2012-11-10 Sandra Loosemore <sandra@codesourcery.com>
[official-gcc.git] / gcc / recog.c
blobee68e305256dc3a37158d201679457bd70b1cdba
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
60 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
61 static void validate_replace_src_1 (rtx *, void *);
62 static rtx split_insn (rtx);
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in reginfo.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
72 int volatile_ok;
74 struct recog_data recog_data;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
80 /* On return from `constrain_operands', indicate which alternative
81 was satisfied. */
83 int which_alternative;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
89 int reload_completed;
91 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
92 int epilogue_completed;
94 /* Initialize data used by the function `recog'.
95 This must be called once in the compilation of a function
96 before any insn recognition may be done in the function. */
98 void
99 init_recog_no_volatile (void)
101 volatile_ok = 0;
104 void
105 init_recog (void)
107 volatile_ok = 1;
111 /* Return true if labels in asm operands BODY are LABEL_REFs. */
113 static bool
114 asm_labels_ok (rtx body)
116 rtx asmop;
117 int i;
119 asmop = extract_asm_operands (body);
120 if (asmop == NULL_RTX)
121 return true;
123 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
124 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
125 return false;
127 return true;
130 /* Check that X is an insn-body for an `asm' with operands
131 and that the operands mentioned in it are legitimate. */
134 check_asm_operands (rtx x)
136 int noperands;
137 rtx *operands;
138 const char **constraints;
139 int i;
141 if (!asm_labels_ok (x))
142 return 0;
144 /* Post-reload, be more strict with things. */
145 if (reload_completed)
147 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
148 extract_insn (make_insn_raw (x));
149 constrain_operands (1);
150 return which_alternative >= 0;
153 noperands = asm_noperands (x);
154 if (noperands < 0)
155 return 0;
156 if (noperands == 0)
157 return 1;
159 operands = XALLOCAVEC (rtx, noperands);
160 constraints = XALLOCAVEC (const char *, noperands);
162 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
164 for (i = 0; i < noperands; i++)
166 const char *c = constraints[i];
167 if (c[0] == '%')
168 c++;
169 if (! asm_operand_ok (operands[i], c, constraints))
170 return 0;
173 return 1;
176 /* Static data for the next two routines. */
178 typedef struct change_t
180 rtx object;
181 int old_code;
182 rtx *loc;
183 rtx old;
184 bool unshare;
185 } change_t;
187 static change_t *changes;
188 static int changes_allocated;
190 static int num_changes = 0;
192 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
193 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
194 the change is simply made.
196 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
197 will be called with the address and mode as parameters. If OBJECT is
198 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
199 the change in place.
201 IN_GROUP is nonzero if this is part of a group of changes that must be
202 performed as a group. In that case, the changes will be stored. The
203 function `apply_change_group' will validate and apply the changes.
205 If IN_GROUP is zero, this is a single change. Try to recognize the insn
206 or validate the memory reference with the change applied. If the result
207 is not valid for the machine, suppress the change and return zero.
208 Otherwise, perform the change and return 1. */
210 static bool
211 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
213 rtx old = *loc;
215 if (old == new_rtx || rtx_equal_p (old, new_rtx))
216 return 1;
218 gcc_assert (in_group != 0 || num_changes == 0);
220 *loc = new_rtx;
222 /* Save the information describing this change. */
223 if (num_changes >= changes_allocated)
225 if (changes_allocated == 0)
226 /* This value allows for repeated substitutions inside complex
227 indexed addresses, or changes in up to 5 insns. */
228 changes_allocated = MAX_RECOG_OPERANDS * 5;
229 else
230 changes_allocated *= 2;
232 changes = XRESIZEVEC (change_t, changes, changes_allocated);
235 changes[num_changes].object = object;
236 changes[num_changes].loc = loc;
237 changes[num_changes].old = old;
238 changes[num_changes].unshare = unshare;
240 if (object && !MEM_P (object))
242 /* Set INSN_CODE to force rerecognition of insn. Save old code in
243 case invalid. */
244 changes[num_changes].old_code = INSN_CODE (object);
245 INSN_CODE (object) = -1;
248 num_changes++;
250 /* If we are making a group of changes, return 1. Otherwise, validate the
251 change group we made. */
253 if (in_group)
254 return 1;
255 else
256 return apply_change_group ();
259 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
260 UNSHARE to false. */
262 bool
263 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
265 return validate_change_1 (object, loc, new_rtx, in_group, false);
268 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
269 UNSHARE to true. */
271 bool
272 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
274 return validate_change_1 (object, loc, new_rtx, in_group, true);
278 /* Keep X canonicalized if some changes have made it non-canonical; only
279 modifies the operands of X, not (for example) its code. Simplifications
280 are not the job of this routine.
282 Return true if anything was changed. */
283 bool
284 canonicalize_change_group (rtx insn, rtx x)
286 if (COMMUTATIVE_P (x)
287 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
289 /* Oops, the caller has made X no longer canonical.
290 Let's redo the changes in the correct order. */
291 rtx tem = XEXP (x, 0);
292 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
293 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
294 return true;
296 else
297 return false;
301 /* This subroutine of apply_change_group verifies whether the changes to INSN
302 were valid; i.e. whether INSN can still be recognized.
304 If IN_GROUP is true clobbers which have to be added in order to
305 match the instructions will be added to the current change group.
306 Otherwise the changes will take effect immediately. */
309 insn_invalid_p (rtx insn, bool in_group)
311 rtx pat = PATTERN (insn);
312 int num_clobbers = 0;
313 /* If we are before reload and the pattern is a SET, see if we can add
314 clobbers. */
315 int icode = recog (pat, insn,
316 (GET_CODE (pat) == SET
317 && ! reload_completed && ! reload_in_progress)
318 ? &num_clobbers : 0);
319 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
322 /* If this is an asm and the operand aren't legal, then fail. Likewise if
323 this is not an asm and the insn wasn't recognized. */
324 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
325 || (!is_asm && icode < 0))
326 return 1;
328 /* If we have to add CLOBBERs, fail if we have to add ones that reference
329 hard registers since our callers can't know if they are live or not.
330 Otherwise, add them. */
331 if (num_clobbers > 0)
333 rtx newpat;
335 if (added_clobbers_hard_reg_p (icode))
336 return 1;
338 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
339 XVECEXP (newpat, 0, 0) = pat;
340 add_clobbers (newpat, icode);
341 if (in_group)
342 validate_change (insn, &PATTERN (insn), newpat, 1);
343 else
344 PATTERN (insn) = pat = newpat;
347 /* After reload, verify that all constraints are satisfied. */
348 if (reload_completed)
350 extract_insn (insn);
352 if (! constrain_operands (1))
353 return 1;
356 INSN_CODE (insn) = icode;
357 return 0;
360 /* Return number of changes made and not validated yet. */
362 num_changes_pending (void)
364 return num_changes;
367 /* Tentatively apply the changes numbered NUM and up.
368 Return 1 if all changes are valid, zero otherwise. */
371 verify_changes (int num)
373 int i;
374 rtx last_validated = NULL_RTX;
376 /* The changes have been applied and all INSN_CODEs have been reset to force
377 rerecognition.
379 The changes are valid if we aren't given an object, or if we are
380 given a MEM and it still is a valid address, or if this is in insn
381 and it is recognized. In the latter case, if reload has completed,
382 we also require that the operands meet the constraints for
383 the insn. */
385 for (i = num; i < num_changes; i++)
387 rtx object = changes[i].object;
389 /* If there is no object to test or if it is the same as the one we
390 already tested, ignore it. */
391 if (object == 0 || object == last_validated)
392 continue;
394 if (MEM_P (object))
396 if (! memory_address_addr_space_p (GET_MODE (object),
397 XEXP (object, 0),
398 MEM_ADDR_SPACE (object)))
399 break;
401 else if (REG_P (changes[i].old)
402 && asm_noperands (PATTERN (object)) > 0
403 && REG_EXPR (changes[i].old) != NULL_TREE
404 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
405 && DECL_REGISTER (REG_EXPR (changes[i].old)))
407 /* Don't allow changes of hard register operands to inline
408 assemblies if they have been defined as register asm ("x"). */
409 break;
411 else if (DEBUG_INSN_P (object))
412 continue;
413 else if (insn_invalid_p (object, true))
415 rtx pat = PATTERN (object);
417 /* Perhaps we couldn't recognize the insn because there were
418 extra CLOBBERs at the end. If so, try to re-recognize
419 without the last CLOBBER (later iterations will cause each of
420 them to be eliminated, in turn). But don't do this if we
421 have an ASM_OPERAND. */
422 if (GET_CODE (pat) == PARALLEL
423 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
424 && asm_noperands (PATTERN (object)) < 0)
426 rtx newpat;
428 if (XVECLEN (pat, 0) == 2)
429 newpat = XVECEXP (pat, 0, 0);
430 else
432 int j;
434 newpat
435 = gen_rtx_PARALLEL (VOIDmode,
436 rtvec_alloc (XVECLEN (pat, 0) - 1));
437 for (j = 0; j < XVECLEN (newpat, 0); j++)
438 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
441 /* Add a new change to this group to replace the pattern
442 with this new pattern. Then consider this change
443 as having succeeded. The change we added will
444 cause the entire call to fail if things remain invalid.
446 Note that this can lose if a later change than the one
447 we are processing specified &XVECEXP (PATTERN (object), 0, X)
448 but this shouldn't occur. */
450 validate_change (object, &PATTERN (object), newpat, 1);
451 continue;
453 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
454 || GET_CODE (pat) == VAR_LOCATION)
455 /* If this insn is a CLOBBER or USE, it is always valid, but is
456 never recognized. */
457 continue;
458 else
459 break;
461 last_validated = object;
464 return (i == num_changes);
467 /* A group of changes has previously been issued with validate_change
468 and verified with verify_changes. Call df_insn_rescan for each of
469 the insn changed and clear num_changes. */
471 void
472 confirm_change_group (void)
474 int i;
475 rtx last_object = NULL;
477 for (i = 0; i < num_changes; i++)
479 rtx object = changes[i].object;
481 if (changes[i].unshare)
482 *changes[i].loc = copy_rtx (*changes[i].loc);
484 /* Avoid unnecessary rescanning when multiple changes to same instruction
485 are made. */
486 if (object)
488 if (object != last_object && last_object && INSN_P (last_object))
489 df_insn_rescan (last_object);
490 last_object = object;
494 if (last_object && INSN_P (last_object))
495 df_insn_rescan (last_object);
496 num_changes = 0;
499 /* Apply a group of changes previously issued with `validate_change'.
500 If all changes are valid, call confirm_change_group and return 1,
501 otherwise, call cancel_changes and return 0. */
504 apply_change_group (void)
506 if (verify_changes (0))
508 confirm_change_group ();
509 return 1;
511 else
513 cancel_changes (0);
514 return 0;
519 /* Return the number of changes so far in the current group. */
522 num_validated_changes (void)
524 return num_changes;
527 /* Retract the changes numbered NUM and up. */
529 void
530 cancel_changes (int num)
532 int i;
534 /* Back out all the changes. Do this in the opposite order in which
535 they were made. */
536 for (i = num_changes - 1; i >= num; i--)
538 *changes[i].loc = changes[i].old;
539 if (changes[i].object && !MEM_P (changes[i].object))
540 INSN_CODE (changes[i].object) = changes[i].old_code;
542 num_changes = num;
545 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
546 rtx. */
548 static void
549 simplify_while_replacing (rtx *loc, rtx to, rtx object,
550 enum machine_mode op0_mode)
552 rtx x = *loc;
553 enum rtx_code code = GET_CODE (x);
554 rtx new_rtx;
556 if (SWAPPABLE_OPERANDS_P (x)
557 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
559 validate_unshare_change (object, loc,
560 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
561 : swap_condition (code),
562 GET_MODE (x), XEXP (x, 1),
563 XEXP (x, 0)), 1);
564 x = *loc;
565 code = GET_CODE (x);
568 switch (code)
570 case PLUS:
571 /* If we have a PLUS whose second operand is now a CONST_INT, use
572 simplify_gen_binary to try to simplify it.
573 ??? We may want later to remove this, once simplification is
574 separated from this function. */
575 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
576 validate_change (object, loc,
577 simplify_gen_binary
578 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
579 break;
580 case MINUS:
581 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
582 validate_change (object, loc,
583 simplify_gen_binary
584 (PLUS, GET_MODE (x), XEXP (x, 0),
585 simplify_gen_unary (NEG,
586 GET_MODE (x), XEXP (x, 1),
587 GET_MODE (x))), 1);
588 break;
589 case ZERO_EXTEND:
590 case SIGN_EXTEND:
591 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
593 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
594 op0_mode);
595 /* If any of the above failed, substitute in something that
596 we know won't be recognized. */
597 if (!new_rtx)
598 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
599 validate_change (object, loc, new_rtx, 1);
601 break;
602 case SUBREG:
603 /* All subregs possible to simplify should be simplified. */
604 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
605 SUBREG_BYTE (x));
607 /* Subregs of VOIDmode operands are incorrect. */
608 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
609 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
610 if (new_rtx)
611 validate_change (object, loc, new_rtx, 1);
612 break;
613 case ZERO_EXTRACT:
614 case SIGN_EXTRACT:
615 /* If we are replacing a register with memory, try to change the memory
616 to be the mode required for memory in extract operations (this isn't
617 likely to be an insertion operation; if it was, nothing bad will
618 happen, we might just fail in some cases). */
620 if (MEM_P (XEXP (x, 0))
621 && CONST_INT_P (XEXP (x, 1))
622 && CONST_INT_P (XEXP (x, 2))
623 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
624 MEM_ADDR_SPACE (XEXP (x, 0)))
625 && !MEM_VOLATILE_P (XEXP (x, 0)))
627 enum machine_mode wanted_mode = VOIDmode;
628 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
629 int pos = INTVAL (XEXP (x, 2));
631 if (GET_CODE (x) == ZERO_EXTRACT)
633 enum machine_mode new_mode
634 = mode_for_extraction (EP_extzv, 1);
635 if (new_mode != MAX_MACHINE_MODE)
636 wanted_mode = new_mode;
638 else if (GET_CODE (x) == SIGN_EXTRACT)
640 enum machine_mode new_mode
641 = mode_for_extraction (EP_extv, 1);
642 if (new_mode != MAX_MACHINE_MODE)
643 wanted_mode = new_mode;
646 /* If we have a narrower mode, we can do something. */
647 if (wanted_mode != VOIDmode
648 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
650 int offset = pos / BITS_PER_UNIT;
651 rtx newmem;
653 /* If the bytes and bits are counted differently, we
654 must adjust the offset. */
655 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
656 offset =
657 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
658 offset);
660 gcc_assert (GET_MODE_PRECISION (wanted_mode)
661 == GET_MODE_BITSIZE (wanted_mode));
662 pos %= GET_MODE_BITSIZE (wanted_mode);
664 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
666 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
667 validate_change (object, &XEXP (x, 0), newmem, 1);
671 break;
673 default:
674 break;
678 /* Replace every occurrence of FROM in X with TO. Mark each change with
679 validate_change passing OBJECT. */
681 static void
682 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
683 bool simplify)
685 int i, j;
686 const char *fmt;
687 rtx x = *loc;
688 enum rtx_code code;
689 enum machine_mode op0_mode = VOIDmode;
690 int prev_changes = num_changes;
692 if (!x)
693 return;
695 code = GET_CODE (x);
696 fmt = GET_RTX_FORMAT (code);
697 if (fmt[0] == 'e')
698 op0_mode = GET_MODE (XEXP (x, 0));
700 /* X matches FROM if it is the same rtx or they are both referring to the
701 same register in the same mode. Avoid calling rtx_equal_p unless the
702 operands look similar. */
704 if (x == from
705 || (REG_P (x) && REG_P (from)
706 && GET_MODE (x) == GET_MODE (from)
707 && REGNO (x) == REGNO (from))
708 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
709 && rtx_equal_p (x, from)))
711 validate_unshare_change (object, loc, to, 1);
712 return;
715 /* Call ourself recursively to perform the replacements.
716 We must not replace inside already replaced expression, otherwise we
717 get infinite recursion for replacements like (reg X)->(subreg (reg X))
718 done by regmove, so we must special case shared ASM_OPERANDS. */
720 if (GET_CODE (x) == PARALLEL)
722 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
724 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
725 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
727 /* Verify that operands are really shared. */
728 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
729 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
730 (x, 0, j))));
731 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
732 from, to, object, simplify);
734 else
735 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
736 simplify);
739 else
740 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
742 if (fmt[i] == 'e')
743 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
744 else if (fmt[i] == 'E')
745 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
746 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
747 simplify);
750 /* If we didn't substitute, there is nothing more to do. */
751 if (num_changes == prev_changes)
752 return;
754 /* Allow substituted expression to have different mode. This is used by
755 regmove to change mode of pseudo register. */
756 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
757 op0_mode = GET_MODE (XEXP (x, 0));
759 /* Do changes needed to keep rtx consistent. Don't do any other
760 simplifications, as it is not our job. */
761 if (simplify)
762 simplify_while_replacing (loc, to, object, op0_mode);
765 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
766 with TO. After all changes have been made, validate by seeing
767 if INSN is still valid. */
770 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
772 validate_replace_rtx_1 (loc, from, to, insn, true);
773 return apply_change_group ();
776 /* Try replacing every occurrence of FROM in INSN with TO. After all
777 changes have been made, validate by seeing if INSN is still valid. */
780 validate_replace_rtx (rtx from, rtx to, rtx insn)
782 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
783 return apply_change_group ();
786 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
787 is a part of INSN. After all changes have been made, validate by seeing if
788 INSN is still valid.
789 validate_replace_rtx (from, to, insn) is equivalent to
790 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
793 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
795 validate_replace_rtx_1 (where, from, to, insn, true);
796 return apply_change_group ();
799 /* Same as above, but do not simplify rtx afterwards. */
801 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
802 rtx insn)
804 validate_replace_rtx_1 (where, from, to, insn, false);
805 return apply_change_group ();
809 /* Try replacing every occurrence of FROM in INSN with TO. This also
810 will replace in REG_EQUAL and REG_EQUIV notes. */
812 void
813 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
815 rtx note;
816 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
817 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
818 if (REG_NOTE_KIND (note) == REG_EQUAL
819 || REG_NOTE_KIND (note) == REG_EQUIV)
820 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
823 /* Function called by note_uses to replace used subexpressions. */
824 struct validate_replace_src_data
826 rtx from; /* Old RTX */
827 rtx to; /* New RTX */
828 rtx insn; /* Insn in which substitution is occurring. */
831 static void
832 validate_replace_src_1 (rtx *x, void *data)
834 struct validate_replace_src_data *d
835 = (struct validate_replace_src_data *) data;
837 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
840 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
841 SET_DESTs. */
843 void
844 validate_replace_src_group (rtx from, rtx to, rtx insn)
846 struct validate_replace_src_data d;
848 d.from = from;
849 d.to = to;
850 d.insn = insn;
851 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
854 /* Try simplify INSN.
855 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
856 pattern and return true if something was simplified. */
858 bool
859 validate_simplify_insn (rtx insn)
861 int i;
862 rtx pat = NULL;
863 rtx newpat = NULL;
865 pat = PATTERN (insn);
867 if (GET_CODE (pat) == SET)
869 newpat = simplify_rtx (SET_SRC (pat));
870 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
871 validate_change (insn, &SET_SRC (pat), newpat, 1);
872 newpat = simplify_rtx (SET_DEST (pat));
873 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
874 validate_change (insn, &SET_DEST (pat), newpat, 1);
876 else if (GET_CODE (pat) == PARALLEL)
877 for (i = 0; i < XVECLEN (pat, 0); i++)
879 rtx s = XVECEXP (pat, 0, i);
881 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
883 newpat = simplify_rtx (SET_SRC (s));
884 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
885 validate_change (insn, &SET_SRC (s), newpat, 1);
886 newpat = simplify_rtx (SET_DEST (s));
887 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
888 validate_change (insn, &SET_DEST (s), newpat, 1);
891 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
894 #ifdef HAVE_cc0
895 /* Return 1 if the insn using CC0 set by INSN does not contain
896 any ordered tests applied to the condition codes.
897 EQ and NE tests do not count. */
900 next_insn_tests_no_inequality (rtx insn)
902 rtx next = next_cc0_user (insn);
904 /* If there is no next insn, we have to take the conservative choice. */
905 if (next == 0)
906 return 0;
908 return (INSN_P (next)
909 && ! inequality_comparisons_p (PATTERN (next)));
911 #endif
913 /* Return 1 if OP is a valid general operand for machine mode MODE.
914 This is either a register reference, a memory reference,
915 or a constant. In the case of a memory reference, the address
916 is checked for general validity for the target machine.
918 Register and memory references must have mode MODE in order to be valid,
919 but some constants have no machine mode and are valid for any mode.
921 If MODE is VOIDmode, OP is checked for validity for whatever mode
922 it has.
924 The main use of this function is as a predicate in match_operand
925 expressions in the machine description. */
928 general_operand (rtx op, enum machine_mode mode)
930 enum rtx_code code = GET_CODE (op);
932 if (mode == VOIDmode)
933 mode = GET_MODE (op);
935 /* Don't accept CONST_INT or anything similar
936 if the caller wants something floating. */
937 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
938 && GET_MODE_CLASS (mode) != MODE_INT
939 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
940 return 0;
942 if (CONST_INT_P (op)
943 && mode != VOIDmode
944 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
945 return 0;
947 if (CONSTANT_P (op))
948 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
949 || mode == VOIDmode)
950 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
951 && targetm.legitimate_constant_p (mode == VOIDmode
952 ? GET_MODE (op)
953 : mode, op));
955 /* Except for certain constants with VOIDmode, already checked for,
956 OP's mode must match MODE if MODE specifies a mode. */
958 if (GET_MODE (op) != mode)
959 return 0;
961 if (code == SUBREG)
963 rtx sub = SUBREG_REG (op);
965 #ifdef INSN_SCHEDULING
966 /* On machines that have insn scheduling, we want all memory
967 reference to be explicit, so outlaw paradoxical SUBREGs.
968 However, we must allow them after reload so that they can
969 get cleaned up by cleanup_subreg_operands. */
970 if (!reload_completed && MEM_P (sub)
971 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
972 return 0;
973 #endif
974 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
975 may result in incorrect reference. We should simplify all valid
976 subregs of MEM anyway. But allow this after reload because we
977 might be called from cleanup_subreg_operands.
979 ??? This is a kludge. */
980 if (!reload_completed && SUBREG_BYTE (op) != 0
981 && MEM_P (sub))
982 return 0;
984 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
985 create such rtl, and we must reject it. */
986 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
987 /* LRA can use subreg to store a floating point value in an
988 integer mode. Although the floating point and the
989 integer modes need the same number of hard registers, the
990 size of floating point mode can be less than the integer
991 mode. */
992 && ! lra_in_progress
993 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
994 return 0;
996 op = sub;
997 code = GET_CODE (op);
1000 if (code == REG)
1001 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1002 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1004 if (code == MEM)
1006 rtx y = XEXP (op, 0);
1008 if (! volatile_ok && MEM_VOLATILE_P (op))
1009 return 0;
1011 /* Use the mem's mode, since it will be reloaded thus. */
1012 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1013 return 1;
1016 return 0;
1019 /* Return 1 if OP is a valid memory address for a memory reference
1020 of mode MODE.
1022 The main use of this function is as a predicate in match_operand
1023 expressions in the machine description. */
1026 address_operand (rtx op, enum machine_mode mode)
1028 return memory_address_p (mode, op);
1031 /* Return 1 if OP is a register reference of mode MODE.
1032 If MODE is VOIDmode, accept a register in any mode.
1034 The main use of this function is as a predicate in match_operand
1035 expressions in the machine description. */
1038 register_operand (rtx op, enum machine_mode mode)
1040 if (GET_MODE (op) != mode && mode != VOIDmode)
1041 return 0;
1043 if (GET_CODE (op) == SUBREG)
1045 rtx sub = SUBREG_REG (op);
1047 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1048 because it is guaranteed to be reloaded into one.
1049 Just make sure the MEM is valid in itself.
1050 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1051 but currently it does result from (SUBREG (REG)...) where the
1052 reg went on the stack.) */
1053 if (! reload_completed && MEM_P (sub))
1054 return general_operand (op, mode);
1056 #ifdef CANNOT_CHANGE_MODE_CLASS
1057 if (REG_P (sub)
1058 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1059 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1060 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1061 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1062 return 0;
1063 #endif
1065 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1066 create such rtl, and we must reject it. */
1067 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1068 /* LRA can use subreg to store a floating point value in an
1069 integer mode. Although the floating point and the
1070 integer modes need the same number of hard registers, the
1071 size of floating point mode can be less than the integer
1072 mode. */
1073 && ! lra_in_progress
1074 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1075 return 0;
1077 op = sub;
1080 return (REG_P (op)
1081 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1082 || in_hard_reg_set_p (operand_reg_set,
1083 GET_MODE (op), REGNO (op))));
1086 /* Return 1 for a register in Pmode; ignore the tested mode. */
1089 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1091 return register_operand (op, Pmode);
1094 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1095 or a hard register. */
1098 scratch_operand (rtx op, enum machine_mode mode)
1100 if (GET_MODE (op) != mode && mode != VOIDmode)
1101 return 0;
1103 return (GET_CODE (op) == SCRATCH
1104 || (REG_P (op)
1105 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1108 /* Return 1 if OP is a valid immediate operand for mode MODE.
1110 The main use of this function is as a predicate in match_operand
1111 expressions in the machine description. */
1114 immediate_operand (rtx op, enum machine_mode mode)
1116 /* Don't accept CONST_INT or anything similar
1117 if the caller wants something floating. */
1118 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1119 && GET_MODE_CLASS (mode) != MODE_INT
1120 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1121 return 0;
1123 if (CONST_INT_P (op)
1124 && mode != VOIDmode
1125 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1126 return 0;
1128 return (CONSTANT_P (op)
1129 && (GET_MODE (op) == mode || mode == VOIDmode
1130 || GET_MODE (op) == VOIDmode)
1131 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1132 && targetm.legitimate_constant_p (mode == VOIDmode
1133 ? GET_MODE (op)
1134 : mode, op));
1137 /* Returns 1 if OP is an operand that is a CONST_INT. */
1140 const_int_operand (rtx op, enum machine_mode mode)
1142 if (!CONST_INT_P (op))
1143 return 0;
1145 if (mode != VOIDmode
1146 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1147 return 0;
1149 return 1;
1152 /* Returns 1 if OP is an operand that is a constant integer or constant
1153 floating-point number. */
1156 const_double_operand (rtx op, enum machine_mode mode)
1158 /* Don't accept CONST_INT or anything similar
1159 if the caller wants something floating. */
1160 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1161 && GET_MODE_CLASS (mode) != MODE_INT
1162 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1163 return 0;
1165 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1166 && (mode == VOIDmode || GET_MODE (op) == mode
1167 || GET_MODE (op) == VOIDmode));
1170 /* Return 1 if OP is a general operand that is not an immediate operand. */
1173 nonimmediate_operand (rtx op, enum machine_mode mode)
1175 return (general_operand (op, mode) && ! CONSTANT_P (op));
1178 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1181 nonmemory_operand (rtx op, enum machine_mode mode)
1183 if (CONSTANT_P (op))
1184 return immediate_operand (op, mode);
1186 if (GET_MODE (op) != mode && mode != VOIDmode)
1187 return 0;
1189 if (GET_CODE (op) == SUBREG)
1191 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1192 because it is guaranteed to be reloaded into one.
1193 Just make sure the MEM is valid in itself.
1194 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1195 but currently it does result from (SUBREG (REG)...) where the
1196 reg went on the stack.) */
1197 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1198 return general_operand (op, mode);
1199 op = SUBREG_REG (op);
1202 return (REG_P (op)
1203 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1204 || in_hard_reg_set_p (operand_reg_set,
1205 GET_MODE (op), REGNO (op))));
1208 /* Return 1 if OP is a valid operand that stands for pushing a
1209 value of mode MODE onto the stack.
1211 The main use of this function is as a predicate in match_operand
1212 expressions in the machine description. */
1215 push_operand (rtx op, enum machine_mode mode)
1217 unsigned int rounded_size = GET_MODE_SIZE (mode);
1219 #ifdef PUSH_ROUNDING
1220 rounded_size = PUSH_ROUNDING (rounded_size);
1221 #endif
1223 if (!MEM_P (op))
1224 return 0;
1226 if (mode != VOIDmode && GET_MODE (op) != mode)
1227 return 0;
1229 op = XEXP (op, 0);
1231 if (rounded_size == GET_MODE_SIZE (mode))
1233 if (GET_CODE (op) != STACK_PUSH_CODE)
1234 return 0;
1236 else
1238 if (GET_CODE (op) != PRE_MODIFY
1239 || GET_CODE (XEXP (op, 1)) != PLUS
1240 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1241 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1242 #ifdef STACK_GROWS_DOWNWARD
1243 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1244 #else
1245 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1246 #endif
1248 return 0;
1251 return XEXP (op, 0) == stack_pointer_rtx;
1254 /* Return 1 if OP is a valid operand that stands for popping a
1255 value of mode MODE off the stack.
1257 The main use of this function is as a predicate in match_operand
1258 expressions in the machine description. */
1261 pop_operand (rtx op, enum machine_mode mode)
1263 if (!MEM_P (op))
1264 return 0;
1266 if (mode != VOIDmode && GET_MODE (op) != mode)
1267 return 0;
1269 op = XEXP (op, 0);
1271 if (GET_CODE (op) != STACK_POP_CODE)
1272 return 0;
1274 return XEXP (op, 0) == stack_pointer_rtx;
1277 /* Return 1 if ADDR is a valid memory address
1278 for mode MODE in address space AS. */
1281 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1282 rtx addr, addr_space_t as)
1284 #ifdef GO_IF_LEGITIMATE_ADDRESS
1285 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1286 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1287 return 0;
1289 win:
1290 return 1;
1291 #else
1292 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1293 #endif
1296 /* Return 1 if OP is a valid memory reference with mode MODE,
1297 including a valid address.
1299 The main use of this function is as a predicate in match_operand
1300 expressions in the machine description. */
1303 memory_operand (rtx op, enum machine_mode mode)
1305 rtx inner;
1307 if (! reload_completed)
1308 /* Note that no SUBREG is a memory operand before end of reload pass,
1309 because (SUBREG (MEM...)) forces reloading into a register. */
1310 return MEM_P (op) && general_operand (op, mode);
1312 if (mode != VOIDmode && GET_MODE (op) != mode)
1313 return 0;
1315 inner = op;
1316 if (GET_CODE (inner) == SUBREG)
1317 inner = SUBREG_REG (inner);
1319 return (MEM_P (inner) && general_operand (op, mode));
1322 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1323 that is, a memory reference whose address is a general_operand. */
1326 indirect_operand (rtx op, enum machine_mode mode)
1328 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1329 if (! reload_completed
1330 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1332 int offset = SUBREG_BYTE (op);
1333 rtx inner = SUBREG_REG (op);
1335 if (mode != VOIDmode && GET_MODE (op) != mode)
1336 return 0;
1338 /* The only way that we can have a general_operand as the resulting
1339 address is if OFFSET is zero and the address already is an operand
1340 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1341 operand. */
1343 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1344 || (GET_CODE (XEXP (inner, 0)) == PLUS
1345 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1346 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1347 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1350 return (MEM_P (op)
1351 && memory_operand (op, mode)
1352 && general_operand (XEXP (op, 0), Pmode));
1355 /* Return 1 if this is an ordered comparison operator (not including
1356 ORDERED and UNORDERED). */
1359 ordered_comparison_operator (rtx op, enum machine_mode mode)
1361 if (mode != VOIDmode && GET_MODE (op) != mode)
1362 return false;
1363 switch (GET_CODE (op))
1365 case EQ:
1366 case NE:
1367 case LT:
1368 case LTU:
1369 case LE:
1370 case LEU:
1371 case GT:
1372 case GTU:
1373 case GE:
1374 case GEU:
1375 return true;
1376 default:
1377 return false;
1381 /* Return 1 if this is a comparison operator. This allows the use of
1382 MATCH_OPERATOR to recognize all the branch insns. */
1385 comparison_operator (rtx op, enum machine_mode mode)
1387 return ((mode == VOIDmode || GET_MODE (op) == mode)
1388 && COMPARISON_P (op));
1391 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1394 extract_asm_operands (rtx body)
1396 rtx tmp;
1397 switch (GET_CODE (body))
1399 case ASM_OPERANDS:
1400 return body;
1402 case SET:
1403 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1404 tmp = SET_SRC (body);
1405 if (GET_CODE (tmp) == ASM_OPERANDS)
1406 return tmp;
1407 break;
1409 case PARALLEL:
1410 tmp = XVECEXP (body, 0, 0);
1411 if (GET_CODE (tmp) == ASM_OPERANDS)
1412 return tmp;
1413 if (GET_CODE (tmp) == SET)
1415 tmp = SET_SRC (tmp);
1416 if (GET_CODE (tmp) == ASM_OPERANDS)
1417 return tmp;
1419 break;
1421 default:
1422 break;
1424 return NULL;
1427 /* If BODY is an insn body that uses ASM_OPERANDS,
1428 return the number of operands (both input and output) in the insn.
1429 Otherwise return -1. */
1432 asm_noperands (const_rtx body)
1434 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1435 int n_sets = 0;
1437 if (asm_op == NULL)
1438 return -1;
1440 if (GET_CODE (body) == SET)
1441 n_sets = 1;
1442 else if (GET_CODE (body) == PARALLEL)
1444 int i;
1445 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1447 /* Multiple output operands, or 1 output plus some clobbers:
1448 body is
1449 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1450 /* Count backwards through CLOBBERs to determine number of SETs. */
1451 for (i = XVECLEN (body, 0); i > 0; i--)
1453 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1454 break;
1455 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1456 return -1;
1459 /* N_SETS is now number of output operands. */
1460 n_sets = i;
1462 /* Verify that all the SETs we have
1463 came from a single original asm_operands insn
1464 (so that invalid combinations are blocked). */
1465 for (i = 0; i < n_sets; i++)
1467 rtx elt = XVECEXP (body, 0, i);
1468 if (GET_CODE (elt) != SET)
1469 return -1;
1470 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1471 return -1;
1472 /* If these ASM_OPERANDS rtx's came from different original insns
1473 then they aren't allowed together. */
1474 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1475 != ASM_OPERANDS_INPUT_VEC (asm_op))
1476 return -1;
1479 else
1481 /* 0 outputs, but some clobbers:
1482 body is [(asm_operands ...) (clobber (reg ...))...]. */
1483 /* Make sure all the other parallel things really are clobbers. */
1484 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1485 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1486 return -1;
1490 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1491 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1494 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1495 copy its operands (both input and output) into the vector OPERANDS,
1496 the locations of the operands within the insn into the vector OPERAND_LOCS,
1497 and the constraints for the operands into CONSTRAINTS.
1498 Write the modes of the operands into MODES.
1499 Return the assembler-template.
1501 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1502 we don't store that info. */
1504 const char *
1505 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1506 const char **constraints, enum machine_mode *modes,
1507 location_t *loc)
1509 int nbase = 0, n, i;
1510 rtx asmop;
1512 switch (GET_CODE (body))
1514 case ASM_OPERANDS:
1515 /* Zero output asm: BODY is (asm_operands ...). */
1516 asmop = body;
1517 break;
1519 case SET:
1520 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1521 asmop = SET_SRC (body);
1523 /* The output is in the SET.
1524 Its constraint is in the ASM_OPERANDS itself. */
1525 if (operands)
1526 operands[0] = SET_DEST (body);
1527 if (operand_locs)
1528 operand_locs[0] = &SET_DEST (body);
1529 if (constraints)
1530 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1531 if (modes)
1532 modes[0] = GET_MODE (SET_DEST (body));
1533 nbase = 1;
1534 break;
1536 case PARALLEL:
1538 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1540 asmop = XVECEXP (body, 0, 0);
1541 if (GET_CODE (asmop) == SET)
1543 asmop = SET_SRC (asmop);
1545 /* At least one output, plus some CLOBBERs. The outputs are in
1546 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1547 for (i = 0; i < nparallel; i++)
1549 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1550 break; /* Past last SET */
1551 if (operands)
1552 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1553 if (operand_locs)
1554 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1555 if (constraints)
1556 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1557 if (modes)
1558 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1560 nbase = i;
1562 break;
1565 default:
1566 gcc_unreachable ();
1569 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1570 for (i = 0; i < n; i++)
1572 if (operand_locs)
1573 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1574 if (operands)
1575 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1576 if (constraints)
1577 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1578 if (modes)
1579 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1581 nbase += n;
1583 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1584 for (i = 0; i < n; i++)
1586 if (operand_locs)
1587 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1588 if (operands)
1589 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1590 if (constraints)
1591 constraints[nbase + i] = "";
1592 if (modes)
1593 modes[nbase + i] = Pmode;
1596 if (loc)
1597 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1599 return ASM_OPERANDS_TEMPLATE (asmop);
1602 /* Check if an asm_operand matches its constraints.
1603 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1606 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1608 int result = 0;
1609 #ifdef AUTO_INC_DEC
1610 bool incdec_ok = false;
1611 #endif
1613 /* Use constrain_operands after reload. */
1614 gcc_assert (!reload_completed);
1616 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1617 many alternatives as required to match the other operands. */
1618 if (*constraint == '\0')
1619 result = 1;
1621 while (*constraint)
1623 char c = *constraint;
1624 int len;
1625 switch (c)
1627 case ',':
1628 constraint++;
1629 continue;
1630 case '=':
1631 case '+':
1632 case '*':
1633 case '%':
1634 case '!':
1635 case '#':
1636 case '&':
1637 case '?':
1638 break;
1640 case '0': case '1': case '2': case '3': case '4':
1641 case '5': case '6': case '7': case '8': case '9':
1642 /* If caller provided constraints pointer, look up
1643 the maching constraint. Otherwise, our caller should have
1644 given us the proper matching constraint, but we can't
1645 actually fail the check if they didn't. Indicate that
1646 results are inconclusive. */
1647 if (constraints)
1649 char *end;
1650 unsigned long match;
1652 match = strtoul (constraint, &end, 10);
1653 if (!result)
1654 result = asm_operand_ok (op, constraints[match], NULL);
1655 constraint = (const char *) end;
1657 else
1660 constraint++;
1661 while (ISDIGIT (*constraint));
1662 if (! result)
1663 result = -1;
1665 continue;
1667 case 'p':
1668 if (address_operand (op, VOIDmode))
1669 result = 1;
1670 break;
1672 case TARGET_MEM_CONSTRAINT:
1673 case 'V': /* non-offsettable */
1674 if (memory_operand (op, VOIDmode))
1675 result = 1;
1676 break;
1678 case 'o': /* offsettable */
1679 if (offsettable_nonstrict_memref_p (op))
1680 result = 1;
1681 break;
1683 case '<':
1684 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1685 excepting those that expand_call created. Further, on some
1686 machines which do not have generalized auto inc/dec, an inc/dec
1687 is not a memory_operand.
1689 Match any memory and hope things are resolved after reload. */
1691 if (MEM_P (op)
1692 && (1
1693 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1694 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1695 result = 1;
1696 #ifdef AUTO_INC_DEC
1697 incdec_ok = true;
1698 #endif
1699 break;
1701 case '>':
1702 if (MEM_P (op)
1703 && (1
1704 || GET_CODE (XEXP (op, 0)) == PRE_INC
1705 || GET_CODE (XEXP (op, 0)) == POST_INC))
1706 result = 1;
1707 #ifdef AUTO_INC_DEC
1708 incdec_ok = true;
1709 #endif
1710 break;
1712 case 'E':
1713 case 'F':
1714 if (CONST_DOUBLE_AS_FLOAT_P (op)
1715 || (GET_CODE (op) == CONST_VECTOR
1716 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1717 result = 1;
1718 break;
1720 case 'G':
1721 if (CONST_DOUBLE_AS_FLOAT_P (op)
1722 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1723 result = 1;
1724 break;
1725 case 'H':
1726 if (CONST_DOUBLE_AS_FLOAT_P (op)
1727 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1728 result = 1;
1729 break;
1731 case 's':
1732 if (CONST_SCALAR_INT_P (op))
1733 break;
1734 /* Fall through. */
1736 case 'i':
1737 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1738 result = 1;
1739 break;
1741 case 'n':
1742 if (CONST_SCALAR_INT_P (op))
1743 result = 1;
1744 break;
1746 case 'I':
1747 if (CONST_INT_P (op)
1748 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1749 result = 1;
1750 break;
1751 case 'J':
1752 if (CONST_INT_P (op)
1753 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1754 result = 1;
1755 break;
1756 case 'K':
1757 if (CONST_INT_P (op)
1758 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1759 result = 1;
1760 break;
1761 case 'L':
1762 if (CONST_INT_P (op)
1763 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1764 result = 1;
1765 break;
1766 case 'M':
1767 if (CONST_INT_P (op)
1768 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1769 result = 1;
1770 break;
1771 case 'N':
1772 if (CONST_INT_P (op)
1773 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1774 result = 1;
1775 break;
1776 case 'O':
1777 if (CONST_INT_P (op)
1778 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1779 result = 1;
1780 break;
1781 case 'P':
1782 if (CONST_INT_P (op)
1783 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1784 result = 1;
1785 break;
1787 case 'X':
1788 result = 1;
1789 break;
1791 case 'g':
1792 if (general_operand (op, VOIDmode))
1793 result = 1;
1794 break;
1796 default:
1797 /* For all other letters, we first check for a register class,
1798 otherwise it is an EXTRA_CONSTRAINT. */
1799 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1801 case 'r':
1802 if (GET_MODE (op) == BLKmode)
1803 break;
1804 if (register_operand (op, VOIDmode))
1805 result = 1;
1807 #ifdef EXTRA_CONSTRAINT_STR
1808 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1809 /* Every memory operand can be reloaded to fit. */
1810 result = result || memory_operand (op, VOIDmode);
1811 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1812 /* Every address operand can be reloaded to fit. */
1813 result = result || address_operand (op, VOIDmode);
1814 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1815 result = 1;
1816 #endif
1817 break;
1819 len = CONSTRAINT_LEN (c, constraint);
1821 constraint++;
1822 while (--len && *constraint);
1823 if (len)
1824 return 0;
1827 #ifdef AUTO_INC_DEC
1828 /* For operands without < or > constraints reject side-effects. */
1829 if (!incdec_ok && result && MEM_P (op))
1830 switch (GET_CODE (XEXP (op, 0)))
1832 case PRE_INC:
1833 case POST_INC:
1834 case PRE_DEC:
1835 case POST_DEC:
1836 case PRE_MODIFY:
1837 case POST_MODIFY:
1838 return 0;
1839 default:
1840 break;
1842 #endif
1844 return result;
1847 /* Given an rtx *P, if it is a sum containing an integer constant term,
1848 return the location (type rtx *) of the pointer to that constant term.
1849 Otherwise, return a null pointer. */
1851 rtx *
1852 find_constant_term_loc (rtx *p)
1854 rtx *tem;
1855 enum rtx_code code = GET_CODE (*p);
1857 /* If *P IS such a constant term, P is its location. */
1859 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1860 || code == CONST)
1861 return p;
1863 /* Otherwise, if not a sum, it has no constant term. */
1865 if (GET_CODE (*p) != PLUS)
1866 return 0;
1868 /* If one of the summands is constant, return its location. */
1870 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1871 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1872 return p;
1874 /* Otherwise, check each summand for containing a constant term. */
1876 if (XEXP (*p, 0) != 0)
1878 tem = find_constant_term_loc (&XEXP (*p, 0));
1879 if (tem != 0)
1880 return tem;
1883 if (XEXP (*p, 1) != 0)
1885 tem = find_constant_term_loc (&XEXP (*p, 1));
1886 if (tem != 0)
1887 return tem;
1890 return 0;
1893 /* Return 1 if OP is a memory reference
1894 whose address contains no side effects
1895 and remains valid after the addition
1896 of a positive integer less than the
1897 size of the object being referenced.
1899 We assume that the original address is valid and do not check it.
1901 This uses strict_memory_address_p as a subroutine, so
1902 don't use it before reload. */
1905 offsettable_memref_p (rtx op)
1907 return ((MEM_P (op))
1908 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1909 MEM_ADDR_SPACE (op)));
1912 /* Similar, but don't require a strictly valid mem ref:
1913 consider pseudo-regs valid as index or base regs. */
1916 offsettable_nonstrict_memref_p (rtx op)
1918 return ((MEM_P (op))
1919 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1920 MEM_ADDR_SPACE (op)));
1923 /* Return 1 if Y is a memory address which contains no side effects
1924 and would remain valid for address space AS after the addition of
1925 a positive integer less than the size of that mode.
1927 We assume that the original address is valid and do not check it.
1928 We do check that it is valid for narrower modes.
1930 If STRICTP is nonzero, we require a strictly valid address,
1931 for the sake of use in reload.c. */
1934 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1935 addr_space_t as)
1937 enum rtx_code ycode = GET_CODE (y);
1938 rtx z;
1939 rtx y1 = y;
1940 rtx *y2;
1941 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1942 (strictp ? strict_memory_address_addr_space_p
1943 : memory_address_addr_space_p);
1944 unsigned int mode_sz = GET_MODE_SIZE (mode);
1946 if (CONSTANT_ADDRESS_P (y))
1947 return 1;
1949 /* Adjusting an offsettable address involves changing to a narrower mode.
1950 Make sure that's OK. */
1952 if (mode_dependent_address_p (y, as))
1953 return 0;
1955 /* ??? How much offset does an offsettable BLKmode reference need?
1956 Clearly that depends on the situation in which it's being used.
1957 However, the current situation in which we test 0xffffffff is
1958 less than ideal. Caveat user. */
1959 if (mode_sz == 0)
1960 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1962 /* If the expression contains a constant term,
1963 see if it remains valid when max possible offset is added. */
1965 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1967 int good;
1969 y1 = *y2;
1970 *y2 = plus_constant (GET_MODE (y), *y2, mode_sz - 1);
1971 /* Use QImode because an odd displacement may be automatically invalid
1972 for any wider mode. But it should be valid for a single byte. */
1973 good = (*addressp) (QImode, y, as);
1975 /* In any case, restore old contents of memory. */
1976 *y2 = y1;
1977 return good;
1980 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1981 return 0;
1983 /* The offset added here is chosen as the maximum offset that
1984 any instruction could need to add when operating on something
1985 of the specified mode. We assume that if Y and Y+c are
1986 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1987 go inside a LO_SUM here, so we do so as well. */
1988 if (GET_CODE (y) == LO_SUM
1989 && mode != BLKmode
1990 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1991 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1992 plus_constant (GET_MODE (y), XEXP (y, 1),
1993 mode_sz - 1));
1994 else
1995 z = plus_constant (GET_MODE (y), y, mode_sz - 1);
1997 /* Use QImode because an odd displacement may be automatically invalid
1998 for any wider mode. But it should be valid for a single byte. */
1999 return (*addressp) (QImode, z, as);
2002 /* Return 1 if ADDR is an address-expression whose effect depends
2003 on the mode of the memory reference it is used in.
2005 ADDRSPACE is the address space associated with the address.
2007 Autoincrement addressing is a typical example of mode-dependence
2008 because the amount of the increment depends on the mode. */
2010 bool
2011 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2013 /* Auto-increment addressing with anything other than post_modify
2014 or pre_modify always introduces a mode dependency. Catch such
2015 cases now instead of deferring to the target. */
2016 if (GET_CODE (addr) == PRE_INC
2017 || GET_CODE (addr) == POST_INC
2018 || GET_CODE (addr) == PRE_DEC
2019 || GET_CODE (addr) == POST_DEC)
2020 return true;
2022 return targetm.mode_dependent_address_p (addr, addrspace);
2025 /* Like extract_insn, but save insn extracted and don't extract again, when
2026 called again for the same insn expecting that recog_data still contain the
2027 valid information. This is used primary by gen_attr infrastructure that
2028 often does extract insn again and again. */
2029 void
2030 extract_insn_cached (rtx insn)
2032 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2033 return;
2034 extract_insn (insn);
2035 recog_data.insn = insn;
2038 /* Do cached extract_insn, constrain_operands and complain about failures.
2039 Used by insn_attrtab. */
2040 void
2041 extract_constrain_insn_cached (rtx insn)
2043 extract_insn_cached (insn);
2044 if (which_alternative == -1
2045 && !constrain_operands (reload_completed))
2046 fatal_insn_not_found (insn);
2049 /* Do cached constrain_operands and complain about failures. */
2051 constrain_operands_cached (int strict)
2053 if (which_alternative == -1)
2054 return constrain_operands (strict);
2055 else
2056 return 1;
2059 /* Analyze INSN and fill in recog_data. */
2061 void
2062 extract_insn (rtx insn)
2064 int i;
2065 int icode;
2066 int noperands;
2067 rtx body = PATTERN (insn);
2069 recog_data.n_operands = 0;
2070 recog_data.n_alternatives = 0;
2071 recog_data.n_dups = 0;
2072 recog_data.is_asm = false;
2074 switch (GET_CODE (body))
2076 case USE:
2077 case CLOBBER:
2078 case ASM_INPUT:
2079 case ADDR_VEC:
2080 case ADDR_DIFF_VEC:
2081 case VAR_LOCATION:
2082 return;
2084 case SET:
2085 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2086 goto asm_insn;
2087 else
2088 goto normal_insn;
2089 case PARALLEL:
2090 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2091 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2092 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2093 goto asm_insn;
2094 else
2095 goto normal_insn;
2096 case ASM_OPERANDS:
2097 asm_insn:
2098 recog_data.n_operands = noperands = asm_noperands (body);
2099 if (noperands >= 0)
2101 /* This insn is an `asm' with operands. */
2103 /* expand_asm_operands makes sure there aren't too many operands. */
2104 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2106 /* Now get the operand values and constraints out of the insn. */
2107 decode_asm_operands (body, recog_data.operand,
2108 recog_data.operand_loc,
2109 recog_data.constraints,
2110 recog_data.operand_mode, NULL);
2111 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2112 if (noperands > 0)
2114 const char *p = recog_data.constraints[0];
2115 recog_data.n_alternatives = 1;
2116 while (*p)
2117 recog_data.n_alternatives += (*p++ == ',');
2119 recog_data.is_asm = true;
2120 break;
2122 fatal_insn_not_found (insn);
2124 default:
2125 normal_insn:
2126 /* Ordinary insn: recognize it, get the operands via insn_extract
2127 and get the constraints. */
2129 icode = recog_memoized (insn);
2130 if (icode < 0)
2131 fatal_insn_not_found (insn);
2133 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2134 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2135 recog_data.n_dups = insn_data[icode].n_dups;
2137 insn_extract (insn);
2139 for (i = 0; i < noperands; i++)
2141 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2142 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2143 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2144 /* VOIDmode match_operands gets mode from their real operand. */
2145 if (recog_data.operand_mode[i] == VOIDmode)
2146 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2149 for (i = 0; i < noperands; i++)
2150 recog_data.operand_type[i]
2151 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2152 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2153 : OP_IN);
2155 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2157 if (INSN_CODE (insn) < 0)
2158 for (i = 0; i < recog_data.n_alternatives; i++)
2159 recog_data.alternative_enabled_p[i] = true;
2160 else
2162 recog_data.insn = insn;
2163 for (i = 0; i < recog_data.n_alternatives; i++)
2165 which_alternative = i;
2166 recog_data.alternative_enabled_p[i]
2167 = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
2171 recog_data.insn = NULL;
2172 which_alternative = -1;
2175 /* After calling extract_insn, you can use this function to extract some
2176 information from the constraint strings into a more usable form.
2177 The collected data is stored in recog_op_alt. */
2178 void
2179 preprocess_constraints (void)
2181 int i;
2183 for (i = 0; i < recog_data.n_operands; i++)
2184 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2185 * sizeof (struct operand_alternative)));
2187 for (i = 0; i < recog_data.n_operands; i++)
2189 int j;
2190 struct operand_alternative *op_alt;
2191 const char *p = recog_data.constraints[i];
2193 op_alt = recog_op_alt[i];
2195 for (j = 0; j < recog_data.n_alternatives; j++)
2197 op_alt[j].cl = NO_REGS;
2198 op_alt[j].constraint = p;
2199 op_alt[j].matches = -1;
2200 op_alt[j].matched = -1;
2202 if (!recog_data.alternative_enabled_p[j])
2204 p = skip_alternative (p);
2205 continue;
2208 if (*p == '\0' || *p == ',')
2210 op_alt[j].anything_ok = 1;
2211 continue;
2214 for (;;)
2216 char c = *p;
2217 if (c == '#')
2219 c = *++p;
2220 while (c != ',' && c != '\0');
2221 if (c == ',' || c == '\0')
2223 p++;
2224 break;
2227 switch (c)
2229 case '=': case '+': case '*': case '%':
2230 case 'E': case 'F': case 'G': case 'H':
2231 case 's': case 'i': case 'n':
2232 case 'I': case 'J': case 'K': case 'L':
2233 case 'M': case 'N': case 'O': case 'P':
2234 /* These don't say anything we care about. */
2235 break;
2237 case '?':
2238 op_alt[j].reject += 6;
2239 break;
2240 case '!':
2241 op_alt[j].reject += 600;
2242 break;
2243 case '&':
2244 op_alt[j].earlyclobber = 1;
2245 break;
2247 case '0': case '1': case '2': case '3': case '4':
2248 case '5': case '6': case '7': case '8': case '9':
2250 char *end;
2251 op_alt[j].matches = strtoul (p, &end, 10);
2252 recog_op_alt[op_alt[j].matches][j].matched = i;
2253 p = end;
2255 continue;
2257 case TARGET_MEM_CONSTRAINT:
2258 op_alt[j].memory_ok = 1;
2259 break;
2260 case '<':
2261 op_alt[j].decmem_ok = 1;
2262 break;
2263 case '>':
2264 op_alt[j].incmem_ok = 1;
2265 break;
2266 case 'V':
2267 op_alt[j].nonoffmem_ok = 1;
2268 break;
2269 case 'o':
2270 op_alt[j].offmem_ok = 1;
2271 break;
2272 case 'X':
2273 op_alt[j].anything_ok = 1;
2274 break;
2276 case 'p':
2277 op_alt[j].is_address = 1;
2278 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2279 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2280 ADDRESS, SCRATCH)];
2281 break;
2283 case 'g':
2284 case 'r':
2285 op_alt[j].cl =
2286 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2287 break;
2289 default:
2290 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2292 op_alt[j].memory_ok = 1;
2293 break;
2295 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2297 op_alt[j].is_address = 1;
2298 op_alt[j].cl
2299 = (reg_class_subunion
2300 [(int) op_alt[j].cl]
2301 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2302 ADDRESS, SCRATCH)]);
2303 break;
2306 op_alt[j].cl
2307 = (reg_class_subunion
2308 [(int) op_alt[j].cl]
2309 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2310 break;
2312 p += CONSTRAINT_LEN (c, p);
2318 /* Check the operands of an insn against the insn's operand constraints
2319 and return 1 if they are valid.
2320 The information about the insn's operands, constraints, operand modes
2321 etc. is obtained from the global variables set up by extract_insn.
2323 WHICH_ALTERNATIVE is set to a number which indicates which
2324 alternative of constraints was matched: 0 for the first alternative,
2325 1 for the next, etc.
2327 In addition, when two operands are required to match
2328 and it happens that the output operand is (reg) while the
2329 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2330 make the output operand look like the input.
2331 This is because the output operand is the one the template will print.
2333 This is used in final, just before printing the assembler code and by
2334 the routines that determine an insn's attribute.
2336 If STRICT is a positive nonzero value, it means that we have been
2337 called after reload has been completed. In that case, we must
2338 do all checks strictly. If it is zero, it means that we have been called
2339 before reload has completed. In that case, we first try to see if we can
2340 find an alternative that matches strictly. If not, we try again, this
2341 time assuming that reload will fix up the insn. This provides a "best
2342 guess" for the alternative and is used to compute attributes of insns prior
2343 to reload. A negative value of STRICT is used for this internal call. */
2345 struct funny_match
2347 int this_op, other;
2351 constrain_operands (int strict)
2353 const char *constraints[MAX_RECOG_OPERANDS];
2354 int matching_operands[MAX_RECOG_OPERANDS];
2355 int earlyclobber[MAX_RECOG_OPERANDS];
2356 int c;
2358 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2359 int funny_match_index;
2361 which_alternative = 0;
2362 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2363 return 1;
2365 for (c = 0; c < recog_data.n_operands; c++)
2367 constraints[c] = recog_data.constraints[c];
2368 matching_operands[c] = -1;
2373 int seen_earlyclobber_at = -1;
2374 int opno;
2375 int lose = 0;
2376 funny_match_index = 0;
2378 if (!recog_data.alternative_enabled_p[which_alternative])
2380 int i;
2382 for (i = 0; i < recog_data.n_operands; i++)
2383 constraints[i] = skip_alternative (constraints[i]);
2385 which_alternative++;
2386 continue;
2389 for (opno = 0; opno < recog_data.n_operands; opno++)
2391 rtx op = recog_data.operand[opno];
2392 enum machine_mode mode = GET_MODE (op);
2393 const char *p = constraints[opno];
2394 int offset = 0;
2395 int win = 0;
2396 int val;
2397 int len;
2399 earlyclobber[opno] = 0;
2401 /* A unary operator may be accepted by the predicate, but it
2402 is irrelevant for matching constraints. */
2403 if (UNARY_P (op))
2404 op = XEXP (op, 0);
2406 if (GET_CODE (op) == SUBREG)
2408 if (REG_P (SUBREG_REG (op))
2409 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2410 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2411 GET_MODE (SUBREG_REG (op)),
2412 SUBREG_BYTE (op),
2413 GET_MODE (op));
2414 op = SUBREG_REG (op);
2417 /* An empty constraint or empty alternative
2418 allows anything which matched the pattern. */
2419 if (*p == 0 || *p == ',')
2420 win = 1;
2423 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2425 case '\0':
2426 len = 0;
2427 break;
2428 case ',':
2429 c = '\0';
2430 break;
2432 case '?': case '!': case '*': case '%':
2433 case '=': case '+':
2434 break;
2436 case '#':
2437 /* Ignore rest of this alternative as far as
2438 constraint checking is concerned. */
2440 p++;
2441 while (*p && *p != ',');
2442 len = 0;
2443 break;
2445 case '&':
2446 earlyclobber[opno] = 1;
2447 if (seen_earlyclobber_at < 0)
2448 seen_earlyclobber_at = opno;
2449 break;
2451 case '0': case '1': case '2': case '3': case '4':
2452 case '5': case '6': case '7': case '8': case '9':
2454 /* This operand must be the same as a previous one.
2455 This kind of constraint is used for instructions such
2456 as add when they take only two operands.
2458 Note that the lower-numbered operand is passed first.
2460 If we are not testing strictly, assume that this
2461 constraint will be satisfied. */
2463 char *end;
2464 int match;
2466 match = strtoul (p, &end, 10);
2467 p = end;
2469 if (strict < 0)
2470 val = 1;
2471 else
2473 rtx op1 = recog_data.operand[match];
2474 rtx op2 = recog_data.operand[opno];
2476 /* A unary operator may be accepted by the predicate,
2477 but it is irrelevant for matching constraints. */
2478 if (UNARY_P (op1))
2479 op1 = XEXP (op1, 0);
2480 if (UNARY_P (op2))
2481 op2 = XEXP (op2, 0);
2483 val = operands_match_p (op1, op2);
2486 matching_operands[opno] = match;
2487 matching_operands[match] = opno;
2489 if (val != 0)
2490 win = 1;
2492 /* If output is *x and input is *--x, arrange later
2493 to change the output to *--x as well, since the
2494 output op is the one that will be printed. */
2495 if (val == 2 && strict > 0)
2497 funny_match[funny_match_index].this_op = opno;
2498 funny_match[funny_match_index++].other = match;
2501 len = 0;
2502 break;
2504 case 'p':
2505 /* p is used for address_operands. When we are called by
2506 gen_reload, no one will have checked that the address is
2507 strictly valid, i.e., that all pseudos requiring hard regs
2508 have gotten them. */
2509 if (strict <= 0
2510 || (strict_memory_address_p (recog_data.operand_mode[opno],
2511 op)))
2512 win = 1;
2513 break;
2515 /* No need to check general_operand again;
2516 it was done in insn-recog.c. Well, except that reload
2517 doesn't check the validity of its replacements, but
2518 that should only matter when there's a bug. */
2519 case 'g':
2520 /* Anything goes unless it is a REG and really has a hard reg
2521 but the hard reg is not in the class GENERAL_REGS. */
2522 if (REG_P (op))
2524 if (strict < 0
2525 || GENERAL_REGS == ALL_REGS
2526 || (reload_in_progress
2527 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2528 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2529 win = 1;
2531 else if (strict < 0 || general_operand (op, mode))
2532 win = 1;
2533 break;
2535 case 'X':
2536 /* This is used for a MATCH_SCRATCH in the cases when
2537 we don't actually need anything. So anything goes
2538 any time. */
2539 win = 1;
2540 break;
2542 case TARGET_MEM_CONSTRAINT:
2543 /* Memory operands must be valid, to the extent
2544 required by STRICT. */
2545 if (MEM_P (op))
2547 if (strict > 0
2548 && !strict_memory_address_addr_space_p
2549 (GET_MODE (op), XEXP (op, 0),
2550 MEM_ADDR_SPACE (op)))
2551 break;
2552 if (strict == 0
2553 && !memory_address_addr_space_p
2554 (GET_MODE (op), XEXP (op, 0),
2555 MEM_ADDR_SPACE (op)))
2556 break;
2557 win = 1;
2559 /* Before reload, accept what reload can turn into mem. */
2560 else if (strict < 0 && CONSTANT_P (op))
2561 win = 1;
2562 /* During reload, accept a pseudo */
2563 else if (reload_in_progress && REG_P (op)
2564 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2565 win = 1;
2566 break;
2568 case '<':
2569 if (MEM_P (op)
2570 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2571 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2572 win = 1;
2573 break;
2575 case '>':
2576 if (MEM_P (op)
2577 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2578 || GET_CODE (XEXP (op, 0)) == POST_INC))
2579 win = 1;
2580 break;
2582 case 'E':
2583 case 'F':
2584 if (CONST_DOUBLE_AS_FLOAT_P (op)
2585 || (GET_CODE (op) == CONST_VECTOR
2586 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2587 win = 1;
2588 break;
2590 case 'G':
2591 case 'H':
2592 if (CONST_DOUBLE_AS_FLOAT_P (op)
2593 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2594 win = 1;
2595 break;
2597 case 's':
2598 if (CONST_SCALAR_INT_P (op))
2599 break;
2600 case 'i':
2601 if (CONSTANT_P (op))
2602 win = 1;
2603 break;
2605 case 'n':
2606 if (CONST_SCALAR_INT_P (op))
2607 win = 1;
2608 break;
2610 case 'I':
2611 case 'J':
2612 case 'K':
2613 case 'L':
2614 case 'M':
2615 case 'N':
2616 case 'O':
2617 case 'P':
2618 if (CONST_INT_P (op)
2619 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2620 win = 1;
2621 break;
2623 case 'V':
2624 if (MEM_P (op)
2625 && ((strict > 0 && ! offsettable_memref_p (op))
2626 || (strict < 0
2627 && !(CONSTANT_P (op) || MEM_P (op)))
2628 || (reload_in_progress
2629 && !(REG_P (op)
2630 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2631 win = 1;
2632 break;
2634 case 'o':
2635 if ((strict > 0 && offsettable_memref_p (op))
2636 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2637 /* Before reload, accept what reload can handle. */
2638 || (strict < 0
2639 && (CONSTANT_P (op) || MEM_P (op)))
2640 /* During reload, accept a pseudo */
2641 || (reload_in_progress && REG_P (op)
2642 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2643 win = 1;
2644 break;
2646 default:
2648 enum reg_class cl;
2650 cl = (c == 'r'
2651 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2652 if (cl != NO_REGS)
2654 if (strict < 0
2655 || (strict == 0
2656 && REG_P (op)
2657 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2658 || (strict == 0 && GET_CODE (op) == SCRATCH)
2659 || (REG_P (op)
2660 && reg_fits_class_p (op, cl, offset, mode)))
2661 win = 1;
2663 #ifdef EXTRA_CONSTRAINT_STR
2664 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2665 win = 1;
2667 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2668 /* Every memory operand can be reloaded to fit. */
2669 && ((strict < 0 && MEM_P (op))
2670 /* Before reload, accept what reload can turn
2671 into mem. */
2672 || (strict < 0 && CONSTANT_P (op))
2673 /* During reload, accept a pseudo */
2674 || (reload_in_progress && REG_P (op)
2675 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2676 win = 1;
2677 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2678 /* Every address operand can be reloaded to fit. */
2679 && strict < 0)
2680 win = 1;
2681 /* Cater to architectures like IA-64 that define extra memory
2682 constraints without using define_memory_constraint. */
2683 else if (reload_in_progress
2684 && REG_P (op)
2685 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2686 && reg_renumber[REGNO (op)] < 0
2687 && reg_equiv_mem (REGNO (op)) != 0
2688 && EXTRA_CONSTRAINT_STR
2689 (reg_equiv_mem (REGNO (op)), c, p))
2690 win = 1;
2691 #endif
2692 break;
2695 while (p += len, c);
2697 constraints[opno] = p;
2698 /* If this operand did not win somehow,
2699 this alternative loses. */
2700 if (! win)
2701 lose = 1;
2703 /* This alternative won; the operands are ok.
2704 Change whichever operands this alternative says to change. */
2705 if (! lose)
2707 int opno, eopno;
2709 /* See if any earlyclobber operand conflicts with some other
2710 operand. */
2712 if (strict > 0 && seen_earlyclobber_at >= 0)
2713 for (eopno = seen_earlyclobber_at;
2714 eopno < recog_data.n_operands;
2715 eopno++)
2716 /* Ignore earlyclobber operands now in memory,
2717 because we would often report failure when we have
2718 two memory operands, one of which was formerly a REG. */
2719 if (earlyclobber[eopno]
2720 && REG_P (recog_data.operand[eopno]))
2721 for (opno = 0; opno < recog_data.n_operands; opno++)
2722 if ((MEM_P (recog_data.operand[opno])
2723 || recog_data.operand_type[opno] != OP_OUT)
2724 && opno != eopno
2725 /* Ignore things like match_operator operands. */
2726 && *recog_data.constraints[opno] != 0
2727 && ! (matching_operands[opno] == eopno
2728 && operands_match_p (recog_data.operand[opno],
2729 recog_data.operand[eopno]))
2730 && ! safe_from_earlyclobber (recog_data.operand[opno],
2731 recog_data.operand[eopno]))
2732 lose = 1;
2734 if (! lose)
2736 while (--funny_match_index >= 0)
2738 recog_data.operand[funny_match[funny_match_index].other]
2739 = recog_data.operand[funny_match[funny_match_index].this_op];
2742 #ifdef AUTO_INC_DEC
2743 /* For operands without < or > constraints reject side-effects. */
2744 if (recog_data.is_asm)
2746 for (opno = 0; opno < recog_data.n_operands; opno++)
2747 if (MEM_P (recog_data.operand[opno]))
2748 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2750 case PRE_INC:
2751 case POST_INC:
2752 case PRE_DEC:
2753 case POST_DEC:
2754 case PRE_MODIFY:
2755 case POST_MODIFY:
2756 if (strchr (recog_data.constraints[opno], '<') == NULL
2757 && strchr (recog_data.constraints[opno], '>')
2758 == NULL)
2759 return 0;
2760 break;
2761 default:
2762 break;
2765 #endif
2766 return 1;
2770 which_alternative++;
2772 while (which_alternative < recog_data.n_alternatives);
2774 which_alternative = -1;
2775 /* If we are about to reject this, but we are not to test strictly,
2776 try a very loose test. Only return failure if it fails also. */
2777 if (strict == 0)
2778 return constrain_operands (-1);
2779 else
2780 return 0;
2783 /* Return true iff OPERAND (assumed to be a REG rtx)
2784 is a hard reg in class CLASS when its regno is offset by OFFSET
2785 and changed to mode MODE.
2786 If REG occupies multiple hard regs, all of them must be in CLASS. */
2788 bool
2789 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2790 enum machine_mode mode)
2792 unsigned int regno = REGNO (operand);
2794 if (cl == NO_REGS)
2795 return false;
2797 /* Regno must not be a pseudo register. Offset may be negative. */
2798 return (HARD_REGISTER_NUM_P (regno)
2799 && HARD_REGISTER_NUM_P (regno + offset)
2800 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2801 regno + offset));
2804 /* Split single instruction. Helper function for split_all_insns and
2805 split_all_insns_noflow. Return last insn in the sequence if successful,
2806 or NULL if unsuccessful. */
2808 static rtx
2809 split_insn (rtx insn)
2811 /* Split insns here to get max fine-grain parallelism. */
2812 rtx first = PREV_INSN (insn);
2813 rtx last = try_split (PATTERN (insn), insn, 1);
2814 rtx insn_set, last_set, note;
2816 if (last == insn)
2817 return NULL_RTX;
2819 /* If the original instruction was a single set that was known to be
2820 equivalent to a constant, see if we can say the same about the last
2821 instruction in the split sequence. The two instructions must set
2822 the same destination. */
2823 insn_set = single_set (insn);
2824 if (insn_set)
2826 last_set = single_set (last);
2827 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2829 note = find_reg_equal_equiv_note (insn);
2830 if (note && CONSTANT_P (XEXP (note, 0)))
2831 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2832 else if (CONSTANT_P (SET_SRC (insn_set)))
2833 set_unique_reg_note (last, REG_EQUAL,
2834 copy_rtx (SET_SRC (insn_set)));
2838 /* try_split returns the NOTE that INSN became. */
2839 SET_INSN_DELETED (insn);
2841 /* ??? Coddle to md files that generate subregs in post-reload
2842 splitters instead of computing the proper hard register. */
2843 if (reload_completed && first != last)
2845 first = NEXT_INSN (first);
2846 for (;;)
2848 if (INSN_P (first))
2849 cleanup_subreg_operands (first);
2850 if (first == last)
2851 break;
2852 first = NEXT_INSN (first);
2856 return last;
2859 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2861 void
2862 split_all_insns (void)
2864 sbitmap blocks;
2865 bool changed;
2866 basic_block bb;
2868 blocks = sbitmap_alloc (last_basic_block);
2869 bitmap_clear (blocks);
2870 changed = false;
2872 FOR_EACH_BB_REVERSE (bb)
2874 rtx insn, next;
2875 bool finish = false;
2877 rtl_profile_for_bb (bb);
2878 for (insn = BB_HEAD (bb); !finish ; insn = next)
2880 /* Can't use `next_real_insn' because that might go across
2881 CODE_LABELS and short-out basic blocks. */
2882 next = NEXT_INSN (insn);
2883 finish = (insn == BB_END (bb));
2884 if (INSN_P (insn))
2886 rtx set = single_set (insn);
2888 /* Don't split no-op move insns. These should silently
2889 disappear later in final. Splitting such insns would
2890 break the code that handles LIBCALL blocks. */
2891 if (set && set_noop_p (set))
2893 /* Nops get in the way while scheduling, so delete them
2894 now if register allocation has already been done. It
2895 is too risky to try to do this before register
2896 allocation, and there are unlikely to be very many
2897 nops then anyways. */
2898 if (reload_completed)
2899 delete_insn_and_edges (insn);
2901 else
2903 if (split_insn (insn))
2905 bitmap_set_bit (blocks, bb->index);
2906 changed = true;
2913 default_rtl_profile ();
2914 if (changed)
2915 find_many_sub_basic_blocks (blocks);
2917 #ifdef ENABLE_CHECKING
2918 verify_flow_info ();
2919 #endif
2921 sbitmap_free (blocks);
2924 /* Same as split_all_insns, but do not expect CFG to be available.
2925 Used by machine dependent reorg passes. */
2927 unsigned int
2928 split_all_insns_noflow (void)
2930 rtx next, insn;
2932 for (insn = get_insns (); insn; insn = next)
2934 next = NEXT_INSN (insn);
2935 if (INSN_P (insn))
2937 /* Don't split no-op move insns. These should silently
2938 disappear later in final. Splitting such insns would
2939 break the code that handles LIBCALL blocks. */
2940 rtx set = single_set (insn);
2941 if (set && set_noop_p (set))
2943 /* Nops get in the way while scheduling, so delete them
2944 now if register allocation has already been done. It
2945 is too risky to try to do this before register
2946 allocation, and there are unlikely to be very many
2947 nops then anyways.
2949 ??? Should we use delete_insn when the CFG isn't valid? */
2950 if (reload_completed)
2951 delete_insn_and_edges (insn);
2953 else
2954 split_insn (insn);
2957 return 0;
2960 #ifdef HAVE_peephole2
2961 struct peep2_insn_data
2963 rtx insn;
2964 regset live_before;
2967 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2968 static int peep2_current;
2970 static bool peep2_do_rebuild_jump_labels;
2971 static bool peep2_do_cleanup_cfg;
2973 /* The number of instructions available to match a peep2. */
2974 int peep2_current_count;
2976 /* A non-insn marker indicating the last insn of the block.
2977 The live_before regset for this element is correct, indicating
2978 DF_LIVE_OUT for the block. */
2979 #define PEEP2_EOB pc_rtx
2981 /* Wrap N to fit into the peep2_insn_data buffer. */
2983 static int
2984 peep2_buf_position (int n)
2986 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2987 n -= MAX_INSNS_PER_PEEP2 + 1;
2988 return n;
2991 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2992 does not exist. Used by the recognizer to find the next insn to match
2993 in a multi-insn pattern. */
2996 peep2_next_insn (int n)
2998 gcc_assert (n <= peep2_current_count);
3000 n = peep2_buf_position (peep2_current + n);
3002 return peep2_insn_data[n].insn;
3005 /* Return true if REGNO is dead before the Nth non-note insn
3006 after `current'. */
3009 peep2_regno_dead_p (int ofs, int regno)
3011 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3013 ofs = peep2_buf_position (peep2_current + ofs);
3015 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3017 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3020 /* Similarly for a REG. */
3023 peep2_reg_dead_p (int ofs, rtx reg)
3025 int regno, n;
3027 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3029 ofs = peep2_buf_position (peep2_current + ofs);
3031 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3033 regno = REGNO (reg);
3034 n = hard_regno_nregs[regno][GET_MODE (reg)];
3035 while (--n >= 0)
3036 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3037 return 0;
3038 return 1;
3041 /* Try to find a hard register of mode MODE, matching the register class in
3042 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3043 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3044 in which case the only condition is that the register must be available
3045 before CURRENT_INSN.
3046 Registers that already have bits set in REG_SET will not be considered.
3048 If an appropriate register is available, it will be returned and the
3049 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3050 returned. */
3053 peep2_find_free_register (int from, int to, const char *class_str,
3054 enum machine_mode mode, HARD_REG_SET *reg_set)
3056 static int search_ofs;
3057 enum reg_class cl;
3058 HARD_REG_SET live;
3059 df_ref *def_rec;
3060 int i;
3062 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3063 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3065 from = peep2_buf_position (peep2_current + from);
3066 to = peep2_buf_position (peep2_current + to);
3068 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3069 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3071 while (from != to)
3073 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3075 /* Don't use registers set or clobbered by the insn. */
3076 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3077 *def_rec; def_rec++)
3078 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3080 from = peep2_buf_position (from + 1);
3083 cl = (class_str[0] == 'r' ? GENERAL_REGS
3084 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3086 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3088 int raw_regno, regno, success, j;
3090 /* Distribute the free registers as much as possible. */
3091 raw_regno = search_ofs + i;
3092 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3093 raw_regno -= FIRST_PSEUDO_REGISTER;
3094 #ifdef REG_ALLOC_ORDER
3095 regno = reg_alloc_order[raw_regno];
3096 #else
3097 regno = raw_regno;
3098 #endif
3100 /* Don't allocate fixed registers. */
3101 if (fixed_regs[regno])
3102 continue;
3103 /* Don't allocate global registers. */
3104 if (global_regs[regno])
3105 continue;
3106 /* Make sure the register is of the right class. */
3107 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3108 continue;
3109 /* And can support the mode we need. */
3110 if (! HARD_REGNO_MODE_OK (regno, mode))
3111 continue;
3112 /* And that we don't create an extra save/restore. */
3113 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3114 continue;
3115 if (! targetm.hard_regno_scratch_ok (regno))
3116 continue;
3118 /* And we don't clobber traceback for noreturn functions. */
3119 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3120 && (! reload_completed || frame_pointer_needed))
3121 continue;
3123 success = 1;
3124 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3126 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3127 || TEST_HARD_REG_BIT (live, regno + j))
3129 success = 0;
3130 break;
3133 if (success)
3135 add_to_hard_reg_set (reg_set, mode, regno);
3137 /* Start the next search with the next register. */
3138 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3139 raw_regno = 0;
3140 search_ofs = raw_regno;
3142 return gen_rtx_REG (mode, regno);
3146 search_ofs = 0;
3147 return NULL_RTX;
3150 /* Forget all currently tracked instructions, only remember current
3151 LIVE regset. */
3153 static void
3154 peep2_reinit_state (regset live)
3156 int i;
3158 /* Indicate that all slots except the last holds invalid data. */
3159 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3160 peep2_insn_data[i].insn = NULL_RTX;
3161 peep2_current_count = 0;
3163 /* Indicate that the last slot contains live_after data. */
3164 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3165 peep2_current = MAX_INSNS_PER_PEEP2;
3167 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3170 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3171 starting at INSN. Perform the replacement, removing the old insns and
3172 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3173 if the replacement is rejected. */
3175 static rtx
3176 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3178 int i;
3179 rtx last, eh_note, as_note, before_try, x;
3180 rtx old_insn, new_insn;
3181 bool was_call = false;
3183 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3184 match more than one insn, or to be split into more than one insn. */
3185 old_insn = peep2_insn_data[peep2_current].insn;
3186 if (RTX_FRAME_RELATED_P (old_insn))
3188 bool any_note = false;
3189 rtx note;
3191 if (match_len != 0)
3192 return NULL;
3194 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3195 may be in the stream for the purpose of register allocation. */
3196 if (active_insn_p (attempt))
3197 new_insn = attempt;
3198 else
3199 new_insn = next_active_insn (attempt);
3200 if (next_active_insn (new_insn))
3201 return NULL;
3203 /* We have a 1-1 replacement. Copy over any frame-related info. */
3204 RTX_FRAME_RELATED_P (new_insn) = 1;
3206 /* Allow the backend to fill in a note during the split. */
3207 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3208 switch (REG_NOTE_KIND (note))
3210 case REG_FRAME_RELATED_EXPR:
3211 case REG_CFA_DEF_CFA:
3212 case REG_CFA_ADJUST_CFA:
3213 case REG_CFA_OFFSET:
3214 case REG_CFA_REGISTER:
3215 case REG_CFA_EXPRESSION:
3216 case REG_CFA_RESTORE:
3217 case REG_CFA_SET_VDRAP:
3218 any_note = true;
3219 break;
3220 default:
3221 break;
3224 /* If the backend didn't supply a note, copy one over. */
3225 if (!any_note)
3226 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3227 switch (REG_NOTE_KIND (note))
3229 case REG_FRAME_RELATED_EXPR:
3230 case REG_CFA_DEF_CFA:
3231 case REG_CFA_ADJUST_CFA:
3232 case REG_CFA_OFFSET:
3233 case REG_CFA_REGISTER:
3234 case REG_CFA_EXPRESSION:
3235 case REG_CFA_RESTORE:
3236 case REG_CFA_SET_VDRAP:
3237 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3238 any_note = true;
3239 break;
3240 default:
3241 break;
3244 /* If there still isn't a note, make sure the unwind info sees the
3245 same expression as before the split. */
3246 if (!any_note)
3248 rtx old_set, new_set;
3250 /* The old insn had better have been simple, or annotated. */
3251 old_set = single_set (old_insn);
3252 gcc_assert (old_set != NULL);
3254 new_set = single_set (new_insn);
3255 if (!new_set || !rtx_equal_p (new_set, old_set))
3256 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3259 /* Copy prologue/epilogue status. This is required in order to keep
3260 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3261 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3264 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3265 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3266 cfg-related call notes. */
3267 for (i = 0; i <= match_len; ++i)
3269 int j;
3270 rtx note;
3272 j = peep2_buf_position (peep2_current + i);
3273 old_insn = peep2_insn_data[j].insn;
3274 if (!CALL_P (old_insn))
3275 continue;
3276 was_call = true;
3278 new_insn = attempt;
3279 while (new_insn != NULL_RTX)
3281 if (CALL_P (new_insn))
3282 break;
3283 new_insn = NEXT_INSN (new_insn);
3286 gcc_assert (new_insn != NULL_RTX);
3288 CALL_INSN_FUNCTION_USAGE (new_insn)
3289 = CALL_INSN_FUNCTION_USAGE (old_insn);
3291 for (note = REG_NOTES (old_insn);
3292 note;
3293 note = XEXP (note, 1))
3294 switch (REG_NOTE_KIND (note))
3296 case REG_NORETURN:
3297 case REG_SETJMP:
3298 case REG_TM:
3299 add_reg_note (new_insn, REG_NOTE_KIND (note),
3300 XEXP (note, 0));
3301 break;
3302 default:
3303 /* Discard all other reg notes. */
3304 break;
3307 /* Croak if there is another call in the sequence. */
3308 while (++i <= match_len)
3310 j = peep2_buf_position (peep2_current + i);
3311 old_insn = peep2_insn_data[j].insn;
3312 gcc_assert (!CALL_P (old_insn));
3314 break;
3317 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3318 move those notes over to the new sequence. */
3319 as_note = NULL;
3320 for (i = match_len; i >= 0; --i)
3322 int j = peep2_buf_position (peep2_current + i);
3323 old_insn = peep2_insn_data[j].insn;
3325 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3326 if (as_note)
3327 break;
3330 i = peep2_buf_position (peep2_current + match_len);
3331 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3333 /* Replace the old sequence with the new. */
3334 last = emit_insn_after_setloc (attempt,
3335 peep2_insn_data[i].insn,
3336 INSN_LOCATION (peep2_insn_data[i].insn));
3337 before_try = PREV_INSN (insn);
3338 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3340 /* Re-insert the EH_REGION notes. */
3341 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3343 edge eh_edge;
3344 edge_iterator ei;
3346 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3347 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3348 break;
3350 if (eh_note)
3351 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3353 if (eh_edge)
3354 for (x = last; x != before_try; x = PREV_INSN (x))
3355 if (x != BB_END (bb)
3356 && (can_throw_internal (x)
3357 || can_nonlocal_goto (x)))
3359 edge nfte, nehe;
3360 int flags;
3362 nfte = split_block (bb, x);
3363 flags = (eh_edge->flags
3364 & (EDGE_EH | EDGE_ABNORMAL));
3365 if (CALL_P (x))
3366 flags |= EDGE_ABNORMAL_CALL;
3367 nehe = make_edge (nfte->src, eh_edge->dest,
3368 flags);
3370 nehe->probability = eh_edge->probability;
3371 nfte->probability
3372 = REG_BR_PROB_BASE - nehe->probability;
3374 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3375 bb = nfte->src;
3376 eh_edge = nehe;
3379 /* Converting possibly trapping insn to non-trapping is
3380 possible. Zap dummy outgoing edges. */
3381 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3384 /* Re-insert the ARGS_SIZE notes. */
3385 if (as_note)
3386 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3388 /* If we generated a jump instruction, it won't have
3389 JUMP_LABEL set. Recompute after we're done. */
3390 for (x = last; x != before_try; x = PREV_INSN (x))
3391 if (JUMP_P (x))
3393 peep2_do_rebuild_jump_labels = true;
3394 break;
3397 return last;
3400 /* After performing a replacement in basic block BB, fix up the life
3401 information in our buffer. LAST is the last of the insns that we
3402 emitted as a replacement. PREV is the insn before the start of
3403 the replacement. MATCH_LEN is the number of instructions that were
3404 matched, and which now need to be replaced in the buffer. */
3406 static void
3407 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3409 int i = peep2_buf_position (peep2_current + match_len + 1);
3410 rtx x;
3411 regset_head live;
3413 INIT_REG_SET (&live);
3414 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3416 gcc_assert (peep2_current_count >= match_len + 1);
3417 peep2_current_count -= match_len + 1;
3419 x = last;
3422 if (INSN_P (x))
3424 df_insn_rescan (x);
3425 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3427 peep2_current_count++;
3428 if (--i < 0)
3429 i = MAX_INSNS_PER_PEEP2;
3430 peep2_insn_data[i].insn = x;
3431 df_simulate_one_insn_backwards (bb, x, &live);
3432 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3435 x = PREV_INSN (x);
3437 while (x != prev);
3438 CLEAR_REG_SET (&live);
3440 peep2_current = i;
3443 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3444 Return true if we added it, false otherwise. The caller will try to match
3445 peepholes against the buffer if we return false; otherwise it will try to
3446 add more instructions to the buffer. */
3448 static bool
3449 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3451 int pos;
3453 /* Once we have filled the maximum number of insns the buffer can hold,
3454 allow the caller to match the insns against peepholes. We wait until
3455 the buffer is full in case the target has similar peepholes of different
3456 length; we always want to match the longest if possible. */
3457 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3458 return false;
3460 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3461 any other pattern, lest it change the semantics of the frame info. */
3462 if (RTX_FRAME_RELATED_P (insn))
3464 /* Let the buffer drain first. */
3465 if (peep2_current_count > 0)
3466 return false;
3467 /* Now the insn will be the only thing in the buffer. */
3470 pos = peep2_buf_position (peep2_current + peep2_current_count);
3471 peep2_insn_data[pos].insn = insn;
3472 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3473 peep2_current_count++;
3475 df_simulate_one_insn_forwards (bb, insn, live);
3476 return true;
3479 /* Perform the peephole2 optimization pass. */
3481 static void
3482 peephole2_optimize (void)
3484 rtx insn;
3485 bitmap live;
3486 int i;
3487 basic_block bb;
3489 peep2_do_cleanup_cfg = false;
3490 peep2_do_rebuild_jump_labels = false;
3492 df_set_flags (DF_LR_RUN_DCE);
3493 df_note_add_problem ();
3494 df_analyze ();
3496 /* Initialize the regsets we're going to use. */
3497 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3498 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3499 live = BITMAP_ALLOC (&reg_obstack);
3501 FOR_EACH_BB_REVERSE (bb)
3503 bool past_end = false;
3504 int pos;
3506 rtl_profile_for_bb (bb);
3508 /* Start up propagation. */
3509 bitmap_copy (live, DF_LR_IN (bb));
3510 df_simulate_initialize_forwards (bb, live);
3511 peep2_reinit_state (live);
3513 insn = BB_HEAD (bb);
3514 for (;;)
3516 rtx attempt, head;
3517 int match_len;
3519 if (!past_end && !NONDEBUG_INSN_P (insn))
3521 next_insn:
3522 insn = NEXT_INSN (insn);
3523 if (insn == NEXT_INSN (BB_END (bb)))
3524 past_end = true;
3525 continue;
3527 if (!past_end && peep2_fill_buffer (bb, insn, live))
3528 goto next_insn;
3530 /* If we did not fill an empty buffer, it signals the end of the
3531 block. */
3532 if (peep2_current_count == 0)
3533 break;
3535 /* The buffer filled to the current maximum, so try to match. */
3537 pos = peep2_buf_position (peep2_current + peep2_current_count);
3538 peep2_insn_data[pos].insn = PEEP2_EOB;
3539 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3541 /* Match the peephole. */
3542 head = peep2_insn_data[peep2_current].insn;
3543 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3544 if (attempt != NULL)
3546 rtx last = peep2_attempt (bb, head, match_len, attempt);
3547 if (last)
3549 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3550 continue;
3554 /* No match: advance the buffer by one insn. */
3555 peep2_current = peep2_buf_position (peep2_current + 1);
3556 peep2_current_count--;
3560 default_rtl_profile ();
3561 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3562 BITMAP_FREE (peep2_insn_data[i].live_before);
3563 BITMAP_FREE (live);
3564 if (peep2_do_rebuild_jump_labels)
3565 rebuild_jump_labels (get_insns ());
3567 #endif /* HAVE_peephole2 */
3569 /* Common predicates for use with define_bypass. */
3571 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3572 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3573 must be either a single_set or a PARALLEL with SETs inside. */
3576 store_data_bypass_p (rtx out_insn, rtx in_insn)
3578 rtx out_set, in_set;
3579 rtx out_pat, in_pat;
3580 rtx out_exp, in_exp;
3581 int i, j;
3583 in_set = single_set (in_insn);
3584 if (in_set)
3586 if (!MEM_P (SET_DEST (in_set)))
3587 return false;
3589 out_set = single_set (out_insn);
3590 if (out_set)
3592 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3593 return false;
3595 else
3597 out_pat = PATTERN (out_insn);
3599 if (GET_CODE (out_pat) != PARALLEL)
3600 return false;
3602 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3604 out_exp = XVECEXP (out_pat, 0, i);
3606 if (GET_CODE (out_exp) == CLOBBER)
3607 continue;
3609 gcc_assert (GET_CODE (out_exp) == SET);
3611 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3612 return false;
3616 else
3618 in_pat = PATTERN (in_insn);
3619 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3621 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3623 in_exp = XVECEXP (in_pat, 0, i);
3625 if (GET_CODE (in_exp) == CLOBBER)
3626 continue;
3628 gcc_assert (GET_CODE (in_exp) == SET);
3630 if (!MEM_P (SET_DEST (in_exp)))
3631 return false;
3633 out_set = single_set (out_insn);
3634 if (out_set)
3636 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3637 return false;
3639 else
3641 out_pat = PATTERN (out_insn);
3642 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3644 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3646 out_exp = XVECEXP (out_pat, 0, j);
3648 if (GET_CODE (out_exp) == CLOBBER)
3649 continue;
3651 gcc_assert (GET_CODE (out_exp) == SET);
3653 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3654 return false;
3660 return true;
3663 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3664 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3665 or multiple set; IN_INSN should be single_set for truth, but for convenience
3666 of insn categorization may be any JUMP or CALL insn. */
3669 if_test_bypass_p (rtx out_insn, rtx in_insn)
3671 rtx out_set, in_set;
3673 in_set = single_set (in_insn);
3674 if (! in_set)
3676 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3677 return false;
3680 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3681 return false;
3682 in_set = SET_SRC (in_set);
3684 out_set = single_set (out_insn);
3685 if (out_set)
3687 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3688 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3689 return false;
3691 else
3693 rtx out_pat;
3694 int i;
3696 out_pat = PATTERN (out_insn);
3697 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3699 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3701 rtx exp = XVECEXP (out_pat, 0, i);
3703 if (GET_CODE (exp) == CLOBBER)
3704 continue;
3706 gcc_assert (GET_CODE (exp) == SET);
3708 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3709 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3710 return false;
3714 return true;
3717 static bool
3718 gate_handle_peephole2 (void)
3720 return (optimize > 0 && flag_peephole2);
3723 static unsigned int
3724 rest_of_handle_peephole2 (void)
3726 #ifdef HAVE_peephole2
3727 peephole2_optimize ();
3728 #endif
3729 return 0;
3732 struct rtl_opt_pass pass_peephole2 =
3735 RTL_PASS,
3736 "peephole2", /* name */
3737 OPTGROUP_NONE, /* optinfo_flags */
3738 gate_handle_peephole2, /* gate */
3739 rest_of_handle_peephole2, /* execute */
3740 NULL, /* sub */
3741 NULL, /* next */
3742 0, /* static_pass_number */
3743 TV_PEEPHOLE2, /* tv_id */
3744 0, /* properties_required */
3745 0, /* properties_provided */
3746 0, /* properties_destroyed */
3747 0, /* todo_flags_start */
3748 TODO_df_finish | TODO_verify_rtl_sharing |
3749 0 /* todo_flags_finish */
3753 static unsigned int
3754 rest_of_handle_split_all_insns (void)
3756 split_all_insns ();
3757 return 0;
3760 struct rtl_opt_pass pass_split_all_insns =
3763 RTL_PASS,
3764 "split1", /* name */
3765 OPTGROUP_NONE, /* optinfo_flags */
3766 NULL, /* gate */
3767 rest_of_handle_split_all_insns, /* execute */
3768 NULL, /* sub */
3769 NULL, /* next */
3770 0, /* static_pass_number */
3771 TV_NONE, /* tv_id */
3772 0, /* properties_required */
3773 0, /* properties_provided */
3774 0, /* properties_destroyed */
3775 0, /* todo_flags_start */
3776 0 /* todo_flags_finish */
3780 static unsigned int
3781 rest_of_handle_split_after_reload (void)
3783 /* If optimizing, then go ahead and split insns now. */
3784 #ifndef STACK_REGS
3785 if (optimize > 0)
3786 #endif
3787 split_all_insns ();
3788 return 0;
3791 struct rtl_opt_pass pass_split_after_reload =
3794 RTL_PASS,
3795 "split2", /* name */
3796 OPTGROUP_NONE, /* optinfo_flags */
3797 NULL, /* gate */
3798 rest_of_handle_split_after_reload, /* execute */
3799 NULL, /* sub */
3800 NULL, /* next */
3801 0, /* static_pass_number */
3802 TV_NONE, /* tv_id */
3803 0, /* properties_required */
3804 0, /* properties_provided */
3805 0, /* properties_destroyed */
3806 0, /* todo_flags_start */
3807 0 /* todo_flags_finish */
3811 static bool
3812 gate_handle_split_before_regstack (void)
3814 #if HAVE_ATTR_length && defined (STACK_REGS)
3815 /* If flow2 creates new instructions which need splitting
3816 and scheduling after reload is not done, they might not be
3817 split until final which doesn't allow splitting
3818 if HAVE_ATTR_length. */
3819 # ifdef INSN_SCHEDULING
3820 return (optimize && !flag_schedule_insns_after_reload);
3821 # else
3822 return (optimize);
3823 # endif
3824 #else
3825 return 0;
3826 #endif
3829 static unsigned int
3830 rest_of_handle_split_before_regstack (void)
3832 split_all_insns ();
3833 return 0;
3836 struct rtl_opt_pass pass_split_before_regstack =
3839 RTL_PASS,
3840 "split3", /* name */
3841 OPTGROUP_NONE, /* optinfo_flags */
3842 gate_handle_split_before_regstack, /* gate */
3843 rest_of_handle_split_before_regstack, /* execute */
3844 NULL, /* sub */
3845 NULL, /* next */
3846 0, /* static_pass_number */
3847 TV_NONE, /* tv_id */
3848 0, /* properties_required */
3849 0, /* properties_provided */
3850 0, /* properties_destroyed */
3851 0, /* todo_flags_start */
3852 0 /* todo_flags_finish */
3856 static bool
3857 gate_handle_split_before_sched2 (void)
3859 #ifdef INSN_SCHEDULING
3860 return optimize > 0 && flag_schedule_insns_after_reload;
3861 #else
3862 return 0;
3863 #endif
3866 static unsigned int
3867 rest_of_handle_split_before_sched2 (void)
3869 #ifdef INSN_SCHEDULING
3870 split_all_insns ();
3871 #endif
3872 return 0;
3875 struct rtl_opt_pass pass_split_before_sched2 =
3878 RTL_PASS,
3879 "split4", /* name */
3880 OPTGROUP_NONE, /* optinfo_flags */
3881 gate_handle_split_before_sched2, /* gate */
3882 rest_of_handle_split_before_sched2, /* execute */
3883 NULL, /* sub */
3884 NULL, /* next */
3885 0, /* static_pass_number */
3886 TV_NONE, /* tv_id */
3887 0, /* properties_required */
3888 0, /* properties_provided */
3889 0, /* properties_destroyed */
3890 0, /* todo_flags_start */
3891 TODO_verify_flow /* todo_flags_finish */
3895 /* The placement of the splitting that we do for shorten_branches
3896 depends on whether regstack is used by the target or not. */
3897 static bool
3898 gate_do_final_split (void)
3900 #if HAVE_ATTR_length && !defined (STACK_REGS)
3901 return 1;
3902 #else
3903 return 0;
3904 #endif
3907 struct rtl_opt_pass pass_split_for_shorten_branches =
3910 RTL_PASS,
3911 "split5", /* name */
3912 OPTGROUP_NONE, /* optinfo_flags */
3913 gate_do_final_split, /* gate */
3914 split_all_insns_noflow, /* execute */
3915 NULL, /* sub */
3916 NULL, /* next */
3917 0, /* static_pass_number */
3918 TV_NONE, /* tv_id */
3919 0, /* properties_required */
3920 0, /* properties_provided */
3921 0, /* properties_destroyed */
3922 0, /* todo_flags_start */
3923 TODO_verify_rtl_sharing /* todo_flags_finish */