* config/mn10300/mn10300.md (adddi3_degenerate): Remove bogus
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_procmaps_common.cc
blob24cf9f8b00d2ccdeb6a6ecdd9e7e78856212b53f
1 //===-- sanitizer_procmaps_common.cc --------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Information about the process mappings (common parts).
9 //===----------------------------------------------------------------------===//
11 #include "sanitizer_platform.h"
13 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \
14 SANITIZER_OPENBSD || SANITIZER_SOLARIS
16 #include "sanitizer_common.h"
17 #include "sanitizer_placement_new.h"
18 #include "sanitizer_procmaps.h"
20 namespace __sanitizer {
22 static ProcSelfMapsBuff cached_proc_self_maps;
23 static StaticSpinMutex cache_lock;
25 static int TranslateDigit(char c) {
26 if (c >= '0' && c <= '9')
27 return c - '0';
28 if (c >= 'a' && c <= 'f')
29 return c - 'a' + 10;
30 if (c >= 'A' && c <= 'F')
31 return c - 'A' + 10;
32 return -1;
35 // Parse a number and promote 'p' up to the first non-digit character.
36 static uptr ParseNumber(const char **p, int base) {
37 uptr n = 0;
38 int d;
39 CHECK(base >= 2 && base <= 16);
40 while ((d = TranslateDigit(**p)) >= 0 && d < base) {
41 n = n * base + d;
42 (*p)++;
44 return n;
47 bool IsDecimal(char c) {
48 int d = TranslateDigit(c);
49 return d >= 0 && d < 10;
52 uptr ParseDecimal(const char **p) {
53 return ParseNumber(p, 10);
56 bool IsHex(char c) {
57 int d = TranslateDigit(c);
58 return d >= 0 && d < 16;
61 uptr ParseHex(const char **p) {
62 return ParseNumber(p, 16);
65 void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
66 // data_ should be unused on this platform
67 CHECK(!data_);
68 module->addAddressRange(start, end, IsExecutable(), IsWritable());
71 MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
72 // FIXME: in the future we may want to cache the mappings on demand only.
73 if (cache_enabled)
74 CacheMemoryMappings();
76 // Read maps after the cache update to capture the maps/unmaps happening in
77 // the process of updating.
78 ReadProcMaps(&data_.proc_self_maps);
79 if (cache_enabled && data_.proc_self_maps.mmaped_size == 0)
80 LoadFromCache();
81 CHECK_GT(data_.proc_self_maps.mmaped_size, 0);
82 CHECK_GT(data_.proc_self_maps.len, 0);
84 Reset();
87 MemoryMappingLayout::~MemoryMappingLayout() {
88 // Only unmap the buffer if it is different from the cached one. Otherwise
89 // it will be unmapped when the cache is refreshed.
90 if (data_.proc_self_maps.data != cached_proc_self_maps.data)
91 UnmapOrDie(data_.proc_self_maps.data, data_.proc_self_maps.mmaped_size);
94 void MemoryMappingLayout::Reset() {
95 data_.current = data_.proc_self_maps.data;
98 // static
99 void MemoryMappingLayout::CacheMemoryMappings() {
100 ProcSelfMapsBuff new_proc_self_maps;
101 ReadProcMaps(&new_proc_self_maps);
102 // Don't invalidate the cache if the mappings are unavailable.
103 if (new_proc_self_maps.mmaped_size == 0)
104 return;
105 SpinMutexLock l(&cache_lock);
106 if (cached_proc_self_maps.mmaped_size)
107 UnmapOrDie(cached_proc_self_maps.data, cached_proc_self_maps.mmaped_size);
108 cached_proc_self_maps = new_proc_self_maps;
111 void MemoryMappingLayout::LoadFromCache() {
112 SpinMutexLock l(&cache_lock);
113 if (cached_proc_self_maps.data)
114 data_.proc_self_maps = cached_proc_self_maps;
117 void MemoryMappingLayout::DumpListOfModules(
118 InternalMmapVectorNoCtor<LoadedModule> *modules) {
119 Reset();
120 InternalScopedString module_name(kMaxPathLength);
121 MemoryMappedSegment segment(module_name.data(), module_name.size());
122 for (uptr i = 0; Next(&segment); i++) {
123 const char *cur_name = segment.filename;
124 if (cur_name[0] == '\0')
125 continue;
126 // Don't subtract 'cur_beg' from the first entry:
127 // * If a binary is compiled w/o -pie, then the first entry in
128 // process maps is likely the binary itself (all dynamic libs
129 // are mapped higher in address space). For such a binary,
130 // instruction offset in binary coincides with the actual
131 // instruction address in virtual memory (as code section
132 // is mapped to a fixed memory range).
133 // * If a binary is compiled with -pie, all the modules are
134 // mapped high at address space (in particular, higher than
135 // shadow memory of the tool), so the module can't be the
136 // first entry.
137 uptr base_address = (i ? segment.start : 0) - segment.offset;
138 LoadedModule cur_module;
139 cur_module.set(cur_name, base_address);
140 segment.AddAddressRanges(&cur_module);
141 modules->push_back(cur_module);
145 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {
146 char *smaps = nullptr;
147 uptr smaps_cap = 0;
148 uptr smaps_len = 0;
149 if (!ReadFileToBuffer("/proc/self/smaps", &smaps, &smaps_cap, &smaps_len))
150 return;
151 uptr start = 0;
152 bool file = false;
153 const char *pos = smaps;
154 while (pos < smaps + smaps_len) {
155 if (IsHex(pos[0])) {
156 start = ParseHex(&pos);
157 for (; *pos != '/' && *pos > '\n'; pos++) {}
158 file = *pos == '/';
159 } else if (internal_strncmp(pos, "Rss:", 4) == 0) {
160 while (!IsDecimal(*pos)) pos++;
161 uptr rss = ParseDecimal(&pos) * 1024;
162 cb(start, rss, file, stats, stats_size);
164 while (*pos++ != '\n') {}
166 UnmapOrDie(smaps, smaps_cap);
169 } // namespace __sanitizer
171 #endif