PR tree-optimization/50802
[official-gcc.git] / gcc / ira.c
blobe3d3fe3038598a18d4bbe082cf9c23b3c212c86d
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Allocno class* is a register class used for allocation of
42 given allocno. It means that only hard register of given
43 register class can be assigned to given allocno. In reality,
44 even smaller subset of (*profitable*) hard registers can be
45 assigned. In rare cases, the subset can be even smaller
46 because our modification of Chaitin-Briggs algorithm requires
47 that sets of hard registers can be assigned to allocnos forms a
48 forest, i.e. the sets can be ordered in a way where any
49 previous set is not intersected with given set or is a superset
50 of given set.
52 o *Pressure class* is a register class belonging to a set of
53 register classes containing all of the hard-registers available
54 for register allocation. The set of all pressure classes for a
55 target is defined in the corresponding machine-description file
56 according some criteria. Register pressure is calculated only
57 for pressure classes and it affects some IRA decisions as
58 forming allocation regions.
60 o *Allocno* represents the live range of a pseudo-register in a
61 region. Besides the obvious attributes like the corresponding
62 pseudo-register number, allocno class, conflicting allocnos and
63 conflicting hard-registers, there are a few allocno attributes
64 which are important for understanding the allocation algorithm:
66 - *Live ranges*. This is a list of ranges of *program points*
67 where the allocno lives. Program points represent places
68 where a pseudo can be born or become dead (there are
69 approximately two times more program points than the insns)
70 and they are represented by integers starting with 0. The
71 live ranges are used to find conflicts between allocnos.
72 They also play very important role for the transformation of
73 the IRA internal representation of several regions into a one
74 region representation. The later is used during the reload
75 pass work because each allocno represents all of the
76 corresponding pseudo-registers.
78 - *Hard-register costs*. This is a vector of size equal to the
79 number of available hard-registers of the allocno class. The
80 cost of a callee-clobbered hard-register for an allocno is
81 increased by the cost of save/restore code around the calls
82 through the given allocno's life. If the allocno is a move
83 instruction operand and another operand is a hard-register of
84 the allocno class, the cost of the hard-register is decreased
85 by the move cost.
87 When an allocno is assigned, the hard-register with minimal
88 full cost is used. Initially, a hard-register's full cost is
89 the corresponding value from the hard-register's cost vector.
90 If the allocno is connected by a *copy* (see below) to
91 another allocno which has just received a hard-register, the
92 cost of the hard-register is decreased. Before choosing a
93 hard-register for an allocno, the allocno's current costs of
94 the hard-registers are modified by the conflict hard-register
95 costs of all of the conflicting allocnos which are not
96 assigned yet.
98 - *Conflict hard-register costs*. This is a vector of the same
99 size as the hard-register costs vector. To permit an
100 unassigned allocno to get a better hard-register, IRA uses
101 this vector to calculate the final full cost of the
102 available hard-registers. Conflict hard-register costs of an
103 unassigned allocno are also changed with a change of the
104 hard-register cost of the allocno when a copy involving the
105 allocno is processed as described above. This is done to
106 show other unassigned allocnos that a given allocno prefers
107 some hard-registers in order to remove the move instruction
108 corresponding to the copy.
110 o *Cap*. If a pseudo-register does not live in a region but
111 lives in a nested region, IRA creates a special allocno called
112 a cap in the outer region. A region cap is also created for a
113 subregion cap.
115 o *Copy*. Allocnos can be connected by copies. Copies are used
116 to modify hard-register costs for allocnos during coloring.
117 Such modifications reflects a preference to use the same
118 hard-register for the allocnos connected by copies. Usually
119 copies are created for move insns (in this case it results in
120 register coalescing). But IRA also creates copies for operands
121 of an insn which should be assigned to the same hard-register
122 due to constraints in the machine description (it usually
123 results in removing a move generated in reload to satisfy
124 the constraints) and copies referring to the allocno which is
125 the output operand of an instruction and the allocno which is
126 an input operand dying in the instruction (creation of such
127 copies results in less register shuffling). IRA *does not*
128 create copies between the same register allocnos from different
129 regions because we use another technique for propagating
130 hard-register preference on the borders of regions.
132 Allocnos (including caps) for the upper region in the region tree
133 *accumulate* information important for coloring from allocnos with
134 the same pseudo-register from nested regions. This includes
135 hard-register and memory costs, conflicts with hard-registers,
136 allocno conflicts, allocno copies and more. *Thus, attributes for
137 allocnos in a region have the same values as if the region had no
138 subregions*. It means that attributes for allocnos in the
139 outermost region corresponding to the function have the same values
140 as though the allocation used only one region which is the entire
141 function. It also means that we can look at IRA work as if the
142 first IRA did allocation for all function then it improved the
143 allocation for loops then their subloops and so on.
145 IRA major passes are:
147 o Building IRA internal representation which consists of the
148 following subpasses:
150 * First, IRA builds regions and creates allocnos (file
151 ira-build.c) and initializes most of their attributes.
153 * Then IRA finds an allocno class for each allocno and
154 calculates its initial (non-accumulated) cost of memory and
155 each hard-register of its allocno class (file ira-cost.c).
157 * IRA creates live ranges of each allocno, calulates register
158 pressure for each pressure class in each region, sets up
159 conflict hard registers for each allocno and info about calls
160 the allocno lives through (file ira-lives.c).
162 * IRA removes low register pressure loops from the regions
163 mostly to speed IRA up (file ira-build.c).
165 * IRA propagates accumulated allocno info from lower region
166 allocnos to corresponding upper region allocnos (file
167 ira-build.c).
169 * IRA creates all caps (file ira-build.c).
171 * Having live-ranges of allocnos and their classes, IRA creates
172 conflicting allocnos for each allocno. Conflicting allocnos
173 are stored as a bit vector or array of pointers to the
174 conflicting allocnos whatever is more profitable (file
175 ira-conflicts.c). At this point IRA creates allocno copies.
177 o Coloring. Now IRA has all necessary info to start graph coloring
178 process. It is done in each region on top-down traverse of the
179 region tree (file ira-color.c). There are following subpasses:
181 * Finding profitable hard registers of corresponding allocno
182 class for each allocno. For example, only callee-saved hard
183 registers are frequently profitable for allocnos living
184 through colors. If the profitable hard register set of
185 allocno does not form a tree based on subset relation, we use
186 some approximation to form the tree. This approximation is
187 used to figure out trivial colorability of allocnos. The
188 approximation is a pretty rare case.
190 * Putting allocnos onto the coloring stack. IRA uses Briggs
191 optimistic coloring which is a major improvement over
192 Chaitin's coloring. Therefore IRA does not spill allocnos at
193 this point. There is some freedom in the order of putting
194 allocnos on the stack which can affect the final result of
195 the allocation. IRA uses some heuristics to improve the
196 order.
198 We also use a modification of Chaitin-Briggs algorithm which
199 works for intersected register classes of allocnos. To
200 figure out trivial colorability of allocnos, the mentioned
201 above tree of hard register sets is used. To get an idea how
202 the algorithm works in i386 example, let us consider an
203 allocno to which any general hard register can be assigned.
204 If the allocno conflicts with eight allocnos to which only
205 EAX register can be assigned, given allocno is still
206 trivially colorable because all conflicting allocnos might be
207 assigned only to EAX and all other general hard registers are
208 still free.
210 To get an idea of the used trivial colorability criterion, it
211 is also useful to read article "Graph-Coloring Register
212 Allocation for Irregular Architectures" by Michael D. Smith
213 and Glen Holloway. Major difference between the article
214 approach and approach used in IRA is that Smith's approach
215 takes register classes only from machine description and IRA
216 calculate register classes from intermediate code too
217 (e.g. an explicit usage of hard registers in RTL code for
218 parameter passing can result in creation of additional
219 register classes which contain or exclude the hard
220 registers). That makes IRA approach useful for improving
221 coloring even for architectures with regular register files
222 and in fact some benchmarking shows the improvement for
223 regular class architectures is even bigger than for irregular
224 ones. Another difference is that Smith's approach chooses
225 intersection of classes of all insn operands in which a given
226 pseudo occurs. IRA can use bigger classes if it is still
227 more profitable than memory usage.
229 * Popping the allocnos from the stack and assigning them hard
230 registers. If IRA can not assign a hard register to an
231 allocno and the allocno is coalesced, IRA undoes the
232 coalescing and puts the uncoalesced allocnos onto the stack in
233 the hope that some such allocnos will get a hard register
234 separately. If IRA fails to assign hard register or memory
235 is more profitable for it, IRA spills the allocno. IRA
236 assigns the allocno the hard-register with minimal full
237 allocation cost which reflects the cost of usage of the
238 hard-register for the allocno and cost of usage of the
239 hard-register for allocnos conflicting with given allocno.
241 * Chaitin-Briggs coloring assigns as many pseudos as possible
242 to hard registers. After coloringh we try to improve
243 allocation with cost point of view. We improve the
244 allocation by spilling some allocnos and assigning the freed
245 hard registers to other allocnos if it decreases the overall
246 allocation cost.
248 * After allono assigning in the region, IRA modifies the hard
249 register and memory costs for the corresponding allocnos in
250 the subregions to reflect the cost of possible loads, stores,
251 or moves on the border of the region and its subregions.
252 When default regional allocation algorithm is used
253 (-fira-algorithm=mixed), IRA just propagates the assignment
254 for allocnos if the register pressure in the region for the
255 corresponding pressure class is less than number of available
256 hard registers for given pressure class.
258 o Spill/restore code moving. When IRA performs an allocation
259 by traversing regions in top-down order, it does not know what
260 happens below in the region tree. Therefore, sometimes IRA
261 misses opportunities to perform a better allocation. A simple
262 optimization tries to improve allocation in a region having
263 subregions and containing in another region. If the
264 corresponding allocnos in the subregion are spilled, it spills
265 the region allocno if it is profitable. The optimization
266 implements a simple iterative algorithm performing profitable
267 transformations while they are still possible. It is fast in
268 practice, so there is no real need for a better time complexity
269 algorithm.
271 o Code change. After coloring, two allocnos representing the
272 same pseudo-register outside and inside a region respectively
273 may be assigned to different locations (hard-registers or
274 memory). In this case IRA creates and uses a new
275 pseudo-register inside the region and adds code to move allocno
276 values on the region's borders. This is done during top-down
277 traversal of the regions (file ira-emit.c). In some
278 complicated cases IRA can create a new allocno to move allocno
279 values (e.g. when a swap of values stored in two hard-registers
280 is needed). At this stage, the new allocno is marked as
281 spilled. IRA still creates the pseudo-register and the moves
282 on the region borders even when both allocnos were assigned to
283 the same hard-register. If the reload pass spills a
284 pseudo-register for some reason, the effect will be smaller
285 because another allocno will still be in the hard-register. In
286 most cases, this is better then spilling both allocnos. If
287 reload does not change the allocation for the two
288 pseudo-registers, the trivial move will be removed by
289 post-reload optimizations. IRA does not generate moves for
290 allocnos assigned to the same hard register when the default
291 regional allocation algorithm is used and the register pressure
292 in the region for the corresponding pressure class is less than
293 number of available hard registers for given pressure class.
294 IRA also does some optimizations to remove redundant stores and
295 to reduce code duplication on the region borders.
297 o Flattening internal representation. After changing code, IRA
298 transforms its internal representation for several regions into
299 one region representation (file ira-build.c). This process is
300 called IR flattening. Such process is more complicated than IR
301 rebuilding would be, but is much faster.
303 o After IR flattening, IRA tries to assign hard registers to all
304 spilled allocnos. This is impelemented by a simple and fast
305 priority coloring algorithm (see function
306 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
307 created during the code change pass can be assigned to hard
308 registers.
310 o At the end IRA calls the reload pass. The reload pass
311 communicates with IRA through several functions in file
312 ira-color.c to improve its decisions in
314 * sharing stack slots for the spilled pseudos based on IRA info
315 about pseudo-register conflicts.
317 * reassigning hard-registers to all spilled pseudos at the end
318 of each reload iteration.
320 * choosing a better hard-register to spill based on IRA info
321 about pseudo-register live ranges and the register pressure
322 in places where the pseudo-register lives.
324 IRA uses a lot of data representing the target processors. These
325 data are initilized in file ira.c.
327 If function has no loops (or the loops are ignored when
328 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
329 coloring (only instead of separate pass of coalescing, we use hard
330 register preferencing). In such case, IRA works much faster
331 because many things are not made (like IR flattening, the
332 spill/restore optimization, and the code change).
334 Literature is worth to read for better understanding the code:
336 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
337 Graph Coloring Register Allocation.
339 o David Callahan, Brian Koblenz. Register allocation via
340 hierarchical graph coloring.
342 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
343 Coloring Register Allocation: A Study of the Chaitin-Briggs and
344 Callahan-Koblenz Algorithms.
346 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
347 Register Allocation Based on Graph Fusion.
349 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
350 Allocation for Irregular Architectures
352 o Vladimir Makarov. The Integrated Register Allocator for GCC.
354 o Vladimir Makarov. The top-down register allocator for irregular
355 register file architectures.
360 #include "config.h"
361 #include "system.h"
362 #include "coretypes.h"
363 #include "tm.h"
364 #include "regs.h"
365 #include "rtl.h"
366 #include "tm_p.h"
367 #include "target.h"
368 #include "flags.h"
369 #include "obstack.h"
370 #include "bitmap.h"
371 #include "hard-reg-set.h"
372 #include "basic-block.h"
373 #include "df.h"
374 #include "expr.h"
375 #include "recog.h"
376 #include "params.h"
377 #include "timevar.h"
378 #include "tree-pass.h"
379 #include "output.h"
380 #include "except.h"
381 #include "reload.h"
382 #include "diagnostic-core.h"
383 #include "integrate.h"
384 #include "ggc.h"
385 #include "ira-int.h"
386 #include "dce.h"
389 struct target_ira default_target_ira;
390 struct target_ira_int default_target_ira_int;
391 #if SWITCHABLE_TARGET
392 struct target_ira *this_target_ira = &default_target_ira;
393 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
394 #endif
396 /* A modified value of flag `-fira-verbose' used internally. */
397 int internal_flag_ira_verbose;
399 /* Dump file of the allocator if it is not NULL. */
400 FILE *ira_dump_file;
402 /* The number of elements in the following array. */
403 int ira_spilled_reg_stack_slots_num;
405 /* The following array contains info about spilled pseudo-registers
406 stack slots used in current function so far. */
407 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
409 /* Correspondingly overall cost of the allocation, cost of the
410 allocnos assigned to hard-registers, cost of the allocnos assigned
411 to memory, cost of loads, stores and register move insns generated
412 for pseudo-register live range splitting (see ira-emit.c). */
413 int ira_overall_cost;
414 int ira_reg_cost, ira_mem_cost;
415 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
416 int ira_move_loops_num, ira_additional_jumps_num;
418 /* All registers that can be eliminated. */
420 HARD_REG_SET eliminable_regset;
422 /* Temporary hard reg set used for a different calculation. */
423 static HARD_REG_SET temp_hard_regset;
427 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
428 static void
429 setup_reg_mode_hard_regset (void)
431 int i, m, hard_regno;
433 for (m = 0; m < NUM_MACHINE_MODES; m++)
434 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
436 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
437 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
438 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
439 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
440 hard_regno + i);
445 #define no_unit_alloc_regs \
446 (this_target_ira_int->x_no_unit_alloc_regs)
448 /* The function sets up the three arrays declared above. */
449 static void
450 setup_class_hard_regs (void)
452 int cl, i, hard_regno, n;
453 HARD_REG_SET processed_hard_reg_set;
455 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
456 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
458 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
459 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
460 CLEAR_HARD_REG_SET (processed_hard_reg_set);
461 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
463 ira_non_ordered_class_hard_regs[cl][i] = -1;
464 ira_class_hard_reg_index[cl][i] = -1;
466 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
468 #ifdef REG_ALLOC_ORDER
469 hard_regno = reg_alloc_order[i];
470 #else
471 hard_regno = i;
472 #endif
473 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
474 continue;
475 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
476 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
477 ira_class_hard_reg_index[cl][hard_regno] = -1;
478 else
480 ira_class_hard_reg_index[cl][hard_regno] = n;
481 ira_class_hard_regs[cl][n++] = hard_regno;
484 ira_class_hard_regs_num[cl] = n;
485 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
486 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
487 ira_non_ordered_class_hard_regs[cl][n++] = i;
488 ira_assert (ira_class_hard_regs_num[cl] == n);
492 /* Set up IRA_AVAILABLE_CLASS_REGS. */
493 static void
494 setup_available_class_regs (void)
496 int i, j;
498 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
499 for (i = 0; i < N_REG_CLASSES; i++)
501 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
502 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
503 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
504 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
505 ira_available_class_regs[i]++;
509 /* Set up global variables defining info about hard registers for the
510 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
511 that we can use the hard frame pointer for the allocation. */
512 static void
513 setup_alloc_regs (bool use_hard_frame_p)
515 #ifdef ADJUST_REG_ALLOC_ORDER
516 ADJUST_REG_ALLOC_ORDER;
517 #endif
518 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
519 if (! use_hard_frame_p)
520 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
521 setup_class_hard_regs ();
522 setup_available_class_regs ();
527 #define alloc_reg_class_subclasses \
528 (this_target_ira_int->x_alloc_reg_class_subclasses)
530 /* Initialize the table of subclasses of each reg class. */
531 static void
532 setup_reg_subclasses (void)
534 int i, j;
535 HARD_REG_SET temp_hard_regset2;
537 for (i = 0; i < N_REG_CLASSES; i++)
538 for (j = 0; j < N_REG_CLASSES; j++)
539 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
541 for (i = 0; i < N_REG_CLASSES; i++)
543 if (i == (int) NO_REGS)
544 continue;
546 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
547 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
548 if (hard_reg_set_empty_p (temp_hard_regset))
549 continue;
550 for (j = 0; j < N_REG_CLASSES; j++)
551 if (i != j)
553 enum reg_class *p;
555 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
556 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
557 if (! hard_reg_set_subset_p (temp_hard_regset,
558 temp_hard_regset2))
559 continue;
560 p = &alloc_reg_class_subclasses[j][0];
561 while (*p != LIM_REG_CLASSES) p++;
562 *p = (enum reg_class) i;
569 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
570 static void
571 setup_class_subset_and_memory_move_costs (void)
573 int cl, cl2, mode, cost;
574 HARD_REG_SET temp_hard_regset2;
576 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
577 ira_memory_move_cost[mode][NO_REGS][0]
578 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
579 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
581 if (cl != (int) NO_REGS)
582 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
584 ira_max_memory_move_cost[mode][cl][0]
585 = ira_memory_move_cost[mode][cl][0]
586 = memory_move_cost ((enum machine_mode) mode,
587 (reg_class_t) cl, false);
588 ira_max_memory_move_cost[mode][cl][1]
589 = ira_memory_move_cost[mode][cl][1]
590 = memory_move_cost ((enum machine_mode) mode,
591 (reg_class_t) cl, true);
592 /* Costs for NO_REGS are used in cost calculation on the
593 1st pass when the preferred register classes are not
594 known yet. In this case we take the best scenario. */
595 if (ira_memory_move_cost[mode][NO_REGS][0]
596 > ira_memory_move_cost[mode][cl][0])
597 ira_max_memory_move_cost[mode][NO_REGS][0]
598 = ira_memory_move_cost[mode][NO_REGS][0]
599 = ira_memory_move_cost[mode][cl][0];
600 if (ira_memory_move_cost[mode][NO_REGS][1]
601 > ira_memory_move_cost[mode][cl][1])
602 ira_max_memory_move_cost[mode][NO_REGS][1]
603 = ira_memory_move_cost[mode][NO_REGS][1]
604 = ira_memory_move_cost[mode][cl][1];
607 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
608 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
610 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
611 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
612 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
613 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
614 ira_class_subset_p[cl][cl2]
615 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
616 if (! hard_reg_set_empty_p (temp_hard_regset2)
617 && hard_reg_set_subset_p (reg_class_contents[cl2],
618 reg_class_contents[cl]))
619 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
621 cost = ira_memory_move_cost[mode][cl2][0];
622 if (cost > ira_max_memory_move_cost[mode][cl][0])
623 ira_max_memory_move_cost[mode][cl][0] = cost;
624 cost = ira_memory_move_cost[mode][cl2][1];
625 if (cost > ira_max_memory_move_cost[mode][cl][1])
626 ira_max_memory_move_cost[mode][cl][1] = cost;
629 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
630 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
632 ira_memory_move_cost[mode][cl][0]
633 = ira_max_memory_move_cost[mode][cl][0];
634 ira_memory_move_cost[mode][cl][1]
635 = ira_max_memory_move_cost[mode][cl][1];
637 setup_reg_subclasses ();
642 /* Define the following macro if allocation through malloc if
643 preferable. */
644 #define IRA_NO_OBSTACK
646 #ifndef IRA_NO_OBSTACK
647 /* Obstack used for storing all dynamic data (except bitmaps) of the
648 IRA. */
649 static struct obstack ira_obstack;
650 #endif
652 /* Obstack used for storing all bitmaps of the IRA. */
653 static struct bitmap_obstack ira_bitmap_obstack;
655 /* Allocate memory of size LEN for IRA data. */
656 void *
657 ira_allocate (size_t len)
659 void *res;
661 #ifndef IRA_NO_OBSTACK
662 res = obstack_alloc (&ira_obstack, len);
663 #else
664 res = xmalloc (len);
665 #endif
666 return res;
669 /* Free memory ADDR allocated for IRA data. */
670 void
671 ira_free (void *addr ATTRIBUTE_UNUSED)
673 #ifndef IRA_NO_OBSTACK
674 /* do nothing */
675 #else
676 free (addr);
677 #endif
681 /* Allocate and returns bitmap for IRA. */
682 bitmap
683 ira_allocate_bitmap (void)
685 return BITMAP_ALLOC (&ira_bitmap_obstack);
688 /* Free bitmap B allocated for IRA. */
689 void
690 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
692 /* do nothing */
697 /* Output information about allocation of all allocnos (except for
698 caps) into file F. */
699 void
700 ira_print_disposition (FILE *f)
702 int i, n, max_regno;
703 ira_allocno_t a;
704 basic_block bb;
706 fprintf (f, "Disposition:");
707 max_regno = max_reg_num ();
708 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
709 for (a = ira_regno_allocno_map[i];
710 a != NULL;
711 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
713 if (n % 4 == 0)
714 fprintf (f, "\n");
715 n++;
716 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
717 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
718 fprintf (f, "b%-3d", bb->index);
719 else
720 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
721 if (ALLOCNO_HARD_REGNO (a) >= 0)
722 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
723 else
724 fprintf (f, " mem");
726 fprintf (f, "\n");
729 /* Outputs information about allocation of all allocnos into
730 stderr. */
731 void
732 ira_debug_disposition (void)
734 ira_print_disposition (stderr);
739 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
740 register class containing stack registers or NO_REGS if there are
741 no stack registers. To find this class, we iterate through all
742 register pressure classes and choose the first register pressure
743 class containing all the stack registers and having the biggest
744 size. */
745 static void
746 setup_stack_reg_pressure_class (void)
748 ira_stack_reg_pressure_class = NO_REGS;
749 #ifdef STACK_REGS
751 int i, best, size;
752 enum reg_class cl;
753 HARD_REG_SET temp_hard_regset2;
755 CLEAR_HARD_REG_SET (temp_hard_regset);
756 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
757 SET_HARD_REG_BIT (temp_hard_regset, i);
758 best = 0;
759 for (i = 0; i < ira_pressure_classes_num; i++)
761 cl = ira_pressure_classes[i];
762 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
763 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
764 size = hard_reg_set_size (temp_hard_regset2);
765 if (best < size)
767 best = size;
768 ira_stack_reg_pressure_class = cl;
772 #endif
775 /* Find pressure classes which are register classes for which we
776 calculate register pressure in IRA, register pressure sensitive
777 insn scheduling, and register pressure sensitive loop invariant
778 motion.
780 To make register pressure calculation easy, we always use
781 non-intersected register pressure classes. A move of hard
782 registers from one register pressure class is not more expensive
783 than load and store of the hard registers. Most likely an allocno
784 class will be a subset of a register pressure class and in many
785 cases a register pressure class. That makes usage of register
786 pressure classes a good approximation to find a high register
787 pressure. */
788 static void
789 setup_pressure_classes (void)
791 int cost, i, n, curr;
792 int cl, cl2;
793 enum reg_class pressure_classes[N_REG_CLASSES];
794 int m;
795 HARD_REG_SET temp_hard_regset2;
796 bool insert_p;
798 n = 0;
799 for (cl = 0; cl < N_REG_CLASSES; cl++)
801 if (ira_available_class_regs[cl] == 0)
802 continue;
803 if (ira_available_class_regs[cl] != 1
804 /* A register class without subclasses may contain a few
805 hard registers and movement between them is costly
806 (e.g. SPARC FPCC registers). We still should consider it
807 as a candidate for a pressure class. */
808 && alloc_reg_class_subclasses[cl][0] != LIM_REG_CLASSES)
810 /* Check that the moves between any hard registers of the
811 current class are not more expensive for a legal mode
812 than load/store of the hard registers of the current
813 class. Such class is a potential candidate to be a
814 register pressure class. */
815 for (m = 0; m < NUM_MACHINE_MODES; m++)
817 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
818 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
819 AND_COMPL_HARD_REG_SET (temp_hard_regset,
820 ira_prohibited_class_mode_regs[cl][m]);
821 if (hard_reg_set_empty_p (temp_hard_regset))
822 continue;
823 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
824 cost = ira_register_move_cost[m][cl][cl];
825 if (cost <= ira_max_memory_move_cost[m][cl][1]
826 || cost <= ira_max_memory_move_cost[m][cl][0])
827 break;
829 if (m >= NUM_MACHINE_MODES)
830 continue;
832 curr = 0;
833 insert_p = true;
834 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
835 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
836 /* Remove so far added pressure classes which are subset of the
837 current candidate class. Prefer GENERAL_REGS as a pressure
838 register class to another class containing the same
839 allocatable hard registers. We do this because machine
840 dependent cost hooks might give wrong costs for the latter
841 class but always give the right cost for the former class
842 (GENERAL_REGS). */
843 for (i = 0; i < n; i++)
845 cl2 = pressure_classes[i];
846 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
847 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
848 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
849 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
850 || cl2 == (int) GENERAL_REGS))
852 pressure_classes[curr++] = (enum reg_class) cl2;
853 insert_p = false;
854 continue;
856 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
857 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
858 || cl == (int) GENERAL_REGS))
859 continue;
860 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
861 insert_p = false;
862 pressure_classes[curr++] = (enum reg_class) cl2;
864 /* If the current candidate is a subset of a so far added
865 pressure class, don't add it to the list of the pressure
866 classes. */
867 if (insert_p)
868 pressure_classes[curr++] = (enum reg_class) cl;
869 n = curr;
871 #ifdef ENABLE_IRA_CHECKING
873 HARD_REG_SET ignore_hard_regs;
875 /* Check pressure classes correctness: here we check that hard
876 registers from all register pressure classes contains all hard
877 registers available for the allocation. */
878 CLEAR_HARD_REG_SET (temp_hard_regset);
879 CLEAR_HARD_REG_SET (temp_hard_regset2);
880 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
881 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
883 /* For some targets (like MIPS with MD_REGS), there are some
884 classes with hard registers available for allocation but
885 not able to hold value of any mode. */
886 for (m = 0; m < NUM_MACHINE_MODES; m++)
887 if (contains_reg_of_mode[cl][m])
888 break;
889 if (m >= NUM_MACHINE_MODES)
891 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
892 continue;
894 for (i = 0; i < n; i++)
895 if ((int) pressure_classes[i] == cl)
896 break;
897 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
898 if (i < n)
899 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
901 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
902 /* Some targets (like SPARC with ICC reg) have alocatable regs
903 for which no reg class is defined. */
904 if (REGNO_REG_CLASS (i) == NO_REGS)
905 SET_HARD_REG_BIT (ignore_hard_regs, i);
906 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
907 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
908 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
910 #endif
911 ira_pressure_classes_num = 0;
912 for (i = 0; i < n; i++)
914 cl = (int) pressure_classes[i];
915 ira_reg_pressure_class_p[cl] = true;
916 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
918 setup_stack_reg_pressure_class ();
921 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
922 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
924 Target may have many subtargets and not all target hard regiters can
925 be used for allocation, e.g. x86 port in 32-bit mode can not use
926 hard registers introduced in x86-64 like r8-r15). Some classes
927 might have the same allocatable hard registers, e.g. INDEX_REGS
928 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
929 calculations efforts we introduce allocno classes which contain
930 unique non-empty sets of allocatable hard-registers.
932 Pseudo class cost calculation in ira-costs.c is very expensive.
933 Therefore we are trying to decrease number of classes involved in
934 such calculation. Register classes used in the cost calculation
935 are called important classes. They are allocno classes and other
936 non-empty classes whose allocatable hard register sets are inside
937 of an allocno class hard register set. From the first sight, it
938 looks like that they are just allocno classes. It is not true. In
939 example of x86-port in 32-bit mode, allocno classes will contain
940 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
941 registers are the same for the both classes). The important
942 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
943 because a machine description insn constraint may refers for
944 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
945 of the insn constraints. */
946 static void
947 setup_allocno_and_important_classes (void)
949 int i, j, n, cl;
950 bool set_p;
951 HARD_REG_SET temp_hard_regset2;
952 static enum reg_class classes[LIM_REG_CLASSES + 1];
954 n = 0;
955 /* Collect classes which contain unique sets of allocatable hard
956 registers. Prefer GENERAL_REGS to other classes containing the
957 same set of hard registers. */
958 for (i = 0; i < LIM_REG_CLASSES; i++)
960 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
961 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
962 for (j = 0; j < n; j++)
964 cl = classes[j];
965 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
966 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
967 no_unit_alloc_regs);
968 if (hard_reg_set_equal_p (temp_hard_regset,
969 temp_hard_regset2))
970 break;
972 if (j >= n)
973 classes[n++] = (enum reg_class) i;
974 else if (i == GENERAL_REGS)
975 /* Prefer general regs. For i386 example, it means that
976 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
977 (all of them consists of the same available hard
978 registers). */
979 classes[j] = (enum reg_class) i;
981 classes[n] = LIM_REG_CLASSES;
983 /* Set up classes which can be used for allocnos as classes
984 conatining non-empty unique sets of allocatable hard
985 registers. */
986 ira_allocno_classes_num = 0;
987 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
989 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
990 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
991 if (hard_reg_set_empty_p (temp_hard_regset))
992 continue;
993 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
995 ira_important_classes_num = 0;
996 /* Add non-allocno classes containing to non-empty set of
997 allocatable hard regs. */
998 for (cl = 0; cl < N_REG_CLASSES; cl++)
1000 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1002 if (! hard_reg_set_empty_p (temp_hard_regset))
1004 set_p = false;
1005 for (j = 0; j < ira_allocno_classes_num; j++)
1007 COPY_HARD_REG_SET (temp_hard_regset2,
1008 reg_class_contents[ira_allocno_classes[j]]);
1009 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1010 if ((enum reg_class) cl == ira_allocno_classes[j])
1011 break;
1012 else if (hard_reg_set_subset_p (temp_hard_regset,
1013 temp_hard_regset2))
1014 set_p = true;
1016 if (set_p && j >= ira_allocno_classes_num)
1017 ira_important_classes[ira_important_classes_num++]
1018 = (enum reg_class) cl;
1021 /* Now add allocno classes to the important classes. */
1022 for (j = 0; j < ira_allocno_classes_num; j++)
1023 ira_important_classes[ira_important_classes_num++]
1024 = ira_allocno_classes[j];
1025 for (cl = 0; cl < N_REG_CLASSES; cl++)
1027 ira_reg_allocno_class_p[cl] = false;
1028 ira_reg_pressure_class_p[cl] = false;
1030 for (j = 0; j < ira_allocno_classes_num; j++)
1031 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1032 setup_pressure_classes ();
1035 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1036 given by array CLASSES of length CLASSES_NUM. The function is used
1037 make translation any reg class to an allocno class or to an
1038 pressure class. This translation is necessary for some
1039 calculations when we can use only allocno or pressure classes and
1040 such translation represents an approximate representation of all
1041 classes.
1043 The translation in case when allocatable hard register set of a
1044 given class is subset of allocatable hard register set of a class
1045 in CLASSES is pretty simple. We use smallest classes from CLASSES
1046 containing a given class. If allocatable hard register set of a
1047 given class is not a subset of any corresponding set of a class
1048 from CLASSES, we use the cheapest (with load/store point of view)
1049 class from CLASSES whose set intersects with given class set */
1050 static void
1051 setup_class_translate_array (enum reg_class *class_translate,
1052 int classes_num, enum reg_class *classes)
1054 int cl, mode;
1055 enum reg_class aclass, best_class, *cl_ptr;
1056 int i, cost, min_cost, best_cost;
1058 for (cl = 0; cl < N_REG_CLASSES; cl++)
1059 class_translate[cl] = NO_REGS;
1061 for (i = 0; i < classes_num; i++)
1063 aclass = classes[i];
1064 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1065 (cl = *cl_ptr) != LIM_REG_CLASSES;
1066 cl_ptr++)
1067 if (class_translate[cl] == NO_REGS)
1068 class_translate[cl] = aclass;
1069 class_translate[aclass] = aclass;
1071 /* For classes which are not fully covered by one of given classes
1072 (in other words covered by more one given class), use the
1073 cheapest class. */
1074 for (cl = 0; cl < N_REG_CLASSES; cl++)
1076 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1077 continue;
1078 best_class = NO_REGS;
1079 best_cost = INT_MAX;
1080 for (i = 0; i < classes_num; i++)
1082 aclass = classes[i];
1083 COPY_HARD_REG_SET (temp_hard_regset,
1084 reg_class_contents[aclass]);
1085 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1086 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1087 if (! hard_reg_set_empty_p (temp_hard_regset))
1089 min_cost = INT_MAX;
1090 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1092 cost = (ira_memory_move_cost[mode][cl][0]
1093 + ira_memory_move_cost[mode][cl][1]);
1094 if (min_cost > cost)
1095 min_cost = cost;
1097 if (best_class == NO_REGS || best_cost > min_cost)
1099 best_class = aclass;
1100 best_cost = min_cost;
1104 class_translate[cl] = best_class;
1108 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1109 IRA_PRESSURE_CLASS_TRANSLATE. */
1110 static void
1111 setup_class_translate (void)
1113 setup_class_translate_array (ira_allocno_class_translate,
1114 ira_allocno_classes_num, ira_allocno_classes);
1115 setup_class_translate_array (ira_pressure_class_translate,
1116 ira_pressure_classes_num, ira_pressure_classes);
1119 /* Order numbers of allocno classes in original target allocno class
1120 array, -1 for non-allocno classes. */
1121 static int allocno_class_order[N_REG_CLASSES];
1123 /* The function used to sort the important classes. */
1124 static int
1125 comp_reg_classes_func (const void *v1p, const void *v2p)
1127 enum reg_class cl1 = *(const enum reg_class *) v1p;
1128 enum reg_class cl2 = *(const enum reg_class *) v2p;
1129 enum reg_class tcl1, tcl2;
1130 int diff;
1132 tcl1 = ira_allocno_class_translate[cl1];
1133 tcl2 = ira_allocno_class_translate[cl2];
1134 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1135 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1136 return diff;
1137 return (int) cl1 - (int) cl2;
1140 /* For correct work of function setup_reg_class_relation we need to
1141 reorder important classes according to the order of their allocno
1142 classes. It places important classes containing the same
1143 allocatable hard register set adjacent to each other and allocno
1144 class with the allocatable hard register set right after the other
1145 important classes with the same set.
1147 In example from comments of function
1148 setup_allocno_and_important_classes, it places LEGACY_REGS and
1149 GENERAL_REGS close to each other and GENERAL_REGS is after
1150 LEGACY_REGS. */
1151 static void
1152 reorder_important_classes (void)
1154 int i;
1156 for (i = 0; i < N_REG_CLASSES; i++)
1157 allocno_class_order[i] = -1;
1158 for (i = 0; i < ira_allocno_classes_num; i++)
1159 allocno_class_order[ira_allocno_classes[i]] = i;
1160 qsort (ira_important_classes, ira_important_classes_num,
1161 sizeof (enum reg_class), comp_reg_classes_func);
1162 for (i = 0; i < ira_important_classes_num; i++)
1163 ira_important_class_nums[ira_important_classes[i]] = i;
1166 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1167 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1168 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1169 please see corresponding comments in ira-int.h. */
1170 static void
1171 setup_reg_class_relations (void)
1173 int i, cl1, cl2, cl3;
1174 HARD_REG_SET intersection_set, union_set, temp_set2;
1175 bool important_class_p[N_REG_CLASSES];
1177 memset (important_class_p, 0, sizeof (important_class_p));
1178 for (i = 0; i < ira_important_classes_num; i++)
1179 important_class_p[ira_important_classes[i]] = true;
1180 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1182 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1183 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1185 ira_reg_classes_intersect_p[cl1][cl2] = false;
1186 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1187 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1188 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1189 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1190 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1191 if (hard_reg_set_empty_p (temp_hard_regset)
1192 && hard_reg_set_empty_p (temp_set2))
1194 /* The both classes have no allocatable hard registers
1195 -- take all class hard registers into account and use
1196 reg_class_subunion and reg_class_superunion. */
1197 for (i = 0;; i++)
1199 cl3 = reg_class_subclasses[cl1][i];
1200 if (cl3 == LIM_REG_CLASSES)
1201 break;
1202 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1203 (enum reg_class) cl3))
1204 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1206 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1207 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1208 continue;
1210 ira_reg_classes_intersect_p[cl1][cl2]
1211 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1212 if (important_class_p[cl1] && important_class_p[cl2]
1213 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1215 /* CL1 and CL2 are important classes and CL1 allocatable
1216 hard register set is inside of CL2 allocatable hard
1217 registers -- make CL1 a superset of CL2. */
1218 enum reg_class *p;
1220 p = &ira_reg_class_super_classes[cl1][0];
1221 while (*p != LIM_REG_CLASSES)
1222 p++;
1223 *p++ = (enum reg_class) cl2;
1224 *p = LIM_REG_CLASSES;
1226 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1227 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1228 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1229 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1230 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1231 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1232 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1233 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1234 for (i = 0; i < ira_important_classes_num; i++)
1236 cl3 = ira_important_classes[i];
1237 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1238 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1239 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1241 /* CL3 allocatable hard register set is inside of
1242 intersection of allocatable hard register sets
1243 of CL1 and CL2. */
1244 COPY_HARD_REG_SET
1245 (temp_set2,
1246 reg_class_contents[(int)
1247 ira_reg_class_intersect[cl1][cl2]]);
1248 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1249 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1250 /* If the allocatable hard register sets are the
1251 same, prefer GENERAL_REGS or the smallest
1252 class for debugging purposes. */
1253 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1254 && (cl3 == GENERAL_REGS
1255 || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
1256 && hard_reg_set_subset_p
1257 (reg_class_contents[cl3],
1258 reg_class_contents
1259 [(int) ira_reg_class_intersect[cl1][cl2]])))))
1260 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1262 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1264 /* CL3 allocatbale hard register set is inside of
1265 union of allocatable hard register sets of CL1
1266 and CL2. */
1267 COPY_HARD_REG_SET
1268 (temp_set2,
1269 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1270 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1271 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1272 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1274 && (! hard_reg_set_equal_p (temp_set2,
1275 temp_hard_regset)
1276 || cl3 == GENERAL_REGS
1277 /* If the allocatable hard register sets are the
1278 same, prefer GENERAL_REGS or the smallest
1279 class for debugging purposes. */
1280 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1281 && hard_reg_set_subset_p
1282 (reg_class_contents[cl3],
1283 reg_class_contents
1284 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1285 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1287 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1289 /* CL3 allocatable hard register set contains union
1290 of allocatable hard register sets of CL1 and
1291 CL2. */
1292 COPY_HARD_REG_SET
1293 (temp_set2,
1294 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1295 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1296 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1297 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1299 && (! hard_reg_set_equal_p (temp_set2,
1300 temp_hard_regset)
1301 || cl3 == GENERAL_REGS
1302 /* If the allocatable hard register sets are the
1303 same, prefer GENERAL_REGS or the smallest
1304 class for debugging purposes. */
1305 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1306 && hard_reg_set_subset_p
1307 (reg_class_contents[cl3],
1308 reg_class_contents
1309 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1310 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1317 /* Output all possible allocno classes and the translation map into
1318 file F. */
1319 static void
1320 print_classes (FILE *f, bool pressure_p)
1322 int classes_num = (pressure_p
1323 ? ira_pressure_classes_num : ira_allocno_classes_num);
1324 enum reg_class *classes = (pressure_p
1325 ? ira_pressure_classes : ira_allocno_classes);
1326 enum reg_class *class_translate = (pressure_p
1327 ? ira_pressure_class_translate
1328 : ira_allocno_class_translate);
1329 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1330 int i;
1332 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1333 for (i = 0; i < classes_num; i++)
1334 fprintf (f, " %s", reg_class_names[classes[i]]);
1335 fprintf (f, "\nClass translation:\n");
1336 for (i = 0; i < N_REG_CLASSES; i++)
1337 fprintf (f, " %s -> %s\n", reg_class_names[i],
1338 reg_class_names[class_translate[i]]);
1341 /* Output all possible allocno and translation classes and the
1342 translation maps into stderr. */
1343 void
1344 ira_debug_allocno_classes (void)
1346 print_classes (stderr, false);
1347 print_classes (stderr, true);
1350 /* Set up different arrays concerning class subsets, allocno and
1351 important classes. */
1352 static void
1353 find_reg_classes (void)
1355 setup_allocno_and_important_classes ();
1356 setup_class_translate ();
1357 reorder_important_classes ();
1358 setup_reg_class_relations ();
1363 /* Set up the array above. */
1364 static void
1365 setup_hard_regno_aclass (void)
1367 int i;
1369 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1371 #if 1
1372 ira_hard_regno_allocno_class[i]
1373 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1374 ? NO_REGS
1375 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1376 #else
1377 int j;
1378 enum reg_class cl;
1379 ira_hard_regno_allocno_class[i] = NO_REGS;
1380 for (j = 0; j < ira_allocno_classes_num; j++)
1382 cl = ira_allocno_classes[j];
1383 if (ira_class_hard_reg_index[cl][i] >= 0)
1385 ira_hard_regno_allocno_class[i] = cl;
1386 break;
1389 #endif
1395 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1396 static void
1397 setup_reg_class_nregs (void)
1399 int i, cl, cl2, m;
1401 for (m = 0; m < MAX_MACHINE_MODE; m++)
1403 for (cl = 0; cl < N_REG_CLASSES; cl++)
1404 ira_reg_class_max_nregs[cl][m]
1405 = ira_reg_class_min_nregs[cl][m]
1406 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1407 for (cl = 0; cl < N_REG_CLASSES; cl++)
1408 for (i = 0;
1409 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1410 i++)
1411 if (ira_reg_class_min_nregs[cl2][m]
1412 < ira_reg_class_min_nregs[cl][m])
1413 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1419 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */
1420 static void
1421 setup_prohibited_class_mode_regs (void)
1423 int j, k, hard_regno, cl;
1425 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1427 for (j = 0; j < NUM_MACHINE_MODES; j++)
1429 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1430 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1432 hard_regno = ira_class_hard_regs[cl][k];
1433 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1434 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1435 hard_regno);
1441 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1442 spanning from one register pressure class to another one. It is
1443 called after defining the pressure classes. */
1444 static void
1445 clarify_prohibited_class_mode_regs (void)
1447 int j, k, hard_regno, cl, pclass, nregs;
1449 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1450 for (j = 0; j < NUM_MACHINE_MODES; j++)
1451 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1453 hard_regno = ira_class_hard_regs[cl][k];
1454 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1455 continue;
1456 nregs = hard_regno_nregs[hard_regno][j];
1457 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1459 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1460 hard_regno);
1461 continue;
1463 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1464 for (nregs-- ;nregs >= 0; nregs--)
1465 if (((enum reg_class) pclass
1466 != ira_pressure_class_translate[REGNO_REG_CLASS
1467 (hard_regno + nregs)]))
1469 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1470 hard_regno);
1471 break;
1478 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1479 IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST,
1480 IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and
1481 IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet. */
1482 void
1483 ira_init_register_move_cost (enum machine_mode mode)
1485 int cl1, cl2, cl3;
1487 ira_assert (ira_register_move_cost[mode] == NULL
1488 && ira_max_register_move_cost[mode] == NULL
1489 && ira_may_move_in_cost[mode] == NULL
1490 && ira_may_move_out_cost[mode] == NULL
1491 && ira_max_may_move_in_cost[mode] == NULL
1492 && ira_max_may_move_out_cost[mode] == NULL);
1493 if (move_cost[mode] == NULL)
1494 init_move_cost (mode);
1495 ira_register_move_cost[mode] = move_cost[mode];
1496 /* Don't use ira_allocate because the tables exist out of scope of a
1497 IRA call. */
1498 ira_max_register_move_cost[mode]
1499 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1500 memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode],
1501 sizeof (move_table) * N_REG_CLASSES);
1502 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1504 /* Some subclasses are to small to have enough registers to hold
1505 a value of MODE. Just ignore them. */
1506 if (ira_reg_class_max_nregs[cl1][mode] > ira_available_class_regs[cl1])
1507 continue;
1508 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1509 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1510 if (hard_reg_set_empty_p (temp_hard_regset))
1511 continue;
1512 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1513 if (hard_reg_set_subset_p (reg_class_contents[cl1],
1514 reg_class_contents[cl2]))
1515 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1517 if (ira_max_register_move_cost[mode][cl2][cl3]
1518 < ira_register_move_cost[mode][cl1][cl3])
1519 ira_max_register_move_cost[mode][cl2][cl3]
1520 = ira_register_move_cost[mode][cl1][cl3];
1521 if (ira_max_register_move_cost[mode][cl3][cl2]
1522 < ira_register_move_cost[mode][cl3][cl1])
1523 ira_max_register_move_cost[mode][cl3][cl2]
1524 = ira_register_move_cost[mode][cl3][cl1];
1527 ira_may_move_in_cost[mode]
1528 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1529 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1530 sizeof (move_table) * N_REG_CLASSES);
1531 ira_may_move_out_cost[mode]
1532 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1533 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1534 sizeof (move_table) * N_REG_CLASSES);
1535 ira_max_may_move_in_cost[mode]
1536 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1537 memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode],
1538 sizeof (move_table) * N_REG_CLASSES);
1539 ira_max_may_move_out_cost[mode]
1540 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1541 memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode],
1542 sizeof (move_table) * N_REG_CLASSES);
1543 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1545 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1547 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]);
1548 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1549 if (hard_reg_set_empty_p (temp_hard_regset))
1550 continue;
1551 if (ira_class_subset_p[cl1][cl2])
1552 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1553 if (ira_class_subset_p[cl2][cl1])
1554 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1555 if (ira_class_subset_p[cl1][cl2])
1556 ira_max_may_move_in_cost[mode][cl1][cl2] = 0;
1557 if (ira_class_subset_p[cl2][cl1])
1558 ira_max_may_move_out_cost[mode][cl1][cl2] = 0;
1559 ira_register_move_cost[mode][cl1][cl2]
1560 = ira_max_register_move_cost[mode][cl1][cl2];
1561 ira_may_move_in_cost[mode][cl1][cl2]
1562 = ira_max_may_move_in_cost[mode][cl1][cl2];
1563 ira_may_move_out_cost[mode][cl1][cl2]
1564 = ira_max_may_move_out_cost[mode][cl1][cl2];
1571 /* This is called once during compiler work. It sets up
1572 different arrays whose values don't depend on the compiled
1573 function. */
1574 void
1575 ira_init_once (void)
1577 int mode;
1579 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1581 ira_register_move_cost[mode] = NULL;
1582 ira_max_register_move_cost[mode] = NULL;
1583 ira_may_move_in_cost[mode] = NULL;
1584 ira_may_move_out_cost[mode] = NULL;
1585 ira_max_may_move_in_cost[mode] = NULL;
1586 ira_max_may_move_out_cost[mode] = NULL;
1588 ira_init_costs_once ();
1591 /* Free ira_max_register_move_cost, ira_may_move_in_cost,
1592 ira_may_move_out_cost, ira_max_may_move_in_cost, and
1593 ira_max_may_move_out_cost for each mode. */
1594 static void
1595 free_register_move_costs (void)
1597 int mode;
1599 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1601 free (ira_max_register_move_cost[mode]);
1602 free (ira_may_move_in_cost[mode]);
1603 free (ira_may_move_out_cost[mode]);
1604 free (ira_max_may_move_in_cost[mode]);
1605 free (ira_max_may_move_out_cost[mode]);
1606 ira_register_move_cost[mode] = NULL;
1607 ira_max_register_move_cost[mode] = NULL;
1608 ira_may_move_in_cost[mode] = NULL;
1609 ira_may_move_out_cost[mode] = NULL;
1610 ira_max_may_move_in_cost[mode] = NULL;
1611 ira_max_may_move_out_cost[mode] = NULL;
1615 /* This is called every time when register related information is
1616 changed. */
1617 void
1618 ira_init (void)
1620 free_register_move_costs ();
1621 setup_reg_mode_hard_regset ();
1622 setup_alloc_regs (flag_omit_frame_pointer != 0);
1623 setup_class_subset_and_memory_move_costs ();
1624 setup_reg_class_nregs ();
1625 setup_prohibited_class_mode_regs ();
1626 find_reg_classes ();
1627 clarify_prohibited_class_mode_regs ();
1628 setup_hard_regno_aclass ();
1629 ira_init_costs ();
1632 /* Function called once at the end of compiler work. */
1633 void
1634 ira_finish_once (void)
1636 ira_finish_costs_once ();
1637 free_register_move_costs ();
1641 #define ira_prohibited_mode_move_regs_initialized_p \
1642 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1644 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1645 static void
1646 setup_prohibited_mode_move_regs (void)
1648 int i, j;
1649 rtx test_reg1, test_reg2, move_pat, move_insn;
1651 if (ira_prohibited_mode_move_regs_initialized_p)
1652 return;
1653 ira_prohibited_mode_move_regs_initialized_p = true;
1654 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1655 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1656 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1657 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1658 for (i = 0; i < NUM_MACHINE_MODES; i++)
1660 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1661 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1663 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1664 continue;
1665 SET_REGNO_RAW (test_reg1, j);
1666 PUT_MODE (test_reg1, (enum machine_mode) i);
1667 SET_REGNO_RAW (test_reg2, j);
1668 PUT_MODE (test_reg2, (enum machine_mode) i);
1669 INSN_CODE (move_insn) = -1;
1670 recog_memoized (move_insn);
1671 if (INSN_CODE (move_insn) < 0)
1672 continue;
1673 extract_insn (move_insn);
1674 if (! constrain_operands (1))
1675 continue;
1676 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1683 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1684 static bool
1685 ira_bad_reload_regno_1 (int regno, rtx x)
1687 int x_regno, n, i;
1688 ira_allocno_t a;
1689 enum reg_class pref;
1691 /* We only deal with pseudo regs. */
1692 if (! x || GET_CODE (x) != REG)
1693 return false;
1695 x_regno = REGNO (x);
1696 if (x_regno < FIRST_PSEUDO_REGISTER)
1697 return false;
1699 /* If the pseudo prefers REGNO explicitly, then do not consider
1700 REGNO a bad spill choice. */
1701 pref = reg_preferred_class (x_regno);
1702 if (reg_class_size[pref] == 1)
1703 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1705 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1706 poor choice for a reload regno. */
1707 a = ira_regno_allocno_map[x_regno];
1708 n = ALLOCNO_NUM_OBJECTS (a);
1709 for (i = 0; i < n; i++)
1711 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1712 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1713 return true;
1715 return false;
1718 /* Return nonzero if REGNO is a particularly bad choice for reloading
1719 IN or OUT. */
1720 bool
1721 ira_bad_reload_regno (int regno, rtx in, rtx out)
1723 return (ira_bad_reload_regno_1 (regno, in)
1724 || ira_bad_reload_regno_1 (regno, out));
1727 /* Return TRUE if *LOC contains an asm. */
1728 static int
1729 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1731 if ( !*loc)
1732 return FALSE;
1733 if (GET_CODE (*loc) == ASM_OPERANDS)
1734 return TRUE;
1735 return FALSE;
1739 /* Return TRUE if INSN contains an ASM. */
1740 static bool
1741 insn_contains_asm (rtx insn)
1743 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1746 /* Add register clobbers from asm statements. */
1747 static void
1748 compute_regs_asm_clobbered (void)
1750 basic_block bb;
1752 FOR_EACH_BB (bb)
1754 rtx insn;
1755 FOR_BB_INSNS_REVERSE (bb, insn)
1757 df_ref *def_rec;
1759 if (insn_contains_asm (insn))
1760 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1762 df_ref def = *def_rec;
1763 unsigned int dregno = DF_REF_REGNO (def);
1764 if (HARD_REGISTER_NUM_P (dregno))
1765 add_to_hard_reg_set (&crtl->asm_clobbers,
1766 GET_MODE (DF_REF_REAL_REG (def)),
1767 dregno);
1774 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1775 void
1776 ira_setup_eliminable_regset (void)
1778 #ifdef ELIMINABLE_REGS
1779 int i;
1780 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1781 #endif
1782 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1783 sp for alloca. So we can't eliminate the frame pointer in that
1784 case. At some point, we should improve this by emitting the
1785 sp-adjusting insns for this case. */
1786 int need_fp
1787 = (! flag_omit_frame_pointer
1788 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1789 /* We need the frame pointer to catch stack overflow exceptions
1790 if the stack pointer is moving. */
1791 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1792 || crtl->accesses_prior_frames
1793 || crtl->stack_realign_needed
1794 || targetm.frame_pointer_required ());
1796 frame_pointer_needed = need_fp;
1798 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1799 CLEAR_HARD_REG_SET (eliminable_regset);
1801 compute_regs_asm_clobbered ();
1803 /* Build the regset of all eliminable registers and show we can't
1804 use those that we already know won't be eliminated. */
1805 #ifdef ELIMINABLE_REGS
1806 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1808 bool cannot_elim
1809 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1810 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1812 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1814 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1816 if (cannot_elim)
1817 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1819 else if (cannot_elim)
1820 error ("%s cannot be used in asm here",
1821 reg_names[eliminables[i].from]);
1822 else
1823 df_set_regs_ever_live (eliminables[i].from, true);
1825 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1826 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1828 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1829 if (need_fp)
1830 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1832 else if (need_fp)
1833 error ("%s cannot be used in asm here",
1834 reg_names[HARD_FRAME_POINTER_REGNUM]);
1835 else
1836 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1837 #endif
1839 #else
1840 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1842 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1843 if (need_fp)
1844 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1846 else if (need_fp)
1847 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1848 else
1849 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1850 #endif
1855 /* The length of the following two arrays. */
1856 int ira_reg_equiv_len;
1858 /* The element value is TRUE if the corresponding regno value is
1859 invariant. */
1860 bool *ira_reg_equiv_invariant_p;
1862 /* The element value is equiv constant of given pseudo-register or
1863 NULL_RTX. */
1864 rtx *ira_reg_equiv_const;
1866 /* Set up the two arrays declared above. */
1867 static void
1868 find_reg_equiv_invariant_const (void)
1870 unsigned int i;
1871 bool invariant_p;
1872 rtx list, insn, note, constant, x;
1874 for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++)
1876 constant = NULL_RTX;
1877 invariant_p = false;
1878 for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1))
1880 insn = XEXP (list, 0);
1881 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1883 if (note == NULL_RTX)
1884 continue;
1886 x = XEXP (note, 0);
1888 if (! CONSTANT_P (x)
1889 || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
1891 /* It can happen that a REG_EQUIV note contains a MEM
1892 that is not a legitimate memory operand. As later
1893 stages of the reload assume that all addresses found
1894 in the reg_equiv_* arrays were originally legitimate,
1895 we ignore such REG_EQUIV notes. */
1896 if (memory_operand (x, VOIDmode))
1897 invariant_p = MEM_READONLY_P (x);
1898 else if (function_invariant_p (x))
1900 if (GET_CODE (x) == PLUS
1901 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1902 invariant_p = true;
1903 else
1904 constant = x;
1908 ira_reg_equiv_invariant_p[i] = invariant_p;
1909 ira_reg_equiv_const[i] = constant;
1915 /* Vector of substitutions of register numbers,
1916 used to map pseudo regs into hardware regs.
1917 This is set up as a result of register allocation.
1918 Element N is the hard reg assigned to pseudo reg N,
1919 or is -1 if no hard reg was assigned.
1920 If N is a hard reg number, element N is N. */
1921 short *reg_renumber;
1923 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1924 the allocation found by IRA. */
1925 static void
1926 setup_reg_renumber (void)
1928 int regno, hard_regno;
1929 ira_allocno_t a;
1930 ira_allocno_iterator ai;
1932 caller_save_needed = 0;
1933 FOR_EACH_ALLOCNO (a, ai)
1935 /* There are no caps at this point. */
1936 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1937 if (! ALLOCNO_ASSIGNED_P (a))
1938 /* It can happen if A is not referenced but partially anticipated
1939 somewhere in a region. */
1940 ALLOCNO_ASSIGNED_P (a) = true;
1941 ira_free_allocno_updated_costs (a);
1942 hard_regno = ALLOCNO_HARD_REGNO (a);
1943 regno = ALLOCNO_REGNO (a);
1944 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1945 if (hard_regno >= 0)
1947 int i, nwords;
1948 enum reg_class pclass;
1949 ira_object_t obj;
1951 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1952 nwords = ALLOCNO_NUM_OBJECTS (a);
1953 for (i = 0; i < nwords; i++)
1955 obj = ALLOCNO_OBJECT (a, i);
1956 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1957 reg_class_contents[pclass]);
1959 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1960 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
1961 call_used_reg_set))
1963 ira_assert (!optimize || flag_caller_saves
1964 || regno >= ira_reg_equiv_len
1965 || ira_reg_equiv_const[regno]
1966 || ira_reg_equiv_invariant_p[regno]);
1967 caller_save_needed = 1;
1973 /* Set up allocno assignment flags for further allocation
1974 improvements. */
1975 static void
1976 setup_allocno_assignment_flags (void)
1978 int hard_regno;
1979 ira_allocno_t a;
1980 ira_allocno_iterator ai;
1982 FOR_EACH_ALLOCNO (a, ai)
1984 if (! ALLOCNO_ASSIGNED_P (a))
1985 /* It can happen if A is not referenced but partially anticipated
1986 somewhere in a region. */
1987 ira_free_allocno_updated_costs (a);
1988 hard_regno = ALLOCNO_HARD_REGNO (a);
1989 /* Don't assign hard registers to allocnos which are destination
1990 of removed store at the end of loop. It has no sense to keep
1991 the same value in different hard registers. It is also
1992 impossible to assign hard registers correctly to such
1993 allocnos because the cost info and info about intersected
1994 calls are incorrect for them. */
1995 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1996 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
1997 || (ALLOCNO_MEMORY_COST (a)
1998 - ALLOCNO_CLASS_COST (a)) < 0);
1999 ira_assert
2000 (hard_regno < 0
2001 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2002 reg_class_contents[ALLOCNO_CLASS (a)]));
2006 /* Evaluate overall allocation cost and the costs for using hard
2007 registers and memory for allocnos. */
2008 static void
2009 calculate_allocation_cost (void)
2011 int hard_regno, cost;
2012 ira_allocno_t a;
2013 ira_allocno_iterator ai;
2015 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2016 FOR_EACH_ALLOCNO (a, ai)
2018 hard_regno = ALLOCNO_HARD_REGNO (a);
2019 ira_assert (hard_regno < 0
2020 || (ira_hard_reg_in_set_p
2021 (hard_regno, ALLOCNO_MODE (a),
2022 reg_class_contents[ALLOCNO_CLASS (a)])));
2023 if (hard_regno < 0)
2025 cost = ALLOCNO_MEMORY_COST (a);
2026 ira_mem_cost += cost;
2028 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2030 cost = (ALLOCNO_HARD_REG_COSTS (a)
2031 [ira_class_hard_reg_index
2032 [ALLOCNO_CLASS (a)][hard_regno]]);
2033 ira_reg_cost += cost;
2035 else
2037 cost = ALLOCNO_CLASS_COST (a);
2038 ira_reg_cost += cost;
2040 ira_overall_cost += cost;
2043 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2045 fprintf (ira_dump_file,
2046 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2047 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2048 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2049 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2050 ira_move_loops_num, ira_additional_jumps_num);
2055 #ifdef ENABLE_IRA_CHECKING
2056 /* Check the correctness of the allocation. We do need this because
2057 of complicated code to transform more one region internal
2058 representation into one region representation. */
2059 static void
2060 check_allocation (void)
2062 ira_allocno_t a;
2063 int hard_regno, nregs, conflict_nregs;
2064 ira_allocno_iterator ai;
2066 FOR_EACH_ALLOCNO (a, ai)
2068 int n = ALLOCNO_NUM_OBJECTS (a);
2069 int i;
2071 if (ALLOCNO_CAP_MEMBER (a) != NULL
2072 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2073 continue;
2074 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2075 if (nregs == 1)
2076 /* We allocated a single hard register. */
2077 n = 1;
2078 else if (n > 1)
2079 /* We allocated multiple hard registers, and we will test
2080 conflicts in a granularity of single hard regs. */
2081 nregs = 1;
2083 for (i = 0; i < n; i++)
2085 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2086 ira_object_t conflict_obj;
2087 ira_object_conflict_iterator oci;
2088 int this_regno = hard_regno;
2089 if (n > 1)
2091 if (WORDS_BIG_ENDIAN)
2092 this_regno += n - i - 1;
2093 else
2094 this_regno += i;
2096 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2098 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2099 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2100 if (conflict_hard_regno < 0)
2101 continue;
2103 conflict_nregs
2104 = (hard_regno_nregs
2105 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2107 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2108 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2110 if (WORDS_BIG_ENDIAN)
2111 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2112 - OBJECT_SUBWORD (conflict_obj) - 1);
2113 else
2114 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2115 conflict_nregs = 1;
2118 if ((conflict_hard_regno <= this_regno
2119 && this_regno < conflict_hard_regno + conflict_nregs)
2120 || (this_regno <= conflict_hard_regno
2121 && conflict_hard_regno < this_regno + nregs))
2123 fprintf (stderr, "bad allocation for %d and %d\n",
2124 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2125 gcc_unreachable ();
2131 #endif
2133 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2134 by IRA. */
2135 static void
2136 fix_reg_equiv_init (void)
2138 unsigned int max_regno = max_reg_num ();
2139 int i, new_regno, max;
2140 rtx x, prev, next, insn, set;
2142 if (VEC_length (reg_equivs_t, reg_equivs) < max_regno)
2144 max = VEC_length (reg_equivs_t, reg_equivs);
2145 grow_reg_equivs ();
2146 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2147 for (prev = NULL_RTX, x = reg_equiv_init (i);
2148 x != NULL_RTX;
2149 x = next)
2151 next = XEXP (x, 1);
2152 insn = XEXP (x, 0);
2153 set = single_set (insn);
2154 ira_assert (set != NULL_RTX
2155 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2156 if (REG_P (SET_DEST (set))
2157 && ((int) REGNO (SET_DEST (set)) == i
2158 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2159 new_regno = REGNO (SET_DEST (set));
2160 else if (REG_P (SET_SRC (set))
2161 && ((int) REGNO (SET_SRC (set)) == i
2162 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2163 new_regno = REGNO (SET_SRC (set));
2164 else
2165 gcc_unreachable ();
2166 if (new_regno == i)
2167 prev = x;
2168 else
2170 if (prev == NULL_RTX)
2171 reg_equiv_init (i) = next;
2172 else
2173 XEXP (prev, 1) = next;
2174 XEXP (x, 1) = reg_equiv_init (new_regno);
2175 reg_equiv_init (new_regno) = x;
2181 #ifdef ENABLE_IRA_CHECKING
2182 /* Print redundant memory-memory copies. */
2183 static void
2184 print_redundant_copies (void)
2186 int hard_regno;
2187 ira_allocno_t a;
2188 ira_copy_t cp, next_cp;
2189 ira_allocno_iterator ai;
2191 FOR_EACH_ALLOCNO (a, ai)
2193 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2194 /* It is a cap. */
2195 continue;
2196 hard_regno = ALLOCNO_HARD_REGNO (a);
2197 if (hard_regno >= 0)
2198 continue;
2199 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2200 if (cp->first == a)
2201 next_cp = cp->next_first_allocno_copy;
2202 else
2204 next_cp = cp->next_second_allocno_copy;
2205 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2206 && cp->insn != NULL_RTX
2207 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2208 fprintf (ira_dump_file,
2209 " Redundant move from %d(freq %d):%d\n",
2210 INSN_UID (cp->insn), cp->freq, hard_regno);
2214 #endif
2216 /* Setup preferred and alternative classes for new pseudo-registers
2217 created by IRA starting with START. */
2218 static void
2219 setup_preferred_alternate_classes_for_new_pseudos (int start)
2221 int i, old_regno;
2222 int max_regno = max_reg_num ();
2224 for (i = start; i < max_regno; i++)
2226 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2227 ira_assert (i != old_regno);
2228 setup_reg_classes (i, reg_preferred_class (old_regno),
2229 reg_alternate_class (old_regno),
2230 reg_allocno_class (old_regno));
2231 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2232 fprintf (ira_dump_file,
2233 " New r%d: setting preferred %s, alternative %s\n",
2234 i, reg_class_names[reg_preferred_class (old_regno)],
2235 reg_class_names[reg_alternate_class (old_regno)]);
2241 /* Regional allocation can create new pseudo-registers. This function
2242 expands some arrays for pseudo-registers. */
2243 static void
2244 expand_reg_info (int old_size)
2246 int i;
2247 int size = max_reg_num ();
2249 resize_reg_info ();
2250 for (i = old_size; i < size; i++)
2251 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2254 /* Return TRUE if there is too high register pressure in the function.
2255 It is used to decide when stack slot sharing is worth to do. */
2256 static bool
2257 too_high_register_pressure_p (void)
2259 int i;
2260 enum reg_class pclass;
2262 for (i = 0; i < ira_pressure_classes_num; i++)
2264 pclass = ira_pressure_classes[i];
2265 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2266 return true;
2268 return false;
2273 /* Indicate that hard register number FROM was eliminated and replaced with
2274 an offset from hard register number TO. The status of hard registers live
2275 at the start of a basic block is updated by replacing a use of FROM with
2276 a use of TO. */
2278 void
2279 mark_elimination (int from, int to)
2281 basic_block bb;
2283 FOR_EACH_BB (bb)
2285 /* We don't use LIVE info in IRA. */
2286 bitmap r = DF_LR_IN (bb);
2288 if (REGNO_REG_SET_P (r, from))
2290 CLEAR_REGNO_REG_SET (r, from);
2291 SET_REGNO_REG_SET (r, to);
2298 struct equivalence
2300 /* Set when a REG_EQUIV note is found or created. Use to
2301 keep track of what memory accesses might be created later,
2302 e.g. by reload. */
2303 rtx replacement;
2304 rtx *src_p;
2305 /* The list of each instruction which initializes this register. */
2306 rtx init_insns;
2307 /* Loop depth is used to recognize equivalences which appear
2308 to be present within the same loop (or in an inner loop). */
2309 int loop_depth;
2310 /* Nonzero if this had a preexisting REG_EQUIV note. */
2311 int is_arg_equivalence;
2312 /* Set when an attempt should be made to replace a register
2313 with the associated src_p entry. */
2314 char replace;
2317 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2318 structure for that register. */
2319 static struct equivalence *reg_equiv;
2321 /* Used for communication between the following two functions: contains
2322 a MEM that we wish to ensure remains unchanged. */
2323 static rtx equiv_mem;
2325 /* Set nonzero if EQUIV_MEM is modified. */
2326 static int equiv_mem_modified;
2328 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2329 Called via note_stores. */
2330 static void
2331 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2332 void *data ATTRIBUTE_UNUSED)
2334 if ((REG_P (dest)
2335 && reg_overlap_mentioned_p (dest, equiv_mem))
2336 || (MEM_P (dest)
2337 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
2338 equiv_mem_modified = 1;
2341 /* Verify that no store between START and the death of REG invalidates
2342 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2343 by storing into an overlapping memory location, or with a non-const
2344 CALL_INSN.
2346 Return 1 if MEMREF remains valid. */
2347 static int
2348 validate_equiv_mem (rtx start, rtx reg, rtx memref)
2350 rtx insn;
2351 rtx note;
2353 equiv_mem = memref;
2354 equiv_mem_modified = 0;
2356 /* If the memory reference has side effects or is volatile, it isn't a
2357 valid equivalence. */
2358 if (side_effects_p (memref))
2359 return 0;
2361 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2363 if (! INSN_P (insn))
2364 continue;
2366 if (find_reg_note (insn, REG_DEAD, reg))
2367 return 1;
2369 /* This used to ignore readonly memory and const/pure calls. The problem
2370 is the equivalent form may reference a pseudo which gets assigned a
2371 call clobbered hard reg. When we later replace REG with its
2372 equivalent form, the value in the call-clobbered reg has been
2373 changed and all hell breaks loose. */
2374 if (CALL_P (insn))
2375 return 0;
2377 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2379 /* If a register mentioned in MEMREF is modified via an
2380 auto-increment, we lose the equivalence. Do the same if one
2381 dies; although we could extend the life, it doesn't seem worth
2382 the trouble. */
2384 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2385 if ((REG_NOTE_KIND (note) == REG_INC
2386 || REG_NOTE_KIND (note) == REG_DEAD)
2387 && REG_P (XEXP (note, 0))
2388 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2389 return 0;
2392 return 0;
2395 /* Returns zero if X is known to be invariant. */
2396 static int
2397 equiv_init_varies_p (rtx x)
2399 RTX_CODE code = GET_CODE (x);
2400 int i;
2401 const char *fmt;
2403 switch (code)
2405 case MEM:
2406 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2408 case CONST:
2409 case CONST_INT:
2410 case CONST_DOUBLE:
2411 case CONST_FIXED:
2412 case CONST_VECTOR:
2413 case SYMBOL_REF:
2414 case LABEL_REF:
2415 return 0;
2417 case REG:
2418 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2420 case ASM_OPERANDS:
2421 if (MEM_VOLATILE_P (x))
2422 return 1;
2424 /* Fall through. */
2426 default:
2427 break;
2430 fmt = GET_RTX_FORMAT (code);
2431 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2432 if (fmt[i] == 'e')
2434 if (equiv_init_varies_p (XEXP (x, i)))
2435 return 1;
2437 else if (fmt[i] == 'E')
2439 int j;
2440 for (j = 0; j < XVECLEN (x, i); j++)
2441 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2442 return 1;
2445 return 0;
2448 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2449 X is only movable if the registers it uses have equivalent initializations
2450 which appear to be within the same loop (or in an inner loop) and movable
2451 or if they are not candidates for local_alloc and don't vary. */
2452 static int
2453 equiv_init_movable_p (rtx x, int regno)
2455 int i, j;
2456 const char *fmt;
2457 enum rtx_code code = GET_CODE (x);
2459 switch (code)
2461 case SET:
2462 return equiv_init_movable_p (SET_SRC (x), regno);
2464 case CC0:
2465 case CLOBBER:
2466 return 0;
2468 case PRE_INC:
2469 case PRE_DEC:
2470 case POST_INC:
2471 case POST_DEC:
2472 case PRE_MODIFY:
2473 case POST_MODIFY:
2474 return 0;
2476 case REG:
2477 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2478 && reg_equiv[REGNO (x)].replace)
2479 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2480 && ! rtx_varies_p (x, 0)));
2482 case UNSPEC_VOLATILE:
2483 return 0;
2485 case ASM_OPERANDS:
2486 if (MEM_VOLATILE_P (x))
2487 return 0;
2489 /* Fall through. */
2491 default:
2492 break;
2495 fmt = GET_RTX_FORMAT (code);
2496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2497 switch (fmt[i])
2499 case 'e':
2500 if (! equiv_init_movable_p (XEXP (x, i), regno))
2501 return 0;
2502 break;
2503 case 'E':
2504 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2505 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2506 return 0;
2507 break;
2510 return 1;
2513 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2514 true. */
2515 static int
2516 contains_replace_regs (rtx x)
2518 int i, j;
2519 const char *fmt;
2520 enum rtx_code code = GET_CODE (x);
2522 switch (code)
2524 case CONST_INT:
2525 case CONST:
2526 case LABEL_REF:
2527 case SYMBOL_REF:
2528 case CONST_DOUBLE:
2529 case CONST_FIXED:
2530 case CONST_VECTOR:
2531 case PC:
2532 case CC0:
2533 case HIGH:
2534 return 0;
2536 case REG:
2537 return reg_equiv[REGNO (x)].replace;
2539 default:
2540 break;
2543 fmt = GET_RTX_FORMAT (code);
2544 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2545 switch (fmt[i])
2547 case 'e':
2548 if (contains_replace_regs (XEXP (x, i)))
2549 return 1;
2550 break;
2551 case 'E':
2552 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2553 if (contains_replace_regs (XVECEXP (x, i, j)))
2554 return 1;
2555 break;
2558 return 0;
2561 /* TRUE if X references a memory location that would be affected by a store
2562 to MEMREF. */
2563 static int
2564 memref_referenced_p (rtx memref, rtx x)
2566 int i, j;
2567 const char *fmt;
2568 enum rtx_code code = GET_CODE (x);
2570 switch (code)
2572 case CONST_INT:
2573 case CONST:
2574 case LABEL_REF:
2575 case SYMBOL_REF:
2576 case CONST_DOUBLE:
2577 case CONST_FIXED:
2578 case CONST_VECTOR:
2579 case PC:
2580 case CC0:
2581 case HIGH:
2582 case LO_SUM:
2583 return 0;
2585 case REG:
2586 return (reg_equiv[REGNO (x)].replacement
2587 && memref_referenced_p (memref,
2588 reg_equiv[REGNO (x)].replacement));
2590 case MEM:
2591 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2592 return 1;
2593 break;
2595 case SET:
2596 /* If we are setting a MEM, it doesn't count (its address does), but any
2597 other SET_DEST that has a MEM in it is referencing the MEM. */
2598 if (MEM_P (SET_DEST (x)))
2600 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2601 return 1;
2603 else if (memref_referenced_p (memref, SET_DEST (x)))
2604 return 1;
2606 return memref_referenced_p (memref, SET_SRC (x));
2608 default:
2609 break;
2612 fmt = GET_RTX_FORMAT (code);
2613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2614 switch (fmt[i])
2616 case 'e':
2617 if (memref_referenced_p (memref, XEXP (x, i)))
2618 return 1;
2619 break;
2620 case 'E':
2621 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2622 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2623 return 1;
2624 break;
2627 return 0;
2630 /* TRUE if some insn in the range (START, END] references a memory location
2631 that would be affected by a store to MEMREF. */
2632 static int
2633 memref_used_between_p (rtx memref, rtx start, rtx end)
2635 rtx insn;
2637 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2638 insn = NEXT_INSN (insn))
2640 if (!NONDEBUG_INSN_P (insn))
2641 continue;
2643 if (memref_referenced_p (memref, PATTERN (insn)))
2644 return 1;
2646 /* Nonconst functions may access memory. */
2647 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2648 return 1;
2651 return 0;
2654 /* Mark REG as having no known equivalence.
2655 Some instructions might have been processed before and furnished
2656 with REG_EQUIV notes for this register; these notes will have to be
2657 removed.
2658 STORE is the piece of RTL that does the non-constant / conflicting
2659 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2660 but needs to be there because this function is called from note_stores. */
2661 static void
2662 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2663 void *data ATTRIBUTE_UNUSED)
2665 int regno;
2666 rtx list;
2668 if (!REG_P (reg))
2669 return;
2670 regno = REGNO (reg);
2671 list = reg_equiv[regno].init_insns;
2672 if (list == const0_rtx)
2673 return;
2674 reg_equiv[regno].init_insns = const0_rtx;
2675 reg_equiv[regno].replacement = NULL_RTX;
2676 /* This doesn't matter for equivalences made for argument registers, we
2677 should keep their initialization insns. */
2678 if (reg_equiv[regno].is_arg_equivalence)
2679 return;
2680 reg_equiv_init (regno) = NULL_RTX;
2681 for (; list; list = XEXP (list, 1))
2683 rtx insn = XEXP (list, 0);
2684 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2688 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2689 equivalent replacement. */
2691 static rtx
2692 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2694 if (REG_P (loc))
2696 bitmap cleared_regs = (bitmap) data;
2697 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2698 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2699 NULL_RTX, adjust_cleared_regs, data);
2701 return NULL_RTX;
2704 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2705 static int recorded_label_ref;
2707 /* Find registers that are equivalent to a single value throughout the
2708 compilation (either because they can be referenced in memory or are
2709 set once from a single constant). Lower their priority for a
2710 register.
2712 If such a register is only referenced once, try substituting its
2713 value into the using insn. If it succeeds, we can eliminate the
2714 register completely.
2716 Initialize the REG_EQUIV_INIT array of initializing insns.
2718 Return non-zero if jump label rebuilding should be done. */
2719 static int
2720 update_equiv_regs (void)
2722 rtx insn;
2723 basic_block bb;
2724 int loop_depth;
2725 bitmap cleared_regs;
2727 /* We need to keep track of whether or not we recorded a LABEL_REF so
2728 that we know if the jump optimizer needs to be rerun. */
2729 recorded_label_ref = 0;
2731 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2732 grow_reg_equivs ();
2734 init_alias_analysis ();
2736 /* Scan the insns and find which registers have equivalences. Do this
2737 in a separate scan of the insns because (due to -fcse-follow-jumps)
2738 a register can be set below its use. */
2739 FOR_EACH_BB (bb)
2741 loop_depth = bb->loop_depth;
2743 for (insn = BB_HEAD (bb);
2744 insn != NEXT_INSN (BB_END (bb));
2745 insn = NEXT_INSN (insn))
2747 rtx note;
2748 rtx set;
2749 rtx dest, src;
2750 int regno;
2752 if (! INSN_P (insn))
2753 continue;
2755 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2756 if (REG_NOTE_KIND (note) == REG_INC)
2757 no_equiv (XEXP (note, 0), note, NULL);
2759 set = single_set (insn);
2761 /* If this insn contains more (or less) than a single SET,
2762 only mark all destinations as having no known equivalence. */
2763 if (set == 0)
2765 note_stores (PATTERN (insn), no_equiv, NULL);
2766 continue;
2768 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2770 int i;
2772 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2774 rtx part = XVECEXP (PATTERN (insn), 0, i);
2775 if (part != set)
2776 note_stores (part, no_equiv, NULL);
2780 dest = SET_DEST (set);
2781 src = SET_SRC (set);
2783 /* See if this is setting up the equivalence between an argument
2784 register and its stack slot. */
2785 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2786 if (note)
2788 gcc_assert (REG_P (dest));
2789 regno = REGNO (dest);
2791 /* Note that we don't want to clear reg_equiv_init even if there
2792 are multiple sets of this register. */
2793 reg_equiv[regno].is_arg_equivalence = 1;
2795 /* Record for reload that this is an equivalencing insn. */
2796 if (rtx_equal_p (src, XEXP (note, 0)))
2797 reg_equiv_init (regno)
2798 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2800 /* Continue normally in case this is a candidate for
2801 replacements. */
2804 if (!optimize)
2805 continue;
2807 /* We only handle the case of a pseudo register being set
2808 once, or always to the same value. */
2809 /* ??? The mn10200 port breaks if we add equivalences for
2810 values that need an ADDRESS_REGS register and set them equivalent
2811 to a MEM of a pseudo. The actual problem is in the over-conservative
2812 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2813 calculate_needs, but we traditionally work around this problem
2814 here by rejecting equivalences when the destination is in a register
2815 that's likely spilled. This is fragile, of course, since the
2816 preferred class of a pseudo depends on all instructions that set
2817 or use it. */
2819 if (!REG_P (dest)
2820 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2821 || reg_equiv[regno].init_insns == const0_rtx
2822 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
2823 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2825 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2826 also set somewhere else to a constant. */
2827 note_stores (set, no_equiv, NULL);
2828 continue;
2831 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2833 /* cse sometimes generates function invariants, but doesn't put a
2834 REG_EQUAL note on the insn. Since this note would be redundant,
2835 there's no point creating it earlier than here. */
2836 if (! note && ! rtx_varies_p (src, 0))
2837 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2839 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2840 since it represents a function call */
2841 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2842 note = NULL_RTX;
2844 if (DF_REG_DEF_COUNT (regno) != 1
2845 && (! note
2846 || rtx_varies_p (XEXP (note, 0), 0)
2847 || (reg_equiv[regno].replacement
2848 && ! rtx_equal_p (XEXP (note, 0),
2849 reg_equiv[regno].replacement))))
2851 no_equiv (dest, set, NULL);
2852 continue;
2854 /* Record this insn as initializing this register. */
2855 reg_equiv[regno].init_insns
2856 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2858 /* If this register is known to be equal to a constant, record that
2859 it is always equivalent to the constant. */
2860 if (DF_REG_DEF_COUNT (regno) == 1
2861 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2863 rtx note_value = XEXP (note, 0);
2864 remove_note (insn, note);
2865 set_unique_reg_note (insn, REG_EQUIV, note_value);
2868 /* If this insn introduces a "constant" register, decrease the priority
2869 of that register. Record this insn if the register is only used once
2870 more and the equivalence value is the same as our source.
2872 The latter condition is checked for two reasons: First, it is an
2873 indication that it may be more efficient to actually emit the insn
2874 as written (if no registers are available, reload will substitute
2875 the equivalence). Secondly, it avoids problems with any registers
2876 dying in this insn whose death notes would be missed.
2878 If we don't have a REG_EQUIV note, see if this insn is loading
2879 a register used only in one basic block from a MEM. If so, and the
2880 MEM remains unchanged for the life of the register, add a REG_EQUIV
2881 note. */
2883 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2885 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2886 && MEM_P (SET_SRC (set))
2887 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2888 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2890 if (note)
2892 int regno = REGNO (dest);
2893 rtx x = XEXP (note, 0);
2895 /* If we haven't done so, record for reload that this is an
2896 equivalencing insn. */
2897 if (!reg_equiv[regno].is_arg_equivalence)
2898 reg_equiv_init (regno)
2899 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2901 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2902 We might end up substituting the LABEL_REF for uses of the
2903 pseudo here or later. That kind of transformation may turn an
2904 indirect jump into a direct jump, in which case we must rerun the
2905 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2906 if (GET_CODE (x) == LABEL_REF
2907 || (GET_CODE (x) == CONST
2908 && GET_CODE (XEXP (x, 0)) == PLUS
2909 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2910 recorded_label_ref = 1;
2912 reg_equiv[regno].replacement = x;
2913 reg_equiv[regno].src_p = &SET_SRC (set);
2914 reg_equiv[regno].loop_depth = loop_depth;
2916 /* Don't mess with things live during setjmp. */
2917 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2919 /* Note that the statement below does not affect the priority
2920 in local-alloc! */
2921 REG_LIVE_LENGTH (regno) *= 2;
2923 /* If the register is referenced exactly twice, meaning it is
2924 set once and used once, indicate that the reference may be
2925 replaced by the equivalence we computed above. Do this
2926 even if the register is only used in one block so that
2927 dependencies can be handled where the last register is
2928 used in a different block (i.e. HIGH / LO_SUM sequences)
2929 and to reduce the number of registers alive across
2930 calls. */
2932 if (REG_N_REFS (regno) == 2
2933 && (rtx_equal_p (x, src)
2934 || ! equiv_init_varies_p (src))
2935 && NONJUMP_INSN_P (insn)
2936 && equiv_init_movable_p (PATTERN (insn), regno))
2937 reg_equiv[regno].replace = 1;
2943 if (!optimize)
2944 goto out;
2946 /* A second pass, to gather additional equivalences with memory. This needs
2947 to be done after we know which registers we are going to replace. */
2949 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2951 rtx set, src, dest;
2952 unsigned regno;
2954 if (! INSN_P (insn))
2955 continue;
2957 set = single_set (insn);
2958 if (! set)
2959 continue;
2961 dest = SET_DEST (set);
2962 src = SET_SRC (set);
2964 /* If this sets a MEM to the contents of a REG that is only used
2965 in a single basic block, see if the register is always equivalent
2966 to that memory location and if moving the store from INSN to the
2967 insn that set REG is safe. If so, put a REG_EQUIV note on the
2968 initializing insn.
2970 Don't add a REG_EQUIV note if the insn already has one. The existing
2971 REG_EQUIV is likely more useful than the one we are adding.
2973 If one of the regs in the address has reg_equiv[REGNO].replace set,
2974 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2975 optimization may move the set of this register immediately before
2976 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2977 the mention in the REG_EQUIV note would be to an uninitialized
2978 pseudo. */
2980 if (MEM_P (dest) && REG_P (src)
2981 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2982 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2983 && DF_REG_DEF_COUNT (regno) == 1
2984 && reg_equiv[regno].init_insns != 0
2985 && reg_equiv[regno].init_insns != const0_rtx
2986 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2987 REG_EQUIV, NULL_RTX)
2988 && ! contains_replace_regs (XEXP (dest, 0)))
2990 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2991 if (validate_equiv_mem (init_insn, src, dest)
2992 && ! memref_used_between_p (dest, init_insn, insn)
2993 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2994 multiple sets. */
2995 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2997 /* This insn makes the equivalence, not the one initializing
2998 the register. */
2999 reg_equiv_init (regno)
3000 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3001 df_notes_rescan (init_insn);
3006 cleared_regs = BITMAP_ALLOC (NULL);
3007 /* Now scan all regs killed in an insn to see if any of them are
3008 registers only used that once. If so, see if we can replace the
3009 reference with the equivalent form. If we can, delete the
3010 initializing reference and this register will go away. If we
3011 can't replace the reference, and the initializing reference is
3012 within the same loop (or in an inner loop), then move the register
3013 initialization just before the use, so that they are in the same
3014 basic block. */
3015 FOR_EACH_BB_REVERSE (bb)
3017 loop_depth = bb->loop_depth;
3018 for (insn = BB_END (bb);
3019 insn != PREV_INSN (BB_HEAD (bb));
3020 insn = PREV_INSN (insn))
3022 rtx link;
3024 if (! INSN_P (insn))
3025 continue;
3027 /* Don't substitute into a non-local goto, this confuses CFG. */
3028 if (JUMP_P (insn)
3029 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3030 continue;
3032 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3034 if (REG_NOTE_KIND (link) == REG_DEAD
3035 /* Make sure this insn still refers to the register. */
3036 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3038 int regno = REGNO (XEXP (link, 0));
3039 rtx equiv_insn;
3041 if (! reg_equiv[regno].replace
3042 || reg_equiv[regno].loop_depth < loop_depth
3043 /* There is no sense to move insns if we did
3044 register pressure-sensitive scheduling was
3045 done because it will not improve allocation
3046 but worsen insn schedule with a big
3047 probability. */
3048 || (flag_sched_pressure && flag_schedule_insns))
3049 continue;
3051 /* reg_equiv[REGNO].replace gets set only when
3052 REG_N_REFS[REGNO] is 2, i.e. the register is set
3053 once and used once. (If it were only set, but not used,
3054 flow would have deleted the setting insns.) Hence
3055 there can only be one insn in reg_equiv[REGNO].init_insns. */
3056 gcc_assert (reg_equiv[regno].init_insns
3057 && !XEXP (reg_equiv[regno].init_insns, 1));
3058 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3060 /* We may not move instructions that can throw, since
3061 that changes basic block boundaries and we are not
3062 prepared to adjust the CFG to match. */
3063 if (can_throw_internal (equiv_insn))
3064 continue;
3066 if (asm_noperands (PATTERN (equiv_insn)) < 0
3067 && validate_replace_rtx (regno_reg_rtx[regno],
3068 *(reg_equiv[regno].src_p), insn))
3070 rtx equiv_link;
3071 rtx last_link;
3072 rtx note;
3074 /* Find the last note. */
3075 for (last_link = link; XEXP (last_link, 1);
3076 last_link = XEXP (last_link, 1))
3079 /* Append the REG_DEAD notes from equiv_insn. */
3080 equiv_link = REG_NOTES (equiv_insn);
3081 while (equiv_link)
3083 note = equiv_link;
3084 equiv_link = XEXP (equiv_link, 1);
3085 if (REG_NOTE_KIND (note) == REG_DEAD)
3087 remove_note (equiv_insn, note);
3088 XEXP (last_link, 1) = note;
3089 XEXP (note, 1) = NULL_RTX;
3090 last_link = note;
3094 remove_death (regno, insn);
3095 SET_REG_N_REFS (regno, 0);
3096 REG_FREQ (regno) = 0;
3097 delete_insn (equiv_insn);
3099 reg_equiv[regno].init_insns
3100 = XEXP (reg_equiv[regno].init_insns, 1);
3102 reg_equiv_init (regno) = NULL_RTX;
3103 bitmap_set_bit (cleared_regs, regno);
3105 /* Move the initialization of the register to just before
3106 INSN. Update the flow information. */
3107 else if (prev_nondebug_insn (insn) != equiv_insn)
3109 rtx new_insn;
3111 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3112 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3113 REG_NOTES (equiv_insn) = 0;
3114 /* Rescan it to process the notes. */
3115 df_insn_rescan (new_insn);
3117 /* Make sure this insn is recognized before
3118 reload begins, otherwise
3119 eliminate_regs_in_insn will die. */
3120 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3122 delete_insn (equiv_insn);
3124 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3126 REG_BASIC_BLOCK (regno) = bb->index;
3127 REG_N_CALLS_CROSSED (regno) = 0;
3128 REG_FREQ_CALLS_CROSSED (regno) = 0;
3129 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3130 REG_LIVE_LENGTH (regno) = 2;
3132 if (insn == BB_HEAD (bb))
3133 BB_HEAD (bb) = PREV_INSN (insn);
3135 reg_equiv_init (regno)
3136 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3137 bitmap_set_bit (cleared_regs, regno);
3144 if (!bitmap_empty_p (cleared_regs))
3146 FOR_EACH_BB (bb)
3148 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3149 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3150 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3151 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3154 /* Last pass - adjust debug insns referencing cleared regs. */
3155 if (MAY_HAVE_DEBUG_INSNS)
3156 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3157 if (DEBUG_INSN_P (insn))
3159 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3160 INSN_VAR_LOCATION_LOC (insn)
3161 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3162 adjust_cleared_regs,
3163 (void *) cleared_regs);
3164 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3165 df_insn_rescan (insn);
3169 BITMAP_FREE (cleared_regs);
3171 out:
3172 /* Clean up. */
3174 end_alias_analysis ();
3175 free (reg_equiv);
3176 return recorded_label_ref;
3181 /* Print chain C to FILE. */
3182 static void
3183 print_insn_chain (FILE *file, struct insn_chain *c)
3185 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3186 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3187 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3191 /* Print all reload_insn_chains to FILE. */
3192 static void
3193 print_insn_chains (FILE *file)
3195 struct insn_chain *c;
3196 for (c = reload_insn_chain; c ; c = c->next)
3197 print_insn_chain (file, c);
3200 /* Return true if pseudo REGNO should be added to set live_throughout
3201 or dead_or_set of the insn chains for reload consideration. */
3202 static bool
3203 pseudo_for_reload_consideration_p (int regno)
3205 /* Consider spilled pseudos too for IRA because they still have a
3206 chance to get hard-registers in the reload when IRA is used. */
3207 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3210 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3211 REG to the number of nregs, and INIT_VALUE to get the
3212 initialization. ALLOCNUM need not be the regno of REG. */
3213 static void
3214 init_live_subregs (bool init_value, sbitmap *live_subregs,
3215 int *live_subregs_used, int allocnum, rtx reg)
3217 unsigned int regno = REGNO (SUBREG_REG (reg));
3218 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3220 gcc_assert (size > 0);
3222 /* Been there, done that. */
3223 if (live_subregs_used[allocnum])
3224 return;
3226 /* Create a new one with zeros. */
3227 if (live_subregs[allocnum] == NULL)
3228 live_subregs[allocnum] = sbitmap_alloc (size);
3230 /* If the entire reg was live before blasting into subregs, we need
3231 to init all of the subregs to ones else init to 0. */
3232 if (init_value)
3233 sbitmap_ones (live_subregs[allocnum]);
3234 else
3235 sbitmap_zero (live_subregs[allocnum]);
3237 /* Set the number of bits that we really want. */
3238 live_subregs_used[allocnum] = size;
3241 /* Walk the insns of the current function and build reload_insn_chain,
3242 and record register life information. */
3243 static void
3244 build_insn_chain (void)
3246 unsigned int i;
3247 struct insn_chain **p = &reload_insn_chain;
3248 basic_block bb;
3249 struct insn_chain *c = NULL;
3250 struct insn_chain *next = NULL;
3251 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3252 bitmap elim_regset = BITMAP_ALLOC (NULL);
3253 /* live_subregs is a vector used to keep accurate information about
3254 which hardregs are live in multiword pseudos. live_subregs and
3255 live_subregs_used are indexed by pseudo number. The live_subreg
3256 entry for a particular pseudo is only used if the corresponding
3257 element is non zero in live_subregs_used. The value in
3258 live_subregs_used is number of bytes that the pseudo can
3259 occupy. */
3260 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
3261 int *live_subregs_used = XNEWVEC (int, max_regno);
3263 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3264 if (TEST_HARD_REG_BIT (eliminable_regset, i))
3265 bitmap_set_bit (elim_regset, i);
3266 FOR_EACH_BB_REVERSE (bb)
3268 bitmap_iterator bi;
3269 rtx insn;
3271 CLEAR_REG_SET (live_relevant_regs);
3272 memset (live_subregs_used, 0, max_regno * sizeof (int));
3274 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
3276 if (i >= FIRST_PSEUDO_REGISTER)
3277 break;
3278 bitmap_set_bit (live_relevant_regs, i);
3281 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
3282 FIRST_PSEUDO_REGISTER, i, bi)
3284 if (pseudo_for_reload_consideration_p (i))
3285 bitmap_set_bit (live_relevant_regs, i);
3288 FOR_BB_INSNS_REVERSE (bb, insn)
3290 if (!NOTE_P (insn) && !BARRIER_P (insn))
3292 unsigned int uid = INSN_UID (insn);
3293 df_ref *def_rec;
3294 df_ref *use_rec;
3296 c = new_insn_chain ();
3297 c->next = next;
3298 next = c;
3299 *p = c;
3300 p = &c->prev;
3302 c->insn = insn;
3303 c->block = bb->index;
3305 if (INSN_P (insn))
3306 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3308 df_ref def = *def_rec;
3309 unsigned int regno = DF_REF_REGNO (def);
3311 /* Ignore may clobbers because these are generated
3312 from calls. However, every other kind of def is
3313 added to dead_or_set. */
3314 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3316 if (regno < FIRST_PSEUDO_REGISTER)
3318 if (!fixed_regs[regno])
3319 bitmap_set_bit (&c->dead_or_set, regno);
3321 else if (pseudo_for_reload_consideration_p (regno))
3322 bitmap_set_bit (&c->dead_or_set, regno);
3325 if ((regno < FIRST_PSEUDO_REGISTER
3326 || reg_renumber[regno] >= 0
3327 || ira_conflicts_p)
3328 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3330 rtx reg = DF_REF_REG (def);
3332 /* We can model subregs, but not if they are
3333 wrapped in ZERO_EXTRACTS. */
3334 if (GET_CODE (reg) == SUBREG
3335 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3337 unsigned int start = SUBREG_BYTE (reg);
3338 unsigned int last = start
3339 + GET_MODE_SIZE (GET_MODE (reg));
3341 init_live_subregs
3342 (bitmap_bit_p (live_relevant_regs, regno),
3343 live_subregs, live_subregs_used, regno, reg);
3345 if (!DF_REF_FLAGS_IS_SET
3346 (def, DF_REF_STRICT_LOW_PART))
3348 /* Expand the range to cover entire words.
3349 Bytes added here are "don't care". */
3350 start
3351 = start / UNITS_PER_WORD * UNITS_PER_WORD;
3352 last = ((last + UNITS_PER_WORD - 1)
3353 / UNITS_PER_WORD * UNITS_PER_WORD);
3356 /* Ignore the paradoxical bits. */
3357 if ((int)last > live_subregs_used[regno])
3358 last = live_subregs_used[regno];
3360 while (start < last)
3362 RESET_BIT (live_subregs[regno], start);
3363 start++;
3366 if (sbitmap_empty_p (live_subregs[regno]))
3368 live_subregs_used[regno] = 0;
3369 bitmap_clear_bit (live_relevant_regs, regno);
3371 else
3372 /* Set live_relevant_regs here because
3373 that bit has to be true to get us to
3374 look at the live_subregs fields. */
3375 bitmap_set_bit (live_relevant_regs, regno);
3377 else
3379 /* DF_REF_PARTIAL is generated for
3380 subregs, STRICT_LOW_PART, and
3381 ZERO_EXTRACT. We handle the subreg
3382 case above so here we have to keep from
3383 modeling the def as a killing def. */
3384 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3386 bitmap_clear_bit (live_relevant_regs, regno);
3387 live_subregs_used[regno] = 0;
3393 bitmap_and_compl_into (live_relevant_regs, elim_regset);
3394 bitmap_copy (&c->live_throughout, live_relevant_regs);
3396 if (INSN_P (insn))
3397 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3399 df_ref use = *use_rec;
3400 unsigned int regno = DF_REF_REGNO (use);
3401 rtx reg = DF_REF_REG (use);
3403 /* DF_REF_READ_WRITE on a use means that this use
3404 is fabricated from a def that is a partial set
3405 to a multiword reg. Here, we only model the
3406 subreg case that is not wrapped in ZERO_EXTRACT
3407 precisely so we do not need to look at the
3408 fabricated use. */
3409 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3410 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3411 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3412 continue;
3414 /* Add the last use of each var to dead_or_set. */
3415 if (!bitmap_bit_p (live_relevant_regs, regno))
3417 if (regno < FIRST_PSEUDO_REGISTER)
3419 if (!fixed_regs[regno])
3420 bitmap_set_bit (&c->dead_or_set, regno);
3422 else if (pseudo_for_reload_consideration_p (regno))
3423 bitmap_set_bit (&c->dead_or_set, regno);
3426 if (regno < FIRST_PSEUDO_REGISTER
3427 || pseudo_for_reload_consideration_p (regno))
3429 if (GET_CODE (reg) == SUBREG
3430 && !DF_REF_FLAGS_IS_SET (use,
3431 DF_REF_SIGN_EXTRACT
3432 | DF_REF_ZERO_EXTRACT))
3434 unsigned int start = SUBREG_BYTE (reg);
3435 unsigned int last = start
3436 + GET_MODE_SIZE (GET_MODE (reg));
3438 init_live_subregs
3439 (bitmap_bit_p (live_relevant_regs, regno),
3440 live_subregs, live_subregs_used, regno, reg);
3442 /* Ignore the paradoxical bits. */
3443 if ((int)last > live_subregs_used[regno])
3444 last = live_subregs_used[regno];
3446 while (start < last)
3448 SET_BIT (live_subregs[regno], start);
3449 start++;
3452 else
3453 /* Resetting the live_subregs_used is
3454 effectively saying do not use the subregs
3455 because we are reading the whole
3456 pseudo. */
3457 live_subregs_used[regno] = 0;
3458 bitmap_set_bit (live_relevant_regs, regno);
3464 /* FIXME!! The following code is a disaster. Reload needs to see the
3465 labels and jump tables that are just hanging out in between
3466 the basic blocks. See pr33676. */
3467 insn = BB_HEAD (bb);
3469 /* Skip over the barriers and cruft. */
3470 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3471 || BLOCK_FOR_INSN (insn) == bb))
3472 insn = PREV_INSN (insn);
3474 /* While we add anything except barriers and notes, the focus is
3475 to get the labels and jump tables into the
3476 reload_insn_chain. */
3477 while (insn)
3479 if (!NOTE_P (insn) && !BARRIER_P (insn))
3481 if (BLOCK_FOR_INSN (insn))
3482 break;
3484 c = new_insn_chain ();
3485 c->next = next;
3486 next = c;
3487 *p = c;
3488 p = &c->prev;
3490 /* The block makes no sense here, but it is what the old
3491 code did. */
3492 c->block = bb->index;
3493 c->insn = insn;
3494 bitmap_copy (&c->live_throughout, live_relevant_regs);
3496 insn = PREV_INSN (insn);
3500 for (i = 0; i < (unsigned int) max_regno; i++)
3501 free (live_subregs[i]);
3503 reload_insn_chain = c;
3504 *p = NULL;
3506 free (live_subregs);
3507 free (live_subregs_used);
3508 BITMAP_FREE (live_relevant_regs);
3509 BITMAP_FREE (elim_regset);
3511 if (dump_file)
3512 print_insn_chains (dump_file);
3517 /* All natural loops. */
3518 struct loops ira_loops;
3520 /* True if we have allocno conflicts. It is false for non-optimized
3521 mode or when the conflict table is too big. */
3522 bool ira_conflicts_p;
3524 /* This is the main entry of IRA. */
3525 static void
3526 ira (FILE *f)
3528 int overall_cost_before, allocated_reg_info_size;
3529 bool loops_p;
3530 int max_regno_before_ira, ira_max_point_before_emit;
3531 int rebuild_p;
3532 int saved_flag_ira_share_spill_slots;
3533 basic_block bb;
3534 bool need_dce;
3536 timevar_push (TV_IRA);
3538 if (flag_caller_saves)
3539 init_caller_save ();
3541 if (flag_ira_verbose < 10)
3543 internal_flag_ira_verbose = flag_ira_verbose;
3544 ira_dump_file = f;
3546 else
3548 internal_flag_ira_verbose = flag_ira_verbose - 10;
3549 ira_dump_file = stderr;
3552 ira_conflicts_p = optimize > 0;
3553 setup_prohibited_mode_move_regs ();
3555 df_note_add_problem ();
3557 if (optimize == 1)
3559 df_live_add_problem ();
3560 df_live_set_all_dirty ();
3562 #ifdef ENABLE_CHECKING
3563 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3564 #endif
3565 df_analyze ();
3566 df_clear_flags (DF_NO_INSN_RESCAN);
3567 regstat_init_n_sets_and_refs ();
3568 regstat_compute_ri ();
3570 /* If we are not optimizing, then this is the only place before
3571 register allocation where dataflow is done. And that is needed
3572 to generate these warnings. */
3573 if (warn_clobbered)
3574 generate_setjmp_warnings ();
3576 /* Determine if the current function is a leaf before running IRA
3577 since this can impact optimizations done by the prologue and
3578 epilogue thus changing register elimination offsets. */
3579 current_function_is_leaf = leaf_function_p ();
3581 if (resize_reg_info () && flag_ira_loop_pressure)
3582 ira_set_pseudo_classes (ira_dump_file);
3584 rebuild_p = update_equiv_regs ();
3586 #ifndef IRA_NO_OBSTACK
3587 gcc_obstack_init (&ira_obstack);
3588 #endif
3589 bitmap_obstack_initialize (&ira_bitmap_obstack);
3590 if (optimize)
3592 max_regno = max_reg_num ();
3593 ira_reg_equiv_len = max_regno;
3594 ira_reg_equiv_invariant_p
3595 = (bool *) ira_allocate (max_regno * sizeof (bool));
3596 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3597 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3598 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3599 find_reg_equiv_invariant_const ();
3600 if (rebuild_p)
3602 timevar_push (TV_JUMP);
3603 rebuild_jump_labels (get_insns ());
3604 if (purge_all_dead_edges ())
3605 delete_unreachable_blocks ();
3606 timevar_pop (TV_JUMP);
3610 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3611 ira_setup_eliminable_regset ();
3613 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3614 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3615 ira_move_loops_num = ira_additional_jumps_num = 0;
3617 ira_assert (current_loops == NULL);
3618 flow_loops_find (&ira_loops);
3619 record_loop_exits ();
3620 current_loops = &ira_loops;
3622 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3623 fprintf (ira_dump_file, "Building IRA IR\n");
3624 loops_p = ira_build (flag_ira_region == IRA_REGION_ALL
3625 || flag_ira_region == IRA_REGION_MIXED);
3627 ira_assert (ira_conflicts_p || !loops_p);
3629 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3630 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3631 /* It is just wasting compiler's time to pack spilled pseudos into
3632 stack slots in this case -- prohibit it. We also do this if
3633 there is setjmp call because a variable not modified between
3634 setjmp and longjmp the compiler is required to preserve its
3635 value and sharing slots does not guarantee it. */
3636 flag_ira_share_spill_slots = FALSE;
3638 ira_color ();
3640 ira_max_point_before_emit = ira_max_point;
3642 ira_initiate_emit_data ();
3644 ira_emit (loops_p);
3646 if (ira_conflicts_p)
3648 max_regno = max_reg_num ();
3650 if (! loops_p)
3651 ira_initiate_assign ();
3652 else
3654 expand_reg_info (allocated_reg_info_size);
3655 setup_preferred_alternate_classes_for_new_pseudos
3656 (allocated_reg_info_size);
3657 allocated_reg_info_size = max_regno;
3659 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3660 fprintf (ira_dump_file, "Flattening IR\n");
3661 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3662 /* New insns were generated: add notes and recalculate live
3663 info. */
3664 df_analyze ();
3666 flow_loops_find (&ira_loops);
3667 record_loop_exits ();
3668 current_loops = &ira_loops;
3670 setup_allocno_assignment_flags ();
3671 ira_initiate_assign ();
3672 ira_reassign_conflict_allocnos (max_regno);
3676 ira_finish_emit_data ();
3678 setup_reg_renumber ();
3680 calculate_allocation_cost ();
3682 #ifdef ENABLE_IRA_CHECKING
3683 if (ira_conflicts_p)
3684 check_allocation ();
3685 #endif
3687 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3688 df_analyze ();
3690 if (max_regno != max_regno_before_ira)
3692 regstat_free_n_sets_and_refs ();
3693 regstat_free_ri ();
3694 regstat_init_n_sets_and_refs ();
3695 regstat_compute_ri ();
3698 overall_cost_before = ira_overall_cost;
3699 if (! ira_conflicts_p)
3700 grow_reg_equivs ();
3701 else
3703 fix_reg_equiv_init ();
3705 #ifdef ENABLE_IRA_CHECKING
3706 print_redundant_copies ();
3707 #endif
3709 ira_spilled_reg_stack_slots_num = 0;
3710 ira_spilled_reg_stack_slots
3711 = ((struct ira_spilled_reg_stack_slot *)
3712 ira_allocate (max_regno
3713 * sizeof (struct ira_spilled_reg_stack_slot)));
3714 memset (ira_spilled_reg_stack_slots, 0,
3715 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3717 allocate_initial_values (reg_equivs);
3719 timevar_pop (TV_IRA);
3721 timevar_push (TV_RELOAD);
3722 df_set_flags (DF_NO_INSN_RESCAN);
3723 build_insn_chain ();
3725 need_dce = reload (get_insns (), ira_conflicts_p);
3727 timevar_pop (TV_RELOAD);
3729 timevar_push (TV_IRA);
3731 if (ira_conflicts_p)
3733 ira_free (ira_spilled_reg_stack_slots);
3735 ira_finish_assign ();
3738 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3739 && overall_cost_before != ira_overall_cost)
3740 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3741 ira_destroy ();
3743 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3745 flow_loops_free (&ira_loops);
3746 free_dominance_info (CDI_DOMINATORS);
3747 FOR_ALL_BB (bb)
3748 bb->loop_father = NULL;
3749 current_loops = NULL;
3751 regstat_free_ri ();
3752 regstat_free_n_sets_and_refs ();
3754 if (optimize)
3756 cleanup_cfg (CLEANUP_EXPENSIVE);
3758 ira_free (ira_reg_equiv_invariant_p);
3759 ira_free (ira_reg_equiv_const);
3762 bitmap_obstack_release (&ira_bitmap_obstack);
3763 #ifndef IRA_NO_OBSTACK
3764 obstack_free (&ira_obstack, NULL);
3765 #endif
3767 /* The code after the reload has changed so much that at this point
3768 we might as well just rescan everything. Note that
3769 df_rescan_all_insns is not going to help here because it does not
3770 touch the artificial uses and defs. */
3771 df_finish_pass (true);
3772 if (optimize > 1)
3773 df_live_add_problem ();
3774 df_scan_alloc (NULL);
3775 df_scan_blocks ();
3777 if (optimize)
3778 df_analyze ();
3780 if (need_dce && optimize)
3781 run_fast_dce ();
3783 timevar_pop (TV_IRA);
3788 static bool
3789 gate_ira (void)
3791 return true;
3794 /* Run the integrated register allocator. */
3795 static unsigned int
3796 rest_of_handle_ira (void)
3798 ira (dump_file);
3799 return 0;
3802 struct rtl_opt_pass pass_ira =
3805 RTL_PASS,
3806 "ira", /* name */
3807 gate_ira, /* gate */
3808 rest_of_handle_ira, /* execute */
3809 NULL, /* sub */
3810 NULL, /* next */
3811 0, /* static_pass_number */
3812 TV_NONE, /* tv_id */
3813 0, /* properties_required */
3814 0, /* properties_provided */
3815 0, /* properties_destroyed */
3816 0, /* todo_flags_start */
3817 TODO_ggc_collect /* todo_flags_finish */