1 /* Predictive commoning.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
163 for (i = 0; i < n; i++)
169 It can be replaced with:
173 for (i = 0; i < n; i++)
183 If the loop runs more than 1 iterations, it can be further simplified into:
185 for (i = 0; i < n; i++)
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
195 With trivial effort, we also support load inside Store-Store chains if the
196 load is dominated by a store statement in the same iteration of loop. You
197 can see this as a restricted Store-Mixed-Load-Store chain.
199 TODO: For now, we don't support store-store chains in multi-exit loops. We
200 force to not unroll in case of store-store chain even if other chains might
203 Predictive commoning can be generalized for arbitrary computations (not
204 just memory loads), and also nontrivial transfer functions (e.g., replacing
205 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
209 #include "coretypes.h"
215 #include "tree-pass.h"
217 #include "gimple-pretty-print.h"
219 #include "fold-const.h"
222 #include "gimplify.h"
223 #include "gimple-iterator.h"
224 #include "gimplify-me.h"
225 #include "tree-ssa-loop-ivopts.h"
226 #include "tree-ssa-loop-manip.h"
227 #include "tree-ssa-loop-niter.h"
228 #include "tree-ssa-loop.h"
229 #include "tree-into-ssa.h"
230 #include "tree-dfa.h"
231 #include "tree-ssa.h"
232 #include "tree-data-ref.h"
233 #include "tree-scalar-evolution.h"
235 #include "tree-affine.h"
236 #include "builtins.h"
238 /* The maximum number of iterations between the considered memory
241 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
243 /* Data references (or phi nodes that carry data reference values across
246 typedef struct dref_d
248 /* The reference itself. */
249 struct data_reference
*ref
;
251 /* The statement in that the reference appears. */
254 /* In case that STMT is a phi node, this field is set to the SSA name
255 defined by it in replace_phis_by_defined_names (in order to avoid
256 pointing to phi node that got reallocated in the meantime). */
257 tree name_defined_by_phi
;
259 /* Distance of the reference from the root of the chain (in number of
260 iterations of the loop). */
263 /* Number of iterations offset from the first reference in the component. */
266 /* Number of the reference in a component, in dominance ordering. */
269 /* True if the memory reference is always accessed when the loop is
271 unsigned always_accessed
: 1;
275 /* Type of the chain of the references. */
279 /* The addresses of the references in the chain are constant. */
282 /* There are only loads in the chain. */
285 /* Root of the chain is store, the rest are loads. */
288 /* There are only stores in the chain. */
291 /* A combination of two chains. */
295 /* Chains of data references. */
299 /* Type of the chain. */
300 enum chain_type type
;
302 /* For combination chains, the operator and the two chains that are
303 combined, and the type of the result. */
306 struct chain
*ch1
, *ch2
;
308 /* The references in the chain. */
311 /* The maximum distance of the reference in the chain from the root. */
314 /* The variables used to copy the value throughout iterations. */
317 /* Initializers for the variables. */
320 /* Finalizers for the eliminated stores. */
323 /* gimple stmts intializing the initial variables of the chain. */
326 /* gimple stmts finalizing the eliminated stores of the chain. */
329 /* True if there is a use of a variable with the maximal distance
330 that comes after the root in the loop. */
331 unsigned has_max_use_after
: 1;
333 /* True if all the memory references in the chain are always accessed. */
334 unsigned all_always_accessed
: 1;
336 /* True if this chain was combined together with some other chain. */
337 unsigned combined
: 1;
339 /* True if this is store elimination chain and eliminated stores store
340 loop invariant value into memory. */
341 unsigned inv_store_elimination
: 1;
345 /* Describes the knowledge about the step of the memory references in
350 /* The step is zero. */
353 /* The step is nonzero. */
356 /* The step may or may not be nonzero. */
360 /* Components of the data dependence graph. */
364 /* The references in the component. */
367 /* What we know about the step of the references in the component. */
368 enum ref_step_type comp_step
;
370 /* True if all references in component are stores and we try to do
371 intra/inter loop iteration dead store elimination. */
372 bool eliminate_store_p
;
374 /* Next component in the list. */
375 struct component
*next
;
378 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
380 static bitmap looparound_phis
;
382 /* Cache used by tree_to_aff_combination_expand. */
384 static hash_map
<tree
, name_expansion
*> *name_expansions
;
386 /* Dumps data reference REF to FILE. */
388 extern void dump_dref (FILE *, dref
);
390 dump_dref (FILE *file
, dref ref
)
395 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
396 fprintf (file
, " (id %u%s)\n", ref
->pos
,
397 DR_IS_READ (ref
->ref
) ? "" : ", write");
399 fprintf (file
, " offset ");
400 print_decs (ref
->offset
, file
);
401 fprintf (file
, "\n");
403 fprintf (file
, " distance %u\n", ref
->distance
);
407 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
408 fprintf (file
, " looparound ref\n");
410 fprintf (file
, " combination ref\n");
411 fprintf (file
, " in statement ");
412 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
413 fprintf (file
, "\n");
414 fprintf (file
, " distance %u\n", ref
->distance
);
419 /* Dumps CHAIN to FILE. */
421 extern void dump_chain (FILE *, chain_p
);
423 dump_chain (FILE *file
, chain_p chain
)
426 const char *chain_type
;
433 chain_type
= "Load motion";
437 chain_type
= "Loads-only";
441 chain_type
= "Store-loads";
445 chain_type
= "Store-stores";
449 chain_type
= "Combination";
456 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
457 chain
->combined
? " (combined)" : "");
458 if (chain
->type
!= CT_INVARIANT
)
459 fprintf (file
, " max distance %u%s\n", chain
->length
,
460 chain
->has_max_use_after
? "" : ", may reuse first");
462 if (chain
->type
== CT_COMBINATION
)
464 fprintf (file
, " equal to %p %s %p in type ",
465 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
466 (void *) chain
->ch2
);
467 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
468 fprintf (file
, "\n");
471 if (chain
->vars
.exists ())
473 fprintf (file
, " vars");
474 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
477 print_generic_expr (file
, var
, TDF_SLIM
);
479 fprintf (file
, "\n");
482 if (chain
->inits
.exists ())
484 fprintf (file
, " inits");
485 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
488 print_generic_expr (file
, var
, TDF_SLIM
);
490 fprintf (file
, "\n");
493 fprintf (file
, " references:\n");
494 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
497 fprintf (file
, "\n");
500 /* Dumps CHAINS to FILE. */
502 extern void dump_chains (FILE *, vec
<chain_p
> );
504 dump_chains (FILE *file
, vec
<chain_p
> chains
)
509 FOR_EACH_VEC_ELT (chains
, i
, chain
)
510 dump_chain (file
, chain
);
513 /* Dumps COMP to FILE. */
515 extern void dump_component (FILE *, struct component
*);
517 dump_component (FILE *file
, struct component
*comp
)
522 fprintf (file
, "Component%s:\n",
523 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
524 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
526 fprintf (file
, "\n");
529 /* Dumps COMPS to FILE. */
531 extern void dump_components (FILE *, struct component
*);
533 dump_components (FILE *file
, struct component
*comps
)
535 struct component
*comp
;
537 for (comp
= comps
; comp
; comp
= comp
->next
)
538 dump_component (file
, comp
);
541 /* Frees a chain CHAIN. */
544 release_chain (chain_p chain
)
552 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
555 chain
->refs
.release ();
556 chain
->vars
.release ();
557 chain
->inits
.release ();
559 gimple_seq_discard (chain
->init_seq
);
561 chain
->finis
.release ();
563 gimple_seq_discard (chain
->fini_seq
);
571 release_chains (vec
<chain_p
> chains
)
576 FOR_EACH_VEC_ELT (chains
, i
, chain
)
577 release_chain (chain
);
581 /* Frees a component COMP. */
584 release_component (struct component
*comp
)
586 comp
->refs
.release ();
590 /* Frees list of components COMPS. */
593 release_components (struct component
*comps
)
595 struct component
*act
, *next
;
597 for (act
= comps
; act
; act
= next
)
600 release_component (act
);
604 /* Finds a root of tree given by FATHERS containing A, and performs path
608 component_of (unsigned fathers
[], unsigned a
)
612 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
615 for (; a
!= root
; a
= n
)
624 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
625 components, A and B are components to merge. */
628 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
630 unsigned ca
= component_of (fathers
, a
);
631 unsigned cb
= component_of (fathers
, b
);
636 if (sizes
[ca
] < sizes
[cb
])
638 sizes
[cb
] += sizes
[ca
];
643 sizes
[ca
] += sizes
[cb
];
648 /* Returns true if A is a reference that is suitable for predictive commoning
649 in the innermost loop that contains it. REF_STEP is set according to the
650 step of the reference A. */
653 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
655 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
658 || TREE_THIS_VOLATILE (ref
)
659 || !is_gimple_reg_type (TREE_TYPE (ref
))
660 || tree_could_throw_p (ref
))
663 if (integer_zerop (step
))
664 *ref_step
= RS_INVARIANT
;
665 else if (integer_nonzerop (step
))
666 *ref_step
= RS_NONZERO
;
673 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
676 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
678 tree type
= TREE_TYPE (DR_OFFSET (dr
));
681 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
,
683 aff_combination_const (&delta
, type
, wi::to_widest (DR_INIT (dr
)));
684 aff_combination_add (offset
, &delta
);
687 /* Determines number of iterations of the innermost enclosing loop before B
688 refers to exactly the same location as A and stores it to OFF. If A and
689 B do not have the same step, they never meet, or anything else fails,
690 returns false, otherwise returns true. Both A and B are assumed to
691 satisfy suitable_reference_p. */
694 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
697 aff_tree diff
, baseb
, step
;
700 /* Check that both the references access the location in the same type. */
701 typea
= TREE_TYPE (DR_REF (a
));
702 typeb
= TREE_TYPE (DR_REF (b
));
703 if (!useless_type_conversion_p (typeb
, typea
))
706 /* Check whether the base address and the step of both references is the
708 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
709 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
712 if (integer_zerop (DR_STEP (a
)))
714 /* If the references have loop invariant address, check that they access
715 exactly the same location. */
717 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
718 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
721 /* Compare the offsets of the addresses, and check whether the difference
722 is a multiple of step. */
723 aff_combination_dr_offset (a
, &diff
);
724 aff_combination_dr_offset (b
, &baseb
);
725 aff_combination_scale (&baseb
, -1);
726 aff_combination_add (&diff
, &baseb
);
728 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
729 &step
, &name_expansions
);
730 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
733 /* Returns the last basic block in LOOP for that we are sure that
734 it is executed whenever the loop is entered. */
737 last_always_executed_block (struct loop
*loop
)
740 vec
<edge
> exits
= get_loop_exit_edges (loop
);
742 basic_block last
= loop
->latch
;
744 FOR_EACH_VEC_ELT (exits
, i
, ex
)
745 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
751 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
753 static struct component
*
754 split_data_refs_to_components (struct loop
*loop
,
755 vec
<data_reference_p
> datarefs
,
758 unsigned i
, n
= datarefs
.length ();
759 unsigned ca
, ia
, ib
, bad
;
760 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
761 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
762 struct component
**comps
;
763 struct data_reference
*dr
, *dra
, *drb
;
764 struct data_dependence_relation
*ddr
;
765 struct component
*comp_list
= NULL
, *comp
;
767 /* Don't do store elimination if loop has multiple exit edges. */
768 bool eliminate_store_p
= single_exit (loop
) != NULL
;
769 basic_block last_always_executed
= last_always_executed_block (loop
);
771 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
775 /* A fake reference for call or asm_expr that may clobber memory;
779 /* predcom pass isn't prepared to handle calls with data references. */
780 if (is_gimple_call (DR_STMT (dr
)))
782 dr
->aux
= (void *) (size_t) i
;
787 /* A component reserved for the "bad" data references. */
791 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
793 enum ref_step_type dummy
;
795 if (!suitable_reference_p (dr
, &dummy
))
797 ia
= (unsigned) (size_t) dr
->aux
;
798 merge_comps (comp_father
, comp_size
, n
, ia
);
802 FOR_EACH_VEC_ELT (depends
, i
, ddr
)
804 widest_int dummy_off
;
806 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
812 /* Don't do store elimination if there is any unknown dependence for
813 any store data reference. */
814 if ((DR_IS_WRITE (dra
) || DR_IS_WRITE (drb
))
815 && (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
816 || DDR_NUM_DIST_VECTS (ddr
) == 0))
817 eliminate_store_p
= false;
819 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
820 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
824 bad
= component_of (comp_father
, n
);
826 /* If both A and B are reads, we may ignore unsuitable dependences. */
827 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
829 if (ia
== bad
|| ib
== bad
830 || !determine_offset (dra
, drb
, &dummy_off
))
833 /* If A is read and B write or vice versa and there is unsuitable
834 dependence, instead of merging both components into a component
835 that will certainly not pass suitable_component_p, just put the
836 read into bad component, perhaps at least the write together with
837 all the other data refs in it's component will be optimizable. */
838 else if (DR_IS_READ (dra
) && ib
!= bad
)
842 else if (!determine_offset (dra
, drb
, &dummy_off
))
844 merge_comps (comp_father
, comp_size
, bad
, ia
);
848 else if (DR_IS_READ (drb
) && ia
!= bad
)
852 else if (!determine_offset (dra
, drb
, &dummy_off
))
854 merge_comps (comp_father
, comp_size
, bad
, ib
);
858 else if (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
)
859 && ia
!= bad
&& ib
!= bad
860 && !determine_offset (dra
, drb
, &dummy_off
))
862 merge_comps (comp_father
, comp_size
, bad
, ia
);
863 merge_comps (comp_father
, comp_size
, bad
, ib
);
867 merge_comps (comp_father
, comp_size
, ia
, ib
);
870 if (eliminate_store_p
)
872 tree niters
= number_of_latch_executions (loop
);
874 /* Don't do store elimination if niters info is unknown because stores
875 in the last iteration can't be eliminated and we need to recover it
877 eliminate_store_p
= (niters
!= NULL_TREE
&& niters
!= chrec_dont_know
);
880 comps
= XCNEWVEC (struct component
*, n
);
881 bad
= component_of (comp_father
, n
);
882 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
884 ia
= (unsigned) (size_t) dr
->aux
;
885 ca
= component_of (comp_father
, ia
);
892 comp
= XCNEW (struct component
);
893 comp
->refs
.create (comp_size
[ca
]);
894 comp
->eliminate_store_p
= eliminate_store_p
;
898 dataref
= XCNEW (struct dref_d
);
900 dataref
->stmt
= DR_STMT (dr
);
902 dataref
->distance
= 0;
904 dataref
->always_accessed
905 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
906 gimple_bb (dataref
->stmt
));
907 dataref
->pos
= comp
->refs
.length ();
908 comp
->refs
.quick_push (dataref
);
911 for (i
= 0; i
< n
; i
++)
916 comp
->next
= comp_list
;
928 /* Returns true if the component COMP satisfies the conditions
929 described in 2) at the beginning of this file. LOOP is the current
933 suitable_component_p (struct loop
*loop
, struct component
*comp
)
937 basic_block ba
, bp
= loop
->header
;
938 bool ok
, has_write
= false;
940 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
942 ba
= gimple_bb (a
->stmt
);
944 if (!just_once_each_iteration_p (loop
, ba
))
947 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
950 if (DR_IS_WRITE (a
->ref
))
954 first
= comp
->refs
[0];
955 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
959 for (i
= 1; comp
->refs
.iterate (i
, &a
); i
++)
961 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
964 enum ref_step_type a_step
;
965 gcc_checking_assert (suitable_reference_p (a
->ref
, &a_step
)
966 && a_step
== comp
->comp_step
);
969 /* If there is a write inside the component, we must know whether the
970 step is nonzero or not -- we would not otherwise be able to recognize
971 whether the value accessed by reads comes from the OFFSET-th iteration
972 or the previous one. */
973 if (has_write
&& comp
->comp_step
== RS_ANY
)
979 /* Check the conditions on references inside each of components COMPS,
980 and remove the unsuitable components from the list. The new list
981 of components is returned. The conditions are described in 2) at
982 the beginning of this file. LOOP is the current loop. */
984 static struct component
*
985 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
987 struct component
**comp
, *act
;
989 for (comp
= &comps
; *comp
; )
992 if (suitable_component_p (loop
, act
))
1000 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
1002 release_component (act
);
1009 /* Compares two drefs A and B by their offset and position. Callback for
1013 order_drefs (const void *a
, const void *b
)
1015 const dref
*const da
= (const dref
*) a
;
1016 const dref
*const db
= (const dref
*) b
;
1017 int offcmp
= wi::cmps ((*da
)->offset
, (*db
)->offset
);
1022 return (*da
)->pos
- (*db
)->pos
;
1025 /* Compares two drefs A and B by their position. Callback for qsort. */
1028 order_drefs_by_pos (const void *a
, const void *b
)
1030 const dref
*const da
= (const dref
*) a
;
1031 const dref
*const db
= (const dref
*) b
;
1033 return (*da
)->pos
- (*db
)->pos
;
1036 /* Returns root of the CHAIN. */
1039 get_chain_root (chain_p chain
)
1041 return chain
->refs
[0];
1044 /* Given CHAIN, returns the last write ref at DISTANCE, or NULL if it doesn't
1048 get_chain_last_write_at (chain_p chain
, unsigned distance
)
1050 for (unsigned i
= chain
->refs
.length (); i
> 0; i
--)
1051 if (DR_IS_WRITE (chain
->refs
[i
- 1]->ref
)
1052 && distance
== chain
->refs
[i
- 1]->distance
)
1053 return chain
->refs
[i
- 1];
1058 /* Given CHAIN, returns the last write ref with the same distance before load
1059 at index LOAD_IDX, or NULL if it doesn't exist. */
1062 get_chain_last_write_before_load (chain_p chain
, unsigned load_idx
)
1064 gcc_assert (load_idx
< chain
->refs
.length ());
1066 unsigned distance
= chain
->refs
[load_idx
]->distance
;
1068 for (unsigned i
= load_idx
; i
> 0; i
--)
1069 if (DR_IS_WRITE (chain
->refs
[i
- 1]->ref
)
1070 && distance
== chain
->refs
[i
- 1]->distance
)
1071 return chain
->refs
[i
- 1];
1076 /* Adds REF to the chain CHAIN. */
1079 add_ref_to_chain (chain_p chain
, dref ref
)
1081 dref root
= get_chain_root (chain
);
1083 gcc_assert (wi::les_p (root
->offset
, ref
->offset
));
1084 widest_int dist
= ref
->offset
- root
->offset
;
1085 gcc_assert (wi::fits_uhwi_p (dist
));
1087 chain
->refs
.safe_push (ref
);
1089 ref
->distance
= dist
.to_uhwi ();
1091 if (ref
->distance
>= chain
->length
)
1093 chain
->length
= ref
->distance
;
1094 chain
->has_max_use_after
= false;
1097 /* Promote this chain to CT_STORE_STORE if it has multiple stores. */
1098 if (DR_IS_WRITE (ref
->ref
))
1099 chain
->type
= CT_STORE_STORE
;
1101 /* Don't set the flag for store-store chain since there is no use. */
1102 if (chain
->type
!= CT_STORE_STORE
1103 && ref
->distance
== chain
->length
1104 && ref
->pos
> root
->pos
)
1105 chain
->has_max_use_after
= true;
1107 chain
->all_always_accessed
&= ref
->always_accessed
;
1110 /* Returns the chain for invariant component COMP. */
1113 make_invariant_chain (struct component
*comp
)
1115 chain_p chain
= XCNEW (struct chain
);
1119 chain
->type
= CT_INVARIANT
;
1121 chain
->all_always_accessed
= true;
1123 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
1125 chain
->refs
.safe_push (ref
);
1126 chain
->all_always_accessed
&= ref
->always_accessed
;
1129 chain
->inits
= vNULL
;
1130 chain
->finis
= vNULL
;
1135 /* Make a new chain of type TYPE rooted at REF. */
1138 make_rooted_chain (dref ref
, enum chain_type type
)
1140 chain_p chain
= XCNEW (struct chain
);
1143 chain
->refs
.safe_push (ref
);
1144 chain
->all_always_accessed
= ref
->always_accessed
;
1147 chain
->inits
= vNULL
;
1148 chain
->finis
= vNULL
;
1153 /* Returns true if CHAIN is not trivial. */
1156 nontrivial_chain_p (chain_p chain
)
1158 return chain
!= NULL
&& chain
->refs
.length () > 1;
1161 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1165 name_for_ref (dref ref
)
1169 if (is_gimple_assign (ref
->stmt
))
1171 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1172 name
= gimple_assign_lhs (ref
->stmt
);
1174 name
= gimple_assign_rhs1 (ref
->stmt
);
1177 name
= PHI_RESULT (ref
->stmt
);
1179 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1182 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1183 iterations of the innermost enclosing loop). */
1186 valid_initializer_p (struct data_reference
*ref
,
1187 unsigned distance
, struct data_reference
*root
)
1189 aff_tree diff
, base
, step
;
1192 /* Both REF and ROOT must be accessing the same object. */
1193 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1196 /* The initializer is defined outside of loop, hence its address must be
1197 invariant inside the loop. */
1198 gcc_assert (integer_zerop (DR_STEP (ref
)));
1200 /* If the address of the reference is invariant, initializer must access
1201 exactly the same location. */
1202 if (integer_zerop (DR_STEP (root
)))
1203 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1204 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1206 /* Verify that this index of REF is equal to the root's index at
1207 -DISTANCE-th iteration. */
1208 aff_combination_dr_offset (root
, &diff
);
1209 aff_combination_dr_offset (ref
, &base
);
1210 aff_combination_scale (&base
, -1);
1211 aff_combination_add (&diff
, &base
);
1213 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1214 &step
, &name_expansions
);
1215 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1218 if (off
!= distance
)
1224 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1225 initial value is correct (equal to initial value of REF shifted by one
1226 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1227 is the root of the current chain. */
1230 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1232 tree name
, init
, init_ref
;
1235 edge latch
= loop_latch_edge (loop
);
1236 struct data_reference init_dr
;
1239 if (is_gimple_assign (ref
->stmt
))
1241 if (DR_IS_READ (ref
->ref
))
1242 name
= gimple_assign_lhs (ref
->stmt
);
1244 name
= gimple_assign_rhs1 (ref
->stmt
);
1247 name
= PHI_RESULT (ref
->stmt
);
1251 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1254 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1258 if (gsi_end_p (psi
))
1261 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1262 if (TREE_CODE (init
) != SSA_NAME
)
1264 init_stmt
= SSA_NAME_DEF_STMT (init
);
1265 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1267 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1269 init_ref
= gimple_assign_rhs1 (init_stmt
);
1270 if (!REFERENCE_CLASS_P (init_ref
)
1271 && !DECL_P (init_ref
))
1274 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1275 loop enclosing PHI). */
1276 memset (&init_dr
, 0, sizeof (struct data_reference
));
1277 DR_REF (&init_dr
) = init_ref
;
1278 DR_STMT (&init_dr
) = phi
;
1279 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr
), init_ref
, loop
))
1282 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1288 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1291 insert_looparound_copy (chain_p chain
, dref ref
, gphi
*phi
)
1293 dref nw
= XCNEW (struct dref_d
), aref
;
1297 nw
->distance
= ref
->distance
+ 1;
1298 nw
->always_accessed
= 1;
1300 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1301 if (aref
->distance
>= nw
->distance
)
1303 chain
->refs
.safe_insert (i
, nw
);
1305 if (nw
->distance
> chain
->length
)
1307 chain
->length
= nw
->distance
;
1308 chain
->has_max_use_after
= false;
1312 /* For references in CHAIN that are copied around the LOOP (created previously
1313 by PRE, or by user), add the results of such copies to the chain. This
1314 enables us to remove the copies by unrolling, and may need less registers
1315 (also, it may allow us to combine chains together). */
1318 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1321 dref ref
, root
= get_chain_root (chain
);
1324 if (chain
->type
== CT_STORE_STORE
)
1327 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1329 phi
= find_looparound_phi (loop
, ref
, root
);
1333 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1334 insert_looparound_copy (chain
, ref
, phi
);
1338 /* Find roots of the values and determine distances in the component COMP.
1339 The references are redistributed into CHAINS. LOOP is the current
1343 determine_roots_comp (struct loop
*loop
,
1344 struct component
*comp
,
1345 vec
<chain_p
> *chains
)
1349 chain_p chain
= NULL
;
1350 widest_int last_ofs
= 0;
1351 enum chain_type type
;
1353 /* Invariants are handled specially. */
1354 if (comp
->comp_step
== RS_INVARIANT
)
1356 chain
= make_invariant_chain (comp
);
1357 chains
->safe_push (chain
);
1361 /* Trivial component. */
1362 if (comp
->refs
.length () <= 1)
1364 if (comp
->refs
.length () == 1)
1366 free (comp
->refs
[0]);
1367 comp
->refs
.truncate (0);
1372 comp
->refs
.qsort (order_drefs
);
1374 /* For Store-Store chain, we only support load if it is dominated by a
1375 store statement in the same iteration of loop. */
1376 if (comp
->eliminate_store_p
)
1377 for (a
= NULL
, i
= 0; i
< comp
->refs
.length (); i
++)
1379 if (DR_IS_WRITE (comp
->refs
[i
]->ref
))
1381 else if (a
== NULL
|| a
->offset
!= comp
->refs
[i
]->offset
)
1383 /* If there is load that is not dominated by a store in the
1384 same iteration of loop, clear the flag so no Store-Store
1385 chain is generated for this component. */
1386 comp
->eliminate_store_p
= false;
1391 /* Determine roots and create chains for components. */
1392 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1395 || (chain
->type
== CT_LOAD
&& DR_IS_WRITE (a
->ref
))
1396 || (!comp
->eliminate_store_p
&& DR_IS_WRITE (a
->ref
))
1397 || wi::leu_p (MAX_DISTANCE
, a
->offset
- last_ofs
))
1399 if (nontrivial_chain_p (chain
))
1401 add_looparound_copies (loop
, chain
);
1402 chains
->safe_push (chain
);
1405 release_chain (chain
);
1407 /* Determine type of the chain. If the root reference is a load,
1408 this can only be a CT_LOAD chain; other chains are intialized
1409 to CT_STORE_LOAD and might be promoted to CT_STORE_STORE when
1410 new reference is added. */
1411 type
= DR_IS_READ (a
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
1412 chain
= make_rooted_chain (a
, type
);
1413 last_ofs
= a
->offset
;
1417 add_ref_to_chain (chain
, a
);
1420 if (nontrivial_chain_p (chain
))
1422 add_looparound_copies (loop
, chain
);
1423 chains
->safe_push (chain
);
1426 release_chain (chain
);
1429 /* Find roots of the values and determine distances in components COMPS, and
1430 separates the references to CHAINS. LOOP is the current loop. */
1433 determine_roots (struct loop
*loop
,
1434 struct component
*comps
, vec
<chain_p
> *chains
)
1436 struct component
*comp
;
1438 for (comp
= comps
; comp
; comp
= comp
->next
)
1439 determine_roots_comp (loop
, comp
, chains
);
1442 /* Replace the reference in statement STMT with temporary variable
1443 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1444 the reference in the statement. IN_LHS is true if the reference
1445 is in the lhs of STMT, false if it is in rhs. */
1448 replace_ref_with (gimple
*stmt
, tree new_tree
, bool set
, bool in_lhs
)
1452 gimple_stmt_iterator bsi
, psi
;
1454 if (gimple_code (stmt
) == GIMPLE_PHI
)
1456 gcc_assert (!in_lhs
&& !set
);
1458 val
= PHI_RESULT (stmt
);
1459 bsi
= gsi_after_labels (gimple_bb (stmt
));
1460 psi
= gsi_for_stmt (stmt
);
1461 remove_phi_node (&psi
, false);
1463 /* Turn the phi node into GIMPLE_ASSIGN. */
1464 new_stmt
= gimple_build_assign (val
, new_tree
);
1465 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1469 /* Since the reference is of gimple_reg type, it should only
1470 appear as lhs or rhs of modify statement. */
1471 gcc_assert (is_gimple_assign (stmt
));
1473 bsi
= gsi_for_stmt (stmt
);
1475 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1478 gcc_assert (!in_lhs
);
1479 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1480 stmt
= gsi_stmt (bsi
);
1487 /* We have statement
1491 If OLD is a memory reference, then VAL is gimple_val, and we transform
1497 Otherwise, we are replacing a combination chain,
1498 VAL is the expression that performs the combination, and OLD is an
1499 SSA name. In this case, we transform the assignment to
1506 val
= gimple_assign_lhs (stmt
);
1507 if (TREE_CODE (val
) != SSA_NAME
)
1509 val
= gimple_assign_rhs1 (stmt
);
1510 gcc_assert (gimple_assign_single_p (stmt
));
1511 if (TREE_CLOBBER_P (val
))
1512 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1514 gcc_assert (gimple_assign_copy_p (stmt
));
1526 val
= gimple_assign_lhs (stmt
);
1529 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1530 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1533 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1534 of the loop it was analyzed in. Append init stmts to STMTS. */
1537 ref_at_iteration (data_reference_p dr
, int iter
,
1538 gimple_seq
*stmts
, tree niters
= NULL_TREE
)
1540 tree off
= DR_OFFSET (dr
);
1541 tree coff
= DR_INIT (dr
);
1542 tree ref
= DR_REF (dr
);
1543 enum tree_code ref_code
= ERROR_MARK
;
1544 tree ref_type
= NULL_TREE
;
1545 tree ref_op1
= NULL_TREE
;
1546 tree ref_op2
= NULL_TREE
;
1551 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
));
1552 if (TREE_CODE (new_offset
) == INTEGER_CST
)
1553 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1555 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1558 if (niters
!= NULL_TREE
)
1560 niters
= fold_convert (ssizetype
, niters
);
1561 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), niters
);
1562 if (TREE_CODE (niters
) == INTEGER_CST
)
1563 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1565 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1568 /* While data-ref analysis punts on bit offsets it still handles
1569 bitfield accesses at byte boundaries. Cope with that. Note that
1570 if the bitfield object also starts at a byte-boundary we can simply
1571 replicate the COMPONENT_REF, but we have to subtract the component's
1572 byte-offset from the MEM_REF address first.
1573 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1574 start at offset zero. */
1575 if (TREE_CODE (ref
) == COMPONENT_REF
1576 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
1578 unsigned HOST_WIDE_INT boff
;
1579 tree field
= TREE_OPERAND (ref
, 1);
1580 tree offset
= component_ref_field_offset (ref
);
1581 ref_type
= TREE_TYPE (ref
);
1582 boff
= tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
));
1583 /* This can occur in Ada. See the comment in get_bit_range. */
1584 if (boff
% BITS_PER_UNIT
!= 0
1585 || !tree_fits_uhwi_p (offset
))
1587 ref_code
= BIT_FIELD_REF
;
1588 ref_op1
= DECL_SIZE (field
);
1589 ref_op2
= bitsize_zero_node
;
1593 boff
>>= LOG2_BITS_PER_UNIT
;
1594 boff
+= tree_to_uhwi (offset
);
1595 coff
= size_binop (MINUS_EXPR
, coff
, ssize_int (boff
));
1596 ref_code
= COMPONENT_REF
;
1598 ref_op2
= TREE_OPERAND (ref
, 2);
1599 ref
= TREE_OPERAND (ref
, 0);
1602 tree addr
= fold_build_pointer_plus (DR_BASE_ADDRESS (dr
), off
);
1603 addr
= force_gimple_operand_1 (unshare_expr (addr
), stmts
,
1604 is_gimple_mem_ref_addr
, NULL_TREE
);
1605 tree alias_ptr
= fold_convert (reference_alias_ptr_type (ref
), coff
);
1606 tree type
= build_aligned_type (TREE_TYPE (ref
),
1607 get_object_alignment (ref
));
1608 ref
= build2 (MEM_REF
, type
, addr
, alias_ptr
);
1610 ref
= build3 (ref_code
, ref_type
, ref
, ref_op1
, ref_op2
);
1614 /* Get the initialization expression for the INDEX-th temporary variable
1618 get_init_expr (chain_p chain
, unsigned index
)
1620 if (chain
->type
== CT_COMBINATION
)
1622 tree e1
= get_init_expr (chain
->ch1
, index
);
1623 tree e2
= get_init_expr (chain
->ch2
, index
);
1625 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1628 return chain
->inits
[index
];
1631 /* Returns a new temporary variable used for the I-th variable carrying
1632 value of REF. The variable's uid is marked in TMP_VARS. */
1635 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1637 tree type
= TREE_TYPE (ref
);
1638 /* We never access the components of the temporary variable in predictive
1640 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1641 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1645 /* Creates the variables for CHAIN, as well as phi nodes for them and
1646 initialization on entry to LOOP. Uids of the newly created
1647 temporary variables are marked in TMP_VARS. */
1650 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1653 unsigned n
= chain
->length
;
1654 dref root
= get_chain_root (chain
);
1655 bool reuse_first
= !chain
->has_max_use_after
;
1656 tree ref
, init
, var
, next
;
1659 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1661 /* If N == 0, then all the references are within the single iteration. And
1662 since this is an nonempty chain, reuse_first cannot be true. */
1663 gcc_assert (n
> 0 || !reuse_first
);
1665 chain
->vars
.create (n
+ 1);
1667 if (chain
->type
== CT_COMBINATION
)
1668 ref
= gimple_assign_lhs (root
->stmt
);
1670 ref
= DR_REF (root
->ref
);
1672 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1674 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1675 chain
->vars
.quick_push (var
);
1678 chain
->vars
.quick_push (chain
->vars
[0]);
1680 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1681 chain
->vars
[i
] = make_ssa_name (var
);
1683 for (i
= 0; i
< n
; i
++)
1685 var
= chain
->vars
[i
];
1686 next
= chain
->vars
[i
+ 1];
1687 init
= get_init_expr (chain
, i
);
1689 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1691 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1693 phi
= create_phi_node (var
, loop
->header
);
1694 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1695 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1699 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1700 all stores to be eliminated store loop invariant values into memory.
1701 In this case, we can use these invariant values directly after LOOP. */
1704 is_inv_store_elimination_chain (struct loop
*loop
, chain_p chain
)
1706 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
1709 gcc_assert (!chain
->has_max_use_after
);
1711 /* If loop iterates for unknown times or fewer times than chain->lenght,
1712 we still need to setup root variable and propagate it with PHI node. */
1713 tree niters
= number_of_latch_executions (loop
);
1714 if (TREE_CODE (niters
) != INTEGER_CST
1715 || wi::leu_p (wi::to_wide (niters
), chain
->length
))
1718 /* Check stores in chain for elimination if they only store loop invariant
1720 for (unsigned i
= 0; i
< chain
->length
; i
++)
1722 dref a
= get_chain_last_write_at (chain
, i
);
1726 gimple
*def_stmt
, *stmt
= a
->stmt
;
1727 if (!gimple_assign_single_p (stmt
))
1730 tree val
= gimple_assign_rhs1 (stmt
);
1731 if (TREE_CLOBBER_P (val
))
1734 if (CONSTANT_CLASS_P (val
))
1737 if (TREE_CODE (val
) != SSA_NAME
)
1740 def_stmt
= SSA_NAME_DEF_STMT (val
);
1741 if (gimple_nop_p (def_stmt
))
1744 if (flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
)))
1750 /* Creates root variables for store elimination CHAIN in which stores for
1751 elimination only store loop invariant values. In this case, we neither
1752 need to load root variables before loop nor propagate it with PHI nodes. */
1755 initialize_root_vars_store_elim_1 (chain_p chain
)
1758 unsigned i
, n
= chain
->length
;
1760 chain
->vars
.create (n
);
1761 chain
->vars
.safe_grow_cleared (n
);
1763 /* Initialize root value for eliminated stores at each distance. */
1764 for (i
= 0; i
< n
; i
++)
1766 dref a
= get_chain_last_write_at (chain
, i
);
1770 var
= gimple_assign_rhs1 (a
->stmt
);
1771 chain
->vars
[a
->distance
] = var
;
1774 /* We don't propagate values with PHI nodes, so manually propagate value
1775 to bubble positions. */
1776 var
= chain
->vars
[0];
1777 for (i
= 1; i
< n
; i
++)
1779 if (chain
->vars
[i
] != NULL_TREE
)
1781 var
= chain
->vars
[i
];
1784 chain
->vars
[i
] = var
;
1787 /* Revert the vector. */
1788 for (i
= 0; i
< n
/ 2; i
++)
1789 std::swap (chain
->vars
[i
], chain
->vars
[n
- i
- 1]);
1792 /* Creates root variables for store elimination CHAIN in which stores for
1793 elimination store loop variant values. In this case, we may need to
1794 load root variables before LOOP and propagate it with PHI nodes. Uids
1795 of the newly created root variables are marked in TMP_VARS. */
1798 initialize_root_vars_store_elim_2 (struct loop
*loop
,
1799 chain_p chain
, bitmap tmp_vars
)
1801 unsigned i
, n
= chain
->length
;
1802 tree ref
, init
, var
, next
, val
, phi_result
;
1806 chain
->vars
.create (n
);
1808 ref
= DR_REF (get_chain_root (chain
)->ref
);
1809 for (i
= 0; i
< n
; i
++)
1811 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1812 chain
->vars
.quick_push (var
);
1815 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1816 chain
->vars
[i
] = make_ssa_name (var
);
1818 /* Root values are either rhs operand of stores to be eliminated, or
1819 loaded from memory before loop. */
1820 auto_vec
<tree
> vtemps
;
1821 vtemps
.safe_grow_cleared (n
);
1822 for (i
= 0; i
< n
; i
++)
1824 init
= get_init_expr (chain
, i
);
1825 if (init
== NULL_TREE
)
1827 /* Root value is rhs operand of the store to be eliminated if
1828 it isn't loaded from memory before loop. */
1829 dref a
= get_chain_last_write_at (chain
, i
);
1830 val
= gimple_assign_rhs1 (a
->stmt
);
1831 if (TREE_CLOBBER_P (val
))
1833 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (var
));
1834 gimple_assign_set_rhs1 (a
->stmt
, val
);
1837 vtemps
[n
- i
- 1] = val
;
1841 edge latch
= loop_latch_edge (loop
);
1842 edge entry
= loop_preheader_edge (loop
);
1844 /* Root value is loaded from memory before loop, we also need
1845 to add PHI nodes to propagate the value across iterations. */
1846 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1848 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1850 next
= chain
->vars
[n
- i
];
1851 phi_result
= copy_ssa_name (next
);
1852 gphi
*phi
= create_phi_node (phi_result
, loop
->header
);
1853 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1854 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1855 vtemps
[n
- i
- 1] = phi_result
;
1859 /* Find the insertion position. */
1860 dref last
= get_chain_root (chain
);
1861 for (i
= 0; i
< chain
->refs
.length (); i
++)
1863 if (chain
->refs
[i
]->pos
> last
->pos
)
1864 last
= chain
->refs
[i
];
1867 gimple_stmt_iterator gsi
= gsi_for_stmt (last
->stmt
);
1869 /* Insert statements copying root value to root variable. */
1870 for (i
= 0; i
< n
; i
++)
1872 var
= chain
->vars
[i
];
1874 stmt
= gimple_build_assign (var
, val
);
1875 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1879 /* Generates stores for CHAIN's eliminated stores in LOOP's last
1880 (CHAIN->length - 1) iterations. */
1883 finalize_eliminated_stores (struct loop
*loop
, chain_p chain
)
1885 unsigned i
, n
= chain
->length
;
1887 for (i
= 0; i
< n
; i
++)
1889 tree var
= chain
->vars
[i
];
1890 tree fini
= chain
->finis
[n
- i
- 1];
1891 gimple
*stmt
= gimple_build_assign (fini
, var
);
1893 gimple_seq_add_stmt_without_update (&chain
->fini_seq
, stmt
);
1896 if (chain
->fini_seq
)
1898 gsi_insert_seq_on_edge_immediate (single_exit (loop
), chain
->fini_seq
);
1899 chain
->fini_seq
= NULL
;
1903 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1904 initialization on entry to LOOP if necessary. The ssa name for the variable
1905 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1906 around the loop is created. Uid of the newly created temporary variable
1907 is marked in TMP_VARS. INITS is the list containing the (single)
1911 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1912 vec
<tree
> *vars
, vec
<tree
> inits
,
1916 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1919 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1921 /* Find the initializer for the variable, and check that it cannot
1925 vars
->create (written
? 2 : 1);
1926 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1927 vars
->quick_push (var
);
1929 vars
->quick_push ((*vars
)[0]);
1931 FOR_EACH_VEC_ELT (*vars
, i
, var
)
1932 (*vars
)[i
] = make_ssa_name (var
);
1936 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1938 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1943 phi
= create_phi_node (var
, loop
->header
);
1944 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1945 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1949 gassign
*init_stmt
= gimple_build_assign (var
, init
);
1950 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1955 /* Execute load motion for references in chain CHAIN. Uids of the newly
1956 created temporary variables are marked in TMP_VARS. */
1959 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1961 auto_vec
<tree
> vars
;
1963 unsigned n_writes
= 0, ridx
, i
;
1966 gcc_assert (chain
->type
== CT_INVARIANT
);
1967 gcc_assert (!chain
->combined
);
1968 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1969 if (DR_IS_WRITE (a
->ref
))
1972 /* If there are no reads in the loop, there is nothing to do. */
1973 if (n_writes
== chain
->refs
.length ())
1976 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1977 &vars
, chain
->inits
, tmp_vars
);
1980 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1982 bool is_read
= DR_IS_READ (a
->ref
);
1984 if (DR_IS_WRITE (a
->ref
))
1990 var
= make_ssa_name (SSA_NAME_VAR (var
));
1997 replace_ref_with (a
->stmt
, vars
[ridx
],
1998 !is_read
, !is_read
);
2002 /* Returns the single statement in that NAME is used, excepting
2003 the looparound phi nodes contained in one of the chains. If there is no
2004 such statement, or more statements, NULL is returned. */
2007 single_nonlooparound_use (tree name
)
2010 imm_use_iterator it
;
2011 gimple
*stmt
, *ret
= NULL
;
2013 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
2015 stmt
= USE_STMT (use
);
2017 if (gimple_code (stmt
) == GIMPLE_PHI
)
2019 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
2020 could not be processed anyway, so just fail for them. */
2021 if (bitmap_bit_p (looparound_phis
,
2022 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
2027 else if (is_gimple_debug (stmt
))
2029 else if (ret
!= NULL
)
2038 /* Remove statement STMT, as well as the chain of assignments in that it is
2042 remove_stmt (gimple
*stmt
)
2046 gimple_stmt_iterator psi
;
2048 if (gimple_code (stmt
) == GIMPLE_PHI
)
2050 name
= PHI_RESULT (stmt
);
2051 next
= single_nonlooparound_use (name
);
2052 reset_debug_uses (stmt
);
2053 psi
= gsi_for_stmt (stmt
);
2054 remove_phi_node (&psi
, true);
2057 || !gimple_assign_ssa_name_copy_p (next
)
2058 || gimple_assign_rhs1 (next
) != name
)
2066 gimple_stmt_iterator bsi
;
2068 bsi
= gsi_for_stmt (stmt
);
2070 name
= gimple_assign_lhs (stmt
);
2071 if (TREE_CODE (name
) == SSA_NAME
)
2073 next
= single_nonlooparound_use (name
);
2074 reset_debug_uses (stmt
);
2078 /* This is a store to be eliminated. */
2079 gcc_assert (gimple_vdef (stmt
) != NULL
);
2083 unlink_stmt_vdef (stmt
);
2084 gsi_remove (&bsi
, true);
2085 release_defs (stmt
);
2088 || !gimple_assign_ssa_name_copy_p (next
)
2089 || gimple_assign_rhs1 (next
) != name
)
2096 /* Perform the predictive commoning optimization for a chain CHAIN.
2097 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2100 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
2108 if (chain
->combined
)
2110 /* For combined chains, just remove the statements that are used to
2111 compute the values of the expression (except for the root one).
2112 We delay this until after all chains are processed. */
2114 else if (chain
->type
== CT_STORE_STORE
)
2116 if (chain
->length
> 0)
2118 if (chain
->inv_store_elimination
)
2120 /* If dead stores in this chain only store loop invariant
2121 values, we can simply record the invariant value and use
2122 it directly after loop. */
2123 initialize_root_vars_store_elim_1 (chain
);
2127 /* If dead stores in this chain store loop variant values,
2128 we need to set up the variables by loading from memory
2129 before loop and propagating it with PHI nodes. */
2130 initialize_root_vars_store_elim_2 (loop
, chain
, tmp_vars
);
2133 /* For inter-iteration store elimination chain, stores at each
2134 distance in loop's last (chain->length - 1) iterations can't
2135 be eliminated, because there is no following killing store.
2136 We need to generate these stores after loop. */
2137 finalize_eliminated_stores (loop
, chain
);
2140 bool last_store_p
= true;
2141 for (i
= chain
->refs
.length (); i
> 0; i
--)
2143 a
= chain
->refs
[i
- 1];
2144 /* Preserve the last store of the chain. Eliminate other stores
2145 which are killed by the last one. */
2146 if (DR_IS_WRITE (a
->ref
))
2149 last_store_p
= false;
2151 remove_stmt (a
->stmt
);
2156 /* Any load in Store-Store chain must be dominated by a previous
2157 store, we replace the load reference with rhs of the store. */
2158 dref b
= get_chain_last_write_before_load (chain
, i
- 1);
2159 gcc_assert (b
!= NULL
);
2160 var
= gimple_assign_rhs1 (b
->stmt
);
2161 replace_ref_with (a
->stmt
, var
, false, false);
2166 /* For non-combined chains, set up the variables that hold its value. */
2167 initialize_root_vars (loop
, chain
, tmp_vars
);
2168 a
= get_chain_root (chain
);
2169 in_lhs
= (chain
->type
== CT_STORE_LOAD
2170 || chain
->type
== CT_COMBINATION
);
2171 replace_ref_with (a
->stmt
, chain
->vars
[chain
->length
], true, in_lhs
);
2173 /* Replace the uses of the original references by these variables. */
2174 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
2176 var
= chain
->vars
[chain
->length
- a
->distance
];
2177 replace_ref_with (a
->stmt
, var
, false, false);
2182 /* Determines the unroll factor necessary to remove as many temporary variable
2183 copies as possible. CHAINS is the list of chains that will be
2187 determine_unroll_factor (vec
<chain_p
> chains
)
2190 unsigned factor
= 1, af
, nfactor
, i
;
2191 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
2193 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2195 if (chain
->type
== CT_INVARIANT
)
2197 /* For now we can't handle unrolling when eliminating stores. */
2198 else if (chain
->type
== CT_STORE_STORE
)
2201 if (chain
->combined
)
2203 /* For combined chains, we can't handle unrolling if we replace
2207 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2208 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2213 /* The best unroll factor for this chain is equal to the number of
2214 temporary variables that we create for it. */
2216 if (chain
->has_max_use_after
)
2219 nfactor
= factor
* af
/ gcd (factor
, af
);
2227 /* Perform the predictive commoning optimization for CHAINS.
2228 Uids of the newly created temporary variables are marked in TMP_VARS. */
2231 execute_pred_commoning (struct loop
*loop
, vec
<chain_p
> chains
,
2237 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2239 if (chain
->type
== CT_INVARIANT
)
2240 execute_load_motion (loop
, chain
, tmp_vars
);
2242 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
2245 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2247 if (chain
->type
== CT_INVARIANT
)
2249 else if (chain
->combined
)
2251 /* For combined chains, just remove the statements that are used to
2252 compute the values of the expression (except for the root one). */
2255 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2256 remove_stmt (a
->stmt
);
2260 update_ssa (TODO_update_ssa_only_virtuals
);
2263 /* For each reference in CHAINS, if its defining statement is
2264 phi node, record the ssa name that is defined by it. */
2267 replace_phis_by_defined_names (vec
<chain_p
> chains
)
2273 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2274 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2276 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2278 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
2284 /* For each reference in CHAINS, if name_defined_by_phi is not
2285 NULL, use it to set the stmt field. */
2288 replace_names_by_phis (vec
<chain_p
> chains
)
2294 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2295 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2296 if (a
->stmt
== NULL
)
2298 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
2299 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
2300 a
->name_defined_by_phi
= NULL_TREE
;
2304 /* Wrapper over execute_pred_commoning, to pass it as a callback
2305 to tree_transform_and_unroll_loop. */
2309 vec
<chain_p
> chains
;
2314 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
2316 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
2318 /* Restore phi nodes that were replaced by ssa names before
2319 tree_transform_and_unroll_loop (see detailed description in
2320 tree_predictive_commoning_loop). */
2321 replace_names_by_phis (dta
->chains
);
2322 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
2325 /* Base NAME and all the names in the chain of phi nodes that use it
2326 on variable VAR. The phi nodes are recognized by being in the copies of
2327 the header of the LOOP. */
2330 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
2333 imm_use_iterator iter
;
2335 replace_ssa_name_symbol (name
, var
);
2340 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
2342 if (gimple_code (stmt
) == GIMPLE_PHI
2343 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
2346 BREAK_FROM_IMM_USE_STMT (iter
);
2352 name
= PHI_RESULT (phi
);
2353 replace_ssa_name_symbol (name
, var
);
2357 /* Given an unrolled LOOP after predictive commoning, remove the
2358 register copies arising from phi nodes by changing the base
2359 variables of SSA names. TMP_VARS is the set of the temporary variables
2360 for those we want to perform this. */
2363 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
2368 tree name
, use
, var
;
2371 e
= loop_latch_edge (loop
);
2372 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
2375 name
= PHI_RESULT (phi
);
2376 var
= SSA_NAME_VAR (name
);
2377 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
2379 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
2380 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
2382 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2383 stmt
= SSA_NAME_DEF_STMT (use
);
2384 while (gimple_code (stmt
) == GIMPLE_PHI
2385 /* In case we could not unroll the loop enough to eliminate
2386 all copies, we may reach the loop header before the defining
2387 statement (in that case, some register copies will be present
2388 in loop latch in the final code, corresponding to the newly
2389 created looparound phi nodes). */
2390 && gimple_bb (stmt
) != loop
->header
)
2392 gcc_assert (single_pred_p (gimple_bb (stmt
)));
2393 use
= PHI_ARG_DEF (stmt
, 0);
2394 stmt
= SSA_NAME_DEF_STMT (use
);
2397 base_names_in_chain_on (loop
, use
, var
);
2401 /* Returns true if CHAIN is suitable to be combined. */
2404 chain_can_be_combined_p (chain_p chain
)
2406 return (!chain
->combined
2407 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
2410 /* Returns the modify statement that uses NAME. Skips over assignment
2411 statements, NAME is replaced with the actual name used in the returned
2415 find_use_stmt (tree
*name
)
2420 /* Skip over assignments. */
2423 stmt
= single_nonlooparound_use (*name
);
2427 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2430 lhs
= gimple_assign_lhs (stmt
);
2431 if (TREE_CODE (lhs
) != SSA_NAME
)
2434 if (gimple_assign_copy_p (stmt
))
2436 rhs
= gimple_assign_rhs1 (stmt
);
2442 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2443 == GIMPLE_BINARY_RHS
)
2450 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2453 may_reassociate_p (tree type
, enum tree_code code
)
2455 if (FLOAT_TYPE_P (type
)
2456 && !flag_unsafe_math_optimizations
)
2459 return (commutative_tree_code (code
)
2460 && associative_tree_code (code
));
2463 /* If the operation used in STMT is associative and commutative, go through the
2464 tree of the same operations and returns its root. Distance to the root
2465 is stored in DISTANCE. */
2468 find_associative_operation_root (gimple
*stmt
, unsigned *distance
)
2472 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2473 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2476 if (!may_reassociate_p (type
, code
))
2481 lhs
= gimple_assign_lhs (stmt
);
2482 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2484 next
= find_use_stmt (&lhs
);
2486 || gimple_assign_rhs_code (next
) != code
)
2498 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2499 is no such statement, returns NULL_TREE. In case the operation used on
2500 NAME1 and NAME2 is associative and commutative, returns the root of the
2501 tree formed by this operation instead of the statement that uses NAME1 or
2505 find_common_use_stmt (tree
*name1
, tree
*name2
)
2507 gimple
*stmt1
, *stmt2
;
2509 stmt1
= find_use_stmt (name1
);
2513 stmt2
= find_use_stmt (name2
);
2520 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2523 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2527 return (stmt1
== stmt2
? stmt1
: NULL
);
2530 /* Checks whether R1 and R2 are combined together using CODE, with the result
2531 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2532 if it is true. If CODE is ERROR_MARK, set these values instead. */
2535 combinable_refs_p (dref r1
, dref r2
,
2536 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2538 enum tree_code acode
;
2544 name1
= name_for_ref (r1
);
2545 name2
= name_for_ref (r2
);
2546 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2548 stmt
= find_common_use_stmt (&name1
, &name2
);
2551 /* A simple post-dominance check - make sure the combination
2552 is executed under the same condition as the references. */
2553 || (gimple_bb (stmt
) != gimple_bb (r1
->stmt
)
2554 && gimple_bb (stmt
) != gimple_bb (r2
->stmt
)))
2557 acode
= gimple_assign_rhs_code (stmt
);
2558 aswap
= (!commutative_tree_code (acode
)
2559 && gimple_assign_rhs1 (stmt
) != name1
);
2560 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2562 if (*code
== ERROR_MARK
)
2570 return (*code
== acode
2572 && *rslt_type
== atype
);
2575 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2576 an assignment of the remaining operand. */
2579 remove_name_from_operation (gimple
*stmt
, tree op
)
2582 gimple_stmt_iterator si
;
2584 gcc_assert (is_gimple_assign (stmt
));
2586 if (gimple_assign_rhs1 (stmt
) == op
)
2587 other_op
= gimple_assign_rhs2 (stmt
);
2589 other_op
= gimple_assign_rhs1 (stmt
);
2591 si
= gsi_for_stmt (stmt
);
2592 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2594 /* We should not have reallocated STMT. */
2595 gcc_assert (gsi_stmt (si
) == stmt
);
2600 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2601 are combined in a single statement, and returns this statement. */
2604 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2606 gimple
*stmt1
, *stmt2
, *root1
, *root2
, *s1
, *s2
;
2607 gassign
*new_stmt
, *tmp_stmt
;
2608 tree new_name
, tmp_name
, var
, r1
, r2
;
2609 unsigned dist1
, dist2
;
2610 enum tree_code code
;
2611 tree type
= TREE_TYPE (name1
);
2612 gimple_stmt_iterator bsi
;
2614 stmt1
= find_use_stmt (&name1
);
2615 stmt2
= find_use_stmt (&name2
);
2616 root1
= find_associative_operation_root (stmt1
, &dist1
);
2617 root2
= find_associative_operation_root (stmt2
, &dist2
);
2618 code
= gimple_assign_rhs_code (stmt1
);
2620 gcc_assert (root1
&& root2
&& root1
== root2
2621 && code
== gimple_assign_rhs_code (stmt2
));
2623 /* Find the root of the nearest expression in that both NAME1 and NAME2
2630 while (dist1
> dist2
)
2632 s1
= find_use_stmt (&r1
);
2633 r1
= gimple_assign_lhs (s1
);
2636 while (dist2
> dist1
)
2638 s2
= find_use_stmt (&r2
);
2639 r2
= gimple_assign_lhs (s2
);
2645 s1
= find_use_stmt (&r1
);
2646 r1
= gimple_assign_lhs (s1
);
2647 s2
= find_use_stmt (&r2
);
2648 r2
= gimple_assign_lhs (s2
);
2651 /* Remove NAME1 and NAME2 from the statements in that they are used
2653 remove_name_from_operation (stmt1
, name1
);
2654 remove_name_from_operation (stmt2
, name2
);
2656 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2657 combine it with the rhs of S1. */
2658 var
= create_tmp_reg (type
, "predreastmp");
2659 new_name
= make_ssa_name (var
);
2660 new_stmt
= gimple_build_assign (new_name
, code
, name1
, name2
);
2662 var
= create_tmp_reg (type
, "predreastmp");
2663 tmp_name
= make_ssa_name (var
);
2665 /* Rhs of S1 may now be either a binary expression with operation
2666 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2667 so that name1 or name2 was removed from it). */
2668 tmp_stmt
= gimple_build_assign (tmp_name
, gimple_assign_rhs_code (s1
),
2669 gimple_assign_rhs1 (s1
),
2670 gimple_assign_rhs2 (s1
));
2672 bsi
= gsi_for_stmt (s1
);
2673 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2674 s1
= gsi_stmt (bsi
);
2677 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2678 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2683 /* Returns the statement that combines references R1 and R2. In case R1
2684 and R2 are not used in the same statement, but they are used with an
2685 associative and commutative operation in the same expression, reassociate
2686 the expression so that they are used in the same statement. */
2689 stmt_combining_refs (dref r1
, dref r2
)
2691 gimple
*stmt1
, *stmt2
;
2692 tree name1
= name_for_ref (r1
);
2693 tree name2
= name_for_ref (r2
);
2695 stmt1
= find_use_stmt (&name1
);
2696 stmt2
= find_use_stmt (&name2
);
2700 return reassociate_to_the_same_stmt (name1
, name2
);
2703 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2704 description of the new chain is returned, otherwise we return NULL. */
2707 combine_chains (chain_p ch1
, chain_p ch2
)
2710 enum tree_code op
= ERROR_MARK
;
2714 tree rslt_type
= NULL_TREE
;
2718 if (ch1
->length
!= ch2
->length
)
2721 if (ch1
->refs
.length () != ch2
->refs
.length ())
2724 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2725 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2727 if (r1
->distance
!= r2
->distance
)
2730 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2735 std::swap (ch1
, ch2
);
2737 new_chain
= XCNEW (struct chain
);
2738 new_chain
->type
= CT_COMBINATION
;
2740 new_chain
->ch1
= ch1
;
2741 new_chain
->ch2
= ch2
;
2742 new_chain
->rslt_type
= rslt_type
;
2743 new_chain
->length
= ch1
->length
;
2745 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2746 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2748 nw
= XCNEW (struct dref_d
);
2749 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2750 nw
->distance
= r1
->distance
;
2752 new_chain
->refs
.safe_push (nw
);
2755 ch1
->combined
= true;
2756 ch2
->combined
= true;
2760 /* Recursively update position information of all offspring chains to ROOT
2761 chain's position information. */
2764 update_pos_for_combined_chains (chain_p root
)
2766 chain_p ch1
= root
->ch1
, ch2
= root
->ch2
;
2767 dref ref
, ref1
, ref2
;
2768 for (unsigned j
= 0; (root
->refs
.iterate (j
, &ref
)
2769 && ch1
->refs
.iterate (j
, &ref1
)
2770 && ch2
->refs
.iterate (j
, &ref2
)); ++j
)
2771 ref1
->pos
= ref2
->pos
= ref
->pos
;
2773 if (ch1
->type
== CT_COMBINATION
)
2774 update_pos_for_combined_chains (ch1
);
2775 if (ch2
->type
== CT_COMBINATION
)
2776 update_pos_for_combined_chains (ch2
);
2779 /* Returns true if statement S1 dominates statement S2. */
2782 pcom_stmt_dominates_stmt_p (gimple
*s1
, gimple
*s2
)
2784 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
2786 if (!bb1
|| s1
== s2
)
2790 return gimple_uid (s1
) < gimple_uid (s2
);
2792 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
2795 /* Try to combine the CHAINS in LOOP. */
2798 try_combine_chains (struct loop
*loop
, vec
<chain_p
> *chains
)
2801 chain_p ch1
, ch2
, cch
;
2802 auto_vec
<chain_p
> worklist
;
2803 bool combined_p
= false;
2805 FOR_EACH_VEC_ELT (*chains
, i
, ch1
)
2806 if (chain_can_be_combined_p (ch1
))
2807 worklist
.safe_push (ch1
);
2809 while (!worklist
.is_empty ())
2811 ch1
= worklist
.pop ();
2812 if (!chain_can_be_combined_p (ch1
))
2815 FOR_EACH_VEC_ELT (*chains
, j
, ch2
)
2817 if (!chain_can_be_combined_p (ch2
))
2820 cch
= combine_chains (ch1
, ch2
);
2823 worklist
.safe_push (cch
);
2824 chains
->safe_push (cch
);
2833 /* Setup UID for all statements in dominance order. */
2834 basic_block
*bbs
= get_loop_body (loop
);
2835 renumber_gimple_stmt_uids_in_blocks (bbs
, loop
->num_nodes
);
2838 /* Re-association in combined chains may generate statements different to
2839 order of references of the original chain. We need to keep references
2840 of combined chain in dominance order so that all uses will be inserted
2841 after definitions. Note:
2842 A) This is necessary for all combined chains.
2843 B) This is only necessary for ZERO distance references because other
2844 references inherit value from loop carried PHIs.
2846 We first update position information for all combined chains. */
2848 for (i
= 0; chains
->iterate (i
, &ch1
); ++i
)
2850 if (ch1
->type
!= CT_COMBINATION
|| ch1
->combined
)
2853 for (j
= 0; ch1
->refs
.iterate (j
, &ref
); ++j
)
2854 ref
->pos
= gimple_uid (ref
->stmt
);
2856 update_pos_for_combined_chains (ch1
);
2858 /* Then sort references according to newly updated position information. */
2859 for (i
= 0; chains
->iterate (i
, &ch1
); ++i
)
2861 if (ch1
->type
!= CT_COMBINATION
&& !ch1
->combined
)
2864 /* Find the first reference with non-ZERO distance. */
2865 if (ch1
->length
== 0)
2866 j
= ch1
->refs
.length();
2869 for (j
= 0; ch1
->refs
.iterate (j
, &ref
); ++j
)
2870 if (ref
->distance
!= 0)
2874 /* Sort all ZERO distance references by position. */
2875 qsort (&ch1
->refs
[0], j
, sizeof (ch1
->refs
[0]), order_drefs_by_pos
);
2880 /* For ZERO length chain, has_max_use_after must be true since root
2881 combined stmt must dominates others. */
2882 if (ch1
->length
== 0)
2884 ch1
->has_max_use_after
= true;
2887 /* Check if there is use at max distance after root for combined chains
2888 and set flag accordingly. */
2889 ch1
->has_max_use_after
= false;
2890 gimple
*root_stmt
= get_chain_root (ch1
)->stmt
;
2891 for (j
= 1; ch1
->refs
.iterate (j
, &ref
); ++j
)
2893 if (ref
->distance
== ch1
->length
2894 && !pcom_stmt_dominates_stmt_p (ref
->stmt
, root_stmt
))
2896 ch1
->has_max_use_after
= true;
2903 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
2904 if this is impossible because one of these initializers may trap, true
2908 prepare_initializers_chain_store_elim (struct loop
*loop
, chain_p chain
)
2910 unsigned i
, n
= chain
->length
;
2912 /* For now we can't eliminate stores if some of them are conditional
2914 if (!chain
->all_always_accessed
)
2917 /* Nothing to intialize for intra-iteration store elimination. */
2918 if (n
== 0 && chain
->type
== CT_STORE_STORE
)
2921 /* For store elimination chain, there is nothing to initialize if stores
2922 to be eliminated only store loop invariant values into memory. */
2923 if (chain
->type
== CT_STORE_STORE
2924 && is_inv_store_elimination_chain (loop
, chain
))
2926 chain
->inv_store_elimination
= true;
2930 chain
->inits
.create (n
);
2931 chain
->inits
.safe_grow_cleared (n
);
2933 /* For store eliminatin chain like below:
2935 for (i = 0; i < len; i++)
2942 store to a[i + 1] is missed in loop body, it acts like bubbles. The
2943 content of a[i + 1] remain the same if the loop iterates fewer times
2944 than chain->length. We need to set up root variables for such stores
2945 by loading from memory before loop. Note we only need to load bubble
2946 elements because loop body is guaranteed to be executed at least once
2947 after loop's preheader edge. */
2948 auto_vec
<bool> bubbles
;
2949 bubbles
.safe_grow_cleared (n
+ 1);
2950 for (i
= 0; i
< chain
->refs
.length (); i
++)
2951 bubbles
[chain
->refs
[i
]->distance
] = true;
2953 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2954 for (i
= 0; i
< n
; i
++)
2959 gimple_seq stmts
= NULL
;
2961 tree init
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
);
2963 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
2965 chain
->inits
[i
] = init
;
2971 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2972 impossible because one of these initializers may trap, true otherwise. */
2975 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2977 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2978 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2981 edge entry
= loop_preheader_edge (loop
);
2983 if (chain
->type
== CT_STORE_STORE
)
2984 return prepare_initializers_chain_store_elim (loop
, chain
);
2986 /* Find the initializers for the variables, and check that they cannot
2988 chain
->inits
.create (n
);
2989 for (i
= 0; i
< n
; i
++)
2990 chain
->inits
.quick_push (NULL_TREE
);
2992 /* If we have replaced some looparound phi nodes, use their initializers
2993 instead of creating our own. */
2994 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
2996 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2999 gcc_assert (laref
->distance
> 0);
3000 chain
->inits
[n
- laref
->distance
]
3001 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
3004 for (i
= 0; i
< n
; i
++)
3006 gimple_seq stmts
= NULL
;
3008 if (chain
->inits
[i
] != NULL_TREE
)
3011 init
= ref_at_iteration (dr
, (int) i
- n
, &stmts
);
3012 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
3014 gimple_seq_discard (stmts
);
3019 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
3021 chain
->inits
[i
] = init
;
3027 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
3028 be used because the initializers might trap. */
3031 prepare_initializers (struct loop
*loop
, vec
<chain_p
> chains
)
3036 for (i
= 0; i
< chains
.length (); )
3039 if (prepare_initializers_chain (loop
, chain
))
3043 release_chain (chain
);
3044 chains
.unordered_remove (i
);
3049 /* Generates finalizer memory references for CHAIN in LOOP. Returns true
3050 if finalizer code for CHAIN can be generated, otherwise false. */
3053 prepare_finalizers_chain (struct loop
*loop
, chain_p chain
)
3055 unsigned i
, n
= chain
->length
;
3056 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3057 tree fini
, niters
= number_of_latch_executions (loop
);
3059 /* For now we can't eliminate stores if some of them are conditional
3061 if (!chain
->all_always_accessed
)
3064 chain
->finis
.create (n
);
3065 for (i
= 0; i
< n
; i
++)
3066 chain
->finis
.quick_push (NULL_TREE
);
3068 /* We never use looparound phi node for store elimination chains. */
3070 /* Find the finalizers for the variables, and check that they cannot
3072 for (i
= 0; i
< n
; i
++)
3074 gimple_seq stmts
= NULL
;
3075 gcc_assert (chain
->finis
[i
] == NULL_TREE
);
3077 if (TREE_CODE (niters
) != INTEGER_CST
&& TREE_CODE (niters
) != SSA_NAME
)
3079 niters
= unshare_expr (niters
);
3080 niters
= force_gimple_operand (niters
, &stmts
, true, NULL
);
3083 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
3087 fini
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
, niters
);
3089 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
3091 chain
->finis
[i
] = fini
;
3097 /* Generates finalizer memory reference for CHAINS in LOOP. Returns true
3098 if finalizer code generation for CHAINS breaks loop closed ssa form. */
3101 prepare_finalizers (struct loop
*loop
, vec
<chain_p
> chains
)
3105 bool loop_closed_ssa
= false;
3107 for (i
= 0; i
< chains
.length ();)
3111 /* Finalizer is only necessary for inter-iteration store elimination
3113 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
3119 if (prepare_finalizers_chain (loop
, chain
))
3122 /* Be conservative, assume loop closed ssa form is corrupted
3123 by store-store chain. Though it's not always the case if
3124 eliminated stores only store loop invariant values into
3126 loop_closed_ssa
= true;
3130 release_chain (chain
);
3131 chains
.unordered_remove (i
);
3134 return loop_closed_ssa
;
3137 /* Insert all initializing gimple stmts into loop's entry edge. */
3140 insert_init_seqs (struct loop
*loop
, vec
<chain_p
> chains
)
3143 edge entry
= loop_preheader_edge (loop
);
3145 for (i
= 0; i
< chains
.length (); ++i
)
3146 if (chains
[i
]->init_seq
)
3148 gsi_insert_seq_on_edge_immediate (entry
, chains
[i
]->init_seq
);
3149 chains
[i
]->init_seq
= NULL
;
3153 /* Performs predictive commoning for LOOP. Sets bit 1<<0 of return value
3154 if LOOP was unrolled; Sets bit 1<<1 of return value if loop closed ssa
3155 form was corrupted. */
3158 tree_predictive_commoning_loop (struct loop
*loop
)
3160 vec
<data_reference_p
> datarefs
;
3161 vec
<ddr_p
> dependences
;
3162 struct component
*components
;
3163 vec
<chain_p
> chains
= vNULL
;
3164 unsigned unroll_factor
;
3165 struct tree_niter_desc desc
;
3166 bool unroll
= false, loop_closed_ssa
= false;
3169 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3170 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
3172 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3173 if (get_max_loop_iterations_int (loop
) == 0)
3175 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3176 fprintf (dump_file
, "Loop iterates only 1 time, nothing to do.\n");
3181 /* Find the data references and split them into components according to their
3182 dependence relations. */
3183 auto_vec
<loop_p
, 3> loop_nest
;
3184 dependences
.create (10);
3185 datarefs
.create (10);
3186 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
3189 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3190 fprintf (dump_file
, "Cannot analyze data dependencies\n");
3191 free_data_refs (datarefs
);
3192 free_dependence_relations (dependences
);
3196 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3197 dump_data_dependence_relations (dump_file
, dependences
);
3199 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
3200 loop_nest
.release ();
3201 free_dependence_relations (dependences
);
3204 free_data_refs (datarefs
);
3205 free_affine_expand_cache (&name_expansions
);
3209 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3211 fprintf (dump_file
, "Initial state:\n\n");
3212 dump_components (dump_file
, components
);
3215 /* Find the suitable components and split them into chains. */
3216 components
= filter_suitable_components (loop
, components
);
3218 auto_bitmap tmp_vars
;
3219 looparound_phis
= BITMAP_ALLOC (NULL
);
3220 determine_roots (loop
, components
, &chains
);
3221 release_components (components
);
3223 if (!chains
.exists ())
3225 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3227 "Predictive commoning failed: no suitable chains\n");
3230 prepare_initializers (loop
, chains
);
3231 loop_closed_ssa
= prepare_finalizers (loop
, chains
);
3233 /* Try to combine the chains that are always worked with together. */
3234 try_combine_chains (loop
, &chains
);
3236 insert_init_seqs (loop
, chains
);
3238 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3240 fprintf (dump_file
, "Before commoning:\n\n");
3241 dump_chains (dump_file
, chains
);
3244 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3245 that its number of iterations is divisible by the factor. */
3246 unroll_factor
= determine_unroll_factor (chains
);
3248 unroll
= (unroll_factor
> 1
3249 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
3250 exit
= single_dom_exit (loop
);
3252 /* Execute the predictive commoning transformations, and possibly unroll the
3256 struct epcc_data dta
;
3258 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3259 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
3261 dta
.chains
= chains
;
3262 dta
.tmp_vars
= tmp_vars
;
3264 update_ssa (TODO_update_ssa_only_virtuals
);
3266 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3267 execute_pred_commoning_cbck is called may cause phi nodes to be
3268 reallocated, which is a problem since CHAINS may point to these
3269 statements. To fix this, we store the ssa names defined by the
3270 phi nodes here instead of the phi nodes themselves, and restore
3271 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3272 replace_phis_by_defined_names (chains
);
3274 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
3275 execute_pred_commoning_cbck
, &dta
);
3276 eliminate_temp_copies (loop
, tmp_vars
);
3280 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3282 "Executing predictive commoning without unrolling.\n");
3283 execute_pred_commoning (loop
, chains
, tmp_vars
);
3287 release_chains (chains
);
3288 free_data_refs (datarefs
);
3289 BITMAP_FREE (looparound_phis
);
3291 free_affine_expand_cache (&name_expansions
);
3293 return (unroll
? 1 : 0) | (loop_closed_ssa
? 2 : 0);
3296 /* Runs predictive commoning. */
3299 tree_predictive_commoning (void)
3302 unsigned ret
= 0, changed
= 0;
3304 initialize_original_copy_tables ();
3305 FOR_EACH_LOOP (loop
, LI_ONLY_INNERMOST
)
3306 if (optimize_loop_for_speed_p (loop
))
3308 changed
|= tree_predictive_commoning_loop (loop
);
3310 free_original_copy_tables ();
3317 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
3319 ret
= TODO_cleanup_cfg
;
3325 /* Predictive commoning Pass. */
3328 run_tree_predictive_commoning (struct function
*fun
)
3330 if (number_of_loops (fun
) <= 1)
3333 return tree_predictive_commoning ();
3338 const pass_data pass_data_predcom
=
3340 GIMPLE_PASS
, /* type */
3342 OPTGROUP_LOOP
, /* optinfo_flags */
3343 TV_PREDCOM
, /* tv_id */
3344 PROP_cfg
, /* properties_required */
3345 0, /* properties_provided */
3346 0, /* properties_destroyed */
3347 0, /* todo_flags_start */
3348 TODO_update_ssa_only_virtuals
, /* todo_flags_finish */
3351 class pass_predcom
: public gimple_opt_pass
3354 pass_predcom (gcc::context
*ctxt
)
3355 : gimple_opt_pass (pass_data_predcom
, ctxt
)
3358 /* opt_pass methods: */
3359 virtual bool gate (function
*) { return flag_predictive_commoning
!= 0; }
3360 virtual unsigned int execute (function
*fun
)
3362 return run_tree_predictive_commoning (fun
);
3365 }; // class pass_predcom
3370 make_pass_predcom (gcc::context
*ctxt
)
3372 return new pass_predcom (ctxt
);