This patch syncs zlib.m4 with binutils-gdb and uses AM_ZLIB from zlib.m4
[official-gcc.git] / gcc / ira-costs.c
blob0a5b1e12964bad11f7fa69d8c5a83e383198e31b
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "predict.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "alias.h"
30 #include "insn-config.h"
31 #include "expmed.h"
32 #include "dojump.h"
33 #include "explow.h"
34 #include "calls.h"
35 #include "emit-rtl.h"
36 #include "varasm.h"
37 #include "stmt.h"
38 #include "expr.h"
39 #include "tm_p.h"
40 #include "regs.h"
41 #include "addresses.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "diagnostic-core.h"
45 #include "target.h"
46 #include "params.h"
47 #include "cfgloop.h"
48 #include "ira.h"
49 #include "alloc-pool.h"
50 #include "ira-int.h"
52 /* The flags is set up every time when we calculate pseudo register
53 classes through function ira_set_pseudo_classes. */
54 static bool pseudo_classes_defined_p = false;
56 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
57 static bool allocno_p;
59 /* Number of elements in array `costs'. */
60 static int cost_elements_num;
62 /* The `costs' struct records the cost of using hard registers of each
63 class considered for the calculation and of using memory for each
64 allocno or pseudo. */
65 struct costs
67 int mem_cost;
68 /* Costs for register classes start here. We process only some
69 allocno classes. */
70 int cost[1];
73 #define max_struct_costs_size \
74 (this_target_ira_int->x_max_struct_costs_size)
75 #define init_cost \
76 (this_target_ira_int->x_init_cost)
77 #define temp_costs \
78 (this_target_ira_int->x_temp_costs)
79 #define op_costs \
80 (this_target_ira_int->x_op_costs)
81 #define this_op_costs \
82 (this_target_ira_int->x_this_op_costs)
84 /* Costs of each class for each allocno or pseudo. */
85 static struct costs *costs;
87 /* Accumulated costs of each class for each allocno. */
88 static struct costs *total_allocno_costs;
90 /* It is the current size of struct costs. */
91 static int struct_costs_size;
93 /* Return pointer to structure containing costs of allocno or pseudo
94 with given NUM in array ARR. */
95 #define COSTS(arr, num) \
96 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
98 /* Return index in COSTS when processing reg with REGNO. */
99 #define COST_INDEX(regno) (allocno_p \
100 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
101 : (int) regno)
103 /* Record register class preferences of each allocno or pseudo. Null
104 value means no preferences. It happens on the 1st iteration of the
105 cost calculation. */
106 static enum reg_class *pref;
108 /* Allocated buffers for pref. */
109 static enum reg_class *pref_buffer;
111 /* Record allocno class of each allocno with the same regno. */
112 static enum reg_class *regno_aclass;
114 /* Record cost gains for not allocating a register with an invariant
115 equivalence. */
116 static int *regno_equiv_gains;
118 /* Execution frequency of the current insn. */
119 static int frequency;
123 /* Info about reg classes whose costs are calculated for a pseudo. */
124 struct cost_classes
126 /* Number of the cost classes in the subsequent array. */
127 int num;
128 /* Container of the cost classes. */
129 enum reg_class classes[N_REG_CLASSES];
130 /* Map reg class -> index of the reg class in the previous array.
131 -1 if it is not a cost class. */
132 int index[N_REG_CLASSES];
133 /* Map hard regno index of first class in array CLASSES containing
134 the hard regno, -1 otherwise. */
135 int hard_regno_index[FIRST_PSEUDO_REGISTER];
138 /* Types of pointers to the structure above. */
139 typedef struct cost_classes *cost_classes_t;
140 typedef const struct cost_classes *const_cost_classes_t;
142 /* Info about cost classes for each pseudo. */
143 static cost_classes_t *regno_cost_classes;
145 /* Helper for cost_classes hashing. */
147 struct cost_classes_hasher : pointer_hash <cost_classes>
149 static inline hashval_t hash (const cost_classes *);
150 static inline bool equal (const cost_classes *, const cost_classes *);
151 static inline void remove (cost_classes *);
154 /* Returns hash value for cost classes info HV. */
155 inline hashval_t
156 cost_classes_hasher::hash (const cost_classes *hv)
158 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
161 /* Compares cost classes info HV1 and HV2. */
162 inline bool
163 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
165 return (hv1->num == hv2->num
166 && memcmp (hv1->classes, hv2->classes,
167 sizeof (enum reg_class) * hv1->num) == 0);
170 /* Delete cost classes info V from the hash table. */
171 inline void
172 cost_classes_hasher::remove (cost_classes *v)
174 ira_free (v);
177 /* Hash table of unique cost classes. */
178 static hash_table<cost_classes_hasher> *cost_classes_htab;
180 /* Map allocno class -> cost classes for pseudo of given allocno
181 class. */
182 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
184 /* Map mode -> cost classes for pseudo of give mode. */
185 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
187 /* Cost classes that include all classes in ira_important_classes. */
188 static cost_classes all_cost_classes;
190 /* Use the array of classes in CLASSES_PTR to fill out the rest of
191 the structure. */
192 static void
193 complete_cost_classes (cost_classes_t classes_ptr)
195 for (int i = 0; i < N_REG_CLASSES; i++)
196 classes_ptr->index[i] = -1;
197 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
198 classes_ptr->hard_regno_index[i] = -1;
199 for (int i = 0; i < classes_ptr->num; i++)
201 enum reg_class cl = classes_ptr->classes[i];
202 classes_ptr->index[cl] = i;
203 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
205 unsigned int hard_regno = ira_class_hard_regs[cl][j];
206 if (classes_ptr->hard_regno_index[hard_regno] < 0)
207 classes_ptr->hard_regno_index[hard_regno] = i;
212 /* Initialize info about the cost classes for each pseudo. */
213 static void
214 initiate_regno_cost_classes (void)
216 int size = sizeof (cost_classes_t) * max_reg_num ();
218 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
219 memset (regno_cost_classes, 0, size);
220 memset (cost_classes_aclass_cache, 0,
221 sizeof (cost_classes_t) * N_REG_CLASSES);
222 memset (cost_classes_mode_cache, 0,
223 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
224 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
225 all_cost_classes.num = ira_important_classes_num;
226 for (int i = 0; i < ira_important_classes_num; i++)
227 all_cost_classes.classes[i] = ira_important_classes[i];
228 complete_cost_classes (&all_cost_classes);
231 /* Create new cost classes from cost classes FROM and set up members
232 index and hard_regno_index. Return the new classes. The function
233 implements some common code of two functions
234 setup_regno_cost_classes_by_aclass and
235 setup_regno_cost_classes_by_mode. */
236 static cost_classes_t
237 setup_cost_classes (cost_classes_t from)
239 cost_classes_t classes_ptr;
241 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
242 classes_ptr->num = from->num;
243 for (int i = 0; i < from->num; i++)
244 classes_ptr->classes[i] = from->classes[i];
245 complete_cost_classes (classes_ptr);
246 return classes_ptr;
249 /* Return a version of FULL that only considers registers in REGS that are
250 valid for mode MODE. Both FULL and the returned class are globally
251 allocated. */
252 static cost_classes_t
253 restrict_cost_classes (cost_classes_t full, machine_mode mode,
254 const HARD_REG_SET &regs)
256 static struct cost_classes narrow;
257 int map[N_REG_CLASSES];
258 narrow.num = 0;
259 for (int i = 0; i < full->num; i++)
261 /* Assume that we'll drop the class. */
262 map[i] = -1;
264 /* Ignore classes that are too small for the mode. */
265 enum reg_class cl = full->classes[i];
266 if (!contains_reg_of_mode[cl][mode])
267 continue;
269 /* Calculate the set of registers in CL that belong to REGS and
270 are valid for MODE. */
271 HARD_REG_SET valid_for_cl;
272 COPY_HARD_REG_SET (valid_for_cl, reg_class_contents[cl]);
273 AND_HARD_REG_SET (valid_for_cl, regs);
274 AND_COMPL_HARD_REG_SET (valid_for_cl,
275 ira_prohibited_class_mode_regs[cl][mode]);
276 AND_COMPL_HARD_REG_SET (valid_for_cl, ira_no_alloc_regs);
277 if (hard_reg_set_empty_p (valid_for_cl))
278 continue;
280 /* Don't use this class if the set of valid registers is a subset
281 of an existing class. For example, suppose we have two classes
282 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
283 that the mode changes allowed by FR_REGS are not as general as
284 the mode changes allowed by GR_REGS.
286 In this situation, the mode changes for GR_AND_FR_REGS could
287 either be seen as the union or the intersection of the mode
288 changes allowed by the two subclasses. The justification for
289 the union-based definition would be that, if you want a mode
290 change that's only allowed by GR_REGS, you can pick a register
291 from the GR_REGS subclass. The justification for the
292 intersection-based definition would be that every register
293 from the class would allow the mode change.
295 However, if we have a register that needs to be in GR_REGS,
296 using GR_AND_FR_REGS with the intersection-based definition
297 would be too pessimistic, since it would bring in restrictions
298 that only apply to FR_REGS. Conversely, if we have a register
299 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
300 union-based definition would lose the extra restrictions
301 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
302 for cases where GR_REGS and FP_REGS are both valid. */
303 int pos;
304 for (pos = 0; pos < narrow.num; ++pos)
306 enum reg_class cl2 = narrow.classes[pos];
307 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
308 break;
310 map[i] = pos;
311 if (pos == narrow.num)
313 /* If several classes are equivalent, prefer to use the one
314 that was chosen as the allocno class. */
315 enum reg_class cl2 = ira_allocno_class_translate[cl];
316 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
317 cl = cl2;
318 narrow.classes[narrow.num++] = cl;
321 if (narrow.num == full->num)
322 return full;
324 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
325 if (*slot == NULL)
327 cost_classes_t classes = setup_cost_classes (&narrow);
328 /* Map equivalent classes to the representative that we chose above. */
329 for (int i = 0; i < ira_important_classes_num; i++)
331 enum reg_class cl = ira_important_classes[i];
332 int index = full->index[cl];
333 if (index >= 0)
334 classes->index[cl] = map[index];
336 *slot = classes;
338 return *slot;
341 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
342 This function is used when we know an initial approximation of
343 allocno class of the pseudo already, e.g. on the second iteration
344 of class cost calculation or after class cost calculation in
345 register-pressure sensitive insn scheduling or register-pressure
346 sensitive loop-invariant motion. */
347 static void
348 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
350 static struct cost_classes classes;
351 cost_classes_t classes_ptr;
352 enum reg_class cl;
353 int i;
354 cost_classes **slot;
355 HARD_REG_SET temp, temp2;
356 bool exclude_p;
358 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
360 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
361 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
362 /* We exclude classes from consideration which are subsets of
363 ACLASS only if ACLASS is an uniform class. */
364 exclude_p = ira_uniform_class_p[aclass];
365 classes.num = 0;
366 for (i = 0; i < ira_important_classes_num; i++)
368 cl = ira_important_classes[i];
369 if (exclude_p)
371 /* Exclude non-uniform classes which are subsets of
372 ACLASS. */
373 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
374 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
375 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
376 continue;
378 classes.classes[classes.num++] = cl;
380 slot = cost_classes_htab->find_slot (&classes, INSERT);
381 if (*slot == NULL)
383 classes_ptr = setup_cost_classes (&classes);
384 *slot = classes_ptr;
386 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
388 if (regno_reg_rtx[regno] != NULL_RTX)
390 /* Restrict the classes to those that are valid for REGNO's mode
391 (which might for example exclude singleton classes if the mode
392 requires two registers). Also restrict the classes to those that
393 are valid for subregs of REGNO. */
394 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
395 if (!valid_regs)
396 valid_regs = &reg_class_contents[ALL_REGS];
397 classes_ptr = restrict_cost_classes (classes_ptr,
398 PSEUDO_REGNO_MODE (regno),
399 *valid_regs);
401 regno_cost_classes[regno] = classes_ptr;
404 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
405 decrease number of cost classes for the pseudo, if hard registers
406 of some important classes can not hold a value of MODE. So the
407 pseudo can not get hard register of some important classes and cost
408 calculation for such important classes is only wasting CPU
409 time. */
410 static void
411 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
413 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
414 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
415 mode, *valid_regs);
416 else
418 if (cost_classes_mode_cache[mode] == NULL)
419 cost_classes_mode_cache[mode]
420 = restrict_cost_classes (&all_cost_classes, mode,
421 reg_class_contents[ALL_REGS]);
422 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
426 /* Finalize info about the cost classes for each pseudo. */
427 static void
428 finish_regno_cost_classes (void)
430 ira_free (regno_cost_classes);
431 delete cost_classes_htab;
432 cost_classes_htab = NULL;
437 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
438 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
439 be a pseudo register. */
440 static int
441 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
442 secondary_reload_info *prev_sri)
444 secondary_reload_info sri;
445 reg_class_t secondary_class = NO_REGS;
447 /* If X is a SCRATCH, there is actually nothing to move since we are
448 assuming optimal allocation. */
449 if (GET_CODE (x) == SCRATCH)
450 return 0;
452 /* Get the class we will actually use for a reload. */
453 rclass = targetm.preferred_reload_class (x, rclass);
455 /* If we need a secondary reload for an intermediate, the cost is
456 that to load the input into the intermediate register, then to
457 copy it. */
458 sri.prev_sri = prev_sri;
459 sri.extra_cost = 0;
460 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
462 if (secondary_class != NO_REGS)
464 ira_init_register_move_cost_if_necessary (mode);
465 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
466 + sri.extra_cost
467 + copy_cost (x, mode, secondary_class, to_p, &sri));
470 /* For memory, use the memory move cost, for (hard) registers, use
471 the cost to move between the register classes, and use 2 for
472 everything else (constants). */
473 if (MEM_P (x) || rclass == NO_REGS)
474 return sri.extra_cost
475 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
476 else if (REG_P (x))
478 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
480 ira_init_register_move_cost_if_necessary (mode);
481 return (sri.extra_cost
482 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
484 else
485 /* If this is a constant, we may eventually want to call rtx_cost
486 here. */
487 return sri.extra_cost + COSTS_N_INSNS (1);
492 /* Record the cost of using memory or hard registers of various
493 classes for the operands in INSN.
495 N_ALTS is the number of alternatives.
496 N_OPS is the number of operands.
497 OPS is an array of the operands.
498 MODES are the modes of the operands, in case any are VOIDmode.
499 CONSTRAINTS are the constraints to use for the operands. This array
500 is modified by this procedure.
502 This procedure works alternative by alternative. For each
503 alternative we assume that we will be able to allocate all allocnos
504 to their ideal register class and calculate the cost of using that
505 alternative. Then we compute, for each operand that is a
506 pseudo-register, the cost of having the allocno allocated to each
507 register class and using it in that alternative. To this cost is
508 added the cost of the alternative.
510 The cost of each class for this insn is its lowest cost among all
511 the alternatives. */
512 static void
513 record_reg_classes (int n_alts, int n_ops, rtx *ops,
514 machine_mode *modes, const char **constraints,
515 rtx_insn *insn, enum reg_class *pref)
517 int alt;
518 int i, j, k;
519 int insn_allows_mem[MAX_RECOG_OPERANDS];
520 move_table *move_in_cost, *move_out_cost;
521 short (*mem_cost)[2];
523 for (i = 0; i < n_ops; i++)
524 insn_allows_mem[i] = 0;
526 /* Process each alternative, each time minimizing an operand's cost
527 with the cost for each operand in that alternative. */
528 alternative_mask preferred = get_preferred_alternatives (insn);
529 for (alt = 0; alt < n_alts; alt++)
531 enum reg_class classes[MAX_RECOG_OPERANDS];
532 int allows_mem[MAX_RECOG_OPERANDS];
533 enum reg_class rclass;
534 int alt_fail = 0;
535 int alt_cost = 0, op_cost_add;
537 if (!TEST_BIT (preferred, alt))
539 for (i = 0; i < recog_data.n_operands; i++)
540 constraints[i] = skip_alternative (constraints[i]);
542 continue;
545 for (i = 0; i < n_ops; i++)
547 unsigned char c;
548 const char *p = constraints[i];
549 rtx op = ops[i];
550 machine_mode mode = modes[i];
551 int allows_addr = 0;
552 int win = 0;
554 /* Initially show we know nothing about the register class. */
555 classes[i] = NO_REGS;
556 allows_mem[i] = 0;
558 /* If this operand has no constraints at all, we can
559 conclude nothing about it since anything is valid. */
560 if (*p == 0)
562 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
563 memset (this_op_costs[i], 0, struct_costs_size);
564 continue;
567 /* If this alternative is only relevant when this operand
568 matches a previous operand, we do different things
569 depending on whether this operand is a allocno-reg or not.
570 We must process any modifiers for the operand before we
571 can make this test. */
572 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
573 p++;
575 if (p[0] >= '0' && p[0] <= '0' + i)
577 /* Copy class and whether memory is allowed from the
578 matching alternative. Then perform any needed cost
579 computations and/or adjustments. */
580 j = p[0] - '0';
581 classes[i] = classes[j];
582 allows_mem[i] = allows_mem[j];
583 if (allows_mem[i])
584 insn_allows_mem[i] = 1;
586 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
588 /* If this matches the other operand, we have no
589 added cost and we win. */
590 if (rtx_equal_p (ops[j], op))
591 win = 1;
592 /* If we can put the other operand into a register,
593 add to the cost of this alternative the cost to
594 copy this operand to the register used for the
595 other operand. */
596 else if (classes[j] != NO_REGS)
598 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
599 win = 1;
602 else if (! REG_P (ops[j])
603 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
605 /* This op is an allocno but the one it matches is
606 not. */
608 /* If we can't put the other operand into a
609 register, this alternative can't be used. */
611 if (classes[j] == NO_REGS)
612 alt_fail = 1;
613 /* Otherwise, add to the cost of this alternative
614 the cost to copy the other operand to the hard
615 register used for this operand. */
616 else
617 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
619 else
621 /* The costs of this operand are not the same as the
622 other operand since move costs are not symmetric.
623 Moreover, if we cannot tie them, this alternative
624 needs to do a copy, which is one insn. */
625 struct costs *pp = this_op_costs[i];
626 int *pp_costs = pp->cost;
627 cost_classes_t cost_classes_ptr
628 = regno_cost_classes[REGNO (op)];
629 enum reg_class *cost_classes = cost_classes_ptr->classes;
630 bool in_p = recog_data.operand_type[i] != OP_OUT;
631 bool out_p = recog_data.operand_type[i] != OP_IN;
632 enum reg_class op_class = classes[i];
634 ira_init_register_move_cost_if_necessary (mode);
635 if (! in_p)
637 ira_assert (out_p);
638 if (op_class == NO_REGS)
640 mem_cost = ira_memory_move_cost[mode];
641 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
643 rclass = cost_classes[k];
644 pp_costs[k] = mem_cost[rclass][0] * frequency;
647 else
649 move_out_cost = ira_may_move_out_cost[mode];
650 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
652 rclass = cost_classes[k];
653 pp_costs[k]
654 = move_out_cost[op_class][rclass] * frequency;
658 else if (! out_p)
660 ira_assert (in_p);
661 if (op_class == NO_REGS)
663 mem_cost = ira_memory_move_cost[mode];
664 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
666 rclass = cost_classes[k];
667 pp_costs[k] = mem_cost[rclass][1] * frequency;
670 else
672 move_in_cost = ira_may_move_in_cost[mode];
673 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
675 rclass = cost_classes[k];
676 pp_costs[k]
677 = move_in_cost[rclass][op_class] * frequency;
681 else
683 if (op_class == NO_REGS)
685 mem_cost = ira_memory_move_cost[mode];
686 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
688 rclass = cost_classes[k];
689 pp_costs[k] = ((mem_cost[rclass][0]
690 + mem_cost[rclass][1])
691 * frequency);
694 else
696 move_in_cost = ira_may_move_in_cost[mode];
697 move_out_cost = ira_may_move_out_cost[mode];
698 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
700 rclass = cost_classes[k];
701 pp_costs[k] = ((move_in_cost[rclass][op_class]
702 + move_out_cost[op_class][rclass])
703 * frequency);
708 /* If the alternative actually allows memory, make
709 things a bit cheaper since we won't need an extra
710 insn to load it. */
711 pp->mem_cost
712 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
713 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
714 - allows_mem[i]) * frequency;
716 /* If we have assigned a class to this allocno in
717 our first pass, add a cost to this alternative
718 corresponding to what we would add if this
719 allocno were not in the appropriate class. */
720 if (pref)
722 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
724 if (pref_class == NO_REGS)
725 alt_cost
726 += ((out_p
727 ? ira_memory_move_cost[mode][op_class][0] : 0)
728 + (in_p
729 ? ira_memory_move_cost[mode][op_class][1]
730 : 0));
731 else if (ira_reg_class_intersect
732 [pref_class][op_class] == NO_REGS)
733 alt_cost
734 += ira_register_move_cost[mode][pref_class][op_class];
736 if (REGNO (ops[i]) != REGNO (ops[j])
737 && ! find_reg_note (insn, REG_DEAD, op))
738 alt_cost += 2;
740 p++;
744 /* Scan all the constraint letters. See if the operand
745 matches any of the constraints. Collect the valid
746 register classes and see if this operand accepts
747 memory. */
748 while ((c = *p))
750 switch (c)
752 case '*':
753 /* Ignore the next letter for this pass. */
754 c = *++p;
755 break;
757 case '^':
758 alt_cost += 2;
759 break;
761 case '?':
762 alt_cost += 2;
763 break;
765 case 'g':
766 if (MEM_P (op)
767 || (CONSTANT_P (op)
768 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
769 win = 1;
770 insn_allows_mem[i] = allows_mem[i] = 1;
771 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
772 break;
774 default:
775 enum constraint_num cn = lookup_constraint (p);
776 enum reg_class cl;
777 switch (get_constraint_type (cn))
779 case CT_REGISTER:
780 cl = reg_class_for_constraint (cn);
781 if (cl != NO_REGS)
782 classes[i] = ira_reg_class_subunion[classes[i]][cl];
783 break;
785 case CT_CONST_INT:
786 if (CONST_INT_P (op)
787 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
788 win = 1;
789 break;
791 case CT_MEMORY:
792 /* Every MEM can be reloaded to fit. */
793 insn_allows_mem[i] = allows_mem[i] = 1;
794 if (MEM_P (op))
795 win = 1;
796 break;
798 case CT_ADDRESS:
799 /* Every address can be reloaded to fit. */
800 allows_addr = 1;
801 if (address_operand (op, GET_MODE (op))
802 || constraint_satisfied_p (op, cn))
803 win = 1;
804 /* We know this operand is an address, so we
805 want it to be allocated to a hard register
806 that can be the base of an address,
807 i.e. BASE_REG_CLASS. */
808 classes[i]
809 = ira_reg_class_subunion[classes[i]]
810 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
811 ADDRESS, SCRATCH)];
812 break;
814 case CT_FIXED_FORM:
815 if (constraint_satisfied_p (op, cn))
816 win = 1;
817 break;
819 break;
821 p += CONSTRAINT_LEN (c, p);
822 if (c == ',')
823 break;
826 constraints[i] = p;
828 /* How we account for this operand now depends on whether it
829 is a pseudo register or not. If it is, we first check if
830 any register classes are valid. If not, we ignore this
831 alternative, since we want to assume that all allocnos get
832 allocated for register preferencing. If some register
833 class is valid, compute the costs of moving the allocno
834 into that class. */
835 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
837 if (classes[i] == NO_REGS && ! allows_mem[i])
839 /* We must always fail if the operand is a REG, but
840 we did not find a suitable class and memory is
841 not allowed.
843 Otherwise we may perform an uninitialized read
844 from this_op_costs after the `continue' statement
845 below. */
846 alt_fail = 1;
848 else
850 unsigned int regno = REGNO (op);
851 struct costs *pp = this_op_costs[i];
852 int *pp_costs = pp->cost;
853 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
854 enum reg_class *cost_classes = cost_classes_ptr->classes;
855 bool in_p = recog_data.operand_type[i] != OP_OUT;
856 bool out_p = recog_data.operand_type[i] != OP_IN;
857 enum reg_class op_class = classes[i];
859 ira_init_register_move_cost_if_necessary (mode);
860 if (! in_p)
862 ira_assert (out_p);
863 if (op_class == NO_REGS)
865 mem_cost = ira_memory_move_cost[mode];
866 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
868 rclass = cost_classes[k];
869 pp_costs[k] = mem_cost[rclass][0] * frequency;
872 else
874 move_out_cost = ira_may_move_out_cost[mode];
875 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
877 rclass = cost_classes[k];
878 pp_costs[k]
879 = move_out_cost[op_class][rclass] * frequency;
883 else if (! out_p)
885 ira_assert (in_p);
886 if (op_class == NO_REGS)
888 mem_cost = ira_memory_move_cost[mode];
889 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
891 rclass = cost_classes[k];
892 pp_costs[k] = mem_cost[rclass][1] * frequency;
895 else
897 move_in_cost = ira_may_move_in_cost[mode];
898 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
900 rclass = cost_classes[k];
901 pp_costs[k]
902 = move_in_cost[rclass][op_class] * frequency;
906 else
908 if (op_class == NO_REGS)
910 mem_cost = ira_memory_move_cost[mode];
911 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
913 rclass = cost_classes[k];
914 pp_costs[k] = ((mem_cost[rclass][0]
915 + mem_cost[rclass][1])
916 * frequency);
919 else
921 move_in_cost = ira_may_move_in_cost[mode];
922 move_out_cost = ira_may_move_out_cost[mode];
923 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
925 rclass = cost_classes[k];
926 pp_costs[k] = ((move_in_cost[rclass][op_class]
927 + move_out_cost[op_class][rclass])
928 * frequency);
933 if (op_class == NO_REGS)
934 /* Although we don't need insn to reload from
935 memory, still accessing memory is usually more
936 expensive than a register. */
937 pp->mem_cost = frequency;
938 else
939 /* If the alternative actually allows memory, make
940 things a bit cheaper since we won't need an
941 extra insn to load it. */
942 pp->mem_cost
943 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
944 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
945 - allows_mem[i]) * frequency;
946 /* If we have assigned a class to this allocno in
947 our first pass, add a cost to this alternative
948 corresponding to what we would add if this
949 allocno were not in the appropriate class. */
950 if (pref)
952 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
954 if (pref_class == NO_REGS)
956 if (op_class != NO_REGS)
957 alt_cost
958 += ((out_p
959 ? ira_memory_move_cost[mode][op_class][0]
960 : 0)
961 + (in_p
962 ? ira_memory_move_cost[mode][op_class][1]
963 : 0));
965 else if (op_class == NO_REGS)
966 alt_cost
967 += ((out_p
968 ? ira_memory_move_cost[mode][pref_class][1]
969 : 0)
970 + (in_p
971 ? ira_memory_move_cost[mode][pref_class][0]
972 : 0));
973 else if (ira_reg_class_intersect[pref_class][op_class]
974 == NO_REGS)
975 alt_cost += (ira_register_move_cost
976 [mode][pref_class][op_class]);
981 /* Otherwise, if this alternative wins, either because we
982 have already determined that or if we have a hard
983 register of the proper class, there is no cost for this
984 alternative. */
985 else if (win || (REG_P (op)
986 && reg_fits_class_p (op, classes[i],
987 0, GET_MODE (op))))
990 /* If registers are valid, the cost of this alternative
991 includes copying the object to and/or from a
992 register. */
993 else if (classes[i] != NO_REGS)
995 if (recog_data.operand_type[i] != OP_OUT)
996 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
998 if (recog_data.operand_type[i] != OP_IN)
999 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1001 /* The only other way this alternative can be used is if
1002 this is a constant that could be placed into memory. */
1003 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1004 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1005 else
1006 alt_fail = 1;
1009 if (alt_fail)
1010 continue;
1012 op_cost_add = alt_cost * frequency;
1013 /* Finally, update the costs with the information we've
1014 calculated about this alternative. */
1015 for (i = 0; i < n_ops; i++)
1016 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1018 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1019 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1020 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1021 cost_classes_t cost_classes_ptr
1022 = regno_cost_classes[REGNO (ops[i])];
1024 pp->mem_cost = MIN (pp->mem_cost,
1025 (qq->mem_cost + op_cost_add) * scale);
1027 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1028 pp_costs[k]
1029 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1033 if (allocno_p)
1034 for (i = 0; i < n_ops; i++)
1036 ira_allocno_t a;
1037 rtx op = ops[i];
1039 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1040 continue;
1041 a = ira_curr_regno_allocno_map [REGNO (op)];
1042 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1043 ALLOCNO_BAD_SPILL_P (a) = true;
1050 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1051 static inline bool
1052 ok_for_index_p_nonstrict (rtx reg)
1054 unsigned regno = REGNO (reg);
1056 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1059 /* A version of regno_ok_for_base_p for use here, when all
1060 pseudo-registers should count as OK. Arguments as for
1061 regno_ok_for_base_p. */
1062 static inline bool
1063 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1064 enum rtx_code outer_code, enum rtx_code index_code)
1066 unsigned regno = REGNO (reg);
1068 if (regno >= FIRST_PSEUDO_REGISTER)
1069 return true;
1070 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1073 /* Record the pseudo registers we must reload into hard registers in a
1074 subexpression of a memory address, X.
1076 If CONTEXT is 0, we are looking at the base part of an address,
1077 otherwise we are looking at the index part.
1079 MODE and AS are the mode and address space of the memory reference;
1080 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1081 These four arguments are passed down to base_reg_class.
1083 SCALE is twice the amount to multiply the cost by (it is twice so
1084 we can represent half-cost adjustments). */
1085 static void
1086 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1087 int context, enum rtx_code outer_code,
1088 enum rtx_code index_code, int scale)
1090 enum rtx_code code = GET_CODE (x);
1091 enum reg_class rclass;
1093 if (context == 1)
1094 rclass = INDEX_REG_CLASS;
1095 else
1096 rclass = base_reg_class (mode, as, outer_code, index_code);
1098 switch (code)
1100 case CONST_INT:
1101 case CONST:
1102 case CC0:
1103 case PC:
1104 case SYMBOL_REF:
1105 case LABEL_REF:
1106 return;
1108 case PLUS:
1109 /* When we have an address that is a sum, we must determine
1110 whether registers are "base" or "index" regs. If there is a
1111 sum of two registers, we must choose one to be the "base".
1112 Luckily, we can use the REG_POINTER to make a good choice
1113 most of the time. We only need to do this on machines that
1114 can have two registers in an address and where the base and
1115 index register classes are different.
1117 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1118 but that seems bogus since it should only be set when we are
1119 sure the register is being used as a pointer. */
1121 rtx arg0 = XEXP (x, 0);
1122 rtx arg1 = XEXP (x, 1);
1123 enum rtx_code code0 = GET_CODE (arg0);
1124 enum rtx_code code1 = GET_CODE (arg1);
1126 /* Look inside subregs. */
1127 if (code0 == SUBREG)
1128 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1129 if (code1 == SUBREG)
1130 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1132 /* If this machine only allows one register per address, it
1133 must be in the first operand. */
1134 if (MAX_REGS_PER_ADDRESS == 1)
1135 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1137 /* If index and base registers are the same on this machine,
1138 just record registers in any non-constant operands. We
1139 assume here, as well as in the tests below, that all
1140 addresses are in canonical form. */
1141 else if (INDEX_REG_CLASS
1142 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1144 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1145 if (! CONSTANT_P (arg1))
1146 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1149 /* If the second operand is a constant integer, it doesn't
1150 change what class the first operand must be. */
1151 else if (CONST_SCALAR_INT_P (arg1))
1152 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1153 /* If the second operand is a symbolic constant, the first
1154 operand must be an index register. */
1155 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1156 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1157 /* If both operands are registers but one is already a hard
1158 register of index or reg-base class, give the other the
1159 class that the hard register is not. */
1160 else if (code0 == REG && code1 == REG
1161 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1162 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1163 || ok_for_index_p_nonstrict (arg0)))
1164 record_address_regs (mode, as, arg1,
1165 ok_for_base_p_nonstrict (arg0, mode, as,
1166 PLUS, REG) ? 1 : 0,
1167 PLUS, REG, scale);
1168 else if (code0 == REG && code1 == REG
1169 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1170 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1171 || ok_for_index_p_nonstrict (arg1)))
1172 record_address_regs (mode, as, arg0,
1173 ok_for_base_p_nonstrict (arg1, mode, as,
1174 PLUS, REG) ? 1 : 0,
1175 PLUS, REG, scale);
1176 /* If one operand is known to be a pointer, it must be the
1177 base with the other operand the index. Likewise if the
1178 other operand is a MULT. */
1179 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1181 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1182 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1184 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1186 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1187 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1189 /* Otherwise, count equal chances that each might be a base or
1190 index register. This case should be rare. */
1191 else
1193 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1194 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1195 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1196 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1199 break;
1201 /* Double the importance of an allocno that is incremented or
1202 decremented, since it would take two extra insns if it ends
1203 up in the wrong place. */
1204 case POST_MODIFY:
1205 case PRE_MODIFY:
1206 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1207 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1208 if (REG_P (XEXP (XEXP (x, 1), 1)))
1209 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1210 2 * scale);
1211 break;
1213 case POST_INC:
1214 case PRE_INC:
1215 case POST_DEC:
1216 case PRE_DEC:
1217 /* Double the importance of an allocno that is incremented or
1218 decremented, since it would take two extra insns if it ends
1219 up in the wrong place. */
1220 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1221 break;
1223 case REG:
1225 struct costs *pp;
1226 int *pp_costs;
1227 enum reg_class i;
1228 int k, regno, add_cost;
1229 cost_classes_t cost_classes_ptr;
1230 enum reg_class *cost_classes;
1231 move_table *move_in_cost;
1233 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1234 break;
1236 regno = REGNO (x);
1237 if (allocno_p)
1238 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1239 pp = COSTS (costs, COST_INDEX (regno));
1240 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1241 if (INT_MAX - add_cost < pp->mem_cost)
1242 pp->mem_cost = INT_MAX;
1243 else
1244 pp->mem_cost += add_cost;
1245 cost_classes_ptr = regno_cost_classes[regno];
1246 cost_classes = cost_classes_ptr->classes;
1247 pp_costs = pp->cost;
1248 ira_init_register_move_cost_if_necessary (Pmode);
1249 move_in_cost = ira_may_move_in_cost[Pmode];
1250 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1252 i = cost_classes[k];
1253 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1254 if (INT_MAX - add_cost < pp_costs[k])
1255 pp_costs[k] = INT_MAX;
1256 else
1257 pp_costs[k] += add_cost;
1260 break;
1262 default:
1264 const char *fmt = GET_RTX_FORMAT (code);
1265 int i;
1266 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1267 if (fmt[i] == 'e')
1268 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1269 scale);
1276 /* Calculate the costs of insn operands. */
1277 static void
1278 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1280 const char *constraints[MAX_RECOG_OPERANDS];
1281 machine_mode modes[MAX_RECOG_OPERANDS];
1282 rtx ops[MAX_RECOG_OPERANDS];
1283 rtx set;
1284 int i;
1286 for (i = 0; i < recog_data.n_operands; i++)
1288 constraints[i] = recog_data.constraints[i];
1289 modes[i] = recog_data.operand_mode[i];
1292 /* If we get here, we are set up to record the costs of all the
1293 operands for this insn. Start by initializing the costs. Then
1294 handle any address registers. Finally record the desired classes
1295 for any allocnos, doing it twice if some pair of operands are
1296 commutative. */
1297 for (i = 0; i < recog_data.n_operands; i++)
1299 memcpy (op_costs[i], init_cost, struct_costs_size);
1301 ops[i] = recog_data.operand[i];
1302 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1303 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1305 if (MEM_P (recog_data.operand[i]))
1306 record_address_regs (GET_MODE (recog_data.operand[i]),
1307 MEM_ADDR_SPACE (recog_data.operand[i]),
1308 XEXP (recog_data.operand[i], 0),
1309 0, MEM, SCRATCH, frequency * 2);
1310 else if (constraints[i][0] == 'p'
1311 || (insn_extra_address_constraint
1312 (lookup_constraint (constraints[i]))))
1313 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1314 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1315 frequency * 2);
1318 /* Check for commutative in a separate loop so everything will have
1319 been initialized. We must do this even if one operand is a
1320 constant--see addsi3 in m68k.md. */
1321 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1322 if (constraints[i][0] == '%')
1324 const char *xconstraints[MAX_RECOG_OPERANDS];
1325 int j;
1327 /* Handle commutative operands by swapping the constraints.
1328 We assume the modes are the same. */
1329 for (j = 0; j < recog_data.n_operands; j++)
1330 xconstraints[j] = constraints[j];
1332 xconstraints[i] = constraints[i+1];
1333 xconstraints[i+1] = constraints[i];
1334 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1335 recog_data.operand, modes,
1336 xconstraints, insn, pref);
1338 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1339 recog_data.operand, modes,
1340 constraints, insn, pref);
1342 /* If this insn is a single set copying operand 1 to operand 0 and
1343 one operand is an allocno with the other a hard reg or an allocno
1344 that prefers a hard register that is in its own register class
1345 then we may want to adjust the cost of that register class to -1.
1347 Avoid the adjustment if the source does not die to avoid
1348 stressing of register allocator by preferencing two colliding
1349 registers into single class.
1351 Also avoid the adjustment if a copy between hard registers of the
1352 class is expensive (ten times the cost of a default copy is
1353 considered arbitrarily expensive). This avoids losing when the
1354 preferred class is very expensive as the source of a copy
1355 instruction. */
1356 if ((set = single_set (insn)) != NULL_RTX
1357 /* In rare cases the single set insn might have less 2 operands
1358 as the source can be a fixed special reg. */
1359 && recog_data.n_operands > 1
1360 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1362 int regno, other_regno;
1363 rtx dest = SET_DEST (set);
1364 rtx src = SET_SRC (set);
1366 if (GET_CODE (dest) == SUBREG
1367 && (GET_MODE_SIZE (GET_MODE (dest))
1368 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1369 dest = SUBREG_REG (dest);
1370 if (GET_CODE (src) == SUBREG
1371 && (GET_MODE_SIZE (GET_MODE (src))
1372 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1373 src = SUBREG_REG (src);
1374 if (REG_P (src) && REG_P (dest)
1375 && find_regno_note (insn, REG_DEAD, REGNO (src))
1376 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1377 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1378 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1379 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1381 machine_mode mode = GET_MODE (src);
1382 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1383 enum reg_class *cost_classes = cost_classes_ptr->classes;
1384 reg_class_t rclass;
1385 int k, nr;
1387 i = regno == (int) REGNO (src) ? 1 : 0;
1388 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1390 rclass = cost_classes[k];
1391 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1392 && (reg_class_size[(int) rclass]
1393 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1395 if (reg_class_size[rclass] == 1)
1396 op_costs[i]->cost[k] = -frequency;
1397 else
1399 for (nr = 0;
1400 nr < hard_regno_nregs[other_regno][mode];
1401 nr++)
1402 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1403 other_regno + nr))
1404 break;
1406 if (nr == hard_regno_nregs[other_regno][mode])
1407 op_costs[i]->cost[k] = -frequency;
1417 /* Process one insn INSN. Scan it and record each time it would save
1418 code to put a certain allocnos in a certain class. Return the last
1419 insn processed, so that the scan can be continued from there. */
1420 static rtx_insn *
1421 scan_one_insn (rtx_insn *insn)
1423 enum rtx_code pat_code;
1424 rtx set, note;
1425 int i, k;
1426 bool counted_mem;
1428 if (!NONDEBUG_INSN_P (insn))
1429 return insn;
1431 pat_code = GET_CODE (PATTERN (insn));
1432 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1433 return insn;
1435 counted_mem = false;
1436 set = single_set (insn);
1437 extract_insn (insn);
1439 /* If this insn loads a parameter from its stack slot, then it
1440 represents a savings, rather than a cost, if the parameter is
1441 stored in memory. Record this fact.
1443 Similarly if we're loading other constants from memory (constant
1444 pool, TOC references, small data areas, etc) and this is the only
1445 assignment to the destination pseudo.
1447 Don't do this if SET_SRC (set) isn't a general operand, if it is
1448 a memory requiring special instructions to load it, decreasing
1449 mem_cost might result in it being loaded using the specialized
1450 instruction into a register, then stored into stack and loaded
1451 again from the stack. See PR52208.
1453 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1454 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1455 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1456 && ((MEM_P (XEXP (note, 0))
1457 && !side_effects_p (SET_SRC (set)))
1458 || (CONSTANT_P (XEXP (note, 0))
1459 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1460 XEXP (note, 0))
1461 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1462 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1464 enum reg_class cl = GENERAL_REGS;
1465 rtx reg = SET_DEST (set);
1466 int num = COST_INDEX (REGNO (reg));
1468 COSTS (costs, num)->mem_cost
1469 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1470 record_address_regs (GET_MODE (SET_SRC (set)),
1471 MEM_ADDR_SPACE (SET_SRC (set)),
1472 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1473 frequency * 2);
1474 counted_mem = true;
1477 record_operand_costs (insn, pref);
1479 /* Now add the cost for each operand to the total costs for its
1480 allocno. */
1481 for (i = 0; i < recog_data.n_operands; i++)
1482 if (REG_P (recog_data.operand[i])
1483 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1485 int regno = REGNO (recog_data.operand[i]);
1486 struct costs *p = COSTS (costs, COST_INDEX (regno));
1487 struct costs *q = op_costs[i];
1488 int *p_costs = p->cost, *q_costs = q->cost;
1489 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1490 int add_cost;
1492 /* If the already accounted for the memory "cost" above, don't
1493 do so again. */
1494 if (!counted_mem)
1496 add_cost = q->mem_cost;
1497 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1498 p->mem_cost = INT_MAX;
1499 else
1500 p->mem_cost += add_cost;
1502 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1504 add_cost = q_costs[k];
1505 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1506 p_costs[k] = INT_MAX;
1507 else
1508 p_costs[k] += add_cost;
1512 return insn;
1517 /* Print allocnos costs to file F. */
1518 static void
1519 print_allocno_costs (FILE *f)
1521 int k;
1522 ira_allocno_t a;
1523 ira_allocno_iterator ai;
1525 ira_assert (allocno_p);
1526 fprintf (f, "\n");
1527 FOR_EACH_ALLOCNO (a, ai)
1529 int i, rclass;
1530 basic_block bb;
1531 int regno = ALLOCNO_REGNO (a);
1532 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1533 enum reg_class *cost_classes = cost_classes_ptr->classes;
1535 i = ALLOCNO_NUM (a);
1536 fprintf (f, " a%d(r%d,", i, regno);
1537 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1538 fprintf (f, "b%d", bb->index);
1539 else
1540 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1541 fprintf (f, ") costs:");
1542 for (k = 0; k < cost_classes_ptr->num; k++)
1544 rclass = cost_classes[k];
1545 fprintf (f, " %s:%d", reg_class_names[rclass],
1546 COSTS (costs, i)->cost[k]);
1547 if (flag_ira_region == IRA_REGION_ALL
1548 || flag_ira_region == IRA_REGION_MIXED)
1549 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1551 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1552 if (flag_ira_region == IRA_REGION_ALL
1553 || flag_ira_region == IRA_REGION_MIXED)
1554 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1555 fprintf (f, "\n");
1559 /* Print pseudo costs to file F. */
1560 static void
1561 print_pseudo_costs (FILE *f)
1563 int regno, k;
1564 int rclass;
1565 cost_classes_t cost_classes_ptr;
1566 enum reg_class *cost_classes;
1568 ira_assert (! allocno_p);
1569 fprintf (f, "\n");
1570 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1572 if (REG_N_REFS (regno) <= 0)
1573 continue;
1574 cost_classes_ptr = regno_cost_classes[regno];
1575 cost_classes = cost_classes_ptr->classes;
1576 fprintf (f, " r%d costs:", regno);
1577 for (k = 0; k < cost_classes_ptr->num; k++)
1579 rclass = cost_classes[k];
1580 fprintf (f, " %s:%d", reg_class_names[rclass],
1581 COSTS (costs, regno)->cost[k]);
1583 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1587 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1588 costs. */
1589 static void
1590 process_bb_for_costs (basic_block bb)
1592 rtx_insn *insn;
1594 frequency = REG_FREQ_FROM_BB (bb);
1595 if (frequency == 0)
1596 frequency = 1;
1597 FOR_BB_INSNS (bb, insn)
1598 insn = scan_one_insn (insn);
1601 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1602 costs. */
1603 static void
1604 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1606 basic_block bb;
1608 bb = loop_tree_node->bb;
1609 if (bb != NULL)
1610 process_bb_for_costs (bb);
1613 /* Find costs of register classes and memory for allocnos or pseudos
1614 and their best costs. Set up preferred, alternative and allocno
1615 classes for pseudos. */
1616 static void
1617 find_costs_and_classes (FILE *dump_file)
1619 int i, k, start, max_cost_classes_num;
1620 int pass;
1621 basic_block bb;
1622 enum reg_class *regno_best_class, new_class;
1624 init_recog ();
1625 regno_best_class
1626 = (enum reg_class *) ira_allocate (max_reg_num ()
1627 * sizeof (enum reg_class));
1628 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1629 regno_best_class[i] = NO_REGS;
1630 if (!resize_reg_info () && allocno_p
1631 && pseudo_classes_defined_p && flag_expensive_optimizations)
1633 ira_allocno_t a;
1634 ira_allocno_iterator ai;
1636 pref = pref_buffer;
1637 max_cost_classes_num = 1;
1638 FOR_EACH_ALLOCNO (a, ai)
1640 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1641 setup_regno_cost_classes_by_aclass
1642 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1643 max_cost_classes_num
1644 = MAX (max_cost_classes_num,
1645 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1647 start = 1;
1649 else
1651 pref = NULL;
1652 max_cost_classes_num = ira_important_classes_num;
1653 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1654 if (regno_reg_rtx[i] != NULL_RTX)
1655 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1656 else
1657 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1658 start = 0;
1660 if (allocno_p)
1661 /* Clear the flag for the next compiled function. */
1662 pseudo_classes_defined_p = false;
1663 /* Normally we scan the insns once and determine the best class to
1664 use for each allocno. However, if -fexpensive-optimizations are
1665 on, we do so twice, the second time using the tentative best
1666 classes to guide the selection. */
1667 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1669 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1670 fprintf (dump_file,
1671 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1673 if (pass != start)
1675 max_cost_classes_num = 1;
1676 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1678 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1679 max_cost_classes_num
1680 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1684 struct_costs_size
1685 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1686 /* Zero out our accumulation of the cost of each class for each
1687 allocno. */
1688 memset (costs, 0, cost_elements_num * struct_costs_size);
1690 if (allocno_p)
1692 /* Scan the instructions and record each time it would save code
1693 to put a certain allocno in a certain class. */
1694 ira_traverse_loop_tree (true, ira_loop_tree_root,
1695 process_bb_node_for_costs, NULL);
1697 memcpy (total_allocno_costs, costs,
1698 max_struct_costs_size * ira_allocnos_num);
1700 else
1702 basic_block bb;
1704 FOR_EACH_BB_FN (bb, cfun)
1705 process_bb_for_costs (bb);
1708 if (pass == 0)
1709 pref = pref_buffer;
1711 /* Now for each allocno look at how desirable each class is and
1712 find which class is preferred. */
1713 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1715 ira_allocno_t a, parent_a;
1716 int rclass, a_num, parent_a_num, add_cost;
1717 ira_loop_tree_node_t parent;
1718 int best_cost, allocno_cost;
1719 enum reg_class best, alt_class;
1720 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1721 enum reg_class *cost_classes = cost_classes_ptr->classes;
1722 int *i_costs = temp_costs->cost;
1723 int i_mem_cost;
1724 int equiv_savings = regno_equiv_gains[i];
1726 if (! allocno_p)
1728 if (regno_reg_rtx[i] == NULL_RTX)
1729 continue;
1730 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1731 i_mem_cost = temp_costs->mem_cost;
1733 else
1735 if (ira_regno_allocno_map[i] == NULL)
1736 continue;
1737 memset (temp_costs, 0, struct_costs_size);
1738 i_mem_cost = 0;
1739 /* Find cost of all allocnos with the same regno. */
1740 for (a = ira_regno_allocno_map[i];
1741 a != NULL;
1742 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1744 int *a_costs, *p_costs;
1746 a_num = ALLOCNO_NUM (a);
1747 if ((flag_ira_region == IRA_REGION_ALL
1748 || flag_ira_region == IRA_REGION_MIXED)
1749 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1750 && (parent_a = parent->regno_allocno_map[i]) != NULL
1751 /* There are no caps yet. */
1752 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1753 (a)->border_allocnos,
1754 ALLOCNO_NUM (a)))
1756 /* Propagate costs to upper levels in the region
1757 tree. */
1758 parent_a_num = ALLOCNO_NUM (parent_a);
1759 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1760 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1761 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1763 add_cost = a_costs[k];
1764 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1765 p_costs[k] = INT_MAX;
1766 else
1767 p_costs[k] += add_cost;
1769 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1770 if (add_cost > 0
1771 && (INT_MAX - add_cost
1772 < COSTS (total_allocno_costs,
1773 parent_a_num)->mem_cost))
1774 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1775 = INT_MAX;
1776 else
1777 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1778 += add_cost;
1780 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1781 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1783 a_costs = COSTS (costs, a_num)->cost;
1784 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1786 add_cost = a_costs[k];
1787 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1788 i_costs[k] = INT_MAX;
1789 else
1790 i_costs[k] += add_cost;
1792 add_cost = COSTS (costs, a_num)->mem_cost;
1793 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1794 i_mem_cost = INT_MAX;
1795 else
1796 i_mem_cost += add_cost;
1799 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1800 i_mem_cost = 0;
1801 else if (equiv_savings < 0)
1802 i_mem_cost = -equiv_savings;
1803 else if (equiv_savings > 0)
1805 i_mem_cost = 0;
1806 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1807 i_costs[k] += equiv_savings;
1810 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1811 best = ALL_REGS;
1812 alt_class = NO_REGS;
1813 /* Find best common class for all allocnos with the same
1814 regno. */
1815 for (k = 0; k < cost_classes_ptr->num; k++)
1817 rclass = cost_classes[k];
1818 if (i_costs[k] < best_cost)
1820 best_cost = i_costs[k];
1821 best = (enum reg_class) rclass;
1823 else if (i_costs[k] == best_cost)
1824 best = ira_reg_class_subunion[best][rclass];
1825 if (pass == flag_expensive_optimizations
1826 /* We still prefer registers to memory even at this
1827 stage if their costs are the same. We will make
1828 a final decision during assigning hard registers
1829 when we have all info including more accurate
1830 costs which might be affected by assigning hard
1831 registers to other pseudos because the pseudos
1832 involved in moves can be coalesced. */
1833 && i_costs[k] <= i_mem_cost
1834 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1835 > reg_class_size[alt_class]))
1836 alt_class = reg_class_subunion[alt_class][rclass];
1838 alt_class = ira_allocno_class_translate[alt_class];
1839 if (best_cost > i_mem_cost)
1840 regno_aclass[i] = NO_REGS;
1841 else if (!optimize && !targetm.class_likely_spilled_p (best))
1842 /* Registers in the alternative class are likely to need
1843 longer or slower sequences than registers in the best class.
1844 When optimizing we make some effort to use the best class
1845 over the alternative class where possible, but at -O0 we
1846 effectively give the alternative class equal weight.
1847 We then run the risk of using slower alternative registers
1848 when plenty of registers from the best class are still free.
1849 This is especially true because live ranges tend to be very
1850 short in -O0 code and so register pressure tends to be low.
1852 Avoid that by ignoring the alternative class if the best
1853 class has plenty of registers. */
1854 regno_aclass[i] = best;
1855 else
1857 /* Make the common class the biggest class of best and
1858 alt_class. */
1859 regno_aclass[i]
1860 = ira_reg_class_superunion[best][alt_class];
1861 ira_assert (regno_aclass[i] != NO_REGS
1862 && ira_reg_allocno_class_p[regno_aclass[i]]);
1864 if ((new_class
1865 = (reg_class) (targetm.ira_change_pseudo_allocno_class
1866 (i, regno_aclass[i]))) != regno_aclass[i])
1868 regno_aclass[i] = new_class;
1869 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1870 reg_class_contents[best]))
1871 best = new_class;
1872 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1873 reg_class_contents[alt_class]))
1874 alt_class = new_class;
1876 if (pass == flag_expensive_optimizations)
1878 if (best_cost > i_mem_cost)
1879 best = alt_class = NO_REGS;
1880 else if (best == alt_class)
1881 alt_class = NO_REGS;
1882 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1883 if ((!allocno_p || internal_flag_ira_verbose > 2)
1884 && dump_file != NULL)
1885 fprintf (dump_file,
1886 " r%d: preferred %s, alternative %s, allocno %s\n",
1887 i, reg_class_names[best], reg_class_names[alt_class],
1888 reg_class_names[regno_aclass[i]]);
1890 regno_best_class[i] = best;
1891 if (! allocno_p)
1893 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1894 continue;
1896 for (a = ira_regno_allocno_map[i];
1897 a != NULL;
1898 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1900 enum reg_class aclass = regno_aclass[i];
1901 int a_num = ALLOCNO_NUM (a);
1902 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1903 int *a_costs = COSTS (costs, a_num)->cost;
1905 if (aclass == NO_REGS)
1906 best = NO_REGS;
1907 else
1909 /* Finding best class which is subset of the common
1910 class. */
1911 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1912 allocno_cost = best_cost;
1913 best = ALL_REGS;
1914 for (k = 0; k < cost_classes_ptr->num; k++)
1916 rclass = cost_classes[k];
1917 if (! ira_class_subset_p[rclass][aclass])
1918 continue;
1919 if (total_a_costs[k] < best_cost)
1921 best_cost = total_a_costs[k];
1922 allocno_cost = a_costs[k];
1923 best = (enum reg_class) rclass;
1925 else if (total_a_costs[k] == best_cost)
1927 best = ira_reg_class_subunion[best][rclass];
1928 allocno_cost = MAX (allocno_cost, a_costs[k]);
1931 ALLOCNO_CLASS_COST (a) = allocno_cost;
1933 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1934 && (pass == 0 || pref[a_num] != best))
1936 fprintf (dump_file, " a%d (r%d,", a_num, i);
1937 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1938 fprintf (dump_file, "b%d", bb->index);
1939 else
1940 fprintf (dump_file, "l%d",
1941 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1942 fprintf (dump_file, ") best %s, allocno %s\n",
1943 reg_class_names[best],
1944 reg_class_names[aclass]);
1946 pref[a_num] = best;
1947 if (pass == flag_expensive_optimizations && best != aclass
1948 && ira_class_hard_regs_num[best] > 0
1949 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1950 >= ira_class_hard_regs_num[best]))
1952 int ind = cost_classes_ptr->index[aclass];
1954 ira_assert (ind >= 0);
1955 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1956 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1957 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1958 / (ira_register_move_cost
1959 [ALLOCNO_MODE (a)][best][aclass]));
1960 for (k = 0; k < cost_classes_ptr->num; k++)
1961 if (ira_class_subset_p[cost_classes[k]][best])
1962 a_costs[k] = a_costs[ind];
1967 if (internal_flag_ira_verbose > 4 && dump_file)
1969 if (allocno_p)
1970 print_allocno_costs (dump_file);
1971 else
1972 print_pseudo_costs (dump_file);
1973 fprintf (dump_file,"\n");
1976 ira_free (regno_best_class);
1981 /* Process moves involving hard regs to modify allocno hard register
1982 costs. We can do this only after determining allocno class. If a
1983 hard register forms a register class, then moves with the hard
1984 register are already taken into account in class costs for the
1985 allocno. */
1986 static void
1987 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1989 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1990 bool to_p;
1991 ira_allocno_t a, curr_a;
1992 ira_loop_tree_node_t curr_loop_tree_node;
1993 enum reg_class rclass;
1994 basic_block bb;
1995 rtx_insn *insn;
1996 rtx set, src, dst;
1998 bb = loop_tree_node->bb;
1999 if (bb == NULL)
2000 return;
2001 freq = REG_FREQ_FROM_BB (bb);
2002 if (freq == 0)
2003 freq = 1;
2004 FOR_BB_INSNS (bb, insn)
2006 if (!NONDEBUG_INSN_P (insn))
2007 continue;
2008 set = single_set (insn);
2009 if (set == NULL_RTX)
2010 continue;
2011 dst = SET_DEST (set);
2012 src = SET_SRC (set);
2013 if (! REG_P (dst) || ! REG_P (src))
2014 continue;
2015 dst_regno = REGNO (dst);
2016 src_regno = REGNO (src);
2017 if (dst_regno >= FIRST_PSEUDO_REGISTER
2018 && src_regno < FIRST_PSEUDO_REGISTER)
2020 hard_regno = src_regno;
2021 a = ira_curr_regno_allocno_map[dst_regno];
2022 to_p = true;
2024 else if (src_regno >= FIRST_PSEUDO_REGISTER
2025 && dst_regno < FIRST_PSEUDO_REGISTER)
2027 hard_regno = dst_regno;
2028 a = ira_curr_regno_allocno_map[src_regno];
2029 to_p = false;
2031 else
2032 continue;
2033 rclass = ALLOCNO_CLASS (a);
2034 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2035 continue;
2036 i = ira_class_hard_reg_index[rclass][hard_regno];
2037 if (i < 0)
2038 continue;
2039 a_regno = ALLOCNO_REGNO (a);
2040 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2041 curr_loop_tree_node != NULL;
2042 curr_loop_tree_node = curr_loop_tree_node->parent)
2043 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2044 ira_add_allocno_pref (curr_a, hard_regno, freq);
2046 int cost;
2047 enum reg_class hard_reg_class;
2048 machine_mode mode;
2050 mode = ALLOCNO_MODE (a);
2051 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2052 ira_init_register_move_cost_if_necessary (mode);
2053 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2054 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2055 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2056 ALLOCNO_CLASS_COST (a));
2057 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2058 rclass, 0);
2059 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2060 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2061 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2062 ALLOCNO_HARD_REG_COSTS (a)[i]);
2067 /* After we find hard register and memory costs for allocnos, define
2068 its class and modify hard register cost because insns moving
2069 allocno to/from hard registers. */
2070 static void
2071 setup_allocno_class_and_costs (void)
2073 int i, j, n, regno, hard_regno, num;
2074 int *reg_costs;
2075 enum reg_class aclass, rclass;
2076 ira_allocno_t a;
2077 ira_allocno_iterator ai;
2078 cost_classes_t cost_classes_ptr;
2080 ira_assert (allocno_p);
2081 FOR_EACH_ALLOCNO (a, ai)
2083 i = ALLOCNO_NUM (a);
2084 regno = ALLOCNO_REGNO (a);
2085 aclass = regno_aclass[regno];
2086 cost_classes_ptr = regno_cost_classes[regno];
2087 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2088 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2089 ira_set_allocno_class (a, aclass);
2090 if (aclass == NO_REGS)
2091 continue;
2092 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2094 n = ira_class_hard_regs_num[aclass];
2095 ALLOCNO_HARD_REG_COSTS (a)
2096 = reg_costs = ira_allocate_cost_vector (aclass);
2097 for (j = n - 1; j >= 0; j--)
2099 hard_regno = ira_class_hard_regs[aclass][j];
2100 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2101 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2102 else
2104 rclass = REGNO_REG_CLASS (hard_regno);
2105 num = cost_classes_ptr->index[rclass];
2106 if (num < 0)
2108 num = cost_classes_ptr->hard_regno_index[hard_regno];
2109 ira_assert (num >= 0);
2111 reg_costs[j] = COSTS (costs, i)->cost[num];
2116 if (optimize)
2117 ira_traverse_loop_tree (true, ira_loop_tree_root,
2118 process_bb_node_for_hard_reg_moves, NULL);
2123 /* Function called once during compiler work. */
2124 void
2125 ira_init_costs_once (void)
2127 int i;
2129 init_cost = NULL;
2130 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2132 op_costs[i] = NULL;
2133 this_op_costs[i] = NULL;
2135 temp_costs = NULL;
2138 /* Free allocated temporary cost vectors. */
2139 void
2140 target_ira_int::free_ira_costs ()
2142 int i;
2144 free (x_init_cost);
2145 x_init_cost = NULL;
2146 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2148 free (x_op_costs[i]);
2149 free (x_this_op_costs[i]);
2150 x_op_costs[i] = x_this_op_costs[i] = NULL;
2152 free (x_temp_costs);
2153 x_temp_costs = NULL;
2156 /* This is called each time register related information is
2157 changed. */
2158 void
2159 ira_init_costs (void)
2161 int i;
2163 this_target_ira_int->free_ira_costs ();
2164 max_struct_costs_size
2165 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2166 /* Don't use ira_allocate because vectors live through several IRA
2167 calls. */
2168 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2169 init_cost->mem_cost = 1000000;
2170 for (i = 0; i < ira_important_classes_num; i++)
2171 init_cost->cost[i] = 1000000;
2172 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2174 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2175 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2177 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2182 /* Common initialization function for ira_costs and
2183 ira_set_pseudo_classes. */
2184 static void
2185 init_costs (void)
2187 init_subregs_of_mode ();
2188 costs = (struct costs *) ira_allocate (max_struct_costs_size
2189 * cost_elements_num);
2190 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2191 * cost_elements_num);
2192 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2193 * max_reg_num ());
2194 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2195 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2198 /* Common finalization function for ira_costs and
2199 ira_set_pseudo_classes. */
2200 static void
2201 finish_costs (void)
2203 finish_subregs_of_mode ();
2204 ira_free (regno_equiv_gains);
2205 ira_free (regno_aclass);
2206 ira_free (pref_buffer);
2207 ira_free (costs);
2210 /* Entry function which defines register class, memory and hard
2211 register costs for each allocno. */
2212 void
2213 ira_costs (void)
2215 allocno_p = true;
2216 cost_elements_num = ira_allocnos_num;
2217 init_costs ();
2218 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2219 * ira_allocnos_num);
2220 initiate_regno_cost_classes ();
2221 calculate_elim_costs_all_insns ();
2222 find_costs_and_classes (ira_dump_file);
2223 setup_allocno_class_and_costs ();
2224 finish_regno_cost_classes ();
2225 finish_costs ();
2226 ira_free (total_allocno_costs);
2229 /* Entry function which defines classes for pseudos.
2230 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2231 void
2232 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2234 allocno_p = false;
2235 internal_flag_ira_verbose = flag_ira_verbose;
2236 cost_elements_num = max_reg_num ();
2237 init_costs ();
2238 initiate_regno_cost_classes ();
2239 find_costs_and_classes (dump_file);
2240 finish_regno_cost_classes ();
2241 if (define_pseudo_classes)
2242 pseudo_classes_defined_p = true;
2244 finish_costs ();
2249 /* Change hard register costs for allocnos which lives through
2250 function calls. This is called only when we found all intersected
2251 calls during building allocno live ranges. */
2252 void
2253 ira_tune_allocno_costs (void)
2255 int j, n, regno;
2256 int cost, min_cost, *reg_costs;
2257 enum reg_class aclass, rclass;
2258 machine_mode mode;
2259 ira_allocno_t a;
2260 ira_allocno_iterator ai;
2261 ira_allocno_object_iterator oi;
2262 ira_object_t obj;
2263 bool skip_p;
2264 HARD_REG_SET *crossed_calls_clobber_regs;
2266 FOR_EACH_ALLOCNO (a, ai)
2268 aclass = ALLOCNO_CLASS (a);
2269 if (aclass == NO_REGS)
2270 continue;
2271 mode = ALLOCNO_MODE (a);
2272 n = ira_class_hard_regs_num[aclass];
2273 min_cost = INT_MAX;
2274 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2275 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2277 ira_allocate_and_set_costs
2278 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2279 ALLOCNO_CLASS_COST (a));
2280 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2281 for (j = n - 1; j >= 0; j--)
2283 regno = ira_class_hard_regs[aclass][j];
2284 skip_p = false;
2285 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2287 if (ira_hard_reg_set_intersection_p (regno, mode,
2288 OBJECT_CONFLICT_HARD_REGS
2289 (obj)))
2291 skip_p = true;
2292 break;
2295 if (skip_p)
2296 continue;
2297 rclass = REGNO_REG_CLASS (regno);
2298 cost = 0;
2299 crossed_calls_clobber_regs
2300 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2301 if (ira_hard_reg_set_intersection_p (regno, mode,
2302 *crossed_calls_clobber_regs)
2303 && (ira_hard_reg_set_intersection_p (regno, mode,
2304 call_used_reg_set)
2305 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2306 cost += (ALLOCNO_CALL_FREQ (a)
2307 * (ira_memory_move_cost[mode][rclass][0]
2308 + ira_memory_move_cost[mode][rclass][1]));
2309 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2310 cost += ((ira_memory_move_cost[mode][rclass][0]
2311 + ira_memory_move_cost[mode][rclass][1])
2312 * ALLOCNO_FREQ (a)
2313 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2314 #endif
2315 if (INT_MAX - cost < reg_costs[j])
2316 reg_costs[j] = INT_MAX;
2317 else
2318 reg_costs[j] += cost;
2319 if (min_cost > reg_costs[j])
2320 min_cost = reg_costs[j];
2323 if (min_cost != INT_MAX)
2324 ALLOCNO_CLASS_COST (a) = min_cost;
2326 /* Some targets allow pseudos to be allocated to unaligned sequences
2327 of hard registers. However, selecting an unaligned sequence can
2328 unnecessarily restrict later allocations. So increase the cost of
2329 unaligned hard regs to encourage the use of aligned hard regs. */
2331 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2333 if (nregs > 1)
2335 ira_allocate_and_set_costs
2336 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2337 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2338 for (j = n - 1; j >= 0; j--)
2340 regno = ira_non_ordered_class_hard_regs[aclass][j];
2341 if ((regno % nregs) != 0)
2343 int index = ira_class_hard_reg_index[aclass][regno];
2344 ira_assert (index != -1);
2345 reg_costs[index] += ALLOCNO_FREQ (a);
2353 /* Add COST to the estimated gain for eliminating REGNO with its
2354 equivalence. If COST is zero, record that no such elimination is
2355 possible. */
2357 void
2358 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2360 if (cost == 0)
2361 regno_equiv_gains[regno] = 0;
2362 else
2363 regno_equiv_gains[regno] += cost;
2366 void
2367 ira_costs_c_finalize (void)
2369 this_target_ira_int->free_ira_costs ();