Undo June 11th change
[official-gcc.git] / gcc / stupid.c
blobd064f979e879e4823a56f34dfc09ac87465dba7c
1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 91, 94, 95, 96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file performs stupid register allocation, which is used
23 when cc1 gets the -noreg switch (which is when cc does not get -O).
25 Stupid register allocation goes in place of the flow_analysis,
26 local_alloc and global_alloc passes. combine_instructions cannot
27 be done with stupid allocation because the data flow info that it needs
28 is not computed here.
30 In stupid allocation, the only user-defined variables that can
31 go in registers are those declared "register". They are assumed
32 to have a life span equal to their scope. Other user variables
33 are given stack slots in the rtl-generation pass and are not
34 represented as pseudo regs. A compiler-generated temporary
35 is assumed to live from its first mention to its last mention.
37 Since each pseudo-reg's life span is just an interval, it can be
38 represented as a pair of numbers, each of which identifies an insn by
39 its position in the function (number of insns before it). The first
40 thing done for stupid allocation is to compute such a number for each
41 insn. It is called the suid. Then the life-interval of each
42 pseudo reg is computed. Then the pseudo regs are ordered by priority
43 and assigned hard regs in priority order. */
45 #include "config.h"
46 #include "system.h"
48 #include "rtl.h"
49 #include "hard-reg-set.h"
50 #include "regs.h"
51 #include "flags.h"
53 /* Vector mapping INSN_UIDs to suids.
54 The suids are like uids but increase monotonically always.
55 We use them to see whether a subroutine call came
56 between a variable's birth and its death. */
58 static int *uid_suid;
60 /* Get the suid of an insn. */
62 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
64 /* Record the suid of the last CALL_INSN
65 so we can tell whether a pseudo reg crosses any calls. */
67 static int last_call_suid;
69 /* Record the suid of the last NOTE_INSN_SETJMP
70 so we can tell whether a pseudo reg crosses any setjmp. */
72 static int last_setjmp_suid;
74 /* Element N is suid of insn where life span of pseudo reg N ends.
75 Element is 0 if register N has not been seen yet on backward scan. */
77 static int *reg_where_dead;
79 /* Element N is suid of insn where life span of pseudo reg N begins. */
81 static int *reg_where_born;
83 /* Numbers of pseudo-regs to be allocated, highest priority first. */
85 static int *reg_order;
87 /* Indexed by reg number (hard or pseudo), nonzero if register is live
88 at the current point in the instruction stream. */
90 static char *regs_live;
92 /* Indexed by reg number, nonzero if reg was used in a SUBREG that changes
93 its size. */
95 static char *regs_change_size;
97 /* Indexed by reg number, nonzero if reg crosses a setjmp. */
99 static char *regs_crosses_setjmp;
101 /* Indexed by insn's suid, the set of hard regs live after that insn. */
103 static HARD_REG_SET *after_insn_hard_regs;
105 /* Record that hard reg REGNO is live after insn INSN. */
107 #define MARK_LIVE_AFTER(INSN,REGNO) \
108 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
110 static int stupid_reg_compare PROTO((const GENERIC_PTR,const GENERIC_PTR));
111 static int stupid_find_reg PROTO((int, enum reg_class, enum machine_mode,
112 int, int, int));
113 static void stupid_mark_refs PROTO((rtx, rtx));
115 /* Stupid life analysis is for the case where only variables declared
116 `register' go in registers. For this case, we mark all
117 pseudo-registers that belong to register variables as
118 dying in the last instruction of the function, and all other
119 pseudo registers as dying in the last place they are referenced.
120 Hard registers are marked as dying in the last reference before
121 the end or before each store into them. */
123 void
124 stupid_life_analysis (f, nregs, file)
125 rtx f;
126 int nregs;
127 FILE *file;
129 register int i;
130 register rtx last, insn;
131 int max_uid, max_suid;
133 current_function_has_computed_jump = 0;
135 bzero (regs_ever_live, sizeof regs_ever_live);
137 regs_live = (char *) alloca (nregs);
139 /* First find the last real insn, and count the number of insns,
140 and assign insns their suids. */
142 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
143 if (INSN_UID (insn) > i)
144 i = INSN_UID (insn);
146 max_uid = i + 1;
147 uid_suid = (int *) alloca ((i + 1) * sizeof (int));
149 /* Compute the mapping from uids to suids.
150 Suids are numbers assigned to insns, like uids,
151 except that suids increase monotonically through the code. */
153 last = 0; /* In case of empty function body */
154 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
156 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
157 last = insn;
159 INSN_SUID (insn) = ++i;
162 last_call_suid = i + 1;
163 last_setjmp_suid = i + 1;
164 max_suid = i + 1;
166 max_regno = nregs;
168 /* Allocate tables to record info about regs. */
170 reg_where_dead = (int *) alloca (nregs * sizeof (int));
171 bzero ((char *) reg_where_dead, nregs * sizeof (int));
173 reg_where_born = (int *) alloca (nregs * sizeof (int));
174 bzero ((char *) reg_where_born, nregs * sizeof (int));
176 reg_order = (int *) alloca (nregs * sizeof (int));
177 bzero ((char *) reg_order, nregs * sizeof (int));
179 regs_change_size = (char *) alloca (nregs * sizeof (char));
180 bzero ((char *) regs_change_size, nregs * sizeof (char));
182 regs_crosses_setjmp = (char *) alloca (nregs * sizeof (char));
183 bzero ((char *) regs_crosses_setjmp, nregs * sizeof (char));
185 /* Allocate the reg_renumber array */
186 allocate_reg_info (max_regno, FALSE, TRUE);
187 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
188 reg_renumber[i] = i;
190 after_insn_hard_regs
191 = (HARD_REG_SET *) alloca (max_suid * sizeof (HARD_REG_SET));
193 bzero ((char *) after_insn_hard_regs, max_suid * sizeof (HARD_REG_SET));
195 /* Allocate and zero out many data structures
196 that will record the data from lifetime analysis. */
198 allocate_for_life_analysis ();
200 for (i = 0; i < max_regno; i++)
201 REG_N_DEATHS (i) = 1;
203 bzero (regs_live, nregs);
205 /* Find where each pseudo register is born and dies,
206 by scanning all insns from the end to the start
207 and noting all mentions of the registers.
209 Also find where each hard register is live
210 and record that info in after_insn_hard_regs.
211 regs_live[I] is 1 if hard reg I is live
212 at the current point in the scan. */
214 for (insn = last; insn; insn = PREV_INSN (insn))
216 register HARD_REG_SET *p = after_insn_hard_regs + INSN_SUID (insn);
218 /* Copy the info in regs_live into the element of after_insn_hard_regs
219 for the current position in the rtl code. */
221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
222 if (regs_live[i])
223 SET_HARD_REG_BIT (*p, i);
225 /* Update which hard regs are currently live
226 and also the birth and death suids of pseudo regs
227 based on the pattern of this insn. */
229 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
230 stupid_mark_refs (PATTERN (insn), insn);
232 if (GET_CODE (insn) == NOTE
233 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
234 last_setjmp_suid = INSN_SUID (insn);
236 /* Mark all call-clobbered regs as dead after each call insn so that
237 a pseudo whose life span includes this insn will not go in one of
238 them. If the function contains a non-local goto, mark all hard
239 registers dead (except for stack related bits).
241 Then mark those regs as all dead for the continuing scan
242 of the insns before the call. */
244 if (GET_CODE (insn) == CALL_INSN)
246 last_call_suid = INSN_SUID (insn);
248 if (current_function_has_nonlocal_label)
250 IOR_COMPL_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
251 fixed_reg_set);
252 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
253 if (! fixed_regs[i])
254 regs_live[i] = 0;
256 else
258 IOR_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
259 call_used_reg_set);
260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
261 if (call_used_regs[i])
262 regs_live[i] = 0;
265 /* It is important that this be done after processing the insn's
266 pattern because we want the function result register to still
267 be live if it's also used to pass arguments. */
268 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn), insn);
270 if (GET_CODE (insn) == JUMP_INSN && computed_jump_p (insn))
271 current_function_has_computed_jump = 1;
274 /* Now decide the order in which to allocate the pseudo registers. */
276 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
277 reg_order[i] = i;
279 qsort (&reg_order[LAST_VIRTUAL_REGISTER + 1],
280 max_regno - LAST_VIRTUAL_REGISTER - 1, sizeof (int),
281 stupid_reg_compare);
283 /* Now, in that order, try to find hard registers for those pseudo regs. */
285 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
287 register int r = reg_order[i];
289 /* Some regnos disappear from the rtl. Ignore them to avoid crash.
290 Also don't allocate registers that cross a setjmp, or live across
291 a call if this function receives a nonlocal goto. */
292 if (regno_reg_rtx[r] == 0 || regs_crosses_setjmp[r]
293 || (REG_N_CALLS_CROSSED (r) > 0
294 && current_function_has_nonlocal_label))
295 continue;
297 /* Now find the best hard-register class for this pseudo register */
298 if (N_REG_CLASSES > 1)
299 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
300 reg_preferred_class (r),
301 PSEUDO_REGNO_MODE (r),
302 reg_where_born[r],
303 reg_where_dead[r],
304 regs_change_size[r]);
306 /* If no reg available in that class, try alternate class. */
307 if (reg_renumber[r] == -1 && reg_alternate_class (r) != NO_REGS)
308 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
309 reg_alternate_class (r),
310 PSEUDO_REGNO_MODE (r),
311 reg_where_born[r],
312 reg_where_dead[r],
313 regs_change_size[r]);
316 if (file)
317 dump_flow_info (file);
320 /* Comparison function for qsort.
321 Returns -1 (1) if register *R1P is higher priority than *R2P. */
323 static int
324 stupid_reg_compare (r1p, r2p)
325 const GENERIC_PTR r1p;
326 const GENERIC_PTR r2p;
328 register int r1 = *(int *)r1p, r2 = *(int *)r2p;
329 register int len1 = reg_where_dead[r1] - reg_where_born[r1];
330 register int len2 = reg_where_dead[r2] - reg_where_born[r2];
331 int tem;
333 tem = len2 - len1;
334 if (tem != 0)
335 return tem;
337 tem = REG_N_REFS (r1) - REG_N_REFS (r2);
338 if (tem != 0)
339 return tem;
341 /* If regs are equally good, sort by regno,
342 so that the results of qsort leave nothing to chance. */
343 return r1 - r2;
346 /* Find a block of SIZE words of hard registers in reg_class CLASS
347 that can hold a value of machine-mode MODE
348 (but actually we test only the first of the block for holding MODE)
349 currently free from after insn whose suid is BORN_INSN
350 through the insn whose suid is DEAD_INSN,
351 and return the number of the first of them.
352 Return -1 if such a block cannot be found.
354 If CALL_PRESERVED is nonzero, insist on registers preserved
355 over subroutine calls, and return -1 if cannot find such.
357 If CHANGES_SIZE is nonzero, it means this register was used as the
358 operand of a SUBREG that changes its size. */
360 static int
361 stupid_find_reg (call_preserved, class, mode,
362 born_insn, dead_insn, changes_size)
363 int call_preserved;
364 enum reg_class class;
365 enum machine_mode mode;
366 int born_insn, dead_insn;
367 int changes_size;
369 register int i, ins;
370 #ifdef HARD_REG_SET
371 register /* Declare them register if they are scalars. */
372 #endif
373 HARD_REG_SET used, this_reg;
374 #ifdef ELIMINABLE_REGS
375 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
376 #endif
378 /* If this register's life is more than 5,000 insns, we probably
379 can't allocate it, so don't waste the time trying. This avoids
380 quadratic behavior on programs that have regularly-occurring
381 SAVE_EXPRs. */
382 if (dead_insn > born_insn + 5000)
383 return -1;
385 COPY_HARD_REG_SET (used,
386 call_preserved ? call_used_reg_set : fixed_reg_set);
388 #ifdef ELIMINABLE_REGS
389 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
390 SET_HARD_REG_BIT (used, eliminables[i].from);
391 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
392 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
393 #endif
394 #else
395 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
396 #endif
398 for (ins = born_insn; ins < dead_insn; ins++)
399 IOR_HARD_REG_SET (used, after_insn_hard_regs[ins]);
401 #ifdef STACK_REGS
402 if (current_function_has_computed_jump)
403 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
404 SET_HARD_REG_BIT (used, i);
405 #endif
407 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
409 #ifdef CLASS_CANNOT_CHANGE_SIZE
410 if (changes_size)
411 IOR_HARD_REG_SET (used,
412 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
413 #endif
415 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
417 #ifdef REG_ALLOC_ORDER
418 int regno = reg_alloc_order[i];
419 #else
420 int regno = i;
421 #endif
423 /* If a register has screwy overlap problems,
424 don't use it at all if not optimizing.
425 Actually this is only for the 387 stack register,
426 and it's because subsequent code won't work. */
427 #ifdef OVERLAPPING_REGNO_P
428 if (OVERLAPPING_REGNO_P (regno))
429 continue;
430 #endif
432 if (! TEST_HARD_REG_BIT (used, regno)
433 && HARD_REGNO_MODE_OK (regno, mode))
435 register int j;
436 register int size1 = HARD_REGNO_NREGS (regno, mode);
437 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
438 if (j == size1)
440 CLEAR_HARD_REG_SET (this_reg);
441 while (--j >= 0)
442 SET_HARD_REG_BIT (this_reg, regno + j);
443 for (ins = born_insn; ins < dead_insn; ins++)
445 IOR_HARD_REG_SET (after_insn_hard_regs[ins], this_reg);
447 return regno;
449 #ifndef REG_ALLOC_ORDER
450 i += j; /* Skip starting points we know will lose */
451 #endif
455 return -1;
458 /* Walk X, noting all assignments and references to registers
459 and recording what they imply about life spans.
460 INSN is the current insn, supplied so we can find its suid. */
462 static void
463 stupid_mark_refs (x, insn)
464 rtx x, insn;
466 register RTX_CODE code;
467 register char *fmt;
468 register int regno, i;
470 if (x == 0)
471 return;
473 code = GET_CODE (x);
475 if (code == SET || code == CLOBBER)
477 if (SET_DEST (x) != 0
478 && (GET_CODE (SET_DEST (x)) == REG
479 || (GET_CODE (SET_DEST (x)) == SUBREG
480 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
481 && (REGNO (SUBREG_REG (SET_DEST (x)))
482 >= FIRST_PSEUDO_REGISTER))))
484 /* Register is being assigned. */
485 /* If setting a SUBREG, we treat the entire reg as being set. */
486 if (GET_CODE (SET_DEST (x)) == SUBREG)
487 regno = REGNO (SUBREG_REG (SET_DEST (x)));
488 else
489 regno = REGNO (SET_DEST (x));
491 /* For hard regs, update the where-live info. */
492 if (regno < FIRST_PSEUDO_REGISTER)
494 register int j
495 = HARD_REGNO_NREGS (regno, GET_MODE (SET_DEST (x)));
497 while (--j >= 0)
499 regs_ever_live[regno+j] = 1;
500 regs_live[regno+j] = 0;
502 /* The following line is for unused outputs;
503 they do get stored even though never used again. */
504 MARK_LIVE_AFTER (insn, regno+j);
506 /* When a hard reg is clobbered, mark it in use
507 just before this insn, so it is live all through. */
508 if (code == CLOBBER && INSN_SUID (insn) > 0)
509 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (insn) - 1],
510 regno+j);
513 /* For pseudo regs, record where born, where dead, number of
514 times used, and whether live across a call. */
515 else
517 /* Update the life-interval bounds of this pseudo reg. */
519 /* When a pseudo-reg is CLOBBERed, it is born just before
520 the clobbering insn. When setting, just after. */
521 int where_born = INSN_SUID (insn) - (code == CLOBBER);
523 reg_where_born[regno] = where_born;
525 /* The reg must live at least one insn even
526 in it is never again used--because it has to go
527 in SOME hard reg. Mark it as dying after the current
528 insn so that it will conflict with any other outputs of
529 this insn. */
530 if (reg_where_dead[regno] < where_born + 2)
532 reg_where_dead[regno] = where_born + 2;
533 regs_live[regno] = 1;
536 /* Count the refs of this reg. */
537 REG_N_REFS (regno)++;
539 if (last_call_suid < reg_where_dead[regno])
540 REG_N_CALLS_CROSSED (regno) += 1;
542 if (last_setjmp_suid < reg_where_dead[regno])
543 regs_crosses_setjmp[regno] = 1;
545 /* If this register is only used in this insn and is only
546 set, mark it unused. We have to do this even when not
547 optimizing so that MD patterns which count on this
548 behavior (e.g., it not causing an output reload on
549 an insn setting CC) will operate correctly. */
550 if (GET_CODE (SET_DEST (x)) == REG
551 && REGNO_FIRST_UID (regno) == INSN_UID (insn)
552 && REGNO_LAST_UID (regno) == INSN_UID (insn)
553 && (code == CLOBBER || ! reg_mentioned_p (SET_DEST (x),
554 SET_SRC (x))))
555 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_UNUSED,
556 SET_DEST (x),
557 REG_NOTES (insn));
561 /* Record references from the value being set,
562 or from addresses in the place being set if that's not a reg.
563 If setting a SUBREG, we treat the entire reg as *used*. */
564 if (code == SET)
566 stupid_mark_refs (SET_SRC (x), insn);
567 if (GET_CODE (SET_DEST (x)) != REG)
568 stupid_mark_refs (SET_DEST (x), insn);
570 return;
573 else if (code == SUBREG
574 && GET_CODE (SUBREG_REG (x)) == REG
575 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
576 && (GET_MODE_SIZE (GET_MODE (x))
577 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
578 && (INTEGRAL_MODE_P (GET_MODE (x))
579 || INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (x)))))
580 regs_change_size[REGNO (SUBREG_REG (x))] = 1;
582 /* Register value being used, not set. */
584 else if (code == REG)
586 regno = REGNO (x);
587 if (regno < FIRST_PSEUDO_REGISTER)
589 /* Hard reg: mark it live for continuing scan of previous insns. */
590 register int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
591 while (--j >= 0)
593 regs_ever_live[regno+j] = 1;
594 regs_live[regno+j] = 1;
597 else
599 /* Pseudo reg: record first use, last use and number of uses. */
601 reg_where_born[regno] = INSN_SUID (insn);
602 REG_N_REFS (regno)++;
603 if (regs_live[regno] == 0)
605 regs_live[regno] = 1;
606 reg_where_dead[regno] = INSN_SUID (insn);
609 return;
612 /* Recursive scan of all other rtx's. */
614 fmt = GET_RTX_FORMAT (code);
615 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
617 if (fmt[i] == 'e')
618 stupid_mark_refs (XEXP (x, i), insn);
619 if (fmt[i] == 'E')
621 register int j;
622 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
623 stupid_mark_refs (XVECEXP (x, i, j), insn);