crontab: Don't build snapshot for 3.4.x anymore.
[official-gcc.git] / gcc / recog.c
blob82cacfed50de03fa94fc9659989ce253e41cdf13
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "toplev.h"
39 #include "basic-block.h"
40 #include "output.h"
41 #include "reload.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
45 #ifndef STACK_PUSH_CODE
46 #ifdef STACK_GROWS_DOWNWARD
47 #define STACK_PUSH_CODE PRE_DEC
48 #else
49 #define STACK_PUSH_CODE PRE_INC
50 #endif
51 #endif
53 #ifndef STACK_POP_CODE
54 #ifdef STACK_GROWS_DOWNWARD
55 #define STACK_POP_CODE POST_INC
56 #else
57 #define STACK_POP_CODE POST_DEC
58 #endif
59 #endif
61 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx);
62 static rtx *find_single_use_1 (rtx, rtx *);
63 static void validate_replace_src_1 (rtx *, void *);
64 static rtx split_insn (rtx);
66 /* Nonzero means allow operands to be volatile.
67 This should be 0 if you are generating rtl, such as if you are calling
68 the functions in optabs.c and expmed.c (most of the time).
69 This should be 1 if all valid insns need to be recognized,
70 such as in regclass.c and final.c and reload.c.
72 init_recog and init_recog_no_volatile are responsible for setting this. */
74 int volatile_ok;
76 struct recog_data recog_data;
78 /* Contains a vector of operand_alternative structures for every operand.
79 Set up by preprocess_constraints. */
80 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
82 /* On return from `constrain_operands', indicate which alternative
83 was satisfied. */
85 int which_alternative;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
91 int reload_completed;
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
100 void
101 init_recog_no_volatile (void)
103 volatile_ok = 0;
106 void
107 init_recog (void)
109 volatile_ok = 1;
113 /* Check that X is an insn-body for an `asm' with operands
114 and that the operands mentioned in it are legitimate. */
117 check_asm_operands (rtx x)
119 int noperands;
120 rtx *operands;
121 const char **constraints;
122 int i;
124 /* Post-reload, be more strict with things. */
125 if (reload_completed)
127 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
128 extract_insn (make_insn_raw (x));
129 constrain_operands (1);
130 return which_alternative >= 0;
133 noperands = asm_noperands (x);
134 if (noperands < 0)
135 return 0;
136 if (noperands == 0)
137 return 1;
139 operands = alloca (noperands * sizeof (rtx));
140 constraints = alloca (noperands * sizeof (char *));
142 decode_asm_operands (x, operands, NULL, constraints, NULL);
144 for (i = 0; i < noperands; i++)
146 const char *c = constraints[i];
147 if (c[0] == '%')
148 c++;
149 if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
150 c = constraints[c[0] - '0'];
152 if (! asm_operand_ok (operands[i], c))
153 return 0;
156 return 1;
159 /* Static data for the next two routines. */
161 typedef struct change_t
163 rtx object;
164 int old_code;
165 rtx *loc;
166 rtx old;
167 } change_t;
169 static change_t *changes;
170 static int changes_allocated;
172 static int num_changes = 0;
174 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
175 at which NEW will be placed. If OBJECT is zero, no validation is done,
176 the change is simply made.
178 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
179 will be called with the address and mode as parameters. If OBJECT is
180 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
181 the change in place.
183 IN_GROUP is nonzero if this is part of a group of changes that must be
184 performed as a group. In that case, the changes will be stored. The
185 function `apply_change_group' will validate and apply the changes.
187 If IN_GROUP is zero, this is a single change. Try to recognize the insn
188 or validate the memory reference with the change applied. If the result
189 is not valid for the machine, suppress the change and return zero.
190 Otherwise, perform the change and return 1. */
193 validate_change (rtx object, rtx *loc, rtx new, int in_group)
195 rtx old = *loc;
197 if (old == new || rtx_equal_p (old, new))
198 return 1;
200 gcc_assert (in_group != 0 || num_changes == 0);
202 *loc = new;
204 /* Save the information describing this change. */
205 if (num_changes >= changes_allocated)
207 if (changes_allocated == 0)
208 /* This value allows for repeated substitutions inside complex
209 indexed addresses, or changes in up to 5 insns. */
210 changes_allocated = MAX_RECOG_OPERANDS * 5;
211 else
212 changes_allocated *= 2;
214 changes = xrealloc (changes, sizeof (change_t) * changes_allocated);
217 changes[num_changes].object = object;
218 changes[num_changes].loc = loc;
219 changes[num_changes].old = old;
221 if (object && !MEM_P (object))
223 /* Set INSN_CODE to force rerecognition of insn. Save old code in
224 case invalid. */
225 changes[num_changes].old_code = INSN_CODE (object);
226 INSN_CODE (object) = -1;
229 num_changes++;
231 /* If we are making a group of changes, return 1. Otherwise, validate the
232 change group we made. */
234 if (in_group)
235 return 1;
236 else
237 return apply_change_group ();
241 /* This subroutine of apply_change_group verifies whether the changes to INSN
242 were valid; i.e. whether INSN can still be recognized. */
245 insn_invalid_p (rtx insn)
247 rtx pat = PATTERN (insn);
248 int num_clobbers = 0;
249 /* If we are before reload and the pattern is a SET, see if we can add
250 clobbers. */
251 int icode = recog (pat, insn,
252 (GET_CODE (pat) == SET
253 && ! reload_completed && ! reload_in_progress)
254 ? &num_clobbers : 0);
255 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
258 /* If this is an asm and the operand aren't legal, then fail. Likewise if
259 this is not an asm and the insn wasn't recognized. */
260 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
261 || (!is_asm && icode < 0))
262 return 1;
264 /* If we have to add CLOBBERs, fail if we have to add ones that reference
265 hard registers since our callers can't know if they are live or not.
266 Otherwise, add them. */
267 if (num_clobbers > 0)
269 rtx newpat;
271 if (added_clobbers_hard_reg_p (icode))
272 return 1;
274 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
275 XVECEXP (newpat, 0, 0) = pat;
276 add_clobbers (newpat, icode);
277 PATTERN (insn) = pat = newpat;
280 /* After reload, verify that all constraints are satisfied. */
281 if (reload_completed)
283 extract_insn (insn);
285 if (! constrain_operands (1))
286 return 1;
289 INSN_CODE (insn) = icode;
290 return 0;
293 /* Return number of changes made and not validated yet. */
295 num_changes_pending (void)
297 return num_changes;
300 /* Tentatively apply the changes numbered NUM and up.
301 Return 1 if all changes are valid, zero otherwise. */
304 verify_changes (int num)
306 int i;
307 rtx last_validated = NULL_RTX;
309 /* The changes have been applied and all INSN_CODEs have been reset to force
310 rerecognition.
312 The changes are valid if we aren't given an object, or if we are
313 given a MEM and it still is a valid address, or if this is in insn
314 and it is recognized. In the latter case, if reload has completed,
315 we also require that the operands meet the constraints for
316 the insn. */
318 for (i = num; i < num_changes; i++)
320 rtx object = changes[i].object;
322 /* If there is no object to test or if it is the same as the one we
323 already tested, ignore it. */
324 if (object == 0 || object == last_validated)
325 continue;
327 if (MEM_P (object))
329 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
330 break;
332 else if (insn_invalid_p (object))
334 rtx pat = PATTERN (object);
336 /* Perhaps we couldn't recognize the insn because there were
337 extra CLOBBERs at the end. If so, try to re-recognize
338 without the last CLOBBER (later iterations will cause each of
339 them to be eliminated, in turn). But don't do this if we
340 have an ASM_OPERAND. */
341 if (GET_CODE (pat) == PARALLEL
342 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
343 && asm_noperands (PATTERN (object)) < 0)
345 rtx newpat;
347 if (XVECLEN (pat, 0) == 2)
348 newpat = XVECEXP (pat, 0, 0);
349 else
351 int j;
353 newpat
354 = gen_rtx_PARALLEL (VOIDmode,
355 rtvec_alloc (XVECLEN (pat, 0) - 1));
356 for (j = 0; j < XVECLEN (newpat, 0); j++)
357 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
360 /* Add a new change to this group to replace the pattern
361 with this new pattern. Then consider this change
362 as having succeeded. The change we added will
363 cause the entire call to fail if things remain invalid.
365 Note that this can lose if a later change than the one
366 we are processing specified &XVECEXP (PATTERN (object), 0, X)
367 but this shouldn't occur. */
369 validate_change (object, &PATTERN (object), newpat, 1);
370 continue;
372 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
373 /* If this insn is a CLOBBER or USE, it is always valid, but is
374 never recognized. */
375 continue;
376 else
377 break;
379 last_validated = object;
382 return (i == num_changes);
385 /* A group of changes has previously been issued with validate_change and
386 verified with verify_changes. Update the BB_DIRTY flags of the affected
387 blocks, and clear num_changes. */
389 void
390 confirm_change_group (void)
392 int i;
393 basic_block bb;
395 for (i = 0; i < num_changes; i++)
396 if (changes[i].object
397 && INSN_P (changes[i].object)
398 && (bb = BLOCK_FOR_INSN (changes[i].object)))
399 bb->flags |= BB_DIRTY;
401 num_changes = 0;
404 /* Apply a group of changes previously issued with `validate_change'.
405 If all changes are valid, call confirm_change_group and return 1,
406 otherwise, call cancel_changes and return 0. */
409 apply_change_group (void)
411 if (verify_changes (0))
413 confirm_change_group ();
414 return 1;
416 else
418 cancel_changes (0);
419 return 0;
424 /* Return the number of changes so far in the current group. */
427 num_validated_changes (void)
429 return num_changes;
432 /* Retract the changes numbered NUM and up. */
434 void
435 cancel_changes (int num)
437 int i;
439 /* Back out all the changes. Do this in the opposite order in which
440 they were made. */
441 for (i = num_changes - 1; i >= num; i--)
443 *changes[i].loc = changes[i].old;
444 if (changes[i].object && !MEM_P (changes[i].object))
445 INSN_CODE (changes[i].object) = changes[i].old_code;
447 num_changes = num;
450 /* Replace every occurrence of FROM in X with TO. Mark each change with
451 validate_change passing OBJECT. */
453 static void
454 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object)
456 int i, j;
457 const char *fmt;
458 rtx x = *loc;
459 enum rtx_code code;
460 enum machine_mode op0_mode = VOIDmode;
461 int prev_changes = num_changes;
462 rtx new;
464 if (!x)
465 return;
467 code = GET_CODE (x);
468 fmt = GET_RTX_FORMAT (code);
469 if (fmt[0] == 'e')
470 op0_mode = GET_MODE (XEXP (x, 0));
472 /* X matches FROM if it is the same rtx or they are both referring to the
473 same register in the same mode. Avoid calling rtx_equal_p unless the
474 operands look similar. */
476 if (x == from
477 || (REG_P (x) && REG_P (from)
478 && GET_MODE (x) == GET_MODE (from)
479 && REGNO (x) == REGNO (from))
480 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
481 && rtx_equal_p (x, from)))
483 validate_change (object, loc, to, 1);
484 return;
487 /* Call ourself recursively to perform the replacements.
488 We must not replace inside already replaced expression, otherwise we
489 get infinite recursion for replacements like (reg X)->(subreg (reg X))
490 done by regmove, so we must special case shared ASM_OPERANDS. */
492 if (GET_CODE (x) == PARALLEL)
494 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
496 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
497 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
499 /* Verify that operands are really shared. */
500 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
501 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
502 (x, 0, j))));
503 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
504 from, to, object);
506 else
507 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object);
510 else
511 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
513 if (fmt[i] == 'e')
514 validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
515 else if (fmt[i] == 'E')
516 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
517 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
520 /* If we didn't substitute, there is nothing more to do. */
521 if (num_changes == prev_changes)
522 return;
524 /* Allow substituted expression to have different mode. This is used by
525 regmove to change mode of pseudo register. */
526 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
527 op0_mode = GET_MODE (XEXP (x, 0));
529 /* Do changes needed to keep rtx consistent. Don't do any other
530 simplifications, as it is not our job. */
532 if (SWAPPABLE_OPERANDS_P (x)
533 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
535 validate_change (object, loc,
536 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
537 : swap_condition (code),
538 GET_MODE (x), XEXP (x, 1),
539 XEXP (x, 0)), 1);
540 x = *loc;
541 code = GET_CODE (x);
544 switch (code)
546 case PLUS:
547 /* If we have a PLUS whose second operand is now a CONST_INT, use
548 simplify_gen_binary to try to simplify it.
549 ??? We may want later to remove this, once simplification is
550 separated from this function. */
551 if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
552 validate_change (object, loc,
553 simplify_gen_binary
554 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
555 break;
556 case MINUS:
557 if (GET_CODE (XEXP (x, 1)) == CONST_INT
558 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
559 validate_change (object, loc,
560 simplify_gen_binary
561 (PLUS, GET_MODE (x), XEXP (x, 0),
562 simplify_gen_unary (NEG,
563 GET_MODE (x), XEXP (x, 1),
564 GET_MODE (x))), 1);
565 break;
566 case ZERO_EXTEND:
567 case SIGN_EXTEND:
568 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
570 new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
571 op0_mode);
572 /* If any of the above failed, substitute in something that
573 we know won't be recognized. */
574 if (!new)
575 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
576 validate_change (object, loc, new, 1);
578 break;
579 case SUBREG:
580 /* All subregs possible to simplify should be simplified. */
581 new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
582 SUBREG_BYTE (x));
584 /* Subregs of VOIDmode operands are incorrect. */
585 if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
586 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
587 if (new)
588 validate_change (object, loc, new, 1);
589 break;
590 case ZERO_EXTRACT:
591 case SIGN_EXTRACT:
592 /* If we are replacing a register with memory, try to change the memory
593 to be the mode required for memory in extract operations (this isn't
594 likely to be an insertion operation; if it was, nothing bad will
595 happen, we might just fail in some cases). */
597 if (MEM_P (XEXP (x, 0))
598 && GET_CODE (XEXP (x, 1)) == CONST_INT
599 && GET_CODE (XEXP (x, 2)) == CONST_INT
600 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
601 && !MEM_VOLATILE_P (XEXP (x, 0)))
603 enum machine_mode wanted_mode = VOIDmode;
604 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
605 int pos = INTVAL (XEXP (x, 2));
607 if (GET_CODE (x) == ZERO_EXTRACT)
609 enum machine_mode new_mode
610 = mode_for_extraction (EP_extzv, 1);
611 if (new_mode != MAX_MACHINE_MODE)
612 wanted_mode = new_mode;
614 else if (GET_CODE (x) == SIGN_EXTRACT)
616 enum machine_mode new_mode
617 = mode_for_extraction (EP_extv, 1);
618 if (new_mode != MAX_MACHINE_MODE)
619 wanted_mode = new_mode;
622 /* If we have a narrower mode, we can do something. */
623 if (wanted_mode != VOIDmode
624 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
626 int offset = pos / BITS_PER_UNIT;
627 rtx newmem;
629 /* If the bytes and bits are counted differently, we
630 must adjust the offset. */
631 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
632 offset =
633 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
634 offset);
636 pos %= GET_MODE_BITSIZE (wanted_mode);
638 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
640 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
641 validate_change (object, &XEXP (x, 0), newmem, 1);
645 break;
647 default:
648 break;
652 /* Try replacing every occurrence of FROM in INSN with TO. After all
653 changes have been made, validate by seeing if INSN is still valid. */
656 validate_replace_rtx (rtx from, rtx to, rtx insn)
658 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
659 return apply_change_group ();
662 /* Try replacing every occurrence of FROM in INSN with TO. */
664 void
665 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
667 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
670 /* Function called by note_uses to replace used subexpressions. */
671 struct validate_replace_src_data
673 rtx from; /* Old RTX */
674 rtx to; /* New RTX */
675 rtx insn; /* Insn in which substitution is occurring. */
678 static void
679 validate_replace_src_1 (rtx *x, void *data)
681 struct validate_replace_src_data *d
682 = (struct validate_replace_src_data *) data;
684 validate_replace_rtx_1 (x, d->from, d->to, d->insn);
687 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
688 SET_DESTs. */
690 void
691 validate_replace_src_group (rtx from, rtx to, rtx insn)
693 struct validate_replace_src_data d;
695 d.from = from;
696 d.to = to;
697 d.insn = insn;
698 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
701 #ifdef HAVE_cc0
702 /* Return 1 if the insn using CC0 set by INSN does not contain
703 any ordered tests applied to the condition codes.
704 EQ and NE tests do not count. */
707 next_insn_tests_no_inequality (rtx insn)
709 rtx next = next_cc0_user (insn);
711 /* If there is no next insn, we have to take the conservative choice. */
712 if (next == 0)
713 return 0;
715 return (INSN_P (next)
716 && ! inequality_comparisons_p (PATTERN (next)));
718 #endif
720 /* This is used by find_single_use to locate an rtx that contains exactly one
721 use of DEST, which is typically either a REG or CC0. It returns a
722 pointer to the innermost rtx expression containing DEST. Appearances of
723 DEST that are being used to totally replace it are not counted. */
725 static rtx *
726 find_single_use_1 (rtx dest, rtx *loc)
728 rtx x = *loc;
729 enum rtx_code code = GET_CODE (x);
730 rtx *result = 0;
731 rtx *this_result;
732 int i;
733 const char *fmt;
735 switch (code)
737 case CONST_INT:
738 case CONST:
739 case LABEL_REF:
740 case SYMBOL_REF:
741 case CONST_DOUBLE:
742 case CONST_VECTOR:
743 case CLOBBER:
744 return 0;
746 case SET:
747 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
748 of a REG that occupies all of the REG, the insn uses DEST if
749 it is mentioned in the destination or the source. Otherwise, we
750 need just check the source. */
751 if (GET_CODE (SET_DEST (x)) != CC0
752 && GET_CODE (SET_DEST (x)) != PC
753 && !REG_P (SET_DEST (x))
754 && ! (GET_CODE (SET_DEST (x)) == SUBREG
755 && REG_P (SUBREG_REG (SET_DEST (x)))
756 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
757 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
758 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
759 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
760 break;
762 return find_single_use_1 (dest, &SET_SRC (x));
764 case MEM:
765 case SUBREG:
766 return find_single_use_1 (dest, &XEXP (x, 0));
768 default:
769 break;
772 /* If it wasn't one of the common cases above, check each expression and
773 vector of this code. Look for a unique usage of DEST. */
775 fmt = GET_RTX_FORMAT (code);
776 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
778 if (fmt[i] == 'e')
780 if (dest == XEXP (x, i)
781 || (REG_P (dest) && REG_P (XEXP (x, i))
782 && REGNO (dest) == REGNO (XEXP (x, i))))
783 this_result = loc;
784 else
785 this_result = find_single_use_1 (dest, &XEXP (x, i));
787 if (result == 0)
788 result = this_result;
789 else if (this_result)
790 /* Duplicate usage. */
791 return 0;
793 else if (fmt[i] == 'E')
795 int j;
797 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
799 if (XVECEXP (x, i, j) == dest
800 || (REG_P (dest)
801 && REG_P (XVECEXP (x, i, j))
802 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
803 this_result = loc;
804 else
805 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
807 if (result == 0)
808 result = this_result;
809 else if (this_result)
810 return 0;
815 return result;
818 /* See if DEST, produced in INSN, is used only a single time in the
819 sequel. If so, return a pointer to the innermost rtx expression in which
820 it is used.
822 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
824 This routine will return usually zero either before flow is called (because
825 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
826 note can't be trusted).
828 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
829 care about REG_DEAD notes or LOG_LINKS.
831 Otherwise, we find the single use by finding an insn that has a
832 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
833 only referenced once in that insn, we know that it must be the first
834 and last insn referencing DEST. */
836 rtx *
837 find_single_use (rtx dest, rtx insn, rtx *ploc)
839 rtx next;
840 rtx *result;
841 rtx link;
843 #ifdef HAVE_cc0
844 if (dest == cc0_rtx)
846 next = NEXT_INSN (insn);
847 if (next == 0
848 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
849 return 0;
851 result = find_single_use_1 (dest, &PATTERN (next));
852 if (result && ploc)
853 *ploc = next;
854 return result;
856 #endif
858 if (reload_completed || reload_in_progress || !REG_P (dest))
859 return 0;
861 for (next = next_nonnote_insn (insn);
862 next != 0 && !LABEL_P (next);
863 next = next_nonnote_insn (next))
864 if (INSN_P (next) && dead_or_set_p (next, dest))
866 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
867 if (XEXP (link, 0) == insn)
868 break;
870 if (link)
872 result = find_single_use_1 (dest, &PATTERN (next));
873 if (ploc)
874 *ploc = next;
875 return result;
879 return 0;
882 /* Return 1 if OP is a valid general operand for machine mode MODE.
883 This is either a register reference, a memory reference,
884 or a constant. In the case of a memory reference, the address
885 is checked for general validity for the target machine.
887 Register and memory references must have mode MODE in order to be valid,
888 but some constants have no machine mode and are valid for any mode.
890 If MODE is VOIDmode, OP is checked for validity for whatever mode
891 it has.
893 The main use of this function is as a predicate in match_operand
894 expressions in the machine description.
896 For an explanation of this function's behavior for registers of
897 class NO_REGS, see the comment for `register_operand'. */
900 general_operand (rtx op, enum machine_mode mode)
902 enum rtx_code code = GET_CODE (op);
904 if (mode == VOIDmode)
905 mode = GET_MODE (op);
907 /* Don't accept CONST_INT or anything similar
908 if the caller wants something floating. */
909 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
910 && GET_MODE_CLASS (mode) != MODE_INT
911 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
912 return 0;
914 if (GET_CODE (op) == CONST_INT
915 && mode != VOIDmode
916 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
917 return 0;
919 if (CONSTANT_P (op))
920 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
921 || mode == VOIDmode)
922 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
923 && LEGITIMATE_CONSTANT_P (op));
925 /* Except for certain constants with VOIDmode, already checked for,
926 OP's mode must match MODE if MODE specifies a mode. */
928 if (GET_MODE (op) != mode)
929 return 0;
931 if (code == SUBREG)
933 rtx sub = SUBREG_REG (op);
935 #ifdef INSN_SCHEDULING
936 /* On machines that have insn scheduling, we want all memory
937 reference to be explicit, so outlaw paradoxical SUBREGs.
938 However, we must allow them after reload so that they can
939 get cleaned up by cleanup_subreg_operands. */
940 if (!reload_completed && MEM_P (sub)
941 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
942 return 0;
943 #endif
944 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
945 may result in incorrect reference. We should simplify all valid
946 subregs of MEM anyway. But allow this after reload because we
947 might be called from cleanup_subreg_operands.
949 ??? This is a kludge. */
950 if (!reload_completed && SUBREG_BYTE (op) != 0
951 && MEM_P (sub))
952 return 0;
954 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
955 create such rtl, and we must reject it. */
956 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
957 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
958 return 0;
960 op = sub;
961 code = GET_CODE (op);
964 if (code == REG)
965 /* A register whose class is NO_REGS is not a general operand. */
966 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
967 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
969 if (code == MEM)
971 rtx y = XEXP (op, 0);
973 if (! volatile_ok && MEM_VOLATILE_P (op))
974 return 0;
976 /* Use the mem's mode, since it will be reloaded thus. */
977 if (memory_address_p (GET_MODE (op), y))
978 return 1;
981 return 0;
984 /* Return 1 if OP is a valid memory address for a memory reference
985 of mode MODE.
987 The main use of this function is as a predicate in match_operand
988 expressions in the machine description. */
991 address_operand (rtx op, enum machine_mode mode)
993 return memory_address_p (mode, op);
996 /* Return 1 if OP is a register reference of mode MODE.
997 If MODE is VOIDmode, accept a register in any mode.
999 The main use of this function is as a predicate in match_operand
1000 expressions in the machine description.
1002 As a special exception, registers whose class is NO_REGS are
1003 not accepted by `register_operand'. The reason for this change
1004 is to allow the representation of special architecture artifacts
1005 (such as a condition code register) without extending the rtl
1006 definitions. Since registers of class NO_REGS cannot be used
1007 as registers in any case where register classes are examined,
1008 it is most consistent to keep this function from accepting them. */
1011 register_operand (rtx op, enum machine_mode mode)
1013 if (GET_MODE (op) != mode && mode != VOIDmode)
1014 return 0;
1016 if (GET_CODE (op) == SUBREG)
1018 rtx sub = SUBREG_REG (op);
1020 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1021 because it is guaranteed to be reloaded into one.
1022 Just make sure the MEM is valid in itself.
1023 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1024 but currently it does result from (SUBREG (REG)...) where the
1025 reg went on the stack.) */
1026 if (! reload_completed && MEM_P (sub))
1027 return general_operand (op, mode);
1029 #ifdef CANNOT_CHANGE_MODE_CLASS
1030 if (REG_P (sub)
1031 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1032 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1033 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1034 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1035 return 0;
1036 #endif
1038 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1039 create such rtl, and we must reject it. */
1040 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1041 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1042 return 0;
1044 op = sub;
1047 /* We don't consider registers whose class is NO_REGS
1048 to be a register operand. */
1049 return (REG_P (op)
1050 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1051 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1054 /* Return 1 for a register in Pmode; ignore the tested mode. */
1057 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1059 return register_operand (op, Pmode);
1062 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1063 or a hard register. */
1066 scratch_operand (rtx op, enum machine_mode mode)
1068 if (GET_MODE (op) != mode && mode != VOIDmode)
1069 return 0;
1071 return (GET_CODE (op) == SCRATCH
1072 || (REG_P (op)
1073 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1076 /* Return 1 if OP is a valid immediate operand for mode MODE.
1078 The main use of this function is as a predicate in match_operand
1079 expressions in the machine description. */
1082 immediate_operand (rtx op, enum machine_mode mode)
1084 /* Don't accept CONST_INT or anything similar
1085 if the caller wants something floating. */
1086 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1087 && GET_MODE_CLASS (mode) != MODE_INT
1088 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1089 return 0;
1091 if (GET_CODE (op) == CONST_INT
1092 && mode != VOIDmode
1093 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1094 return 0;
1096 return (CONSTANT_P (op)
1097 && (GET_MODE (op) == mode || mode == VOIDmode
1098 || GET_MODE (op) == VOIDmode)
1099 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1100 && LEGITIMATE_CONSTANT_P (op));
1103 /* Returns 1 if OP is an operand that is a CONST_INT. */
1106 const_int_operand (rtx op, enum machine_mode mode)
1108 if (GET_CODE (op) != CONST_INT)
1109 return 0;
1111 if (mode != VOIDmode
1112 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1113 return 0;
1115 return 1;
1118 /* Returns 1 if OP is an operand that is a constant integer or constant
1119 floating-point number. */
1122 const_double_operand (rtx op, enum machine_mode mode)
1124 /* Don't accept CONST_INT or anything similar
1125 if the caller wants something floating. */
1126 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1127 && GET_MODE_CLASS (mode) != MODE_INT
1128 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1129 return 0;
1131 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1132 && (mode == VOIDmode || GET_MODE (op) == mode
1133 || GET_MODE (op) == VOIDmode));
1136 /* Return 1 if OP is a general operand that is not an immediate operand. */
1139 nonimmediate_operand (rtx op, enum machine_mode mode)
1141 return (general_operand (op, mode) && ! CONSTANT_P (op));
1144 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1147 nonmemory_operand (rtx op, enum machine_mode mode)
1149 if (CONSTANT_P (op))
1151 /* Don't accept CONST_INT or anything similar
1152 if the caller wants something floating. */
1153 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1154 && GET_MODE_CLASS (mode) != MODE_INT
1155 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1156 return 0;
1158 if (GET_CODE (op) == CONST_INT
1159 && mode != VOIDmode
1160 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1161 return 0;
1163 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1164 || mode == VOIDmode)
1165 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1166 && LEGITIMATE_CONSTANT_P (op));
1169 if (GET_MODE (op) != mode && mode != VOIDmode)
1170 return 0;
1172 if (GET_CODE (op) == SUBREG)
1174 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1175 because it is guaranteed to be reloaded into one.
1176 Just make sure the MEM is valid in itself.
1177 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1178 but currently it does result from (SUBREG (REG)...) where the
1179 reg went on the stack.) */
1180 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1181 return general_operand (op, mode);
1182 op = SUBREG_REG (op);
1185 /* We don't consider registers whose class is NO_REGS
1186 to be a register operand. */
1187 return (REG_P (op)
1188 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1189 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1192 /* Return 1 if OP is a valid operand that stands for pushing a
1193 value of mode MODE onto the stack.
1195 The main use of this function is as a predicate in match_operand
1196 expressions in the machine description. */
1199 push_operand (rtx op, enum machine_mode mode)
1201 unsigned int rounded_size = GET_MODE_SIZE (mode);
1203 #ifdef PUSH_ROUNDING
1204 rounded_size = PUSH_ROUNDING (rounded_size);
1205 #endif
1207 if (!MEM_P (op))
1208 return 0;
1210 if (mode != VOIDmode && GET_MODE (op) != mode)
1211 return 0;
1213 op = XEXP (op, 0);
1215 if (rounded_size == GET_MODE_SIZE (mode))
1217 if (GET_CODE (op) != STACK_PUSH_CODE)
1218 return 0;
1220 else
1222 if (GET_CODE (op) != PRE_MODIFY
1223 || GET_CODE (XEXP (op, 1)) != PLUS
1224 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1225 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1226 #ifdef STACK_GROWS_DOWNWARD
1227 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1228 #else
1229 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1230 #endif
1232 return 0;
1235 return XEXP (op, 0) == stack_pointer_rtx;
1238 /* Return 1 if OP is a valid operand that stands for popping a
1239 value of mode MODE off the stack.
1241 The main use of this function is as a predicate in match_operand
1242 expressions in the machine description. */
1245 pop_operand (rtx op, enum machine_mode mode)
1247 if (!MEM_P (op))
1248 return 0;
1250 if (mode != VOIDmode && GET_MODE (op) != mode)
1251 return 0;
1253 op = XEXP (op, 0);
1255 if (GET_CODE (op) != STACK_POP_CODE)
1256 return 0;
1258 return XEXP (op, 0) == stack_pointer_rtx;
1261 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1264 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
1266 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1267 return 0;
1269 win:
1270 return 1;
1273 /* Return 1 if OP is a valid memory reference with mode MODE,
1274 including a valid address.
1276 The main use of this function is as a predicate in match_operand
1277 expressions in the machine description. */
1280 memory_operand (rtx op, enum machine_mode mode)
1282 rtx inner;
1284 if (! reload_completed)
1285 /* Note that no SUBREG is a memory operand before end of reload pass,
1286 because (SUBREG (MEM...)) forces reloading into a register. */
1287 return MEM_P (op) && general_operand (op, mode);
1289 if (mode != VOIDmode && GET_MODE (op) != mode)
1290 return 0;
1292 inner = op;
1293 if (GET_CODE (inner) == SUBREG)
1294 inner = SUBREG_REG (inner);
1296 return (MEM_P (inner) && general_operand (op, mode));
1299 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1300 that is, a memory reference whose address is a general_operand. */
1303 indirect_operand (rtx op, enum machine_mode mode)
1305 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1306 if (! reload_completed
1307 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1309 int offset = SUBREG_BYTE (op);
1310 rtx inner = SUBREG_REG (op);
1312 if (mode != VOIDmode && GET_MODE (op) != mode)
1313 return 0;
1315 /* The only way that we can have a general_operand as the resulting
1316 address is if OFFSET is zero and the address already is an operand
1317 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1318 operand. */
1320 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1321 || (GET_CODE (XEXP (inner, 0)) == PLUS
1322 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1323 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1324 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1327 return (MEM_P (op)
1328 && memory_operand (op, mode)
1329 && general_operand (XEXP (op, 0), Pmode));
1332 /* Return 1 if this is a comparison operator. This allows the use of
1333 MATCH_OPERATOR to recognize all the branch insns. */
1336 comparison_operator (rtx op, enum machine_mode mode)
1338 return ((mode == VOIDmode || GET_MODE (op) == mode)
1339 && COMPARISON_P (op));
1342 /* If BODY is an insn body that uses ASM_OPERANDS,
1343 return the number of operands (both input and output) in the insn.
1344 Otherwise return -1. */
1347 asm_noperands (rtx body)
1349 switch (GET_CODE (body))
1351 case ASM_OPERANDS:
1352 /* No output operands: return number of input operands. */
1353 return ASM_OPERANDS_INPUT_LENGTH (body);
1354 case SET:
1355 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1356 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1357 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1358 else
1359 return -1;
1360 case PARALLEL:
1361 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1362 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1364 /* Multiple output operands, or 1 output plus some clobbers:
1365 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1366 int i;
1367 int n_sets;
1369 /* Count backwards through CLOBBERs to determine number of SETs. */
1370 for (i = XVECLEN (body, 0); i > 0; i--)
1372 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1373 break;
1374 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1375 return -1;
1378 /* N_SETS is now number of output operands. */
1379 n_sets = i;
1381 /* Verify that all the SETs we have
1382 came from a single original asm_operands insn
1383 (so that invalid combinations are blocked). */
1384 for (i = 0; i < n_sets; i++)
1386 rtx elt = XVECEXP (body, 0, i);
1387 if (GET_CODE (elt) != SET)
1388 return -1;
1389 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1390 return -1;
1391 /* If these ASM_OPERANDS rtx's came from different original insns
1392 then they aren't allowed together. */
1393 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1394 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1395 return -1;
1397 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1398 + n_sets);
1400 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1402 /* 0 outputs, but some clobbers:
1403 body is [(asm_operands ...) (clobber (reg ...))...]. */
1404 int i;
1406 /* Make sure all the other parallel things really are clobbers. */
1407 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1408 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1409 return -1;
1411 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1413 else
1414 return -1;
1415 default:
1416 return -1;
1420 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1421 copy its operands (both input and output) into the vector OPERANDS,
1422 the locations of the operands within the insn into the vector OPERAND_LOCS,
1423 and the constraints for the operands into CONSTRAINTS.
1424 Write the modes of the operands into MODES.
1425 Return the assembler-template.
1427 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1428 we don't store that info. */
1430 const char *
1431 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1432 const char **constraints, enum machine_mode *modes)
1434 int i;
1435 int noperands;
1436 const char *template = 0;
1438 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1440 rtx asmop = SET_SRC (body);
1441 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1443 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1445 for (i = 1; i < noperands; i++)
1447 if (operand_locs)
1448 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1449 if (operands)
1450 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1451 if (constraints)
1452 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1453 if (modes)
1454 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1457 /* The output is in the SET.
1458 Its constraint is in the ASM_OPERANDS itself. */
1459 if (operands)
1460 operands[0] = SET_DEST (body);
1461 if (operand_locs)
1462 operand_locs[0] = &SET_DEST (body);
1463 if (constraints)
1464 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1465 if (modes)
1466 modes[0] = GET_MODE (SET_DEST (body));
1467 template = ASM_OPERANDS_TEMPLATE (asmop);
1469 else if (GET_CODE (body) == ASM_OPERANDS)
1471 rtx asmop = body;
1472 /* No output operands: BODY is (asm_operands ....). */
1474 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1476 /* The input operands are found in the 1st element vector. */
1477 /* Constraints for inputs are in the 2nd element vector. */
1478 for (i = 0; i < noperands; i++)
1480 if (operand_locs)
1481 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1482 if (operands)
1483 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1484 if (constraints)
1485 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1486 if (modes)
1487 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1489 template = ASM_OPERANDS_TEMPLATE (asmop);
1491 else if (GET_CODE (body) == PARALLEL
1492 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1493 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1495 rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
1496 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1497 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1498 int nout = 0; /* Does not include CLOBBERs. */
1500 /* At least one output, plus some CLOBBERs. */
1502 /* The outputs are in the SETs.
1503 Their constraints are in the ASM_OPERANDS itself. */
1504 for (i = 0; i < nparallel; i++)
1506 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1507 break; /* Past last SET */
1509 if (operands)
1510 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1511 if (operand_locs)
1512 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1513 if (constraints)
1514 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1515 if (modes)
1516 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1517 nout++;
1520 for (i = 0; i < nin; i++)
1522 if (operand_locs)
1523 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1524 if (operands)
1525 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1526 if (constraints)
1527 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1528 if (modes)
1529 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1532 template = ASM_OPERANDS_TEMPLATE (asmop);
1534 else if (GET_CODE (body) == PARALLEL
1535 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1537 /* No outputs, but some CLOBBERs. */
1539 rtx asmop = XVECEXP (body, 0, 0);
1540 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1542 for (i = 0; i < nin; i++)
1544 if (operand_locs)
1545 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1546 if (operands)
1547 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1548 if (constraints)
1549 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1550 if (modes)
1551 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1554 template = ASM_OPERANDS_TEMPLATE (asmop);
1557 return template;
1560 /* Check if an asm_operand matches its constraints.
1561 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1564 asm_operand_ok (rtx op, const char *constraint)
1566 int result = 0;
1568 /* Use constrain_operands after reload. */
1569 gcc_assert (!reload_completed);
1571 while (*constraint)
1573 char c = *constraint;
1574 int len;
1575 switch (c)
1577 case ',':
1578 constraint++;
1579 continue;
1580 case '=':
1581 case '+':
1582 case '*':
1583 case '%':
1584 case '!':
1585 case '#':
1586 case '&':
1587 case '?':
1588 break;
1590 case '0': case '1': case '2': case '3': case '4':
1591 case '5': case '6': case '7': case '8': case '9':
1592 /* For best results, our caller should have given us the
1593 proper matching constraint, but we can't actually fail
1594 the check if they didn't. Indicate that results are
1595 inconclusive. */
1597 constraint++;
1598 while (ISDIGIT (*constraint));
1599 if (! result)
1600 result = -1;
1601 continue;
1603 case 'p':
1604 if (address_operand (op, VOIDmode))
1605 result = 1;
1606 break;
1608 case 'm':
1609 case 'V': /* non-offsettable */
1610 if (memory_operand (op, VOIDmode))
1611 result = 1;
1612 break;
1614 case 'o': /* offsettable */
1615 if (offsettable_nonstrict_memref_p (op))
1616 result = 1;
1617 break;
1619 case '<':
1620 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1621 excepting those that expand_call created. Further, on some
1622 machines which do not have generalized auto inc/dec, an inc/dec
1623 is not a memory_operand.
1625 Match any memory and hope things are resolved after reload. */
1627 if (MEM_P (op)
1628 && (1
1629 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1630 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1631 result = 1;
1632 break;
1634 case '>':
1635 if (MEM_P (op)
1636 && (1
1637 || GET_CODE (XEXP (op, 0)) == PRE_INC
1638 || GET_CODE (XEXP (op, 0)) == POST_INC))
1639 result = 1;
1640 break;
1642 case 'E':
1643 case 'F':
1644 if (GET_CODE (op) == CONST_DOUBLE
1645 || (GET_CODE (op) == CONST_VECTOR
1646 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1647 result = 1;
1648 break;
1650 case 'G':
1651 if (GET_CODE (op) == CONST_DOUBLE
1652 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1653 result = 1;
1654 break;
1655 case 'H':
1656 if (GET_CODE (op) == CONST_DOUBLE
1657 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1658 result = 1;
1659 break;
1661 case 's':
1662 if (GET_CODE (op) == CONST_INT
1663 || (GET_CODE (op) == CONST_DOUBLE
1664 && GET_MODE (op) == VOIDmode))
1665 break;
1666 /* Fall through. */
1668 case 'i':
1669 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1670 result = 1;
1671 break;
1673 case 'n':
1674 if (GET_CODE (op) == CONST_INT
1675 || (GET_CODE (op) == CONST_DOUBLE
1676 && GET_MODE (op) == VOIDmode))
1677 result = 1;
1678 break;
1680 case 'I':
1681 if (GET_CODE (op) == CONST_INT
1682 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1683 result = 1;
1684 break;
1685 case 'J':
1686 if (GET_CODE (op) == CONST_INT
1687 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1688 result = 1;
1689 break;
1690 case 'K':
1691 if (GET_CODE (op) == CONST_INT
1692 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1693 result = 1;
1694 break;
1695 case 'L':
1696 if (GET_CODE (op) == CONST_INT
1697 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1698 result = 1;
1699 break;
1700 case 'M':
1701 if (GET_CODE (op) == CONST_INT
1702 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1703 result = 1;
1704 break;
1705 case 'N':
1706 if (GET_CODE (op) == CONST_INT
1707 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1708 result = 1;
1709 break;
1710 case 'O':
1711 if (GET_CODE (op) == CONST_INT
1712 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1713 result = 1;
1714 break;
1715 case 'P':
1716 if (GET_CODE (op) == CONST_INT
1717 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1718 result = 1;
1719 break;
1721 case 'X':
1722 result = 1;
1723 break;
1725 case 'g':
1726 if (general_operand (op, VOIDmode))
1727 result = 1;
1728 break;
1730 default:
1731 /* For all other letters, we first check for a register class,
1732 otherwise it is an EXTRA_CONSTRAINT. */
1733 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1735 case 'r':
1736 if (GET_MODE (op) == BLKmode)
1737 break;
1738 if (register_operand (op, VOIDmode))
1739 result = 1;
1741 #ifdef EXTRA_CONSTRAINT_STR
1742 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1743 result = 1;
1744 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
1745 /* Every memory operand can be reloaded to fit. */
1746 && memory_operand (op, VOIDmode))
1747 result = 1;
1748 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)
1749 /* Every address operand can be reloaded to fit. */
1750 && address_operand (op, VOIDmode))
1751 result = 1;
1752 #endif
1753 break;
1755 len = CONSTRAINT_LEN (c, constraint);
1757 constraint++;
1758 while (--len && *constraint);
1759 if (len)
1760 return 0;
1763 return result;
1766 /* Given an rtx *P, if it is a sum containing an integer constant term,
1767 return the location (type rtx *) of the pointer to that constant term.
1768 Otherwise, return a null pointer. */
1770 rtx *
1771 find_constant_term_loc (rtx *p)
1773 rtx *tem;
1774 enum rtx_code code = GET_CODE (*p);
1776 /* If *P IS such a constant term, P is its location. */
1778 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1779 || code == CONST)
1780 return p;
1782 /* Otherwise, if not a sum, it has no constant term. */
1784 if (GET_CODE (*p) != PLUS)
1785 return 0;
1787 /* If one of the summands is constant, return its location. */
1789 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1790 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1791 return p;
1793 /* Otherwise, check each summand for containing a constant term. */
1795 if (XEXP (*p, 0) != 0)
1797 tem = find_constant_term_loc (&XEXP (*p, 0));
1798 if (tem != 0)
1799 return tem;
1802 if (XEXP (*p, 1) != 0)
1804 tem = find_constant_term_loc (&XEXP (*p, 1));
1805 if (tem != 0)
1806 return tem;
1809 return 0;
1812 /* Return 1 if OP is a memory reference
1813 whose address contains no side effects
1814 and remains valid after the addition
1815 of a positive integer less than the
1816 size of the object being referenced.
1818 We assume that the original address is valid and do not check it.
1820 This uses strict_memory_address_p as a subroutine, so
1821 don't use it before reload. */
1824 offsettable_memref_p (rtx op)
1826 return ((MEM_P (op))
1827 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1830 /* Similar, but don't require a strictly valid mem ref:
1831 consider pseudo-regs valid as index or base regs. */
1834 offsettable_nonstrict_memref_p (rtx op)
1836 return ((MEM_P (op))
1837 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1840 /* Return 1 if Y is a memory address which contains no side effects
1841 and would remain valid after the addition of a positive integer
1842 less than the size of that mode.
1844 We assume that the original address is valid and do not check it.
1845 We do check that it is valid for narrower modes.
1847 If STRICTP is nonzero, we require a strictly valid address,
1848 for the sake of use in reload.c. */
1851 offsettable_address_p (int strictp, enum machine_mode mode, rtx y)
1853 enum rtx_code ycode = GET_CODE (y);
1854 rtx z;
1855 rtx y1 = y;
1856 rtx *y2;
1857 int (*addressp) (enum machine_mode, rtx) =
1858 (strictp ? strict_memory_address_p : memory_address_p);
1859 unsigned int mode_sz = GET_MODE_SIZE (mode);
1861 if (CONSTANT_ADDRESS_P (y))
1862 return 1;
1864 /* Adjusting an offsettable address involves changing to a narrower mode.
1865 Make sure that's OK. */
1867 if (mode_dependent_address_p (y))
1868 return 0;
1870 /* ??? How much offset does an offsettable BLKmode reference need?
1871 Clearly that depends on the situation in which it's being used.
1872 However, the current situation in which we test 0xffffffff is
1873 less than ideal. Caveat user. */
1874 if (mode_sz == 0)
1875 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1877 /* If the expression contains a constant term,
1878 see if it remains valid when max possible offset is added. */
1880 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1882 int good;
1884 y1 = *y2;
1885 *y2 = plus_constant (*y2, mode_sz - 1);
1886 /* Use QImode because an odd displacement may be automatically invalid
1887 for any wider mode. But it should be valid for a single byte. */
1888 good = (*addressp) (QImode, y);
1890 /* In any case, restore old contents of memory. */
1891 *y2 = y1;
1892 return good;
1895 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1896 return 0;
1898 /* The offset added here is chosen as the maximum offset that
1899 any instruction could need to add when operating on something
1900 of the specified mode. We assume that if Y and Y+c are
1901 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1902 go inside a LO_SUM here, so we do so as well. */
1903 if (GET_CODE (y) == LO_SUM
1904 && mode != BLKmode
1905 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1906 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1907 plus_constant (XEXP (y, 1), mode_sz - 1));
1908 else
1909 z = plus_constant (y, mode_sz - 1);
1911 /* Use QImode because an odd displacement may be automatically invalid
1912 for any wider mode. But it should be valid for a single byte. */
1913 return (*addressp) (QImode, z);
1916 /* Return 1 if ADDR is an address-expression whose effect depends
1917 on the mode of the memory reference it is used in.
1919 Autoincrement addressing is a typical example of mode-dependence
1920 because the amount of the increment depends on the mode. */
1923 mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */)
1925 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1926 return 0;
1927 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1928 win: ATTRIBUTE_UNUSED_LABEL
1929 return 1;
1932 /* Like extract_insn, but save insn extracted and don't extract again, when
1933 called again for the same insn expecting that recog_data still contain the
1934 valid information. This is used primary by gen_attr infrastructure that
1935 often does extract insn again and again. */
1936 void
1937 extract_insn_cached (rtx insn)
1939 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
1940 return;
1941 extract_insn (insn);
1942 recog_data.insn = insn;
1945 /* Do cached extract_insn, constrain_operands and complain about failures.
1946 Used by insn_attrtab. */
1947 void
1948 extract_constrain_insn_cached (rtx insn)
1950 extract_insn_cached (insn);
1951 if (which_alternative == -1
1952 && !constrain_operands (reload_completed))
1953 fatal_insn_not_found (insn);
1956 /* Do cached constrain_operands and complain about failures. */
1958 constrain_operands_cached (int strict)
1960 if (which_alternative == -1)
1961 return constrain_operands (strict);
1962 else
1963 return 1;
1966 /* Analyze INSN and fill in recog_data. */
1968 void
1969 extract_insn (rtx insn)
1971 int i;
1972 int icode;
1973 int noperands;
1974 rtx body = PATTERN (insn);
1976 recog_data.insn = NULL;
1977 recog_data.n_operands = 0;
1978 recog_data.n_alternatives = 0;
1979 recog_data.n_dups = 0;
1980 which_alternative = -1;
1982 switch (GET_CODE (body))
1984 case USE:
1985 case CLOBBER:
1986 case ASM_INPUT:
1987 case ADDR_VEC:
1988 case ADDR_DIFF_VEC:
1989 return;
1991 case SET:
1992 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1993 goto asm_insn;
1994 else
1995 goto normal_insn;
1996 case PARALLEL:
1997 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
1998 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1999 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2000 goto asm_insn;
2001 else
2002 goto normal_insn;
2003 case ASM_OPERANDS:
2004 asm_insn:
2005 recog_data.n_operands = noperands = asm_noperands (body);
2006 if (noperands >= 0)
2008 /* This insn is an `asm' with operands. */
2010 /* expand_asm_operands makes sure there aren't too many operands. */
2011 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2013 /* Now get the operand values and constraints out of the insn. */
2014 decode_asm_operands (body, recog_data.operand,
2015 recog_data.operand_loc,
2016 recog_data.constraints,
2017 recog_data.operand_mode);
2018 if (noperands > 0)
2020 const char *p = recog_data.constraints[0];
2021 recog_data.n_alternatives = 1;
2022 while (*p)
2023 recog_data.n_alternatives += (*p++ == ',');
2025 break;
2027 fatal_insn_not_found (insn);
2029 default:
2030 normal_insn:
2031 /* Ordinary insn: recognize it, get the operands via insn_extract
2032 and get the constraints. */
2034 icode = recog_memoized (insn);
2035 if (icode < 0)
2036 fatal_insn_not_found (insn);
2038 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2039 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2040 recog_data.n_dups = insn_data[icode].n_dups;
2042 insn_extract (insn);
2044 for (i = 0; i < noperands; i++)
2046 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2047 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2048 /* VOIDmode match_operands gets mode from their real operand. */
2049 if (recog_data.operand_mode[i] == VOIDmode)
2050 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2053 for (i = 0; i < noperands; i++)
2054 recog_data.operand_type[i]
2055 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2056 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2057 : OP_IN);
2059 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2062 /* After calling extract_insn, you can use this function to extract some
2063 information from the constraint strings into a more usable form.
2064 The collected data is stored in recog_op_alt. */
2065 void
2066 preprocess_constraints (void)
2068 int i;
2070 for (i = 0; i < recog_data.n_operands; i++)
2071 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2072 * sizeof (struct operand_alternative)));
2074 for (i = 0; i < recog_data.n_operands; i++)
2076 int j;
2077 struct operand_alternative *op_alt;
2078 const char *p = recog_data.constraints[i];
2080 op_alt = recog_op_alt[i];
2082 for (j = 0; j < recog_data.n_alternatives; j++)
2084 op_alt[j].cl = NO_REGS;
2085 op_alt[j].constraint = p;
2086 op_alt[j].matches = -1;
2087 op_alt[j].matched = -1;
2089 if (*p == '\0' || *p == ',')
2091 op_alt[j].anything_ok = 1;
2092 continue;
2095 for (;;)
2097 char c = *p;
2098 if (c == '#')
2100 c = *++p;
2101 while (c != ',' && c != '\0');
2102 if (c == ',' || c == '\0')
2104 p++;
2105 break;
2108 switch (c)
2110 case '=': case '+': case '*': case '%':
2111 case 'E': case 'F': case 'G': case 'H':
2112 case 's': case 'i': case 'n':
2113 case 'I': case 'J': case 'K': case 'L':
2114 case 'M': case 'N': case 'O': case 'P':
2115 /* These don't say anything we care about. */
2116 break;
2118 case '?':
2119 op_alt[j].reject += 6;
2120 break;
2121 case '!':
2122 op_alt[j].reject += 600;
2123 break;
2124 case '&':
2125 op_alt[j].earlyclobber = 1;
2126 break;
2128 case '0': case '1': case '2': case '3': case '4':
2129 case '5': case '6': case '7': case '8': case '9':
2131 char *end;
2132 op_alt[j].matches = strtoul (p, &end, 10);
2133 recog_op_alt[op_alt[j].matches][j].matched = i;
2134 p = end;
2136 continue;
2138 case 'm':
2139 op_alt[j].memory_ok = 1;
2140 break;
2141 case '<':
2142 op_alt[j].decmem_ok = 1;
2143 break;
2144 case '>':
2145 op_alt[j].incmem_ok = 1;
2146 break;
2147 case 'V':
2148 op_alt[j].nonoffmem_ok = 1;
2149 break;
2150 case 'o':
2151 op_alt[j].offmem_ok = 1;
2152 break;
2153 case 'X':
2154 op_alt[j].anything_ok = 1;
2155 break;
2157 case 'p':
2158 op_alt[j].is_address = 1;
2159 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2160 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2161 break;
2163 case 'g':
2164 case 'r':
2165 op_alt[j].cl =
2166 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2167 break;
2169 default:
2170 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2172 op_alt[j].memory_ok = 1;
2173 break;
2175 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2177 op_alt[j].is_address = 1;
2178 op_alt[j].cl
2179 = (reg_class_subunion
2180 [(int) op_alt[j].cl]
2181 [(int) MODE_BASE_REG_CLASS (VOIDmode)]);
2182 break;
2185 op_alt[j].cl
2186 = (reg_class_subunion
2187 [(int) op_alt[j].cl]
2188 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2189 break;
2191 p += CONSTRAINT_LEN (c, p);
2197 /* Check the operands of an insn against the insn's operand constraints
2198 and return 1 if they are valid.
2199 The information about the insn's operands, constraints, operand modes
2200 etc. is obtained from the global variables set up by extract_insn.
2202 WHICH_ALTERNATIVE is set to a number which indicates which
2203 alternative of constraints was matched: 0 for the first alternative,
2204 1 for the next, etc.
2206 In addition, when two operands are required to match
2207 and it happens that the output operand is (reg) while the
2208 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2209 make the output operand look like the input.
2210 This is because the output operand is the one the template will print.
2212 This is used in final, just before printing the assembler code and by
2213 the routines that determine an insn's attribute.
2215 If STRICT is a positive nonzero value, it means that we have been
2216 called after reload has been completed. In that case, we must
2217 do all checks strictly. If it is zero, it means that we have been called
2218 before reload has completed. In that case, we first try to see if we can
2219 find an alternative that matches strictly. If not, we try again, this
2220 time assuming that reload will fix up the insn. This provides a "best
2221 guess" for the alternative and is used to compute attributes of insns prior
2222 to reload. A negative value of STRICT is used for this internal call. */
2224 struct funny_match
2226 int this, other;
2230 constrain_operands (int strict)
2232 const char *constraints[MAX_RECOG_OPERANDS];
2233 int matching_operands[MAX_RECOG_OPERANDS];
2234 int earlyclobber[MAX_RECOG_OPERANDS];
2235 int c;
2237 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2238 int funny_match_index;
2240 which_alternative = 0;
2241 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2242 return 1;
2244 for (c = 0; c < recog_data.n_operands; c++)
2246 constraints[c] = recog_data.constraints[c];
2247 matching_operands[c] = -1;
2252 int seen_earlyclobber_at = -1;
2253 int opno;
2254 int lose = 0;
2255 funny_match_index = 0;
2257 for (opno = 0; opno < recog_data.n_operands; opno++)
2259 rtx op = recog_data.operand[opno];
2260 enum machine_mode mode = GET_MODE (op);
2261 const char *p = constraints[opno];
2262 int offset = 0;
2263 int win = 0;
2264 int val;
2265 int len;
2267 earlyclobber[opno] = 0;
2269 /* A unary operator may be accepted by the predicate, but it
2270 is irrelevant for matching constraints. */
2271 if (UNARY_P (op))
2272 op = XEXP (op, 0);
2274 if (GET_CODE (op) == SUBREG)
2276 if (REG_P (SUBREG_REG (op))
2277 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2278 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2279 GET_MODE (SUBREG_REG (op)),
2280 SUBREG_BYTE (op),
2281 GET_MODE (op));
2282 op = SUBREG_REG (op);
2285 /* An empty constraint or empty alternative
2286 allows anything which matched the pattern. */
2287 if (*p == 0 || *p == ',')
2288 win = 1;
2291 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2293 case '\0':
2294 len = 0;
2295 break;
2296 case ',':
2297 c = '\0';
2298 break;
2300 case '?': case '!': case '*': case '%':
2301 case '=': case '+':
2302 break;
2304 case '#':
2305 /* Ignore rest of this alternative as far as
2306 constraint checking is concerned. */
2308 p++;
2309 while (*p && *p != ',');
2310 len = 0;
2311 break;
2313 case '&':
2314 earlyclobber[opno] = 1;
2315 if (seen_earlyclobber_at < 0)
2316 seen_earlyclobber_at = opno;
2317 break;
2319 case '0': case '1': case '2': case '3': case '4':
2320 case '5': case '6': case '7': case '8': case '9':
2322 /* This operand must be the same as a previous one.
2323 This kind of constraint is used for instructions such
2324 as add when they take only two operands.
2326 Note that the lower-numbered operand is passed first.
2328 If we are not testing strictly, assume that this
2329 constraint will be satisfied. */
2331 char *end;
2332 int match;
2334 match = strtoul (p, &end, 10);
2335 p = end;
2337 if (strict < 0)
2338 val = 1;
2339 else
2341 rtx op1 = recog_data.operand[match];
2342 rtx op2 = recog_data.operand[opno];
2344 /* A unary operator may be accepted by the predicate,
2345 but it is irrelevant for matching constraints. */
2346 if (UNARY_P (op1))
2347 op1 = XEXP (op1, 0);
2348 if (UNARY_P (op2))
2349 op2 = XEXP (op2, 0);
2351 val = operands_match_p (op1, op2);
2354 matching_operands[opno] = match;
2355 matching_operands[match] = opno;
2357 if (val != 0)
2358 win = 1;
2360 /* If output is *x and input is *--x, arrange later
2361 to change the output to *--x as well, since the
2362 output op is the one that will be printed. */
2363 if (val == 2 && strict > 0)
2365 funny_match[funny_match_index].this = opno;
2366 funny_match[funny_match_index++].other = match;
2369 len = 0;
2370 break;
2372 case 'p':
2373 /* p is used for address_operands. When we are called by
2374 gen_reload, no one will have checked that the address is
2375 strictly valid, i.e., that all pseudos requiring hard regs
2376 have gotten them. */
2377 if (strict <= 0
2378 || (strict_memory_address_p (recog_data.operand_mode[opno],
2379 op)))
2380 win = 1;
2381 break;
2383 /* No need to check general_operand again;
2384 it was done in insn-recog.c. Well, except that reload
2385 doesn't check the validity of its replacements, but
2386 that should only matter when there's a bug. */
2387 case 'g':
2388 /* Anything goes unless it is a REG and really has a hard reg
2389 but the hard reg is not in the class GENERAL_REGS. */
2390 if (REG_P (op))
2392 if (strict < 0
2393 || GENERAL_REGS == ALL_REGS
2394 || (reload_in_progress
2395 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2396 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2397 win = 1;
2399 else if (strict < 0 || general_operand (op, mode))
2400 win = 1;
2401 break;
2403 case 'X':
2404 /* This is used for a MATCH_SCRATCH in the cases when
2405 we don't actually need anything. So anything goes
2406 any time. */
2407 win = 1;
2408 break;
2410 case 'm':
2411 /* Memory operands must be valid, to the extent
2412 required by STRICT. */
2413 if (MEM_P (op))
2415 if (strict > 0
2416 && !strict_memory_address_p (GET_MODE (op),
2417 XEXP (op, 0)))
2418 break;
2419 if (strict == 0
2420 && !memory_address_p (GET_MODE (op), XEXP (op, 0)))
2421 break;
2422 win = 1;
2424 /* Before reload, accept what reload can turn into mem. */
2425 else if (strict < 0 && CONSTANT_P (op))
2426 win = 1;
2427 /* During reload, accept a pseudo */
2428 else if (reload_in_progress && REG_P (op)
2429 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2430 win = 1;
2431 break;
2433 case '<':
2434 if (MEM_P (op)
2435 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2436 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2437 win = 1;
2438 break;
2440 case '>':
2441 if (MEM_P (op)
2442 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2443 || GET_CODE (XEXP (op, 0)) == POST_INC))
2444 win = 1;
2445 break;
2447 case 'E':
2448 case 'F':
2449 if (GET_CODE (op) == CONST_DOUBLE
2450 || (GET_CODE (op) == CONST_VECTOR
2451 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2452 win = 1;
2453 break;
2455 case 'G':
2456 case 'H':
2457 if (GET_CODE (op) == CONST_DOUBLE
2458 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2459 win = 1;
2460 break;
2462 case 's':
2463 if (GET_CODE (op) == CONST_INT
2464 || (GET_CODE (op) == CONST_DOUBLE
2465 && GET_MODE (op) == VOIDmode))
2466 break;
2467 case 'i':
2468 if (CONSTANT_P (op))
2469 win = 1;
2470 break;
2472 case 'n':
2473 if (GET_CODE (op) == CONST_INT
2474 || (GET_CODE (op) == CONST_DOUBLE
2475 && GET_MODE (op) == VOIDmode))
2476 win = 1;
2477 break;
2479 case 'I':
2480 case 'J':
2481 case 'K':
2482 case 'L':
2483 case 'M':
2484 case 'N':
2485 case 'O':
2486 case 'P':
2487 if (GET_CODE (op) == CONST_INT
2488 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2489 win = 1;
2490 break;
2492 case 'V':
2493 if (MEM_P (op)
2494 && ((strict > 0 && ! offsettable_memref_p (op))
2495 || (strict < 0
2496 && !(CONSTANT_P (op) || MEM_P (op)))
2497 || (reload_in_progress
2498 && !(REG_P (op)
2499 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2500 win = 1;
2501 break;
2503 case 'o':
2504 if ((strict > 0 && offsettable_memref_p (op))
2505 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2506 /* Before reload, accept what reload can handle. */
2507 || (strict < 0
2508 && (CONSTANT_P (op) || MEM_P (op)))
2509 /* During reload, accept a pseudo */
2510 || (reload_in_progress && REG_P (op)
2511 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2512 win = 1;
2513 break;
2515 default:
2517 enum reg_class cl;
2519 cl = (c == 'r'
2520 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2521 if (cl != NO_REGS)
2523 if (strict < 0
2524 || (strict == 0
2525 && REG_P (op)
2526 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2527 || (strict == 0 && GET_CODE (op) == SCRATCH)
2528 || (REG_P (op)
2529 && reg_fits_class_p (op, cl, offset, mode)))
2530 win = 1;
2532 #ifdef EXTRA_CONSTRAINT_STR
2533 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2534 win = 1;
2536 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2537 /* Every memory operand can be reloaded to fit. */
2538 && ((strict < 0 && MEM_P (op))
2539 /* Before reload, accept what reload can turn
2540 into mem. */
2541 || (strict < 0 && CONSTANT_P (op))
2542 /* During reload, accept a pseudo */
2543 || (reload_in_progress && REG_P (op)
2544 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2545 win = 1;
2546 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2547 /* Every address operand can be reloaded to fit. */
2548 && strict < 0)
2549 win = 1;
2550 #endif
2551 break;
2554 while (p += len, c);
2556 constraints[opno] = p;
2557 /* If this operand did not win somehow,
2558 this alternative loses. */
2559 if (! win)
2560 lose = 1;
2562 /* This alternative won; the operands are ok.
2563 Change whichever operands this alternative says to change. */
2564 if (! lose)
2566 int opno, eopno;
2568 /* See if any earlyclobber operand conflicts with some other
2569 operand. */
2571 if (strict > 0 && seen_earlyclobber_at >= 0)
2572 for (eopno = seen_earlyclobber_at;
2573 eopno < recog_data.n_operands;
2574 eopno++)
2575 /* Ignore earlyclobber operands now in memory,
2576 because we would often report failure when we have
2577 two memory operands, one of which was formerly a REG. */
2578 if (earlyclobber[eopno]
2579 && REG_P (recog_data.operand[eopno]))
2580 for (opno = 0; opno < recog_data.n_operands; opno++)
2581 if ((MEM_P (recog_data.operand[opno])
2582 || recog_data.operand_type[opno] != OP_OUT)
2583 && opno != eopno
2584 /* Ignore things like match_operator operands. */
2585 && *recog_data.constraints[opno] != 0
2586 && ! (matching_operands[opno] == eopno
2587 && operands_match_p (recog_data.operand[opno],
2588 recog_data.operand[eopno]))
2589 && ! safe_from_earlyclobber (recog_data.operand[opno],
2590 recog_data.operand[eopno]))
2591 lose = 1;
2593 if (! lose)
2595 while (--funny_match_index >= 0)
2597 recog_data.operand[funny_match[funny_match_index].other]
2598 = recog_data.operand[funny_match[funny_match_index].this];
2601 return 1;
2605 which_alternative++;
2607 while (which_alternative < recog_data.n_alternatives);
2609 which_alternative = -1;
2610 /* If we are about to reject this, but we are not to test strictly,
2611 try a very loose test. Only return failure if it fails also. */
2612 if (strict == 0)
2613 return constrain_operands (-1);
2614 else
2615 return 0;
2618 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2619 is a hard reg in class CLASS when its regno is offset by OFFSET
2620 and changed to mode MODE.
2621 If REG occupies multiple hard regs, all of them must be in CLASS. */
2624 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2625 enum machine_mode mode)
2627 int regno = REGNO (operand);
2629 if (cl == NO_REGS)
2630 return 0;
2632 if (regno < FIRST_PSEUDO_REGISTER
2633 && TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
2634 regno + offset))
2636 int sr;
2637 regno += offset;
2638 for (sr = hard_regno_nregs[regno][mode] - 1;
2639 sr > 0; sr--)
2640 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
2641 regno + sr))
2642 break;
2643 return sr == 0;
2646 return 0;
2649 /* Split single instruction. Helper function for split_all_insns and
2650 split_all_insns_noflow. Return last insn in the sequence if successful,
2651 or NULL if unsuccessful. */
2653 static rtx
2654 split_insn (rtx insn)
2656 /* Split insns here to get max fine-grain parallelism. */
2657 rtx first = PREV_INSN (insn);
2658 rtx last = try_split (PATTERN (insn), insn, 1);
2660 if (last == insn)
2661 return NULL_RTX;
2663 /* try_split returns the NOTE that INSN became. */
2664 SET_INSN_DELETED (insn);
2666 /* ??? Coddle to md files that generate subregs in post-reload
2667 splitters instead of computing the proper hard register. */
2668 if (reload_completed && first != last)
2670 first = NEXT_INSN (first);
2671 for (;;)
2673 if (INSN_P (first))
2674 cleanup_subreg_operands (first);
2675 if (first == last)
2676 break;
2677 first = NEXT_INSN (first);
2680 return last;
2683 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2685 void
2686 split_all_insns (int upd_life)
2688 sbitmap blocks;
2689 bool changed;
2690 basic_block bb;
2692 blocks = sbitmap_alloc (last_basic_block);
2693 sbitmap_zero (blocks);
2694 changed = false;
2696 FOR_EACH_BB_REVERSE (bb)
2698 rtx insn, next;
2699 bool finish = false;
2701 for (insn = BB_HEAD (bb); !finish ; insn = next)
2703 /* Can't use `next_real_insn' because that might go across
2704 CODE_LABELS and short-out basic blocks. */
2705 next = NEXT_INSN (insn);
2706 finish = (insn == BB_END (bb));
2707 if (INSN_P (insn))
2709 rtx set = single_set (insn);
2711 /* Don't split no-op move insns. These should silently
2712 disappear later in final. Splitting such insns would
2713 break the code that handles REG_NO_CONFLICT blocks. */
2714 if (set && set_noop_p (set))
2716 /* Nops get in the way while scheduling, so delete them
2717 now if register allocation has already been done. It
2718 is too risky to try to do this before register
2719 allocation, and there are unlikely to be very many
2720 nops then anyways. */
2721 if (reload_completed)
2723 /* If the no-op set has a REG_UNUSED note, we need
2724 to update liveness information. */
2725 if (find_reg_note (insn, REG_UNUSED, NULL_RTX))
2727 SET_BIT (blocks, bb->index);
2728 changed = true;
2730 /* ??? Is life info affected by deleting edges? */
2731 delete_insn_and_edges (insn);
2734 else
2736 rtx last = split_insn (insn);
2737 if (last)
2739 /* The split sequence may include barrier, but the
2740 BB boundary we are interested in will be set to
2741 previous one. */
2743 while (BARRIER_P (last))
2744 last = PREV_INSN (last);
2745 SET_BIT (blocks, bb->index);
2746 changed = true;
2753 if (changed)
2755 int old_last_basic_block = last_basic_block;
2757 find_many_sub_basic_blocks (blocks);
2759 if (old_last_basic_block != last_basic_block && upd_life)
2760 blocks = sbitmap_resize (blocks, last_basic_block, 1);
2763 if (changed && upd_life)
2764 update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
2765 PROP_DEATH_NOTES);
2767 #ifdef ENABLE_CHECKING
2768 verify_flow_info ();
2769 #endif
2771 sbitmap_free (blocks);
2774 /* Same as split_all_insns, but do not expect CFG to be available.
2775 Used by machine dependent reorg passes. */
2777 unsigned int
2778 split_all_insns_noflow (void)
2780 rtx next, insn;
2782 for (insn = get_insns (); insn; insn = next)
2784 next = NEXT_INSN (insn);
2785 if (INSN_P (insn))
2787 /* Don't split no-op move insns. These should silently
2788 disappear later in final. Splitting such insns would
2789 break the code that handles REG_NO_CONFLICT blocks. */
2790 rtx set = single_set (insn);
2791 if (set && set_noop_p (set))
2793 /* Nops get in the way while scheduling, so delete them
2794 now if register allocation has already been done. It
2795 is too risky to try to do this before register
2796 allocation, and there are unlikely to be very many
2797 nops then anyways.
2799 ??? Should we use delete_insn when the CFG isn't valid? */
2800 if (reload_completed)
2801 delete_insn_and_edges (insn);
2803 else
2804 split_insn (insn);
2807 return 0;
2810 #ifdef HAVE_peephole2
2811 struct peep2_insn_data
2813 rtx insn;
2814 regset live_before;
2817 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2818 static int peep2_current;
2819 /* The number of instructions available to match a peep2. */
2820 int peep2_current_count;
2822 /* A non-insn marker indicating the last insn of the block.
2823 The live_before regset for this element is correct, indicating
2824 global_live_at_end for the block. */
2825 #define PEEP2_EOB pc_rtx
2827 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2828 does not exist. Used by the recognizer to find the next insn to match
2829 in a multi-insn pattern. */
2832 peep2_next_insn (int n)
2834 gcc_assert (n <= peep2_current_count);
2836 n += peep2_current;
2837 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2838 n -= MAX_INSNS_PER_PEEP2 + 1;
2840 return peep2_insn_data[n].insn;
2843 /* Return true if REGNO is dead before the Nth non-note insn
2844 after `current'. */
2847 peep2_regno_dead_p (int ofs, int regno)
2849 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2851 ofs += peep2_current;
2852 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2853 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2855 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2857 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2860 /* Similarly for a REG. */
2863 peep2_reg_dead_p (int ofs, rtx reg)
2865 int regno, n;
2867 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2869 ofs += peep2_current;
2870 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2871 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2873 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2875 regno = REGNO (reg);
2876 n = hard_regno_nregs[regno][GET_MODE (reg)];
2877 while (--n >= 0)
2878 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2879 return 0;
2880 return 1;
2883 /* Try to find a hard register of mode MODE, matching the register class in
2884 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2885 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2886 in which case the only condition is that the register must be available
2887 before CURRENT_INSN.
2888 Registers that already have bits set in REG_SET will not be considered.
2890 If an appropriate register is available, it will be returned and the
2891 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2892 returned. */
2895 peep2_find_free_register (int from, int to, const char *class_str,
2896 enum machine_mode mode, HARD_REG_SET *reg_set)
2898 static int search_ofs;
2899 enum reg_class cl;
2900 HARD_REG_SET live;
2901 int i;
2903 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2904 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
2906 from += peep2_current;
2907 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2908 from -= MAX_INSNS_PER_PEEP2 + 1;
2909 to += peep2_current;
2910 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2911 to -= MAX_INSNS_PER_PEEP2 + 1;
2913 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
2914 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
2916 while (from != to)
2918 HARD_REG_SET this_live;
2920 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
2921 from = 0;
2922 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
2923 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
2924 IOR_HARD_REG_SET (live, this_live);
2927 cl = (class_str[0] == 'r' ? GENERAL_REGS
2928 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
2930 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2932 int raw_regno, regno, success, j;
2934 /* Distribute the free registers as much as possible. */
2935 raw_regno = search_ofs + i;
2936 if (raw_regno >= FIRST_PSEUDO_REGISTER)
2937 raw_regno -= FIRST_PSEUDO_REGISTER;
2938 #ifdef REG_ALLOC_ORDER
2939 regno = reg_alloc_order[raw_regno];
2940 #else
2941 regno = raw_regno;
2942 #endif
2944 /* Don't allocate fixed registers. */
2945 if (fixed_regs[regno])
2946 continue;
2947 /* Make sure the register is of the right class. */
2948 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
2949 continue;
2950 /* And can support the mode we need. */
2951 if (! HARD_REGNO_MODE_OK (regno, mode))
2952 continue;
2953 /* And that we don't create an extra save/restore. */
2954 if (! call_used_regs[regno] && ! regs_ever_live[regno])
2955 continue;
2956 /* And we don't clobber traceback for noreturn functions. */
2957 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
2958 && (! reload_completed || frame_pointer_needed))
2959 continue;
2961 success = 1;
2962 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
2964 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
2965 || TEST_HARD_REG_BIT (live, regno + j))
2967 success = 0;
2968 break;
2971 if (success)
2973 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
2974 SET_HARD_REG_BIT (*reg_set, regno + j);
2976 /* Start the next search with the next register. */
2977 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
2978 raw_regno = 0;
2979 search_ofs = raw_regno;
2981 return gen_rtx_REG (mode, regno);
2985 search_ofs = 0;
2986 return NULL_RTX;
2989 /* Perform the peephole2 optimization pass. */
2991 static void
2992 peephole2_optimize (void)
2994 rtx insn, prev;
2995 regset live;
2996 int i;
2997 basic_block bb;
2998 #ifdef HAVE_conditional_execution
2999 sbitmap blocks;
3000 bool changed;
3001 #endif
3002 bool do_cleanup_cfg = false;
3003 bool do_global_life_update = false;
3004 bool do_rebuild_jump_labels = false;
3006 /* Initialize the regsets we're going to use. */
3007 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3008 peep2_insn_data[i].live_before = ALLOC_REG_SET (&reg_obstack);
3009 live = ALLOC_REG_SET (&reg_obstack);
3011 #ifdef HAVE_conditional_execution
3012 blocks = sbitmap_alloc (last_basic_block);
3013 sbitmap_zero (blocks);
3014 changed = false;
3015 #else
3016 count_or_remove_death_notes (NULL, 1);
3017 #endif
3019 FOR_EACH_BB_REVERSE (bb)
3021 struct propagate_block_info *pbi;
3022 reg_set_iterator rsi;
3023 unsigned int j;
3025 /* Indicate that all slots except the last holds invalid data. */
3026 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3027 peep2_insn_data[i].insn = NULL_RTX;
3028 peep2_current_count = 0;
3030 /* Indicate that the last slot contains live_after data. */
3031 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3032 peep2_current = MAX_INSNS_PER_PEEP2;
3034 /* Start up propagation. */
3035 COPY_REG_SET (live, bb->il.rtl->global_live_at_end);
3036 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3038 #ifdef HAVE_conditional_execution
3039 pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
3040 #else
3041 pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
3042 #endif
3044 for (insn = BB_END (bb); ; insn = prev)
3046 prev = PREV_INSN (insn);
3047 if (INSN_P (insn))
3049 rtx try, before_try, x;
3050 int match_len;
3051 rtx note;
3052 bool was_call = false;
3054 /* Record this insn. */
3055 if (--peep2_current < 0)
3056 peep2_current = MAX_INSNS_PER_PEEP2;
3057 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3058 && peep2_insn_data[peep2_current].insn == NULL_RTX)
3059 peep2_current_count++;
3060 peep2_insn_data[peep2_current].insn = insn;
3061 propagate_one_insn (pbi, insn);
3062 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3064 if (RTX_FRAME_RELATED_P (insn))
3066 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3067 substitution would lose the
3068 REG_FRAME_RELATED_EXPR that is attached. */
3069 peep2_current_count = 0;
3070 try = NULL;
3072 else
3073 /* Match the peephole. */
3074 try = peephole2_insns (PATTERN (insn), insn, &match_len);
3076 if (try != NULL)
3078 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3079 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3080 cfg-related call notes. */
3081 for (i = 0; i <= match_len; ++i)
3083 int j;
3084 rtx old_insn, new_insn, note;
3086 j = i + peep2_current;
3087 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3088 j -= MAX_INSNS_PER_PEEP2 + 1;
3089 old_insn = peep2_insn_data[j].insn;
3090 if (!CALL_P (old_insn))
3091 continue;
3092 was_call = true;
3094 new_insn = try;
3095 while (new_insn != NULL_RTX)
3097 if (CALL_P (new_insn))
3098 break;
3099 new_insn = NEXT_INSN (new_insn);
3102 gcc_assert (new_insn != NULL_RTX);
3104 CALL_INSN_FUNCTION_USAGE (new_insn)
3105 = CALL_INSN_FUNCTION_USAGE (old_insn);
3107 for (note = REG_NOTES (old_insn);
3108 note;
3109 note = XEXP (note, 1))
3110 switch (REG_NOTE_KIND (note))
3112 case REG_NORETURN:
3113 case REG_SETJMP:
3114 REG_NOTES (new_insn)
3115 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3116 XEXP (note, 0),
3117 REG_NOTES (new_insn));
3118 default:
3119 /* Discard all other reg notes. */
3120 break;
3123 /* Croak if there is another call in the sequence. */
3124 while (++i <= match_len)
3126 j = i + peep2_current;
3127 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3128 j -= MAX_INSNS_PER_PEEP2 + 1;
3129 old_insn = peep2_insn_data[j].insn;
3130 gcc_assert (!CALL_P (old_insn));
3132 break;
3135 i = match_len + peep2_current;
3136 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3137 i -= MAX_INSNS_PER_PEEP2 + 1;
3139 note = find_reg_note (peep2_insn_data[i].insn,
3140 REG_EH_REGION, NULL_RTX);
3142 /* Replace the old sequence with the new. */
3143 try = emit_insn_after_setloc (try, peep2_insn_data[i].insn,
3144 INSN_LOCATOR (peep2_insn_data[i].insn));
3145 before_try = PREV_INSN (insn);
3146 delete_insn_chain (insn, peep2_insn_data[i].insn);
3148 /* Re-insert the EH_REGION notes. */
3149 if (note || (was_call && nonlocal_goto_handler_labels))
3151 edge eh_edge;
3152 edge_iterator ei;
3154 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3155 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3156 break;
3158 for (x = try ; x != before_try ; x = PREV_INSN (x))
3159 if (CALL_P (x)
3160 || (flag_non_call_exceptions
3161 && may_trap_p (PATTERN (x))
3162 && !find_reg_note (x, REG_EH_REGION, NULL)))
3164 if (note)
3165 REG_NOTES (x)
3166 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3167 XEXP (note, 0),
3168 REG_NOTES (x));
3170 if (x != BB_END (bb) && eh_edge)
3172 edge nfte, nehe;
3173 int flags;
3175 nfte = split_block (bb, x);
3176 flags = (eh_edge->flags
3177 & (EDGE_EH | EDGE_ABNORMAL));
3178 if (CALL_P (x))
3179 flags |= EDGE_ABNORMAL_CALL;
3180 nehe = make_edge (nfte->src, eh_edge->dest,
3181 flags);
3183 nehe->probability = eh_edge->probability;
3184 nfte->probability
3185 = REG_BR_PROB_BASE - nehe->probability;
3187 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3188 #ifdef HAVE_conditional_execution
3189 SET_BIT (blocks, nfte->dest->index);
3190 changed = true;
3191 #endif
3192 bb = nfte->src;
3193 eh_edge = nehe;
3197 /* Converting possibly trapping insn to non-trapping is
3198 possible. Zap dummy outgoing edges. */
3199 do_cleanup_cfg |= purge_dead_edges (bb);
3202 #ifdef HAVE_conditional_execution
3203 /* With conditional execution, we cannot back up the
3204 live information so easily, since the conditional
3205 death data structures are not so self-contained.
3206 So record that we've made a modification to this
3207 block and update life information at the end. */
3208 SET_BIT (blocks, bb->index);
3209 changed = true;
3211 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3212 peep2_insn_data[i].insn = NULL_RTX;
3213 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3214 peep2_current_count = 0;
3215 #else
3216 /* Back up lifetime information past the end of the
3217 newly created sequence. */
3218 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3219 i = 0;
3220 COPY_REG_SET (live, peep2_insn_data[i].live_before);
3222 /* Update life information for the new sequence. */
3223 x = try;
3226 if (INSN_P (x))
3228 if (--i < 0)
3229 i = MAX_INSNS_PER_PEEP2;
3230 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3231 && peep2_insn_data[i].insn == NULL_RTX)
3232 peep2_current_count++;
3233 peep2_insn_data[i].insn = x;
3234 propagate_one_insn (pbi, x);
3235 COPY_REG_SET (peep2_insn_data[i].live_before, live);
3237 x = PREV_INSN (x);
3239 while (x != prev);
3241 /* ??? Should verify that LIVE now matches what we
3242 had before the new sequence. */
3244 peep2_current = i;
3245 #endif
3247 /* If we generated a jump instruction, it won't have
3248 JUMP_LABEL set. Recompute after we're done. */
3249 for (x = try; x != before_try; x = PREV_INSN (x))
3250 if (JUMP_P (x))
3252 do_rebuild_jump_labels = true;
3253 break;
3258 if (insn == BB_HEAD (bb))
3259 break;
3262 /* Some peepholes can decide the don't need one or more of their
3263 inputs. If this happens, local life update is not enough. */
3264 EXECUTE_IF_AND_COMPL_IN_BITMAP (bb->il.rtl->global_live_at_start, live,
3265 0, j, rsi)
3267 do_global_life_update = true;
3268 break;
3271 free_propagate_block_info (pbi);
3274 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3275 FREE_REG_SET (peep2_insn_data[i].live_before);
3276 FREE_REG_SET (live);
3278 if (do_rebuild_jump_labels)
3279 rebuild_jump_labels (get_insns ());
3281 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3282 we've changed global life since exception handlers are no longer
3283 reachable. */
3284 if (do_cleanup_cfg)
3286 cleanup_cfg (0);
3287 do_global_life_update = true;
3289 if (do_global_life_update)
3290 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
3291 #ifdef HAVE_conditional_execution
3292 else
3294 count_or_remove_death_notes (blocks, 1);
3295 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3297 sbitmap_free (blocks);
3298 #endif
3300 #endif /* HAVE_peephole2 */
3302 /* Common predicates for use with define_bypass. */
3304 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3305 data not the address operand(s) of the store. IN_INSN must be
3306 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3307 SETs inside. */
3310 store_data_bypass_p (rtx out_insn, rtx in_insn)
3312 rtx out_set, in_set;
3314 in_set = single_set (in_insn);
3315 gcc_assert (in_set);
3317 if (!MEM_P (SET_DEST (in_set)))
3318 return false;
3320 out_set = single_set (out_insn);
3321 if (out_set)
3323 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3324 return false;
3326 else
3328 rtx out_pat;
3329 int i;
3331 out_pat = PATTERN (out_insn);
3332 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3334 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3336 rtx exp = XVECEXP (out_pat, 0, i);
3338 if (GET_CODE (exp) == CLOBBER)
3339 continue;
3341 gcc_assert (GET_CODE (exp) == SET);
3343 if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
3344 return false;
3348 return true;
3351 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3352 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3353 or multiple set; IN_INSN should be single_set for truth, but for convenience
3354 of insn categorization may be any JUMP or CALL insn. */
3357 if_test_bypass_p (rtx out_insn, rtx in_insn)
3359 rtx out_set, in_set;
3361 in_set = single_set (in_insn);
3362 if (! in_set)
3364 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3365 return false;
3368 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3369 return false;
3370 in_set = SET_SRC (in_set);
3372 out_set = single_set (out_insn);
3373 if (out_set)
3375 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3376 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3377 return false;
3379 else
3381 rtx out_pat;
3382 int i;
3384 out_pat = PATTERN (out_insn);
3385 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3387 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3389 rtx exp = XVECEXP (out_pat, 0, i);
3391 if (GET_CODE (exp) == CLOBBER)
3392 continue;
3394 gcc_assert (GET_CODE (exp) == SET);
3396 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3397 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3398 return false;
3402 return true;
3405 static bool
3406 gate_handle_peephole2 (void)
3408 return (optimize > 0 && flag_peephole2);
3411 static unsigned int
3412 rest_of_handle_peephole2 (void)
3414 #ifdef HAVE_peephole2
3415 peephole2_optimize ();
3416 #endif
3417 return 0;
3420 struct tree_opt_pass pass_peephole2 =
3422 "peephole2", /* name */
3423 gate_handle_peephole2, /* gate */
3424 rest_of_handle_peephole2, /* execute */
3425 NULL, /* sub */
3426 NULL, /* next */
3427 0, /* static_pass_number */
3428 TV_PEEPHOLE2, /* tv_id */
3429 0, /* properties_required */
3430 0, /* properties_provided */
3431 0, /* properties_destroyed */
3432 0, /* todo_flags_start */
3433 TODO_dump_func, /* todo_flags_finish */
3434 'z' /* letter */
3437 static unsigned int
3438 rest_of_handle_split_all_insns (void)
3440 split_all_insns (1);
3441 return 0;
3444 struct tree_opt_pass pass_split_all_insns =
3446 "split1", /* name */
3447 NULL, /* gate */
3448 rest_of_handle_split_all_insns, /* execute */
3449 NULL, /* sub */
3450 NULL, /* next */
3451 0, /* static_pass_number */
3452 0, /* tv_id */
3453 0, /* properties_required */
3454 0, /* properties_provided */
3455 0, /* properties_destroyed */
3456 0, /* todo_flags_start */
3457 TODO_dump_func, /* todo_flags_finish */
3458 0 /* letter */
3461 /* The placement of the splitting that we do for shorten_branches
3462 depends on whether regstack is used by the target or not. */
3463 static bool
3464 gate_do_final_split (void)
3466 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3467 return 1;
3468 #else
3469 return 0;
3470 #endif
3473 struct tree_opt_pass pass_split_for_shorten_branches =
3475 "split3", /* name */
3476 gate_do_final_split, /* gate */
3477 split_all_insns_noflow, /* execute */
3478 NULL, /* sub */
3479 NULL, /* next */
3480 0, /* static_pass_number */
3481 TV_SHORTEN_BRANCH, /* tv_id */
3482 0, /* properties_required */
3483 0, /* properties_provided */
3484 0, /* properties_destroyed */
3485 0, /* todo_flags_start */
3486 TODO_dump_func, /* todo_flags_finish */
3487 0 /* letter */
3491 static bool
3492 gate_handle_split_before_regstack (void)
3494 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3495 /* If flow2 creates new instructions which need splitting
3496 and scheduling after reload is not done, they might not be
3497 split until final which doesn't allow splitting
3498 if HAVE_ATTR_length. */
3499 # ifdef INSN_SCHEDULING
3500 return (optimize && !flag_schedule_insns_after_reload);
3501 # else
3502 return (optimize);
3503 # endif
3504 #else
3505 return 0;
3506 #endif
3509 struct tree_opt_pass pass_split_before_regstack =
3511 "split2", /* name */
3512 gate_handle_split_before_regstack, /* gate */
3513 rest_of_handle_split_all_insns, /* execute */
3514 NULL, /* sub */
3515 NULL, /* next */
3516 0, /* static_pass_number */
3517 TV_SHORTEN_BRANCH, /* tv_id */
3518 0, /* properties_required */
3519 0, /* properties_provided */
3520 0, /* properties_destroyed */
3521 0, /* todo_flags_start */
3522 TODO_dump_func, /* todo_flags_finish */
3523 0 /* letter */