* symtab.c (symtab_node::reset_section): New method.
[official-gcc.git] / gcc / tree-if-conv.c
blob6e298d328aa6dad2dfb15d3a5a1e4ce625f8a1e8
1 /* If-conversion for vectorizer.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Devang Patel <dpatel@apple.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass implements a tree level if-conversion of loops. Its
22 initial goal is to help the vectorizer to vectorize loops with
23 conditions.
25 A short description of if-conversion:
27 o Decide if a loop is if-convertible or not.
28 o Walk all loop basic blocks in breadth first order (BFS order).
29 o Remove conditional statements (at the end of basic block)
30 and propagate condition into destination basic blocks'
31 predicate list.
32 o Replace modify expression with conditional modify expression
33 using current basic block's condition.
34 o Merge all basic blocks
35 o Replace phi nodes with conditional modify expr
36 o Merge all basic blocks into header
38 Sample transformation:
40 INPUT
41 -----
43 # i_23 = PHI <0(0), i_18(10)>;
44 <L0>:;
45 j_15 = A[i_23];
46 if (j_15 > 41) goto <L1>; else goto <L17>;
48 <L17>:;
49 goto <bb 3> (<L3>);
51 <L1>:;
53 # iftmp.2_4 = PHI <0(8), 42(2)>;
54 <L3>:;
55 A[i_23] = iftmp.2_4;
56 i_18 = i_23 + 1;
57 if (i_18 <= 15) goto <L19>; else goto <L18>;
59 <L19>:;
60 goto <bb 1> (<L0>);
62 <L18>:;
64 OUTPUT
65 ------
67 # i_23 = PHI <0(0), i_18(10)>;
68 <L0>:;
69 j_15 = A[i_23];
71 <L3>:;
72 iftmp.2_4 = j_15 > 41 ? 42 : 0;
73 A[i_23] = iftmp.2_4;
74 i_18 = i_23 + 1;
75 if (i_18 <= 15) goto <L19>; else goto <L18>;
77 <L19>:;
78 goto <bb 1> (<L0>);
80 <L18>:;
83 #include "config.h"
84 #include "system.h"
85 #include "coretypes.h"
86 #include "tm.h"
87 #include "tree.h"
88 #include "stor-layout.h"
89 #include "flags.h"
90 #include "basic-block.h"
91 #include "gimple-pretty-print.h"
92 #include "tree-ssa-alias.h"
93 #include "internal-fn.h"
94 #include "gimple-fold.h"
95 #include "gimple-expr.h"
96 #include "is-a.h"
97 #include "gimple.h"
98 #include "gimplify.h"
99 #include "gimple-iterator.h"
100 #include "gimplify-me.h"
101 #include "gimple-ssa.h"
102 #include "tree-cfg.h"
103 #include "tree-phinodes.h"
104 #include "ssa-iterators.h"
105 #include "stringpool.h"
106 #include "tree-ssanames.h"
107 #include "tree-into-ssa.h"
108 #include "tree-ssa.h"
109 #include "cfgloop.h"
110 #include "tree-chrec.h"
111 #include "tree-data-ref.h"
112 #include "tree-scalar-evolution.h"
113 #include "tree-ssa-loop-ivopts.h"
114 #include "tree-ssa-address.h"
115 #include "tree-pass.h"
116 #include "dbgcnt.h"
117 #include "expr.h"
118 #include "optabs.h"
120 /* List of basic blocks in if-conversion-suitable order. */
121 static basic_block *ifc_bbs;
123 /* Structure used to predicate basic blocks. This is attached to the
124 ->aux field of the BBs in the loop to be if-converted. */
125 typedef struct bb_predicate_s {
127 /* The condition under which this basic block is executed. */
128 tree predicate;
130 /* PREDICATE is gimplified, and the sequence of statements is
131 recorded here, in order to avoid the duplication of computations
132 that occur in previous conditions. See PR44483. */
133 gimple_seq predicate_gimplified_stmts;
134 } *bb_predicate_p;
136 /* Returns true when the basic block BB has a predicate. */
138 static inline bool
139 bb_has_predicate (basic_block bb)
141 return bb->aux != NULL;
144 /* Returns the gimplified predicate for basic block BB. */
146 static inline tree
147 bb_predicate (basic_block bb)
149 return ((bb_predicate_p) bb->aux)->predicate;
152 /* Sets the gimplified predicate COND for basic block BB. */
154 static inline void
155 set_bb_predicate (basic_block bb, tree cond)
157 gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
158 && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
159 || is_gimple_condexpr (cond));
160 ((bb_predicate_p) bb->aux)->predicate = cond;
163 /* Returns the sequence of statements of the gimplification of the
164 predicate for basic block BB. */
166 static inline gimple_seq
167 bb_predicate_gimplified_stmts (basic_block bb)
169 return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
172 /* Sets the sequence of statements STMTS of the gimplification of the
173 predicate for basic block BB. */
175 static inline void
176 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
178 ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
181 /* Adds the sequence of statements STMTS to the sequence of statements
182 of the predicate for basic block BB. */
184 static inline void
185 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
187 gimple_seq_add_seq
188 (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
191 /* Initializes to TRUE the predicate of basic block BB. */
193 static inline void
194 init_bb_predicate (basic_block bb)
196 bb->aux = XNEW (struct bb_predicate_s);
197 set_bb_predicate_gimplified_stmts (bb, NULL);
198 set_bb_predicate (bb, boolean_true_node);
201 /* Release the SSA_NAMEs associated with the predicate of basic block BB,
202 but don't actually free it. */
204 static inline void
205 release_bb_predicate (basic_block bb)
207 gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
208 if (stmts)
210 gimple_stmt_iterator i;
212 for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
213 free_stmt_operands (cfun, gsi_stmt (i));
214 set_bb_predicate_gimplified_stmts (bb, NULL);
218 /* Free the predicate of basic block BB. */
220 static inline void
221 free_bb_predicate (basic_block bb)
223 if (!bb_has_predicate (bb))
224 return;
226 release_bb_predicate (bb);
227 free (bb->aux);
228 bb->aux = NULL;
231 /* Reinitialize predicate of BB with the true predicate. */
233 static inline void
234 reset_bb_predicate (basic_block bb)
236 if (!bb_has_predicate (bb))
237 init_bb_predicate (bb);
238 else
240 release_bb_predicate (bb);
241 set_bb_predicate (bb, boolean_true_node);
245 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
246 the expression EXPR. Inserts the statement created for this
247 computation before GSI and leaves the iterator GSI at the same
248 statement. */
250 static tree
251 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
253 tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
254 gimple stmt = gimple_build_assign (new_name, expr);
255 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
256 return new_name;
259 /* Return true when COND is a true predicate. */
261 static inline bool
262 is_true_predicate (tree cond)
264 return (cond == NULL_TREE
265 || cond == boolean_true_node
266 || integer_onep (cond));
269 /* Returns true when BB has a predicate that is not trivial: true or
270 NULL_TREE. */
272 static inline bool
273 is_predicated (basic_block bb)
275 return !is_true_predicate (bb_predicate (bb));
278 /* Parses the predicate COND and returns its comparison code and
279 operands OP0 and OP1. */
281 static enum tree_code
282 parse_predicate (tree cond, tree *op0, tree *op1)
284 gimple s;
286 if (TREE_CODE (cond) == SSA_NAME
287 && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
289 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
291 *op0 = gimple_assign_rhs1 (s);
292 *op1 = gimple_assign_rhs2 (s);
293 return gimple_assign_rhs_code (s);
296 else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
298 tree op = gimple_assign_rhs1 (s);
299 tree type = TREE_TYPE (op);
300 enum tree_code code = parse_predicate (op, op0, op1);
302 return code == ERROR_MARK ? ERROR_MARK
303 : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
306 return ERROR_MARK;
309 if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
311 *op0 = TREE_OPERAND (cond, 0);
312 *op1 = TREE_OPERAND (cond, 1);
313 return TREE_CODE (cond);
316 return ERROR_MARK;
319 /* Returns the fold of predicate C1 OR C2 at location LOC. */
321 static tree
322 fold_or_predicates (location_t loc, tree c1, tree c2)
324 tree op1a, op1b, op2a, op2b;
325 enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
326 enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
328 if (code1 != ERROR_MARK && code2 != ERROR_MARK)
330 tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
331 code2, op2a, op2b);
332 if (t)
333 return t;
336 return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
339 /* Returns true if N is either a constant or a SSA_NAME. */
341 static bool
342 constant_or_ssa_name (tree n)
344 switch (TREE_CODE (n))
346 case SSA_NAME:
347 case INTEGER_CST:
348 case REAL_CST:
349 case COMPLEX_CST:
350 case VECTOR_CST:
351 return true;
352 default:
353 return false;
357 /* Returns either a COND_EXPR or the folded expression if the folded
358 expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
359 a constant or a SSA_NAME. */
361 static tree
362 fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
364 tree rhs1, lhs1, cond_expr;
365 cond_expr = fold_ternary (COND_EXPR, type, cond,
366 rhs, lhs);
368 if (cond_expr == NULL_TREE)
369 return build3 (COND_EXPR, type, cond, rhs, lhs);
371 STRIP_USELESS_TYPE_CONVERSION (cond_expr);
373 if (constant_or_ssa_name (cond_expr))
374 return cond_expr;
376 if (TREE_CODE (cond_expr) == ABS_EXPR)
378 rhs1 = TREE_OPERAND (cond_expr, 1);
379 STRIP_USELESS_TYPE_CONVERSION (rhs1);
380 if (constant_or_ssa_name (rhs1))
381 return build1 (ABS_EXPR, type, rhs1);
384 if (TREE_CODE (cond_expr) == MIN_EXPR
385 || TREE_CODE (cond_expr) == MAX_EXPR)
387 lhs1 = TREE_OPERAND (cond_expr, 0);
388 STRIP_USELESS_TYPE_CONVERSION (lhs1);
389 rhs1 = TREE_OPERAND (cond_expr, 1);
390 STRIP_USELESS_TYPE_CONVERSION (rhs1);
391 if (constant_or_ssa_name (rhs1)
392 && constant_or_ssa_name (lhs1))
393 return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
395 return build3 (COND_EXPR, type, cond, rhs, lhs);
398 /* Add condition NC to the predicate list of basic block BB. LOOP is
399 the loop to be if-converted. */
401 static inline void
402 add_to_predicate_list (struct loop *loop, basic_block bb, tree nc)
404 tree bc, *tp;
406 if (is_true_predicate (nc))
407 return;
409 if (!is_predicated (bb))
411 /* If dominance tells us this basic block is always executed, don't
412 record any predicates for it. */
413 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
414 return;
416 bc = nc;
418 else
420 bc = bb_predicate (bb);
421 bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
422 if (is_true_predicate (bc))
424 reset_bb_predicate (bb);
425 return;
429 /* Allow a TRUTH_NOT_EXPR around the main predicate. */
430 if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
431 tp = &TREE_OPERAND (bc, 0);
432 else
433 tp = &bc;
434 if (!is_gimple_condexpr (*tp))
436 gimple_seq stmts;
437 *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
438 add_bb_predicate_gimplified_stmts (bb, stmts);
440 set_bb_predicate (bb, bc);
443 /* Add the condition COND to the previous condition PREV_COND, and add
444 this to the predicate list of the destination of edge E. LOOP is
445 the loop to be if-converted. */
447 static void
448 add_to_dst_predicate_list (struct loop *loop, edge e,
449 tree prev_cond, tree cond)
451 if (!flow_bb_inside_loop_p (loop, e->dest))
452 return;
454 if (!is_true_predicate (prev_cond))
455 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
456 prev_cond, cond);
458 add_to_predicate_list (loop, e->dest, cond);
461 /* Return true if one of the successor edges of BB exits LOOP. */
463 static bool
464 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
466 edge e;
467 edge_iterator ei;
469 FOR_EACH_EDGE (e, ei, bb->succs)
470 if (loop_exit_edge_p (loop, e))
471 return true;
473 return false;
476 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
477 and it belongs to basic block BB.
479 PHI is not if-convertible if:
480 - it has more than 2 arguments.
482 When the flag_tree_loop_if_convert_stores is not set, PHI is not
483 if-convertible if:
484 - a virtual PHI is immediately used in another PHI node,
485 - there is a virtual PHI in a BB other than the loop->header. */
487 static bool
488 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi,
489 bool any_mask_load_store)
491 if (dump_file && (dump_flags & TDF_DETAILS))
493 fprintf (dump_file, "-------------------------\n");
494 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
497 if (bb != loop->header && gimple_phi_num_args (phi) != 2)
499 if (dump_file && (dump_flags & TDF_DETAILS))
500 fprintf (dump_file, "More than two phi node args.\n");
501 return false;
504 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
505 return true;
507 /* When the flag_tree_loop_if_convert_stores is not set, check
508 that there are no memory writes in the branches of the loop to be
509 if-converted. */
510 if (virtual_operand_p (gimple_phi_result (phi)))
512 imm_use_iterator imm_iter;
513 use_operand_p use_p;
515 if (bb != loop->header)
517 if (dump_file && (dump_flags & TDF_DETAILS))
518 fprintf (dump_file, "Virtual phi not on loop->header.\n");
519 return false;
522 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
524 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
526 if (dump_file && (dump_flags & TDF_DETAILS))
527 fprintf (dump_file, "Difficult to handle this virtual phi.\n");
528 return false;
533 return true;
536 /* Records the status of a data reference. This struct is attached to
537 each DR->aux field. */
539 struct ifc_dr {
540 /* -1 when not initialized, 0 when false, 1 when true. */
541 int written_at_least_once;
543 /* -1 when not initialized, 0 when false, 1 when true. */
544 int rw_unconditionally;
547 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
548 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
549 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
551 /* Returns true when the memory references of STMT are read or written
552 unconditionally. In other words, this function returns true when
553 for every data reference A in STMT there exist other accesses to
554 a data reference with the same base with predicates that add up (OR-up) to
555 the true predicate: this ensures that the data reference A is touched
556 (read or written) on every iteration of the if-converted loop. */
558 static bool
559 memrefs_read_or_written_unconditionally (gimple stmt,
560 vec<data_reference_p> drs)
562 int i, j;
563 data_reference_p a, b;
564 tree ca = bb_predicate (gimple_bb (stmt));
566 for (i = 0; drs.iterate (i, &a); i++)
567 if (DR_STMT (a) == stmt)
569 bool found = false;
570 int x = DR_RW_UNCONDITIONALLY (a);
572 if (x == 0)
573 return false;
575 if (x == 1)
576 continue;
578 for (j = 0; drs.iterate (j, &b); j++)
580 tree ref_base_a = DR_REF (a);
581 tree ref_base_b = DR_REF (b);
583 if (DR_STMT (b) == stmt)
584 continue;
586 while (TREE_CODE (ref_base_a) == COMPONENT_REF
587 || TREE_CODE (ref_base_a) == IMAGPART_EXPR
588 || TREE_CODE (ref_base_a) == REALPART_EXPR)
589 ref_base_a = TREE_OPERAND (ref_base_a, 0);
591 while (TREE_CODE (ref_base_b) == COMPONENT_REF
592 || TREE_CODE (ref_base_b) == IMAGPART_EXPR
593 || TREE_CODE (ref_base_b) == REALPART_EXPR)
594 ref_base_b = TREE_OPERAND (ref_base_b, 0);
596 if (!operand_equal_p (ref_base_a, ref_base_b, 0))
598 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
600 if (DR_RW_UNCONDITIONALLY (b) == 1
601 || is_true_predicate (cb)
602 || is_true_predicate (ca
603 = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
605 DR_RW_UNCONDITIONALLY (a) = 1;
606 DR_RW_UNCONDITIONALLY (b) = 1;
607 found = true;
608 break;
613 if (!found)
615 DR_RW_UNCONDITIONALLY (a) = 0;
616 return false;
620 return true;
623 /* Returns true when the memory references of STMT are unconditionally
624 written. In other words, this function returns true when for every
625 data reference A written in STMT, there exist other writes to the
626 same data reference with predicates that add up (OR-up) to the true
627 predicate: this ensures that the data reference A is written on
628 every iteration of the if-converted loop. */
630 static bool
631 write_memrefs_written_at_least_once (gimple stmt,
632 vec<data_reference_p> drs)
634 int i, j;
635 data_reference_p a, b;
636 tree ca = bb_predicate (gimple_bb (stmt));
638 for (i = 0; drs.iterate (i, &a); i++)
639 if (DR_STMT (a) == stmt
640 && DR_IS_WRITE (a))
642 bool found = false;
643 int x = DR_WRITTEN_AT_LEAST_ONCE (a);
645 if (x == 0)
646 return false;
648 if (x == 1)
649 continue;
651 for (j = 0; drs.iterate (j, &b); j++)
652 if (DR_STMT (b) != stmt
653 && DR_IS_WRITE (b)
654 && same_data_refs_base_objects (a, b))
656 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
658 if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
659 || is_true_predicate (cb)
660 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
661 ca, cb)))
663 DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
664 DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
665 found = true;
666 break;
670 if (!found)
672 DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
673 return false;
677 return true;
680 /* Return true when the memory references of STMT won't trap in the
681 if-converted code. There are two things that we have to check for:
683 - writes to memory occur to writable memory: if-conversion of
684 memory writes transforms the conditional memory writes into
685 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
686 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
687 be executed at all in the original code, it may be a readonly
688 memory. To check that A is not const-qualified, we check that
689 there exists at least an unconditional write to A in the current
690 function.
692 - reads or writes to memory are valid memory accesses for every
693 iteration. To check that the memory accesses are correctly formed
694 and that we are allowed to read and write in these locations, we
695 check that the memory accesses to be if-converted occur at every
696 iteration unconditionally. */
698 static bool
699 ifcvt_memrefs_wont_trap (gimple stmt, vec<data_reference_p> refs)
701 return write_memrefs_written_at_least_once (stmt, refs)
702 && memrefs_read_or_written_unconditionally (stmt, refs);
705 /* Wrapper around gimple_could_trap_p refined for the needs of the
706 if-conversion. Try to prove that the memory accesses of STMT could
707 not trap in the innermost loop containing STMT. */
709 static bool
710 ifcvt_could_trap_p (gimple stmt, vec<data_reference_p> refs)
712 if (gimple_vuse (stmt)
713 && !gimple_could_trap_p_1 (stmt, false, false)
714 && ifcvt_memrefs_wont_trap (stmt, refs))
715 return false;
717 return gimple_could_trap_p (stmt);
720 /* Return true if STMT could be converted into a masked load or store
721 (conditional load or store based on a mask computed from bb predicate). */
723 static bool
724 ifcvt_can_use_mask_load_store (gimple stmt)
726 tree lhs, ref;
727 enum machine_mode mode;
728 basic_block bb = gimple_bb (stmt);
729 bool is_load;
731 if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
732 || bb->loop_father->dont_vectorize
733 || !gimple_assign_single_p (stmt)
734 || gimple_has_volatile_ops (stmt))
735 return false;
737 /* Check whether this is a load or store. */
738 lhs = gimple_assign_lhs (stmt);
739 if (gimple_store_p (stmt))
741 if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
742 return false;
743 is_load = false;
744 ref = lhs;
746 else if (gimple_assign_load_p (stmt))
748 is_load = true;
749 ref = gimple_assign_rhs1 (stmt);
751 else
752 return false;
754 if (may_be_nonaddressable_p (ref))
755 return false;
757 /* Mask should be integer mode of the same size as the load/store
758 mode. */
759 mode = TYPE_MODE (TREE_TYPE (lhs));
760 if (int_mode_for_mode (mode) == BLKmode
761 || VECTOR_MODE_P (mode))
762 return false;
764 if (can_vec_mask_load_store_p (mode, is_load))
765 return true;
767 return false;
770 /* Return true when STMT is if-convertible.
772 GIMPLE_ASSIGN statement is not if-convertible if,
773 - it is not movable,
774 - it could trap,
775 - LHS is not var decl. */
777 static bool
778 if_convertible_gimple_assign_stmt_p (gimple stmt,
779 vec<data_reference_p> refs,
780 bool *any_mask_load_store)
782 tree lhs = gimple_assign_lhs (stmt);
783 basic_block bb;
785 if (dump_file && (dump_flags & TDF_DETAILS))
787 fprintf (dump_file, "-------------------------\n");
788 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
791 if (!is_gimple_reg_type (TREE_TYPE (lhs)))
792 return false;
794 /* Some of these constrains might be too conservative. */
795 if (stmt_ends_bb_p (stmt)
796 || gimple_has_volatile_ops (stmt)
797 || (TREE_CODE (lhs) == SSA_NAME
798 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
799 || gimple_has_side_effects (stmt))
801 if (dump_file && (dump_flags & TDF_DETAILS))
802 fprintf (dump_file, "stmt not suitable for ifcvt\n");
803 return false;
806 /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
807 in between if_convertible_loop_p and combine_blocks
808 we can perform loop versioning. */
809 gimple_set_plf (stmt, GF_PLF_2, false);
811 if (flag_tree_loop_if_convert_stores)
813 if (ifcvt_could_trap_p (stmt, refs))
815 if (ifcvt_can_use_mask_load_store (stmt))
817 gimple_set_plf (stmt, GF_PLF_2, true);
818 *any_mask_load_store = true;
819 return true;
821 if (dump_file && (dump_flags & TDF_DETAILS))
822 fprintf (dump_file, "tree could trap...\n");
823 return false;
825 return true;
828 if (gimple_assign_rhs_could_trap_p (stmt))
830 if (ifcvt_can_use_mask_load_store (stmt))
832 gimple_set_plf (stmt, GF_PLF_2, true);
833 *any_mask_load_store = true;
834 return true;
836 if (dump_file && (dump_flags & TDF_DETAILS))
837 fprintf (dump_file, "tree could trap...\n");
838 return false;
841 bb = gimple_bb (stmt);
843 if (TREE_CODE (lhs) != SSA_NAME
844 && bb != bb->loop_father->header
845 && !bb_with_exit_edge_p (bb->loop_father, bb))
847 if (ifcvt_can_use_mask_load_store (stmt))
849 gimple_set_plf (stmt, GF_PLF_2, true);
850 *any_mask_load_store = true;
851 return true;
853 if (dump_file && (dump_flags & TDF_DETAILS))
855 fprintf (dump_file, "LHS is not var\n");
856 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
858 return false;
861 return true;
864 /* Return true when STMT is if-convertible.
866 A statement is if-convertible if:
867 - it is an if-convertible GIMPLE_ASSIGN,
868 - it is a GIMPLE_LABEL or a GIMPLE_COND. */
870 static bool
871 if_convertible_stmt_p (gimple stmt, vec<data_reference_p> refs,
872 bool *any_mask_load_store)
874 switch (gimple_code (stmt))
876 case GIMPLE_LABEL:
877 case GIMPLE_DEBUG:
878 case GIMPLE_COND:
879 return true;
881 case GIMPLE_ASSIGN:
882 return if_convertible_gimple_assign_stmt_p (stmt, refs,
883 any_mask_load_store);
885 case GIMPLE_CALL:
887 tree fndecl = gimple_call_fndecl (stmt);
888 if (fndecl)
890 int flags = gimple_call_flags (stmt);
891 if ((flags & ECF_CONST)
892 && !(flags & ECF_LOOPING_CONST_OR_PURE)
893 /* We can only vectorize some builtins at the moment,
894 so restrict if-conversion to those. */
895 && DECL_BUILT_IN (fndecl))
896 return true;
898 return false;
901 default:
902 /* Don't know what to do with 'em so don't do anything. */
903 if (dump_file && (dump_flags & TDF_DETAILS))
905 fprintf (dump_file, "don't know what to do\n");
906 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
908 return false;
909 break;
912 return true;
915 /* Return true when BB is if-convertible. This routine does not check
916 basic block's statements and phis.
918 A basic block is not if-convertible if:
919 - it is non-empty and it is after the exit block (in BFS order),
920 - it is after the exit block but before the latch,
921 - its edges are not normal.
923 EXIT_BB is the basic block containing the exit of the LOOP. BB is
924 inside LOOP. */
926 static bool
927 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
929 edge e;
930 edge_iterator ei;
932 if (dump_file && (dump_flags & TDF_DETAILS))
933 fprintf (dump_file, "----------[%d]-------------\n", bb->index);
935 if (EDGE_COUNT (bb->preds) > 2
936 || EDGE_COUNT (bb->succs) > 2)
937 return false;
939 if (exit_bb)
941 if (bb != loop->latch)
943 if (dump_file && (dump_flags & TDF_DETAILS))
944 fprintf (dump_file, "basic block after exit bb but before latch\n");
945 return false;
947 else if (!empty_block_p (bb))
949 if (dump_file && (dump_flags & TDF_DETAILS))
950 fprintf (dump_file, "non empty basic block after exit bb\n");
951 return false;
953 else if (bb == loop->latch
954 && bb != exit_bb
955 && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
957 if (dump_file && (dump_flags & TDF_DETAILS))
958 fprintf (dump_file, "latch is not dominated by exit_block\n");
959 return false;
963 /* Be less adventurous and handle only normal edges. */
964 FOR_EACH_EDGE (e, ei, bb->succs)
965 if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
967 if (dump_file && (dump_flags & TDF_DETAILS))
968 fprintf (dump_file, "Difficult to handle edges\n");
969 return false;
972 /* At least one incoming edge has to be non-critical as otherwise edge
973 predicates are not equal to basic-block predicates of the edge
974 source. */
975 if (EDGE_COUNT (bb->preds) > 1
976 && bb != loop->header)
978 bool found = false;
979 FOR_EACH_EDGE (e, ei, bb->preds)
980 if (EDGE_COUNT (e->src->succs) == 1)
981 found = true;
982 if (!found)
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 fprintf (dump_file, "only critical predecessors\n");
986 return false;
990 return true;
993 /* Return true when all predecessor blocks of BB are visited. The
994 VISITED bitmap keeps track of the visited blocks. */
996 static bool
997 pred_blocks_visited_p (basic_block bb, bitmap *visited)
999 edge e;
1000 edge_iterator ei;
1001 FOR_EACH_EDGE (e, ei, bb->preds)
1002 if (!bitmap_bit_p (*visited, e->src->index))
1003 return false;
1005 return true;
1008 /* Get body of a LOOP in suitable order for if-conversion. It is
1009 caller's responsibility to deallocate basic block list.
1010 If-conversion suitable order is, breadth first sort (BFS) order
1011 with an additional constraint: select a block only if all its
1012 predecessors are already selected. */
1014 static basic_block *
1015 get_loop_body_in_if_conv_order (const struct loop *loop)
1017 basic_block *blocks, *blocks_in_bfs_order;
1018 basic_block bb;
1019 bitmap visited;
1020 unsigned int index = 0;
1021 unsigned int visited_count = 0;
1023 gcc_assert (loop->num_nodes);
1024 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1026 blocks = XCNEWVEC (basic_block, loop->num_nodes);
1027 visited = BITMAP_ALLOC (NULL);
1029 blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
1031 index = 0;
1032 while (index < loop->num_nodes)
1034 bb = blocks_in_bfs_order [index];
1036 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1038 free (blocks_in_bfs_order);
1039 BITMAP_FREE (visited);
1040 free (blocks);
1041 return NULL;
1044 if (!bitmap_bit_p (visited, bb->index))
1046 if (pred_blocks_visited_p (bb, &visited)
1047 || bb == loop->header)
1049 /* This block is now visited. */
1050 bitmap_set_bit (visited, bb->index);
1051 blocks[visited_count++] = bb;
1055 index++;
1057 if (index == loop->num_nodes
1058 && visited_count != loop->num_nodes)
1059 /* Not done yet. */
1060 index = 0;
1062 free (blocks_in_bfs_order);
1063 BITMAP_FREE (visited);
1064 return blocks;
1067 /* Returns true when the analysis of the predicates for all the basic
1068 blocks in LOOP succeeded.
1070 predicate_bbs first allocates the predicates of the basic blocks.
1071 These fields are then initialized with the tree expressions
1072 representing the predicates under which a basic block is executed
1073 in the LOOP. As the loop->header is executed at each iteration, it
1074 has the "true" predicate. Other statements executed under a
1075 condition are predicated with that condition, for example
1077 | if (x)
1078 | S1;
1079 | else
1080 | S2;
1082 S1 will be predicated with "x", and
1083 S2 will be predicated with "!x". */
1085 static void
1086 predicate_bbs (loop_p loop)
1088 unsigned int i;
1090 for (i = 0; i < loop->num_nodes; i++)
1091 init_bb_predicate (ifc_bbs[i]);
1093 for (i = 0; i < loop->num_nodes; i++)
1095 basic_block bb = ifc_bbs[i];
1096 tree cond;
1097 gimple stmt;
1099 /* The loop latch is always executed and has no extra conditions
1100 to be processed: skip it. */
1101 if (bb == loop->latch)
1103 reset_bb_predicate (loop->latch);
1104 continue;
1107 cond = bb_predicate (bb);
1108 stmt = last_stmt (bb);
1109 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1111 tree c2;
1112 edge true_edge, false_edge;
1113 location_t loc = gimple_location (stmt);
1114 tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
1115 boolean_type_node,
1116 gimple_cond_lhs (stmt),
1117 gimple_cond_rhs (stmt));
1119 /* Add new condition into destination's predicate list. */
1120 extract_true_false_edges_from_block (gimple_bb (stmt),
1121 &true_edge, &false_edge);
1123 /* If C is true, then TRUE_EDGE is taken. */
1124 add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
1125 unshare_expr (c));
1127 /* If C is false, then FALSE_EDGE is taken. */
1128 c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
1129 unshare_expr (c));
1130 add_to_dst_predicate_list (loop, false_edge,
1131 unshare_expr (cond), c2);
1133 cond = NULL_TREE;
1136 /* If current bb has only one successor, then consider it as an
1137 unconditional goto. */
1138 if (single_succ_p (bb))
1140 basic_block bb_n = single_succ (bb);
1142 /* The successor bb inherits the predicate of its
1143 predecessor. If there is no predicate in the predecessor
1144 bb, then consider the successor bb as always executed. */
1145 if (cond == NULL_TREE)
1146 cond = boolean_true_node;
1148 add_to_predicate_list (loop, bb_n, cond);
1152 /* The loop header is always executed. */
1153 reset_bb_predicate (loop->header);
1154 gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
1155 && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1158 /* Return true when LOOP is if-convertible. This is a helper function
1159 for if_convertible_loop_p. REFS and DDRS are initialized and freed
1160 in if_convertible_loop_p. */
1162 static bool
1163 if_convertible_loop_p_1 (struct loop *loop,
1164 vec<loop_p> *loop_nest,
1165 vec<data_reference_p> *refs,
1166 vec<ddr_p> *ddrs, bool *any_mask_load_store)
1168 bool res;
1169 unsigned int i;
1170 basic_block exit_bb = NULL;
1172 /* Don't if-convert the loop when the data dependences cannot be
1173 computed: the loop won't be vectorized in that case. */
1174 res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
1175 if (!res)
1176 return false;
1178 calculate_dominance_info (CDI_DOMINATORS);
1180 /* Allow statements that can be handled during if-conversion. */
1181 ifc_bbs = get_loop_body_in_if_conv_order (loop);
1182 if (!ifc_bbs)
1184 if (dump_file && (dump_flags & TDF_DETAILS))
1185 fprintf (dump_file, "Irreducible loop\n");
1186 return false;
1189 for (i = 0; i < loop->num_nodes; i++)
1191 basic_block bb = ifc_bbs[i];
1193 if (!if_convertible_bb_p (loop, bb, exit_bb))
1194 return false;
1196 if (bb_with_exit_edge_p (loop, bb))
1197 exit_bb = bb;
1200 for (i = 0; i < loop->num_nodes; i++)
1202 basic_block bb = ifc_bbs[i];
1203 gimple_stmt_iterator gsi;
1205 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1206 switch (gimple_code (gsi_stmt (gsi)))
1208 case GIMPLE_LABEL:
1209 case GIMPLE_ASSIGN:
1210 case GIMPLE_CALL:
1211 case GIMPLE_DEBUG:
1212 case GIMPLE_COND:
1213 break;
1214 default:
1215 return false;
1219 if (flag_tree_loop_if_convert_stores)
1221 data_reference_p dr;
1223 for (i = 0; refs->iterate (i, &dr); i++)
1225 dr->aux = XNEW (struct ifc_dr);
1226 DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1227 DR_RW_UNCONDITIONALLY (dr) = -1;
1229 predicate_bbs (loop);
1232 for (i = 0; i < loop->num_nodes; i++)
1234 basic_block bb = ifc_bbs[i];
1235 gimple_stmt_iterator itr;
1237 /* Check the if-convertibility of statements in predicated BBs. */
1238 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1239 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1240 if (!if_convertible_stmt_p (gsi_stmt (itr), *refs,
1241 any_mask_load_store))
1242 return false;
1245 if (flag_tree_loop_if_convert_stores)
1246 for (i = 0; i < loop->num_nodes; i++)
1247 free_bb_predicate (ifc_bbs[i]);
1249 /* Checking PHIs needs to be done after stmts, as the fact whether there
1250 are any masked loads or stores affects the tests. */
1251 for (i = 0; i < loop->num_nodes; i++)
1253 basic_block bb = ifc_bbs[i];
1254 gimple_stmt_iterator itr;
1256 for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1257 if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr),
1258 *any_mask_load_store))
1259 return false;
1262 if (dump_file)
1263 fprintf (dump_file, "Applying if-conversion\n");
1265 return true;
1268 /* Return true when LOOP is if-convertible.
1269 LOOP is if-convertible if:
1270 - it is innermost,
1271 - it has two or more basic blocks,
1272 - it has only one exit,
1273 - loop header is not the exit edge,
1274 - if its basic blocks and phi nodes are if convertible. */
1276 static bool
1277 if_convertible_loop_p (struct loop *loop, bool *any_mask_load_store)
1279 edge e;
1280 edge_iterator ei;
1281 bool res = false;
1282 vec<data_reference_p> refs;
1283 vec<ddr_p> ddrs;
1285 /* Handle only innermost loop. */
1286 if (!loop || loop->inner)
1288 if (dump_file && (dump_flags & TDF_DETAILS))
1289 fprintf (dump_file, "not innermost loop\n");
1290 return false;
1293 /* If only one block, no need for if-conversion. */
1294 if (loop->num_nodes <= 2)
1296 if (dump_file && (dump_flags & TDF_DETAILS))
1297 fprintf (dump_file, "less than 2 basic blocks\n");
1298 return false;
1301 /* More than one loop exit is too much to handle. */
1302 if (!single_exit (loop))
1304 if (dump_file && (dump_flags & TDF_DETAILS))
1305 fprintf (dump_file, "multiple exits\n");
1306 return false;
1309 /* If one of the loop header's edge is an exit edge then do not
1310 apply if-conversion. */
1311 FOR_EACH_EDGE (e, ei, loop->header->succs)
1312 if (loop_exit_edge_p (loop, e))
1313 return false;
1315 refs.create (5);
1316 ddrs.create (25);
1317 auto_vec<loop_p, 3> loop_nest;
1318 res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs,
1319 any_mask_load_store);
1321 if (flag_tree_loop_if_convert_stores)
1323 data_reference_p dr;
1324 unsigned int i;
1326 for (i = 0; refs.iterate (i, &dr); i++)
1327 free (dr->aux);
1330 free_data_refs (refs);
1331 free_dependence_relations (ddrs);
1332 return res;
1335 /* Basic block BB has two predecessors. Using predecessor's bb
1336 predicate, set an appropriate condition COND for the PHI node
1337 replacement. Return the true block whose phi arguments are
1338 selected when cond is true. LOOP is the loop containing the
1339 if-converted region, GSI is the place to insert the code for the
1340 if-conversion. */
1342 static basic_block
1343 find_phi_replacement_condition (basic_block bb, tree *cond,
1344 gimple_stmt_iterator *gsi)
1346 edge first_edge, second_edge;
1347 tree tmp_cond;
1349 gcc_assert (EDGE_COUNT (bb->preds) == 2);
1350 first_edge = EDGE_PRED (bb, 0);
1351 second_edge = EDGE_PRED (bb, 1);
1353 /* Prefer an edge with a not negated predicate.
1354 ??? That's a very weak cost model. */
1355 tmp_cond = bb_predicate (first_edge->src);
1356 gcc_assert (tmp_cond);
1357 if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1359 edge tmp_edge;
1361 tmp_edge = first_edge;
1362 first_edge = second_edge;
1363 second_edge = tmp_edge;
1366 /* Check if the edge we take the condition from is not critical.
1367 We know that at least one non-critical edge exists. */
1368 if (EDGE_COUNT (first_edge->src->succs) > 1)
1370 *cond = bb_predicate (second_edge->src);
1372 if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1373 *cond = TREE_OPERAND (*cond, 0);
1374 else
1375 /* Select non loop header bb. */
1376 first_edge = second_edge;
1378 else
1379 *cond = bb_predicate (first_edge->src);
1381 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1382 *cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (*cond),
1383 is_gimple_condexpr, NULL_TREE,
1384 true, GSI_SAME_STMT);
1386 return first_edge->src;
1389 /* Returns true if def-stmt for phi argument ARG is simple increment/decrement
1390 which is in predicated basic block.
1391 In fact, the following PHI pattern is searching:
1392 loop-header:
1393 reduc_1 = PHI <..., reduc_2>
1395 if (...)
1396 reduc_3 = ...
1397 reduc_2 = PHI <reduc_1, reduc_3>
1399 REDUC, OP0 and OP1 contain reduction stmt and its operands. */
1401 static bool
1402 is_cond_scalar_reduction (gimple phi, gimple *reduc,
1403 tree *op0, tree *op1)
1405 tree lhs, r_op1, r_op2;
1406 tree arg_0, arg_1;
1407 gimple stmt;
1408 gimple header_phi = NULL;
1409 enum tree_code reduction_op;
1410 struct loop *loop = gimple_bb (phi)->loop_father;
1411 edge latch_e = loop_latch_edge (loop);
1413 arg_0 = PHI_ARG_DEF (phi, 0);
1414 arg_1 = PHI_ARG_DEF (phi, 1);
1415 if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
1416 return false;
1418 if (gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
1420 lhs = arg_1;
1421 header_phi = SSA_NAME_DEF_STMT (arg_0);
1422 stmt = SSA_NAME_DEF_STMT (arg_1);
1424 else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
1426 lhs = arg_0;
1427 header_phi = SSA_NAME_DEF_STMT (arg_1);
1428 stmt = SSA_NAME_DEF_STMT (arg_0);
1430 else
1431 return false;
1432 if (gimple_bb (header_phi) != loop->header)
1433 return false;
1435 if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
1436 return false;
1438 if (gimple_code (stmt) != GIMPLE_ASSIGN
1439 || gimple_has_volatile_ops (stmt))
1440 return false;
1442 if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1443 return false;
1445 if (!is_predicated (gimple_bb (stmt)))
1446 return false;
1448 if (!has_single_use (lhs))
1449 return false;
1451 reduction_op = gimple_assign_rhs_code (stmt);
1452 if (reduction_op != PLUS_EXPR && reduction_op != MINUS_EXPR)
1453 return false;
1454 r_op1 = gimple_assign_rhs1 (stmt);
1455 r_op2 = gimple_assign_rhs2 (stmt);
1457 /* Make R_OP1 to hold reduction variable. */
1458 if (r_op2 == PHI_RESULT (header_phi)
1459 && reduction_op == PLUS_EXPR)
1461 tree tmp = r_op1;
1462 r_op1 = r_op2;
1463 r_op2 = tmp;
1465 else if (r_op1 != PHI_RESULT (header_phi))
1466 return false;
1468 *op0 = r_op1; *op1 = r_op2;
1469 *reduc = stmt;
1470 return true;
1473 /* Converts conditional scalar reduction into unconditional form, e.g.
1474 bb_4
1475 if (_5 != 0) goto bb_5 else goto bb_6
1476 end_bb_4
1477 bb_5
1478 res_6 = res_13 + 1;
1479 end_bb_5
1480 bb_6
1481 # res_2 = PHI <res_13(4), res_6(5)>
1482 end_bb_6
1484 will be converted into sequence
1485 _ifc__1 = _5 != 0 ? 1 : 0;
1486 res_2 = res_13 + _ifc__1;
1487 Argument SWAP tells that arguments of conditional expression should be
1488 swapped.
1489 Returns rhs of resulting PHI assignment. */
1491 static tree
1492 convert_scalar_cond_reduction (gimple reduc, gimple_stmt_iterator *gsi,
1493 tree cond, tree op0, tree op1, bool swap)
1495 gimple_stmt_iterator stmt_it;
1496 gimple new_assign;
1497 tree rhs;
1498 tree rhs1 = gimple_assign_rhs1 (reduc);
1499 tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
1500 tree c;
1501 tree zero = build_zero_cst (TREE_TYPE (rhs1));
1503 if (dump_file && (dump_flags & TDF_DETAILS))
1505 fprintf (dump_file, "Found cond scalar reduction.\n");
1506 print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
1509 /* Build cond expression using COND and constant operand
1510 of reduction rhs. */
1511 c = fold_build_cond_expr (TREE_TYPE (rhs1),
1512 unshare_expr (cond),
1513 swap ? zero : op1,
1514 swap ? op1 : zero);
1516 /* Create assignment stmt and insert it at GSI. */
1517 new_assign = gimple_build_assign (tmp, c);
1518 gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
1519 /* Build rhs for unconditional increment/decrement. */
1520 rhs = fold_build2 (gimple_assign_rhs_code (reduc),
1521 TREE_TYPE (rhs1), op0, tmp);
1523 /* Delete original reduction stmt. */
1524 stmt_it = gsi_for_stmt (reduc);
1525 gsi_remove (&stmt_it, true);
1526 release_defs (reduc);
1527 return rhs;
1530 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1531 This routine does not handle PHI nodes with more than two
1532 arguments.
1534 For example,
1535 S1: A = PHI <x1(1), x2(5)>
1536 is converted into,
1537 S2: A = cond ? x1 : x2;
1539 The generated code is inserted at GSI that points to the top of
1540 basic block's statement list. When COND is true, phi arg from
1541 TRUE_BB is selected. */
1543 static void
1544 predicate_scalar_phi (gimple phi, tree cond,
1545 basic_block true_bb,
1546 gimple_stmt_iterator *gsi)
1548 gimple new_stmt;
1549 basic_block bb;
1550 tree rhs, res, arg, scev;
1552 gcc_assert (gimple_code (phi) == GIMPLE_PHI
1553 && gimple_phi_num_args (phi) == 2);
1555 res = gimple_phi_result (phi);
1556 /* Do not handle virtual phi nodes. */
1557 if (virtual_operand_p (res))
1558 return;
1560 bb = gimple_bb (phi);
1562 if ((arg = degenerate_phi_result (phi))
1563 || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1564 res))
1565 && !chrec_contains_undetermined (scev)
1566 && scev != res
1567 && (arg = gimple_phi_arg_def (phi, 0))))
1568 rhs = arg;
1569 else
1571 tree arg_0, arg_1;
1572 tree op0, op1;
1573 gimple reduc;
1575 /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
1576 if (EDGE_PRED (bb, 1)->src == true_bb)
1578 arg_0 = gimple_phi_arg_def (phi, 1);
1579 arg_1 = gimple_phi_arg_def (phi, 0);
1581 else
1583 arg_0 = gimple_phi_arg_def (phi, 0);
1584 arg_1 = gimple_phi_arg_def (phi, 1);
1586 if (is_cond_scalar_reduction (phi, &reduc, &op0, &op1))
1587 /* Convert reduction stmt into vectorizable form. */
1588 rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
1589 true_bb != gimple_bb (reduc));
1590 else
1591 /* Build new RHS using selected condition and arguments. */
1592 rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
1593 arg_0, arg_1);
1596 new_stmt = gimple_build_assign (res, rhs);
1597 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1598 update_stmt (new_stmt);
1600 if (dump_file && (dump_flags & TDF_DETAILS))
1602 fprintf (dump_file, "new phi replacement stmt\n");
1603 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1607 /* Replaces in LOOP all the scalar phi nodes other than those in the
1608 LOOP->header block with conditional modify expressions. */
1610 static void
1611 predicate_all_scalar_phis (struct loop *loop)
1613 basic_block bb;
1614 unsigned int orig_loop_num_nodes = loop->num_nodes;
1615 unsigned int i;
1617 for (i = 1; i < orig_loop_num_nodes; i++)
1619 gimple phi;
1620 tree cond = NULL_TREE;
1621 gimple_stmt_iterator gsi, phi_gsi;
1622 basic_block true_bb = NULL;
1623 bb = ifc_bbs[i];
1625 if (bb == loop->header)
1626 continue;
1628 phi_gsi = gsi_start_phis (bb);
1629 if (gsi_end_p (phi_gsi))
1630 continue;
1632 /* BB has two predecessors. Using predecessor's aux field, set
1633 appropriate condition for the PHI node replacement. */
1634 gsi = gsi_after_labels (bb);
1635 true_bb = find_phi_replacement_condition (bb, &cond, &gsi);
1637 while (!gsi_end_p (phi_gsi))
1639 phi = gsi_stmt (phi_gsi);
1640 predicate_scalar_phi (phi, cond, true_bb, &gsi);
1641 release_phi_node (phi);
1642 gsi_next (&phi_gsi);
1645 set_phi_nodes (bb, NULL);
1649 /* Insert in each basic block of LOOP the statements produced by the
1650 gimplification of the predicates. */
1652 static void
1653 insert_gimplified_predicates (loop_p loop, bool any_mask_load_store)
1655 unsigned int i;
1657 for (i = 0; i < loop->num_nodes; i++)
1659 basic_block bb = ifc_bbs[i];
1660 gimple_seq stmts;
1662 if (!is_predicated (bb))
1664 /* Do not insert statements for a basic block that is not
1665 predicated. Also make sure that the predicate of the
1666 basic block is set to true. */
1667 reset_bb_predicate (bb);
1668 continue;
1671 stmts = bb_predicate_gimplified_stmts (bb);
1672 if (stmts)
1674 if (flag_tree_loop_if_convert_stores
1675 || any_mask_load_store)
1677 /* Insert the predicate of the BB just after the label,
1678 as the if-conversion of memory writes will use this
1679 predicate. */
1680 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1681 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1683 else
1685 /* Insert the predicate of the BB at the end of the BB
1686 as this would reduce the register pressure: the only
1687 use of this predicate will be in successor BBs. */
1688 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1690 if (gsi_end_p (gsi)
1691 || stmt_ends_bb_p (gsi_stmt (gsi)))
1692 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1693 else
1694 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1697 /* Once the sequence is code generated, set it to NULL. */
1698 set_bb_predicate_gimplified_stmts (bb, NULL);
1703 /* Predicate each write to memory in LOOP.
1705 This function transforms control flow constructs containing memory
1706 writes of the form:
1708 | for (i = 0; i < N; i++)
1709 | if (cond)
1710 | A[i] = expr;
1712 into the following form that does not contain control flow:
1714 | for (i = 0; i < N; i++)
1715 | A[i] = cond ? expr : A[i];
1717 The original CFG looks like this:
1719 | bb_0
1720 | i = 0
1721 | end_bb_0
1723 | bb_1
1724 | if (i < N) goto bb_5 else goto bb_2
1725 | end_bb_1
1727 | bb_2
1728 | cond = some_computation;
1729 | if (cond) goto bb_3 else goto bb_4
1730 | end_bb_2
1732 | bb_3
1733 | A[i] = expr;
1734 | goto bb_4
1735 | end_bb_3
1737 | bb_4
1738 | goto bb_1
1739 | end_bb_4
1741 insert_gimplified_predicates inserts the computation of the COND
1742 expression at the beginning of the destination basic block:
1744 | bb_0
1745 | i = 0
1746 | end_bb_0
1748 | bb_1
1749 | if (i < N) goto bb_5 else goto bb_2
1750 | end_bb_1
1752 | bb_2
1753 | cond = some_computation;
1754 | if (cond) goto bb_3 else goto bb_4
1755 | end_bb_2
1757 | bb_3
1758 | cond = some_computation;
1759 | A[i] = expr;
1760 | goto bb_4
1761 | end_bb_3
1763 | bb_4
1764 | goto bb_1
1765 | end_bb_4
1767 predicate_mem_writes is then predicating the memory write as follows:
1769 | bb_0
1770 | i = 0
1771 | end_bb_0
1773 | bb_1
1774 | if (i < N) goto bb_5 else goto bb_2
1775 | end_bb_1
1777 | bb_2
1778 | if (cond) goto bb_3 else goto bb_4
1779 | end_bb_2
1781 | bb_3
1782 | cond = some_computation;
1783 | A[i] = cond ? expr : A[i];
1784 | goto bb_4
1785 | end_bb_3
1787 | bb_4
1788 | goto bb_1
1789 | end_bb_4
1791 and finally combine_blocks removes the basic block boundaries making
1792 the loop vectorizable:
1794 | bb_0
1795 | i = 0
1796 | if (i < N) goto bb_5 else goto bb_1
1797 | end_bb_0
1799 | bb_1
1800 | cond = some_computation;
1801 | A[i] = cond ? expr : A[i];
1802 | if (i < N) goto bb_5 else goto bb_4
1803 | end_bb_1
1805 | bb_4
1806 | goto bb_1
1807 | end_bb_4
1810 static void
1811 predicate_mem_writes (loop_p loop)
1813 unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1815 for (i = 1; i < orig_loop_num_nodes; i++)
1817 gimple_stmt_iterator gsi;
1818 basic_block bb = ifc_bbs[i];
1819 tree cond = bb_predicate (bb);
1820 bool swap;
1821 gimple stmt;
1823 if (is_true_predicate (cond))
1824 continue;
1826 swap = false;
1827 if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1829 swap = true;
1830 cond = TREE_OPERAND (cond, 0);
1833 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1834 if (!gimple_assign_single_p (stmt = gsi_stmt (gsi)))
1835 continue;
1836 else if (gimple_plf (stmt, GF_PLF_2))
1838 tree lhs = gimple_assign_lhs (stmt);
1839 tree rhs = gimple_assign_rhs1 (stmt);
1840 tree ref, addr, ptr, masktype, mask_op0, mask_op1, mask;
1841 gimple new_stmt;
1842 int bitsize = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (lhs)));
1844 masktype = build_nonstandard_integer_type (bitsize, 1);
1845 mask_op0 = build_int_cst (masktype, swap ? 0 : -1);
1846 mask_op1 = build_int_cst (masktype, swap ? -1 : 0);
1847 ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
1848 mark_addressable (ref);
1849 addr = force_gimple_operand_gsi (&gsi, build_fold_addr_expr (ref),
1850 true, NULL_TREE, true,
1851 GSI_SAME_STMT);
1852 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1853 is_gimple_condexpr, NULL_TREE,
1854 true, GSI_SAME_STMT);
1855 mask = fold_build_cond_expr (masktype, unshare_expr (cond),
1856 mask_op0, mask_op1);
1857 mask = ifc_temp_var (masktype, mask, &gsi);
1858 ptr = build_int_cst (reference_alias_ptr_type (ref), 0);
1859 /* Copy points-to info if possible. */
1860 if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
1861 copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
1862 ref);
1863 if (TREE_CODE (lhs) == SSA_NAME)
1865 new_stmt
1866 = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
1867 ptr, mask);
1868 gimple_call_set_lhs (new_stmt, lhs);
1870 else
1871 new_stmt
1872 = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
1873 mask, rhs);
1874 gsi_replace (&gsi, new_stmt, true);
1876 else if (gimple_vdef (stmt))
1878 tree lhs = gimple_assign_lhs (stmt);
1879 tree rhs = gimple_assign_rhs1 (stmt);
1880 tree type = TREE_TYPE (lhs);
1882 lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1883 rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1884 if (swap)
1886 tree tem = lhs;
1887 lhs = rhs;
1888 rhs = tem;
1890 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1891 is_gimple_condexpr, NULL_TREE,
1892 true, GSI_SAME_STMT);
1893 rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
1894 gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1895 update_stmt (stmt);
1900 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1901 other than the exit and latch of the LOOP. Also resets the
1902 GIMPLE_DEBUG information. */
1904 static void
1905 remove_conditions_and_labels (loop_p loop)
1907 gimple_stmt_iterator gsi;
1908 unsigned int i;
1910 for (i = 0; i < loop->num_nodes; i++)
1912 basic_block bb = ifc_bbs[i];
1914 if (bb_with_exit_edge_p (loop, bb)
1915 || bb == loop->latch)
1916 continue;
1918 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1919 switch (gimple_code (gsi_stmt (gsi)))
1921 case GIMPLE_COND:
1922 case GIMPLE_LABEL:
1923 gsi_remove (&gsi, true);
1924 break;
1926 case GIMPLE_DEBUG:
1927 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
1928 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1930 gimple_debug_bind_reset_value (gsi_stmt (gsi));
1931 update_stmt (gsi_stmt (gsi));
1933 gsi_next (&gsi);
1934 break;
1936 default:
1937 gsi_next (&gsi);
1942 /* Combine all the basic blocks from LOOP into one or two super basic
1943 blocks. Replace PHI nodes with conditional modify expressions. */
1945 static void
1946 combine_blocks (struct loop *loop, bool any_mask_load_store)
1948 basic_block bb, exit_bb, merge_target_bb;
1949 unsigned int orig_loop_num_nodes = loop->num_nodes;
1950 unsigned int i;
1951 edge e;
1952 edge_iterator ei;
1954 predicate_bbs (loop);
1955 remove_conditions_and_labels (loop);
1956 insert_gimplified_predicates (loop, any_mask_load_store);
1957 predicate_all_scalar_phis (loop);
1959 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
1960 predicate_mem_writes (loop);
1962 /* Merge basic blocks: first remove all the edges in the loop,
1963 except for those from the exit block. */
1964 exit_bb = NULL;
1965 for (i = 0; i < orig_loop_num_nodes; i++)
1967 bb = ifc_bbs[i];
1968 free_bb_predicate (bb);
1969 if (bb_with_exit_edge_p (loop, bb))
1971 gcc_assert (exit_bb == NULL);
1972 exit_bb = bb;
1975 gcc_assert (exit_bb != loop->latch);
1977 for (i = 1; i < orig_loop_num_nodes; i++)
1979 bb = ifc_bbs[i];
1981 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1983 if (e->src == exit_bb)
1984 ei_next (&ei);
1985 else
1986 remove_edge (e);
1990 if (exit_bb != NULL)
1992 if (exit_bb != loop->header)
1994 /* Connect this node to loop header. */
1995 make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
1996 set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
1999 /* Redirect non-exit edges to loop->latch. */
2000 FOR_EACH_EDGE (e, ei, exit_bb->succs)
2002 if (!loop_exit_edge_p (loop, e))
2003 redirect_edge_and_branch (e, loop->latch);
2005 set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
2007 else
2009 /* If the loop does not have an exit, reconnect header and latch. */
2010 make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
2011 set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
2014 merge_target_bb = loop->header;
2015 for (i = 1; i < orig_loop_num_nodes; i++)
2017 gimple_stmt_iterator gsi;
2018 gimple_stmt_iterator last;
2020 bb = ifc_bbs[i];
2022 if (bb == exit_bb || bb == loop->latch)
2023 continue;
2025 /* Make stmts member of loop->header. */
2026 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2027 gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
2029 /* Update stmt list. */
2030 last = gsi_last_bb (merge_target_bb);
2031 gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
2032 set_bb_seq (bb, NULL);
2034 delete_basic_block (bb);
2037 /* If possible, merge loop header to the block with the exit edge.
2038 This reduces the number of basic blocks to two, to please the
2039 vectorizer that handles only loops with two nodes. */
2040 if (exit_bb
2041 && exit_bb != loop->header
2042 && can_merge_blocks_p (loop->header, exit_bb))
2043 merge_blocks (loop->header, exit_bb);
2045 free (ifc_bbs);
2046 ifc_bbs = NULL;
2049 /* Version LOOP before if-converting it, the original loop
2050 will be then if-converted, the new copy of the loop will not,
2051 and the LOOP_VECTORIZED internal call will be guarding which
2052 loop to execute. The vectorizer pass will fold this
2053 internal call into either true or false. */
2055 static bool
2056 version_loop_for_if_conversion (struct loop *loop)
2058 basic_block cond_bb;
2059 tree cond = make_ssa_name (boolean_type_node, NULL);
2060 struct loop *new_loop;
2061 gimple g;
2062 gimple_stmt_iterator gsi;
2064 g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
2065 build_int_cst (integer_type_node, loop->num),
2066 integer_zero_node);
2067 gimple_call_set_lhs (g, cond);
2069 initialize_original_copy_tables ();
2070 new_loop = loop_version (loop, cond, &cond_bb,
2071 REG_BR_PROB_BASE, REG_BR_PROB_BASE,
2072 REG_BR_PROB_BASE, true);
2073 free_original_copy_tables ();
2074 if (new_loop == NULL)
2075 return false;
2076 new_loop->dont_vectorize = true;
2077 new_loop->force_vectorize = false;
2078 gsi = gsi_last_bb (cond_bb);
2079 gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
2080 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2081 update_ssa (TODO_update_ssa);
2082 return true;
2085 /* If-convert LOOP when it is legal. For the moment this pass has no
2086 profitability analysis. Returns non-zero todo flags when something
2087 changed. */
2089 static unsigned int
2090 tree_if_conversion (struct loop *loop)
2092 unsigned int todo = 0;
2093 ifc_bbs = NULL;
2094 bool any_mask_load_store = false;
2096 if (!if_convertible_loop_p (loop, &any_mask_load_store)
2097 || !dbg_cnt (if_conversion_tree))
2098 goto cleanup;
2100 if (any_mask_load_store
2101 && ((!flag_tree_loop_vectorize && !loop->force_vectorize)
2102 || loop->dont_vectorize))
2103 goto cleanup;
2105 if (any_mask_load_store && !version_loop_for_if_conversion (loop))
2106 goto cleanup;
2108 /* Now all statements are if-convertible. Combine all the basic
2109 blocks into one huge basic block doing the if-conversion
2110 on-the-fly. */
2111 combine_blocks (loop, any_mask_load_store);
2113 todo |= TODO_cleanup_cfg;
2114 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
2116 mark_virtual_operands_for_renaming (cfun);
2117 todo |= TODO_update_ssa_only_virtuals;
2120 cleanup:
2121 if (ifc_bbs)
2123 unsigned int i;
2125 for (i = 0; i < loop->num_nodes; i++)
2126 free_bb_predicate (ifc_bbs[i]);
2128 free (ifc_bbs);
2129 ifc_bbs = NULL;
2132 return todo;
2135 /* Tree if-conversion pass management. */
2137 namespace {
2139 const pass_data pass_data_if_conversion =
2141 GIMPLE_PASS, /* type */
2142 "ifcvt", /* name */
2143 OPTGROUP_NONE, /* optinfo_flags */
2144 true, /* has_execute */
2145 TV_NONE, /* tv_id */
2146 ( PROP_cfg | PROP_ssa ), /* properties_required */
2147 0, /* properties_provided */
2148 0, /* properties_destroyed */
2149 0, /* todo_flags_start */
2150 0, /* todo_flags_finish */
2153 class pass_if_conversion : public gimple_opt_pass
2155 public:
2156 pass_if_conversion (gcc::context *ctxt)
2157 : gimple_opt_pass (pass_data_if_conversion, ctxt)
2160 /* opt_pass methods: */
2161 virtual bool gate (function *);
2162 virtual unsigned int execute (function *);
2164 }; // class pass_if_conversion
2166 bool
2167 pass_if_conversion::gate (function *fun)
2169 return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
2170 && flag_tree_loop_if_convert != 0)
2171 || flag_tree_loop_if_convert == 1
2172 || flag_tree_loop_if_convert_stores == 1);
2175 unsigned int
2176 pass_if_conversion::execute (function *fun)
2178 struct loop *loop;
2179 unsigned todo = 0;
2181 if (number_of_loops (fun) <= 1)
2182 return 0;
2184 FOR_EACH_LOOP (loop, 0)
2185 if (flag_tree_loop_if_convert == 1
2186 || flag_tree_loop_if_convert_stores == 1
2187 || ((flag_tree_loop_vectorize || loop->force_vectorize)
2188 && !loop->dont_vectorize))
2189 todo |= tree_if_conversion (loop);
2191 #ifdef ENABLE_CHECKING
2193 basic_block bb;
2194 FOR_EACH_BB_FN (bb, fun)
2195 gcc_assert (!bb->aux);
2197 #endif
2199 return todo;
2202 } // anon namespace
2204 gimple_opt_pass *
2205 make_pass_if_conversion (gcc::context *ctxt)
2207 return new pass_if_conversion (ctxt);