PR tree-optimization/80631
[official-gcc.git] / gcc / tree-predcom.c
blobdde903794fd547716b23bad8133b8810f4eda955
1 /* Predictive commoning.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
163 for (i = 0; i < n; i++)
165 a[i] = 1;
166 a[i+2] = 2;
169 It can be replaced with:
171 t0 = a[0];
172 t1 = a[1];
173 for (i = 0; i < n; i++)
175 a[i] = 1;
176 t2 = 2;
177 t0 = t1;
178 t1 = t2;
180 a[n] = t0;
181 a[n+1] = t1;
183 If the loop runs more than 1 iterations, it can be further simplified into:
185 for (i = 0; i < n; i++)
187 a[i] = 1;
189 a[n] = 2;
190 a[n+1] = 2;
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
195 With trivial effort, we also support load inside Store-Store chains if the
196 load is dominated by a store statement in the same iteration of loop. You
197 can see this as a restricted Store-Mixed-Load-Store chain.
199 TODO: For now, we don't support store-store chains in multi-exit loops. We
200 force to not unroll in case of store-store chain even if other chains might
201 ask for unroll.
203 Predictive commoning can be generalized for arbitrary computations (not
204 just memory loads), and also nontrivial transfer functions (e.g., replacing
205 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
207 #include "config.h"
208 #include "system.h"
209 #include "coretypes.h"
210 #include "backend.h"
211 #include "rtl.h"
212 #include "tree.h"
213 #include "gimple.h"
214 #include "predict.h"
215 #include "tree-pass.h"
216 #include "ssa.h"
217 #include "gimple-pretty-print.h"
218 #include "alias.h"
219 #include "fold-const.h"
220 #include "cfgloop.h"
221 #include "tree-eh.h"
222 #include "gimplify.h"
223 #include "gimple-iterator.h"
224 #include "gimplify-me.h"
225 #include "tree-ssa-loop-ivopts.h"
226 #include "tree-ssa-loop-manip.h"
227 #include "tree-ssa-loop-niter.h"
228 #include "tree-ssa-loop.h"
229 #include "tree-into-ssa.h"
230 #include "tree-dfa.h"
231 #include "tree-ssa.h"
232 #include "tree-data-ref.h"
233 #include "tree-scalar-evolution.h"
234 #include "params.h"
235 #include "tree-affine.h"
236 #include "builtins.h"
238 /* The maximum number of iterations between the considered memory
239 references. */
241 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
243 /* Data references (or phi nodes that carry data reference values across
244 loop iterations). */
246 typedef struct dref_d
248 /* The reference itself. */
249 struct data_reference *ref;
251 /* The statement in that the reference appears. */
252 gimple *stmt;
254 /* In case that STMT is a phi node, this field is set to the SSA name
255 defined by it in replace_phis_by_defined_names (in order to avoid
256 pointing to phi node that got reallocated in the meantime). */
257 tree name_defined_by_phi;
259 /* Distance of the reference from the root of the chain (in number of
260 iterations of the loop). */
261 unsigned distance;
263 /* Number of iterations offset from the first reference in the component. */
264 widest_int offset;
266 /* Number of the reference in a component, in dominance ordering. */
267 unsigned pos;
269 /* True if the memory reference is always accessed when the loop is
270 entered. */
271 unsigned always_accessed : 1;
272 } *dref;
275 /* Type of the chain of the references. */
277 enum chain_type
279 /* The addresses of the references in the chain are constant. */
280 CT_INVARIANT,
282 /* There are only loads in the chain. */
283 CT_LOAD,
285 /* Root of the chain is store, the rest are loads. */
286 CT_STORE_LOAD,
288 /* There are only stores in the chain. */
289 CT_STORE_STORE,
291 /* A combination of two chains. */
292 CT_COMBINATION
295 /* Chains of data references. */
297 typedef struct chain
299 /* Type of the chain. */
300 enum chain_type type;
302 /* For combination chains, the operator and the two chains that are
303 combined, and the type of the result. */
304 enum tree_code op;
305 tree rslt_type;
306 struct chain *ch1, *ch2;
308 /* The references in the chain. */
309 vec<dref> refs;
311 /* The maximum distance of the reference in the chain from the root. */
312 unsigned length;
314 /* The variables used to copy the value throughout iterations. */
315 vec<tree> vars;
317 /* Initializers for the variables. */
318 vec<tree> inits;
320 /* Finalizers for the eliminated stores. */
321 vec<tree> finis;
323 /* gimple stmts intializing the initial variables of the chain. */
324 gimple_seq init_seq;
326 /* gimple stmts finalizing the eliminated stores of the chain. */
327 gimple_seq fini_seq;
329 /* True if there is a use of a variable with the maximal distance
330 that comes after the root in the loop. */
331 unsigned has_max_use_after : 1;
333 /* True if all the memory references in the chain are always accessed. */
334 unsigned all_always_accessed : 1;
336 /* True if this chain was combined together with some other chain. */
337 unsigned combined : 1;
339 /* True if this is store elimination chain and eliminated stores store
340 loop invariant value into memory. */
341 unsigned inv_store_elimination : 1;
342 } *chain_p;
345 /* Describes the knowledge about the step of the memory references in
346 the component. */
348 enum ref_step_type
350 /* The step is zero. */
351 RS_INVARIANT,
353 /* The step is nonzero. */
354 RS_NONZERO,
356 /* The step may or may not be nonzero. */
357 RS_ANY
360 /* Components of the data dependence graph. */
362 struct component
364 /* The references in the component. */
365 vec<dref> refs;
367 /* What we know about the step of the references in the component. */
368 enum ref_step_type comp_step;
370 /* True if all references in component are stores and we try to do
371 intra/inter loop iteration dead store elimination. */
372 bool eliminate_store_p;
374 /* Next component in the list. */
375 struct component *next;
378 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
380 static bitmap looparound_phis;
382 /* Cache used by tree_to_aff_combination_expand. */
384 static hash_map<tree, name_expansion *> *name_expansions;
386 /* Dumps data reference REF to FILE. */
388 extern void dump_dref (FILE *, dref);
389 void
390 dump_dref (FILE *file, dref ref)
392 if (ref->ref)
394 fprintf (file, " ");
395 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
396 fprintf (file, " (id %u%s)\n", ref->pos,
397 DR_IS_READ (ref->ref) ? "" : ", write");
399 fprintf (file, " offset ");
400 print_decs (ref->offset, file);
401 fprintf (file, "\n");
403 fprintf (file, " distance %u\n", ref->distance);
405 else
407 if (gimple_code (ref->stmt) == GIMPLE_PHI)
408 fprintf (file, " looparound ref\n");
409 else
410 fprintf (file, " combination ref\n");
411 fprintf (file, " in statement ");
412 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
413 fprintf (file, "\n");
414 fprintf (file, " distance %u\n", ref->distance);
419 /* Dumps CHAIN to FILE. */
421 extern void dump_chain (FILE *, chain_p);
422 void
423 dump_chain (FILE *file, chain_p chain)
425 dref a;
426 const char *chain_type;
427 unsigned i;
428 tree var;
430 switch (chain->type)
432 case CT_INVARIANT:
433 chain_type = "Load motion";
434 break;
436 case CT_LOAD:
437 chain_type = "Loads-only";
438 break;
440 case CT_STORE_LOAD:
441 chain_type = "Store-loads";
442 break;
444 case CT_STORE_STORE:
445 chain_type = "Store-stores";
446 break;
448 case CT_COMBINATION:
449 chain_type = "Combination";
450 break;
452 default:
453 gcc_unreachable ();
456 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
457 chain->combined ? " (combined)" : "");
458 if (chain->type != CT_INVARIANT)
459 fprintf (file, " max distance %u%s\n", chain->length,
460 chain->has_max_use_after ? "" : ", may reuse first");
462 if (chain->type == CT_COMBINATION)
464 fprintf (file, " equal to %p %s %p in type ",
465 (void *) chain->ch1, op_symbol_code (chain->op),
466 (void *) chain->ch2);
467 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
468 fprintf (file, "\n");
471 if (chain->vars.exists ())
473 fprintf (file, " vars");
474 FOR_EACH_VEC_ELT (chain->vars, i, var)
476 fprintf (file, " ");
477 print_generic_expr (file, var, TDF_SLIM);
479 fprintf (file, "\n");
482 if (chain->inits.exists ())
484 fprintf (file, " inits");
485 FOR_EACH_VEC_ELT (chain->inits, i, var)
487 fprintf (file, " ");
488 print_generic_expr (file, var, TDF_SLIM);
490 fprintf (file, "\n");
493 fprintf (file, " references:\n");
494 FOR_EACH_VEC_ELT (chain->refs, i, a)
495 dump_dref (file, a);
497 fprintf (file, "\n");
500 /* Dumps CHAINS to FILE. */
502 extern void dump_chains (FILE *, vec<chain_p> );
503 void
504 dump_chains (FILE *file, vec<chain_p> chains)
506 chain_p chain;
507 unsigned i;
509 FOR_EACH_VEC_ELT (chains, i, chain)
510 dump_chain (file, chain);
513 /* Dumps COMP to FILE. */
515 extern void dump_component (FILE *, struct component *);
516 void
517 dump_component (FILE *file, struct component *comp)
519 dref a;
520 unsigned i;
522 fprintf (file, "Component%s:\n",
523 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
524 FOR_EACH_VEC_ELT (comp->refs, i, a)
525 dump_dref (file, a);
526 fprintf (file, "\n");
529 /* Dumps COMPS to FILE. */
531 extern void dump_components (FILE *, struct component *);
532 void
533 dump_components (FILE *file, struct component *comps)
535 struct component *comp;
537 for (comp = comps; comp; comp = comp->next)
538 dump_component (file, comp);
541 /* Frees a chain CHAIN. */
543 static void
544 release_chain (chain_p chain)
546 dref ref;
547 unsigned i;
549 if (chain == NULL)
550 return;
552 FOR_EACH_VEC_ELT (chain->refs, i, ref)
553 free (ref);
555 chain->refs.release ();
556 chain->vars.release ();
557 chain->inits.release ();
558 if (chain->init_seq)
559 gimple_seq_discard (chain->init_seq);
561 chain->finis.release ();
562 if (chain->fini_seq)
563 gimple_seq_discard (chain->fini_seq);
565 free (chain);
568 /* Frees CHAINS. */
570 static void
571 release_chains (vec<chain_p> chains)
573 unsigned i;
574 chain_p chain;
576 FOR_EACH_VEC_ELT (chains, i, chain)
577 release_chain (chain);
578 chains.release ();
581 /* Frees a component COMP. */
583 static void
584 release_component (struct component *comp)
586 comp->refs.release ();
587 free (comp);
590 /* Frees list of components COMPS. */
592 static void
593 release_components (struct component *comps)
595 struct component *act, *next;
597 for (act = comps; act; act = next)
599 next = act->next;
600 release_component (act);
604 /* Finds a root of tree given by FATHERS containing A, and performs path
605 shortening. */
607 static unsigned
608 component_of (unsigned fathers[], unsigned a)
610 unsigned root, n;
612 for (root = a; root != fathers[root]; root = fathers[root])
613 continue;
615 for (; a != root; a = n)
617 n = fathers[a];
618 fathers[a] = root;
621 return root;
624 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
625 components, A and B are components to merge. */
627 static void
628 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
630 unsigned ca = component_of (fathers, a);
631 unsigned cb = component_of (fathers, b);
633 if (ca == cb)
634 return;
636 if (sizes[ca] < sizes[cb])
638 sizes[cb] += sizes[ca];
639 fathers[ca] = cb;
641 else
643 sizes[ca] += sizes[cb];
644 fathers[cb] = ca;
648 /* Returns true if A is a reference that is suitable for predictive commoning
649 in the innermost loop that contains it. REF_STEP is set according to the
650 step of the reference A. */
652 static bool
653 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
655 tree ref = DR_REF (a), step = DR_STEP (a);
657 if (!step
658 || TREE_THIS_VOLATILE (ref)
659 || !is_gimple_reg_type (TREE_TYPE (ref))
660 || tree_could_throw_p (ref))
661 return false;
663 if (integer_zerop (step))
664 *ref_step = RS_INVARIANT;
665 else if (integer_nonzerop (step))
666 *ref_step = RS_NONZERO;
667 else
668 *ref_step = RS_ANY;
670 return true;
673 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
675 static void
676 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
678 tree type = TREE_TYPE (DR_OFFSET (dr));
679 aff_tree delta;
681 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
682 &name_expansions);
683 aff_combination_const (&delta, type, wi::to_widest (DR_INIT (dr)));
684 aff_combination_add (offset, &delta);
687 /* Determines number of iterations of the innermost enclosing loop before B
688 refers to exactly the same location as A and stores it to OFF. If A and
689 B do not have the same step, they never meet, or anything else fails,
690 returns false, otherwise returns true. Both A and B are assumed to
691 satisfy suitable_reference_p. */
693 static bool
694 determine_offset (struct data_reference *a, struct data_reference *b,
695 widest_int *off)
697 aff_tree diff, baseb, step;
698 tree typea, typeb;
700 /* Check that both the references access the location in the same type. */
701 typea = TREE_TYPE (DR_REF (a));
702 typeb = TREE_TYPE (DR_REF (b));
703 if (!useless_type_conversion_p (typeb, typea))
704 return false;
706 /* Check whether the base address and the step of both references is the
707 same. */
708 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
709 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
710 return false;
712 if (integer_zerop (DR_STEP (a)))
714 /* If the references have loop invariant address, check that they access
715 exactly the same location. */
716 *off = 0;
717 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
718 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
721 /* Compare the offsets of the addresses, and check whether the difference
722 is a multiple of step. */
723 aff_combination_dr_offset (a, &diff);
724 aff_combination_dr_offset (b, &baseb);
725 aff_combination_scale (&baseb, -1);
726 aff_combination_add (&diff, &baseb);
728 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
729 &step, &name_expansions);
730 return aff_combination_constant_multiple_p (&diff, &step, off);
733 /* Returns the last basic block in LOOP for that we are sure that
734 it is executed whenever the loop is entered. */
736 static basic_block
737 last_always_executed_block (struct loop *loop)
739 unsigned i;
740 vec<edge> exits = get_loop_exit_edges (loop);
741 edge ex;
742 basic_block last = loop->latch;
744 FOR_EACH_VEC_ELT (exits, i, ex)
745 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
746 exits.release ();
748 return last;
751 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
753 static struct component *
754 split_data_refs_to_components (struct loop *loop,
755 vec<data_reference_p> datarefs,
756 vec<ddr_p> depends)
758 unsigned i, n = datarefs.length ();
759 unsigned ca, ia, ib, bad;
760 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
761 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
762 struct component **comps;
763 struct data_reference *dr, *dra, *drb;
764 struct data_dependence_relation *ddr;
765 struct component *comp_list = NULL, *comp;
766 dref dataref;
767 /* Don't do store elimination if loop has multiple exit edges. */
768 bool eliminate_store_p = single_exit (loop) != NULL;
769 basic_block last_always_executed = last_always_executed_block (loop);
771 FOR_EACH_VEC_ELT (datarefs, i, dr)
773 if (!DR_REF (dr))
775 /* A fake reference for call or asm_expr that may clobber memory;
776 just fail. */
777 goto end;
779 /* predcom pass isn't prepared to handle calls with data references. */
780 if (is_gimple_call (DR_STMT (dr)))
781 goto end;
782 dr->aux = (void *) (size_t) i;
783 comp_father[i] = i;
784 comp_size[i] = 1;
787 /* A component reserved for the "bad" data references. */
788 comp_father[n] = n;
789 comp_size[n] = 1;
791 FOR_EACH_VEC_ELT (datarefs, i, dr)
793 enum ref_step_type dummy;
795 if (!suitable_reference_p (dr, &dummy))
797 ia = (unsigned) (size_t) dr->aux;
798 merge_comps (comp_father, comp_size, n, ia);
802 FOR_EACH_VEC_ELT (depends, i, ddr)
804 widest_int dummy_off;
806 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
807 continue;
809 dra = DDR_A (ddr);
810 drb = DDR_B (ddr);
812 /* Don't do store elimination if there is any unknown dependence for
813 any store data reference. */
814 if ((DR_IS_WRITE (dra) || DR_IS_WRITE (drb))
815 && (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
816 || DDR_NUM_DIST_VECTS (ddr) == 0))
817 eliminate_store_p = false;
819 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
820 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
821 if (ia == ib)
822 continue;
824 bad = component_of (comp_father, n);
826 /* If both A and B are reads, we may ignore unsuitable dependences. */
827 if (DR_IS_READ (dra) && DR_IS_READ (drb))
829 if (ia == bad || ib == bad
830 || !determine_offset (dra, drb, &dummy_off))
831 continue;
833 /* If A is read and B write or vice versa and there is unsuitable
834 dependence, instead of merging both components into a component
835 that will certainly not pass suitable_component_p, just put the
836 read into bad component, perhaps at least the write together with
837 all the other data refs in it's component will be optimizable. */
838 else if (DR_IS_READ (dra) && ib != bad)
840 if (ia == bad)
841 continue;
842 else if (!determine_offset (dra, drb, &dummy_off))
844 merge_comps (comp_father, comp_size, bad, ia);
845 continue;
848 else if (DR_IS_READ (drb) && ia != bad)
850 if (ib == bad)
851 continue;
852 else if (!determine_offset (dra, drb, &dummy_off))
854 merge_comps (comp_father, comp_size, bad, ib);
855 continue;
858 else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb)
859 && ia != bad && ib != bad
860 && !determine_offset (dra, drb, &dummy_off))
862 merge_comps (comp_father, comp_size, bad, ia);
863 merge_comps (comp_father, comp_size, bad, ib);
864 continue;
867 merge_comps (comp_father, comp_size, ia, ib);
870 if (eliminate_store_p)
872 tree niters = number_of_latch_executions (loop);
874 /* Don't do store elimination if niters info is unknown because stores
875 in the last iteration can't be eliminated and we need to recover it
876 after loop. */
877 eliminate_store_p = (niters != NULL_TREE && niters != chrec_dont_know);
880 comps = XCNEWVEC (struct component *, n);
881 bad = component_of (comp_father, n);
882 FOR_EACH_VEC_ELT (datarefs, i, dr)
884 ia = (unsigned) (size_t) dr->aux;
885 ca = component_of (comp_father, ia);
886 if (ca == bad)
887 continue;
889 comp = comps[ca];
890 if (!comp)
892 comp = XCNEW (struct component);
893 comp->refs.create (comp_size[ca]);
894 comp->eliminate_store_p = eliminate_store_p;
895 comps[ca] = comp;
898 dataref = XCNEW (struct dref_d);
899 dataref->ref = dr;
900 dataref->stmt = DR_STMT (dr);
901 dataref->offset = 0;
902 dataref->distance = 0;
904 dataref->always_accessed
905 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
906 gimple_bb (dataref->stmt));
907 dataref->pos = comp->refs.length ();
908 comp->refs.quick_push (dataref);
911 for (i = 0; i < n; i++)
913 comp = comps[i];
914 if (comp)
916 comp->next = comp_list;
917 comp_list = comp;
920 free (comps);
922 end:
923 free (comp_father);
924 free (comp_size);
925 return comp_list;
928 /* Returns true if the component COMP satisfies the conditions
929 described in 2) at the beginning of this file. LOOP is the current
930 loop. */
932 static bool
933 suitable_component_p (struct loop *loop, struct component *comp)
935 unsigned i;
936 dref a, first;
937 basic_block ba, bp = loop->header;
938 bool ok, has_write = false;
940 FOR_EACH_VEC_ELT (comp->refs, i, a)
942 ba = gimple_bb (a->stmt);
944 if (!just_once_each_iteration_p (loop, ba))
945 return false;
947 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
948 bp = ba;
950 if (DR_IS_WRITE (a->ref))
951 has_write = true;
954 first = comp->refs[0];
955 ok = suitable_reference_p (first->ref, &comp->comp_step);
956 gcc_assert (ok);
957 first->offset = 0;
959 for (i = 1; comp->refs.iterate (i, &a); i++)
961 if (!determine_offset (first->ref, a->ref, &a->offset))
962 return false;
964 enum ref_step_type a_step;
965 gcc_checking_assert (suitable_reference_p (a->ref, &a_step)
966 && a_step == comp->comp_step);
969 /* If there is a write inside the component, we must know whether the
970 step is nonzero or not -- we would not otherwise be able to recognize
971 whether the value accessed by reads comes from the OFFSET-th iteration
972 or the previous one. */
973 if (has_write && comp->comp_step == RS_ANY)
974 return false;
976 return true;
979 /* Check the conditions on references inside each of components COMPS,
980 and remove the unsuitable components from the list. The new list
981 of components is returned. The conditions are described in 2) at
982 the beginning of this file. LOOP is the current loop. */
984 static struct component *
985 filter_suitable_components (struct loop *loop, struct component *comps)
987 struct component **comp, *act;
989 for (comp = &comps; *comp; )
991 act = *comp;
992 if (suitable_component_p (loop, act))
993 comp = &act->next;
994 else
996 dref ref;
997 unsigned i;
999 *comp = act->next;
1000 FOR_EACH_VEC_ELT (act->refs, i, ref)
1001 free (ref);
1002 release_component (act);
1006 return comps;
1009 /* Compares two drefs A and B by their offset and position. Callback for
1010 qsort. */
1012 static int
1013 order_drefs (const void *a, const void *b)
1015 const dref *const da = (const dref *) a;
1016 const dref *const db = (const dref *) b;
1017 int offcmp = wi::cmps ((*da)->offset, (*db)->offset);
1019 if (offcmp != 0)
1020 return offcmp;
1022 return (*da)->pos - (*db)->pos;
1025 /* Compares two drefs A and B by their position. Callback for qsort. */
1027 static int
1028 order_drefs_by_pos (const void *a, const void *b)
1030 const dref *const da = (const dref *) a;
1031 const dref *const db = (const dref *) b;
1033 return (*da)->pos - (*db)->pos;
1036 /* Returns root of the CHAIN. */
1038 static inline dref
1039 get_chain_root (chain_p chain)
1041 return chain->refs[0];
1044 /* Given CHAIN, returns the last write ref at DISTANCE, or NULL if it doesn't
1045 exist. */
1047 static inline dref
1048 get_chain_last_write_at (chain_p chain, unsigned distance)
1050 for (unsigned i = chain->refs.length (); i > 0; i--)
1051 if (DR_IS_WRITE (chain->refs[i - 1]->ref)
1052 && distance == chain->refs[i - 1]->distance)
1053 return chain->refs[i - 1];
1055 return NULL;
1058 /* Given CHAIN, returns the last write ref with the same distance before load
1059 at index LOAD_IDX, or NULL if it doesn't exist. */
1061 static inline dref
1062 get_chain_last_write_before_load (chain_p chain, unsigned load_idx)
1064 gcc_assert (load_idx < chain->refs.length ());
1066 unsigned distance = chain->refs[load_idx]->distance;
1068 for (unsigned i = load_idx; i > 0; i--)
1069 if (DR_IS_WRITE (chain->refs[i - 1]->ref)
1070 && distance == chain->refs[i - 1]->distance)
1071 return chain->refs[i - 1];
1073 return NULL;
1076 /* Adds REF to the chain CHAIN. */
1078 static void
1079 add_ref_to_chain (chain_p chain, dref ref)
1081 dref root = get_chain_root (chain);
1083 gcc_assert (wi::les_p (root->offset, ref->offset));
1084 widest_int dist = ref->offset - root->offset;
1085 gcc_assert (wi::fits_uhwi_p (dist));
1087 chain->refs.safe_push (ref);
1089 ref->distance = dist.to_uhwi ();
1091 if (ref->distance >= chain->length)
1093 chain->length = ref->distance;
1094 chain->has_max_use_after = false;
1097 /* Promote this chain to CT_STORE_STORE if it has multiple stores. */
1098 if (DR_IS_WRITE (ref->ref))
1099 chain->type = CT_STORE_STORE;
1101 /* Don't set the flag for store-store chain since there is no use. */
1102 if (chain->type != CT_STORE_STORE
1103 && ref->distance == chain->length
1104 && ref->pos > root->pos)
1105 chain->has_max_use_after = true;
1107 chain->all_always_accessed &= ref->always_accessed;
1110 /* Returns the chain for invariant component COMP. */
1112 static chain_p
1113 make_invariant_chain (struct component *comp)
1115 chain_p chain = XCNEW (struct chain);
1116 unsigned i;
1117 dref ref;
1119 chain->type = CT_INVARIANT;
1121 chain->all_always_accessed = true;
1123 FOR_EACH_VEC_ELT (comp->refs, i, ref)
1125 chain->refs.safe_push (ref);
1126 chain->all_always_accessed &= ref->always_accessed;
1129 chain->inits = vNULL;
1130 chain->finis = vNULL;
1132 return chain;
1135 /* Make a new chain of type TYPE rooted at REF. */
1137 static chain_p
1138 make_rooted_chain (dref ref, enum chain_type type)
1140 chain_p chain = XCNEW (struct chain);
1142 chain->type = type;
1143 chain->refs.safe_push (ref);
1144 chain->all_always_accessed = ref->always_accessed;
1145 ref->distance = 0;
1147 chain->inits = vNULL;
1148 chain->finis = vNULL;
1150 return chain;
1153 /* Returns true if CHAIN is not trivial. */
1155 static bool
1156 nontrivial_chain_p (chain_p chain)
1158 return chain != NULL && chain->refs.length () > 1;
1161 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1162 is no such name. */
1164 static tree
1165 name_for_ref (dref ref)
1167 tree name;
1169 if (is_gimple_assign (ref->stmt))
1171 if (!ref->ref || DR_IS_READ (ref->ref))
1172 name = gimple_assign_lhs (ref->stmt);
1173 else
1174 name = gimple_assign_rhs1 (ref->stmt);
1176 else
1177 name = PHI_RESULT (ref->stmt);
1179 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1182 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1183 iterations of the innermost enclosing loop). */
1185 static bool
1186 valid_initializer_p (struct data_reference *ref,
1187 unsigned distance, struct data_reference *root)
1189 aff_tree diff, base, step;
1190 widest_int off;
1192 /* Both REF and ROOT must be accessing the same object. */
1193 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1194 return false;
1196 /* The initializer is defined outside of loop, hence its address must be
1197 invariant inside the loop. */
1198 gcc_assert (integer_zerop (DR_STEP (ref)));
1200 /* If the address of the reference is invariant, initializer must access
1201 exactly the same location. */
1202 if (integer_zerop (DR_STEP (root)))
1203 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1204 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1206 /* Verify that this index of REF is equal to the root's index at
1207 -DISTANCE-th iteration. */
1208 aff_combination_dr_offset (root, &diff);
1209 aff_combination_dr_offset (ref, &base);
1210 aff_combination_scale (&base, -1);
1211 aff_combination_add (&diff, &base);
1213 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1214 &step, &name_expansions);
1215 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1216 return false;
1218 if (off != distance)
1219 return false;
1221 return true;
1224 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1225 initial value is correct (equal to initial value of REF shifted by one
1226 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1227 is the root of the current chain. */
1229 static gphi *
1230 find_looparound_phi (struct loop *loop, dref ref, dref root)
1232 tree name, init, init_ref;
1233 gphi *phi = NULL;
1234 gimple *init_stmt;
1235 edge latch = loop_latch_edge (loop);
1236 struct data_reference init_dr;
1237 gphi_iterator psi;
1239 if (is_gimple_assign (ref->stmt))
1241 if (DR_IS_READ (ref->ref))
1242 name = gimple_assign_lhs (ref->stmt);
1243 else
1244 name = gimple_assign_rhs1 (ref->stmt);
1246 else
1247 name = PHI_RESULT (ref->stmt);
1248 if (!name)
1249 return NULL;
1251 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1253 phi = psi.phi ();
1254 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1255 break;
1258 if (gsi_end_p (psi))
1259 return NULL;
1261 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1262 if (TREE_CODE (init) != SSA_NAME)
1263 return NULL;
1264 init_stmt = SSA_NAME_DEF_STMT (init);
1265 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1266 return NULL;
1267 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1269 init_ref = gimple_assign_rhs1 (init_stmt);
1270 if (!REFERENCE_CLASS_P (init_ref)
1271 && !DECL_P (init_ref))
1272 return NULL;
1274 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1275 loop enclosing PHI). */
1276 memset (&init_dr, 0, sizeof (struct data_reference));
1277 DR_REF (&init_dr) = init_ref;
1278 DR_STMT (&init_dr) = phi;
1279 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr), init_ref, loop))
1280 return NULL;
1282 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1283 return NULL;
1285 return phi;
1288 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1290 static void
1291 insert_looparound_copy (chain_p chain, dref ref, gphi *phi)
1293 dref nw = XCNEW (struct dref_d), aref;
1294 unsigned i;
1296 nw->stmt = phi;
1297 nw->distance = ref->distance + 1;
1298 nw->always_accessed = 1;
1300 FOR_EACH_VEC_ELT (chain->refs, i, aref)
1301 if (aref->distance >= nw->distance)
1302 break;
1303 chain->refs.safe_insert (i, nw);
1305 if (nw->distance > chain->length)
1307 chain->length = nw->distance;
1308 chain->has_max_use_after = false;
1312 /* For references in CHAIN that are copied around the LOOP (created previously
1313 by PRE, or by user), add the results of such copies to the chain. This
1314 enables us to remove the copies by unrolling, and may need less registers
1315 (also, it may allow us to combine chains together). */
1317 static void
1318 add_looparound_copies (struct loop *loop, chain_p chain)
1320 unsigned i;
1321 dref ref, root = get_chain_root (chain);
1322 gphi *phi;
1324 if (chain->type == CT_STORE_STORE)
1325 return;
1327 FOR_EACH_VEC_ELT (chain->refs, i, ref)
1329 phi = find_looparound_phi (loop, ref, root);
1330 if (!phi)
1331 continue;
1333 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1334 insert_looparound_copy (chain, ref, phi);
1338 /* Find roots of the values and determine distances in the component COMP.
1339 The references are redistributed into CHAINS. LOOP is the current
1340 loop. */
1342 static void
1343 determine_roots_comp (struct loop *loop,
1344 struct component *comp,
1345 vec<chain_p> *chains)
1347 unsigned i;
1348 dref a;
1349 chain_p chain = NULL;
1350 widest_int last_ofs = 0;
1351 enum chain_type type;
1353 /* Invariants are handled specially. */
1354 if (comp->comp_step == RS_INVARIANT)
1356 chain = make_invariant_chain (comp);
1357 chains->safe_push (chain);
1358 return;
1361 /* Trivial component. */
1362 if (comp->refs.length () <= 1)
1364 if (comp->refs.length () == 1)
1366 free (comp->refs[0]);
1367 comp->refs.truncate (0);
1369 return;
1372 comp->refs.qsort (order_drefs);
1374 /* For Store-Store chain, we only support load if it is dominated by a
1375 store statement in the same iteration of loop. */
1376 if (comp->eliminate_store_p)
1377 for (a = NULL, i = 0; i < comp->refs.length (); i++)
1379 if (DR_IS_WRITE (comp->refs[i]->ref))
1380 a = comp->refs[i];
1381 else if (a == NULL || a->offset != comp->refs[i]->offset)
1383 /* If there is load that is not dominated by a store in the
1384 same iteration of loop, clear the flag so no Store-Store
1385 chain is generated for this component. */
1386 comp->eliminate_store_p = false;
1387 break;
1391 /* Determine roots and create chains for components. */
1392 FOR_EACH_VEC_ELT (comp->refs, i, a)
1394 if (!chain
1395 || (chain->type == CT_LOAD && DR_IS_WRITE (a->ref))
1396 || (!comp->eliminate_store_p && DR_IS_WRITE (a->ref))
1397 || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs))
1399 if (nontrivial_chain_p (chain))
1401 add_looparound_copies (loop, chain);
1402 chains->safe_push (chain);
1404 else
1405 release_chain (chain);
1407 /* Determine type of the chain. If the root reference is a load,
1408 this can only be a CT_LOAD chain; other chains are intialized
1409 to CT_STORE_LOAD and might be promoted to CT_STORE_STORE when
1410 new reference is added. */
1411 type = DR_IS_READ (a->ref) ? CT_LOAD : CT_STORE_LOAD;
1412 chain = make_rooted_chain (a, type);
1413 last_ofs = a->offset;
1414 continue;
1417 add_ref_to_chain (chain, a);
1420 if (nontrivial_chain_p (chain))
1422 add_looparound_copies (loop, chain);
1423 chains->safe_push (chain);
1425 else
1426 release_chain (chain);
1429 /* Find roots of the values and determine distances in components COMPS, and
1430 separates the references to CHAINS. LOOP is the current loop. */
1432 static void
1433 determine_roots (struct loop *loop,
1434 struct component *comps, vec<chain_p> *chains)
1436 struct component *comp;
1438 for (comp = comps; comp; comp = comp->next)
1439 determine_roots_comp (loop, comp, chains);
1442 /* Replace the reference in statement STMT with temporary variable
1443 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1444 the reference in the statement. IN_LHS is true if the reference
1445 is in the lhs of STMT, false if it is in rhs. */
1447 static void
1448 replace_ref_with (gimple *stmt, tree new_tree, bool set, bool in_lhs)
1450 tree val;
1451 gassign *new_stmt;
1452 gimple_stmt_iterator bsi, psi;
1454 if (gimple_code (stmt) == GIMPLE_PHI)
1456 gcc_assert (!in_lhs && !set);
1458 val = PHI_RESULT (stmt);
1459 bsi = gsi_after_labels (gimple_bb (stmt));
1460 psi = gsi_for_stmt (stmt);
1461 remove_phi_node (&psi, false);
1463 /* Turn the phi node into GIMPLE_ASSIGN. */
1464 new_stmt = gimple_build_assign (val, new_tree);
1465 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1466 return;
1469 /* Since the reference is of gimple_reg type, it should only
1470 appear as lhs or rhs of modify statement. */
1471 gcc_assert (is_gimple_assign (stmt));
1473 bsi = gsi_for_stmt (stmt);
1475 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1476 if (!set)
1478 gcc_assert (!in_lhs);
1479 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1480 stmt = gsi_stmt (bsi);
1481 update_stmt (stmt);
1482 return;
1485 if (in_lhs)
1487 /* We have statement
1489 OLD = VAL
1491 If OLD is a memory reference, then VAL is gimple_val, and we transform
1492 this to
1494 OLD = VAL
1495 NEW = VAL
1497 Otherwise, we are replacing a combination chain,
1498 VAL is the expression that performs the combination, and OLD is an
1499 SSA name. In this case, we transform the assignment to
1501 OLD = VAL
1502 NEW = OLD
1506 val = gimple_assign_lhs (stmt);
1507 if (TREE_CODE (val) != SSA_NAME)
1509 val = gimple_assign_rhs1 (stmt);
1510 gcc_assert (gimple_assign_single_p (stmt));
1511 if (TREE_CLOBBER_P (val))
1512 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1513 else
1514 gcc_assert (gimple_assign_copy_p (stmt));
1517 else
1519 /* VAL = OLD
1521 is transformed to
1523 VAL = OLD
1524 NEW = VAL */
1526 val = gimple_assign_lhs (stmt);
1529 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1530 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1533 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1534 of the loop it was analyzed in. Append init stmts to STMTS. */
1536 static tree
1537 ref_at_iteration (data_reference_p dr, int iter,
1538 gimple_seq *stmts, tree niters = NULL_TREE)
1540 tree off = DR_OFFSET (dr);
1541 tree coff = DR_INIT (dr);
1542 tree ref = DR_REF (dr);
1543 enum tree_code ref_code = ERROR_MARK;
1544 tree ref_type = NULL_TREE;
1545 tree ref_op1 = NULL_TREE;
1546 tree ref_op2 = NULL_TREE;
1547 tree new_offset;
1549 if (iter != 0)
1551 new_offset = size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter));
1552 if (TREE_CODE (new_offset) == INTEGER_CST)
1553 coff = size_binop (PLUS_EXPR, coff, new_offset);
1554 else
1555 off = size_binop (PLUS_EXPR, off, new_offset);
1558 if (niters != NULL_TREE)
1560 niters = fold_convert (ssizetype, niters);
1561 new_offset = size_binop (MULT_EXPR, DR_STEP (dr), niters);
1562 if (TREE_CODE (niters) == INTEGER_CST)
1563 coff = size_binop (PLUS_EXPR, coff, new_offset);
1564 else
1565 off = size_binop (PLUS_EXPR, off, new_offset);
1568 /* While data-ref analysis punts on bit offsets it still handles
1569 bitfield accesses at byte boundaries. Cope with that. Note that
1570 if the bitfield object also starts at a byte-boundary we can simply
1571 replicate the COMPONENT_REF, but we have to subtract the component's
1572 byte-offset from the MEM_REF address first.
1573 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1574 start at offset zero. */
1575 if (TREE_CODE (ref) == COMPONENT_REF
1576 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
1578 unsigned HOST_WIDE_INT boff;
1579 tree field = TREE_OPERAND (ref, 1);
1580 tree offset = component_ref_field_offset (ref);
1581 ref_type = TREE_TYPE (ref);
1582 boff = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
1583 /* This can occur in Ada. See the comment in get_bit_range. */
1584 if (boff % BITS_PER_UNIT != 0
1585 || !tree_fits_uhwi_p (offset))
1587 ref_code = BIT_FIELD_REF;
1588 ref_op1 = DECL_SIZE (field);
1589 ref_op2 = bitsize_zero_node;
1591 else
1593 boff >>= LOG2_BITS_PER_UNIT;
1594 boff += tree_to_uhwi (offset);
1595 coff = size_binop (MINUS_EXPR, coff, ssize_int (boff));
1596 ref_code = COMPONENT_REF;
1597 ref_op1 = field;
1598 ref_op2 = TREE_OPERAND (ref, 2);
1599 ref = TREE_OPERAND (ref, 0);
1602 tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off);
1603 addr = force_gimple_operand_1 (unshare_expr (addr), stmts,
1604 is_gimple_mem_ref_addr, NULL_TREE);
1605 tree alias_ptr = fold_convert (reference_alias_ptr_type (ref), coff);
1606 tree type = build_aligned_type (TREE_TYPE (ref),
1607 get_object_alignment (ref));
1608 ref = build2 (MEM_REF, type, addr, alias_ptr);
1609 if (ref_type)
1610 ref = build3 (ref_code, ref_type, ref, ref_op1, ref_op2);
1611 return ref;
1614 /* Get the initialization expression for the INDEX-th temporary variable
1615 of CHAIN. */
1617 static tree
1618 get_init_expr (chain_p chain, unsigned index)
1620 if (chain->type == CT_COMBINATION)
1622 tree e1 = get_init_expr (chain->ch1, index);
1623 tree e2 = get_init_expr (chain->ch2, index);
1625 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1627 else
1628 return chain->inits[index];
1631 /* Returns a new temporary variable used for the I-th variable carrying
1632 value of REF. The variable's uid is marked in TMP_VARS. */
1634 static tree
1635 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1637 tree type = TREE_TYPE (ref);
1638 /* We never access the components of the temporary variable in predictive
1639 commoning. */
1640 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1641 bitmap_set_bit (tmp_vars, DECL_UID (var));
1642 return var;
1645 /* Creates the variables for CHAIN, as well as phi nodes for them and
1646 initialization on entry to LOOP. Uids of the newly created
1647 temporary variables are marked in TMP_VARS. */
1649 static void
1650 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1652 unsigned i;
1653 unsigned n = chain->length;
1654 dref root = get_chain_root (chain);
1655 bool reuse_first = !chain->has_max_use_after;
1656 tree ref, init, var, next;
1657 gphi *phi;
1658 gimple_seq stmts;
1659 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1661 /* If N == 0, then all the references are within the single iteration. And
1662 since this is an nonempty chain, reuse_first cannot be true. */
1663 gcc_assert (n > 0 || !reuse_first);
1665 chain->vars.create (n + 1);
1667 if (chain->type == CT_COMBINATION)
1668 ref = gimple_assign_lhs (root->stmt);
1669 else
1670 ref = DR_REF (root->ref);
1672 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1674 var = predcom_tmp_var (ref, i, tmp_vars);
1675 chain->vars.quick_push (var);
1677 if (reuse_first)
1678 chain->vars.quick_push (chain->vars[0]);
1680 FOR_EACH_VEC_ELT (chain->vars, i, var)
1681 chain->vars[i] = make_ssa_name (var);
1683 for (i = 0; i < n; i++)
1685 var = chain->vars[i];
1686 next = chain->vars[i + 1];
1687 init = get_init_expr (chain, i);
1689 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1690 if (stmts)
1691 gsi_insert_seq_on_edge_immediate (entry, stmts);
1693 phi = create_phi_node (var, loop->header);
1694 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1695 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1699 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1700 all stores to be eliminated store loop invariant values into memory.
1701 In this case, we can use these invariant values directly after LOOP. */
1703 static bool
1704 is_inv_store_elimination_chain (struct loop *loop, chain_p chain)
1706 if (chain->length == 0 || chain->type != CT_STORE_STORE)
1707 return false;
1709 gcc_assert (!chain->has_max_use_after);
1711 /* If loop iterates for unknown times or fewer times than chain->lenght,
1712 we still need to setup root variable and propagate it with PHI node. */
1713 tree niters = number_of_latch_executions (loop);
1714 if (TREE_CODE (niters) != INTEGER_CST
1715 || wi::leu_p (wi::to_wide (niters), chain->length))
1716 return false;
1718 /* Check stores in chain for elimination if they only store loop invariant
1719 values. */
1720 for (unsigned i = 0; i < chain->length; i++)
1722 dref a = get_chain_last_write_at (chain, i);
1723 if (a == NULL)
1724 continue;
1726 gimple *def_stmt, *stmt = a->stmt;
1727 if (!gimple_assign_single_p (stmt))
1728 return false;
1730 tree val = gimple_assign_rhs1 (stmt);
1731 if (TREE_CLOBBER_P (val))
1732 return false;
1734 if (CONSTANT_CLASS_P (val))
1735 continue;
1737 if (TREE_CODE (val) != SSA_NAME)
1738 return false;
1740 def_stmt = SSA_NAME_DEF_STMT (val);
1741 if (gimple_nop_p (def_stmt))
1742 continue;
1744 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
1745 return false;
1747 return true;
1750 /* Creates root variables for store elimination CHAIN in which stores for
1751 elimination only store loop invariant values. In this case, we neither
1752 need to load root variables before loop nor propagate it with PHI nodes. */
1754 static void
1755 initialize_root_vars_store_elim_1 (chain_p chain)
1757 tree var;
1758 unsigned i, n = chain->length;
1760 chain->vars.create (n);
1761 chain->vars.safe_grow_cleared (n);
1763 /* Initialize root value for eliminated stores at each distance. */
1764 for (i = 0; i < n; i++)
1766 dref a = get_chain_last_write_at (chain, i);
1767 if (a == NULL)
1768 continue;
1770 var = gimple_assign_rhs1 (a->stmt);
1771 chain->vars[a->distance] = var;
1774 /* We don't propagate values with PHI nodes, so manually propagate value
1775 to bubble positions. */
1776 var = chain->vars[0];
1777 for (i = 1; i < n; i++)
1779 if (chain->vars[i] != NULL_TREE)
1781 var = chain->vars[i];
1782 continue;
1784 chain->vars[i] = var;
1787 /* Revert the vector. */
1788 for (i = 0; i < n / 2; i++)
1789 std::swap (chain->vars[i], chain->vars[n - i - 1]);
1792 /* Creates root variables for store elimination CHAIN in which stores for
1793 elimination store loop variant values. In this case, we may need to
1794 load root variables before LOOP and propagate it with PHI nodes. Uids
1795 of the newly created root variables are marked in TMP_VARS. */
1797 static void
1798 initialize_root_vars_store_elim_2 (struct loop *loop,
1799 chain_p chain, bitmap tmp_vars)
1801 unsigned i, n = chain->length;
1802 tree ref, init, var, next, val, phi_result;
1803 gimple *stmt;
1804 gimple_seq stmts;
1806 chain->vars.create (n);
1808 ref = DR_REF (get_chain_root (chain)->ref);
1809 for (i = 0; i < n; i++)
1811 var = predcom_tmp_var (ref, i, tmp_vars);
1812 chain->vars.quick_push (var);
1815 FOR_EACH_VEC_ELT (chain->vars, i, var)
1816 chain->vars[i] = make_ssa_name (var);
1818 /* Root values are either rhs operand of stores to be eliminated, or
1819 loaded from memory before loop. */
1820 auto_vec<tree> vtemps;
1821 vtemps.safe_grow_cleared (n);
1822 for (i = 0; i < n; i++)
1824 init = get_init_expr (chain, i);
1825 if (init == NULL_TREE)
1827 /* Root value is rhs operand of the store to be eliminated if
1828 it isn't loaded from memory before loop. */
1829 dref a = get_chain_last_write_at (chain, i);
1830 val = gimple_assign_rhs1 (a->stmt);
1831 if (TREE_CLOBBER_P (val))
1833 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (var));
1834 gimple_assign_set_rhs1 (a->stmt, val);
1837 vtemps[n - i - 1] = val;
1839 else
1841 edge latch = loop_latch_edge (loop);
1842 edge entry = loop_preheader_edge (loop);
1844 /* Root value is loaded from memory before loop, we also need
1845 to add PHI nodes to propagate the value across iterations. */
1846 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1847 if (stmts)
1848 gsi_insert_seq_on_edge_immediate (entry, stmts);
1850 next = chain->vars[n - i];
1851 phi_result = copy_ssa_name (next);
1852 gphi *phi = create_phi_node (phi_result, loop->header);
1853 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1854 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1855 vtemps[n - i - 1] = phi_result;
1859 /* Find the insertion position. */
1860 dref last = get_chain_root (chain);
1861 for (i = 0; i < chain->refs.length (); i++)
1863 if (chain->refs[i]->pos > last->pos)
1864 last = chain->refs[i];
1867 gimple_stmt_iterator gsi = gsi_for_stmt (last->stmt);
1869 /* Insert statements copying root value to root variable. */
1870 for (i = 0; i < n; i++)
1872 var = chain->vars[i];
1873 val = vtemps[i];
1874 stmt = gimple_build_assign (var, val);
1875 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1879 /* Generates stores for CHAIN's eliminated stores in LOOP's last
1880 (CHAIN->length - 1) iterations. */
1882 static void
1883 finalize_eliminated_stores (struct loop *loop, chain_p chain)
1885 unsigned i, n = chain->length;
1887 for (i = 0; i < n; i++)
1889 tree var = chain->vars[i];
1890 tree fini = chain->finis[n - i - 1];
1891 gimple *stmt = gimple_build_assign (fini, var);
1893 gimple_seq_add_stmt_without_update (&chain->fini_seq, stmt);
1896 if (chain->fini_seq)
1898 gsi_insert_seq_on_edge_immediate (single_exit (loop), chain->fini_seq);
1899 chain->fini_seq = NULL;
1903 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1904 initialization on entry to LOOP if necessary. The ssa name for the variable
1905 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1906 around the loop is created. Uid of the newly created temporary variable
1907 is marked in TMP_VARS. INITS is the list containing the (single)
1908 initializer. */
1910 static void
1911 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1912 vec<tree> *vars, vec<tree> inits,
1913 bitmap tmp_vars)
1915 unsigned i;
1916 tree ref = DR_REF (root->ref), init, var, next;
1917 gimple_seq stmts;
1918 gphi *phi;
1919 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1921 /* Find the initializer for the variable, and check that it cannot
1922 trap. */
1923 init = inits[0];
1925 vars->create (written ? 2 : 1);
1926 var = predcom_tmp_var (ref, 0, tmp_vars);
1927 vars->quick_push (var);
1928 if (written)
1929 vars->quick_push ((*vars)[0]);
1931 FOR_EACH_VEC_ELT (*vars, i, var)
1932 (*vars)[i] = make_ssa_name (var);
1934 var = (*vars)[0];
1936 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1937 if (stmts)
1938 gsi_insert_seq_on_edge_immediate (entry, stmts);
1940 if (written)
1942 next = (*vars)[1];
1943 phi = create_phi_node (var, loop->header);
1944 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1945 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1947 else
1949 gassign *init_stmt = gimple_build_assign (var, init);
1950 gsi_insert_on_edge_immediate (entry, init_stmt);
1955 /* Execute load motion for references in chain CHAIN. Uids of the newly
1956 created temporary variables are marked in TMP_VARS. */
1958 static void
1959 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1961 auto_vec<tree> vars;
1962 dref a;
1963 unsigned n_writes = 0, ridx, i;
1964 tree var;
1966 gcc_assert (chain->type == CT_INVARIANT);
1967 gcc_assert (!chain->combined);
1968 FOR_EACH_VEC_ELT (chain->refs, i, a)
1969 if (DR_IS_WRITE (a->ref))
1970 n_writes++;
1972 /* If there are no reads in the loop, there is nothing to do. */
1973 if (n_writes == chain->refs.length ())
1974 return;
1976 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1977 &vars, chain->inits, tmp_vars);
1979 ridx = 0;
1980 FOR_EACH_VEC_ELT (chain->refs, i, a)
1982 bool is_read = DR_IS_READ (a->ref);
1984 if (DR_IS_WRITE (a->ref))
1986 n_writes--;
1987 if (n_writes)
1989 var = vars[0];
1990 var = make_ssa_name (SSA_NAME_VAR (var));
1991 vars[0] = var;
1993 else
1994 ridx = 1;
1997 replace_ref_with (a->stmt, vars[ridx],
1998 !is_read, !is_read);
2002 /* Returns the single statement in that NAME is used, excepting
2003 the looparound phi nodes contained in one of the chains. If there is no
2004 such statement, or more statements, NULL is returned. */
2006 static gimple *
2007 single_nonlooparound_use (tree name)
2009 use_operand_p use;
2010 imm_use_iterator it;
2011 gimple *stmt, *ret = NULL;
2013 FOR_EACH_IMM_USE_FAST (use, it, name)
2015 stmt = USE_STMT (use);
2017 if (gimple_code (stmt) == GIMPLE_PHI)
2019 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
2020 could not be processed anyway, so just fail for them. */
2021 if (bitmap_bit_p (looparound_phis,
2022 SSA_NAME_VERSION (PHI_RESULT (stmt))))
2023 continue;
2025 return NULL;
2027 else if (is_gimple_debug (stmt))
2028 continue;
2029 else if (ret != NULL)
2030 return NULL;
2031 else
2032 ret = stmt;
2035 return ret;
2038 /* Remove statement STMT, as well as the chain of assignments in that it is
2039 used. */
2041 static void
2042 remove_stmt (gimple *stmt)
2044 tree name;
2045 gimple *next;
2046 gimple_stmt_iterator psi;
2048 if (gimple_code (stmt) == GIMPLE_PHI)
2050 name = PHI_RESULT (stmt);
2051 next = single_nonlooparound_use (name);
2052 reset_debug_uses (stmt);
2053 psi = gsi_for_stmt (stmt);
2054 remove_phi_node (&psi, true);
2056 if (!next
2057 || !gimple_assign_ssa_name_copy_p (next)
2058 || gimple_assign_rhs1 (next) != name)
2059 return;
2061 stmt = next;
2064 while (1)
2066 gimple_stmt_iterator bsi;
2068 bsi = gsi_for_stmt (stmt);
2070 name = gimple_assign_lhs (stmt);
2071 if (TREE_CODE (name) == SSA_NAME)
2073 next = single_nonlooparound_use (name);
2074 reset_debug_uses (stmt);
2076 else
2078 /* This is a store to be eliminated. */
2079 gcc_assert (gimple_vdef (stmt) != NULL);
2080 next = NULL;
2083 unlink_stmt_vdef (stmt);
2084 gsi_remove (&bsi, true);
2085 release_defs (stmt);
2087 if (!next
2088 || !gimple_assign_ssa_name_copy_p (next)
2089 || gimple_assign_rhs1 (next) != name)
2090 return;
2092 stmt = next;
2096 /* Perform the predictive commoning optimization for a chain CHAIN.
2097 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2099 static void
2100 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
2101 bitmap tmp_vars)
2103 unsigned i;
2104 dref a;
2105 tree var;
2106 bool in_lhs;
2108 if (chain->combined)
2110 /* For combined chains, just remove the statements that are used to
2111 compute the values of the expression (except for the root one).
2112 We delay this until after all chains are processed. */
2114 else if (chain->type == CT_STORE_STORE)
2116 if (chain->length > 0)
2118 if (chain->inv_store_elimination)
2120 /* If dead stores in this chain only store loop invariant
2121 values, we can simply record the invariant value and use
2122 it directly after loop. */
2123 initialize_root_vars_store_elim_1 (chain);
2125 else
2127 /* If dead stores in this chain store loop variant values,
2128 we need to set up the variables by loading from memory
2129 before loop and propagating it with PHI nodes. */
2130 initialize_root_vars_store_elim_2 (loop, chain, tmp_vars);
2133 /* For inter-iteration store elimination chain, stores at each
2134 distance in loop's last (chain->length - 1) iterations can't
2135 be eliminated, because there is no following killing store.
2136 We need to generate these stores after loop. */
2137 finalize_eliminated_stores (loop, chain);
2140 bool last_store_p = true;
2141 for (i = chain->refs.length (); i > 0; i--)
2143 a = chain->refs[i - 1];
2144 /* Preserve the last store of the chain. Eliminate other stores
2145 which are killed by the last one. */
2146 if (DR_IS_WRITE (a->ref))
2148 if (last_store_p)
2149 last_store_p = false;
2150 else
2151 remove_stmt (a->stmt);
2153 continue;
2156 /* Any load in Store-Store chain must be dominated by a previous
2157 store, we replace the load reference with rhs of the store. */
2158 dref b = get_chain_last_write_before_load (chain, i - 1);
2159 gcc_assert (b != NULL);
2160 var = gimple_assign_rhs1 (b->stmt);
2161 replace_ref_with (a->stmt, var, false, false);
2164 else
2166 /* For non-combined chains, set up the variables that hold its value. */
2167 initialize_root_vars (loop, chain, tmp_vars);
2168 a = get_chain_root (chain);
2169 in_lhs = (chain->type == CT_STORE_LOAD
2170 || chain->type == CT_COMBINATION);
2171 replace_ref_with (a->stmt, chain->vars[chain->length], true, in_lhs);
2173 /* Replace the uses of the original references by these variables. */
2174 for (i = 1; chain->refs.iterate (i, &a); i++)
2176 var = chain->vars[chain->length - a->distance];
2177 replace_ref_with (a->stmt, var, false, false);
2182 /* Determines the unroll factor necessary to remove as many temporary variable
2183 copies as possible. CHAINS is the list of chains that will be
2184 optimized. */
2186 static unsigned
2187 determine_unroll_factor (vec<chain_p> chains)
2189 chain_p chain;
2190 unsigned factor = 1, af, nfactor, i;
2191 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
2193 FOR_EACH_VEC_ELT (chains, i, chain)
2195 if (chain->type == CT_INVARIANT)
2196 continue;
2197 /* For now we can't handle unrolling when eliminating stores. */
2198 else if (chain->type == CT_STORE_STORE)
2199 return 1;
2201 if (chain->combined)
2203 /* For combined chains, we can't handle unrolling if we replace
2204 looparound PHIs. */
2205 dref a;
2206 unsigned j;
2207 for (j = 1; chain->refs.iterate (j, &a); j++)
2208 if (gimple_code (a->stmt) == GIMPLE_PHI)
2209 return 1;
2210 continue;
2213 /* The best unroll factor for this chain is equal to the number of
2214 temporary variables that we create for it. */
2215 af = chain->length;
2216 if (chain->has_max_use_after)
2217 af++;
2219 nfactor = factor * af / gcd (factor, af);
2220 if (nfactor <= max)
2221 factor = nfactor;
2224 return factor;
2227 /* Perform the predictive commoning optimization for CHAINS.
2228 Uids of the newly created temporary variables are marked in TMP_VARS. */
2230 static void
2231 execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
2232 bitmap tmp_vars)
2234 chain_p chain;
2235 unsigned i;
2237 FOR_EACH_VEC_ELT (chains, i, chain)
2239 if (chain->type == CT_INVARIANT)
2240 execute_load_motion (loop, chain, tmp_vars);
2241 else
2242 execute_pred_commoning_chain (loop, chain, tmp_vars);
2245 FOR_EACH_VEC_ELT (chains, i, chain)
2247 if (chain->type == CT_INVARIANT)
2249 else if (chain->combined)
2251 /* For combined chains, just remove the statements that are used to
2252 compute the values of the expression (except for the root one). */
2253 dref a;
2254 unsigned j;
2255 for (j = 1; chain->refs.iterate (j, &a); j++)
2256 remove_stmt (a->stmt);
2260 update_ssa (TODO_update_ssa_only_virtuals);
2263 /* For each reference in CHAINS, if its defining statement is
2264 phi node, record the ssa name that is defined by it. */
2266 static void
2267 replace_phis_by_defined_names (vec<chain_p> chains)
2269 chain_p chain;
2270 dref a;
2271 unsigned i, j;
2273 FOR_EACH_VEC_ELT (chains, i, chain)
2274 FOR_EACH_VEC_ELT (chain->refs, j, a)
2276 if (gimple_code (a->stmt) == GIMPLE_PHI)
2278 a->name_defined_by_phi = PHI_RESULT (a->stmt);
2279 a->stmt = NULL;
2284 /* For each reference in CHAINS, if name_defined_by_phi is not
2285 NULL, use it to set the stmt field. */
2287 static void
2288 replace_names_by_phis (vec<chain_p> chains)
2290 chain_p chain;
2291 dref a;
2292 unsigned i, j;
2294 FOR_EACH_VEC_ELT (chains, i, chain)
2295 FOR_EACH_VEC_ELT (chain->refs, j, a)
2296 if (a->stmt == NULL)
2298 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
2299 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
2300 a->name_defined_by_phi = NULL_TREE;
2304 /* Wrapper over execute_pred_commoning, to pass it as a callback
2305 to tree_transform_and_unroll_loop. */
2307 struct epcc_data
2309 vec<chain_p> chains;
2310 bitmap tmp_vars;
2313 static void
2314 execute_pred_commoning_cbck (struct loop *loop, void *data)
2316 struct epcc_data *const dta = (struct epcc_data *) data;
2318 /* Restore phi nodes that were replaced by ssa names before
2319 tree_transform_and_unroll_loop (see detailed description in
2320 tree_predictive_commoning_loop). */
2321 replace_names_by_phis (dta->chains);
2322 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
2325 /* Base NAME and all the names in the chain of phi nodes that use it
2326 on variable VAR. The phi nodes are recognized by being in the copies of
2327 the header of the LOOP. */
2329 static void
2330 base_names_in_chain_on (struct loop *loop, tree name, tree var)
2332 gimple *stmt, *phi;
2333 imm_use_iterator iter;
2335 replace_ssa_name_symbol (name, var);
2337 while (1)
2339 phi = NULL;
2340 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2342 if (gimple_code (stmt) == GIMPLE_PHI
2343 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
2345 phi = stmt;
2346 BREAK_FROM_IMM_USE_STMT (iter);
2349 if (!phi)
2350 return;
2352 name = PHI_RESULT (phi);
2353 replace_ssa_name_symbol (name, var);
2357 /* Given an unrolled LOOP after predictive commoning, remove the
2358 register copies arising from phi nodes by changing the base
2359 variables of SSA names. TMP_VARS is the set of the temporary variables
2360 for those we want to perform this. */
2362 static void
2363 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
2365 edge e;
2366 gphi *phi;
2367 gimple *stmt;
2368 tree name, use, var;
2369 gphi_iterator psi;
2371 e = loop_latch_edge (loop);
2372 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
2374 phi = psi.phi ();
2375 name = PHI_RESULT (phi);
2376 var = SSA_NAME_VAR (name);
2377 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
2378 continue;
2379 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
2380 gcc_assert (TREE_CODE (use) == SSA_NAME);
2382 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2383 stmt = SSA_NAME_DEF_STMT (use);
2384 while (gimple_code (stmt) == GIMPLE_PHI
2385 /* In case we could not unroll the loop enough to eliminate
2386 all copies, we may reach the loop header before the defining
2387 statement (in that case, some register copies will be present
2388 in loop latch in the final code, corresponding to the newly
2389 created looparound phi nodes). */
2390 && gimple_bb (stmt) != loop->header)
2392 gcc_assert (single_pred_p (gimple_bb (stmt)));
2393 use = PHI_ARG_DEF (stmt, 0);
2394 stmt = SSA_NAME_DEF_STMT (use);
2397 base_names_in_chain_on (loop, use, var);
2401 /* Returns true if CHAIN is suitable to be combined. */
2403 static bool
2404 chain_can_be_combined_p (chain_p chain)
2406 return (!chain->combined
2407 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
2410 /* Returns the modify statement that uses NAME. Skips over assignment
2411 statements, NAME is replaced with the actual name used in the returned
2412 statement. */
2414 static gimple *
2415 find_use_stmt (tree *name)
2417 gimple *stmt;
2418 tree rhs, lhs;
2420 /* Skip over assignments. */
2421 while (1)
2423 stmt = single_nonlooparound_use (*name);
2424 if (!stmt)
2425 return NULL;
2427 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2428 return NULL;
2430 lhs = gimple_assign_lhs (stmt);
2431 if (TREE_CODE (lhs) != SSA_NAME)
2432 return NULL;
2434 if (gimple_assign_copy_p (stmt))
2436 rhs = gimple_assign_rhs1 (stmt);
2437 if (rhs != *name)
2438 return NULL;
2440 *name = lhs;
2442 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2443 == GIMPLE_BINARY_RHS)
2444 return stmt;
2445 else
2446 return NULL;
2450 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2452 static bool
2453 may_reassociate_p (tree type, enum tree_code code)
2455 if (FLOAT_TYPE_P (type)
2456 && !flag_unsafe_math_optimizations)
2457 return false;
2459 return (commutative_tree_code (code)
2460 && associative_tree_code (code));
2463 /* If the operation used in STMT is associative and commutative, go through the
2464 tree of the same operations and returns its root. Distance to the root
2465 is stored in DISTANCE. */
2467 static gimple *
2468 find_associative_operation_root (gimple *stmt, unsigned *distance)
2470 tree lhs;
2471 gimple *next;
2472 enum tree_code code = gimple_assign_rhs_code (stmt);
2473 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2474 unsigned dist = 0;
2476 if (!may_reassociate_p (type, code))
2477 return NULL;
2479 while (1)
2481 lhs = gimple_assign_lhs (stmt);
2482 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2484 next = find_use_stmt (&lhs);
2485 if (!next
2486 || gimple_assign_rhs_code (next) != code)
2487 break;
2489 stmt = next;
2490 dist++;
2493 if (distance)
2494 *distance = dist;
2495 return stmt;
2498 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2499 is no such statement, returns NULL_TREE. In case the operation used on
2500 NAME1 and NAME2 is associative and commutative, returns the root of the
2501 tree formed by this operation instead of the statement that uses NAME1 or
2502 NAME2. */
2504 static gimple *
2505 find_common_use_stmt (tree *name1, tree *name2)
2507 gimple *stmt1, *stmt2;
2509 stmt1 = find_use_stmt (name1);
2510 if (!stmt1)
2511 return NULL;
2513 stmt2 = find_use_stmt (name2);
2514 if (!stmt2)
2515 return NULL;
2517 if (stmt1 == stmt2)
2518 return stmt1;
2520 stmt1 = find_associative_operation_root (stmt1, NULL);
2521 if (!stmt1)
2522 return NULL;
2523 stmt2 = find_associative_operation_root (stmt2, NULL);
2524 if (!stmt2)
2525 return NULL;
2527 return (stmt1 == stmt2 ? stmt1 : NULL);
2530 /* Checks whether R1 and R2 are combined together using CODE, with the result
2531 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2532 if it is true. If CODE is ERROR_MARK, set these values instead. */
2534 static bool
2535 combinable_refs_p (dref r1, dref r2,
2536 enum tree_code *code, bool *swap, tree *rslt_type)
2538 enum tree_code acode;
2539 bool aswap;
2540 tree atype;
2541 tree name1, name2;
2542 gimple *stmt;
2544 name1 = name_for_ref (r1);
2545 name2 = name_for_ref (r2);
2546 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2548 stmt = find_common_use_stmt (&name1, &name2);
2550 if (!stmt
2551 /* A simple post-dominance check - make sure the combination
2552 is executed under the same condition as the references. */
2553 || (gimple_bb (stmt) != gimple_bb (r1->stmt)
2554 && gimple_bb (stmt) != gimple_bb (r2->stmt)))
2555 return false;
2557 acode = gimple_assign_rhs_code (stmt);
2558 aswap = (!commutative_tree_code (acode)
2559 && gimple_assign_rhs1 (stmt) != name1);
2560 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2562 if (*code == ERROR_MARK)
2564 *code = acode;
2565 *swap = aswap;
2566 *rslt_type = atype;
2567 return true;
2570 return (*code == acode
2571 && *swap == aswap
2572 && *rslt_type == atype);
2575 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2576 an assignment of the remaining operand. */
2578 static void
2579 remove_name_from_operation (gimple *stmt, tree op)
2581 tree other_op;
2582 gimple_stmt_iterator si;
2584 gcc_assert (is_gimple_assign (stmt));
2586 if (gimple_assign_rhs1 (stmt) == op)
2587 other_op = gimple_assign_rhs2 (stmt);
2588 else
2589 other_op = gimple_assign_rhs1 (stmt);
2591 si = gsi_for_stmt (stmt);
2592 gimple_assign_set_rhs_from_tree (&si, other_op);
2594 /* We should not have reallocated STMT. */
2595 gcc_assert (gsi_stmt (si) == stmt);
2597 update_stmt (stmt);
2600 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2601 are combined in a single statement, and returns this statement. */
2603 static gimple *
2604 reassociate_to_the_same_stmt (tree name1, tree name2)
2606 gimple *stmt1, *stmt2, *root1, *root2, *s1, *s2;
2607 gassign *new_stmt, *tmp_stmt;
2608 tree new_name, tmp_name, var, r1, r2;
2609 unsigned dist1, dist2;
2610 enum tree_code code;
2611 tree type = TREE_TYPE (name1);
2612 gimple_stmt_iterator bsi;
2614 stmt1 = find_use_stmt (&name1);
2615 stmt2 = find_use_stmt (&name2);
2616 root1 = find_associative_operation_root (stmt1, &dist1);
2617 root2 = find_associative_operation_root (stmt2, &dist2);
2618 code = gimple_assign_rhs_code (stmt1);
2620 gcc_assert (root1 && root2 && root1 == root2
2621 && code == gimple_assign_rhs_code (stmt2));
2623 /* Find the root of the nearest expression in that both NAME1 and NAME2
2624 are used. */
2625 r1 = name1;
2626 s1 = stmt1;
2627 r2 = name2;
2628 s2 = stmt2;
2630 while (dist1 > dist2)
2632 s1 = find_use_stmt (&r1);
2633 r1 = gimple_assign_lhs (s1);
2634 dist1--;
2636 while (dist2 > dist1)
2638 s2 = find_use_stmt (&r2);
2639 r2 = gimple_assign_lhs (s2);
2640 dist2--;
2643 while (s1 != s2)
2645 s1 = find_use_stmt (&r1);
2646 r1 = gimple_assign_lhs (s1);
2647 s2 = find_use_stmt (&r2);
2648 r2 = gimple_assign_lhs (s2);
2651 /* Remove NAME1 and NAME2 from the statements in that they are used
2652 currently. */
2653 remove_name_from_operation (stmt1, name1);
2654 remove_name_from_operation (stmt2, name2);
2656 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2657 combine it with the rhs of S1. */
2658 var = create_tmp_reg (type, "predreastmp");
2659 new_name = make_ssa_name (var);
2660 new_stmt = gimple_build_assign (new_name, code, name1, name2);
2662 var = create_tmp_reg (type, "predreastmp");
2663 tmp_name = make_ssa_name (var);
2665 /* Rhs of S1 may now be either a binary expression with operation
2666 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2667 so that name1 or name2 was removed from it). */
2668 tmp_stmt = gimple_build_assign (tmp_name, gimple_assign_rhs_code (s1),
2669 gimple_assign_rhs1 (s1),
2670 gimple_assign_rhs2 (s1));
2672 bsi = gsi_for_stmt (s1);
2673 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2674 s1 = gsi_stmt (bsi);
2675 update_stmt (s1);
2677 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2678 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2680 return new_stmt;
2683 /* Returns the statement that combines references R1 and R2. In case R1
2684 and R2 are not used in the same statement, but they are used with an
2685 associative and commutative operation in the same expression, reassociate
2686 the expression so that they are used in the same statement. */
2688 static gimple *
2689 stmt_combining_refs (dref r1, dref r2)
2691 gimple *stmt1, *stmt2;
2692 tree name1 = name_for_ref (r1);
2693 tree name2 = name_for_ref (r2);
2695 stmt1 = find_use_stmt (&name1);
2696 stmt2 = find_use_stmt (&name2);
2697 if (stmt1 == stmt2)
2698 return stmt1;
2700 return reassociate_to_the_same_stmt (name1, name2);
2703 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2704 description of the new chain is returned, otherwise we return NULL. */
2706 static chain_p
2707 combine_chains (chain_p ch1, chain_p ch2)
2709 dref r1, r2, nw;
2710 enum tree_code op = ERROR_MARK;
2711 bool swap = false;
2712 chain_p new_chain;
2713 unsigned i;
2714 tree rslt_type = NULL_TREE;
2716 if (ch1 == ch2)
2717 return NULL;
2718 if (ch1->length != ch2->length)
2719 return NULL;
2721 if (ch1->refs.length () != ch2->refs.length ())
2722 return NULL;
2724 for (i = 0; (ch1->refs.iterate (i, &r1)
2725 && ch2->refs.iterate (i, &r2)); i++)
2727 if (r1->distance != r2->distance)
2728 return NULL;
2730 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2731 return NULL;
2734 if (swap)
2735 std::swap (ch1, ch2);
2737 new_chain = XCNEW (struct chain);
2738 new_chain->type = CT_COMBINATION;
2739 new_chain->op = op;
2740 new_chain->ch1 = ch1;
2741 new_chain->ch2 = ch2;
2742 new_chain->rslt_type = rslt_type;
2743 new_chain->length = ch1->length;
2745 for (i = 0; (ch1->refs.iterate (i, &r1)
2746 && ch2->refs.iterate (i, &r2)); i++)
2748 nw = XCNEW (struct dref_d);
2749 nw->stmt = stmt_combining_refs (r1, r2);
2750 nw->distance = r1->distance;
2752 new_chain->refs.safe_push (nw);
2755 ch1->combined = true;
2756 ch2->combined = true;
2757 return new_chain;
2760 /* Recursively update position information of all offspring chains to ROOT
2761 chain's position information. */
2763 static void
2764 update_pos_for_combined_chains (chain_p root)
2766 chain_p ch1 = root->ch1, ch2 = root->ch2;
2767 dref ref, ref1, ref2;
2768 for (unsigned j = 0; (root->refs.iterate (j, &ref)
2769 && ch1->refs.iterate (j, &ref1)
2770 && ch2->refs.iterate (j, &ref2)); ++j)
2771 ref1->pos = ref2->pos = ref->pos;
2773 if (ch1->type == CT_COMBINATION)
2774 update_pos_for_combined_chains (ch1);
2775 if (ch2->type == CT_COMBINATION)
2776 update_pos_for_combined_chains (ch2);
2779 /* Returns true if statement S1 dominates statement S2. */
2781 static bool
2782 pcom_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
2784 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
2786 if (!bb1 || s1 == s2)
2787 return true;
2789 if (bb1 == bb2)
2790 return gimple_uid (s1) < gimple_uid (s2);
2792 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
2795 /* Try to combine the CHAINS in LOOP. */
2797 static void
2798 try_combine_chains (struct loop *loop, vec<chain_p> *chains)
2800 unsigned i, j;
2801 chain_p ch1, ch2, cch;
2802 auto_vec<chain_p> worklist;
2803 bool combined_p = false;
2805 FOR_EACH_VEC_ELT (*chains, i, ch1)
2806 if (chain_can_be_combined_p (ch1))
2807 worklist.safe_push (ch1);
2809 while (!worklist.is_empty ())
2811 ch1 = worklist.pop ();
2812 if (!chain_can_be_combined_p (ch1))
2813 continue;
2815 FOR_EACH_VEC_ELT (*chains, j, ch2)
2817 if (!chain_can_be_combined_p (ch2))
2818 continue;
2820 cch = combine_chains (ch1, ch2);
2821 if (cch)
2823 worklist.safe_push (cch);
2824 chains->safe_push (cch);
2825 combined_p = true;
2826 break;
2830 if (!combined_p)
2831 return;
2833 /* Setup UID for all statements in dominance order. */
2834 basic_block *bbs = get_loop_body (loop);
2835 renumber_gimple_stmt_uids_in_blocks (bbs, loop->num_nodes);
2836 free (bbs);
2838 /* Re-association in combined chains may generate statements different to
2839 order of references of the original chain. We need to keep references
2840 of combined chain in dominance order so that all uses will be inserted
2841 after definitions. Note:
2842 A) This is necessary for all combined chains.
2843 B) This is only necessary for ZERO distance references because other
2844 references inherit value from loop carried PHIs.
2846 We first update position information for all combined chains. */
2847 dref ref;
2848 for (i = 0; chains->iterate (i, &ch1); ++i)
2850 if (ch1->type != CT_COMBINATION || ch1->combined)
2851 continue;
2853 for (j = 0; ch1->refs.iterate (j, &ref); ++j)
2854 ref->pos = gimple_uid (ref->stmt);
2856 update_pos_for_combined_chains (ch1);
2858 /* Then sort references according to newly updated position information. */
2859 for (i = 0; chains->iterate (i, &ch1); ++i)
2861 if (ch1->type != CT_COMBINATION && !ch1->combined)
2862 continue;
2864 /* Find the first reference with non-ZERO distance. */
2865 if (ch1->length == 0)
2866 j = ch1->refs.length();
2867 else
2869 for (j = 0; ch1->refs.iterate (j, &ref); ++j)
2870 if (ref->distance != 0)
2871 break;
2874 /* Sort all ZERO distance references by position. */
2875 qsort (&ch1->refs[0], j, sizeof (ch1->refs[0]), order_drefs_by_pos);
2877 if (ch1->combined)
2878 continue;
2880 /* For ZERO length chain, has_max_use_after must be true since root
2881 combined stmt must dominates others. */
2882 if (ch1->length == 0)
2884 ch1->has_max_use_after = true;
2885 continue;
2887 /* Check if there is use at max distance after root for combined chains
2888 and set flag accordingly. */
2889 ch1->has_max_use_after = false;
2890 gimple *root_stmt = get_chain_root (ch1)->stmt;
2891 for (j = 1; ch1->refs.iterate (j, &ref); ++j)
2893 if (ref->distance == ch1->length
2894 && !pcom_stmt_dominates_stmt_p (ref->stmt, root_stmt))
2896 ch1->has_max_use_after = true;
2897 break;
2903 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
2904 if this is impossible because one of these initializers may trap, true
2905 otherwise. */
2907 static bool
2908 prepare_initializers_chain_store_elim (struct loop *loop, chain_p chain)
2910 unsigned i, n = chain->length;
2912 /* For now we can't eliminate stores if some of them are conditional
2913 executed. */
2914 if (!chain->all_always_accessed)
2915 return false;
2917 /* Nothing to intialize for intra-iteration store elimination. */
2918 if (n == 0 && chain->type == CT_STORE_STORE)
2919 return true;
2921 /* For store elimination chain, there is nothing to initialize if stores
2922 to be eliminated only store loop invariant values into memory. */
2923 if (chain->type == CT_STORE_STORE
2924 && is_inv_store_elimination_chain (loop, chain))
2926 chain->inv_store_elimination = true;
2927 return true;
2930 chain->inits.create (n);
2931 chain->inits.safe_grow_cleared (n);
2933 /* For store eliminatin chain like below:
2935 for (i = 0; i < len; i++)
2937 a[i] = 1;
2938 // a[i + 1] = ...
2939 a[i + 2] = 3;
2942 store to a[i + 1] is missed in loop body, it acts like bubbles. The
2943 content of a[i + 1] remain the same if the loop iterates fewer times
2944 than chain->length. We need to set up root variables for such stores
2945 by loading from memory before loop. Note we only need to load bubble
2946 elements because loop body is guaranteed to be executed at least once
2947 after loop's preheader edge. */
2948 auto_vec<bool> bubbles;
2949 bubbles.safe_grow_cleared (n + 1);
2950 for (i = 0; i < chain->refs.length (); i++)
2951 bubbles[chain->refs[i]->distance] = true;
2953 struct data_reference *dr = get_chain_root (chain)->ref;
2954 for (i = 0; i < n; i++)
2956 if (bubbles[i])
2957 continue;
2959 gimple_seq stmts = NULL;
2961 tree init = ref_at_iteration (dr, (int) 0 - i, &stmts);
2962 if (stmts)
2963 gimple_seq_add_seq_without_update (&chain->init_seq, stmts);
2965 chain->inits[i] = init;
2968 return true;
2971 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2972 impossible because one of these initializers may trap, true otherwise. */
2974 static bool
2975 prepare_initializers_chain (struct loop *loop, chain_p chain)
2977 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2978 struct data_reference *dr = get_chain_root (chain)->ref;
2979 tree init;
2980 dref laref;
2981 edge entry = loop_preheader_edge (loop);
2983 if (chain->type == CT_STORE_STORE)
2984 return prepare_initializers_chain_store_elim (loop, chain);
2986 /* Find the initializers for the variables, and check that they cannot
2987 trap. */
2988 chain->inits.create (n);
2989 for (i = 0; i < n; i++)
2990 chain->inits.quick_push (NULL_TREE);
2992 /* If we have replaced some looparound phi nodes, use their initializers
2993 instead of creating our own. */
2994 FOR_EACH_VEC_ELT (chain->refs, i, laref)
2996 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2997 continue;
2999 gcc_assert (laref->distance > 0);
3000 chain->inits[n - laref->distance]
3001 = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
3004 for (i = 0; i < n; i++)
3006 gimple_seq stmts = NULL;
3008 if (chain->inits[i] != NULL_TREE)
3009 continue;
3011 init = ref_at_iteration (dr, (int) i - n, &stmts);
3012 if (!chain->all_always_accessed && tree_could_trap_p (init))
3014 gimple_seq_discard (stmts);
3015 return false;
3018 if (stmts)
3019 gimple_seq_add_seq_without_update (&chain->init_seq, stmts);
3021 chain->inits[i] = init;
3024 return true;
3027 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
3028 be used because the initializers might trap. */
3030 static void
3031 prepare_initializers (struct loop *loop, vec<chain_p> chains)
3033 chain_p chain;
3034 unsigned i;
3036 for (i = 0; i < chains.length (); )
3038 chain = chains[i];
3039 if (prepare_initializers_chain (loop, chain))
3040 i++;
3041 else
3043 release_chain (chain);
3044 chains.unordered_remove (i);
3049 /* Generates finalizer memory references for CHAIN in LOOP. Returns true
3050 if finalizer code for CHAIN can be generated, otherwise false. */
3052 static bool
3053 prepare_finalizers_chain (struct loop *loop, chain_p chain)
3055 unsigned i, n = chain->length;
3056 struct data_reference *dr = get_chain_root (chain)->ref;
3057 tree fini, niters = number_of_latch_executions (loop);
3059 /* For now we can't eliminate stores if some of them are conditional
3060 executed. */
3061 if (!chain->all_always_accessed)
3062 return false;
3064 chain->finis.create (n);
3065 for (i = 0; i < n; i++)
3066 chain->finis.quick_push (NULL_TREE);
3068 /* We never use looparound phi node for store elimination chains. */
3070 /* Find the finalizers for the variables, and check that they cannot
3071 trap. */
3072 for (i = 0; i < n; i++)
3074 gimple_seq stmts = NULL;
3075 gcc_assert (chain->finis[i] == NULL_TREE);
3077 if (TREE_CODE (niters) != INTEGER_CST && TREE_CODE (niters) != SSA_NAME)
3079 niters = unshare_expr (niters);
3080 niters = force_gimple_operand (niters, &stmts, true, NULL);
3081 if (stmts)
3083 gimple_seq_add_seq_without_update (&chain->fini_seq, stmts);
3084 stmts = NULL;
3087 fini = ref_at_iteration (dr, (int) 0 - i, &stmts, niters);
3088 if (stmts)
3089 gimple_seq_add_seq_without_update (&chain->fini_seq, stmts);
3091 chain->finis[i] = fini;
3094 return true;
3097 /* Generates finalizer memory reference for CHAINS in LOOP. Returns true
3098 if finalizer code generation for CHAINS breaks loop closed ssa form. */
3100 static bool
3101 prepare_finalizers (struct loop *loop, vec<chain_p> chains)
3103 chain_p chain;
3104 unsigned i;
3105 bool loop_closed_ssa = false;
3107 for (i = 0; i < chains.length ();)
3109 chain = chains[i];
3111 /* Finalizer is only necessary for inter-iteration store elimination
3112 chains. */
3113 if (chain->length == 0 || chain->type != CT_STORE_STORE)
3115 i++;
3116 continue;
3119 if (prepare_finalizers_chain (loop, chain))
3121 i++;
3122 /* Be conservative, assume loop closed ssa form is corrupted
3123 by store-store chain. Though it's not always the case if
3124 eliminated stores only store loop invariant values into
3125 memory. */
3126 loop_closed_ssa = true;
3128 else
3130 release_chain (chain);
3131 chains.unordered_remove (i);
3134 return loop_closed_ssa;
3137 /* Insert all initializing gimple stmts into loop's entry edge. */
3139 static void
3140 insert_init_seqs (struct loop *loop, vec<chain_p> chains)
3142 unsigned i;
3143 edge entry = loop_preheader_edge (loop);
3145 for (i = 0; i < chains.length (); ++i)
3146 if (chains[i]->init_seq)
3148 gsi_insert_seq_on_edge_immediate (entry, chains[i]->init_seq);
3149 chains[i]->init_seq = NULL;
3153 /* Performs predictive commoning for LOOP. Sets bit 1<<0 of return value
3154 if LOOP was unrolled; Sets bit 1<<1 of return value if loop closed ssa
3155 form was corrupted. */
3157 static unsigned
3158 tree_predictive_commoning_loop (struct loop *loop)
3160 vec<data_reference_p> datarefs;
3161 vec<ddr_p> dependences;
3162 struct component *components;
3163 vec<chain_p> chains = vNULL;
3164 unsigned unroll_factor;
3165 struct tree_niter_desc desc;
3166 bool unroll = false, loop_closed_ssa = false;
3167 edge exit;
3169 if (dump_file && (dump_flags & TDF_DETAILS))
3170 fprintf (dump_file, "Processing loop %d\n", loop->num);
3172 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3173 if (get_max_loop_iterations_int (loop) == 0)
3175 if (dump_file && (dump_flags & TDF_DETAILS))
3176 fprintf (dump_file, "Loop iterates only 1 time, nothing to do.\n");
3178 return 0;
3181 /* Find the data references and split them into components according to their
3182 dependence relations. */
3183 auto_vec<loop_p, 3> loop_nest;
3184 dependences.create (10);
3185 datarefs.create (10);
3186 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
3187 &dependences))
3189 if (dump_file && (dump_flags & TDF_DETAILS))
3190 fprintf (dump_file, "Cannot analyze data dependencies\n");
3191 free_data_refs (datarefs);
3192 free_dependence_relations (dependences);
3193 return 0;
3196 if (dump_file && (dump_flags & TDF_DETAILS))
3197 dump_data_dependence_relations (dump_file, dependences);
3199 components = split_data_refs_to_components (loop, datarefs, dependences);
3200 loop_nest.release ();
3201 free_dependence_relations (dependences);
3202 if (!components)
3204 free_data_refs (datarefs);
3205 free_affine_expand_cache (&name_expansions);
3206 return 0;
3209 if (dump_file && (dump_flags & TDF_DETAILS))
3211 fprintf (dump_file, "Initial state:\n\n");
3212 dump_components (dump_file, components);
3215 /* Find the suitable components and split them into chains. */
3216 components = filter_suitable_components (loop, components);
3218 auto_bitmap tmp_vars;
3219 looparound_phis = BITMAP_ALLOC (NULL);
3220 determine_roots (loop, components, &chains);
3221 release_components (components);
3223 if (!chains.exists ())
3225 if (dump_file && (dump_flags & TDF_DETAILS))
3226 fprintf (dump_file,
3227 "Predictive commoning failed: no suitable chains\n");
3228 goto end;
3230 prepare_initializers (loop, chains);
3231 loop_closed_ssa = prepare_finalizers (loop, chains);
3233 /* Try to combine the chains that are always worked with together. */
3234 try_combine_chains (loop, &chains);
3236 insert_init_seqs (loop, chains);
3238 if (dump_file && (dump_flags & TDF_DETAILS))
3240 fprintf (dump_file, "Before commoning:\n\n");
3241 dump_chains (dump_file, chains);
3244 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3245 that its number of iterations is divisible by the factor. */
3246 unroll_factor = determine_unroll_factor (chains);
3247 scev_reset ();
3248 unroll = (unroll_factor > 1
3249 && can_unroll_loop_p (loop, unroll_factor, &desc));
3250 exit = single_dom_exit (loop);
3252 /* Execute the predictive commoning transformations, and possibly unroll the
3253 loop. */
3254 if (unroll)
3256 struct epcc_data dta;
3258 if (dump_file && (dump_flags & TDF_DETAILS))
3259 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
3261 dta.chains = chains;
3262 dta.tmp_vars = tmp_vars;
3264 update_ssa (TODO_update_ssa_only_virtuals);
3266 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3267 execute_pred_commoning_cbck is called may cause phi nodes to be
3268 reallocated, which is a problem since CHAINS may point to these
3269 statements. To fix this, we store the ssa names defined by the
3270 phi nodes here instead of the phi nodes themselves, and restore
3271 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3272 replace_phis_by_defined_names (chains);
3274 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
3275 execute_pred_commoning_cbck, &dta);
3276 eliminate_temp_copies (loop, tmp_vars);
3278 else
3280 if (dump_file && (dump_flags & TDF_DETAILS))
3281 fprintf (dump_file,
3282 "Executing predictive commoning without unrolling.\n");
3283 execute_pred_commoning (loop, chains, tmp_vars);
3286 end: ;
3287 release_chains (chains);
3288 free_data_refs (datarefs);
3289 BITMAP_FREE (looparound_phis);
3291 free_affine_expand_cache (&name_expansions);
3293 return (unroll ? 1 : 0) | (loop_closed_ssa ? 2 : 0);
3296 /* Runs predictive commoning. */
3298 unsigned
3299 tree_predictive_commoning (void)
3301 struct loop *loop;
3302 unsigned ret = 0, changed = 0;
3304 initialize_original_copy_tables ();
3305 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3306 if (optimize_loop_for_speed_p (loop))
3308 changed |= tree_predictive_commoning_loop (loop);
3310 free_original_copy_tables ();
3312 if (changed > 0)
3314 scev_reset ();
3316 if (changed > 1)
3317 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3319 ret = TODO_cleanup_cfg;
3322 return ret;
3325 /* Predictive commoning Pass. */
3327 static unsigned
3328 run_tree_predictive_commoning (struct function *fun)
3330 if (number_of_loops (fun) <= 1)
3331 return 0;
3333 return tree_predictive_commoning ();
3336 namespace {
3338 const pass_data pass_data_predcom =
3340 GIMPLE_PASS, /* type */
3341 "pcom", /* name */
3342 OPTGROUP_LOOP, /* optinfo_flags */
3343 TV_PREDCOM, /* tv_id */
3344 PROP_cfg, /* properties_required */
3345 0, /* properties_provided */
3346 0, /* properties_destroyed */
3347 0, /* todo_flags_start */
3348 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
3351 class pass_predcom : public gimple_opt_pass
3353 public:
3354 pass_predcom (gcc::context *ctxt)
3355 : gimple_opt_pass (pass_data_predcom, ctxt)
3358 /* opt_pass methods: */
3359 virtual bool gate (function *) { return flag_predictive_commoning != 0; }
3360 virtual unsigned int execute (function *fun)
3362 return run_tree_predictive_commoning (fun);
3365 }; // class pass_predcom
3367 } // anon namespace
3369 gimple_opt_pass *
3370 make_pass_predcom (gcc::context *ctxt)
3372 return new pass_predcom (ctxt);