &peel_iters_epilogue,
3501 &LOOP_VINFO_SCALAR_ITERATION_COST
3502 (loop_vinfo),
3503 &prologue_cost_vec,
3504 &epilogue_cost_vec);
3506 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3508 struct _stmt_vec_info *stmt_info
3509 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3510 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3511 si->misalign, vect_prologue);
3514 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3516 struct _stmt_vec_info *stmt_info
3517 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3518 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3519 si->misalign, vect_epilogue);
3522 prologue_cost_vec.release ();
3523 epilogue_cost_vec.release ();
3526 /* FORNOW: The scalar outside cost is incremented in one of the
3527 following ways:
3529 1. The vectorizer checks for alignment and aliasing and generates
3530 a condition that allows dynamic vectorization. A cost model
3531 check is ANDED with the versioning condition. Hence scalar code
3532 path now has the added cost of the versioning check.
3534 if (cost > th & versioning_check)
3535 jmp to vector code
3537 Hence run-time scalar is incremented by not-taken branch cost.
3539 2. The vectorizer then checks if a prologue is required. If the
3540 cost model check was not done before during versioning, it has to
3541 be done before the prologue check.
3543 if (cost <= th)
3544 prologue = scalar_iters
3545 if (prologue == 0)
3546 jmp to vector code
3547 else
3548 execute prologue
3549 if (prologue == num_iters)
3550 go to exit
3552 Hence the run-time scalar cost is incremented by a taken branch,
3553 plus a not-taken branch, plus a taken branch cost.
3555 3. The vectorizer then checks if an epilogue is required. If the
3556 cost model check was not done before during prologue check, it
3557 has to be done with the epilogue check.
3559 if (prologue == 0)
3560 jmp to vector code
3561 else
3562 execute prologue
3563 if (prologue == num_iters)
3564 go to exit
3565 vector code:
3566 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3567 jmp to epilogue
3569 Hence the run-time scalar cost should be incremented by 2 taken
3570 branches.
3572 TODO: The back end may reorder the BBS's differently and reverse
3573 conditions/branch directions. Change the estimates below to
3574 something more reasonable. */
3576 /* If the number of iterations is known and we do not do versioning, we can
3577 decide whether to vectorize at compile time. Hence the scalar version
3578 do not carry cost model guard costs. */
3579 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3580 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3582 /* Cost model check occurs at versioning. */
3583 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3584 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3585 else
3587 /* Cost model check occurs at prologue generation. */
3588 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3589 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3590 + vect_get_stmt_cost (cond_branch_not_taken);
3591 /* Cost model check occurs at epilogue generation. */
3592 else
3593 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3597 /* Complete the target-specific cost calculations. */
3598 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3599 &vec_inside_cost, &vec_epilogue_cost);
3601 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3603 if (dump_enabled_p ())
3605 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3606 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3607 vec_inside_cost);
3608 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3609 vec_prologue_cost);
3610 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3611 vec_epilogue_cost);
3612 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3613 scalar_single_iter_cost);
3614 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3615 scalar_outside_cost);
3616 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3617 vec_outside_cost);
3618 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3619 peel_iters_prologue);
3620 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3621 peel_iters_epilogue);
3624 /* Calculate number of iterations required to make the vector version
3625 profitable, relative to the loop bodies only. The following condition
3626 must hold true:
3627 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3628 where
3629 SIC = scalar iteration cost, VIC = vector iteration cost,
3630 VOC = vector outside cost, VF = vectorization factor,
3631 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3632 SOC = scalar outside cost for run time cost model check. */
3634 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3636 if (vec_outside_cost <= 0)
3637 min_profitable_iters = 0;
3638 else
3640 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3641 - vec_inside_cost * peel_iters_prologue
3642 - vec_inside_cost * peel_iters_epilogue)
3643 / ((scalar_single_iter_cost * vf)
3644 - vec_inside_cost);
3646 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3647 <= (((int) vec_inside_cost * min_profitable_iters)
3648 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3649 min_profitable_iters++;
3652 /* vector version will never be profitable. */
3653 else
3655 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3656 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3657 "did not happen for a simd loop");
3659 if (dump_enabled_p ())
3660 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3661 "cost model: the vector iteration cost = %d "
3662 "divided by the scalar iteration cost = %d "
3663 "is greater or equal to the vectorization factor = %d"
3664 ".\n",
3665 vec_inside_cost, scalar_single_iter_cost, vf);
3666 *ret_min_profitable_niters = -1;
3667 *ret_min_profitable_estimate = -1;
3668 return;
3671 dump_printf (MSG_NOTE,
3672 " Calculated minimum iters for profitability: %d\n",
3673 min_profitable_iters);
3675 /* We want the vectorized loop to execute at least once. */
3676 if (min_profitable_iters < (vf + peel_iters_prologue))
3677 min_profitable_iters = vf + peel_iters_prologue;
3679 if (dump_enabled_p ())
3680 dump_printf_loc (MSG_NOTE, vect_location,
3681 " Runtime profitability threshold = %d\n",
3682 min_profitable_iters);
3684 *ret_min_profitable_niters = min_profitable_iters;
3686 /* Calculate number of iterations required to make the vector version
3687 profitable, relative to the loop bodies only.
3689 Non-vectorized variant is SIC * niters and it must win over vector
3690 variant on the expected loop trip count. The following condition must hold true:
3691 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3693 if (vec_outside_cost <= 0)
3694 min_profitable_estimate = 0;
3695 else
3697 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3698 - vec_inside_cost * peel_iters_prologue
3699 - vec_inside_cost * peel_iters_epilogue)
3700 / ((scalar_single_iter_cost * vf)
3701 - vec_inside_cost);
3703 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3704 if (dump_enabled_p ())
3705 dump_printf_loc (MSG_NOTE, vect_location,
3706 " Static estimate profitability threshold = %d\n",
3707 min_profitable_estimate);
3709 *ret_min_profitable_estimate = min_profitable_estimate;
3712 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3713 vector elements (not bits) for a vector with NELT elements. */
3714 static void
3715 calc_vec_perm_mask_for_shift (unsigned int offset, unsigned int nelt,
3716 vec_perm_indices *sel)
3718 unsigned int i;
3720 for (i = 0; i < nelt; i++)
3721 sel->quick_push ((i + offset) & (2 * nelt - 1));
3724 /* Checks whether the target supports whole-vector shifts for vectors of mode
3725 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3726 it supports vec_perm_const with masks for all necessary shift amounts. */
3727 static bool
3728 have_whole_vector_shift (machine_mode mode)
3730 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3731 return true;
3733 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3734 return false;
3736 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3737 auto_vec_perm_indices sel (nelt);
3739 for (i = nelt/2; i >= 1; i/=2)
3741 sel.truncate (0);
3742 calc_vec_perm_mask_for_shift (i, nelt, &sel);
3743 if (!can_vec_perm_p (mode, false, &sel))
3744 return false;
3746 return true;
3749 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3750 functions. Design better to avoid maintenance issues. */
3752 /* Function vect_model_reduction_cost.
3754 Models cost for a reduction operation, including the vector ops
3755 generated within the strip-mine loop, the initial definition before
3756 the loop, and the epilogue code that must be generated. */
3758 static void
3759 vect_model_reduction_cost (stmt_vec_info stmt_info, internal_fn reduc_fn,
3760 int ncopies)
3762 int prologue_cost = 0, epilogue_cost = 0;
3763 enum tree_code code;
3764 optab optab;
3765 tree vectype;
3766 gimple *orig_stmt;
3767 machine_mode mode;
3768 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3769 struct loop *loop = NULL;
3770 void *target_cost_data;
3772 if (loop_vinfo)
3774 loop = LOOP_VINFO_LOOP (loop_vinfo);
3775 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3777 else
3778 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3780 /* Condition reductions generate two reductions in the loop. */
3781 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3782 ncopies *= 2;
3784 /* Cost of reduction op inside loop. */
3785 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3786 stmt_info, 0, vect_body);
3788 vectype = STMT_VINFO_VECTYPE (stmt_info);
3789 mode = TYPE_MODE (vectype);
3790 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3792 if (!orig_stmt)
3793 orig_stmt = STMT_VINFO_STMT (stmt_info);
3795 code = gimple_assign_rhs_code (orig_stmt);
3797 /* Add in cost for initial definition.
3798 For cond reduction we have four vectors: initial index, step, initial
3799 result of the data reduction, initial value of the index reduction. */
3800 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3801 == COND_REDUCTION ? 4 : 1;
3802 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3803 scalar_to_vec, stmt_info, 0,
3804 vect_prologue);
3806 /* Determine cost of epilogue code.
3808 We have a reduction operator that will reduce the vector in one statement.
3809 Also requires scalar extract. */
3811 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3813 if (reduc_fn != IFN_LAST)
3815 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3817 /* An EQ stmt and an COND_EXPR stmt. */
3818 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3819 vector_stmt, stmt_info, 0,
3820 vect_epilogue);
3821 /* Reduction of the max index and a reduction of the found
3822 values. */
3823 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3824 vec_to_scalar, stmt_info, 0,
3825 vect_epilogue);
3826 /* A broadcast of the max value. */
3827 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3828 scalar_to_vec, stmt_info, 0,
3829 vect_epilogue);
3831 else
3833 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3834 stmt_info, 0, vect_epilogue);
3835 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3836 vec_to_scalar, stmt_info, 0,
3837 vect_epilogue);
3840 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3842 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
3843 /* Extraction of scalar elements. */
3844 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits,
3845 vec_to_scalar, stmt_info, 0,
3846 vect_epilogue);
3847 /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
3848 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits - 3,
3849 scalar_stmt, stmt_info, 0,
3850 vect_epilogue);
3852 else
3854 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3855 tree bitsize =
3856 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3857 int element_bitsize = tree_to_uhwi (bitsize);
3858 int nelements = vec_size_in_bits / element_bitsize;
3860 if (code == COND_EXPR)
3861 code = MAX_EXPR;
3863 optab = optab_for_tree_code (code, vectype, optab_default);
3865 /* We have a whole vector shift available. */
3866 if (optab != unknown_optab
3867 && VECTOR_MODE_P (mode)
3868 && optab_handler (optab, mode) != CODE_FOR_nothing
3869 && have_whole_vector_shift (mode))
3871 /* Final reduction via vector shifts and the reduction operator.
3872 Also requires scalar extract. */
3873 epilogue_cost += add_stmt_cost (target_cost_data,
3874 exact_log2 (nelements) * 2,
3875 vector_stmt, stmt_info, 0,
3876 vect_epilogue);
3877 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3878 vec_to_scalar, stmt_info, 0,
3879 vect_epilogue);
3881 else
3882 /* Use extracts and reduction op for final reduction. For N
3883 elements, we have N extracts and N-1 reduction ops. */
3884 epilogue_cost += add_stmt_cost (target_cost_data,
3885 nelements + nelements - 1,
3886 vector_stmt, stmt_info, 0,
3887 vect_epilogue);
3891 if (dump_enabled_p ())
3892 dump_printf (MSG_NOTE,
3893 "vect_model_reduction_cost: inside_cost = %d, "
3894 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3895 prologue_cost, epilogue_cost);
3899 /* Function vect_model_induction_cost.
3901 Models cost for induction operations. */
3903 static void
3904 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3906 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3907 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3908 unsigned inside_cost, prologue_cost;
3910 if (PURE_SLP_STMT (stmt_info))
3911 return;
3913 /* loop cost for vec_loop. */
3914 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3915 stmt_info, 0, vect_body);
3917 /* prologue cost for vec_init and vec_step. */
3918 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3919 stmt_info, 0, vect_prologue);
3921 if (dump_enabled_p ())
3922 dump_printf_loc (MSG_NOTE, vect_location,
3923 "vect_model_induction_cost: inside_cost = %d, "
3924 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3929 /* Function get_initial_def_for_reduction
3931 Input:
3932 STMT - a stmt that performs a reduction operation in the loop.
3933 INIT_VAL - the initial value of the reduction variable
3935 Output:
3936 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3937 of the reduction (used for adjusting the epilog - see below).
3938 Return a vector variable, initialized according to the operation that STMT
3939 performs. This vector will be used as the initial value of the
3940 vector of partial results.
3942 Option1 (adjust in epilog): Initialize the vector as follows:
3943 add/bit or/xor: [0,0,...,0,0]
3944 mult/bit and: [1,1,...,1,1]
3945 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3946 and when necessary (e.g. add/mult case) let the caller know
3947 that it needs to adjust the result by init_val.
3949 Option2: Initialize the vector as follows:
3950 add/bit or/xor: [init_val,0,0,...,0]
3951 mult/bit and: [init_val,1,1,...,1]
3952 min/max/cond_expr: [init_val,init_val,...,init_val]
3953 and no adjustments are needed.
3955 For example, for the following code:
3957 s = init_val;
3958 for (i=0;i<n;i++)
3959 s = s + a[i];
3961 STMT is 's = s + a[i]', and the reduction variable is 's'.
3962 For a vector of 4 units, we want to return either [0,0,0,init_val],
3963 or [0,0,0,0] and let the caller know that it needs to adjust
3964 the result at the end by 'init_val'.
3966 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3967 initialization vector is simpler (same element in all entries), if
3968 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3970 A cost model should help decide between these two schemes. */
3972 tree
3973 get_initial_def_for_reduction (gimple *stmt, tree init_val,
3974 tree *adjustment_def)
3976 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3977 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3978 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3979 tree scalar_type = TREE_TYPE (init_val);
3980 tree vectype = get_vectype_for_scalar_type (scalar_type);
3981 enum tree_code code = gimple_assign_rhs_code (stmt);
3982 tree def_for_init;
3983 tree init_def;
3984 bool nested_in_vect_loop = false;
3985 REAL_VALUE_TYPE real_init_val = dconst0;
3986 int int_init_val = 0;
3987 gimple *def_stmt = NULL;
3988 gimple_seq stmts = NULL;
3990 gcc_assert (vectype);
3992 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3993 || SCALAR_FLOAT_TYPE_P (scalar_type));
3995 if (nested_in_vect_loop_p (loop, stmt))
3996 nested_in_vect_loop = true;
3997 else
3998 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
4000 /* In case of double reduction we only create a vector variable to be put
4001 in the reduction phi node. The actual statement creation is done in
4002 vect_create_epilog_for_reduction. */
4003 if (adjustment_def && nested_in_vect_loop
4004 && TREE_CODE (init_val) == SSA_NAME
4005 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
4006 && gimple_code (def_stmt) == GIMPLE_PHI
4007 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
4008 && vinfo_for_stmt (def_stmt)
4009 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
4010 == vect_double_reduction_def)
4012 *adjustment_def = NULL;
4013 return vect_create_destination_var (init_val, vectype);
4016 /* In case of a nested reduction do not use an adjustment def as
4017 that case is not supported by the epilogue generation correctly
4018 if ncopies is not one. */
4019 if (adjustment_def && nested_in_vect_loop)
4021 *adjustment_def = NULL;
4022 return vect_get_vec_def_for_operand (init_val, stmt);
4025 switch (code)
4027 case WIDEN_SUM_EXPR:
4028 case DOT_PROD_EXPR:
4029 case SAD_EXPR:
4030 case PLUS_EXPR:
4031 case MINUS_EXPR:
4032 case BIT_IOR_EXPR:
4033 case BIT_XOR_EXPR:
4034 case MULT_EXPR:
4035 case BIT_AND_EXPR:
4037 /* ADJUSTMENT_DEF is NULL when called from
4038 vect_create_epilog_for_reduction to vectorize double reduction. */
4039 if (adjustment_def)
4040 *adjustment_def = init_val;
4042 if (code == MULT_EXPR)
4044 real_init_val = dconst1;
4045 int_init_val = 1;
4048 if (code == BIT_AND_EXPR)
4049 int_init_val = -1;
4051 if (SCALAR_FLOAT_TYPE_P (scalar_type))
4052 def_for_init = build_real (scalar_type, real_init_val);
4053 else
4054 def_for_init = build_int_cst (scalar_type, int_init_val);
4056 if (adjustment_def)
4057 /* Option1: the first element is '0' or '1' as well. */
4058 init_def = gimple_build_vector_from_val (&stmts, vectype,
4059 def_for_init);
4060 else
4062 /* Option2: the first element is INIT_VAL. */
4063 tree_vector_builder elts (vectype, 1, 2);
4064 elts.quick_push (init_val);
4065 elts.quick_push (def_for_init);
4066 init_def = gimple_build_vector (&stmts, &elts);
4069 break;
4071 case MIN_EXPR:
4072 case MAX_EXPR:
4073 case COND_EXPR:
4075 if (adjustment_def)
4077 *adjustment_def = NULL_TREE;
4078 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4080 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4081 break;
4084 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4085 init_def = gimple_build_vector_from_val (&stmts, vectype, init_val);
4087 break;
4089 default:
4090 gcc_unreachable ();
4093 if (stmts)
4094 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4095 return init_def;
4098 /* Get at the initial defs for the reduction PHIs in SLP_NODE.
4099 NUMBER_OF_VECTORS is the number of vector defs to create. */
4101 static void
4102 get_initial_defs_for_reduction (slp_tree slp_node,
4103 vec<tree> *vec_oprnds,
4104 unsigned int number_of_vectors,
4105 enum tree_code code, bool reduc_chain)
4107 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4108 gimple *stmt = stmts[0];
4109 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4110 unsigned nunits;
4111 unsigned j, number_of_places_left_in_vector;
4112 tree vector_type, scalar_type;
4113 tree vop;
4114 int group_size = stmts.length ();
4115 unsigned int vec_num, i;
4116 unsigned number_of_copies = 1;
4117 vec<tree> voprnds;
4118 voprnds.create (number_of_vectors);
4119 tree neutral_op = NULL;
4120 struct loop *loop;
4122 vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
4123 scalar_type = TREE_TYPE (vector_type);
4124 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
4126 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def);
4128 loop = (gimple_bb (stmt))->loop_father;
4129 gcc_assert (loop);
4130 edge pe = loop_preheader_edge (loop);
4132 /* op is the reduction operand of the first stmt already. */
4133 /* For additional copies (see the explanation of NUMBER_OF_COPIES below)
4134 we need either neutral operands or the original operands. See
4135 get_initial_def_for_reduction() for details. */
4136 switch (code)
4138 case WIDEN_SUM_EXPR:
4139 case DOT_PROD_EXPR:
4140 case SAD_EXPR:
4141 case PLUS_EXPR:
4142 case MINUS_EXPR:
4143 case BIT_IOR_EXPR:
4144 case BIT_XOR_EXPR:
4145 neutral_op = build_zero_cst (scalar_type);
4146 break;
4148 case MULT_EXPR:
4149 neutral_op = build_one_cst (scalar_type);
4150 break;
4152 case BIT_AND_EXPR:
4153 neutral_op = build_all_ones_cst (scalar_type);
4154 break;
4156 /* For MIN/MAX we don't have an easy neutral operand but
4157 the initial values can be used fine here. Only for
4158 a reduction chain we have to force a neutral element. */
4159 case MAX_EXPR:
4160 case MIN_EXPR:
4161 if (! reduc_chain)
4162 neutral_op = NULL;
4163 else
4164 neutral_op = PHI_ARG_DEF_FROM_EDGE (stmt, pe);
4165 break;
4167 default:
4168 gcc_assert (! reduc_chain);
4169 neutral_op = NULL;
4172 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
4173 created vectors. It is greater than 1 if unrolling is performed.
4175 For example, we have two scalar operands, s1 and s2 (e.g., group of
4176 strided accesses of size two), while NUNITS is four (i.e., four scalars
4177 of this type can be packed in a vector). The output vector will contain
4178 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
4179 will be 2).
4181 If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
4182 containing the operands.
4184 For example, NUNITS is four as before, and the group size is 8
4185 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
4186 {s5, s6, s7, s8}. */
4188 number_of_copies = nunits * number_of_vectors / group_size;
4190 number_of_places_left_in_vector = nunits;
4191 tree_vector_builder elts (vector_type, nunits, 1);
4192 elts.quick_grow (nunits);
4193 for (j = 0; j < number_of_copies; j++)
4195 for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
4197 tree op;
4198 /* Get the def before the loop. In reduction chain we have only
4199 one initial value. */
4200 if ((j != (number_of_copies - 1)
4201 || (reduc_chain && i != 0))
4202 && neutral_op)
4203 op = neutral_op;
4204 else
4205 op = PHI_ARG_DEF_FROM_EDGE (stmt, pe);
4207 /* Create 'vect_ = {op0,op1,...,opn}'. */
4208 number_of_places_left_in_vector--;
4209 elts[number_of_places_left_in_vector] = op;
4211 if (number_of_places_left_in_vector == 0)
4213 gimple_seq ctor_seq = NULL;
4214 tree init = gimple_build_vector (&ctor_seq, &elts);
4215 if (ctor_seq != NULL)
4216 gsi_insert_seq_on_edge_immediate (pe, ctor_seq);
4217 voprnds.quick_push (init);
4219 number_of_places_left_in_vector = nunits;
4220 elts.new_vector (vector_type, nunits, 1);
4221 elts.quick_grow (nunits);
4226 /* Since the vectors are created in the reverse order, we should invert
4227 them. */
4228 vec_num = voprnds.length ();
4229 for (j = vec_num; j != 0; j--)
4231 vop = voprnds[j - 1];
4232 vec_oprnds->quick_push (vop);
4235 voprnds.release ();
4237 /* In case that VF is greater than the unrolling factor needed for the SLP
4238 group of stmts, NUMBER_OF_VECTORS to be created is greater than
4239 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
4240 to replicate the vectors. */
4241 tree neutral_vec = NULL;
4242 while (number_of_vectors > vec_oprnds->length ())
4244 if (neutral_op)
4246 if (!neutral_vec)
4248 gimple_seq ctor_seq = NULL;
4249 neutral_vec = gimple_build_vector_from_val
4250 (&ctor_seq, vector_type, neutral_op);
4251 if (ctor_seq != NULL)
4252 gsi_insert_seq_on_edge_immediate (pe, ctor_seq);
4254 vec_oprnds->quick_push (neutral_vec);
4256 else
4258 for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
4259 vec_oprnds->quick_push (vop);
4265 /* Function vect_create_epilog_for_reduction
4267 Create code at the loop-epilog to finalize the result of a reduction
4268 computation.
4270 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4271 reduction statements.
4272 STMT is the scalar reduction stmt that is being vectorized.
4273 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4274 number of elements that we can fit in a vectype (nunits). In this case
4275 we have to generate more than one vector stmt - i.e - we need to "unroll"
4276 the vector stmt by a factor VF/nunits. For more details see documentation
4277 in vectorizable_operation.
4278 REDUC_FN is the internal function for the epilog reduction.
4279 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4280 computation.
4281 REDUC_INDEX is the index of the operand in the right hand side of the
4282 statement that is defined by REDUCTION_PHI.
4283 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4284 SLP_NODE is an SLP node containing a group of reduction statements. The
4285 first one in this group is STMT.
4286 INDUC_VAL is for INTEGER_INDUC_COND_REDUCTION the value to use for the case
4287 when the COND_EXPR is never true in the loop. For MAX_EXPR, it needs to
4288 be smaller than any value of the IV in the loop, for MIN_EXPR larger than
4289 any value of the IV in the loop.
4290 INDUC_CODE is the code for epilog reduction if INTEGER_INDUC_COND_REDUCTION.
4292 This function:
4293 1. Creates the reduction def-use cycles: sets the arguments for
4294 REDUCTION_PHIS:
4295 The loop-entry argument is the vectorized initial-value of the reduction.
4296 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4297 sums.
4298 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4299 by calling the function specified by REDUC_FN if available, or by
4300 other means (whole-vector shifts or a scalar loop).
4301 The function also creates a new phi node at the loop exit to preserve
4302 loop-closed form, as illustrated below.
4304 The flow at the entry to this function:
4306 loop:
4307 vec_def = phi <null, null> # REDUCTION_PHI
4308 VECT_DEF = vector_stmt # vectorized form of STMT
4309 s_loop = scalar_stmt # (scalar) STMT
4310 loop_exit:
4311 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4312 use <s_out0>
4313 use <s_out0>
4315 The above is transformed by this function into:
4317 loop:
4318 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4319 VECT_DEF = vector_stmt # vectorized form of STMT
4320 s_loop = scalar_stmt # (scalar) STMT
4321 loop_exit:
4322 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4323 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4324 v_out2 = reduce <v_out1>
4325 s_out3 = extract_field <v_out2, 0>
4326 s_out4 = adjust_result <s_out3>
4327 use <s_out4>
4328 use <s_out4>
4331 static void
4332 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4333 gimple *reduc_def_stmt,
4334 int ncopies, internal_fn reduc_fn,
4335 vec<gimple *> reduction_phis,
4336 bool double_reduc,
4337 slp_tree slp_node,
4338 slp_instance slp_node_instance,
4339 tree induc_val, enum tree_code induc_code)
4341 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4342 stmt_vec_info prev_phi_info;
4343 tree vectype;
4344 machine_mode mode;
4345 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4346 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4347 basic_block exit_bb;
4348 tree scalar_dest;
4349 tree scalar_type;
4350 gimple *new_phi = NULL, *phi;
4351 gimple_stmt_iterator exit_gsi;
4352 tree vec_dest;
4353 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4354 gimple *epilog_stmt = NULL;
4355 enum tree_code code = gimple_assign_rhs_code (stmt);
4356 gimple *exit_phi;
4357 tree bitsize;
4358 tree adjustment_def = NULL;
4359 tree vec_initial_def = NULL;
4360 tree expr, def, initial_def = NULL;
4361 tree orig_name, scalar_result;
4362 imm_use_iterator imm_iter, phi_imm_iter;
4363 use_operand_p use_p, phi_use_p;
4364 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4365 bool nested_in_vect_loop = false;
4366 auto_vec<gimple *> new_phis;
4367 auto_vec<gimple *> inner_phis;
4368 enum vect_def_type dt = vect_unknown_def_type;
4369 int j, i;
4370 auto_vec<tree> scalar_results;
4371 unsigned int group_size = 1, k, ratio;
4372 auto_vec<tree> vec_initial_defs;
4373 auto_vec<gimple *> phis;
4374 bool slp_reduc = false;
4375 tree new_phi_result;
4376 gimple *inner_phi = NULL;
4377 tree induction_index = NULL_TREE;
4379 if (slp_node)
4380 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4382 if (nested_in_vect_loop_p (loop, stmt))
4384 outer_loop = loop;
4385 loop = loop->inner;
4386 nested_in_vect_loop = true;
4387 gcc_assert (!slp_node);
4390 vectype = STMT_VINFO_VECTYPE (stmt_info);
4391 gcc_assert (vectype);
4392 mode = TYPE_MODE (vectype);
4394 /* 1. Create the reduction def-use cycle:
4395 Set the arguments of REDUCTION_PHIS, i.e., transform
4397 loop:
4398 vec_def = phi <null, null> # REDUCTION_PHI
4399 VECT_DEF = vector_stmt # vectorized form of STMT
4402 into:
4404 loop:
4405 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4406 VECT_DEF = vector_stmt # vectorized form of STMT
4409 (in case of SLP, do it for all the phis). */
4411 /* Get the loop-entry arguments. */
4412 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4413 if (slp_node)
4415 unsigned vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4416 vec_initial_defs.reserve (vec_num);
4417 get_initial_defs_for_reduction (slp_node_instance->reduc_phis,
4418 &vec_initial_defs, vec_num, code,
4419 GROUP_FIRST_ELEMENT (stmt_info));
4421 else
4423 /* Get at the scalar def before the loop, that defines the initial value
4424 of the reduction variable. */
4425 gimple *def_stmt;
4426 initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4427 loop_preheader_edge (loop));
4428 /* Optimize: if initial_def is for REDUC_MAX smaller than the base
4429 and we can't use zero for induc_val, use initial_def. Similarly
4430 for REDUC_MIN and initial_def larger than the base. */
4431 if (TREE_CODE (initial_def) == INTEGER_CST
4432 && (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4433 == INTEGER_INDUC_COND_REDUCTION)
4434 && !integer_zerop (induc_val)
4435 && ((reduc_fn == IFN_REDUC_MAX
4436 && tree_int_cst_lt (initial_def, induc_val))
4437 || (reduc_fn == IFN_REDUC_MIN
4438 && tree_int_cst_lt (induc_val, initial_def))))
4439 induc_val = initial_def;
4440 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4441 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4442 &adjustment_def);
4443 vec_initial_defs.create (1);
4444 vec_initial_defs.quick_push (vec_initial_def);
4447 /* Set phi nodes arguments. */
4448 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4450 tree vec_init_def = vec_initial_defs[i];
4451 tree def = vect_defs[i];
4452 for (j = 0; j < ncopies; j++)
4454 if (j != 0)
4456 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4457 if (nested_in_vect_loop)
4458 vec_init_def
4459 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4460 vec_init_def);
4463 /* Set the loop-entry arg of the reduction-phi. */
4465 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4466 == INTEGER_INDUC_COND_REDUCTION)
4468 /* Initialise the reduction phi to zero. This prevents initial
4469 values of non-zero interferring with the reduction op. */
4470 gcc_assert (ncopies == 1);
4471 gcc_assert (i == 0);
4473 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4474 tree induc_val_vec
4475 = build_vector_from_val (vec_init_def_type, induc_val);
4477 add_phi_arg (as_a <gphi *> (phi), induc_val_vec,
4478 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4480 else
4481 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4482 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4484 /* Set the loop-latch arg for the reduction-phi. */
4485 if (j > 0)
4486 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4488 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4489 UNKNOWN_LOCATION);
4491 if (dump_enabled_p ())
4493 dump_printf_loc (MSG_NOTE, vect_location,
4494 "transform reduction: created def-use cycle: ");
4495 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4496 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4501 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
4502 which is updated with the current index of the loop for every match of
4503 the original loop's cond_expr (VEC_STMT). This results in a vector
4504 containing the last time the condition passed for that vector lane.
4505 The first match will be a 1 to allow 0 to be used for non-matching
4506 indexes. If there are no matches at all then the vector will be all
4507 zeroes. */
4508 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4510 tree indx_before_incr, indx_after_incr;
4511 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
4512 int k;
4514 gimple *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4515 gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
4517 int scalar_precision
4518 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype)));
4519 tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
4520 tree cr_index_vector_type = build_vector_type
4521 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype));
4523 /* First we create a simple vector induction variable which starts
4524 with the values {1,2,3,...} (SERIES_VECT) and increments by the
4525 vector size (STEP). */
4527 /* Create a {1,2,3,...} vector. */
4528 tree_vector_builder vtemp (cr_index_vector_type, 1, 3);
4529 for (k = 0; k < 3; ++k)
4530 vtemp.quick_push (build_int_cst (cr_index_scalar_type, k + 1));
4531 tree series_vect = vtemp.build ();
4533 /* Create a vector of the step value. */
4534 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
4535 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
4537 /* Create an induction variable. */
4538 gimple_stmt_iterator incr_gsi;
4539 bool insert_after;
4540 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4541 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
4542 insert_after, &indx_before_incr, &indx_after_incr);
4544 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
4545 filled with zeros (VEC_ZERO). */
4547 /* Create a vector of 0s. */
4548 tree zero = build_zero_cst (cr_index_scalar_type);
4549 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
4551 /* Create a vector phi node. */
4552 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
4553 new_phi = create_phi_node (new_phi_tree, loop->header);
4554 set_vinfo_for_stmt (new_phi,
4555 new_stmt_vec_info (new_phi, loop_vinfo));
4556 add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
4557 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4559 /* Now take the condition from the loops original cond_expr
4560 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
4561 every match uses values from the induction variable
4562 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
4563 (NEW_PHI_TREE).
4564 Finally, we update the phi (NEW_PHI_TREE) to take the value of
4565 the new cond_expr (INDEX_COND_EXPR). */
4567 /* Duplicate the condition from vec_stmt. */
4568 tree ccompare = unshare_expr (gimple_assign_rhs1 (vec_stmt));
4570 /* Create a conditional, where the condition is taken from vec_stmt
4571 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
4572 else is the phi (NEW_PHI_TREE). */
4573 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
4574 ccompare, indx_before_incr,
4575 new_phi_tree);
4576 induction_index = make_ssa_name (cr_index_vector_type);
4577 gimple *index_condition = gimple_build_assign (induction_index,
4578 index_cond_expr);
4579 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
4580 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
4581 loop_vinfo);
4582 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
4583 set_vinfo_for_stmt (index_condition, index_vec_info);
4585 /* Update the phi with the vec cond. */
4586 add_phi_arg (as_a <gphi *> (new_phi), induction_index,
4587 loop_latch_edge (loop), UNKNOWN_LOCATION);
4590 /* 2. Create epilog code.
4591 The reduction epilog code operates across the elements of the vector
4592 of partial results computed by the vectorized loop.
4593 The reduction epilog code consists of:
4595 step 1: compute the scalar result in a vector (v_out2)
4596 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4597 step 3: adjust the scalar result (s_out3) if needed.
4599 Step 1 can be accomplished using one the following three schemes:
4600 (scheme 1) using reduc_fn, if available.
4601 (scheme 2) using whole-vector shifts, if available.
4602 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4603 combined.
4605 The overall epilog code looks like this:
4607 s_out0 = phi <s_loop> # original EXIT_PHI
4608 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4609 v_out2 = reduce <v_out1> # step 1
4610 s_out3 = extract_field <v_out2, 0> # step 2
4611 s_out4 = adjust_result <s_out3> # step 3
4613 (step 3 is optional, and steps 1 and 2 may be combined).
4614 Lastly, the uses of s_out0 are replaced by s_out4. */
4617 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4618 v_out1 = phi <VECT_DEF>
4619 Store them in NEW_PHIS. */
4621 exit_bb = single_exit (loop)->dest;
4622 prev_phi_info = NULL;
4623 new_phis.create (vect_defs.length ());
4624 FOR_EACH_VEC_ELT (vect_defs, i, def)
4626 for (j = 0; j < ncopies; j++)
4628 tree new_def = copy_ssa_name (def);
4629 phi = create_phi_node (new_def, exit_bb);
4630 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4631 if (j == 0)
4632 new_phis.quick_push (phi);
4633 else
4635 def = vect_get_vec_def_for_stmt_copy (dt, def);
4636 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4639 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4640 prev_phi_info = vinfo_for_stmt (phi);
4644 /* The epilogue is created for the outer-loop, i.e., for the loop being
4645 vectorized. Create exit phis for the outer loop. */
4646 if (double_reduc)
4648 loop = outer_loop;
4649 exit_bb = single_exit (loop)->dest;
4650 inner_phis.create (vect_defs.length ());
4651 FOR_EACH_VEC_ELT (new_phis, i, phi)
4653 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4654 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4655 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4656 PHI_RESULT (phi));
4657 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4658 loop_vinfo));
4659 inner_phis.quick_push (phi);
4660 new_phis[i] = outer_phi;
4661 prev_phi_info = vinfo_for_stmt (outer_phi);
4662 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4664 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4665 new_result = copy_ssa_name (PHI_RESULT (phi));
4666 outer_phi = create_phi_node (new_result, exit_bb);
4667 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4668 PHI_RESULT (phi));
4669 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4670 loop_vinfo));
4671 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4672 prev_phi_info = vinfo_for_stmt (outer_phi);
4677 exit_gsi = gsi_after_labels (exit_bb);
4679 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4680 (i.e. when reduc_fn is not available) and in the final adjustment
4681 code (if needed). Also get the original scalar reduction variable as
4682 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4683 represents a reduction pattern), the tree-code and scalar-def are
4684 taken from the original stmt that the pattern-stmt (STMT) replaces.
4685 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4686 are taken from STMT. */
4688 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4689 if (!orig_stmt)
4691 /* Regular reduction */
4692 orig_stmt = stmt;
4694 else
4696 /* Reduction pattern */
4697 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4698 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4699 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4702 code = gimple_assign_rhs_code (orig_stmt);
4703 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4704 partial results are added and not subtracted. */
4705 if (code == MINUS_EXPR)
4706 code = PLUS_EXPR;
4708 scalar_dest = gimple_assign_lhs (orig_stmt);
4709 scalar_type = TREE_TYPE (scalar_dest);
4710 scalar_results.create (group_size);
4711 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4712 bitsize = TYPE_SIZE (scalar_type);
4714 /* In case this is a reduction in an inner-loop while vectorizing an outer
4715 loop - we don't need to extract a single scalar result at the end of the
4716 inner-loop (unless it is double reduction, i.e., the use of reduction is
4717 outside the outer-loop). The final vector of partial results will be used
4718 in the vectorized outer-loop, or reduced to a scalar result at the end of
4719 the outer-loop. */
4720 if (nested_in_vect_loop && !double_reduc)
4721 goto vect_finalize_reduction;
4723 /* SLP reduction without reduction chain, e.g.,
4724 # a1 = phi <a2, a0>
4725 # b1 = phi <b2, b0>
4726 a2 = operation (a1)
4727 b2 = operation (b1) */
4728 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4730 /* In case of reduction chain, e.g.,
4731 # a1 = phi <a3, a0>
4732 a2 = operation (a1)
4733 a3 = operation (a2),
4735 we may end up with more than one vector result. Here we reduce them to
4736 one vector. */
4737 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4739 tree first_vect = PHI_RESULT (new_phis[0]);
4740 gassign *new_vec_stmt = NULL;
4741 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4742 for (k = 1; k < new_phis.length (); k++)
4744 gimple *next_phi = new_phis[k];
4745 tree second_vect = PHI_RESULT (next_phi);
4746 tree tem = make_ssa_name (vec_dest, new_vec_stmt);
4747 new_vec_stmt = gimple_build_assign (tem, code,
4748 first_vect, second_vect);
4749 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4750 first_vect = tem;
4753 new_phi_result = first_vect;
4754 if (new_vec_stmt)
4756 new_phis.truncate (0);
4757 new_phis.safe_push (new_vec_stmt);
4760 /* Likewise if we couldn't use a single defuse cycle. */
4761 else if (ncopies > 1)
4763 gcc_assert (new_phis.length () == 1);
4764 tree first_vect = PHI_RESULT (new_phis[0]);
4765 gassign *new_vec_stmt = NULL;
4766 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4767 gimple *next_phi = new_phis[0];
4768 for (int k = 1; k < ncopies; ++k)
4770 next_phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next_phi));
4771 tree second_vect = PHI_RESULT (next_phi);
4772 tree tem = make_ssa_name (vec_dest, new_vec_stmt);
4773 new_vec_stmt = gimple_build_assign (tem, code,
4774 first_vect, second_vect);
4775 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4776 first_vect = tem;
4778 new_phi_result = first_vect;
4779 new_phis.truncate (0);
4780 new_phis.safe_push (new_vec_stmt);
4782 else
4783 new_phi_result = PHI_RESULT (new_phis[0]);
4785 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4786 && reduc_fn != IFN_LAST)
4788 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4789 various data values where the condition matched and another vector
4790 (INDUCTION_INDEX) containing all the indexes of those matches. We
4791 need to extract the last matching index (which will be the index with
4792 highest value) and use this to index into the data vector.
4793 For the case where there were no matches, the data vector will contain
4794 all default values and the index vector will be all zeros. */
4796 /* Get various versions of the type of the vector of indexes. */
4797 tree index_vec_type = TREE_TYPE (induction_index);
4798 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4799 tree index_scalar_type = TREE_TYPE (index_vec_type);
4800 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4801 (index_vec_type);
4803 /* Get an unsigned integer version of the type of the data vector. */
4804 int scalar_precision
4805 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
4806 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4807 tree vectype_unsigned = build_vector_type
4808 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4810 /* First we need to create a vector (ZERO_VEC) of zeros and another
4811 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4812 can create using a MAX reduction and then expanding.
4813 In the case where the loop never made any matches, the max index will
4814 be zero. */
4816 /* Vector of {0, 0, 0,...}. */
4817 tree zero_vec = make_ssa_name (vectype);
4818 tree zero_vec_rhs = build_zero_cst (vectype);
4819 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4820 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4822 /* Find maximum value from the vector of found indexes. */
4823 tree max_index = make_ssa_name (index_scalar_type);
4824 gcall *max_index_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
4825 1, induction_index);
4826 gimple_call_set_lhs (max_index_stmt, max_index);
4827 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4829 /* Vector of {max_index, max_index, max_index,...}. */
4830 tree max_index_vec = make_ssa_name (index_vec_type);
4831 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4832 max_index);
4833 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4834 max_index_vec_rhs);
4835 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4837 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4838 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4839 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4840 otherwise. Only one value should match, resulting in a vector
4841 (VEC_COND) with one data value and the rest zeros.
4842 In the case where the loop never made any matches, every index will
4843 match, resulting in a vector with all data values (which will all be
4844 the default value). */
4846 /* Compare the max index vector to the vector of found indexes to find
4847 the position of the max value. */
4848 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4849 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4850 induction_index,
4851 max_index_vec);
4852 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4854 /* Use the compare to choose either values from the data vector or
4855 zero. */
4856 tree vec_cond = make_ssa_name (vectype);
4857 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4858 vec_compare, new_phi_result,
4859 zero_vec);
4860 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4862 /* Finally we need to extract the data value from the vector (VEC_COND)
4863 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4864 reduction, but because this doesn't exist, we can use a MAX reduction
4865 instead. The data value might be signed or a float so we need to cast
4866 it first.
4867 In the case where the loop never made any matches, the data values are
4868 all identical, and so will reduce down correctly. */
4870 /* Make the matched data values unsigned. */
4871 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4872 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4873 vec_cond);
4874 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4875 VIEW_CONVERT_EXPR,
4876 vec_cond_cast_rhs);
4877 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4879 /* Reduce down to a scalar value. */
4880 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4881 gcall *data_reduc_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
4882 1, vec_cond_cast);
4883 gimple_call_set_lhs (data_reduc_stmt, data_reduc);
4884 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4886 /* Convert the reduced value back to the result type and set as the
4887 result. */
4888 gimple_seq stmts = NULL;
4889 new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
4890 data_reduc);
4891 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4892 scalar_results.safe_push (new_temp);
4894 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4895 && reduc_fn == IFN_LAST)
4897 /* Condition reduction without supported IFN_REDUC_MAX. Generate
4898 idx = 0;
4899 idx_val = induction_index[0];
4900 val = data_reduc[0];
4901 for (idx = 0, val = init, i = 0; i < nelts; ++i)
4902 if (induction_index[i] > idx_val)
4903 val = data_reduc[i], idx_val = induction_index[i];
4904 return val; */
4906 tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
4907 tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
4908 unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
4909 unsigned HOST_WIDE_INT v_size
4910 = el_size * TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
4911 tree idx_val = NULL_TREE, val = NULL_TREE;
4912 for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
4914 tree old_idx_val = idx_val;
4915 tree old_val = val;
4916 idx_val = make_ssa_name (idx_eltype);
4917 epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
4918 build3 (BIT_FIELD_REF, idx_eltype,
4919 induction_index,
4920 bitsize_int (el_size),
4921 bitsize_int (off)));
4922 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4923 val = make_ssa_name (data_eltype);
4924 epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
4925 build3 (BIT_FIELD_REF,
4926 data_eltype,
4927 new_phi_result,
4928 bitsize_int (el_size),
4929 bitsize_int (off)));
4930 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4931 if (off != 0)
4933 tree new_idx_val = idx_val;
4934 tree new_val = val;
4935 if (off != v_size - el_size)
4937 new_idx_val = make_ssa_name (idx_eltype);
4938 epilog_stmt = gimple_build_assign (new_idx_val,
4939 MAX_EXPR, idx_val,
4940 old_idx_val);
4941 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4943 new_val = make_ssa_name (data_eltype);
4944 epilog_stmt = gimple_build_assign (new_val,
4945 COND_EXPR,
4946 build2 (GT_EXPR,
4947 boolean_type_node,
4948 idx_val,
4949 old_idx_val),
4950 val, old_val);
4951 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4952 idx_val = new_idx_val;
4953 val = new_val;
4956 /* Convert the reduced value back to the result type and set as the
4957 result. */
4958 gimple_seq stmts = NULL;
4959 val = gimple_convert (&stmts, scalar_type, val);
4960 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4961 scalar_results.safe_push (val);
4964 /* 2.3 Create the reduction code, using one of the three schemes described
4965 above. In SLP we simply need to extract all the elements from the
4966 vector (without reducing them), so we use scalar shifts. */
4967 else if (reduc_fn != IFN_LAST && !slp_reduc)
4969 tree tmp;
4970 tree vec_elem_type;
4972 /* Case 1: Create:
4973 v_out2 = reduc_expr <v_out1> */
4975 if (dump_enabled_p ())
4976 dump_printf_loc (MSG_NOTE, vect_location,
4977 "Reduce using direct vector reduction.\n");
4979 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4980 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4982 tree tmp_dest
4983 = vect_create_destination_var (scalar_dest, vec_elem_type);
4984 epilog_stmt = gimple_build_call_internal (reduc_fn, 1,
4985 new_phi_result);
4986 gimple_set_lhs (epilog_stmt, tmp_dest);
4987 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4988 gimple_set_lhs (epilog_stmt, new_temp);
4989 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4991 epilog_stmt = gimple_build_assign (new_scalar_dest, NOP_EXPR,
4992 new_temp);
4994 else
4996 epilog_stmt = gimple_build_call_internal (reduc_fn, 1,
4997 new_phi_result);
4998 gimple_set_lhs (epilog_stmt, new_scalar_dest);
5001 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5002 gimple_set_lhs (epilog_stmt, new_temp);
5003 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5005 if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5006 == INTEGER_INDUC_COND_REDUCTION)
5007 && !operand_equal_p (initial_def, induc_val, 0))
5009 /* Earlier we set the initial value to be a vector if induc_val
5010 values. Check the result and if it is induc_val then replace
5011 with the original initial value, unless induc_val is
5012 the same as initial_def already. */
5013 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
5014 induc_val);
5016 tmp = make_ssa_name (new_scalar_dest);
5017 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5018 initial_def, new_temp);
5019 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5020 new_temp = tmp;
5023 scalar_results.safe_push (new_temp);
5025 else
5027 bool reduce_with_shift = have_whole_vector_shift (mode);
5028 int element_bitsize = tree_to_uhwi (bitsize);
5029 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5030 tree vec_temp;
5032 /* COND reductions all do the final reduction with MAX_EXPR
5033 or MIN_EXPR. */
5034 if (code == COND_EXPR)
5036 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5037 == INTEGER_INDUC_COND_REDUCTION)
5038 code = induc_code;
5039 else
5040 code = MAX_EXPR;
5043 /* Regardless of whether we have a whole vector shift, if we're
5044 emulating the operation via tree-vect-generic, we don't want
5045 to use it. Only the first round of the reduction is likely
5046 to still be profitable via emulation. */
5047 /* ??? It might be better to emit a reduction tree code here, so that
5048 tree-vect-generic can expand the first round via bit tricks. */
5049 if (!VECTOR_MODE_P (mode))
5050 reduce_with_shift = false;
5051 else
5053 optab optab = optab_for_tree_code (code, vectype, optab_default);
5054 if (optab_handler (optab, mode) == CODE_FOR_nothing)
5055 reduce_with_shift = false;
5058 if (reduce_with_shift && !slp_reduc)
5060 int nelements = vec_size_in_bits / element_bitsize;
5061 auto_vec_perm_indices sel (nelements);
5063 int elt_offset;
5065 tree zero_vec = build_zero_cst (vectype);
5066 /* Case 2: Create:
5067 for (offset = nelements/2; offset >= 1; offset/=2)
5069 Create: va' = vec_shift <va, offset>
5070 Create: va = vop <va, va'>
5071 } */
5073 tree rhs;
5075 if (dump_enabled_p ())
5076 dump_printf_loc (MSG_NOTE, vect_location,
5077 "Reduce using vector shifts\n");
5079 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5080 new_temp = new_phi_result;
5081 for (elt_offset = nelements / 2;
5082 elt_offset >= 1;
5083 elt_offset /= 2)
5085 sel.truncate (0);
5086 calc_vec_perm_mask_for_shift (elt_offset, nelements, &sel);
5087 tree mask = vect_gen_perm_mask_any (vectype, sel);
5088 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
5089 new_temp, zero_vec, mask);
5090 new_name = make_ssa_name (vec_dest, epilog_stmt);
5091 gimple_assign_set_lhs (epilog_stmt, new_name);
5092 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5094 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
5095 new_temp);
5096 new_temp = make_ssa_name (vec_dest, epilog_stmt);
5097 gimple_assign_set_lhs (epilog_stmt, new_temp);
5098 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5101 /* 2.4 Extract the final scalar result. Create:
5102 s_out3 = extract_field <v_out2, bitpos> */
5104 if (dump_enabled_p ())
5105 dump_printf_loc (MSG_NOTE, vect_location,
5106 "extract scalar result\n");
5108 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
5109 bitsize, bitsize_zero_node);
5110 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5111 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5112 gimple_assign_set_lhs (epilog_stmt, new_temp);
5113 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5114 scalar_results.safe_push (new_temp);
5116 else
5118 /* Case 3: Create:
5119 s = extract_field <v_out2, 0>
5120 for (offset = element_size;
5121 offset < vector_size;
5122 offset += element_size;)
5124 Create: s' = extract_field <v_out2, offset>
5125 Create: s = op <s, s'> // For non SLP cases
5126 } */
5128 if (dump_enabled_p ())
5129 dump_printf_loc (MSG_NOTE, vect_location,
5130 "Reduce using scalar code.\n");
5132 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5133 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
5135 int bit_offset;
5136 if (gimple_code (new_phi) == GIMPLE_PHI)
5137 vec_temp = PHI_RESULT (new_phi);
5138 else
5139 vec_temp = gimple_assign_lhs (new_phi);
5140 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
5141 bitsize_zero_node);
5142 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5143 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5144 gimple_assign_set_lhs (epilog_stmt, new_temp);
5145 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5147 /* In SLP we don't need to apply reduction operation, so we just
5148 collect s' values in SCALAR_RESULTS. */
5149 if (slp_reduc)
5150 scalar_results.safe_push (new_temp);
5152 for (bit_offset = element_bitsize;
5153 bit_offset < vec_size_in_bits;
5154 bit_offset += element_bitsize)
5156 tree bitpos = bitsize_int (bit_offset);
5157 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
5158 bitsize, bitpos);
5160 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5161 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
5162 gimple_assign_set_lhs (epilog_stmt, new_name);
5163 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5165 if (slp_reduc)
5167 /* In SLP we don't need to apply reduction operation, so
5168 we just collect s' values in SCALAR_RESULTS. */
5169 new_temp = new_name;
5170 scalar_results.safe_push (new_name);
5172 else
5174 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
5175 new_name, new_temp);
5176 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5177 gimple_assign_set_lhs (epilog_stmt, new_temp);
5178 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5183 /* The only case where we need to reduce scalar results in SLP, is
5184 unrolling. If the size of SCALAR_RESULTS is greater than
5185 GROUP_SIZE, we reduce them combining elements modulo
5186 GROUP_SIZE. */
5187 if (slp_reduc)
5189 tree res, first_res, new_res;
5190 gimple *new_stmt;
5192 /* Reduce multiple scalar results in case of SLP unrolling. */
5193 for (j = group_size; scalar_results.iterate (j, &res);
5194 j++)
5196 first_res = scalar_results[j % group_size];
5197 new_stmt = gimple_build_assign (new_scalar_dest, code,
5198 first_res, res);
5199 new_res = make_ssa_name (new_scalar_dest, new_stmt);
5200 gimple_assign_set_lhs (new_stmt, new_res);
5201 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
5202 scalar_results[j % group_size] = new_res;
5205 else
5206 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
5207 scalar_results.safe_push (new_temp);
5210 if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5211 == INTEGER_INDUC_COND_REDUCTION)
5212 && !operand_equal_p (initial_def, induc_val, 0))
5214 /* Earlier we set the initial value to be a vector if induc_val
5215 values. Check the result and if it is induc_val then replace
5216 with the original initial value, unless induc_val is
5217 the same as initial_def already. */
5218 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
5219 induc_val);
5221 tree tmp = make_ssa_name (new_scalar_dest);
5222 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5223 initial_def, new_temp);
5224 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5225 scalar_results[0] = tmp;
5229 vect_finalize_reduction:
5231 if (double_reduc)
5232 loop = loop->inner;
5234 /* 2.5 Adjust the final result by the initial value of the reduction
5235 variable. (When such adjustment is not needed, then
5236 'adjustment_def' is zero). For example, if code is PLUS we create:
5237 new_temp = loop_exit_def + adjustment_def */
5239 if (adjustment_def)
5241 gcc_assert (!slp_reduc);
5242 if (nested_in_vect_loop)
5244 new_phi = new_phis[0];
5245 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
5246 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
5247 new_dest = vect_create_destination_var (scalar_dest, vectype);
5249 else
5251 new_temp = scalar_results[0];
5252 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
5253 expr = build2 (code, scalar_type, new_temp, adjustment_def);
5254 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
5257 epilog_stmt = gimple_build_assign (new_dest, expr);
5258 new_temp = make_ssa_name (new_dest, epilog_stmt);
5259 gimple_assign_set_lhs (epilog_stmt, new_temp);
5260 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5261 if (nested_in_vect_loop)
5263 set_vinfo_for_stmt (epilog_stmt,
5264 new_stmt_vec_info (epilog_stmt, loop_vinfo));
5265 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
5266 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
5268 if (!double_reduc)
5269 scalar_results.quick_push (new_temp);
5270 else
5271 scalar_results[0] = new_temp;
5273 else
5274 scalar_results[0] = new_temp;
5276 new_phis[0] = epilog_stmt;
5279 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
5280 phis with new adjusted scalar results, i.e., replace use <s_out0>
5281 with use <s_out4>.
5283 Transform:
5284 loop_exit:
5285 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5286 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5287 v_out2 = reduce <v_out1>
5288 s_out3 = extract_field <v_out2, 0>
5289 s_out4 = adjust_result <s_out3>
5290 use <s_out0>
5291 use <s_out0>
5293 into:
5295 loop_exit:
5296 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5297 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5298 v_out2 = reduce <v_out1>
5299 s_out3 = extract_field <v_out2, 0>
5300 s_out4 = adjust_result <s_out3>
5301 use <s_out4>
5302 use <s_out4> */
5305 /* In SLP reduction chain we reduce vector results into one vector if
5306 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
5307 the last stmt in the reduction chain, since we are looking for the loop
5308 exit phi node. */
5309 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5311 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5312 /* Handle reduction patterns. */
5313 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5314 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5316 scalar_dest = gimple_assign_lhs (dest_stmt);
5317 group_size = 1;
5320 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5321 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
5322 need to match SCALAR_RESULTS with corresponding statements. The first
5323 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
5324 the first vector stmt, etc.
5325 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
5326 if (group_size > new_phis.length ())
5328 ratio = group_size / new_phis.length ();
5329 gcc_assert (!(group_size % new_phis.length ()));
5331 else
5332 ratio = 1;
5334 for (k = 0; k < group_size; k++)
5336 if (k % ratio == 0)
5338 epilog_stmt = new_phis[k / ratio];
5339 reduction_phi = reduction_phis[k / ratio];
5340 if (double_reduc)
5341 inner_phi = inner_phis[k / ratio];
5344 if (slp_reduc)
5346 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5348 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5349 /* SLP statements can't participate in patterns. */
5350 gcc_assert (!orig_stmt);
5351 scalar_dest = gimple_assign_lhs (current_stmt);
5354 phis.create (3);
5355 /* Find the loop-closed-use at the loop exit of the original scalar
5356 result. (The reduction result is expected to have two immediate uses -
5357 one at the latch block, and one at the loop exit). */
5358 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5359 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5360 && !is_gimple_debug (USE_STMT (use_p)))
5361 phis.safe_push (USE_STMT (use_p));
5363 /* While we expect to have found an exit_phi because of loop-closed-ssa
5364 form we can end up without one if the scalar cycle is dead. */
5366 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5368 if (outer_loop)
5370 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5371 gphi *vect_phi;
5373 /* FORNOW. Currently not supporting the case that an inner-loop
5374 reduction is not used in the outer-loop (but only outside the
5375 outer-loop), unless it is double reduction. */
5376 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5377 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5378 || double_reduc);
5380 if (double_reduc)
5381 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5382 else
5383 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5384 if (!double_reduc
5385 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5386 != vect_double_reduction_def)
5387 continue;
5389 /* Handle double reduction:
5391 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5392 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5393 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5394 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5396 At that point the regular reduction (stmt2 and stmt3) is
5397 already vectorized, as well as the exit phi node, stmt4.
5398 Here we vectorize the phi node of double reduction, stmt1, and
5399 update all relevant statements. */
5401 /* Go through all the uses of s2 to find double reduction phi
5402 node, i.e., stmt1 above. */
5403 orig_name = PHI_RESULT (exit_phi);
5404 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5406 stmt_vec_info use_stmt_vinfo;
5407 stmt_vec_info new_phi_vinfo;
5408 tree vect_phi_init, preheader_arg, vect_phi_res;
5409 basic_block bb = gimple_bb (use_stmt);
5410 gimple *use;
5412 /* Check that USE_STMT is really double reduction phi
5413 node. */
5414 if (gimple_code (use_stmt) != GIMPLE_PHI
5415 || gimple_phi_num_args (use_stmt) != 2
5416 || bb->loop_father != outer_loop)
5417 continue;
5418 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5419 if (!use_stmt_vinfo
5420 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5421 != vect_double_reduction_def)
5422 continue;
5424 /* Create vector phi node for double reduction:
5425 vs1 = phi <vs0, vs2>
5426 vs1 was created previously in this function by a call to
5427 vect_get_vec_def_for_operand and is stored in
5428 vec_initial_def;
5429 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5430 vs0 is created here. */
5432 /* Create vector phi node. */
5433 vect_phi = create_phi_node (vec_initial_def, bb);
5434 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5435 loop_vec_info_for_loop (outer_loop));
5436 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5438 /* Create vs0 - initial def of the double reduction phi. */
5439 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5440 loop_preheader_edge (outer_loop));
5441 vect_phi_init = get_initial_def_for_reduction
5442 (stmt, preheader_arg, NULL);
5444 /* Update phi node arguments with vs0 and vs2. */
5445 add_phi_arg (vect_phi, vect_phi_init,
5446 loop_preheader_edge (outer_loop),
5447 UNKNOWN_LOCATION);
5448 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5449 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5450 if (dump_enabled_p ())
5452 dump_printf_loc (MSG_NOTE, vect_location,
5453 "created double reduction phi node: ");
5454 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5457 vect_phi_res = PHI_RESULT (vect_phi);
5459 /* Replace the use, i.e., set the correct vs1 in the regular
5460 reduction phi node. FORNOW, NCOPIES is always 1, so the
5461 loop is redundant. */
5462 use = reduction_phi;
5463 for (j = 0; j < ncopies; j++)
5465 edge pr_edge = loop_preheader_edge (loop);
5466 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5467 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5473 phis.release ();
5474 if (nested_in_vect_loop)
5476 if (double_reduc)
5477 loop = outer_loop;
5478 else
5479 continue;
5482 phis.create (3);
5483 /* Find the loop-closed-use at the loop exit of the original scalar
5484 result. (The reduction result is expected to have two immediate uses,
5485 one at the latch block, and one at the loop exit). For double
5486 reductions we are looking for exit phis of the outer loop. */
5487 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5489 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5491 if (!is_gimple_debug (USE_STMT (use_p)))
5492 phis.safe_push (USE_STMT (use_p));
5494 else
5496 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5498 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5500 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5502 if (!flow_bb_inside_loop_p (loop,
5503 gimple_bb (USE_STMT (phi_use_p)))
5504 && !is_gimple_debug (USE_STMT (phi_use_p)))
5505 phis.safe_push (USE_STMT (phi_use_p));
5511 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5513 /* Replace the uses: */
5514 orig_name = PHI_RESULT (exit_phi);
5515 scalar_result = scalar_results[k];
5516 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5517 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5518 SET_USE (use_p, scalar_result);
5521 phis.release ();
5526 /* Function is_nonwrapping_integer_induction.
5528 Check if STMT (which is part of loop LOOP) both increments and
5529 does not cause overflow. */
5531 static bool
5532 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5534 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5535 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5536 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5537 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5538 widest_int ni, max_loop_value, lhs_max;
5539 bool overflow = false;
5541 /* Make sure the loop is integer based. */
5542 if (TREE_CODE (base) != INTEGER_CST
5543 || TREE_CODE (step) != INTEGER_CST)
5544 return false;
5546 /* Check that the max size of the loop will not wrap. */
5548 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5549 return true;
5551 if (! max_stmt_executions (loop, &ni))
5552 return false;
5554 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5555 &overflow);
5556 if (overflow)
5557 return false;
5559 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5560 TYPE_SIGN (lhs_type), &overflow);
5561 if (overflow)
5562 return false;
5564 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5565 <= TYPE_PRECISION (lhs_type));
5568 /* Function vectorizable_reduction.
5570 Check if STMT performs a reduction operation that can be vectorized.
5571 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5572 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5573 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5575 This function also handles reduction idioms (patterns) that have been
5576 recognized in advance during vect_pattern_recog. In this case, STMT may be
5577 of this form:
5578 X = pattern_expr (arg0, arg1, ..., X)
5579 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5580 sequence that had been detected and replaced by the pattern-stmt (STMT).
5582 This function also handles reduction of condition expressions, for example:
5583 for (int i = 0; i < N; i++)
5584 if (a[i] < value)
5585 last = a[i];
5586 This is handled by vectorising the loop and creating an additional vector
5587 containing the loop indexes for which "a[i] < value" was true. In the
5588 function epilogue this is reduced to a single max value and then used to
5589 index into the vector of results.
5591 In some cases of reduction patterns, the type of the reduction variable X is
5592 different than the type of the other arguments of STMT.
5593 In such cases, the vectype that is used when transforming STMT into a vector
5594 stmt is different than the vectype that is used to determine the
5595 vectorization factor, because it consists of a different number of elements
5596 than the actual number of elements that are being operated upon in parallel.
5598 For example, consider an accumulation of shorts into an int accumulator.
5599 On some targets it's possible to vectorize this pattern operating on 8
5600 shorts at a time (hence, the vectype for purposes of determining the
5601 vectorization factor should be V8HI); on the other hand, the vectype that
5602 is used to create the vector form is actually V4SI (the type of the result).
5604 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5605 indicates what is the actual level of parallelism (V8HI in the example), so
5606 that the right vectorization factor would be derived. This vectype
5607 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5608 be used to create the vectorized stmt. The right vectype for the vectorized
5609 stmt is obtained from the type of the result X:
5610 get_vectype_for_scalar_type (TREE_TYPE (X))
5612 This means that, contrary to "regular" reductions (or "regular" stmts in
5613 general), the following equation:
5614 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5615 does *NOT* necessarily hold for reduction patterns. */
5617 bool
5618 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5619 gimple **vec_stmt, slp_tree slp_node,
5620 slp_instance slp_node_instance)
5622 tree vec_dest;
5623 tree scalar_dest;
5624 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5625 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5626 tree vectype_in = NULL_TREE;
5627 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5628 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5629 enum tree_code code, orig_code;
5630 internal_fn reduc_fn;
5631 machine_mode vec_mode;
5632 int op_type;
5633 optab optab;
5634 tree new_temp = NULL_TREE;
5635 gimple *def_stmt;
5636 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
5637 gimple *cond_reduc_def_stmt = NULL;
5638 enum tree_code cond_reduc_op_code = ERROR_MARK;
5639 tree scalar_type;
5640 bool is_simple_use;
5641 gimple *orig_stmt;
5642 stmt_vec_info orig_stmt_info = NULL;
5643 int i;
5644 int ncopies;
5645 int epilog_copies;
5646 stmt_vec_info prev_stmt_info, prev_phi_info;
5647 bool single_defuse_cycle = false;
5648 gimple *new_stmt = NULL;
5649 int j;
5650 tree ops[3];
5651 enum vect_def_type dts[3];
5652 bool nested_cycle = false, found_nested_cycle_def = false;
5653 bool double_reduc = false;
5654 basic_block def_bb;
5655 struct loop * def_stmt_loop, *outer_loop = NULL;
5656 tree def_arg;
5657 gimple *def_arg_stmt;
5658 auto_vec<tree> vec_oprnds0;
5659 auto_vec<tree> vec_oprnds1;
5660 auto_vec<tree> vec_oprnds2;
5661 auto_vec<tree> vect_defs;
5662 auto_vec<gimple *> phis;
5663 int vec_num;
5664 tree def0, tem;
5665 bool first_p = true;
5666 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5667 tree cond_reduc_val = NULL_TREE;
5669 /* Make sure it was already recognized as a reduction computation. */
5670 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5671 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5672 return false;
5674 if (nested_in_vect_loop_p (loop, stmt))
5676 outer_loop = loop;
5677 loop = loop->inner;
5678 nested_cycle = true;
5681 /* In case of reduction chain we switch to the first stmt in the chain, but
5682 we don't update STMT_INFO, since only the last stmt is marked as reduction
5683 and has reduction properties. */
5684 if (GROUP_FIRST_ELEMENT (stmt_info)
5685 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5687 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5688 first_p = false;
5691 if (gimple_code (stmt) == GIMPLE_PHI)
5693 /* Analysis is fully done on the reduction stmt invocation. */
5694 if (! vec_stmt)
5696 if (slp_node)
5697 slp_node_instance->reduc_phis = slp_node;
5699 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5700 return true;
5703 gimple *reduc_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5704 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (reduc_stmt)))
5705 reduc_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (reduc_stmt));
5707 gcc_assert (is_gimple_assign (reduc_stmt));
5708 for (unsigned k = 1; k < gimple_num_ops (reduc_stmt); ++k)
5710 tree op = gimple_op (reduc_stmt, k);
5711 if (op == gimple_phi_result (stmt))
5712 continue;
5713 if (k == 1
5714 && gimple_assign_rhs_code (reduc_stmt) == COND_EXPR)
5715 continue;
5716 tem = get_vectype_for_scalar_type (TREE_TYPE (op));
5717 if (! vectype_in
5718 || TYPE_VECTOR_SUBPARTS (tem) < TYPE_VECTOR_SUBPARTS (vectype_in))
5719 vectype_in = tem;
5720 break;
5722 gcc_assert (vectype_in);
5724 if (slp_node)
5725 ncopies = 1;
5726 else
5727 ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
5729 use_operand_p use_p;
5730 gimple *use_stmt;
5731 if (ncopies > 1
5732 && (STMT_VINFO_RELEVANT (vinfo_for_stmt (reduc_stmt))
5733 <= vect_used_only_live)
5734 && single_imm_use (gimple_phi_result (stmt), &use_p, &use_stmt)
5735 && (use_stmt == reduc_stmt
5736 || (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt))
5737 == reduc_stmt)))
5738 single_defuse_cycle = true;
5740 /* Create the destination vector */
5741 scalar_dest = gimple_assign_lhs (reduc_stmt);
5742 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5744 if (slp_node)
5745 /* The size vect_schedule_slp_instance computes is off for us. */
5746 vec_num = ((LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5747 * SLP_TREE_SCALAR_STMTS (slp_node).length ())
5748 / TYPE_VECTOR_SUBPARTS (vectype_in));
5749 else
5750 vec_num = 1;
5752 /* Generate the reduction PHIs upfront. */
5753 prev_phi_info = NULL;
5754 for (j = 0; j < ncopies; j++)
5756 if (j == 0 || !single_defuse_cycle)
5758 for (i = 0; i < vec_num; i++)
5760 /* Create the reduction-phi that defines the reduction
5761 operand. */
5762 gimple *new_phi = create_phi_node (vec_dest, loop->header);
5763 set_vinfo_for_stmt (new_phi,
5764 new_stmt_vec_info (new_phi, loop_vinfo));
5766 if (slp_node)
5767 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
5768 else
5770 if (j == 0)
5771 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_phi;
5772 else
5773 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5774 prev_phi_info = vinfo_for_stmt (new_phi);
5780 return true;
5783 /* 1. Is vectorizable reduction? */
5784 /* Not supportable if the reduction variable is used in the loop, unless
5785 it's a reduction chain. */
5786 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5787 && !GROUP_FIRST_ELEMENT (stmt_info))
5788 return false;
5790 /* Reductions that are not used even in an enclosing outer-loop,
5791 are expected to be "live" (used out of the loop). */
5792 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5793 && !STMT_VINFO_LIVE_P (stmt_info))
5794 return false;
5796 /* 2. Has this been recognized as a reduction pattern?
5798 Check if STMT represents a pattern that has been recognized
5799 in earlier analysis stages. For stmts that represent a pattern,
5800 the STMT_VINFO_RELATED_STMT field records the last stmt in
5801 the original sequence that constitutes the pattern. */
5803 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5804 if (orig_stmt)
5806 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5807 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5808 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5811 /* 3. Check the operands of the operation. The first operands are defined
5812 inside the loop body. The last operand is the reduction variable,
5813 which is defined by the loop-header-phi. */
5815 gcc_assert (is_gimple_assign (stmt));
5817 /* Flatten RHS. */
5818 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5820 case GIMPLE_BINARY_RHS:
5821 code = gimple_assign_rhs_code (stmt);
5822 op_type = TREE_CODE_LENGTH (code);
5823 gcc_assert (op_type == binary_op);
5824 ops[0] = gimple_assign_rhs1 (stmt);
5825 ops[1] = gimple_assign_rhs2 (stmt);
5826 break;
5828 case GIMPLE_TERNARY_RHS:
5829 code = gimple_assign_rhs_code (stmt);
5830 op_type = TREE_CODE_LENGTH (code);
5831 gcc_assert (op_type == ternary_op);
5832 ops[0] = gimple_assign_rhs1 (stmt);
5833 ops[1] = gimple_assign_rhs2 (stmt);
5834 ops[2] = gimple_assign_rhs3 (stmt);
5835 break;
5837 case GIMPLE_UNARY_RHS:
5838 return false;
5840 default:
5841 gcc_unreachable ();
5844 if (code == COND_EXPR && slp_node)
5845 return false;
5847 scalar_dest = gimple_assign_lhs (stmt);
5848 scalar_type = TREE_TYPE (scalar_dest);
5849 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5850 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5851 return false;
5853 /* Do not try to vectorize bit-precision reductions. */
5854 if (!type_has_mode_precision_p (scalar_type))
5855 return false;
5857 /* All uses but the last are expected to be defined in the loop.
5858 The last use is the reduction variable. In case of nested cycle this
5859 assumption is not true: we use reduc_index to record the index of the
5860 reduction variable. */
5861 gimple *reduc_def_stmt = NULL;
5862 int reduc_index = -1;
5863 for (i = 0; i < op_type; i++)
5865 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5866 if (i == 0 && code == COND_EXPR)
5867 continue;
5869 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5870 &def_stmt, &dts[i], &tem);
5871 dt = dts[i];
5872 gcc_assert (is_simple_use);
5873 if (dt == vect_reduction_def)
5875 reduc_def_stmt = def_stmt;
5876 reduc_index = i;
5877 continue;
5879 else if (tem)
5881 /* To properly compute ncopies we are interested in the widest
5882 input type in case we're looking at a widening accumulation. */
5883 if (!vectype_in
5884 || TYPE_VECTOR_SUBPARTS (vectype_in) > TYPE_VECTOR_SUBPARTS (tem))
5885 vectype_in = tem;
5888 if (dt != vect_internal_def
5889 && dt != vect_external_def
5890 && dt != vect_constant_def
5891 && dt != vect_induction_def
5892 && !(dt == vect_nested_cycle && nested_cycle))
5893 return false;
5895 if (dt == vect_nested_cycle)
5897 found_nested_cycle_def = true;
5898 reduc_def_stmt = def_stmt;
5899 reduc_index = i;
5902 if (i == 1 && code == COND_EXPR)
5904 /* Record how value of COND_EXPR is defined. */
5905 if (dt == vect_constant_def)
5907 cond_reduc_dt = dt;
5908 cond_reduc_val = ops[i];
5910 if (dt == vect_induction_def
5911 && def_stmt != NULL
5912 && is_nonwrapping_integer_induction (def_stmt, loop))
5914 cond_reduc_dt = dt;
5915 cond_reduc_def_stmt = def_stmt;
5920 if (!vectype_in)
5921 vectype_in = vectype_out;
5923 /* When vectorizing a reduction chain w/o SLP the reduction PHI is not
5924 directy used in stmt. */
5925 if (reduc_index == -1)
5927 if (orig_stmt)
5928 reduc_def_stmt = STMT_VINFO_REDUC_DEF (orig_stmt_info);
5929 else
5930 reduc_def_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5933 if (! reduc_def_stmt || gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5934 return false;
5936 if (!(reduc_index == -1
5937 || dts[reduc_index] == vect_reduction_def
5938 || dts[reduc_index] == vect_nested_cycle
5939 || ((dts[reduc_index] == vect_internal_def
5940 || dts[reduc_index] == vect_external_def
5941 || dts[reduc_index] == vect_constant_def
5942 || dts[reduc_index] == vect_induction_def)
5943 && nested_cycle && found_nested_cycle_def)))
5945 /* For pattern recognized stmts, orig_stmt might be a reduction,
5946 but some helper statements for the pattern might not, or
5947 might be COND_EXPRs with reduction uses in the condition. */
5948 gcc_assert (orig_stmt);
5949 return false;
5952 stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
5953 enum vect_reduction_type v_reduc_type
5954 = STMT_VINFO_REDUC_TYPE (reduc_def_info);
5955 gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
5957 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5958 /* If we have a condition reduction, see if we can simplify it further. */
5959 if (v_reduc_type == COND_REDUCTION)
5961 if (cond_reduc_dt == vect_induction_def)
5963 stmt_vec_info cond_stmt_vinfo = vinfo_for_stmt (cond_reduc_def_stmt);
5964 tree base
5965 = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo);
5966 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo);
5968 gcc_assert (TREE_CODE (base) == INTEGER_CST
5969 && TREE_CODE (step) == INTEGER_CST);
5970 cond_reduc_val = NULL_TREE;
5971 /* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
5972 above base; punt if base is the minimum value of the type for
5973 MAX_EXPR or maximum value of the type for MIN_EXPR for now. */
5974 if (tree_int_cst_sgn (step) == -1)
5976 cond_reduc_op_code = MIN_EXPR;
5977 if (tree_int_cst_sgn (base) == -1)
5978 cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
5979 else if (tree_int_cst_lt (base,
5980 TYPE_MAX_VALUE (TREE_TYPE (base))))
5981 cond_reduc_val
5982 = int_const_binop (PLUS_EXPR, base, integer_one_node);
5984 else
5986 cond_reduc_op_code = MAX_EXPR;
5987 if (tree_int_cst_sgn (base) == 1)
5988 cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
5989 else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base)),
5990 base))
5991 cond_reduc_val
5992 = int_const_binop (MINUS_EXPR, base, integer_one_node);
5994 if (cond_reduc_val)
5996 if (dump_enabled_p ())
5997 dump_printf_loc (MSG_NOTE, vect_location,
5998 "condition expression based on "
5999 "integer induction.\n");
6000 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6001 = INTEGER_INDUC_COND_REDUCTION;
6005 /* Loop peeling modifies initial value of reduction PHI, which
6006 makes the reduction stmt to be transformed different to the
6007 original stmt analyzed. We need to record reduction code for
6008 CONST_COND_REDUCTION type reduction at analyzing stage, thus
6009 it can be used directly at transform stage. */
6010 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
6011 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
6013 /* Also set the reduction type to CONST_COND_REDUCTION. */
6014 gcc_assert (cond_reduc_dt == vect_constant_def);
6015 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
6017 else if (cond_reduc_dt == vect_constant_def)
6019 enum vect_def_type cond_initial_dt;
6020 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
6021 tree cond_initial_val
6022 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
6024 gcc_assert (cond_reduc_val != NULL_TREE);
6025 vect_is_simple_use (cond_initial_val, loop_vinfo,
6026 &def_stmt, &cond_initial_dt);
6027 if (cond_initial_dt == vect_constant_def
6028 && types_compatible_p (TREE_TYPE (cond_initial_val),
6029 TREE_TYPE (cond_reduc_val)))
6031 tree e = fold_binary (LE_EXPR, boolean_type_node,
6032 cond_initial_val, cond_reduc_val);
6033 if (e && (integer_onep (e) || integer_zerop (e)))
6035 if (dump_enabled_p ())
6036 dump_printf_loc (MSG_NOTE, vect_location,
6037 "condition expression based on "
6038 "compile time constant.\n");
6039 /* Record reduction code at analysis stage. */
6040 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
6041 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
6042 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6043 = CONST_COND_REDUCTION;
6049 if (orig_stmt)
6050 gcc_assert (tmp == orig_stmt
6051 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
6052 else
6053 /* We changed STMT to be the first stmt in reduction chain, hence we
6054 check that in this case the first element in the chain is STMT. */
6055 gcc_assert (stmt == tmp
6056 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
6058 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
6059 return false;
6061 if (slp_node)
6062 ncopies = 1;
6063 else
6064 ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
6066 gcc_assert (ncopies >= 1);
6068 vec_mode = TYPE_MODE (vectype_in);
6070 if (code == COND_EXPR)
6072 /* Only call during the analysis stage, otherwise we'll lose
6073 STMT_VINFO_TYPE. */
6074 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
6075 ops[reduc_index], 0, NULL))
6077 if (dump_enabled_p ())
6078 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6079 "unsupported condition in reduction\n");
6080 return false;
6083 else
6085 /* 4. Supportable by target? */
6087 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
6088 || code == LROTATE_EXPR || code == RROTATE_EXPR)
6090 /* Shifts and rotates are only supported by vectorizable_shifts,
6091 not vectorizable_reduction. */
6092 if (dump_enabled_p ())
6093 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6094 "unsupported shift or rotation.\n");
6095 return false;
6098 /* 4.1. check support for the operation in the loop */
6099 optab = optab_for_tree_code (code, vectype_in, optab_default);
6100 if (!optab)
6102 if (dump_enabled_p ())
6103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6104 "no optab.\n");
6106 return false;
6109 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
6111 if (dump_enabled_p ())
6112 dump_printf (MSG_NOTE, "op not supported by target.\n");
6114 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
6115 || !vect_worthwhile_without_simd_p (loop_vinfo, code))
6116 return false;
6118 if (dump_enabled_p ())
6119 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
6122 /* Worthwhile without SIMD support? */
6123 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
6124 && !vect_worthwhile_without_simd_p (loop_vinfo, code))
6126 if (dump_enabled_p ())
6127 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6128 "not worthwhile without SIMD support.\n");
6130 return false;
6134 /* 4.2. Check support for the epilog operation.
6136 If STMT represents a reduction pattern, then the type of the
6137 reduction variable may be different than the type of the rest
6138 of the arguments. For example, consider the case of accumulation
6139 of shorts into an int accumulator; The original code:
6140 S1: int_a = (int) short_a;
6141 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
6143 was replaced with:
6144 STMT: int_acc = widen_sum <short_a, int_acc>
6146 This means that:
6147 1. The tree-code that is used to create the vector operation in the
6148 epilog code (that reduces the partial results) is not the
6149 tree-code of STMT, but is rather the tree-code of the original
6150 stmt from the pattern that STMT is replacing. I.e, in the example
6151 above we want to use 'widen_sum' in the loop, but 'plus' in the
6152 epilog.
6153 2. The type (mode) we use to check available target support
6154 for the vector operation to be created in the *epilog*, is
6155 determined by the type of the reduction variable (in the example
6156 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
6157 However the type (mode) we use to check available target support
6158 for the vector operation to be created *inside the loop*, is
6159 determined by the type of the other arguments to STMT (in the
6160 example we'd check this: optab_handler (widen_sum_optab,
6161 vect_short_mode)).
6163 This is contrary to "regular" reductions, in which the types of all
6164 the arguments are the same as the type of the reduction variable.
6165 For "regular" reductions we can therefore use the same vector type
6166 (and also the same tree-code) when generating the epilog code and
6167 when generating the code inside the loop. */
6169 if (orig_stmt)
6171 /* This is a reduction pattern: get the vectype from the type of the
6172 reduction variable, and get the tree-code from orig_stmt. */
6173 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6174 == TREE_CODE_REDUCTION);
6175 orig_code = gimple_assign_rhs_code (orig_stmt);
6176 gcc_assert (vectype_out);
6177 vec_mode = TYPE_MODE (vectype_out);
6179 else
6181 /* Regular reduction: use the same vectype and tree-code as used for
6182 the vector code inside the loop can be used for the epilog code. */
6183 orig_code = code;
6185 if (code == MINUS_EXPR)
6186 orig_code = PLUS_EXPR;
6188 /* For simple condition reductions, replace with the actual expression
6189 we want to base our reduction around. */
6190 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == CONST_COND_REDUCTION)
6192 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
6193 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
6195 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6196 == INTEGER_INDUC_COND_REDUCTION)
6197 orig_code = cond_reduc_op_code;
6200 if (nested_cycle)
6202 def_bb = gimple_bb (reduc_def_stmt);
6203 def_stmt_loop = def_bb->loop_father;
6204 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
6205 loop_preheader_edge (def_stmt_loop));
6206 if (TREE_CODE (def_arg) == SSA_NAME
6207 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
6208 && gimple_code (def_arg_stmt) == GIMPLE_PHI
6209 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
6210 && vinfo_for_stmt (def_arg_stmt)
6211 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
6212 == vect_double_reduction_def)
6213 double_reduc = true;
6216 reduc_fn = IFN_LAST;
6218 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != COND_REDUCTION)
6220 if (reduction_fn_for_scalar_code (orig_code, &reduc_fn))
6222 if (reduc_fn != IFN_LAST
6223 && !direct_internal_fn_supported_p (reduc_fn, vectype_out,
6224 OPTIMIZE_FOR_SPEED))
6226 if (dump_enabled_p ())
6227 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6228 "reduc op not supported by target.\n");
6230 reduc_fn = IFN_LAST;
6233 else
6235 if (!nested_cycle || double_reduc)
6237 if (dump_enabled_p ())
6238 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6239 "no reduc code for scalar code.\n");
6241 return false;
6245 else
6247 int scalar_precision
6248 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
6249 cr_index_scalar_type = make_unsigned_type (scalar_precision);
6250 cr_index_vector_type = build_vector_type
6251 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
6253 if (direct_internal_fn_supported_p (IFN_REDUC_MAX, cr_index_vector_type,
6254 OPTIMIZE_FOR_SPEED))
6255 reduc_fn = IFN_REDUC_MAX;
6258 if ((double_reduc
6259 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != TREE_CODE_REDUCTION)
6260 && ncopies > 1)
6262 if (dump_enabled_p ())
6263 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6264 "multiple types in double reduction or condition "
6265 "reduction.\n");
6266 return false;
6269 /* In case of widenning multiplication by a constant, we update the type
6270 of the constant to be the type of the other operand. We check that the
6271 constant fits the type in the pattern recognition pass. */
6272 if (code == DOT_PROD_EXPR
6273 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
6275 if (TREE_CODE (ops[0]) == INTEGER_CST)
6276 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
6277 else if (TREE_CODE (ops[1]) == INTEGER_CST)
6278 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
6279 else
6281 if (dump_enabled_p ())
6282 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6283 "invalid types in dot-prod\n");
6285 return false;
6289 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6291 widest_int ni;
6293 if (! max_loop_iterations (loop, &ni))
6295 if (dump_enabled_p ())
6296 dump_printf_loc (MSG_NOTE, vect_location,
6297 "loop count not known, cannot create cond "
6298 "reduction.\n");
6299 return false;
6301 /* Convert backedges to iterations. */
6302 ni += 1;
6304 /* The additional index will be the same type as the condition. Check
6305 that the loop can fit into this less one (because we'll use up the
6306 zero slot for when there are no matches). */
6307 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
6308 if (wi::geu_p (ni, wi::to_widest (max_index)))
6310 if (dump_enabled_p ())
6311 dump_printf_loc (MSG_NOTE, vect_location,
6312 "loop size is greater than data size.\n");
6313 return false;
6317 /* In case the vectorization factor (VF) is bigger than the number
6318 of elements that we can fit in a vectype (nunits), we have to generate
6319 more than one vector stmt - i.e - we need to "unroll" the
6320 vector stmt by a factor VF/nunits. For more details see documentation
6321 in vectorizable_operation. */
6323 /* If the reduction is used in an outer loop we need to generate
6324 VF intermediate results, like so (e.g. for ncopies=2):
6325 r0 = phi (init, r0)
6326 r1 = phi (init, r1)
6327 r0 = x0 + r0;
6328 r1 = x1 + r1;
6329 (i.e. we generate VF results in 2 registers).
6330 In this case we have a separate def-use cycle for each copy, and therefore
6331 for each copy we get the vector def for the reduction variable from the
6332 respective phi node created for this copy.
6334 Otherwise (the reduction is unused in the loop nest), we can combine
6335 together intermediate results, like so (e.g. for ncopies=2):
6336 r = phi (init, r)
6337 r = x0 + r;
6338 r = x1 + r;
6339 (i.e. we generate VF/2 results in a single register).
6340 In this case for each copy we get the vector def for the reduction variable
6341 from the vectorized reduction operation generated in the previous iteration.
6343 This only works when we see both the reduction PHI and its only consumer
6344 in vectorizable_reduction and there are no intermediate stmts
6345 participating. */
6346 use_operand_p use_p;
6347 gimple *use_stmt;
6348 if (ncopies > 1
6349 && (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
6350 && single_imm_use (gimple_phi_result (reduc_def_stmt), &use_p, &use_stmt)
6351 && (use_stmt == stmt
6352 || STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) == stmt))
6354 single_defuse_cycle = true;
6355 epilog_copies = 1;
6357 else
6358 epilog_copies = ncopies;
6360 /* If the reduction stmt is one of the patterns that have lane
6361 reduction embedded we cannot handle the case of ! single_defuse_cycle. */
6362 if ((ncopies > 1
6363 && ! single_defuse_cycle)
6364 && (code == DOT_PROD_EXPR
6365 || code == WIDEN_SUM_EXPR
6366 || code == SAD_EXPR))
6368 if (dump_enabled_p ())
6369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6370 "multi def-use cycle not possible for lane-reducing "
6371 "reduction operation\n");
6372 return false;
6375 if (!vec_stmt) /* transformation not required. */
6377 if (first_p)
6378 vect_model_reduction_cost (stmt_info, reduc_fn, ncopies);
6379 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
6380 return true;
6383 /* Transform. */
6385 if (dump_enabled_p ())
6386 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
6388 /* FORNOW: Multiple types are not supported for condition. */
6389 if (code == COND_EXPR)
6390 gcc_assert (ncopies == 1);
6392 /* Create the destination vector */
6393 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
6395 prev_stmt_info = NULL;
6396 prev_phi_info = NULL;
6397 if (slp_node)
6398 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6399 else
6401 vec_num = 1;
6402 vec_oprnds0.create (1);
6403 vec_oprnds1.create (1);
6404 if (op_type == ternary_op)
6405 vec_oprnds2.create (1);
6408 phis.create (vec_num);
6409 vect_defs.create (vec_num);
6410 if (!slp_node)
6411 vect_defs.quick_push (NULL_TREE);
6413 if (slp_node)
6414 phis.splice (SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis));
6415 else
6416 phis.quick_push (STMT_VINFO_VEC_STMT (vinfo_for_stmt (reduc_def_stmt)));
6418 for (j = 0; j < ncopies; j++)
6420 if (code == COND_EXPR)
6422 gcc_assert (!slp_node);
6423 vectorizable_condition (stmt, gsi, vec_stmt,
6424 PHI_RESULT (phis[0]),
6425 reduc_index, NULL);
6426 /* Multiple types are not supported for condition. */
6427 break;
6430 /* Handle uses. */
6431 if (j == 0)
6433 if (slp_node)
6435 /* Get vec defs for all the operands except the reduction index,
6436 ensuring the ordering of the ops in the vector is kept. */
6437 auto_vec<tree, 3> slp_ops;
6438 auto_vec<vec<tree>, 3> vec_defs;
6440 slp_ops.quick_push (ops[0]);
6441 slp_ops.quick_push (ops[1]);
6442 if (op_type == ternary_op)
6443 slp_ops.quick_push (ops[2]);
6445 vect_get_slp_defs (slp_ops, slp_node, &vec_defs);
6447 vec_oprnds0.safe_splice (vec_defs[0]);
6448 vec_defs[0].release ();
6449 vec_oprnds1.safe_splice (vec_defs[1]);
6450 vec_defs[1].release ();
6451 if (op_type == ternary_op)
6453 vec_oprnds2.safe_splice (vec_defs[2]);
6454 vec_defs[2].release ();
6457 else
6459 vec_oprnds0.quick_push
6460 (vect_get_vec_def_for_operand (ops[0], stmt));
6461 vec_oprnds1.quick_push
6462 (vect_get_vec_def_for_operand (ops[1], stmt));
6463 if (op_type == ternary_op)
6464 vec_oprnds2.quick_push
6465 (vect_get_vec_def_for_operand (ops[2], stmt));
6468 else
6470 if (!slp_node)
6472 gcc_assert (reduc_index != -1 || ! single_defuse_cycle);
6474 if (single_defuse_cycle && reduc_index == 0)
6475 vec_oprnds0[0] = gimple_assign_lhs (new_stmt);
6476 else
6477 vec_oprnds0[0]
6478 = vect_get_vec_def_for_stmt_copy (dts[0], vec_oprnds0[0]);
6479 if (single_defuse_cycle && reduc_index == 1)
6480 vec_oprnds1[0] = gimple_assign_lhs (new_stmt);
6481 else
6482 vec_oprnds1[0]
6483 = vect_get_vec_def_for_stmt_copy (dts[1], vec_oprnds1[0]);
6484 if (op_type == ternary_op)
6486 if (single_defuse_cycle && reduc_index == 2)
6487 vec_oprnds2[0] = gimple_assign_lhs (new_stmt);
6488 else
6489 vec_oprnds2[0]
6490 = vect_get_vec_def_for_stmt_copy (dts[2], vec_oprnds2[0]);
6495 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
6497 tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
6498 if (op_type == ternary_op)
6499 vop[2] = vec_oprnds2[i];
6501 new_temp = make_ssa_name (vec_dest, new_stmt);
6502 new_stmt = gimple_build_assign (new_temp, code,
6503 vop[0], vop[1], vop[2]);
6504 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6506 if (slp_node)
6508 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6509 vect_defs.quick_push (new_temp);
6511 else
6512 vect_defs[0] = new_temp;
6515 if (slp_node)
6516 continue;
6518 if (j == 0)
6519 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6520 else
6521 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6523 prev_stmt_info = vinfo_for_stmt (new_stmt);
6526 /* Finalize the reduction-phi (set its arguments) and create the
6527 epilog reduction code. */
6528 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6529 vect_defs[0] = gimple_assign_lhs (*vec_stmt);
6531 vect_create_epilog_for_reduction (vect_defs, stmt, reduc_def_stmt,
6532 epilog_copies, reduc_fn, phis,
6533 double_reduc, slp_node, slp_node_instance,
6534 cond_reduc_val, cond_reduc_op_code);
6536 return true;
6539 /* Function vect_min_worthwhile_factor.
6541 For a loop where we could vectorize the operation indicated by CODE,
6542 return the minimum vectorization factor that makes it worthwhile
6543 to use generic vectors. */
6545 vect_min_worthwhile_factor (enum tree_code code)
6547 switch (code)
6549 case PLUS_EXPR:
6550 case MINUS_EXPR:
6551 case NEGATE_EXPR:
6552 return 4;
6554 case BIT_AND_EXPR:
6555 case BIT_IOR_EXPR:
6556 case BIT_XOR_EXPR:
6557 case BIT_NOT_EXPR:
6558 return 2;
6560 default:
6561 return INT_MAX;
6565 /* Return true if VINFO indicates we are doing loop vectorization and if
6566 it is worth decomposing CODE operations into scalar operations for
6567 that loop's vectorization factor. */
6569 bool
6570 vect_worthwhile_without_simd_p (vec_info *vinfo, tree_code code)
6572 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
6573 return (loop_vinfo
6574 && (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6575 >= vect_min_worthwhile_factor (code)));
6578 /* Function vectorizable_induction
6580 Check if PHI performs an induction computation that can be vectorized.
6581 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6582 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6583 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6585 bool
6586 vectorizable_induction (gimple *phi,
6587 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6588 gimple **vec_stmt, slp_tree slp_node)
6590 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6591 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6592 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6593 unsigned ncopies;
6594 bool nested_in_vect_loop = false;
6595 struct loop *iv_loop;
6596 tree vec_def;
6597 edge pe = loop_preheader_edge (loop);
6598 basic_block new_bb;
6599 tree new_vec, vec_init, vec_step, t;
6600 tree new_name;
6601 gimple *new_stmt;
6602 gphi *induction_phi;
6603 tree induc_def, vec_dest;
6604 tree init_expr, step_expr;
6605 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6606 unsigned i;
6607 tree expr;
6608 gimple_seq stmts;
6609 imm_use_iterator imm_iter;
6610 use_operand_p use_p;
6611 gimple *exit_phi;
6612 edge latch_e;
6613 tree loop_arg;
6614 gimple_stmt_iterator si;
6615 basic_block bb = gimple_bb (phi);
6617 if (gimple_code (phi) != GIMPLE_PHI)
6618 return false;
6620 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6621 return false;
6623 /* Make sure it was recognized as induction computation. */
6624 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
6625 return false;
6627 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6628 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
6630 if (slp_node)
6631 ncopies = 1;
6632 else
6633 ncopies = vect_get_num_copies (loop_vinfo, vectype);
6634 gcc_assert (ncopies >= 1);
6636 /* FORNOW. These restrictions should be relaxed. */
6637 if (nested_in_vect_loop_p (loop, phi))
6639 imm_use_iterator imm_iter;
6640 use_operand_p use_p;
6641 gimple *exit_phi;
6642 edge latch_e;
6643 tree loop_arg;
6645 if (ncopies > 1)
6647 if (dump_enabled_p ())
6648 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6649 "multiple types in nested loop.\n");
6650 return false;
6653 /* FORNOW: outer loop induction with SLP not supported. */
6654 if (STMT_SLP_TYPE (stmt_info))
6655 return false;
6657 exit_phi = NULL;
6658 latch_e = loop_latch_edge (loop->inner);
6659 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6660 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6662 gimple *use_stmt = USE_STMT (use_p);
6663 if (is_gimple_debug (use_stmt))
6664 continue;
6666 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6668 exit_phi = use_stmt;
6669 break;
6672 if (exit_phi)
6674 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6675 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6676 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6678 if (dump_enabled_p ())
6679 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6680 "inner-loop induction only used outside "
6681 "of the outer vectorized loop.\n");
6682 return false;
6686 nested_in_vect_loop = true;
6687 iv_loop = loop->inner;
6689 else
6690 iv_loop = loop;
6691 gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
6693 if (!vec_stmt) /* transformation not required. */
6695 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6696 if (dump_enabled_p ())
6697 dump_printf_loc (MSG_NOTE, vect_location,
6698 "=== vectorizable_induction ===\n");
6699 vect_model_induction_cost (stmt_info, ncopies);
6700 return true;
6703 /* Transform. */
6705 /* Compute a vector variable, initialized with the first VF values of
6706 the induction variable. E.g., for an iv with IV_PHI='X' and
6707 evolution S, for a vector of 4 units, we want to compute:
6708 [X, X + S, X + 2*S, X + 3*S]. */
6710 if (dump_enabled_p ())
6711 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6713 latch_e = loop_latch_edge (iv_loop);
6714 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6716 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
6717 gcc_assert (step_expr != NULL_TREE);
6719 pe = loop_preheader_edge (iv_loop);
6720 init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
6721 loop_preheader_edge (iv_loop));
6723 /* Convert the step to the desired type. */
6724 stmts = NULL;
6725 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
6726 if (stmts)
6728 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6729 gcc_assert (!new_bb);
6732 /* Find the first insertion point in the BB. */
6733 si = gsi_after_labels (bb);
6735 /* For SLP induction we have to generate several IVs as for example
6736 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
6737 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
6738 [VF*S, VF*S, VF*S, VF*S] for all. */
6739 if (slp_node)
6741 /* Convert the init to the desired type. */
6742 stmts = NULL;
6743 init_expr = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6744 if (stmts)
6746 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6747 gcc_assert (!new_bb);
6750 /* Generate [VF*S, VF*S, ... ]. */
6751 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6753 expr = build_int_cst (integer_type_node, vf);
6754 expr = fold_convert (TREE_TYPE (step_expr), expr);
6756 else
6757 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6758 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6759 expr, step_expr);
6760 if (! CONSTANT_CLASS_P (new_name))
6761 new_name = vect_init_vector (phi, new_name,
6762 TREE_TYPE (step_expr), NULL);
6763 new_vec = build_vector_from_val (vectype, new_name);
6764 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6766 /* Now generate the IVs. */
6767 unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6768 unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6769 unsigned elts = nunits * nvects;
6770 unsigned nivs = least_common_multiple (group_size, nunits) / nunits;
6771 gcc_assert (elts % group_size == 0);
6772 tree elt = init_expr;
6773 unsigned ivn;
6774 for (ivn = 0; ivn < nivs; ++ivn)
6776 tree_vector_builder elts (vectype, nunits, 1);
6777 stmts = NULL;
6778 for (unsigned eltn = 0; eltn < nunits; ++eltn)
6780 if (ivn*nunits + eltn >= group_size
6781 && (ivn*nunits + eltn) % group_size == 0)
6782 elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
6783 elt, step_expr);
6784 elts.quick_push (elt);
6786 vec_init = gimple_build_vector (&stmts, &elts);
6787 if (stmts)
6789 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6790 gcc_assert (!new_bb);
6793 /* Create the induction-phi that defines the induction-operand. */
6794 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6795 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6796 set_vinfo_for_stmt (induction_phi,
6797 new_stmt_vec_info (induction_phi, loop_vinfo));
6798 induc_def = PHI_RESULT (induction_phi);
6800 /* Create the iv update inside the loop */
6801 vec_def = make_ssa_name (vec_dest);
6802 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6803 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6804 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6806 /* Set the arguments of the phi node: */
6807 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6808 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6809 UNKNOWN_LOCATION);
6811 SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
6814 /* Re-use IVs when we can. */
6815 if (ivn < nvects)
6817 unsigned vfp
6818 = least_common_multiple (group_size, nunits) / group_size;
6819 /* Generate [VF'*S, VF'*S, ... ]. */
6820 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6822 expr = build_int_cst (integer_type_node, vfp);
6823 expr = fold_convert (TREE_TYPE (step_expr), expr);
6825 else
6826 expr = build_int_cst (TREE_TYPE (step_expr), vfp);
6827 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6828 expr, step_expr);
6829 if (! CONSTANT_CLASS_P (new_name))
6830 new_name = vect_init_vector (phi, new_name,
6831 TREE_TYPE (step_expr), NULL);
6832 new_vec = build_vector_from_val (vectype, new_name);
6833 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6834 for (; ivn < nvects; ++ivn)
6836 gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
6837 tree def;
6838 if (gimple_code (iv) == GIMPLE_PHI)
6839 def = gimple_phi_result (iv);
6840 else
6841 def = gimple_assign_lhs (iv);
6842 new_stmt = gimple_build_assign (make_ssa_name (vectype),
6843 PLUS_EXPR,
6844 def, vec_step);
6845 if (gimple_code (iv) == GIMPLE_PHI)
6846 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6847 else
6849 gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
6850 gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
6852 set_vinfo_for_stmt (new_stmt,
6853 new_stmt_vec_info (new_stmt, loop_vinfo));
6854 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6858 return true;
6861 /* Create the vector that holds the initial_value of the induction. */
6862 if (nested_in_vect_loop)
6864 /* iv_loop is nested in the loop to be vectorized. init_expr had already
6865 been created during vectorization of previous stmts. We obtain it
6866 from the STMT_VINFO_VEC_STMT of the defining stmt. */
6867 vec_init = vect_get_vec_def_for_operand (init_expr, phi);
6868 /* If the initial value is not of proper type, convert it. */
6869 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
6871 new_stmt
6872 = gimple_build_assign (vect_get_new_ssa_name (vectype,
6873 vect_simple_var,
6874 "vec_iv_"),
6875 VIEW_CONVERT_EXPR,
6876 build1 (VIEW_CONVERT_EXPR, vectype,
6877 vec_init));
6878 vec_init = gimple_assign_lhs (new_stmt);
6879 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
6880 new_stmt);
6881 gcc_assert (!new_bb);
6882 set_vinfo_for_stmt (new_stmt,
6883 new_stmt_vec_info (new_stmt, loop_vinfo));
6886 else
6888 /* iv_loop is the loop to be vectorized. Create:
6889 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
6890 stmts = NULL;
6891 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6893 tree_vector_builder elts (vectype, nunits, 1);
6894 elts.quick_push (new_name);
6895 for (i = 1; i < nunits; i++)
6897 /* Create: new_name_i = new_name + step_expr */
6898 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
6899 new_name, step_expr);
6900 elts.quick_push (new_name);
6902 /* Create a vector from [new_name_0, new_name_1, ...,
6903 new_name_nunits-1] */
6904 vec_init = gimple_build_vector (&stmts, &elts);
6905 if (stmts)
6907 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6908 gcc_assert (!new_bb);
6913 /* Create the vector that holds the step of the induction. */
6914 if (nested_in_vect_loop)
6915 /* iv_loop is nested in the loop to be vectorized. Generate:
6916 vec_step = [S, S, S, S] */
6917 new_name = step_expr;
6918 else
6920 /* iv_loop is the loop to be vectorized. Generate:
6921 vec_step = [VF*S, VF*S, VF*S, VF*S] */
6922 gimple_seq seq = NULL;
6923 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6925 expr = build_int_cst (integer_type_node, vf);
6926 expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
6928 else
6929 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6930 new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
6931 expr, step_expr);
6932 if (seq)
6934 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
6935 gcc_assert (!new_bb);
6939 t = unshare_expr (new_name);
6940 gcc_assert (CONSTANT_CLASS_P (new_name)
6941 || TREE_CODE (new_name) == SSA_NAME);
6942 new_vec = build_vector_from_val (vectype, t);
6943 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6946 /* Create the following def-use cycle:
6947 loop prolog:
6948 vec_init = ...
6949 vec_step = ...
6950 loop:
6951 vec_iv = PHI <vec_init, vec_loop>
6953 STMT
6955 vec_loop = vec_iv + vec_step; */
6957 /* Create the induction-phi that defines the induction-operand. */
6958 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6959 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6960 set_vinfo_for_stmt (induction_phi,
6961 new_stmt_vec_info (induction_phi, loop_vinfo));
6962 induc_def = PHI_RESULT (induction_phi);
6964 /* Create the iv update inside the loop */
6965 vec_def = make_ssa_name (vec_dest);
6966 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6967 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6968 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6970 /* Set the arguments of the phi node: */
6971 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6972 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6973 UNKNOWN_LOCATION);
6975 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
6977 /* In case that vectorization factor (VF) is bigger than the number
6978 of elements that we can fit in a vectype (nunits), we have to generate
6979 more than one vector stmt - i.e - we need to "unroll" the
6980 vector stmt by a factor VF/nunits. For more details see documentation
6981 in vectorizable_operation. */
6983 if (ncopies > 1)
6985 gimple_seq seq = NULL;
6986 stmt_vec_info prev_stmt_vinfo;
6987 /* FORNOW. This restriction should be relaxed. */
6988 gcc_assert (!nested_in_vect_loop);
6990 /* Create the vector that holds the step of the induction. */
6991 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6993 expr = build_int_cst (integer_type_node, nunits);
6994 expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
6996 else
6997 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
6998 new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
6999 expr, step_expr);
7000 if (seq)
7002 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
7003 gcc_assert (!new_bb);
7006 t = unshare_expr (new_name);
7007 gcc_assert (CONSTANT_CLASS_P (new_name)
7008 || TREE_CODE (new_name) == SSA_NAME);
7009 new_vec = build_vector_from_val (vectype, t);
7010 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
7012 vec_def = induc_def;
7013 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
7014 for (i = 1; i < ncopies; i++)
7016 /* vec_i = vec_prev + vec_step */
7017 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
7018 vec_def, vec_step);
7019 vec_def = make_ssa_name (vec_dest, new_stmt);
7020 gimple_assign_set_lhs (new_stmt, vec_def);
7022 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
7023 set_vinfo_for_stmt (new_stmt,
7024 new_stmt_vec_info (new_stmt, loop_vinfo));
7025 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
7026 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
7030 if (nested_in_vect_loop)
7032 /* Find the loop-closed exit-phi of the induction, and record
7033 the final vector of induction results: */
7034 exit_phi = NULL;
7035 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
7037 gimple *use_stmt = USE_STMT (use_p);
7038 if (is_gimple_debug (use_stmt))
7039 continue;
7041 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
7043 exit_phi = use_stmt;
7044 break;
7047 if (exit_phi)
7049 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
7050 /* FORNOW. Currently not supporting the case that an inner-loop induction
7051 is not used in the outer-loop (i.e. only outside the outer-loop). */
7052 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
7053 && !STMT_VINFO_LIVE_P (stmt_vinfo));
7055 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
7056 if (dump_enabled_p ())
7058 dump_printf_loc (MSG_NOTE, vect_location,
7059 "vector of inductions after inner-loop:");
7060 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
7066 if (dump_enabled_p ())
7068 dump_printf_loc (MSG_NOTE, vect_location,
7069 "transform induction: created def-use cycle: ");
7070 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
7071 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7072 SSA_NAME_DEF_STMT (vec_def), 0);
7075 return true;
7078 /* Function vectorizable_live_operation.
7080 STMT computes a value that is used outside the loop. Check if
7081 it can be supported. */
7083 bool
7084 vectorizable_live_operation (gimple *stmt,
7085 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
7086 slp_tree slp_node, int slp_index,
7087 gimple **vec_stmt)
7089 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7090 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7091 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7092 imm_use_iterator imm_iter;
7093 tree lhs, lhs_type, bitsize, vec_bitsize;
7094 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7095 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
7096 int ncopies;
7097 gimple *use_stmt;
7098 auto_vec<tree> vec_oprnds;
7100 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
7102 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
7103 return false;
7105 /* FORNOW. CHECKME. */
7106 if (nested_in_vect_loop_p (loop, stmt))
7107 return false;
7109 /* If STMT is not relevant and it is a simple assignment and its inputs are
7110 invariant then it can remain in place, unvectorized. The original last
7111 scalar value that it computes will be used. */
7112 if (!STMT_VINFO_RELEVANT_P (stmt_info))
7114 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
7115 if (dump_enabled_p ())
7116 dump_printf_loc (MSG_NOTE, vect_location,
7117 "statement is simple and uses invariant. Leaving in "
7118 "place.\n");
7119 return true;
7122 if (slp_node)
7123 ncopies = 1;
7124 else
7125 ncopies = vect_get_num_copies (loop_vinfo, vectype);
7127 if (!vec_stmt)
7128 /* No transformation required. */
7129 return true;
7131 /* If stmt has a related stmt, then use that for getting the lhs. */
7132 if (is_pattern_stmt_p (stmt_info))
7133 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
7135 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
7136 : gimple_get_lhs (stmt);
7137 lhs_type = TREE_TYPE (lhs);
7139 bitsize = (VECTOR_BOOLEAN_TYPE_P (vectype)
7140 ? bitsize_int (TYPE_PRECISION (TREE_TYPE (vectype)))
7141 : TYPE_SIZE (TREE_TYPE (vectype)));
7142 vec_bitsize = TYPE_SIZE (vectype);
7144 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
7145 tree vec_lhs, bitstart;
7146 if (slp_node)
7148 gcc_assert (slp_index >= 0);
7150 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
7151 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7153 /* Get the last occurrence of the scalar index from the concatenation of
7154 all the slp vectors. Calculate which slp vector it is and the index
7155 within. */
7156 int pos = (num_vec * nunits) - num_scalar + slp_index;
7157 int vec_entry = pos / nunits;
7158 int vec_index = pos % nunits;
7160 /* Get the correct slp vectorized stmt. */
7161 vec_lhs = gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[vec_entry]);
7163 /* Get entry to use. */
7164 bitstart = bitsize_int (vec_index);
7165 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
7167 else
7169 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
7170 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
7172 /* For multiple copies, get the last copy. */
7173 for (int i = 1; i < ncopies; ++i)
7174 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
7175 vec_lhs);
7177 /* Get the last lane in the vector. */
7178 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
7181 /* Create a new vectorized stmt for the uses of STMT and insert outside the
7182 loop. */
7183 gimple_seq stmts = NULL;
7184 tree bftype = TREE_TYPE (vectype);
7185 if (VECTOR_BOOLEAN_TYPE_P (vectype))
7186 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
7187 tree new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
7188 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree), &stmts,
7189 true, NULL_TREE);
7190 if (stmts)
7191 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
7193 /* Replace use of lhs with newly computed result. If the use stmt is a
7194 single arg PHI, just replace all uses of PHI result. It's necessary
7195 because lcssa PHI defining lhs may be before newly inserted stmt. */
7196 use_operand_p use_p;
7197 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
7198 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
7199 && !is_gimple_debug (use_stmt))
7201 if (gimple_code (use_stmt) == GIMPLE_PHI
7202 && gimple_phi_num_args (use_stmt) == 1)
7204 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
7206 else
7208 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
7209 SET_USE (use_p, new_tree);
7211 update_stmt (use_stmt);
7214 return true;
7217 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
7219 static void
7220 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
7222 ssa_op_iter op_iter;
7223 imm_use_iterator imm_iter;
7224 def_operand_p def_p;
7225 gimple *ustmt;
7227 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
7229 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
7231 basic_block bb;
7233 if (!is_gimple_debug (ustmt))
7234 continue;
7236 bb = gimple_bb (ustmt);
7238 if (!flow_bb_inside_loop_p (loop, bb))
7240 if (gimple_debug_bind_p (ustmt))
7242 if (dump_enabled_p ())
7243 dump_printf_loc (MSG_NOTE, vect_location,
7244 "killing debug use\n");
7246 gimple_debug_bind_reset_value (ustmt);
7247 update_stmt (ustmt);
7249 else
7250 gcc_unreachable ();
7256 /* Given loop represented by LOOP_VINFO, return true if computation of
7257 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
7258 otherwise. */
7260 static bool
7261 loop_niters_no_overflow (loop_vec_info loop_vinfo)
7263 /* Constant case. */
7264 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7266 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
7267 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
7269 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
7270 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
7271 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
7272 return true;
7275 widest_int max;
7276 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7277 /* Check the upper bound of loop niters. */
7278 if (get_max_loop_iterations (loop, &max))
7280 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
7281 signop sgn = TYPE_SIGN (type);
7282 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
7283 if (max < type_max)
7284 return true;
7286 return false;
7289 /* Scale profiling counters by estimation for LOOP which is vectorized
7290 by factor VF. */
7292 static void
7293 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
7295 edge preheader = loop_preheader_edge (loop);
7296 /* Reduce loop iterations by the vectorization factor. */
7297 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
7298 profile_count freq_h = loop->header->count, freq_e = preheader->count ();
7300 if (freq_h.nonzero_p ())
7302 profile_probability p;
7304 /* Avoid dropping loop body profile counter to 0 because of zero count
7305 in loop's preheader. */
7306 if (!(freq_e == profile_count::zero ()))
7307 freq_e = freq_e.force_nonzero ();
7308 p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
7309 scale_loop_frequencies (loop, p);
7312 edge exit_e = single_exit (loop);
7313 exit_e->probability = profile_probability::always ()
7314 .apply_scale (1, new_est_niter + 1);
7316 edge exit_l = single_pred_edge (loop->latch);
7317 profile_probability prob = exit_l->probability;
7318 exit_l->probability = exit_e->probability.invert ();
7319 if (prob.initialized_p () && exit_l->probability.initialized_p ())
7320 scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
7323 /* Function vect_transform_loop.
7325 The analysis phase has determined that the loop is vectorizable.
7326 Vectorize the loop - created vectorized stmts to replace the scalar
7327 stmts in the loop, and update the loop exit condition.
7328 Returns scalar epilogue loop if any. */
7330 struct loop *
7331 vect_transform_loop (loop_vec_info loop_vinfo)
7333 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7334 struct loop *epilogue = NULL;
7335 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
7336 int nbbs = loop->num_nodes;
7337 int i;
7338 tree niters_vector = NULL;
7339 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
7340 bool grouped_store;
7341 bool slp_scheduled = false;
7342 gimple *stmt, *pattern_stmt;
7343 gimple_seq pattern_def_seq = NULL;
7344 gimple_stmt_iterator pattern_def_si = gsi_none ();
7345 bool transform_pattern_stmt = false;
7346 bool check_profitability = false;
7347 int th;
7349 if (dump_enabled_p ())
7350 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
7352 /* Use the more conservative vectorization threshold. If the number
7353 of iterations is constant assume the cost check has been performed
7354 by our caller. If the threshold makes all loops profitable that
7355 run at least the vectorization factor number of times checking
7356 is pointless, too. */
7357 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
7358 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo)
7359 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7361 if (dump_enabled_p ())
7362 dump_printf_loc (MSG_NOTE, vect_location,
7363 "Profitability threshold is %d loop iterations.\n",
7364 th);
7365 check_profitability = true;
7368 /* Make sure there exists a single-predecessor exit bb. Do this before
7369 versioning. */
7370 edge e = single_exit (loop);
7371 if (! single_pred_p (e->dest))
7373 split_loop_exit_edge (e);
7374 if (dump_enabled_p ())
7375 dump_printf (MSG_NOTE, "split exit edge\n");
7378 /* Version the loop first, if required, so the profitability check
7379 comes first. */
7381 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
7383 vect_loop_versioning (loop_vinfo, th, check_profitability);
7384 check_profitability = false;
7387 /* Make sure there exists a single-predecessor exit bb also on the
7388 scalar loop copy. Do this after versioning but before peeling
7389 so CFG structure is fine for both scalar and if-converted loop
7390 to make slpeel_duplicate_current_defs_from_edges face matched
7391 loop closed PHI nodes on the exit. */
7392 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7394 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
7395 if (! single_pred_p (e->dest))
7397 split_loop_exit_edge (e);
7398 if (dump_enabled_p ())
7399 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
7403 tree niters = vect_build_loop_niters (loop_vinfo);
7404 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
7405 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
7406 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
7407 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector, th,
7408 check_profitability, niters_no_overflow);
7409 if (niters_vector == NULL_TREE)
7411 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7412 niters_vector
7413 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
7414 LOOP_VINFO_INT_NITERS (loop_vinfo) / vf);
7415 else
7416 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
7417 niters_no_overflow);
7420 /* 1) Make sure the loop header has exactly two entries
7421 2) Make sure we have a preheader basic block. */
7423 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
7425 split_edge (loop_preheader_edge (loop));
7427 /* FORNOW: the vectorizer supports only loops which body consist
7428 of one basic block (header + empty latch). When the vectorizer will
7429 support more involved loop forms, the order by which the BBs are
7430 traversed need to be reconsidered. */
7432 for (i = 0; i < nbbs; i++)
7434 basic_block bb = bbs[i];
7435 stmt_vec_info stmt_info;
7437 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7438 gsi_next (&si))
7440 gphi *phi = si.phi ();
7441 if (dump_enabled_p ())
7443 dump_printf_loc (MSG_NOTE, vect_location,
7444 "------>vectorizing phi: ");
7445 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
7447 stmt_info = vinfo_for_stmt (phi);
7448 if (!stmt_info)
7449 continue;
7451 if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7452 vect_loop_kill_debug_uses (loop, phi);
7454 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7455 && !STMT_VINFO_LIVE_P (stmt_info))
7456 continue;
7458 if (STMT_VINFO_VECTYPE (stmt_info)
7459 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
7460 != (unsigned HOST_WIDE_INT) vf)
7461 && dump_enabled_p ())
7462 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7464 if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
7465 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
7466 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
7467 && ! PURE_SLP_STMT (stmt_info))
7469 if (dump_enabled_p ())
7470 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
7471 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
7475 pattern_stmt = NULL;
7476 for (gimple_stmt_iterator si = gsi_start_bb (bb);
7477 !gsi_end_p (si) || transform_pattern_stmt;)
7479 bool is_store;
7481 if (transform_pattern_stmt)
7482 stmt = pattern_stmt;
7483 else
7485 stmt = gsi_stmt (si);
7486 /* During vectorization remove existing clobber stmts. */
7487 if (gimple_clobber_p (stmt))
7489 unlink_stmt_vdef (stmt);
7490 gsi_remove (&si, true);
7491 release_defs (stmt);
7492 continue;
7496 if (dump_enabled_p ())
7498 dump_printf_loc (MSG_NOTE, vect_location,
7499 "------>vectorizing statement: ");
7500 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7503 stmt_info = vinfo_for_stmt (stmt);
7505 /* vector stmts created in the outer-loop during vectorization of
7506 stmts in an inner-loop may not have a stmt_info, and do not
7507 need to be vectorized. */
7508 if (!stmt_info)
7510 gsi_next (&si);
7511 continue;
7514 if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7515 vect_loop_kill_debug_uses (loop, stmt);
7517 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7518 && !STMT_VINFO_LIVE_P (stmt_info))
7520 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7521 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7522 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7523 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7525 stmt = pattern_stmt;
7526 stmt_info = vinfo_for_stmt (stmt);
7528 else
7530 gsi_next (&si);
7531 continue;
7534 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7535 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7536 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7537 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7538 transform_pattern_stmt = true;
7540 /* If pattern statement has def stmts, vectorize them too. */
7541 if (is_pattern_stmt_p (stmt_info))
7543 if (pattern_def_seq == NULL)
7545 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
7546 pattern_def_si = gsi_start (pattern_def_seq);
7548 else if (!gsi_end_p (pattern_def_si))
7549 gsi_next (&pattern_def_si);
7550 if (pattern_def_seq != NULL)
7552 gimple *pattern_def_stmt = NULL;
7553 stmt_vec_info pattern_def_stmt_info = NULL;
7555 while (!gsi_end_p (pattern_def_si))
7557 pattern_def_stmt = gsi_stmt (pattern_def_si);
7558 pattern_def_stmt_info
7559 = vinfo_for_stmt (pattern_def_stmt);
7560 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
7561 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
7562 break;
7563 gsi_next (&pattern_def_si);
7566 if (!gsi_end_p (pattern_def_si))
7568 if (dump_enabled_p ())
7570 dump_printf_loc (MSG_NOTE, vect_location,
7571 "==> vectorizing pattern def "
7572 "stmt: ");
7573 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7574 pattern_def_stmt, 0);
7577 stmt = pattern_def_stmt;
7578 stmt_info = pattern_def_stmt_info;
7580 else
7582 pattern_def_si = gsi_none ();
7583 transform_pattern_stmt = false;
7586 else
7587 transform_pattern_stmt = false;
7590 if (STMT_VINFO_VECTYPE (stmt_info))
7592 unsigned int nunits
7593 = (unsigned int)
7594 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
7595 if (!STMT_SLP_TYPE (stmt_info)
7596 && nunits != (unsigned int) vf
7597 && dump_enabled_p ())
7598 /* For SLP VF is set according to unrolling factor, and not
7599 to vector size, hence for SLP this print is not valid. */
7600 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7603 /* SLP. Schedule all the SLP instances when the first SLP stmt is
7604 reached. */
7605 if (STMT_SLP_TYPE (stmt_info))
7607 if (!slp_scheduled)
7609 slp_scheduled = true;
7611 if (dump_enabled_p ())
7612 dump_printf_loc (MSG_NOTE, vect_location,
7613 "=== scheduling SLP instances ===\n");
7615 vect_schedule_slp (loop_vinfo);
7618 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
7619 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
7621 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7623 pattern_def_seq = NULL;
7624 gsi_next (&si);
7626 continue;
7630 /* -------- vectorize statement ------------ */
7631 if (dump_enabled_p ())
7632 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
7634 grouped_store = false;
7635 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
7636 if (is_store)
7638 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
7640 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
7641 interleaving chain was completed - free all the stores in
7642 the chain. */
7643 gsi_next (&si);
7644 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
7646 else
7648 /* Free the attached stmt_vec_info and remove the stmt. */
7649 gimple *store = gsi_stmt (si);
7650 free_stmt_vec_info (store);
7651 unlink_stmt_vdef (store);
7652 gsi_remove (&si, true);
7653 release_defs (store);
7656 /* Stores can only appear at the end of pattern statements. */
7657 gcc_assert (!transform_pattern_stmt);
7658 pattern_def_seq = NULL;
7660 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7662 pattern_def_seq = NULL;
7663 gsi_next (&si);
7665 } /* stmts in BB */
7666 } /* BBs in loop */
7668 slpeel_make_loop_iterate_ntimes (loop, niters_vector);
7670 scale_profile_for_vect_loop (loop, vf);
7672 /* The minimum number of iterations performed by the epilogue. This
7673 is 1 when peeling for gaps because we always need a final scalar
7674 iteration. */
7675 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
7676 /* +1 to convert latch counts to loop iteration counts,
7677 -min_epilogue_iters to remove iterations that cannot be performed
7678 by the vector code. */
7679 int bias = 1 - min_epilogue_iters;
7680 /* In these calculations the "- 1" converts loop iteration counts
7681 back to latch counts. */
7682 if (loop->any_upper_bound)
7683 loop->nb_iterations_upper_bound
7684 = wi::udiv_floor (loop->nb_iterations_upper_bound + bias, vf) - 1;
7685 if (loop->any_likely_upper_bound)
7686 loop->nb_iterations_likely_upper_bound
7687 = wi::udiv_floor (loop->nb_iterations_likely_upper_bound + bias, vf) - 1;
7688 if (loop->any_estimate)
7689 loop->nb_iterations_estimate
7690 = wi::udiv_floor (loop->nb_iterations_estimate + bias, vf) - 1;
7692 if (dump_enabled_p ())
7694 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7696 dump_printf_loc (MSG_NOTE, vect_location,
7697 "LOOP VECTORIZED\n");
7698 if (loop->inner)
7699 dump_printf_loc (MSG_NOTE, vect_location,
7700 "OUTER LOOP VECTORIZED\n");
7701 dump_printf (MSG_NOTE, "\n");
7703 else
7704 dump_printf_loc (MSG_NOTE, vect_location,
7705 "LOOP EPILOGUE VECTORIZED (VS=%d)\n",
7706 current_vector_size);
7709 /* Free SLP instances here because otherwise stmt reference counting
7710 won't work. */
7711 slp_instance instance;
7712 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
7713 vect_free_slp_instance (instance);
7714 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
7715 /* Clear-up safelen field since its value is invalid after vectorization
7716 since vectorized loop can have loop-carried dependencies. */
7717 loop->safelen = 0;
7719 /* Don't vectorize epilogue for epilogue. */
7720 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7721 epilogue = NULL;
7723 if (epilogue)
7725 unsigned int vector_sizes
7726 = targetm.vectorize.autovectorize_vector_sizes ();
7727 vector_sizes &= current_vector_size - 1;
7729 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
7730 epilogue = NULL;
7731 else if (!vector_sizes)
7732 epilogue = NULL;
7733 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
7734 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
7736 int smallest_vec_size = 1 << ctz_hwi (vector_sizes);
7737 int ratio = current_vector_size / smallest_vec_size;
7738 int eiters = LOOP_VINFO_INT_NITERS (loop_vinfo)
7739 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
7740 eiters = eiters % vf;
7742 epilogue->nb_iterations_upper_bound = eiters - 1;
7744 if (eiters < vf / ratio)
7745 epilogue = NULL;
7749 if (epilogue)
7751 epilogue->force_vectorize = loop->force_vectorize;
7752 epilogue->safelen = loop->safelen;
7753 epilogue->dont_vectorize = false;
7755 /* We may need to if-convert epilogue to vectorize it. */
7756 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7757 tree_if_conversion (epilogue);
7760 return epilogue;
7763 /* The code below is trying to perform simple optimization - revert
7764 if-conversion for masked stores, i.e. if the mask of a store is zero
7765 do not perform it and all stored value producers also if possible.
7766 For example,
7767 for (i=0; i<n; i++)
7768 if (c[i])
7770 p1[i] += 1;
7771 p2[i] = p3[i] +2;
7773 this transformation will produce the following semi-hammock:
7775 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
7777 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
7778 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
7779 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
7780 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
7781 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
7782 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
7786 void
7787 optimize_mask_stores (struct loop *loop)
7789 basic_block *bbs = get_loop_body (loop);
7790 unsigned nbbs = loop->num_nodes;
7791 unsigned i;
7792 basic_block bb;
7793 struct loop *bb_loop;
7794 gimple_stmt_iterator gsi;
7795 gimple *stmt;
7796 auto_vec<gimple *> worklist;
7798 vect_location = find_loop_location (loop);
7799 /* Pick up all masked stores in loop if any. */
7800 for (i = 0; i < nbbs; i++)
7802 bb = bbs[i];
7803 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7804 gsi_next (&gsi))
7806 stmt = gsi_stmt (gsi);
7807 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
7808 worklist.safe_push (stmt);
7812 free (bbs);
7813 if (worklist.is_empty ())
7814 return;
7816 /* Loop has masked stores. */
7817 while (!worklist.is_empty ())
7819 gimple *last, *last_store;
7820 edge e, efalse;
7821 tree mask;
7822 basic_block store_bb, join_bb;
7823 gimple_stmt_iterator gsi_to;
7824 tree vdef, new_vdef;
7825 gphi *phi;
7826 tree vectype;
7827 tree zero;
7829 last = worklist.pop ();
7830 mask = gimple_call_arg (last, 2);
7831 bb = gimple_bb (last);
7832 /* Create then_bb and if-then structure in CFG, then_bb belongs to
7833 the same loop as if_bb. It could be different to LOOP when two
7834 level loop-nest is vectorized and mask_store belongs to the inner
7835 one. */
7836 e = split_block (bb, last);
7837 bb_loop = bb->loop_father;
7838 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
7839 join_bb = e->dest;
7840 store_bb = create_empty_bb (bb);
7841 add_bb_to_loop (store_bb, bb_loop);
7842 e->flags = EDGE_TRUE_VALUE;
7843 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7844 /* Put STORE_BB to likely part. */
7845 efalse->probability = profile_probability::unlikely ();
7846 store_bb->count = efalse->count ();
7847 make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
7848 if (dom_info_available_p (CDI_DOMINATORS))
7849 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7850 if (dump_enabled_p ())
7851 dump_printf_loc (MSG_NOTE, vect_location,
7852 "Create new block %d to sink mask stores.",
7853 store_bb->index);
7854 /* Create vector comparison with boolean result. */
7855 vectype = TREE_TYPE (mask);
7856 zero = build_zero_cst (vectype);
7857 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7858 gsi = gsi_last_bb (bb);
7859 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7860 /* Create new PHI node for vdef of the last masked store:
7861 .MEM_2 = VDEF <.MEM_1>
7862 will be converted to
7863 .MEM.3 = VDEF <.MEM_1>
7864 and new PHI node will be created in join bb
7865 .MEM_2 = PHI <.MEM_1, .MEM_3>
7867 vdef = gimple_vdef (last);
7868 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7869 gimple_set_vdef (last, new_vdef);
7870 phi = create_phi_node (vdef, join_bb);
7871 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7873 /* Put all masked stores with the same mask to STORE_BB if possible. */
7874 while (true)
7876 gimple_stmt_iterator gsi_from;
7877 gimple *stmt1 = NULL;
7879 /* Move masked store to STORE_BB. */
7880 last_store = last;
7881 gsi = gsi_for_stmt (last);
7882 gsi_from = gsi;
7883 /* Shift GSI to the previous stmt for further traversal. */
7884 gsi_prev (&gsi);
7885 gsi_to = gsi_start_bb (store_bb);
7886 gsi_move_before (&gsi_from, &gsi_to);
7887 /* Setup GSI_TO to the non-empty block start. */
7888 gsi_to = gsi_start_bb (store_bb);
7889 if (dump_enabled_p ())
7891 dump_printf_loc (MSG_NOTE, vect_location,
7892 "Move stmt to created bb\n");
7893 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7895 /* Move all stored value producers if possible. */
7896 while (!gsi_end_p (gsi))
7898 tree lhs;
7899 imm_use_iterator imm_iter;
7900 use_operand_p use_p;
7901 bool res;
7903 /* Skip debug statements. */
7904 if (is_gimple_debug (gsi_stmt (gsi)))
7906 gsi_prev (&gsi);
7907 continue;
7909 stmt1 = gsi_stmt (gsi);
7910 /* Do not consider statements writing to memory or having
7911 volatile operand. */
7912 if (gimple_vdef (stmt1)
7913 || gimple_has_volatile_ops (stmt1))
7914 break;
7915 gsi_from = gsi;
7916 gsi_prev (&gsi);
7917 lhs = gimple_get_lhs (stmt1);
7918 if (!lhs)
7919 break;
7921 /* LHS of vectorized stmt must be SSA_NAME. */
7922 if (TREE_CODE (lhs) != SSA_NAME)
7923 break;
7925 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7927 /* Remove dead scalar statement. */
7928 if (has_zero_uses (lhs))
7930 gsi_remove (&gsi_from, true);
7931 continue;
7935 /* Check that LHS does not have uses outside of STORE_BB. */
7936 res = true;
7937 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7939 gimple *use_stmt;
7940 use_stmt = USE_STMT (use_p);
7941 if (is_gimple_debug (use_stmt))
7942 continue;
7943 if (gimple_bb (use_stmt) != store_bb)
7945 res = false;
7946 break;
7949 if (!res)
7950 break;
7952 if (gimple_vuse (stmt1)
7953 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7954 break;
7956 /* Can move STMT1 to STORE_BB. */
7957 if (dump_enabled_p ())
7959 dump_printf_loc (MSG_NOTE, vect_location,
7960 "Move stmt to created bb\n");
7961 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7963 gsi_move_before (&gsi_from, &gsi_to);
7964 /* Shift GSI_TO for further insertion. */
7965 gsi_prev (&gsi_to);
7967 /* Put other masked stores with the same mask to STORE_BB. */
7968 if (worklist.is_empty ()
7969 || gimple_call_arg (worklist.last (), 2) != mask
7970 || worklist.last () != stmt1)
7971 break;
7972 last = worklist.pop ();
7974 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);