crontab: Don't build snapshot for 3.4.x anymore.
[official-gcc.git] / gcc / dwarf2out.c
blob6e98a4f0ed88f33ea2426e2f724f9c8c95fd6c13
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_str_section;
160 static GTY(()) section *debug_ranges_section;
162 /* How to start an assembler comment. */
163 #ifndef ASM_COMMENT_START
164 #define ASM_COMMENT_START ";#"
165 #endif
167 typedef struct dw_cfi_struct *dw_cfi_ref;
168 typedef struct dw_fde_struct *dw_fde_ref;
169 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
171 /* Call frames are described using a sequence of Call Frame
172 Information instructions. The register number, offset
173 and address fields are provided as possible operands;
174 their use is selected by the opcode field. */
176 enum dw_cfi_oprnd_type {
177 dw_cfi_oprnd_unused,
178 dw_cfi_oprnd_reg_num,
179 dw_cfi_oprnd_offset,
180 dw_cfi_oprnd_addr,
181 dw_cfi_oprnd_loc
184 typedef union dw_cfi_oprnd_struct GTY(())
186 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
187 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
188 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
189 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
191 dw_cfi_oprnd;
193 typedef struct dw_cfi_struct GTY(())
195 dw_cfi_ref dw_cfi_next;
196 enum dwarf_call_frame_info dw_cfi_opc;
197 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
198 dw_cfi_oprnd1;
199 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
200 dw_cfi_oprnd2;
202 dw_cfi_node;
204 /* This is how we define the location of the CFA. We use to handle it
205 as REG + OFFSET all the time, but now it can be more complex.
206 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
207 Instead of passing around REG and OFFSET, we pass a copy
208 of this structure. */
209 typedef struct cfa_loc GTY(())
211 HOST_WIDE_INT offset;
212 HOST_WIDE_INT base_offset;
213 unsigned int reg;
214 int indirect; /* 1 if CFA is accessed via a dereference. */
215 } dw_cfa_location;
217 /* All call frame descriptions (FDE's) in the GCC generated DWARF
218 refer to a single Common Information Entry (CIE), defined at
219 the beginning of the .debug_frame section. This use of a single
220 CIE obviates the need to keep track of multiple CIE's
221 in the DWARF generation routines below. */
223 typedef struct dw_fde_struct GTY(())
225 tree decl;
226 const char *dw_fde_begin;
227 const char *dw_fde_current_label;
228 const char *dw_fde_end;
229 const char *dw_fde_hot_section_label;
230 const char *dw_fde_hot_section_end_label;
231 const char *dw_fde_unlikely_section_label;
232 const char *dw_fde_unlikely_section_end_label;
233 bool dw_fde_switched_sections;
234 dw_cfi_ref dw_fde_cfi;
235 unsigned funcdef_number;
236 unsigned all_throwers_are_sibcalls : 1;
237 unsigned nothrow : 1;
238 unsigned uses_eh_lsda : 1;
240 dw_fde_node;
242 /* Maximum size (in bytes) of an artificially generated label. */
243 #define MAX_ARTIFICIAL_LABEL_BYTES 30
245 /* The size of addresses as they appear in the Dwarf 2 data.
246 Some architectures use word addresses to refer to code locations,
247 but Dwarf 2 info always uses byte addresses. On such machines,
248 Dwarf 2 addresses need to be larger than the architecture's
249 pointers. */
250 #ifndef DWARF2_ADDR_SIZE
251 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
252 #endif
254 /* The size in bytes of a DWARF field indicating an offset or length
255 relative to a debug info section, specified to be 4 bytes in the
256 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
257 as PTR_SIZE. */
259 #ifndef DWARF_OFFSET_SIZE
260 #define DWARF_OFFSET_SIZE 4
261 #endif
263 /* According to the (draft) DWARF 3 specification, the initial length
264 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
265 bytes are 0xffffffff, followed by the length stored in the next 8
266 bytes.
268 However, the SGI/MIPS ABI uses an initial length which is equal to
269 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
271 #ifndef DWARF_INITIAL_LENGTH_SIZE
272 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
273 #endif
275 #define DWARF_VERSION 2
277 /* Round SIZE up to the nearest BOUNDARY. */
278 #define DWARF_ROUND(SIZE,BOUNDARY) \
279 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
281 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
282 #ifndef DWARF_CIE_DATA_ALIGNMENT
283 #ifdef STACK_GROWS_DOWNWARD
284 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
285 #else
286 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
287 #endif
288 #endif
290 /* A pointer to the base of a table that contains frame description
291 information for each routine. */
292 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
294 /* Number of elements currently allocated for fde_table. */
295 static GTY(()) unsigned fde_table_allocated;
297 /* Number of elements in fde_table currently in use. */
298 static GTY(()) unsigned fde_table_in_use;
300 /* Size (in elements) of increments by which we may expand the
301 fde_table. */
302 #define FDE_TABLE_INCREMENT 256
304 /* A list of call frame insns for the CIE. */
305 static GTY(()) dw_cfi_ref cie_cfi_head;
307 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
308 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
309 attribute that accelerates the lookup of the FDE associated
310 with the subprogram. This variable holds the table index of the FDE
311 associated with the current function (body) definition. */
312 static unsigned current_funcdef_fde;
313 #endif
315 struct indirect_string_node GTY(())
317 const char *str;
318 unsigned int refcount;
319 unsigned int form;
320 char *label;
323 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
325 static GTY(()) int dw2_string_counter;
326 static GTY(()) unsigned long dwarf2out_cfi_label_num;
328 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
330 /* Forward declarations for functions defined in this file. */
332 static char *stripattributes (const char *);
333 static const char *dwarf_cfi_name (unsigned);
334 static dw_cfi_ref new_cfi (void);
335 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
336 static void add_fde_cfi (const char *, dw_cfi_ref);
337 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
338 static void lookup_cfa (dw_cfa_location *);
339 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
340 static void initial_return_save (rtx);
341 static HOST_WIDE_INT stack_adjust_offset (rtx);
342 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
343 static void output_call_frame_info (int);
344 static void dwarf2out_stack_adjust (rtx, bool);
345 static void flush_queued_reg_saves (void);
346 static bool clobbers_queued_reg_save (rtx);
347 static void dwarf2out_frame_debug_expr (rtx, const char *);
349 /* Support for complex CFA locations. */
350 static void output_cfa_loc (dw_cfi_ref);
351 static void get_cfa_from_loc_descr (dw_cfa_location *,
352 struct dw_loc_descr_struct *);
353 static struct dw_loc_descr_struct *build_cfa_loc
354 (dw_cfa_location *, HOST_WIDE_INT);
355 static void def_cfa_1 (const char *, dw_cfa_location *);
357 /* How to start an assembler comment. */
358 #ifndef ASM_COMMENT_START
359 #define ASM_COMMENT_START ";#"
360 #endif
362 /* Data and reference forms for relocatable data. */
363 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
364 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
366 #ifndef DEBUG_FRAME_SECTION
367 #define DEBUG_FRAME_SECTION ".debug_frame"
368 #endif
370 #ifndef FUNC_BEGIN_LABEL
371 #define FUNC_BEGIN_LABEL "LFB"
372 #endif
374 #ifndef FUNC_END_LABEL
375 #define FUNC_END_LABEL "LFE"
376 #endif
378 #ifndef FRAME_BEGIN_LABEL
379 #define FRAME_BEGIN_LABEL "Lframe"
380 #endif
381 #define CIE_AFTER_SIZE_LABEL "LSCIE"
382 #define CIE_END_LABEL "LECIE"
383 #define FDE_LABEL "LSFDE"
384 #define FDE_AFTER_SIZE_LABEL "LASFDE"
385 #define FDE_END_LABEL "LEFDE"
386 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
387 #define LINE_NUMBER_END_LABEL "LELT"
388 #define LN_PROLOG_AS_LABEL "LASLTP"
389 #define LN_PROLOG_END_LABEL "LELTP"
390 #define DIE_LABEL_PREFIX "DW"
392 /* The DWARF 2 CFA column which tracks the return address. Normally this
393 is the column for PC, or the first column after all of the hard
394 registers. */
395 #ifndef DWARF_FRAME_RETURN_COLUMN
396 #ifdef PC_REGNUM
397 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
398 #else
399 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
400 #endif
401 #endif
403 /* The mapping from gcc register number to DWARF 2 CFA column number. By
404 default, we just provide columns for all registers. */
405 #ifndef DWARF_FRAME_REGNUM
406 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
407 #endif
409 /* Hook used by __throw. */
412 expand_builtin_dwarf_sp_column (void)
414 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
415 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
418 /* Return a pointer to a copy of the section string name S with all
419 attributes stripped off, and an asterisk prepended (for assemble_name). */
421 static inline char *
422 stripattributes (const char *s)
424 char *stripped = XNEWVEC (char, strlen (s) + 2);
425 char *p = stripped;
427 *p++ = '*';
429 while (*s && *s != ',')
430 *p++ = *s++;
432 *p = '\0';
433 return stripped;
436 /* Generate code to initialize the register size table. */
438 void
439 expand_builtin_init_dwarf_reg_sizes (tree address)
441 unsigned int i;
442 enum machine_mode mode = TYPE_MODE (char_type_node);
443 rtx addr = expand_normal (address);
444 rtx mem = gen_rtx_MEM (BLKmode, addr);
445 bool wrote_return_column = false;
447 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
449 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
451 if (rnum < DWARF_FRAME_REGISTERS)
453 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
454 enum machine_mode save_mode = reg_raw_mode[i];
455 HOST_WIDE_INT size;
457 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
458 save_mode = choose_hard_reg_mode (i, 1, true);
459 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
461 if (save_mode == VOIDmode)
462 continue;
463 wrote_return_column = true;
465 size = GET_MODE_SIZE (save_mode);
466 if (offset < 0)
467 continue;
469 emit_move_insn (adjust_address (mem, mode, offset),
470 gen_int_mode (size, mode));
474 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
475 gcc_assert (wrote_return_column);
476 i = DWARF_ALT_FRAME_RETURN_COLUMN;
477 wrote_return_column = false;
478 #else
479 i = DWARF_FRAME_RETURN_COLUMN;
480 #endif
482 if (! wrote_return_column)
484 enum machine_mode save_mode = Pmode;
485 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
486 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
487 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
491 /* Convert a DWARF call frame info. operation to its string name */
493 static const char *
494 dwarf_cfi_name (unsigned int cfi_opc)
496 switch (cfi_opc)
498 case DW_CFA_advance_loc:
499 return "DW_CFA_advance_loc";
500 case DW_CFA_offset:
501 return "DW_CFA_offset";
502 case DW_CFA_restore:
503 return "DW_CFA_restore";
504 case DW_CFA_nop:
505 return "DW_CFA_nop";
506 case DW_CFA_set_loc:
507 return "DW_CFA_set_loc";
508 case DW_CFA_advance_loc1:
509 return "DW_CFA_advance_loc1";
510 case DW_CFA_advance_loc2:
511 return "DW_CFA_advance_loc2";
512 case DW_CFA_advance_loc4:
513 return "DW_CFA_advance_loc4";
514 case DW_CFA_offset_extended:
515 return "DW_CFA_offset_extended";
516 case DW_CFA_restore_extended:
517 return "DW_CFA_restore_extended";
518 case DW_CFA_undefined:
519 return "DW_CFA_undefined";
520 case DW_CFA_same_value:
521 return "DW_CFA_same_value";
522 case DW_CFA_register:
523 return "DW_CFA_register";
524 case DW_CFA_remember_state:
525 return "DW_CFA_remember_state";
526 case DW_CFA_restore_state:
527 return "DW_CFA_restore_state";
528 case DW_CFA_def_cfa:
529 return "DW_CFA_def_cfa";
530 case DW_CFA_def_cfa_register:
531 return "DW_CFA_def_cfa_register";
532 case DW_CFA_def_cfa_offset:
533 return "DW_CFA_def_cfa_offset";
535 /* DWARF 3 */
536 case DW_CFA_def_cfa_expression:
537 return "DW_CFA_def_cfa_expression";
538 case DW_CFA_expression:
539 return "DW_CFA_expression";
540 case DW_CFA_offset_extended_sf:
541 return "DW_CFA_offset_extended_sf";
542 case DW_CFA_def_cfa_sf:
543 return "DW_CFA_def_cfa_sf";
544 case DW_CFA_def_cfa_offset_sf:
545 return "DW_CFA_def_cfa_offset_sf";
547 /* SGI/MIPS specific */
548 case DW_CFA_MIPS_advance_loc8:
549 return "DW_CFA_MIPS_advance_loc8";
551 /* GNU extensions */
552 case DW_CFA_GNU_window_save:
553 return "DW_CFA_GNU_window_save";
554 case DW_CFA_GNU_args_size:
555 return "DW_CFA_GNU_args_size";
556 case DW_CFA_GNU_negative_offset_extended:
557 return "DW_CFA_GNU_negative_offset_extended";
559 default:
560 return "DW_CFA_<unknown>";
564 /* Return a pointer to a newly allocated Call Frame Instruction. */
566 static inline dw_cfi_ref
567 new_cfi (void)
569 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
571 cfi->dw_cfi_next = NULL;
572 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
573 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
575 return cfi;
578 /* Add a Call Frame Instruction to list of instructions. */
580 static inline void
581 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
583 dw_cfi_ref *p;
585 /* Find the end of the chain. */
586 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
589 *p = cfi;
592 /* Generate a new label for the CFI info to refer to. */
594 char *
595 dwarf2out_cfi_label (void)
597 static char label[20];
599 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
600 ASM_OUTPUT_LABEL (asm_out_file, label);
601 return label;
604 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
605 or to the CIE if LABEL is NULL. */
607 static void
608 add_fde_cfi (const char *label, dw_cfi_ref cfi)
610 if (label)
612 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
614 if (*label == 0)
615 label = dwarf2out_cfi_label ();
617 if (fde->dw_fde_current_label == NULL
618 || strcmp (label, fde->dw_fde_current_label) != 0)
620 dw_cfi_ref xcfi;
622 fde->dw_fde_current_label = label = xstrdup (label);
624 /* Set the location counter to the new label. */
625 xcfi = new_cfi ();
626 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
627 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
628 add_cfi (&fde->dw_fde_cfi, xcfi);
631 add_cfi (&fde->dw_fde_cfi, cfi);
634 else
635 add_cfi (&cie_cfi_head, cfi);
638 /* Subroutine of lookup_cfa. */
640 static void
641 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
643 switch (cfi->dw_cfi_opc)
645 case DW_CFA_def_cfa_offset:
646 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
647 break;
648 case DW_CFA_def_cfa_offset_sf:
649 loc->offset
650 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
651 break;
652 case DW_CFA_def_cfa_register:
653 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
654 break;
655 case DW_CFA_def_cfa:
656 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
657 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
658 break;
659 case DW_CFA_def_cfa_sf:
660 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
661 loc->offset
662 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
663 break;
664 case DW_CFA_def_cfa_expression:
665 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
666 break;
667 default:
668 break;
672 /* Find the previous value for the CFA. */
674 static void
675 lookup_cfa (dw_cfa_location *loc)
677 dw_cfi_ref cfi;
679 loc->reg = INVALID_REGNUM;
680 loc->offset = 0;
681 loc->indirect = 0;
682 loc->base_offset = 0;
684 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
685 lookup_cfa_1 (cfi, loc);
687 if (fde_table_in_use)
689 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
690 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
691 lookup_cfa_1 (cfi, loc);
695 /* The current rule for calculating the DWARF2 canonical frame address. */
696 static dw_cfa_location cfa;
698 /* The register used for saving registers to the stack, and its offset
699 from the CFA. */
700 static dw_cfa_location cfa_store;
702 /* The running total of the size of arguments pushed onto the stack. */
703 static HOST_WIDE_INT args_size;
705 /* The last args_size we actually output. */
706 static HOST_WIDE_INT old_args_size;
708 /* Entry point to update the canonical frame address (CFA).
709 LABEL is passed to add_fde_cfi. The value of CFA is now to be
710 calculated from REG+OFFSET. */
712 void
713 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
715 dw_cfa_location loc;
716 loc.indirect = 0;
717 loc.base_offset = 0;
718 loc.reg = reg;
719 loc.offset = offset;
720 def_cfa_1 (label, &loc);
723 /* Determine if two dw_cfa_location structures define the same data. */
725 static bool
726 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
728 return (loc1->reg == loc2->reg
729 && loc1->offset == loc2->offset
730 && loc1->indirect == loc2->indirect
731 && (loc1->indirect == 0
732 || loc1->base_offset == loc2->base_offset));
735 /* This routine does the actual work. The CFA is now calculated from
736 the dw_cfa_location structure. */
738 static void
739 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
741 dw_cfi_ref cfi;
742 dw_cfa_location old_cfa, loc;
744 cfa = *loc_p;
745 loc = *loc_p;
747 if (cfa_store.reg == loc.reg && loc.indirect == 0)
748 cfa_store.offset = loc.offset;
750 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
751 lookup_cfa (&old_cfa);
753 /* If nothing changed, no need to issue any call frame instructions. */
754 if (cfa_equal_p (&loc, &old_cfa))
755 return;
757 cfi = new_cfi ();
759 if (loc.reg == old_cfa.reg && !loc.indirect)
761 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
762 the CFA register did not change but the offset did. */
763 if (loc.offset < 0)
765 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
766 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
768 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
769 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
771 else
773 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
774 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
778 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
779 else if (loc.offset == old_cfa.offset
780 && old_cfa.reg != INVALID_REGNUM
781 && !loc.indirect)
783 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
784 indicating the CFA register has changed to <register> but the
785 offset has not changed. */
786 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
787 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
789 #endif
791 else if (loc.indirect == 0)
793 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
794 indicating the CFA register has changed to <register> with
795 the specified offset. */
796 if (loc.offset < 0)
798 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
799 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
801 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
802 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
803 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
805 else
807 cfi->dw_cfi_opc = DW_CFA_def_cfa;
808 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
809 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
812 else
814 /* Construct a DW_CFA_def_cfa_expression instruction to
815 calculate the CFA using a full location expression since no
816 register-offset pair is available. */
817 struct dw_loc_descr_struct *loc_list;
819 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
820 loc_list = build_cfa_loc (&loc, 0);
821 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
824 add_fde_cfi (label, cfi);
827 /* Add the CFI for saving a register. REG is the CFA column number.
828 LABEL is passed to add_fde_cfi.
829 If SREG is -1, the register is saved at OFFSET from the CFA;
830 otherwise it is saved in SREG. */
832 static void
833 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
835 dw_cfi_ref cfi = new_cfi ();
837 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
839 if (sreg == INVALID_REGNUM)
841 if (reg & ~0x3f)
842 /* The register number won't fit in 6 bits, so we have to use
843 the long form. */
844 cfi->dw_cfi_opc = DW_CFA_offset_extended;
845 else
846 cfi->dw_cfi_opc = DW_CFA_offset;
848 #ifdef ENABLE_CHECKING
850 /* If we get an offset that is not a multiple of
851 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
852 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
853 description. */
854 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
856 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
858 #endif
859 offset /= DWARF_CIE_DATA_ALIGNMENT;
860 if (offset < 0)
861 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
863 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
865 else if (sreg == reg)
866 cfi->dw_cfi_opc = DW_CFA_same_value;
867 else
869 cfi->dw_cfi_opc = DW_CFA_register;
870 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
873 add_fde_cfi (label, cfi);
876 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
877 This CFI tells the unwinder that it needs to restore the window registers
878 from the previous frame's window save area.
880 ??? Perhaps we should note in the CIE where windows are saved (instead of
881 assuming 0(cfa)) and what registers are in the window. */
883 void
884 dwarf2out_window_save (const char *label)
886 dw_cfi_ref cfi = new_cfi ();
888 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
889 add_fde_cfi (label, cfi);
892 /* Add a CFI to update the running total of the size of arguments
893 pushed onto the stack. */
895 void
896 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
898 dw_cfi_ref cfi;
900 if (size == old_args_size)
901 return;
903 old_args_size = size;
905 cfi = new_cfi ();
906 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
907 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
908 add_fde_cfi (label, cfi);
911 /* Entry point for saving a register to the stack. REG is the GCC register
912 number. LABEL and OFFSET are passed to reg_save. */
914 void
915 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
917 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
920 /* Entry point for saving the return address in the stack.
921 LABEL and OFFSET are passed to reg_save. */
923 void
924 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
926 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
929 /* Entry point for saving the return address in a register.
930 LABEL and SREG are passed to reg_save. */
932 void
933 dwarf2out_return_reg (const char *label, unsigned int sreg)
935 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
938 /* Record the initial position of the return address. RTL is
939 INCOMING_RETURN_ADDR_RTX. */
941 static void
942 initial_return_save (rtx rtl)
944 unsigned int reg = INVALID_REGNUM;
945 HOST_WIDE_INT offset = 0;
947 switch (GET_CODE (rtl))
949 case REG:
950 /* RA is in a register. */
951 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
952 break;
954 case MEM:
955 /* RA is on the stack. */
956 rtl = XEXP (rtl, 0);
957 switch (GET_CODE (rtl))
959 case REG:
960 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
961 offset = 0;
962 break;
964 case PLUS:
965 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
966 offset = INTVAL (XEXP (rtl, 1));
967 break;
969 case MINUS:
970 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
971 offset = -INTVAL (XEXP (rtl, 1));
972 break;
974 default:
975 gcc_unreachable ();
978 break;
980 case PLUS:
981 /* The return address is at some offset from any value we can
982 actually load. For instance, on the SPARC it is in %i7+8. Just
983 ignore the offset for now; it doesn't matter for unwinding frames. */
984 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
985 initial_return_save (XEXP (rtl, 0));
986 return;
988 default:
989 gcc_unreachable ();
992 if (reg != DWARF_FRAME_RETURN_COLUMN)
993 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
996 /* Given a SET, calculate the amount of stack adjustment it
997 contains. */
999 static HOST_WIDE_INT
1000 stack_adjust_offset (rtx pattern)
1002 rtx src = SET_SRC (pattern);
1003 rtx dest = SET_DEST (pattern);
1004 HOST_WIDE_INT offset = 0;
1005 enum rtx_code code;
1007 if (dest == stack_pointer_rtx)
1009 /* (set (reg sp) (plus (reg sp) (const_int))) */
1010 code = GET_CODE (src);
1011 if (! (code == PLUS || code == MINUS)
1012 || XEXP (src, 0) != stack_pointer_rtx
1013 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1014 return 0;
1016 offset = INTVAL (XEXP (src, 1));
1017 if (code == PLUS)
1018 offset = -offset;
1020 else if (MEM_P (dest))
1022 /* (set (mem (pre_dec (reg sp))) (foo)) */
1023 src = XEXP (dest, 0);
1024 code = GET_CODE (src);
1026 switch (code)
1028 case PRE_MODIFY:
1029 case POST_MODIFY:
1030 if (XEXP (src, 0) == stack_pointer_rtx)
1032 rtx val = XEXP (XEXP (src, 1), 1);
1033 /* We handle only adjustments by constant amount. */
1034 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1035 && GET_CODE (val) == CONST_INT);
1036 offset = -INTVAL (val);
1037 break;
1039 return 0;
1041 case PRE_DEC:
1042 case POST_DEC:
1043 if (XEXP (src, 0) == stack_pointer_rtx)
1045 offset = GET_MODE_SIZE (GET_MODE (dest));
1046 break;
1048 return 0;
1050 case PRE_INC:
1051 case POST_INC:
1052 if (XEXP (src, 0) == stack_pointer_rtx)
1054 offset = -GET_MODE_SIZE (GET_MODE (dest));
1055 break;
1057 return 0;
1059 default:
1060 return 0;
1063 else
1064 return 0;
1066 return offset;
1069 /* Check INSN to see if it looks like a push or a stack adjustment, and
1070 make a note of it if it does. EH uses this information to find out how
1071 much extra space it needs to pop off the stack. */
1073 static void
1074 dwarf2out_stack_adjust (rtx insn, bool after_p)
1076 HOST_WIDE_INT offset;
1077 const char *label;
1078 int i;
1080 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1081 with this function. Proper support would require all frame-related
1082 insns to be marked, and to be able to handle saving state around
1083 epilogues textually in the middle of the function. */
1084 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1085 return;
1087 /* If only calls can throw, and we have a frame pointer,
1088 save up adjustments until we see the CALL_INSN. */
1089 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1091 if (CALL_P (insn) && !after_p)
1093 /* Extract the size of the args from the CALL rtx itself. */
1094 insn = PATTERN (insn);
1095 if (GET_CODE (insn) == PARALLEL)
1096 insn = XVECEXP (insn, 0, 0);
1097 if (GET_CODE (insn) == SET)
1098 insn = SET_SRC (insn);
1099 gcc_assert (GET_CODE (insn) == CALL);
1100 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1102 return;
1105 if (CALL_P (insn) && !after_p)
1107 if (!flag_asynchronous_unwind_tables)
1108 dwarf2out_args_size ("", args_size);
1109 return;
1111 else if (BARRIER_P (insn))
1113 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1114 the compiler will have already emitted a stack adjustment, but
1115 doesn't bother for calls to noreturn functions. */
1116 #ifdef STACK_GROWS_DOWNWARD
1117 offset = -args_size;
1118 #else
1119 offset = args_size;
1120 #endif
1122 else if (GET_CODE (PATTERN (insn)) == SET)
1123 offset = stack_adjust_offset (PATTERN (insn));
1124 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1125 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1127 /* There may be stack adjustments inside compound insns. Search
1128 for them. */
1129 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1130 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1131 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1133 else
1134 return;
1136 if (offset == 0)
1137 return;
1139 if (cfa.reg == STACK_POINTER_REGNUM)
1140 cfa.offset += offset;
1142 #ifndef STACK_GROWS_DOWNWARD
1143 offset = -offset;
1144 #endif
1146 args_size += offset;
1147 if (args_size < 0)
1148 args_size = 0;
1150 label = dwarf2out_cfi_label ();
1151 def_cfa_1 (label, &cfa);
1152 if (flag_asynchronous_unwind_tables)
1153 dwarf2out_args_size (label, args_size);
1156 #endif
1158 /* We delay emitting a register save until either (a) we reach the end
1159 of the prologue or (b) the register is clobbered. This clusters
1160 register saves so that there are fewer pc advances. */
1162 struct queued_reg_save GTY(())
1164 struct queued_reg_save *next;
1165 rtx reg;
1166 HOST_WIDE_INT cfa_offset;
1167 rtx saved_reg;
1170 static GTY(()) struct queued_reg_save *queued_reg_saves;
1172 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1173 struct reg_saved_in_data GTY(()) {
1174 rtx orig_reg;
1175 rtx saved_in_reg;
1178 /* A list of registers saved in other registers.
1179 The list intentionally has a small maximum capacity of 4; if your
1180 port needs more than that, you might consider implementing a
1181 more efficient data structure. */
1182 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1183 static GTY(()) size_t num_regs_saved_in_regs;
1185 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1186 static const char *last_reg_save_label;
1188 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1189 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1191 static void
1192 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1194 struct queued_reg_save *q;
1196 /* Duplicates waste space, but it's also necessary to remove them
1197 for correctness, since the queue gets output in reverse
1198 order. */
1199 for (q = queued_reg_saves; q != NULL; q = q->next)
1200 if (REGNO (q->reg) == REGNO (reg))
1201 break;
1203 if (q == NULL)
1205 q = ggc_alloc (sizeof (*q));
1206 q->next = queued_reg_saves;
1207 queued_reg_saves = q;
1210 q->reg = reg;
1211 q->cfa_offset = offset;
1212 q->saved_reg = sreg;
1214 last_reg_save_label = label;
1217 /* Output all the entries in QUEUED_REG_SAVES. */
1219 static void
1220 flush_queued_reg_saves (void)
1222 struct queued_reg_save *q;
1224 for (q = queued_reg_saves; q; q = q->next)
1226 size_t i;
1227 unsigned int reg, sreg;
1229 for (i = 0; i < num_regs_saved_in_regs; i++)
1230 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1231 break;
1232 if (q->saved_reg && i == num_regs_saved_in_regs)
1234 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1235 num_regs_saved_in_regs++;
1237 if (i != num_regs_saved_in_regs)
1239 regs_saved_in_regs[i].orig_reg = q->reg;
1240 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1243 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1244 if (q->saved_reg)
1245 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1246 else
1247 sreg = INVALID_REGNUM;
1248 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1251 queued_reg_saves = NULL;
1252 last_reg_save_label = NULL;
1255 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1256 location for? Or, does it clobber a register which we've previously
1257 said that some other register is saved in, and for which we now
1258 have a new location for? */
1260 static bool
1261 clobbers_queued_reg_save (rtx insn)
1263 struct queued_reg_save *q;
1265 for (q = queued_reg_saves; q; q = q->next)
1267 size_t i;
1268 if (modified_in_p (q->reg, insn))
1269 return true;
1270 for (i = 0; i < num_regs_saved_in_regs; i++)
1271 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1272 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1273 return true;
1276 return false;
1279 /* Entry point for saving the first register into the second. */
1281 void
1282 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1284 size_t i;
1285 unsigned int regno, sregno;
1287 for (i = 0; i < num_regs_saved_in_regs; i++)
1288 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1289 break;
1290 if (i == num_regs_saved_in_regs)
1292 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1293 num_regs_saved_in_regs++;
1295 regs_saved_in_regs[i].orig_reg = reg;
1296 regs_saved_in_regs[i].saved_in_reg = sreg;
1298 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1299 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1300 reg_save (label, regno, sregno, 0);
1303 /* What register, if any, is currently saved in REG? */
1305 static rtx
1306 reg_saved_in (rtx reg)
1308 unsigned int regn = REGNO (reg);
1309 size_t i;
1310 struct queued_reg_save *q;
1312 for (q = queued_reg_saves; q; q = q->next)
1313 if (q->saved_reg && regn == REGNO (q->saved_reg))
1314 return q->reg;
1316 for (i = 0; i < num_regs_saved_in_regs; i++)
1317 if (regs_saved_in_regs[i].saved_in_reg
1318 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1319 return regs_saved_in_regs[i].orig_reg;
1321 return NULL_RTX;
1325 /* A temporary register holding an integral value used in adjusting SP
1326 or setting up the store_reg. The "offset" field holds the integer
1327 value, not an offset. */
1328 static dw_cfa_location cfa_temp;
1330 /* Record call frame debugging information for an expression EXPR,
1331 which either sets SP or FP (adjusting how we calculate the frame
1332 address) or saves a register to the stack or another register.
1333 LABEL indicates the address of EXPR.
1335 This function encodes a state machine mapping rtxes to actions on
1336 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1337 users need not read the source code.
1339 The High-Level Picture
1341 Changes in the register we use to calculate the CFA: Currently we
1342 assume that if you copy the CFA register into another register, we
1343 should take the other one as the new CFA register; this seems to
1344 work pretty well. If it's wrong for some target, it's simple
1345 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1347 Changes in the register we use for saving registers to the stack:
1348 This is usually SP, but not always. Again, we deduce that if you
1349 copy SP into another register (and SP is not the CFA register),
1350 then the new register is the one we will be using for register
1351 saves. This also seems to work.
1353 Register saves: There's not much guesswork about this one; if
1354 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1355 register save, and the register used to calculate the destination
1356 had better be the one we think we're using for this purpose.
1357 It's also assumed that a copy from a call-saved register to another
1358 register is saving that register if RTX_FRAME_RELATED_P is set on
1359 that instruction. If the copy is from a call-saved register to
1360 the *same* register, that means that the register is now the same
1361 value as in the caller.
1363 Except: If the register being saved is the CFA register, and the
1364 offset is nonzero, we are saving the CFA, so we assume we have to
1365 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1366 the intent is to save the value of SP from the previous frame.
1368 In addition, if a register has previously been saved to a different
1369 register,
1371 Invariants / Summaries of Rules
1373 cfa current rule for calculating the CFA. It usually
1374 consists of a register and an offset.
1375 cfa_store register used by prologue code to save things to the stack
1376 cfa_store.offset is the offset from the value of
1377 cfa_store.reg to the actual CFA
1378 cfa_temp register holding an integral value. cfa_temp.offset
1379 stores the value, which will be used to adjust the
1380 stack pointer. cfa_temp is also used like cfa_store,
1381 to track stores to the stack via fp or a temp reg.
1383 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1384 with cfa.reg as the first operand changes the cfa.reg and its
1385 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1386 cfa_temp.offset.
1388 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1389 expression yielding a constant. This sets cfa_temp.reg
1390 and cfa_temp.offset.
1392 Rule 5: Create a new register cfa_store used to save items to the
1393 stack.
1395 Rules 10-14: Save a register to the stack. Define offset as the
1396 difference of the original location and cfa_store's
1397 location (or cfa_temp's location if cfa_temp is used).
1399 The Rules
1401 "{a,b}" indicates a choice of a xor b.
1402 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1404 Rule 1:
1405 (set <reg1> <reg2>:cfa.reg)
1406 effects: cfa.reg = <reg1>
1407 cfa.offset unchanged
1408 cfa_temp.reg = <reg1>
1409 cfa_temp.offset = cfa.offset
1411 Rule 2:
1412 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1413 {<const_int>,<reg>:cfa_temp.reg}))
1414 effects: cfa.reg = sp if fp used
1415 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1416 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1417 if cfa_store.reg==sp
1419 Rule 3:
1420 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1421 effects: cfa.reg = fp
1422 cfa_offset += +/- <const_int>
1424 Rule 4:
1425 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1426 constraints: <reg1> != fp
1427 <reg1> != sp
1428 effects: cfa.reg = <reg1>
1429 cfa_temp.reg = <reg1>
1430 cfa_temp.offset = cfa.offset
1432 Rule 5:
1433 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1434 constraints: <reg1> != fp
1435 <reg1> != sp
1436 effects: cfa_store.reg = <reg1>
1437 cfa_store.offset = cfa.offset - cfa_temp.offset
1439 Rule 6:
1440 (set <reg> <const_int>)
1441 effects: cfa_temp.reg = <reg>
1442 cfa_temp.offset = <const_int>
1444 Rule 7:
1445 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1446 effects: cfa_temp.reg = <reg1>
1447 cfa_temp.offset |= <const_int>
1449 Rule 8:
1450 (set <reg> (high <exp>))
1451 effects: none
1453 Rule 9:
1454 (set <reg> (lo_sum <exp> <const_int>))
1455 effects: cfa_temp.reg = <reg>
1456 cfa_temp.offset = <const_int>
1458 Rule 10:
1459 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1460 effects: cfa_store.offset -= <const_int>
1461 cfa.offset = cfa_store.offset if cfa.reg == sp
1462 cfa.reg = sp
1463 cfa.base_offset = -cfa_store.offset
1465 Rule 11:
1466 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1467 effects: cfa_store.offset += -/+ mode_size(mem)
1468 cfa.offset = cfa_store.offset if cfa.reg == sp
1469 cfa.reg = sp
1470 cfa.base_offset = -cfa_store.offset
1472 Rule 12:
1473 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1475 <reg2>)
1476 effects: cfa.reg = <reg1>
1477 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1479 Rule 13:
1480 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1481 effects: cfa.reg = <reg1>
1482 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1484 Rule 14:
1485 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1486 effects: cfa.reg = <reg1>
1487 cfa.base_offset = -cfa_temp.offset
1488 cfa_temp.offset -= mode_size(mem)
1490   Rule 15:
1491   (set <reg> {unspec, unspec_volatile})
1492   effects: target-dependent */
1494 static void
1495 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1497 rtx src, dest;
1498 HOST_WIDE_INT offset;
1500 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1501 the PARALLEL independently. The first element is always processed if
1502 it is a SET. This is for backward compatibility. Other elements
1503 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1504 flag is set in them. */
1505 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1507 int par_index;
1508 int limit = XVECLEN (expr, 0);
1510 for (par_index = 0; par_index < limit; par_index++)
1511 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1512 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1513 || par_index == 0))
1514 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1516 return;
1519 gcc_assert (GET_CODE (expr) == SET);
1521 src = SET_SRC (expr);
1522 dest = SET_DEST (expr);
1524 if (REG_P (src))
1526 rtx rsi = reg_saved_in (src);
1527 if (rsi)
1528 src = rsi;
1531 switch (GET_CODE (dest))
1533 case REG:
1534 switch (GET_CODE (src))
1536 /* Setting FP from SP. */
1537 case REG:
1538 if (cfa.reg == (unsigned) REGNO (src))
1540 /* Rule 1 */
1541 /* Update the CFA rule wrt SP or FP. Make sure src is
1542 relative to the current CFA register.
1544 We used to require that dest be either SP or FP, but the
1545 ARM copies SP to a temporary register, and from there to
1546 FP. So we just rely on the backends to only set
1547 RTX_FRAME_RELATED_P on appropriate insns. */
1548 cfa.reg = REGNO (dest);
1549 cfa_temp.reg = cfa.reg;
1550 cfa_temp.offset = cfa.offset;
1552 else
1554 /* Saving a register in a register. */
1555 gcc_assert (!fixed_regs [REGNO (dest)]
1556 /* For the SPARC and its register window. */
1557 || (DWARF_FRAME_REGNUM (REGNO (src))
1558 == DWARF_FRAME_RETURN_COLUMN));
1559 queue_reg_save (label, src, dest, 0);
1561 break;
1563 case PLUS:
1564 case MINUS:
1565 case LO_SUM:
1566 if (dest == stack_pointer_rtx)
1568 /* Rule 2 */
1569 /* Adjusting SP. */
1570 switch (GET_CODE (XEXP (src, 1)))
1572 case CONST_INT:
1573 offset = INTVAL (XEXP (src, 1));
1574 break;
1575 case REG:
1576 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1577 == cfa_temp.reg);
1578 offset = cfa_temp.offset;
1579 break;
1580 default:
1581 gcc_unreachable ();
1584 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1586 /* Restoring SP from FP in the epilogue. */
1587 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1588 cfa.reg = STACK_POINTER_REGNUM;
1590 else if (GET_CODE (src) == LO_SUM)
1591 /* Assume we've set the source reg of the LO_SUM from sp. */
1593 else
1594 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1596 if (GET_CODE (src) != MINUS)
1597 offset = -offset;
1598 if (cfa.reg == STACK_POINTER_REGNUM)
1599 cfa.offset += offset;
1600 if (cfa_store.reg == STACK_POINTER_REGNUM)
1601 cfa_store.offset += offset;
1603 else if (dest == hard_frame_pointer_rtx)
1605 /* Rule 3 */
1606 /* Either setting the FP from an offset of the SP,
1607 or adjusting the FP */
1608 gcc_assert (frame_pointer_needed);
1610 gcc_assert (REG_P (XEXP (src, 0))
1611 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1612 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1613 offset = INTVAL (XEXP (src, 1));
1614 if (GET_CODE (src) != MINUS)
1615 offset = -offset;
1616 cfa.offset += offset;
1617 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1619 else
1621 gcc_assert (GET_CODE (src) != MINUS);
1623 /* Rule 4 */
1624 if (REG_P (XEXP (src, 0))
1625 && REGNO (XEXP (src, 0)) == cfa.reg
1626 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1628 /* Setting a temporary CFA register that will be copied
1629 into the FP later on. */
1630 offset = - INTVAL (XEXP (src, 1));
1631 cfa.offset += offset;
1632 cfa.reg = REGNO (dest);
1633 /* Or used to save regs to the stack. */
1634 cfa_temp.reg = cfa.reg;
1635 cfa_temp.offset = cfa.offset;
1638 /* Rule 5 */
1639 else if (REG_P (XEXP (src, 0))
1640 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1641 && XEXP (src, 1) == stack_pointer_rtx)
1643 /* Setting a scratch register that we will use instead
1644 of SP for saving registers to the stack. */
1645 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1646 cfa_store.reg = REGNO (dest);
1647 cfa_store.offset = cfa.offset - cfa_temp.offset;
1650 /* Rule 9 */
1651 else if (GET_CODE (src) == LO_SUM
1652 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1654 cfa_temp.reg = REGNO (dest);
1655 cfa_temp.offset = INTVAL (XEXP (src, 1));
1657 else
1658 gcc_unreachable ();
1660 break;
1662 /* Rule 6 */
1663 case CONST_INT:
1664 cfa_temp.reg = REGNO (dest);
1665 cfa_temp.offset = INTVAL (src);
1666 break;
1668 /* Rule 7 */
1669 case IOR:
1670 gcc_assert (REG_P (XEXP (src, 0))
1671 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1672 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1674 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1675 cfa_temp.reg = REGNO (dest);
1676 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1677 break;
1679 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1680 which will fill in all of the bits. */
1681 /* Rule 8 */
1682 case HIGH:
1683 break;
1685 /* Rule 15 */
1686 case UNSPEC:
1687 case UNSPEC_VOLATILE:
1688 gcc_assert (targetm.dwarf_handle_frame_unspec);
1689 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1690 return;
1692 default:
1693 gcc_unreachable ();
1696 def_cfa_1 (label, &cfa);
1697 break;
1699 case MEM:
1700 gcc_assert (REG_P (src));
1702 /* Saving a register to the stack. Make sure dest is relative to the
1703 CFA register. */
1704 switch (GET_CODE (XEXP (dest, 0)))
1706 /* Rule 10 */
1707 /* With a push. */
1708 case PRE_MODIFY:
1709 /* We can't handle variable size modifications. */
1710 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1711 == CONST_INT);
1712 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1714 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1715 && cfa_store.reg == STACK_POINTER_REGNUM);
1717 cfa_store.offset += offset;
1718 if (cfa.reg == STACK_POINTER_REGNUM)
1719 cfa.offset = cfa_store.offset;
1721 offset = -cfa_store.offset;
1722 break;
1724 /* Rule 11 */
1725 case PRE_INC:
1726 case PRE_DEC:
1727 offset = GET_MODE_SIZE (GET_MODE (dest));
1728 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1729 offset = -offset;
1731 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1732 && cfa_store.reg == STACK_POINTER_REGNUM);
1734 cfa_store.offset += offset;
1735 if (cfa.reg == STACK_POINTER_REGNUM)
1736 cfa.offset = cfa_store.offset;
1738 offset = -cfa_store.offset;
1739 break;
1741 /* Rule 12 */
1742 /* With an offset. */
1743 case PLUS:
1744 case MINUS:
1745 case LO_SUM:
1747 int regno;
1749 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1750 && REG_P (XEXP (XEXP (dest, 0), 0)));
1751 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1752 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1753 offset = -offset;
1755 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1757 if (cfa_store.reg == (unsigned) regno)
1758 offset -= cfa_store.offset;
1759 else
1761 gcc_assert (cfa_temp.reg == (unsigned) regno);
1762 offset -= cfa_temp.offset;
1765 break;
1767 /* Rule 13 */
1768 /* Without an offset. */
1769 case REG:
1771 int regno = REGNO (XEXP (dest, 0));
1773 if (cfa_store.reg == (unsigned) regno)
1774 offset = -cfa_store.offset;
1775 else
1777 gcc_assert (cfa_temp.reg == (unsigned) regno);
1778 offset = -cfa_temp.offset;
1781 break;
1783 /* Rule 14 */
1784 case POST_INC:
1785 gcc_assert (cfa_temp.reg
1786 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1787 offset = -cfa_temp.offset;
1788 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1789 break;
1791 default:
1792 gcc_unreachable ();
1795 if (REGNO (src) != STACK_POINTER_REGNUM
1796 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1797 && (unsigned) REGNO (src) == cfa.reg)
1799 /* We're storing the current CFA reg into the stack. */
1801 if (cfa.offset == 0)
1803 /* If the source register is exactly the CFA, assume
1804 we're saving SP like any other register; this happens
1805 on the ARM. */
1806 def_cfa_1 (label, &cfa);
1807 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1808 break;
1810 else
1812 /* Otherwise, we'll need to look in the stack to
1813 calculate the CFA. */
1814 rtx x = XEXP (dest, 0);
1816 if (!REG_P (x))
1817 x = XEXP (x, 0);
1818 gcc_assert (REG_P (x));
1820 cfa.reg = REGNO (x);
1821 cfa.base_offset = offset;
1822 cfa.indirect = 1;
1823 def_cfa_1 (label, &cfa);
1824 break;
1828 def_cfa_1 (label, &cfa);
1829 queue_reg_save (label, src, NULL_RTX, offset);
1830 break;
1832 default:
1833 gcc_unreachable ();
1837 /* Record call frame debugging information for INSN, which either
1838 sets SP or FP (adjusting how we calculate the frame address) or saves a
1839 register to the stack. If INSN is NULL_RTX, initialize our state.
1841 If AFTER_P is false, we're being called before the insn is emitted,
1842 otherwise after. Call instructions get invoked twice. */
1844 void
1845 dwarf2out_frame_debug (rtx insn, bool after_p)
1847 const char *label;
1848 rtx src;
1850 if (insn == NULL_RTX)
1852 size_t i;
1854 /* Flush any queued register saves. */
1855 flush_queued_reg_saves ();
1857 /* Set up state for generating call frame debug info. */
1858 lookup_cfa (&cfa);
1859 gcc_assert (cfa.reg
1860 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1862 cfa.reg = STACK_POINTER_REGNUM;
1863 cfa_store = cfa;
1864 cfa_temp.reg = -1;
1865 cfa_temp.offset = 0;
1867 for (i = 0; i < num_regs_saved_in_regs; i++)
1869 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1870 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1872 num_regs_saved_in_regs = 0;
1873 return;
1876 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1877 flush_queued_reg_saves ();
1879 if (! RTX_FRAME_RELATED_P (insn))
1881 if (!ACCUMULATE_OUTGOING_ARGS)
1882 dwarf2out_stack_adjust (insn, after_p);
1883 return;
1886 label = dwarf2out_cfi_label ();
1887 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1888 if (src)
1889 insn = XEXP (src, 0);
1890 else
1891 insn = PATTERN (insn);
1893 dwarf2out_frame_debug_expr (insn, label);
1896 #endif
1898 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1899 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1900 (enum dwarf_call_frame_info cfi);
1902 static enum dw_cfi_oprnd_type
1903 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1905 switch (cfi)
1907 case DW_CFA_nop:
1908 case DW_CFA_GNU_window_save:
1909 return dw_cfi_oprnd_unused;
1911 case DW_CFA_set_loc:
1912 case DW_CFA_advance_loc1:
1913 case DW_CFA_advance_loc2:
1914 case DW_CFA_advance_loc4:
1915 case DW_CFA_MIPS_advance_loc8:
1916 return dw_cfi_oprnd_addr;
1918 case DW_CFA_offset:
1919 case DW_CFA_offset_extended:
1920 case DW_CFA_def_cfa:
1921 case DW_CFA_offset_extended_sf:
1922 case DW_CFA_def_cfa_sf:
1923 case DW_CFA_restore_extended:
1924 case DW_CFA_undefined:
1925 case DW_CFA_same_value:
1926 case DW_CFA_def_cfa_register:
1927 case DW_CFA_register:
1928 return dw_cfi_oprnd_reg_num;
1930 case DW_CFA_def_cfa_offset:
1931 case DW_CFA_GNU_args_size:
1932 case DW_CFA_def_cfa_offset_sf:
1933 return dw_cfi_oprnd_offset;
1935 case DW_CFA_def_cfa_expression:
1936 case DW_CFA_expression:
1937 return dw_cfi_oprnd_loc;
1939 default:
1940 gcc_unreachable ();
1944 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1945 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1946 (enum dwarf_call_frame_info cfi);
1948 static enum dw_cfi_oprnd_type
1949 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1951 switch (cfi)
1953 case DW_CFA_def_cfa:
1954 case DW_CFA_def_cfa_sf:
1955 case DW_CFA_offset:
1956 case DW_CFA_offset_extended_sf:
1957 case DW_CFA_offset_extended:
1958 return dw_cfi_oprnd_offset;
1960 case DW_CFA_register:
1961 return dw_cfi_oprnd_reg_num;
1963 default:
1964 return dw_cfi_oprnd_unused;
1968 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1970 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1971 switch to the data section instead, and write out a synthetic label
1972 for collect2. */
1974 static void
1975 switch_to_eh_frame_section (void)
1977 tree label;
1979 #ifdef EH_FRAME_SECTION_NAME
1980 if (eh_frame_section == 0)
1982 int flags;
1984 if (EH_TABLES_CAN_BE_READ_ONLY)
1986 int fde_encoding;
1987 int per_encoding;
1988 int lsda_encoding;
1990 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
1991 /*global=*/0);
1992 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
1993 /*global=*/1);
1994 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
1995 /*global=*/0);
1996 flags = ((! flag_pic
1997 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
1998 && (fde_encoding & 0x70) != DW_EH_PE_aligned
1999 && (per_encoding & 0x70) != DW_EH_PE_absptr
2000 && (per_encoding & 0x70) != DW_EH_PE_aligned
2001 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2002 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2003 ? 0 : SECTION_WRITE);
2005 else
2006 flags = SECTION_WRITE;
2007 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2009 #endif
2011 if (eh_frame_section)
2012 switch_to_section (eh_frame_section);
2013 else
2015 /* We have no special eh_frame section. Put the information in
2016 the data section and emit special labels to guide collect2. */
2017 switch_to_section (data_section);
2018 label = get_file_function_name ('F');
2019 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2020 targetm.asm_out.globalize_label (asm_out_file,
2021 IDENTIFIER_POINTER (label));
2022 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2026 /* Output a Call Frame Information opcode and its operand(s). */
2028 static void
2029 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2031 unsigned long r;
2032 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2033 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2034 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2035 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2036 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2037 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2039 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2040 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2041 "DW_CFA_offset, column 0x%lx", r);
2042 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2044 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2046 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2047 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2048 "DW_CFA_restore, column 0x%lx", r);
2050 else
2052 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2053 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2055 switch (cfi->dw_cfi_opc)
2057 case DW_CFA_set_loc:
2058 if (for_eh)
2059 dw2_asm_output_encoded_addr_rtx (
2060 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2061 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2062 false, NULL);
2063 else
2064 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2065 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2066 break;
2068 case DW_CFA_advance_loc1:
2069 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2070 fde->dw_fde_current_label, NULL);
2071 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2072 break;
2074 case DW_CFA_advance_loc2:
2075 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2076 fde->dw_fde_current_label, NULL);
2077 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2078 break;
2080 case DW_CFA_advance_loc4:
2081 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2082 fde->dw_fde_current_label, NULL);
2083 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2084 break;
2086 case DW_CFA_MIPS_advance_loc8:
2087 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2088 fde->dw_fde_current_label, NULL);
2089 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2090 break;
2092 case DW_CFA_offset_extended:
2093 case DW_CFA_def_cfa:
2094 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2095 dw2_asm_output_data_uleb128 (r, NULL);
2096 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2097 break;
2099 case DW_CFA_offset_extended_sf:
2100 case DW_CFA_def_cfa_sf:
2101 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2102 dw2_asm_output_data_uleb128 (r, NULL);
2103 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2104 break;
2106 case DW_CFA_restore_extended:
2107 case DW_CFA_undefined:
2108 case DW_CFA_same_value:
2109 case DW_CFA_def_cfa_register:
2110 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2111 dw2_asm_output_data_uleb128 (r, NULL);
2112 break;
2114 case DW_CFA_register:
2115 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2116 dw2_asm_output_data_uleb128 (r, NULL);
2117 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2118 dw2_asm_output_data_uleb128 (r, NULL);
2119 break;
2121 case DW_CFA_def_cfa_offset:
2122 case DW_CFA_GNU_args_size:
2123 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2124 break;
2126 case DW_CFA_def_cfa_offset_sf:
2127 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2128 break;
2130 case DW_CFA_GNU_window_save:
2131 break;
2133 case DW_CFA_def_cfa_expression:
2134 case DW_CFA_expression:
2135 output_cfa_loc (cfi);
2136 break;
2138 case DW_CFA_GNU_negative_offset_extended:
2139 /* Obsoleted by DW_CFA_offset_extended_sf. */
2140 gcc_unreachable ();
2142 default:
2143 break;
2148 /* Output the call frame information used to record information
2149 that relates to calculating the frame pointer, and records the
2150 location of saved registers. */
2152 static void
2153 output_call_frame_info (int for_eh)
2155 unsigned int i;
2156 dw_fde_ref fde;
2157 dw_cfi_ref cfi;
2158 char l1[20], l2[20], section_start_label[20];
2159 bool any_lsda_needed = false;
2160 char augmentation[6];
2161 int augmentation_size;
2162 int fde_encoding = DW_EH_PE_absptr;
2163 int per_encoding = DW_EH_PE_absptr;
2164 int lsda_encoding = DW_EH_PE_absptr;
2165 int return_reg;
2167 /* Don't emit a CIE if there won't be any FDEs. */
2168 if (fde_table_in_use == 0)
2169 return;
2171 /* If we make FDEs linkonce, we may have to emit an empty label for
2172 an FDE that wouldn't otherwise be emitted. We want to avoid
2173 having an FDE kept around when the function it refers to is
2174 discarded. Example where this matters: a primary function
2175 template in C++ requires EH information, but an explicit
2176 specialization doesn't. */
2177 if (TARGET_USES_WEAK_UNWIND_INFO
2178 && ! flag_asynchronous_unwind_tables
2179 && for_eh)
2180 for (i = 0; i < fde_table_in_use; i++)
2181 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2182 && !fde_table[i].uses_eh_lsda
2183 && ! DECL_WEAK (fde_table[i].decl))
2184 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2185 for_eh, /* empty */ 1);
2187 /* If we don't have any functions we'll want to unwind out of, don't
2188 emit any EH unwind information. Note that if exceptions aren't
2189 enabled, we won't have collected nothrow information, and if we
2190 asked for asynchronous tables, we always want this info. */
2191 if (for_eh)
2193 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2195 for (i = 0; i < fde_table_in_use; i++)
2196 if (fde_table[i].uses_eh_lsda)
2197 any_eh_needed = any_lsda_needed = true;
2198 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2199 any_eh_needed = true;
2200 else if (! fde_table[i].nothrow
2201 && ! fde_table[i].all_throwers_are_sibcalls)
2202 any_eh_needed = true;
2204 if (! any_eh_needed)
2205 return;
2208 /* We're going to be generating comments, so turn on app. */
2209 if (flag_debug_asm)
2210 app_enable ();
2212 if (for_eh)
2213 switch_to_eh_frame_section ();
2214 else
2215 switch_to_section (get_section (DEBUG_FRAME_SECTION, SECTION_DEBUG, NULL));
2217 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2218 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2220 /* Output the CIE. */
2221 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2222 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2223 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2224 "Length of Common Information Entry");
2225 ASM_OUTPUT_LABEL (asm_out_file, l1);
2227 /* Now that the CIE pointer is PC-relative for EH,
2228 use 0 to identify the CIE. */
2229 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2230 (for_eh ? 0 : DW_CIE_ID),
2231 "CIE Identifier Tag");
2233 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2235 augmentation[0] = 0;
2236 augmentation_size = 0;
2237 if (for_eh)
2239 char *p;
2241 /* Augmentation:
2242 z Indicates that a uleb128 is present to size the
2243 augmentation section.
2244 L Indicates the encoding (and thus presence) of
2245 an LSDA pointer in the FDE augmentation.
2246 R Indicates a non-default pointer encoding for
2247 FDE code pointers.
2248 P Indicates the presence of an encoding + language
2249 personality routine in the CIE augmentation. */
2251 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2252 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2253 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2255 p = augmentation + 1;
2256 if (eh_personality_libfunc)
2258 *p++ = 'P';
2259 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2261 if (any_lsda_needed)
2263 *p++ = 'L';
2264 augmentation_size += 1;
2266 if (fde_encoding != DW_EH_PE_absptr)
2268 *p++ = 'R';
2269 augmentation_size += 1;
2271 if (p > augmentation + 1)
2273 augmentation[0] = 'z';
2274 *p = '\0';
2277 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2278 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2280 int offset = ( 4 /* Length */
2281 + 4 /* CIE Id */
2282 + 1 /* CIE version */
2283 + strlen (augmentation) + 1 /* Augmentation */
2284 + size_of_uleb128 (1) /* Code alignment */
2285 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2286 + 1 /* RA column */
2287 + 1 /* Augmentation size */
2288 + 1 /* Personality encoding */ );
2289 int pad = -offset & (PTR_SIZE - 1);
2291 augmentation_size += pad;
2293 /* Augmentations should be small, so there's scarce need to
2294 iterate for a solution. Die if we exceed one uleb128 byte. */
2295 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2299 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2300 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2301 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2302 "CIE Data Alignment Factor");
2304 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2305 if (DW_CIE_VERSION == 1)
2306 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2307 else
2308 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2310 if (augmentation[0])
2312 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2313 if (eh_personality_libfunc)
2315 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2316 eh_data_format_name (per_encoding));
2317 dw2_asm_output_encoded_addr_rtx (per_encoding,
2318 eh_personality_libfunc,
2319 true, NULL);
2322 if (any_lsda_needed)
2323 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2324 eh_data_format_name (lsda_encoding));
2326 if (fde_encoding != DW_EH_PE_absptr)
2327 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2328 eh_data_format_name (fde_encoding));
2331 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2332 output_cfi (cfi, NULL, for_eh);
2334 /* Pad the CIE out to an address sized boundary. */
2335 ASM_OUTPUT_ALIGN (asm_out_file,
2336 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2337 ASM_OUTPUT_LABEL (asm_out_file, l2);
2339 /* Loop through all of the FDE's. */
2340 for (i = 0; i < fde_table_in_use; i++)
2342 fde = &fde_table[i];
2344 /* Don't emit EH unwind info for leaf functions that don't need it. */
2345 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2346 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2347 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2348 && !fde->uses_eh_lsda)
2349 continue;
2351 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2352 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2353 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2354 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2355 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2356 "FDE Length");
2357 ASM_OUTPUT_LABEL (asm_out_file, l1);
2359 if (for_eh)
2360 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2361 else
2362 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2363 "FDE CIE offset");
2365 if (for_eh)
2367 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2368 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2369 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2370 sym_ref,
2371 false,
2372 "FDE initial location");
2373 if (fde->dw_fde_switched_sections)
2375 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2376 fde->dw_fde_unlikely_section_label);
2377 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2378 fde->dw_fde_hot_section_label);
2379 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2380 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2381 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2382 "FDE initial location");
2383 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2384 fde->dw_fde_hot_section_end_label,
2385 fde->dw_fde_hot_section_label,
2386 "FDE address range");
2387 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2388 "FDE initial location");
2389 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2390 fde->dw_fde_unlikely_section_end_label,
2391 fde->dw_fde_unlikely_section_label,
2392 "FDE address range");
2394 else
2395 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2396 fde->dw_fde_end, fde->dw_fde_begin,
2397 "FDE address range");
2399 else
2401 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2402 "FDE initial location");
2403 if (fde->dw_fde_switched_sections)
2405 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2406 fde->dw_fde_hot_section_label,
2407 "FDE initial location");
2408 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2409 fde->dw_fde_hot_section_end_label,
2410 fde->dw_fde_hot_section_label,
2411 "FDE address range");
2412 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2413 fde->dw_fde_unlikely_section_label,
2414 "FDE initial location");
2415 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2416 fde->dw_fde_unlikely_section_end_label,
2417 fde->dw_fde_unlikely_section_label,
2418 "FDE address range");
2420 else
2421 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2422 fde->dw_fde_end, fde->dw_fde_begin,
2423 "FDE address range");
2426 if (augmentation[0])
2428 if (any_lsda_needed)
2430 int size = size_of_encoded_value (lsda_encoding);
2432 if (lsda_encoding == DW_EH_PE_aligned)
2434 int offset = ( 4 /* Length */
2435 + 4 /* CIE offset */
2436 + 2 * size_of_encoded_value (fde_encoding)
2437 + 1 /* Augmentation size */ );
2438 int pad = -offset & (PTR_SIZE - 1);
2440 size += pad;
2441 gcc_assert (size_of_uleb128 (size) == 1);
2444 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2446 if (fde->uses_eh_lsda)
2448 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2449 fde->funcdef_number);
2450 dw2_asm_output_encoded_addr_rtx (
2451 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2452 false, "Language Specific Data Area");
2454 else
2456 if (lsda_encoding == DW_EH_PE_aligned)
2457 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2458 dw2_asm_output_data
2459 (size_of_encoded_value (lsda_encoding), 0,
2460 "Language Specific Data Area (none)");
2463 else
2464 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2467 /* Loop through the Call Frame Instructions associated with
2468 this FDE. */
2469 fde->dw_fde_current_label = fde->dw_fde_begin;
2470 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2471 output_cfi (cfi, fde, for_eh);
2473 /* Pad the FDE out to an address sized boundary. */
2474 ASM_OUTPUT_ALIGN (asm_out_file,
2475 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2476 ASM_OUTPUT_LABEL (asm_out_file, l2);
2479 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2480 dw2_asm_output_data (4, 0, "End of Table");
2481 #ifdef MIPS_DEBUGGING_INFO
2482 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2483 get a value of 0. Putting .align 0 after the label fixes it. */
2484 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2485 #endif
2487 /* Turn off app to make assembly quicker. */
2488 if (flag_debug_asm)
2489 app_disable ();
2492 /* Output a marker (i.e. a label) for the beginning of a function, before
2493 the prologue. */
2495 void
2496 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2497 const char *file ATTRIBUTE_UNUSED)
2499 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2500 char * dup_label;
2501 dw_fde_ref fde;
2503 current_function_func_begin_label = NULL;
2505 #ifdef TARGET_UNWIND_INFO
2506 /* ??? current_function_func_begin_label is also used by except.c
2507 for call-site information. We must emit this label if it might
2508 be used. */
2509 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2510 && ! dwarf2out_do_frame ())
2511 return;
2512 #else
2513 if (! dwarf2out_do_frame ())
2514 return;
2515 #endif
2517 switch_to_section (function_section (current_function_decl));
2518 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2519 current_function_funcdef_no);
2520 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2521 current_function_funcdef_no);
2522 dup_label = xstrdup (label);
2523 current_function_func_begin_label = dup_label;
2525 #ifdef TARGET_UNWIND_INFO
2526 /* We can elide the fde allocation if we're not emitting debug info. */
2527 if (! dwarf2out_do_frame ())
2528 return;
2529 #endif
2531 /* Expand the fde table if necessary. */
2532 if (fde_table_in_use == fde_table_allocated)
2534 fde_table_allocated += FDE_TABLE_INCREMENT;
2535 fde_table = ggc_realloc (fde_table,
2536 fde_table_allocated * sizeof (dw_fde_node));
2537 memset (fde_table + fde_table_in_use, 0,
2538 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2541 /* Record the FDE associated with this function. */
2542 current_funcdef_fde = fde_table_in_use;
2544 /* Add the new FDE at the end of the fde_table. */
2545 fde = &fde_table[fde_table_in_use++];
2546 fde->decl = current_function_decl;
2547 fde->dw_fde_begin = dup_label;
2548 fde->dw_fde_current_label = NULL;
2549 fde->dw_fde_hot_section_label = NULL;
2550 fde->dw_fde_hot_section_end_label = NULL;
2551 fde->dw_fde_unlikely_section_label = NULL;
2552 fde->dw_fde_unlikely_section_end_label = NULL;
2553 fde->dw_fde_switched_sections = false;
2554 fde->dw_fde_end = NULL;
2555 fde->dw_fde_cfi = NULL;
2556 fde->funcdef_number = current_function_funcdef_no;
2557 fde->nothrow = TREE_NOTHROW (current_function_decl);
2558 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2559 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2561 args_size = old_args_size = 0;
2563 /* We only want to output line number information for the genuine dwarf2
2564 prologue case, not the eh frame case. */
2565 #ifdef DWARF2_DEBUGGING_INFO
2566 if (file)
2567 dwarf2out_source_line (line, file);
2568 #endif
2571 /* Output a marker (i.e. a label) for the absolute end of the generated code
2572 for a function definition. This gets called *after* the epilogue code has
2573 been generated. */
2575 void
2576 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2577 const char *file ATTRIBUTE_UNUSED)
2579 dw_fde_ref fde;
2580 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2582 /* Output a label to mark the endpoint of the code generated for this
2583 function. */
2584 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2585 current_function_funcdef_no);
2586 ASM_OUTPUT_LABEL (asm_out_file, label);
2587 fde = &fde_table[fde_table_in_use - 1];
2588 fde->dw_fde_end = xstrdup (label);
2591 void
2592 dwarf2out_frame_init (void)
2594 /* Allocate the initial hunk of the fde_table. */
2595 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2596 fde_table_allocated = FDE_TABLE_INCREMENT;
2597 fde_table_in_use = 0;
2599 /* Generate the CFA instructions common to all FDE's. Do it now for the
2600 sake of lookup_cfa. */
2602 /* On entry, the Canonical Frame Address is at SP. */
2603 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2605 #ifdef DWARF2_UNWIND_INFO
2606 if (DWARF2_UNWIND_INFO)
2607 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2608 #endif
2611 void
2612 dwarf2out_frame_finish (void)
2614 /* Output call frame information. */
2615 if (DWARF2_FRAME_INFO)
2616 output_call_frame_info (0);
2618 #ifndef TARGET_UNWIND_INFO
2619 /* Output another copy for the unwinder. */
2620 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2621 output_call_frame_info (1);
2622 #endif
2624 #endif
2626 /* And now, the subset of the debugging information support code necessary
2627 for emitting location expressions. */
2629 /* We need some way to distinguish DW_OP_addr with a direct symbol
2630 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2631 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2634 typedef struct dw_val_struct *dw_val_ref;
2635 typedef struct die_struct *dw_die_ref;
2636 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2637 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2639 /* Each DIE may have a series of attribute/value pairs. Values
2640 can take on several forms. The forms that are used in this
2641 implementation are listed below. */
2643 enum dw_val_class
2645 dw_val_class_addr,
2646 dw_val_class_offset,
2647 dw_val_class_loc,
2648 dw_val_class_loc_list,
2649 dw_val_class_range_list,
2650 dw_val_class_const,
2651 dw_val_class_unsigned_const,
2652 dw_val_class_long_long,
2653 dw_val_class_vec,
2654 dw_val_class_flag,
2655 dw_val_class_die_ref,
2656 dw_val_class_fde_ref,
2657 dw_val_class_lbl_id,
2658 dw_val_class_lbl_offset,
2659 dw_val_class_str
2662 /* Describe a double word constant value. */
2663 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2665 typedef struct dw_long_long_struct GTY(())
2667 unsigned long hi;
2668 unsigned long low;
2670 dw_long_long_const;
2672 /* Describe a floating point constant value, or a vector constant value. */
2674 typedef struct dw_vec_struct GTY(())
2676 unsigned char * GTY((length ("%h.length"))) array;
2677 unsigned length;
2678 unsigned elt_size;
2680 dw_vec_const;
2682 /* The dw_val_node describes an attribute's value, as it is
2683 represented internally. */
2685 typedef struct dw_val_struct GTY(())
2687 enum dw_val_class val_class;
2688 union dw_val_struct_union
2690 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2691 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2692 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2693 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2694 HOST_WIDE_INT GTY ((default)) val_int;
2695 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2696 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2697 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2698 struct dw_val_die_union
2700 dw_die_ref die;
2701 int external;
2702 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2703 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2704 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2705 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2706 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2708 GTY ((desc ("%1.val_class"))) v;
2710 dw_val_node;
2712 /* Locations in memory are described using a sequence of stack machine
2713 operations. */
2715 typedef struct dw_loc_descr_struct GTY(())
2717 dw_loc_descr_ref dw_loc_next;
2718 enum dwarf_location_atom dw_loc_opc;
2719 dw_val_node dw_loc_oprnd1;
2720 dw_val_node dw_loc_oprnd2;
2721 int dw_loc_addr;
2723 dw_loc_descr_node;
2725 /* Location lists are ranges + location descriptions for that range,
2726 so you can track variables that are in different places over
2727 their entire life. */
2728 typedef struct dw_loc_list_struct GTY(())
2730 dw_loc_list_ref dw_loc_next;
2731 const char *begin; /* Label for begin address of range */
2732 const char *end; /* Label for end address of range */
2733 char *ll_symbol; /* Label for beginning of location list.
2734 Only on head of list */
2735 const char *section; /* Section this loclist is relative to */
2736 dw_loc_descr_ref expr;
2737 } dw_loc_list_node;
2739 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2741 static const char *dwarf_stack_op_name (unsigned);
2742 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2743 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2744 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2745 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2746 static unsigned long size_of_locs (dw_loc_descr_ref);
2747 static void output_loc_operands (dw_loc_descr_ref);
2748 static void output_loc_sequence (dw_loc_descr_ref);
2750 /* Convert a DWARF stack opcode into its string name. */
2752 static const char *
2753 dwarf_stack_op_name (unsigned int op)
2755 switch (op)
2757 case DW_OP_addr:
2758 case INTERNAL_DW_OP_tls_addr:
2759 return "DW_OP_addr";
2760 case DW_OP_deref:
2761 return "DW_OP_deref";
2762 case DW_OP_const1u:
2763 return "DW_OP_const1u";
2764 case DW_OP_const1s:
2765 return "DW_OP_const1s";
2766 case DW_OP_const2u:
2767 return "DW_OP_const2u";
2768 case DW_OP_const2s:
2769 return "DW_OP_const2s";
2770 case DW_OP_const4u:
2771 return "DW_OP_const4u";
2772 case DW_OP_const4s:
2773 return "DW_OP_const4s";
2774 case DW_OP_const8u:
2775 return "DW_OP_const8u";
2776 case DW_OP_const8s:
2777 return "DW_OP_const8s";
2778 case DW_OP_constu:
2779 return "DW_OP_constu";
2780 case DW_OP_consts:
2781 return "DW_OP_consts";
2782 case DW_OP_dup:
2783 return "DW_OP_dup";
2784 case DW_OP_drop:
2785 return "DW_OP_drop";
2786 case DW_OP_over:
2787 return "DW_OP_over";
2788 case DW_OP_pick:
2789 return "DW_OP_pick";
2790 case DW_OP_swap:
2791 return "DW_OP_swap";
2792 case DW_OP_rot:
2793 return "DW_OP_rot";
2794 case DW_OP_xderef:
2795 return "DW_OP_xderef";
2796 case DW_OP_abs:
2797 return "DW_OP_abs";
2798 case DW_OP_and:
2799 return "DW_OP_and";
2800 case DW_OP_div:
2801 return "DW_OP_div";
2802 case DW_OP_minus:
2803 return "DW_OP_minus";
2804 case DW_OP_mod:
2805 return "DW_OP_mod";
2806 case DW_OP_mul:
2807 return "DW_OP_mul";
2808 case DW_OP_neg:
2809 return "DW_OP_neg";
2810 case DW_OP_not:
2811 return "DW_OP_not";
2812 case DW_OP_or:
2813 return "DW_OP_or";
2814 case DW_OP_plus:
2815 return "DW_OP_plus";
2816 case DW_OP_plus_uconst:
2817 return "DW_OP_plus_uconst";
2818 case DW_OP_shl:
2819 return "DW_OP_shl";
2820 case DW_OP_shr:
2821 return "DW_OP_shr";
2822 case DW_OP_shra:
2823 return "DW_OP_shra";
2824 case DW_OP_xor:
2825 return "DW_OP_xor";
2826 case DW_OP_bra:
2827 return "DW_OP_bra";
2828 case DW_OP_eq:
2829 return "DW_OP_eq";
2830 case DW_OP_ge:
2831 return "DW_OP_ge";
2832 case DW_OP_gt:
2833 return "DW_OP_gt";
2834 case DW_OP_le:
2835 return "DW_OP_le";
2836 case DW_OP_lt:
2837 return "DW_OP_lt";
2838 case DW_OP_ne:
2839 return "DW_OP_ne";
2840 case DW_OP_skip:
2841 return "DW_OP_skip";
2842 case DW_OP_lit0:
2843 return "DW_OP_lit0";
2844 case DW_OP_lit1:
2845 return "DW_OP_lit1";
2846 case DW_OP_lit2:
2847 return "DW_OP_lit2";
2848 case DW_OP_lit3:
2849 return "DW_OP_lit3";
2850 case DW_OP_lit4:
2851 return "DW_OP_lit4";
2852 case DW_OP_lit5:
2853 return "DW_OP_lit5";
2854 case DW_OP_lit6:
2855 return "DW_OP_lit6";
2856 case DW_OP_lit7:
2857 return "DW_OP_lit7";
2858 case DW_OP_lit8:
2859 return "DW_OP_lit8";
2860 case DW_OP_lit9:
2861 return "DW_OP_lit9";
2862 case DW_OP_lit10:
2863 return "DW_OP_lit10";
2864 case DW_OP_lit11:
2865 return "DW_OP_lit11";
2866 case DW_OP_lit12:
2867 return "DW_OP_lit12";
2868 case DW_OP_lit13:
2869 return "DW_OP_lit13";
2870 case DW_OP_lit14:
2871 return "DW_OP_lit14";
2872 case DW_OP_lit15:
2873 return "DW_OP_lit15";
2874 case DW_OP_lit16:
2875 return "DW_OP_lit16";
2876 case DW_OP_lit17:
2877 return "DW_OP_lit17";
2878 case DW_OP_lit18:
2879 return "DW_OP_lit18";
2880 case DW_OP_lit19:
2881 return "DW_OP_lit19";
2882 case DW_OP_lit20:
2883 return "DW_OP_lit20";
2884 case DW_OP_lit21:
2885 return "DW_OP_lit21";
2886 case DW_OP_lit22:
2887 return "DW_OP_lit22";
2888 case DW_OP_lit23:
2889 return "DW_OP_lit23";
2890 case DW_OP_lit24:
2891 return "DW_OP_lit24";
2892 case DW_OP_lit25:
2893 return "DW_OP_lit25";
2894 case DW_OP_lit26:
2895 return "DW_OP_lit26";
2896 case DW_OP_lit27:
2897 return "DW_OP_lit27";
2898 case DW_OP_lit28:
2899 return "DW_OP_lit28";
2900 case DW_OP_lit29:
2901 return "DW_OP_lit29";
2902 case DW_OP_lit30:
2903 return "DW_OP_lit30";
2904 case DW_OP_lit31:
2905 return "DW_OP_lit31";
2906 case DW_OP_reg0:
2907 return "DW_OP_reg0";
2908 case DW_OP_reg1:
2909 return "DW_OP_reg1";
2910 case DW_OP_reg2:
2911 return "DW_OP_reg2";
2912 case DW_OP_reg3:
2913 return "DW_OP_reg3";
2914 case DW_OP_reg4:
2915 return "DW_OP_reg4";
2916 case DW_OP_reg5:
2917 return "DW_OP_reg5";
2918 case DW_OP_reg6:
2919 return "DW_OP_reg6";
2920 case DW_OP_reg7:
2921 return "DW_OP_reg7";
2922 case DW_OP_reg8:
2923 return "DW_OP_reg8";
2924 case DW_OP_reg9:
2925 return "DW_OP_reg9";
2926 case DW_OP_reg10:
2927 return "DW_OP_reg10";
2928 case DW_OP_reg11:
2929 return "DW_OP_reg11";
2930 case DW_OP_reg12:
2931 return "DW_OP_reg12";
2932 case DW_OP_reg13:
2933 return "DW_OP_reg13";
2934 case DW_OP_reg14:
2935 return "DW_OP_reg14";
2936 case DW_OP_reg15:
2937 return "DW_OP_reg15";
2938 case DW_OP_reg16:
2939 return "DW_OP_reg16";
2940 case DW_OP_reg17:
2941 return "DW_OP_reg17";
2942 case DW_OP_reg18:
2943 return "DW_OP_reg18";
2944 case DW_OP_reg19:
2945 return "DW_OP_reg19";
2946 case DW_OP_reg20:
2947 return "DW_OP_reg20";
2948 case DW_OP_reg21:
2949 return "DW_OP_reg21";
2950 case DW_OP_reg22:
2951 return "DW_OP_reg22";
2952 case DW_OP_reg23:
2953 return "DW_OP_reg23";
2954 case DW_OP_reg24:
2955 return "DW_OP_reg24";
2956 case DW_OP_reg25:
2957 return "DW_OP_reg25";
2958 case DW_OP_reg26:
2959 return "DW_OP_reg26";
2960 case DW_OP_reg27:
2961 return "DW_OP_reg27";
2962 case DW_OP_reg28:
2963 return "DW_OP_reg28";
2964 case DW_OP_reg29:
2965 return "DW_OP_reg29";
2966 case DW_OP_reg30:
2967 return "DW_OP_reg30";
2968 case DW_OP_reg31:
2969 return "DW_OP_reg31";
2970 case DW_OP_breg0:
2971 return "DW_OP_breg0";
2972 case DW_OP_breg1:
2973 return "DW_OP_breg1";
2974 case DW_OP_breg2:
2975 return "DW_OP_breg2";
2976 case DW_OP_breg3:
2977 return "DW_OP_breg3";
2978 case DW_OP_breg4:
2979 return "DW_OP_breg4";
2980 case DW_OP_breg5:
2981 return "DW_OP_breg5";
2982 case DW_OP_breg6:
2983 return "DW_OP_breg6";
2984 case DW_OP_breg7:
2985 return "DW_OP_breg7";
2986 case DW_OP_breg8:
2987 return "DW_OP_breg8";
2988 case DW_OP_breg9:
2989 return "DW_OP_breg9";
2990 case DW_OP_breg10:
2991 return "DW_OP_breg10";
2992 case DW_OP_breg11:
2993 return "DW_OP_breg11";
2994 case DW_OP_breg12:
2995 return "DW_OP_breg12";
2996 case DW_OP_breg13:
2997 return "DW_OP_breg13";
2998 case DW_OP_breg14:
2999 return "DW_OP_breg14";
3000 case DW_OP_breg15:
3001 return "DW_OP_breg15";
3002 case DW_OP_breg16:
3003 return "DW_OP_breg16";
3004 case DW_OP_breg17:
3005 return "DW_OP_breg17";
3006 case DW_OP_breg18:
3007 return "DW_OP_breg18";
3008 case DW_OP_breg19:
3009 return "DW_OP_breg19";
3010 case DW_OP_breg20:
3011 return "DW_OP_breg20";
3012 case DW_OP_breg21:
3013 return "DW_OP_breg21";
3014 case DW_OP_breg22:
3015 return "DW_OP_breg22";
3016 case DW_OP_breg23:
3017 return "DW_OP_breg23";
3018 case DW_OP_breg24:
3019 return "DW_OP_breg24";
3020 case DW_OP_breg25:
3021 return "DW_OP_breg25";
3022 case DW_OP_breg26:
3023 return "DW_OP_breg26";
3024 case DW_OP_breg27:
3025 return "DW_OP_breg27";
3026 case DW_OP_breg28:
3027 return "DW_OP_breg28";
3028 case DW_OP_breg29:
3029 return "DW_OP_breg29";
3030 case DW_OP_breg30:
3031 return "DW_OP_breg30";
3032 case DW_OP_breg31:
3033 return "DW_OP_breg31";
3034 case DW_OP_regx:
3035 return "DW_OP_regx";
3036 case DW_OP_fbreg:
3037 return "DW_OP_fbreg";
3038 case DW_OP_bregx:
3039 return "DW_OP_bregx";
3040 case DW_OP_piece:
3041 return "DW_OP_piece";
3042 case DW_OP_deref_size:
3043 return "DW_OP_deref_size";
3044 case DW_OP_xderef_size:
3045 return "DW_OP_xderef_size";
3046 case DW_OP_nop:
3047 return "DW_OP_nop";
3048 case DW_OP_push_object_address:
3049 return "DW_OP_push_object_address";
3050 case DW_OP_call2:
3051 return "DW_OP_call2";
3052 case DW_OP_call4:
3053 return "DW_OP_call4";
3054 case DW_OP_call_ref:
3055 return "DW_OP_call_ref";
3056 case DW_OP_GNU_push_tls_address:
3057 return "DW_OP_GNU_push_tls_address";
3058 default:
3059 return "OP_<unknown>";
3063 /* Return a pointer to a newly allocated location description. Location
3064 descriptions are simple expression terms that can be strung
3065 together to form more complicated location (address) descriptions. */
3067 static inline dw_loc_descr_ref
3068 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3069 unsigned HOST_WIDE_INT oprnd2)
3071 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3073 descr->dw_loc_opc = op;
3074 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3075 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3076 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3077 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3079 return descr;
3082 /* Add a location description term to a location description expression. */
3084 static inline void
3085 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3087 dw_loc_descr_ref *d;
3089 /* Find the end of the chain. */
3090 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3093 *d = descr;
3096 /* Return the size of a location descriptor. */
3098 static unsigned long
3099 size_of_loc_descr (dw_loc_descr_ref loc)
3101 unsigned long size = 1;
3103 switch (loc->dw_loc_opc)
3105 case DW_OP_addr:
3106 case INTERNAL_DW_OP_tls_addr:
3107 size += DWARF2_ADDR_SIZE;
3108 break;
3109 case DW_OP_const1u:
3110 case DW_OP_const1s:
3111 size += 1;
3112 break;
3113 case DW_OP_const2u:
3114 case DW_OP_const2s:
3115 size += 2;
3116 break;
3117 case DW_OP_const4u:
3118 case DW_OP_const4s:
3119 size += 4;
3120 break;
3121 case DW_OP_const8u:
3122 case DW_OP_const8s:
3123 size += 8;
3124 break;
3125 case DW_OP_constu:
3126 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3127 break;
3128 case DW_OP_consts:
3129 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3130 break;
3131 case DW_OP_pick:
3132 size += 1;
3133 break;
3134 case DW_OP_plus_uconst:
3135 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3136 break;
3137 case DW_OP_skip:
3138 case DW_OP_bra:
3139 size += 2;
3140 break;
3141 case DW_OP_breg0:
3142 case DW_OP_breg1:
3143 case DW_OP_breg2:
3144 case DW_OP_breg3:
3145 case DW_OP_breg4:
3146 case DW_OP_breg5:
3147 case DW_OP_breg6:
3148 case DW_OP_breg7:
3149 case DW_OP_breg8:
3150 case DW_OP_breg9:
3151 case DW_OP_breg10:
3152 case DW_OP_breg11:
3153 case DW_OP_breg12:
3154 case DW_OP_breg13:
3155 case DW_OP_breg14:
3156 case DW_OP_breg15:
3157 case DW_OP_breg16:
3158 case DW_OP_breg17:
3159 case DW_OP_breg18:
3160 case DW_OP_breg19:
3161 case DW_OP_breg20:
3162 case DW_OP_breg21:
3163 case DW_OP_breg22:
3164 case DW_OP_breg23:
3165 case DW_OP_breg24:
3166 case DW_OP_breg25:
3167 case DW_OP_breg26:
3168 case DW_OP_breg27:
3169 case DW_OP_breg28:
3170 case DW_OP_breg29:
3171 case DW_OP_breg30:
3172 case DW_OP_breg31:
3173 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3174 break;
3175 case DW_OP_regx:
3176 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3177 break;
3178 case DW_OP_fbreg:
3179 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3180 break;
3181 case DW_OP_bregx:
3182 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3183 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3184 break;
3185 case DW_OP_piece:
3186 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3187 break;
3188 case DW_OP_deref_size:
3189 case DW_OP_xderef_size:
3190 size += 1;
3191 break;
3192 case DW_OP_call2:
3193 size += 2;
3194 break;
3195 case DW_OP_call4:
3196 size += 4;
3197 break;
3198 case DW_OP_call_ref:
3199 size += DWARF2_ADDR_SIZE;
3200 break;
3201 default:
3202 break;
3205 return size;
3208 /* Return the size of a series of location descriptors. */
3210 static unsigned long
3211 size_of_locs (dw_loc_descr_ref loc)
3213 unsigned long size;
3215 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3217 loc->dw_loc_addr = size;
3218 size += size_of_loc_descr (loc);
3221 return size;
3224 /* Output location description stack opcode's operands (if any). */
3226 static void
3227 output_loc_operands (dw_loc_descr_ref loc)
3229 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3230 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3232 switch (loc->dw_loc_opc)
3234 #ifdef DWARF2_DEBUGGING_INFO
3235 case DW_OP_addr:
3236 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3237 break;
3238 case DW_OP_const2u:
3239 case DW_OP_const2s:
3240 dw2_asm_output_data (2, val1->v.val_int, NULL);
3241 break;
3242 case DW_OP_const4u:
3243 case DW_OP_const4s:
3244 dw2_asm_output_data (4, val1->v.val_int, NULL);
3245 break;
3246 case DW_OP_const8u:
3247 case DW_OP_const8s:
3248 gcc_assert (HOST_BITS_PER_LONG >= 64);
3249 dw2_asm_output_data (8, val1->v.val_int, NULL);
3250 break;
3251 case DW_OP_skip:
3252 case DW_OP_bra:
3254 int offset;
3256 gcc_assert (val1->val_class == dw_val_class_loc);
3257 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3259 dw2_asm_output_data (2, offset, NULL);
3261 break;
3262 #else
3263 case DW_OP_addr:
3264 case DW_OP_const2u:
3265 case DW_OP_const2s:
3266 case DW_OP_const4u:
3267 case DW_OP_const4s:
3268 case DW_OP_const8u:
3269 case DW_OP_const8s:
3270 case DW_OP_skip:
3271 case DW_OP_bra:
3272 /* We currently don't make any attempt to make sure these are
3273 aligned properly like we do for the main unwind info, so
3274 don't support emitting things larger than a byte if we're
3275 only doing unwinding. */
3276 gcc_unreachable ();
3277 #endif
3278 case DW_OP_const1u:
3279 case DW_OP_const1s:
3280 dw2_asm_output_data (1, val1->v.val_int, NULL);
3281 break;
3282 case DW_OP_constu:
3283 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3284 break;
3285 case DW_OP_consts:
3286 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3287 break;
3288 case DW_OP_pick:
3289 dw2_asm_output_data (1, val1->v.val_int, NULL);
3290 break;
3291 case DW_OP_plus_uconst:
3292 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3293 break;
3294 case DW_OP_breg0:
3295 case DW_OP_breg1:
3296 case DW_OP_breg2:
3297 case DW_OP_breg3:
3298 case DW_OP_breg4:
3299 case DW_OP_breg5:
3300 case DW_OP_breg6:
3301 case DW_OP_breg7:
3302 case DW_OP_breg8:
3303 case DW_OP_breg9:
3304 case DW_OP_breg10:
3305 case DW_OP_breg11:
3306 case DW_OP_breg12:
3307 case DW_OP_breg13:
3308 case DW_OP_breg14:
3309 case DW_OP_breg15:
3310 case DW_OP_breg16:
3311 case DW_OP_breg17:
3312 case DW_OP_breg18:
3313 case DW_OP_breg19:
3314 case DW_OP_breg20:
3315 case DW_OP_breg21:
3316 case DW_OP_breg22:
3317 case DW_OP_breg23:
3318 case DW_OP_breg24:
3319 case DW_OP_breg25:
3320 case DW_OP_breg26:
3321 case DW_OP_breg27:
3322 case DW_OP_breg28:
3323 case DW_OP_breg29:
3324 case DW_OP_breg30:
3325 case DW_OP_breg31:
3326 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3327 break;
3328 case DW_OP_regx:
3329 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3330 break;
3331 case DW_OP_fbreg:
3332 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3333 break;
3334 case DW_OP_bregx:
3335 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3336 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3337 break;
3338 case DW_OP_piece:
3339 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3340 break;
3341 case DW_OP_deref_size:
3342 case DW_OP_xderef_size:
3343 dw2_asm_output_data (1, val1->v.val_int, NULL);
3344 break;
3346 case INTERNAL_DW_OP_tls_addr:
3347 if (targetm.asm_out.output_dwarf_dtprel)
3349 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3350 DWARF2_ADDR_SIZE,
3351 val1->v.val_addr);
3352 fputc ('\n', asm_out_file);
3354 else
3355 gcc_unreachable ();
3356 break;
3358 default:
3359 /* Other codes have no operands. */
3360 break;
3364 /* Output a sequence of location operations. */
3366 static void
3367 output_loc_sequence (dw_loc_descr_ref loc)
3369 for (; loc != NULL; loc = loc->dw_loc_next)
3371 /* Output the opcode. */
3372 dw2_asm_output_data (1, loc->dw_loc_opc,
3373 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3375 /* Output the operand(s) (if any). */
3376 output_loc_operands (loc);
3380 /* This routine will generate the correct assembly data for a location
3381 description based on a cfi entry with a complex address. */
3383 static void
3384 output_cfa_loc (dw_cfi_ref cfi)
3386 dw_loc_descr_ref loc;
3387 unsigned long size;
3389 /* Output the size of the block. */
3390 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3391 size = size_of_locs (loc);
3392 dw2_asm_output_data_uleb128 (size, NULL);
3394 /* Now output the operations themselves. */
3395 output_loc_sequence (loc);
3398 /* This function builds a dwarf location descriptor sequence from a
3399 dw_cfa_location, adding the given OFFSET to the result of the
3400 expression. */
3402 static struct dw_loc_descr_struct *
3403 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3405 struct dw_loc_descr_struct *head, *tmp;
3407 offset += cfa->offset;
3409 if (cfa->indirect)
3411 if (cfa->base_offset)
3413 if (cfa->reg <= 31)
3414 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3415 else
3416 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3418 else if (cfa->reg <= 31)
3419 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3420 else
3421 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3423 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3424 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3425 add_loc_descr (&head, tmp);
3426 if (offset != 0)
3428 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3429 add_loc_descr (&head, tmp);
3432 else
3434 if (offset == 0)
3435 if (cfa->reg <= 31)
3436 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3437 else
3438 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3439 else if (cfa->reg <= 31)
3440 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3441 else
3442 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3445 return head;
3448 /* This function fills in aa dw_cfa_location structure from a dwarf location
3449 descriptor sequence. */
3451 static void
3452 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3454 struct dw_loc_descr_struct *ptr;
3455 cfa->offset = 0;
3456 cfa->base_offset = 0;
3457 cfa->indirect = 0;
3458 cfa->reg = -1;
3460 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3462 enum dwarf_location_atom op = ptr->dw_loc_opc;
3464 switch (op)
3466 case DW_OP_reg0:
3467 case DW_OP_reg1:
3468 case DW_OP_reg2:
3469 case DW_OP_reg3:
3470 case DW_OP_reg4:
3471 case DW_OP_reg5:
3472 case DW_OP_reg6:
3473 case DW_OP_reg7:
3474 case DW_OP_reg8:
3475 case DW_OP_reg9:
3476 case DW_OP_reg10:
3477 case DW_OP_reg11:
3478 case DW_OP_reg12:
3479 case DW_OP_reg13:
3480 case DW_OP_reg14:
3481 case DW_OP_reg15:
3482 case DW_OP_reg16:
3483 case DW_OP_reg17:
3484 case DW_OP_reg18:
3485 case DW_OP_reg19:
3486 case DW_OP_reg20:
3487 case DW_OP_reg21:
3488 case DW_OP_reg22:
3489 case DW_OP_reg23:
3490 case DW_OP_reg24:
3491 case DW_OP_reg25:
3492 case DW_OP_reg26:
3493 case DW_OP_reg27:
3494 case DW_OP_reg28:
3495 case DW_OP_reg29:
3496 case DW_OP_reg30:
3497 case DW_OP_reg31:
3498 cfa->reg = op - DW_OP_reg0;
3499 break;
3500 case DW_OP_regx:
3501 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3502 break;
3503 case DW_OP_breg0:
3504 case DW_OP_breg1:
3505 case DW_OP_breg2:
3506 case DW_OP_breg3:
3507 case DW_OP_breg4:
3508 case DW_OP_breg5:
3509 case DW_OP_breg6:
3510 case DW_OP_breg7:
3511 case DW_OP_breg8:
3512 case DW_OP_breg9:
3513 case DW_OP_breg10:
3514 case DW_OP_breg11:
3515 case DW_OP_breg12:
3516 case DW_OP_breg13:
3517 case DW_OP_breg14:
3518 case DW_OP_breg15:
3519 case DW_OP_breg16:
3520 case DW_OP_breg17:
3521 case DW_OP_breg18:
3522 case DW_OP_breg19:
3523 case DW_OP_breg20:
3524 case DW_OP_breg21:
3525 case DW_OP_breg22:
3526 case DW_OP_breg23:
3527 case DW_OP_breg24:
3528 case DW_OP_breg25:
3529 case DW_OP_breg26:
3530 case DW_OP_breg27:
3531 case DW_OP_breg28:
3532 case DW_OP_breg29:
3533 case DW_OP_breg30:
3534 case DW_OP_breg31:
3535 cfa->reg = op - DW_OP_breg0;
3536 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3537 break;
3538 case DW_OP_bregx:
3539 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3540 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3541 break;
3542 case DW_OP_deref:
3543 cfa->indirect = 1;
3544 break;
3545 case DW_OP_plus_uconst:
3546 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3547 break;
3548 default:
3549 internal_error ("DW_LOC_OP %s not implemented",
3550 dwarf_stack_op_name (ptr->dw_loc_opc));
3554 #endif /* .debug_frame support */
3556 /* And now, the support for symbolic debugging information. */
3557 #ifdef DWARF2_DEBUGGING_INFO
3559 /* .debug_str support. */
3560 static int output_indirect_string (void **, void *);
3562 static void dwarf2out_init (const char *);
3563 static void dwarf2out_finish (const char *);
3564 static void dwarf2out_define (unsigned int, const char *);
3565 static void dwarf2out_undef (unsigned int, const char *);
3566 static void dwarf2out_start_source_file (unsigned, const char *);
3567 static void dwarf2out_end_source_file (unsigned);
3568 static void dwarf2out_begin_block (unsigned, unsigned);
3569 static void dwarf2out_end_block (unsigned, unsigned);
3570 static bool dwarf2out_ignore_block (tree);
3571 static void dwarf2out_global_decl (tree);
3572 static void dwarf2out_type_decl (tree, int);
3573 static void dwarf2out_imported_module_or_decl (tree, tree);
3574 static void dwarf2out_abstract_function (tree);
3575 static void dwarf2out_var_location (rtx);
3576 static void dwarf2out_begin_function (tree);
3577 static void dwarf2out_switch_text_section (void);
3579 /* The debug hooks structure. */
3581 const struct gcc_debug_hooks dwarf2_debug_hooks =
3583 dwarf2out_init,
3584 dwarf2out_finish,
3585 dwarf2out_define,
3586 dwarf2out_undef,
3587 dwarf2out_start_source_file,
3588 dwarf2out_end_source_file,
3589 dwarf2out_begin_block,
3590 dwarf2out_end_block,
3591 dwarf2out_ignore_block,
3592 dwarf2out_source_line,
3593 dwarf2out_begin_prologue,
3594 debug_nothing_int_charstar, /* end_prologue */
3595 dwarf2out_end_epilogue,
3596 dwarf2out_begin_function,
3597 debug_nothing_int, /* end_function */
3598 dwarf2out_decl, /* function_decl */
3599 dwarf2out_global_decl,
3600 dwarf2out_type_decl, /* type_decl */
3601 dwarf2out_imported_module_or_decl,
3602 debug_nothing_tree, /* deferred_inline_function */
3603 /* The DWARF 2 backend tries to reduce debugging bloat by not
3604 emitting the abstract description of inline functions until
3605 something tries to reference them. */
3606 dwarf2out_abstract_function, /* outlining_inline_function */
3607 debug_nothing_rtx, /* label */
3608 debug_nothing_int, /* handle_pch */
3609 dwarf2out_var_location,
3610 dwarf2out_switch_text_section,
3611 1 /* start_end_main_source_file */
3613 #endif
3615 /* NOTE: In the comments in this file, many references are made to
3616 "Debugging Information Entries". This term is abbreviated as `DIE'
3617 throughout the remainder of this file. */
3619 /* An internal representation of the DWARF output is built, and then
3620 walked to generate the DWARF debugging info. The walk of the internal
3621 representation is done after the entire program has been compiled.
3622 The types below are used to describe the internal representation. */
3624 /* Various DIE's use offsets relative to the beginning of the
3625 .debug_info section to refer to each other. */
3627 typedef long int dw_offset;
3629 /* Define typedefs here to avoid circular dependencies. */
3631 typedef struct dw_attr_struct *dw_attr_ref;
3632 typedef struct dw_line_info_struct *dw_line_info_ref;
3633 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3634 typedef struct pubname_struct *pubname_ref;
3635 typedef struct dw_ranges_struct *dw_ranges_ref;
3637 /* Each entry in the line_info_table maintains the file and
3638 line number associated with the label generated for that
3639 entry. The label gives the PC value associated with
3640 the line number entry. */
3642 typedef struct dw_line_info_struct GTY(())
3644 unsigned long dw_file_num;
3645 unsigned long dw_line_num;
3647 dw_line_info_entry;
3649 /* Line information for functions in separate sections; each one gets its
3650 own sequence. */
3651 typedef struct dw_separate_line_info_struct GTY(())
3653 unsigned long dw_file_num;
3654 unsigned long dw_line_num;
3655 unsigned long function;
3657 dw_separate_line_info_entry;
3659 /* Each DIE attribute has a field specifying the attribute kind,
3660 a link to the next attribute in the chain, and an attribute value.
3661 Attributes are typically linked below the DIE they modify. */
3663 typedef struct dw_attr_struct GTY(())
3665 enum dwarf_attribute dw_attr;
3666 dw_attr_ref dw_attr_next;
3667 dw_val_node dw_attr_val;
3669 dw_attr_node;
3671 /* The Debugging Information Entry (DIE) structure */
3673 typedef struct die_struct GTY(())
3675 enum dwarf_tag die_tag;
3676 char *die_symbol;
3677 dw_attr_ref die_attr;
3678 dw_die_ref die_parent;
3679 dw_die_ref die_child;
3680 dw_die_ref die_sib;
3681 dw_die_ref die_definition; /* ref from a specification to its definition */
3682 dw_offset die_offset;
3683 unsigned long die_abbrev;
3684 int die_mark;
3685 unsigned int decl_id;
3687 die_node;
3689 /* The pubname structure */
3691 typedef struct pubname_struct GTY(())
3693 dw_die_ref die;
3694 char *name;
3696 pubname_entry;
3698 struct dw_ranges_struct GTY(())
3700 int block_num;
3703 /* The limbo die list structure. */
3704 typedef struct limbo_die_struct GTY(())
3706 dw_die_ref die;
3707 tree created_for;
3708 struct limbo_die_struct *next;
3710 limbo_die_node;
3712 /* How to start an assembler comment. */
3713 #ifndef ASM_COMMENT_START
3714 #define ASM_COMMENT_START ";#"
3715 #endif
3717 /* Define a macro which returns nonzero for a TYPE_DECL which was
3718 implicitly generated for a tagged type.
3720 Note that unlike the gcc front end (which generates a NULL named
3721 TYPE_DECL node for each complete tagged type, each array type, and
3722 each function type node created) the g++ front end generates a
3723 _named_ TYPE_DECL node for each tagged type node created.
3724 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3725 generate a DW_TAG_typedef DIE for them. */
3727 #define TYPE_DECL_IS_STUB(decl) \
3728 (DECL_NAME (decl) == NULL_TREE \
3729 || (DECL_ARTIFICIAL (decl) \
3730 && is_tagged_type (TREE_TYPE (decl)) \
3731 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3732 /* This is necessary for stub decls that \
3733 appear in nested inline functions. */ \
3734 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3735 && (decl_ultimate_origin (decl) \
3736 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3738 /* Information concerning the compilation unit's programming
3739 language, and compiler version. */
3741 /* Fixed size portion of the DWARF compilation unit header. */
3742 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3743 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3745 /* Fixed size portion of public names info. */
3746 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3748 /* Fixed size portion of the address range info. */
3749 #define DWARF_ARANGES_HEADER_SIZE \
3750 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3751 DWARF2_ADDR_SIZE * 2) \
3752 - DWARF_INITIAL_LENGTH_SIZE)
3754 /* Size of padding portion in the address range info. It must be
3755 aligned to twice the pointer size. */
3756 #define DWARF_ARANGES_PAD_SIZE \
3757 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3758 DWARF2_ADDR_SIZE * 2) \
3759 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3761 /* Use assembler line directives if available. */
3762 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3763 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3764 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3765 #else
3766 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3767 #endif
3768 #endif
3770 /* Minimum line offset in a special line info. opcode.
3771 This value was chosen to give a reasonable range of values. */
3772 #define DWARF_LINE_BASE -10
3774 /* First special line opcode - leave room for the standard opcodes. */
3775 #define DWARF_LINE_OPCODE_BASE 10
3777 /* Range of line offsets in a special line info. opcode. */
3778 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3780 /* Flag that indicates the initial value of the is_stmt_start flag.
3781 In the present implementation, we do not mark any lines as
3782 the beginning of a source statement, because that information
3783 is not made available by the GCC front-end. */
3784 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3786 #ifdef DWARF2_DEBUGGING_INFO
3787 /* This location is used by calc_die_sizes() to keep track
3788 the offset of each DIE within the .debug_info section. */
3789 static unsigned long next_die_offset;
3790 #endif
3792 /* Record the root of the DIE's built for the current compilation unit. */
3793 static GTY(()) dw_die_ref comp_unit_die;
3795 /* A list of DIEs with a NULL parent waiting to be relocated. */
3796 static GTY(()) limbo_die_node *limbo_die_list;
3798 /* Filenames referenced by this compilation unit. */
3799 static GTY(()) varray_type file_table;
3800 static GTY(()) varray_type file_table_emitted;
3801 static GTY(()) size_t file_table_last_lookup_index;
3803 /* A hash table of references to DIE's that describe declarations.
3804 The key is a DECL_UID() which is a unique number identifying each decl. */
3805 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3807 /* Node of the variable location list. */
3808 struct var_loc_node GTY ((chain_next ("%h.next")))
3810 rtx GTY (()) var_loc_note;
3811 const char * GTY (()) label;
3812 const char * GTY (()) section_label;
3813 struct var_loc_node * GTY (()) next;
3816 /* Variable location list. */
3817 struct var_loc_list_def GTY (())
3819 struct var_loc_node * GTY (()) first;
3821 /* Do not mark the last element of the chained list because
3822 it is marked through the chain. */
3823 struct var_loc_node * GTY ((skip ("%h"))) last;
3825 /* DECL_UID of the variable decl. */
3826 unsigned int decl_id;
3828 typedef struct var_loc_list_def var_loc_list;
3831 /* Table of decl location linked lists. */
3832 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3834 /* A pointer to the base of a list of references to DIE's that
3835 are uniquely identified by their tag, presence/absence of
3836 children DIE's, and list of attribute/value pairs. */
3837 static GTY((length ("abbrev_die_table_allocated")))
3838 dw_die_ref *abbrev_die_table;
3840 /* Number of elements currently allocated for abbrev_die_table. */
3841 static GTY(()) unsigned abbrev_die_table_allocated;
3843 /* Number of elements in type_die_table currently in use. */
3844 static GTY(()) unsigned abbrev_die_table_in_use;
3846 /* Size (in elements) of increments by which we may expand the
3847 abbrev_die_table. */
3848 #define ABBREV_DIE_TABLE_INCREMENT 256
3850 /* A pointer to the base of a table that contains line information
3851 for each source code line in .text in the compilation unit. */
3852 static GTY((length ("line_info_table_allocated")))
3853 dw_line_info_ref line_info_table;
3855 /* Number of elements currently allocated for line_info_table. */
3856 static GTY(()) unsigned line_info_table_allocated;
3858 /* Number of elements in line_info_table currently in use. */
3859 static GTY(()) unsigned line_info_table_in_use;
3861 /* True if the compilation unit places functions in more than one section. */
3862 static GTY(()) bool have_multiple_function_sections = false;
3864 /* A pointer to the base of a table that contains line information
3865 for each source code line outside of .text in the compilation unit. */
3866 static GTY ((length ("separate_line_info_table_allocated")))
3867 dw_separate_line_info_ref separate_line_info_table;
3869 /* Number of elements currently allocated for separate_line_info_table. */
3870 static GTY(()) unsigned separate_line_info_table_allocated;
3872 /* Number of elements in separate_line_info_table currently in use. */
3873 static GTY(()) unsigned separate_line_info_table_in_use;
3875 /* Size (in elements) of increments by which we may expand the
3876 line_info_table. */
3877 #define LINE_INFO_TABLE_INCREMENT 1024
3879 /* A pointer to the base of a table that contains a list of publicly
3880 accessible names. */
3881 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3883 /* Number of elements currently allocated for pubname_table. */
3884 static GTY(()) unsigned pubname_table_allocated;
3886 /* Number of elements in pubname_table currently in use. */
3887 static GTY(()) unsigned pubname_table_in_use;
3889 /* Size (in elements) of increments by which we may expand the
3890 pubname_table. */
3891 #define PUBNAME_TABLE_INCREMENT 64
3893 /* Array of dies for which we should generate .debug_arange info. */
3894 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3896 /* Number of elements currently allocated for arange_table. */
3897 static GTY(()) unsigned arange_table_allocated;
3899 /* Number of elements in arange_table currently in use. */
3900 static GTY(()) unsigned arange_table_in_use;
3902 /* Size (in elements) of increments by which we may expand the
3903 arange_table. */
3904 #define ARANGE_TABLE_INCREMENT 64
3906 /* Array of dies for which we should generate .debug_ranges info. */
3907 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3909 /* Number of elements currently allocated for ranges_table. */
3910 static GTY(()) unsigned ranges_table_allocated;
3912 /* Number of elements in ranges_table currently in use. */
3913 static GTY(()) unsigned ranges_table_in_use;
3915 /* Size (in elements) of increments by which we may expand the
3916 ranges_table. */
3917 #define RANGES_TABLE_INCREMENT 64
3919 /* Whether we have location lists that need outputting */
3920 static GTY(()) bool have_location_lists;
3922 /* Unique label counter. */
3923 static GTY(()) unsigned int loclabel_num;
3925 #ifdef DWARF2_DEBUGGING_INFO
3926 /* Record whether the function being analyzed contains inlined functions. */
3927 static int current_function_has_inlines;
3928 #endif
3929 #if 0 && defined (MIPS_DEBUGGING_INFO)
3930 static int comp_unit_has_inlines;
3931 #endif
3933 /* Number of file tables emitted in maybe_emit_file(). */
3934 static GTY(()) int emitcount = 0;
3936 /* Number of internal labels generated by gen_internal_sym(). */
3937 static GTY(()) int label_num;
3939 #ifdef DWARF2_DEBUGGING_INFO
3941 /* Offset from the "steady-state frame pointer" to the frame base,
3942 within the current function. */
3943 static HOST_WIDE_INT frame_pointer_fb_offset;
3945 /* Forward declarations for functions defined in this file. */
3947 static int is_pseudo_reg (rtx);
3948 static tree type_main_variant (tree);
3949 static int is_tagged_type (tree);
3950 static const char *dwarf_tag_name (unsigned);
3951 static const char *dwarf_attr_name (unsigned);
3952 static const char *dwarf_form_name (unsigned);
3953 static tree decl_ultimate_origin (tree);
3954 static tree block_ultimate_origin (tree);
3955 static tree decl_class_context (tree);
3956 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3957 static inline enum dw_val_class AT_class (dw_attr_ref);
3958 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3959 static inline unsigned AT_flag (dw_attr_ref);
3960 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3961 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3962 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3963 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3964 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3965 unsigned long);
3966 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3967 unsigned int, unsigned char *);
3968 static hashval_t debug_str_do_hash (const void *);
3969 static int debug_str_eq (const void *, const void *);
3970 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3971 static inline const char *AT_string (dw_attr_ref);
3972 static int AT_string_form (dw_attr_ref);
3973 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3974 static void add_AT_specification (dw_die_ref, dw_die_ref);
3975 static inline dw_die_ref AT_ref (dw_attr_ref);
3976 static inline int AT_ref_external (dw_attr_ref);
3977 static inline void set_AT_ref_external (dw_attr_ref, int);
3978 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3979 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3980 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3981 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3982 dw_loc_list_ref);
3983 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3984 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3985 static inline rtx AT_addr (dw_attr_ref);
3986 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3987 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3988 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3989 unsigned HOST_WIDE_INT);
3990 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3991 unsigned long);
3992 static inline const char *AT_lbl (dw_attr_ref);
3993 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3994 static const char *get_AT_low_pc (dw_die_ref);
3995 static const char *get_AT_hi_pc (dw_die_ref);
3996 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3997 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3998 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3999 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4000 static bool is_c_family (void);
4001 static bool is_cxx (void);
4002 static bool is_java (void);
4003 static bool is_fortran (void);
4004 static bool is_ada (void);
4005 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4006 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4007 static inline void free_die (dw_die_ref);
4008 static void remove_children (dw_die_ref);
4009 static void add_child_die (dw_die_ref, dw_die_ref);
4010 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4011 static dw_die_ref lookup_type_die (tree);
4012 static void equate_type_number_to_die (tree, dw_die_ref);
4013 static hashval_t decl_die_table_hash (const void *);
4014 static int decl_die_table_eq (const void *, const void *);
4015 static dw_die_ref lookup_decl_die (tree);
4016 static hashval_t decl_loc_table_hash (const void *);
4017 static int decl_loc_table_eq (const void *, const void *);
4018 static var_loc_list *lookup_decl_loc (tree);
4019 static void equate_decl_number_to_die (tree, dw_die_ref);
4020 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4021 static void print_spaces (FILE *);
4022 static void print_die (dw_die_ref, FILE *);
4023 static void print_dwarf_line_table (FILE *);
4024 static void reverse_die_lists (dw_die_ref);
4025 static void reverse_all_dies (dw_die_ref);
4026 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4027 static dw_die_ref pop_compile_unit (dw_die_ref);
4028 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4029 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4030 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4031 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4032 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4033 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4034 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4035 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4036 static void compute_section_prefix (dw_die_ref);
4037 static int is_type_die (dw_die_ref);
4038 static int is_comdat_die (dw_die_ref);
4039 static int is_symbol_die (dw_die_ref);
4040 static void assign_symbol_names (dw_die_ref);
4041 static void break_out_includes (dw_die_ref);
4042 static hashval_t htab_cu_hash (const void *);
4043 static int htab_cu_eq (const void *, const void *);
4044 static void htab_cu_del (void *);
4045 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4046 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4047 static void add_sibling_attributes (dw_die_ref);
4048 static void build_abbrev_table (dw_die_ref);
4049 static void output_location_lists (dw_die_ref);
4050 static int constant_size (long unsigned);
4051 static unsigned long size_of_die (dw_die_ref);
4052 static void calc_die_sizes (dw_die_ref);
4053 static void mark_dies (dw_die_ref);
4054 static void unmark_dies (dw_die_ref);
4055 static void unmark_all_dies (dw_die_ref);
4056 static unsigned long size_of_pubnames (void);
4057 static unsigned long size_of_aranges (void);
4058 static enum dwarf_form value_format (dw_attr_ref);
4059 static void output_value_format (dw_attr_ref);
4060 static void output_abbrev_section (void);
4061 static void output_die_symbol (dw_die_ref);
4062 static void output_die (dw_die_ref);
4063 static void output_compilation_unit_header (void);
4064 static void output_comp_unit (dw_die_ref, int);
4065 static const char *dwarf2_name (tree, int);
4066 static void add_pubname (tree, dw_die_ref);
4067 static void output_pubnames (void);
4068 static void add_arange (tree, dw_die_ref);
4069 static void output_aranges (void);
4070 static unsigned int add_ranges (tree);
4071 static void output_ranges (void);
4072 static void output_line_info (void);
4073 static void output_file_names (void);
4074 static dw_die_ref base_type_die (tree);
4075 static tree root_type (tree);
4076 static int is_base_type (tree);
4077 static bool is_subrange_type (tree);
4078 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4079 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4080 static int type_is_enum (tree);
4081 static unsigned int dbx_reg_number (rtx);
4082 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4083 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4084 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4085 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4086 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4087 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4088 static int is_based_loc (rtx);
4089 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4090 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4091 static dw_loc_descr_ref loc_descriptor (rtx);
4092 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4093 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4094 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4095 static tree field_type (tree);
4096 static unsigned int simple_type_align_in_bits (tree);
4097 static unsigned int simple_decl_align_in_bits (tree);
4098 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4099 static HOST_WIDE_INT field_byte_offset (tree);
4100 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4101 dw_loc_descr_ref);
4102 static void add_data_member_location_attribute (dw_die_ref, tree);
4103 static void add_const_value_attribute (dw_die_ref, rtx);
4104 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4105 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4106 static void insert_float (rtx, unsigned char *);
4107 static rtx rtl_for_decl_location (tree);
4108 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4109 enum dwarf_attribute);
4110 static void tree_add_const_value_attribute (dw_die_ref, tree);
4111 static void add_name_attribute (dw_die_ref, const char *);
4112 static void add_comp_dir_attribute (dw_die_ref);
4113 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4114 static void add_subscript_info (dw_die_ref, tree);
4115 static void add_byte_size_attribute (dw_die_ref, tree);
4116 static void add_bit_offset_attribute (dw_die_ref, tree);
4117 static void add_bit_size_attribute (dw_die_ref, tree);
4118 static void add_prototyped_attribute (dw_die_ref, tree);
4119 static void add_abstract_origin_attribute (dw_die_ref, tree);
4120 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4121 static void add_src_coords_attributes (dw_die_ref, tree);
4122 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4123 static void push_decl_scope (tree);
4124 static void pop_decl_scope (void);
4125 static dw_die_ref scope_die_for (tree, dw_die_ref);
4126 static inline int local_scope_p (dw_die_ref);
4127 static inline int class_or_namespace_scope_p (dw_die_ref);
4128 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4129 static void add_calling_convention_attribute (dw_die_ref, tree);
4130 static const char *type_tag (tree);
4131 static tree member_declared_type (tree);
4132 #if 0
4133 static const char *decl_start_label (tree);
4134 #endif
4135 static void gen_array_type_die (tree, dw_die_ref);
4136 #if 0
4137 static void gen_entry_point_die (tree, dw_die_ref);
4138 #endif
4139 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4140 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4141 static void gen_inlined_union_type_die (tree, dw_die_ref);
4142 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4143 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4144 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4145 static void gen_formal_types_die (tree, dw_die_ref);
4146 static void gen_subprogram_die (tree, dw_die_ref);
4147 static void gen_variable_die (tree, dw_die_ref);
4148 static void gen_label_die (tree, dw_die_ref);
4149 static void gen_lexical_block_die (tree, dw_die_ref, int);
4150 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4151 static void gen_field_die (tree, dw_die_ref);
4152 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4153 static dw_die_ref gen_compile_unit_die (const char *);
4154 static void gen_inheritance_die (tree, tree, dw_die_ref);
4155 static void gen_member_die (tree, dw_die_ref);
4156 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4157 static void gen_subroutine_type_die (tree, dw_die_ref);
4158 static void gen_typedef_die (tree, dw_die_ref);
4159 static void gen_type_die (tree, dw_die_ref);
4160 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4161 static void gen_block_die (tree, dw_die_ref, int);
4162 static void decls_for_scope (tree, dw_die_ref, int);
4163 static int is_redundant_typedef (tree);
4164 static void gen_namespace_die (tree);
4165 static void gen_decl_die (tree, dw_die_ref);
4166 static dw_die_ref force_decl_die (tree);
4167 static dw_die_ref force_type_die (tree);
4168 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4169 static void declare_in_namespace (tree, dw_die_ref);
4170 static unsigned lookup_filename (const char *);
4171 static void init_file_table (void);
4172 static void retry_incomplete_types (void);
4173 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4174 static void splice_child_die (dw_die_ref, dw_die_ref);
4175 static int file_info_cmp (const void *, const void *);
4176 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4177 const char *, const char *, unsigned);
4178 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4179 const char *, const char *,
4180 const char *);
4181 static void output_loc_list (dw_loc_list_ref);
4182 static char *gen_internal_sym (const char *);
4184 static void prune_unmark_dies (dw_die_ref);
4185 static void prune_unused_types_mark (dw_die_ref, int);
4186 static void prune_unused_types_walk (dw_die_ref);
4187 static void prune_unused_types_walk_attribs (dw_die_ref);
4188 static void prune_unused_types_prune (dw_die_ref);
4189 static void prune_unused_types (void);
4190 static int maybe_emit_file (int);
4192 /* Section names used to hold DWARF debugging information. */
4193 #ifndef DEBUG_INFO_SECTION
4194 #define DEBUG_INFO_SECTION ".debug_info"
4195 #endif
4196 #ifndef DEBUG_ABBREV_SECTION
4197 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4198 #endif
4199 #ifndef DEBUG_ARANGES_SECTION
4200 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4201 #endif
4202 #ifndef DEBUG_MACINFO_SECTION
4203 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4204 #endif
4205 #ifndef DEBUG_LINE_SECTION
4206 #define DEBUG_LINE_SECTION ".debug_line"
4207 #endif
4208 #ifndef DEBUG_LOC_SECTION
4209 #define DEBUG_LOC_SECTION ".debug_loc"
4210 #endif
4211 #ifndef DEBUG_PUBNAMES_SECTION
4212 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4213 #endif
4214 #ifndef DEBUG_STR_SECTION
4215 #define DEBUG_STR_SECTION ".debug_str"
4216 #endif
4217 #ifndef DEBUG_RANGES_SECTION
4218 #define DEBUG_RANGES_SECTION ".debug_ranges"
4219 #endif
4221 /* Standard ELF section names for compiled code and data. */
4222 #ifndef TEXT_SECTION_NAME
4223 #define TEXT_SECTION_NAME ".text"
4224 #endif
4226 /* Section flags for .debug_str section. */
4227 #define DEBUG_STR_SECTION_FLAGS \
4228 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4229 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4230 : SECTION_DEBUG)
4232 /* Labels we insert at beginning sections we can reference instead of
4233 the section names themselves. */
4235 #ifndef TEXT_SECTION_LABEL
4236 #define TEXT_SECTION_LABEL "Ltext"
4237 #endif
4238 #ifndef COLD_TEXT_SECTION_LABEL
4239 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4240 #endif
4241 #ifndef DEBUG_LINE_SECTION_LABEL
4242 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4243 #endif
4244 #ifndef DEBUG_INFO_SECTION_LABEL
4245 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4246 #endif
4247 #ifndef DEBUG_ABBREV_SECTION_LABEL
4248 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4249 #endif
4250 #ifndef DEBUG_LOC_SECTION_LABEL
4251 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4252 #endif
4253 #ifndef DEBUG_RANGES_SECTION_LABEL
4254 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4255 #endif
4256 #ifndef DEBUG_MACINFO_SECTION_LABEL
4257 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4258 #endif
4260 /* Definitions of defaults for formats and names of various special
4261 (artificial) labels which may be generated within this file (when the -g
4262 options is used and DWARF2_DEBUGGING_INFO is in effect.
4263 If necessary, these may be overridden from within the tm.h file, but
4264 typically, overriding these defaults is unnecessary. */
4266 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4267 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4268 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4269 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4270 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4271 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4272 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4273 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4274 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4275 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4277 #ifndef TEXT_END_LABEL
4278 #define TEXT_END_LABEL "Letext"
4279 #endif
4280 #ifndef COLD_END_LABEL
4281 #define COLD_END_LABEL "Letext_cold"
4282 #endif
4283 #ifndef BLOCK_BEGIN_LABEL
4284 #define BLOCK_BEGIN_LABEL "LBB"
4285 #endif
4286 #ifndef BLOCK_END_LABEL
4287 #define BLOCK_END_LABEL "LBE"
4288 #endif
4289 #ifndef LINE_CODE_LABEL
4290 #define LINE_CODE_LABEL "LM"
4291 #endif
4292 #ifndef SEPARATE_LINE_CODE_LABEL
4293 #define SEPARATE_LINE_CODE_LABEL "LSM"
4294 #endif
4296 /* We allow a language front-end to designate a function that is to be
4297 called to "demangle" any name before it is put into a DIE. */
4299 static const char *(*demangle_name_func) (const char *);
4301 void
4302 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4304 demangle_name_func = func;
4307 /* Test if rtl node points to a pseudo register. */
4309 static inline int
4310 is_pseudo_reg (rtx rtl)
4312 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4313 || (GET_CODE (rtl) == SUBREG
4314 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4317 /* Return a reference to a type, with its const and volatile qualifiers
4318 removed. */
4320 static inline tree
4321 type_main_variant (tree type)
4323 type = TYPE_MAIN_VARIANT (type);
4325 /* ??? There really should be only one main variant among any group of
4326 variants of a given type (and all of the MAIN_VARIANT values for all
4327 members of the group should point to that one type) but sometimes the C
4328 front-end messes this up for array types, so we work around that bug
4329 here. */
4330 if (TREE_CODE (type) == ARRAY_TYPE)
4331 while (type != TYPE_MAIN_VARIANT (type))
4332 type = TYPE_MAIN_VARIANT (type);
4334 return type;
4337 /* Return nonzero if the given type node represents a tagged type. */
4339 static inline int
4340 is_tagged_type (tree type)
4342 enum tree_code code = TREE_CODE (type);
4344 return (code == RECORD_TYPE || code == UNION_TYPE
4345 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4348 /* Convert a DIE tag into its string name. */
4350 static const char *
4351 dwarf_tag_name (unsigned int tag)
4353 switch (tag)
4355 case DW_TAG_padding:
4356 return "DW_TAG_padding";
4357 case DW_TAG_array_type:
4358 return "DW_TAG_array_type";
4359 case DW_TAG_class_type:
4360 return "DW_TAG_class_type";
4361 case DW_TAG_entry_point:
4362 return "DW_TAG_entry_point";
4363 case DW_TAG_enumeration_type:
4364 return "DW_TAG_enumeration_type";
4365 case DW_TAG_formal_parameter:
4366 return "DW_TAG_formal_parameter";
4367 case DW_TAG_imported_declaration:
4368 return "DW_TAG_imported_declaration";
4369 case DW_TAG_label:
4370 return "DW_TAG_label";
4371 case DW_TAG_lexical_block:
4372 return "DW_TAG_lexical_block";
4373 case DW_TAG_member:
4374 return "DW_TAG_member";
4375 case DW_TAG_pointer_type:
4376 return "DW_TAG_pointer_type";
4377 case DW_TAG_reference_type:
4378 return "DW_TAG_reference_type";
4379 case DW_TAG_compile_unit:
4380 return "DW_TAG_compile_unit";
4381 case DW_TAG_string_type:
4382 return "DW_TAG_string_type";
4383 case DW_TAG_structure_type:
4384 return "DW_TAG_structure_type";
4385 case DW_TAG_subroutine_type:
4386 return "DW_TAG_subroutine_type";
4387 case DW_TAG_typedef:
4388 return "DW_TAG_typedef";
4389 case DW_TAG_union_type:
4390 return "DW_TAG_union_type";
4391 case DW_TAG_unspecified_parameters:
4392 return "DW_TAG_unspecified_parameters";
4393 case DW_TAG_variant:
4394 return "DW_TAG_variant";
4395 case DW_TAG_common_block:
4396 return "DW_TAG_common_block";
4397 case DW_TAG_common_inclusion:
4398 return "DW_TAG_common_inclusion";
4399 case DW_TAG_inheritance:
4400 return "DW_TAG_inheritance";
4401 case DW_TAG_inlined_subroutine:
4402 return "DW_TAG_inlined_subroutine";
4403 case DW_TAG_module:
4404 return "DW_TAG_module";
4405 case DW_TAG_ptr_to_member_type:
4406 return "DW_TAG_ptr_to_member_type";
4407 case DW_TAG_set_type:
4408 return "DW_TAG_set_type";
4409 case DW_TAG_subrange_type:
4410 return "DW_TAG_subrange_type";
4411 case DW_TAG_with_stmt:
4412 return "DW_TAG_with_stmt";
4413 case DW_TAG_access_declaration:
4414 return "DW_TAG_access_declaration";
4415 case DW_TAG_base_type:
4416 return "DW_TAG_base_type";
4417 case DW_TAG_catch_block:
4418 return "DW_TAG_catch_block";
4419 case DW_TAG_const_type:
4420 return "DW_TAG_const_type";
4421 case DW_TAG_constant:
4422 return "DW_TAG_constant";
4423 case DW_TAG_enumerator:
4424 return "DW_TAG_enumerator";
4425 case DW_TAG_file_type:
4426 return "DW_TAG_file_type";
4427 case DW_TAG_friend:
4428 return "DW_TAG_friend";
4429 case DW_TAG_namelist:
4430 return "DW_TAG_namelist";
4431 case DW_TAG_namelist_item:
4432 return "DW_TAG_namelist_item";
4433 case DW_TAG_namespace:
4434 return "DW_TAG_namespace";
4435 case DW_TAG_packed_type:
4436 return "DW_TAG_packed_type";
4437 case DW_TAG_subprogram:
4438 return "DW_TAG_subprogram";
4439 case DW_TAG_template_type_param:
4440 return "DW_TAG_template_type_param";
4441 case DW_TAG_template_value_param:
4442 return "DW_TAG_template_value_param";
4443 case DW_TAG_thrown_type:
4444 return "DW_TAG_thrown_type";
4445 case DW_TAG_try_block:
4446 return "DW_TAG_try_block";
4447 case DW_TAG_variant_part:
4448 return "DW_TAG_variant_part";
4449 case DW_TAG_variable:
4450 return "DW_TAG_variable";
4451 case DW_TAG_volatile_type:
4452 return "DW_TAG_volatile_type";
4453 case DW_TAG_imported_module:
4454 return "DW_TAG_imported_module";
4455 case DW_TAG_MIPS_loop:
4456 return "DW_TAG_MIPS_loop";
4457 case DW_TAG_format_label:
4458 return "DW_TAG_format_label";
4459 case DW_TAG_function_template:
4460 return "DW_TAG_function_template";
4461 case DW_TAG_class_template:
4462 return "DW_TAG_class_template";
4463 case DW_TAG_GNU_BINCL:
4464 return "DW_TAG_GNU_BINCL";
4465 case DW_TAG_GNU_EINCL:
4466 return "DW_TAG_GNU_EINCL";
4467 default:
4468 return "DW_TAG_<unknown>";
4472 /* Convert a DWARF attribute code into its string name. */
4474 static const char *
4475 dwarf_attr_name (unsigned int attr)
4477 switch (attr)
4479 case DW_AT_sibling:
4480 return "DW_AT_sibling";
4481 case DW_AT_location:
4482 return "DW_AT_location";
4483 case DW_AT_name:
4484 return "DW_AT_name";
4485 case DW_AT_ordering:
4486 return "DW_AT_ordering";
4487 case DW_AT_subscr_data:
4488 return "DW_AT_subscr_data";
4489 case DW_AT_byte_size:
4490 return "DW_AT_byte_size";
4491 case DW_AT_bit_offset:
4492 return "DW_AT_bit_offset";
4493 case DW_AT_bit_size:
4494 return "DW_AT_bit_size";
4495 case DW_AT_element_list:
4496 return "DW_AT_element_list";
4497 case DW_AT_stmt_list:
4498 return "DW_AT_stmt_list";
4499 case DW_AT_low_pc:
4500 return "DW_AT_low_pc";
4501 case DW_AT_high_pc:
4502 return "DW_AT_high_pc";
4503 case DW_AT_language:
4504 return "DW_AT_language";
4505 case DW_AT_member:
4506 return "DW_AT_member";
4507 case DW_AT_discr:
4508 return "DW_AT_discr";
4509 case DW_AT_discr_value:
4510 return "DW_AT_discr_value";
4511 case DW_AT_visibility:
4512 return "DW_AT_visibility";
4513 case DW_AT_import:
4514 return "DW_AT_import";
4515 case DW_AT_string_length:
4516 return "DW_AT_string_length";
4517 case DW_AT_common_reference:
4518 return "DW_AT_common_reference";
4519 case DW_AT_comp_dir:
4520 return "DW_AT_comp_dir";
4521 case DW_AT_const_value:
4522 return "DW_AT_const_value";
4523 case DW_AT_containing_type:
4524 return "DW_AT_containing_type";
4525 case DW_AT_default_value:
4526 return "DW_AT_default_value";
4527 case DW_AT_inline:
4528 return "DW_AT_inline";
4529 case DW_AT_is_optional:
4530 return "DW_AT_is_optional";
4531 case DW_AT_lower_bound:
4532 return "DW_AT_lower_bound";
4533 case DW_AT_producer:
4534 return "DW_AT_producer";
4535 case DW_AT_prototyped:
4536 return "DW_AT_prototyped";
4537 case DW_AT_return_addr:
4538 return "DW_AT_return_addr";
4539 case DW_AT_start_scope:
4540 return "DW_AT_start_scope";
4541 case DW_AT_stride_size:
4542 return "DW_AT_stride_size";
4543 case DW_AT_upper_bound:
4544 return "DW_AT_upper_bound";
4545 case DW_AT_abstract_origin:
4546 return "DW_AT_abstract_origin";
4547 case DW_AT_accessibility:
4548 return "DW_AT_accessibility";
4549 case DW_AT_address_class:
4550 return "DW_AT_address_class";
4551 case DW_AT_artificial:
4552 return "DW_AT_artificial";
4553 case DW_AT_base_types:
4554 return "DW_AT_base_types";
4555 case DW_AT_calling_convention:
4556 return "DW_AT_calling_convention";
4557 case DW_AT_count:
4558 return "DW_AT_count";
4559 case DW_AT_data_member_location:
4560 return "DW_AT_data_member_location";
4561 case DW_AT_decl_column:
4562 return "DW_AT_decl_column";
4563 case DW_AT_decl_file:
4564 return "DW_AT_decl_file";
4565 case DW_AT_decl_line:
4566 return "DW_AT_decl_line";
4567 case DW_AT_declaration:
4568 return "DW_AT_declaration";
4569 case DW_AT_discr_list:
4570 return "DW_AT_discr_list";
4571 case DW_AT_encoding:
4572 return "DW_AT_encoding";
4573 case DW_AT_external:
4574 return "DW_AT_external";
4575 case DW_AT_frame_base:
4576 return "DW_AT_frame_base";
4577 case DW_AT_friend:
4578 return "DW_AT_friend";
4579 case DW_AT_identifier_case:
4580 return "DW_AT_identifier_case";
4581 case DW_AT_macro_info:
4582 return "DW_AT_macro_info";
4583 case DW_AT_namelist_items:
4584 return "DW_AT_namelist_items";
4585 case DW_AT_priority:
4586 return "DW_AT_priority";
4587 case DW_AT_segment:
4588 return "DW_AT_segment";
4589 case DW_AT_specification:
4590 return "DW_AT_specification";
4591 case DW_AT_static_link:
4592 return "DW_AT_static_link";
4593 case DW_AT_type:
4594 return "DW_AT_type";
4595 case DW_AT_use_location:
4596 return "DW_AT_use_location";
4597 case DW_AT_variable_parameter:
4598 return "DW_AT_variable_parameter";
4599 case DW_AT_virtuality:
4600 return "DW_AT_virtuality";
4601 case DW_AT_vtable_elem_location:
4602 return "DW_AT_vtable_elem_location";
4604 case DW_AT_allocated:
4605 return "DW_AT_allocated";
4606 case DW_AT_associated:
4607 return "DW_AT_associated";
4608 case DW_AT_data_location:
4609 return "DW_AT_data_location";
4610 case DW_AT_stride:
4611 return "DW_AT_stride";
4612 case DW_AT_entry_pc:
4613 return "DW_AT_entry_pc";
4614 case DW_AT_use_UTF8:
4615 return "DW_AT_use_UTF8";
4616 case DW_AT_extension:
4617 return "DW_AT_extension";
4618 case DW_AT_ranges:
4619 return "DW_AT_ranges";
4620 case DW_AT_trampoline:
4621 return "DW_AT_trampoline";
4622 case DW_AT_call_column:
4623 return "DW_AT_call_column";
4624 case DW_AT_call_file:
4625 return "DW_AT_call_file";
4626 case DW_AT_call_line:
4627 return "DW_AT_call_line";
4629 case DW_AT_MIPS_fde:
4630 return "DW_AT_MIPS_fde";
4631 case DW_AT_MIPS_loop_begin:
4632 return "DW_AT_MIPS_loop_begin";
4633 case DW_AT_MIPS_tail_loop_begin:
4634 return "DW_AT_MIPS_tail_loop_begin";
4635 case DW_AT_MIPS_epilog_begin:
4636 return "DW_AT_MIPS_epilog_begin";
4637 case DW_AT_MIPS_loop_unroll_factor:
4638 return "DW_AT_MIPS_loop_unroll_factor";
4639 case DW_AT_MIPS_software_pipeline_depth:
4640 return "DW_AT_MIPS_software_pipeline_depth";
4641 case DW_AT_MIPS_linkage_name:
4642 return "DW_AT_MIPS_linkage_name";
4643 case DW_AT_MIPS_stride:
4644 return "DW_AT_MIPS_stride";
4645 case DW_AT_MIPS_abstract_name:
4646 return "DW_AT_MIPS_abstract_name";
4647 case DW_AT_MIPS_clone_origin:
4648 return "DW_AT_MIPS_clone_origin";
4649 case DW_AT_MIPS_has_inlines:
4650 return "DW_AT_MIPS_has_inlines";
4652 case DW_AT_sf_names:
4653 return "DW_AT_sf_names";
4654 case DW_AT_src_info:
4655 return "DW_AT_src_info";
4656 case DW_AT_mac_info:
4657 return "DW_AT_mac_info";
4658 case DW_AT_src_coords:
4659 return "DW_AT_src_coords";
4660 case DW_AT_body_begin:
4661 return "DW_AT_body_begin";
4662 case DW_AT_body_end:
4663 return "DW_AT_body_end";
4664 case DW_AT_GNU_vector:
4665 return "DW_AT_GNU_vector";
4667 case DW_AT_VMS_rtnbeg_pd_address:
4668 return "DW_AT_VMS_rtnbeg_pd_address";
4670 default:
4671 return "DW_AT_<unknown>";
4675 /* Convert a DWARF value form code into its string name. */
4677 static const char *
4678 dwarf_form_name (unsigned int form)
4680 switch (form)
4682 case DW_FORM_addr:
4683 return "DW_FORM_addr";
4684 case DW_FORM_block2:
4685 return "DW_FORM_block2";
4686 case DW_FORM_block4:
4687 return "DW_FORM_block4";
4688 case DW_FORM_data2:
4689 return "DW_FORM_data2";
4690 case DW_FORM_data4:
4691 return "DW_FORM_data4";
4692 case DW_FORM_data8:
4693 return "DW_FORM_data8";
4694 case DW_FORM_string:
4695 return "DW_FORM_string";
4696 case DW_FORM_block:
4697 return "DW_FORM_block";
4698 case DW_FORM_block1:
4699 return "DW_FORM_block1";
4700 case DW_FORM_data1:
4701 return "DW_FORM_data1";
4702 case DW_FORM_flag:
4703 return "DW_FORM_flag";
4704 case DW_FORM_sdata:
4705 return "DW_FORM_sdata";
4706 case DW_FORM_strp:
4707 return "DW_FORM_strp";
4708 case DW_FORM_udata:
4709 return "DW_FORM_udata";
4710 case DW_FORM_ref_addr:
4711 return "DW_FORM_ref_addr";
4712 case DW_FORM_ref1:
4713 return "DW_FORM_ref1";
4714 case DW_FORM_ref2:
4715 return "DW_FORM_ref2";
4716 case DW_FORM_ref4:
4717 return "DW_FORM_ref4";
4718 case DW_FORM_ref8:
4719 return "DW_FORM_ref8";
4720 case DW_FORM_ref_udata:
4721 return "DW_FORM_ref_udata";
4722 case DW_FORM_indirect:
4723 return "DW_FORM_indirect";
4724 default:
4725 return "DW_FORM_<unknown>";
4729 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4730 instance of an inlined instance of a decl which is local to an inline
4731 function, so we have to trace all of the way back through the origin chain
4732 to find out what sort of node actually served as the original seed for the
4733 given block. */
4735 static tree
4736 decl_ultimate_origin (tree decl)
4738 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4739 return NULL_TREE;
4741 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4742 nodes in the function to point to themselves; ignore that if
4743 we're trying to output the abstract instance of this function. */
4744 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4745 return NULL_TREE;
4747 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4748 most distant ancestor, this should never happen. */
4749 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4751 return DECL_ABSTRACT_ORIGIN (decl);
4754 /* Determine the "ultimate origin" of a block. The block may be an inlined
4755 instance of an inlined instance of a block which is local to an inline
4756 function, so we have to trace all of the way back through the origin chain
4757 to find out what sort of node actually served as the original seed for the
4758 given block. */
4760 static tree
4761 block_ultimate_origin (tree block)
4763 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4765 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4766 nodes in the function to point to themselves; ignore that if
4767 we're trying to output the abstract instance of this function. */
4768 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4769 return NULL_TREE;
4771 if (immediate_origin == NULL_TREE)
4772 return NULL_TREE;
4773 else
4775 tree ret_val;
4776 tree lookahead = immediate_origin;
4780 ret_val = lookahead;
4781 lookahead = (TREE_CODE (ret_val) == BLOCK
4782 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4784 while (lookahead != NULL && lookahead != ret_val);
4786 /* The block's abstract origin chain may not be the *ultimate* origin of
4787 the block. It could lead to a DECL that has an abstract origin set.
4788 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4789 will give us if it has one). Note that DECL's abstract origins are
4790 supposed to be the most distant ancestor (or so decl_ultimate_origin
4791 claims), so we don't need to loop following the DECL origins. */
4792 if (DECL_P (ret_val))
4793 return DECL_ORIGIN (ret_val);
4795 return ret_val;
4799 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4800 of a virtual function may refer to a base class, so we check the 'this'
4801 parameter. */
4803 static tree
4804 decl_class_context (tree decl)
4806 tree context = NULL_TREE;
4808 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4809 context = DECL_CONTEXT (decl);
4810 else
4811 context = TYPE_MAIN_VARIANT
4812 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4814 if (context && !TYPE_P (context))
4815 context = NULL_TREE;
4817 return context;
4820 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4821 addition order, and correct that in reverse_all_dies. */
4823 static inline void
4824 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4826 if (die != NULL && attr != NULL)
4828 attr->dw_attr_next = die->die_attr;
4829 die->die_attr = attr;
4833 static inline enum dw_val_class
4834 AT_class (dw_attr_ref a)
4836 return a->dw_attr_val.val_class;
4839 /* Add a flag value attribute to a DIE. */
4841 static inline void
4842 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4844 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4846 attr->dw_attr_next = NULL;
4847 attr->dw_attr = attr_kind;
4848 attr->dw_attr_val.val_class = dw_val_class_flag;
4849 attr->dw_attr_val.v.val_flag = flag;
4850 add_dwarf_attr (die, attr);
4853 static inline unsigned
4854 AT_flag (dw_attr_ref a)
4856 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4857 return a->dw_attr_val.v.val_flag;
4860 /* Add a signed integer attribute value to a DIE. */
4862 static inline void
4863 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4865 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4867 attr->dw_attr_next = NULL;
4868 attr->dw_attr = attr_kind;
4869 attr->dw_attr_val.val_class = dw_val_class_const;
4870 attr->dw_attr_val.v.val_int = int_val;
4871 add_dwarf_attr (die, attr);
4874 static inline HOST_WIDE_INT
4875 AT_int (dw_attr_ref a)
4877 gcc_assert (a && AT_class (a) == dw_val_class_const);
4878 return a->dw_attr_val.v.val_int;
4881 /* Add an unsigned integer attribute value to a DIE. */
4883 static inline void
4884 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4885 unsigned HOST_WIDE_INT unsigned_val)
4887 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4889 attr->dw_attr_next = NULL;
4890 attr->dw_attr = attr_kind;
4891 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4892 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4893 add_dwarf_attr (die, attr);
4896 static inline unsigned HOST_WIDE_INT
4897 AT_unsigned (dw_attr_ref a)
4899 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4900 return a->dw_attr_val.v.val_unsigned;
4903 /* Add an unsigned double integer attribute value to a DIE. */
4905 static inline void
4906 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4907 long unsigned int val_hi, long unsigned int val_low)
4909 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4911 attr->dw_attr_next = NULL;
4912 attr->dw_attr = attr_kind;
4913 attr->dw_attr_val.val_class = dw_val_class_long_long;
4914 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4915 attr->dw_attr_val.v.val_long_long.low = val_low;
4916 add_dwarf_attr (die, attr);
4919 /* Add a floating point attribute value to a DIE and return it. */
4921 static inline void
4922 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4923 unsigned int length, unsigned int elt_size, unsigned char *array)
4925 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4927 attr->dw_attr_next = NULL;
4928 attr->dw_attr = attr_kind;
4929 attr->dw_attr_val.val_class = dw_val_class_vec;
4930 attr->dw_attr_val.v.val_vec.length = length;
4931 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4932 attr->dw_attr_val.v.val_vec.array = array;
4933 add_dwarf_attr (die, attr);
4936 /* Hash and equality functions for debug_str_hash. */
4938 static hashval_t
4939 debug_str_do_hash (const void *x)
4941 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4944 static int
4945 debug_str_eq (const void *x1, const void *x2)
4947 return strcmp ((((const struct indirect_string_node *)x1)->str),
4948 (const char *)x2) == 0;
4951 /* Add a string attribute value to a DIE. */
4953 static inline void
4954 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4956 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4957 struct indirect_string_node *node;
4958 void **slot;
4960 if (! debug_str_hash)
4961 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4962 debug_str_eq, NULL);
4964 slot = htab_find_slot_with_hash (debug_str_hash, str,
4965 htab_hash_string (str), INSERT);
4966 if (*slot == NULL)
4967 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4968 node = (struct indirect_string_node *) *slot;
4969 node->str = ggc_strdup (str);
4970 node->refcount++;
4972 attr->dw_attr_next = NULL;
4973 attr->dw_attr = attr_kind;
4974 attr->dw_attr_val.val_class = dw_val_class_str;
4975 attr->dw_attr_val.v.val_str = node;
4976 add_dwarf_attr (die, attr);
4979 static inline const char *
4980 AT_string (dw_attr_ref a)
4982 gcc_assert (a && AT_class (a) == dw_val_class_str);
4983 return a->dw_attr_val.v.val_str->str;
4986 /* Find out whether a string should be output inline in DIE
4987 or out-of-line in .debug_str section. */
4989 static int
4990 AT_string_form (dw_attr_ref a)
4992 struct indirect_string_node *node;
4993 unsigned int len;
4994 char label[32];
4996 gcc_assert (a && AT_class (a) == dw_val_class_str);
4998 node = a->dw_attr_val.v.val_str;
4999 if (node->form)
5000 return node->form;
5002 len = strlen (node->str) + 1;
5004 /* If the string is shorter or equal to the size of the reference, it is
5005 always better to put it inline. */
5006 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5007 return node->form = DW_FORM_string;
5009 /* If we cannot expect the linker to merge strings in .debug_str
5010 section, only put it into .debug_str if it is worth even in this
5011 single module. */
5012 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5013 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5014 return node->form = DW_FORM_string;
5016 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5017 ++dw2_string_counter;
5018 node->label = xstrdup (label);
5020 return node->form = DW_FORM_strp;
5023 /* Add a DIE reference attribute value to a DIE. */
5025 static inline void
5026 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5028 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5030 attr->dw_attr_next = NULL;
5031 attr->dw_attr = attr_kind;
5032 attr->dw_attr_val.val_class = dw_val_class_die_ref;
5033 attr->dw_attr_val.v.val_die_ref.die = targ_die;
5034 attr->dw_attr_val.v.val_die_ref.external = 0;
5035 add_dwarf_attr (die, attr);
5038 /* Add an AT_specification attribute to a DIE, and also make the back
5039 pointer from the specification to the definition. */
5041 static inline void
5042 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5044 add_AT_die_ref (die, DW_AT_specification, targ_die);
5045 gcc_assert (!targ_die->die_definition);
5046 targ_die->die_definition = die;
5049 static inline dw_die_ref
5050 AT_ref (dw_attr_ref a)
5052 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5053 return a->dw_attr_val.v.val_die_ref.die;
5056 static inline int
5057 AT_ref_external (dw_attr_ref a)
5059 if (a && AT_class (a) == dw_val_class_die_ref)
5060 return a->dw_attr_val.v.val_die_ref.external;
5062 return 0;
5065 static inline void
5066 set_AT_ref_external (dw_attr_ref a, int i)
5068 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5069 a->dw_attr_val.v.val_die_ref.external = i;
5072 /* Add an FDE reference attribute value to a DIE. */
5074 static inline void
5075 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5077 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5079 attr->dw_attr_next = NULL;
5080 attr->dw_attr = attr_kind;
5081 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
5082 attr->dw_attr_val.v.val_fde_index = targ_fde;
5083 add_dwarf_attr (die, attr);
5086 /* Add a location description attribute value to a DIE. */
5088 static inline void
5089 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5091 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5093 attr->dw_attr_next = NULL;
5094 attr->dw_attr = attr_kind;
5095 attr->dw_attr_val.val_class = dw_val_class_loc;
5096 attr->dw_attr_val.v.val_loc = loc;
5097 add_dwarf_attr (die, attr);
5100 static inline dw_loc_descr_ref
5101 AT_loc (dw_attr_ref a)
5103 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5104 return a->dw_attr_val.v.val_loc;
5107 static inline void
5108 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5110 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5112 attr->dw_attr_next = NULL;
5113 attr->dw_attr = attr_kind;
5114 attr->dw_attr_val.val_class = dw_val_class_loc_list;
5115 attr->dw_attr_val.v.val_loc_list = loc_list;
5116 add_dwarf_attr (die, attr);
5117 have_location_lists = true;
5120 static inline dw_loc_list_ref
5121 AT_loc_list (dw_attr_ref a)
5123 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5124 return a->dw_attr_val.v.val_loc_list;
5127 /* Add an address constant attribute value to a DIE. */
5129 static inline void
5130 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5132 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5134 attr->dw_attr_next = NULL;
5135 attr->dw_attr = attr_kind;
5136 attr->dw_attr_val.val_class = dw_val_class_addr;
5137 attr->dw_attr_val.v.val_addr = addr;
5138 add_dwarf_attr (die, attr);
5141 static inline rtx
5142 AT_addr (dw_attr_ref a)
5144 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5145 return a->dw_attr_val.v.val_addr;
5148 /* Add a label identifier attribute value to a DIE. */
5150 static inline void
5151 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5153 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5155 attr->dw_attr_next = NULL;
5156 attr->dw_attr = attr_kind;
5157 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5158 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5159 add_dwarf_attr (die, attr);
5162 /* Add a section offset attribute value to a DIE. */
5164 static inline void
5165 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5167 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5169 attr->dw_attr_next = NULL;
5170 attr->dw_attr = attr_kind;
5171 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5172 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5173 add_dwarf_attr (die, attr);
5176 /* Add an offset attribute value to a DIE. */
5178 static inline void
5179 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5180 unsigned HOST_WIDE_INT offset)
5182 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5184 attr->dw_attr_next = NULL;
5185 attr->dw_attr = attr_kind;
5186 attr->dw_attr_val.val_class = dw_val_class_offset;
5187 attr->dw_attr_val.v.val_offset = offset;
5188 add_dwarf_attr (die, attr);
5191 /* Add an range_list attribute value to a DIE. */
5193 static void
5194 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5195 long unsigned int offset)
5197 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5199 attr->dw_attr_next = NULL;
5200 attr->dw_attr = attr_kind;
5201 attr->dw_attr_val.val_class = dw_val_class_range_list;
5202 attr->dw_attr_val.v.val_offset = offset;
5203 add_dwarf_attr (die, attr);
5206 static inline const char *
5207 AT_lbl (dw_attr_ref a)
5209 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5210 || AT_class (a) == dw_val_class_lbl_offset));
5211 return a->dw_attr_val.v.val_lbl_id;
5214 /* Get the attribute of type attr_kind. */
5216 static dw_attr_ref
5217 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5219 dw_attr_ref a;
5220 dw_die_ref spec = NULL;
5222 if (die != NULL)
5224 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5225 if (a->dw_attr == attr_kind)
5226 return a;
5227 else if (a->dw_attr == DW_AT_specification
5228 || a->dw_attr == DW_AT_abstract_origin)
5229 spec = AT_ref (a);
5231 if (spec)
5232 return get_AT (spec, attr_kind);
5235 return NULL;
5238 /* Return the "low pc" attribute value, typically associated with a subprogram
5239 DIE. Return null if the "low pc" attribute is either not present, or if it
5240 cannot be represented as an assembler label identifier. */
5242 static inline const char *
5243 get_AT_low_pc (dw_die_ref die)
5245 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5247 return a ? AT_lbl (a) : NULL;
5250 /* Return the "high pc" attribute value, typically associated with a subprogram
5251 DIE. Return null if the "high pc" attribute is either not present, or if it
5252 cannot be represented as an assembler label identifier. */
5254 static inline const char *
5255 get_AT_hi_pc (dw_die_ref die)
5257 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5259 return a ? AT_lbl (a) : NULL;
5262 /* Return the value of the string attribute designated by ATTR_KIND, or
5263 NULL if it is not present. */
5265 static inline const char *
5266 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5268 dw_attr_ref a = get_AT (die, attr_kind);
5270 return a ? AT_string (a) : NULL;
5273 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5274 if it is not present. */
5276 static inline int
5277 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5279 dw_attr_ref a = get_AT (die, attr_kind);
5281 return a ? AT_flag (a) : 0;
5284 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5285 if it is not present. */
5287 static inline unsigned
5288 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5290 dw_attr_ref a = get_AT (die, attr_kind);
5292 return a ? AT_unsigned (a) : 0;
5295 static inline dw_die_ref
5296 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5298 dw_attr_ref a = get_AT (die, attr_kind);
5300 return a ? AT_ref (a) : NULL;
5303 /* Return TRUE if the language is C or C++. */
5305 static inline bool
5306 is_c_family (void)
5308 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5310 return (lang == DW_LANG_C || lang == DW_LANG_C89
5311 || lang == DW_LANG_C_plus_plus);
5314 /* Return TRUE if the language is C++. */
5316 static inline bool
5317 is_cxx (void)
5319 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5320 == DW_LANG_C_plus_plus);
5323 /* Return TRUE if the language is Fortran. */
5325 static inline bool
5326 is_fortran (void)
5328 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5330 return (lang == DW_LANG_Fortran77
5331 || lang == DW_LANG_Fortran90
5332 || lang == DW_LANG_Fortran95);
5335 /* Return TRUE if the language is Java. */
5337 static inline bool
5338 is_java (void)
5340 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5342 return lang == DW_LANG_Java;
5345 /* Return TRUE if the language is Ada. */
5347 static inline bool
5348 is_ada (void)
5350 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5352 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5355 /* Free up the memory used by A. */
5357 static inline void free_AT (dw_attr_ref);
5358 static inline void
5359 free_AT (dw_attr_ref a)
5361 if (AT_class (a) == dw_val_class_str)
5362 if (a->dw_attr_val.v.val_str->refcount)
5363 a->dw_attr_val.v.val_str->refcount--;
5366 /* Remove the specified attribute if present. */
5368 static void
5369 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5371 dw_attr_ref *p;
5372 dw_attr_ref removed = NULL;
5374 if (die != NULL)
5376 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5377 if ((*p)->dw_attr == attr_kind)
5379 removed = *p;
5380 *p = (*p)->dw_attr_next;
5381 break;
5384 if (removed != 0)
5385 free_AT (removed);
5389 /* Remove child die whose die_tag is specified tag. */
5391 static void
5392 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5394 dw_die_ref current, prev, next;
5395 current = die->die_child;
5396 prev = NULL;
5397 while (current != NULL)
5399 if (current->die_tag == tag)
5401 next = current->die_sib;
5402 if (prev == NULL)
5403 die->die_child = next;
5404 else
5405 prev->die_sib = next;
5406 free_die (current);
5407 current = next;
5409 else
5411 prev = current;
5412 current = current->die_sib;
5417 /* Free up the memory used by DIE. */
5419 static inline void
5420 free_die (dw_die_ref die)
5422 remove_children (die);
5425 /* Discard the children of this DIE. */
5427 static void
5428 remove_children (dw_die_ref die)
5430 dw_die_ref child_die = die->die_child;
5432 die->die_child = NULL;
5434 while (child_die != NULL)
5436 dw_die_ref tmp_die = child_die;
5437 dw_attr_ref a;
5439 child_die = child_die->die_sib;
5441 for (a = tmp_die->die_attr; a != NULL;)
5443 dw_attr_ref tmp_a = a;
5445 a = a->dw_attr_next;
5446 free_AT (tmp_a);
5449 free_die (tmp_die);
5453 /* Add a child DIE below its parent. We build the lists up in reverse
5454 addition order, and correct that in reverse_all_dies. */
5456 static inline void
5457 add_child_die (dw_die_ref die, dw_die_ref child_die)
5459 if (die != NULL && child_die != NULL)
5461 gcc_assert (die != child_die);
5463 child_die->die_parent = die;
5464 child_die->die_sib = die->die_child;
5465 die->die_child = child_die;
5469 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5470 is the specification, to the front of PARENT's list of children. */
5472 static void
5473 splice_child_die (dw_die_ref parent, dw_die_ref child)
5475 dw_die_ref *p;
5477 /* We want the declaration DIE from inside the class, not the
5478 specification DIE at toplevel. */
5479 if (child->die_parent != parent)
5481 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5483 if (tmp)
5484 child = tmp;
5487 gcc_assert (child->die_parent == parent
5488 || (child->die_parent
5489 == get_AT_ref (parent, DW_AT_specification)));
5491 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5492 if (*p == child)
5494 *p = child->die_sib;
5495 break;
5498 child->die_parent = parent;
5499 child->die_sib = parent->die_child;
5500 parent->die_child = child;
5503 /* Return a pointer to a newly created DIE node. */
5505 static inline dw_die_ref
5506 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5508 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5510 die->die_tag = tag_value;
5512 if (parent_die != NULL)
5513 add_child_die (parent_die, die);
5514 else
5516 limbo_die_node *limbo_node;
5518 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5519 limbo_node->die = die;
5520 limbo_node->created_for = t;
5521 limbo_node->next = limbo_die_list;
5522 limbo_die_list = limbo_node;
5525 return die;
5528 /* Return the DIE associated with the given type specifier. */
5530 static inline dw_die_ref
5531 lookup_type_die (tree type)
5533 return TYPE_SYMTAB_DIE (type);
5536 /* Equate a DIE to a given type specifier. */
5538 static inline void
5539 equate_type_number_to_die (tree type, dw_die_ref type_die)
5541 TYPE_SYMTAB_DIE (type) = type_die;
5544 /* Returns a hash value for X (which really is a die_struct). */
5546 static hashval_t
5547 decl_die_table_hash (const void *x)
5549 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5552 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5554 static int
5555 decl_die_table_eq (const void *x, const void *y)
5557 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5560 /* Return the DIE associated with a given declaration. */
5562 static inline dw_die_ref
5563 lookup_decl_die (tree decl)
5565 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5568 /* Returns a hash value for X (which really is a var_loc_list). */
5570 static hashval_t
5571 decl_loc_table_hash (const void *x)
5573 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5576 /* Return nonzero if decl_id of var_loc_list X is the same as
5577 UID of decl *Y. */
5579 static int
5580 decl_loc_table_eq (const void *x, const void *y)
5582 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5585 /* Return the var_loc list associated with a given declaration. */
5587 static inline var_loc_list *
5588 lookup_decl_loc (tree decl)
5590 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5593 /* Equate a DIE to a particular declaration. */
5595 static void
5596 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5598 unsigned int decl_id = DECL_UID (decl);
5599 void **slot;
5601 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5602 *slot = decl_die;
5603 decl_die->decl_id = decl_id;
5606 /* Add a variable location node to the linked list for DECL. */
5608 static void
5609 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5611 unsigned int decl_id = DECL_UID (decl);
5612 var_loc_list *temp;
5613 void **slot;
5615 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5616 if (*slot == NULL)
5618 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5619 temp->decl_id = decl_id;
5620 *slot = temp;
5622 else
5623 temp = *slot;
5625 if (temp->last)
5627 /* If the current location is the same as the end of the list,
5628 we have nothing to do. */
5629 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5630 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5632 /* Add LOC to the end of list and update LAST. */
5633 temp->last->next = loc;
5634 temp->last = loc;
5637 /* Do not add empty location to the beginning of the list. */
5638 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5640 temp->first = loc;
5641 temp->last = loc;
5645 /* Keep track of the number of spaces used to indent the
5646 output of the debugging routines that print the structure of
5647 the DIE internal representation. */
5648 static int print_indent;
5650 /* Indent the line the number of spaces given by print_indent. */
5652 static inline void
5653 print_spaces (FILE *outfile)
5655 fprintf (outfile, "%*s", print_indent, "");
5658 /* Print the information associated with a given DIE, and its children.
5659 This routine is a debugging aid only. */
5661 static void
5662 print_die (dw_die_ref die, FILE *outfile)
5664 dw_attr_ref a;
5665 dw_die_ref c;
5667 print_spaces (outfile);
5668 fprintf (outfile, "DIE %4lu: %s\n",
5669 die->die_offset, dwarf_tag_name (die->die_tag));
5670 print_spaces (outfile);
5671 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5672 fprintf (outfile, " offset: %lu\n", die->die_offset);
5674 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5676 print_spaces (outfile);
5677 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5679 switch (AT_class (a))
5681 case dw_val_class_addr:
5682 fprintf (outfile, "address");
5683 break;
5684 case dw_val_class_offset:
5685 fprintf (outfile, "offset");
5686 break;
5687 case dw_val_class_loc:
5688 fprintf (outfile, "location descriptor");
5689 break;
5690 case dw_val_class_loc_list:
5691 fprintf (outfile, "location list -> label:%s",
5692 AT_loc_list (a)->ll_symbol);
5693 break;
5694 case dw_val_class_range_list:
5695 fprintf (outfile, "range list");
5696 break;
5697 case dw_val_class_const:
5698 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5699 break;
5700 case dw_val_class_unsigned_const:
5701 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5702 break;
5703 case dw_val_class_long_long:
5704 fprintf (outfile, "constant (%lu,%lu)",
5705 a->dw_attr_val.v.val_long_long.hi,
5706 a->dw_attr_val.v.val_long_long.low);
5707 break;
5708 case dw_val_class_vec:
5709 fprintf (outfile, "floating-point or vector constant");
5710 break;
5711 case dw_val_class_flag:
5712 fprintf (outfile, "%u", AT_flag (a));
5713 break;
5714 case dw_val_class_die_ref:
5715 if (AT_ref (a) != NULL)
5717 if (AT_ref (a)->die_symbol)
5718 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5719 else
5720 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5722 else
5723 fprintf (outfile, "die -> <null>");
5724 break;
5725 case dw_val_class_lbl_id:
5726 case dw_val_class_lbl_offset:
5727 fprintf (outfile, "label: %s", AT_lbl (a));
5728 break;
5729 case dw_val_class_str:
5730 if (AT_string (a) != NULL)
5731 fprintf (outfile, "\"%s\"", AT_string (a));
5732 else
5733 fprintf (outfile, "<null>");
5734 break;
5735 default:
5736 break;
5739 fprintf (outfile, "\n");
5742 if (die->die_child != NULL)
5744 print_indent += 4;
5745 for (c = die->die_child; c != NULL; c = c->die_sib)
5746 print_die (c, outfile);
5748 print_indent -= 4;
5750 if (print_indent == 0)
5751 fprintf (outfile, "\n");
5754 /* Print the contents of the source code line number correspondence table.
5755 This routine is a debugging aid only. */
5757 static void
5758 print_dwarf_line_table (FILE *outfile)
5760 unsigned i;
5761 dw_line_info_ref line_info;
5763 fprintf (outfile, "\n\nDWARF source line information\n");
5764 for (i = 1; i < line_info_table_in_use; i++)
5766 line_info = &line_info_table[i];
5767 fprintf (outfile, "%5d: ", i);
5768 fprintf (outfile, "%-20s",
5769 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5770 fprintf (outfile, "%6ld", line_info->dw_line_num);
5771 fprintf (outfile, "\n");
5774 fprintf (outfile, "\n\n");
5777 /* Print the information collected for a given DIE. */
5779 void
5780 debug_dwarf_die (dw_die_ref die)
5782 print_die (die, stderr);
5785 /* Print all DWARF information collected for the compilation unit.
5786 This routine is a debugging aid only. */
5788 void
5789 debug_dwarf (void)
5791 print_indent = 0;
5792 print_die (comp_unit_die, stderr);
5793 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5794 print_dwarf_line_table (stderr);
5797 /* We build up the lists of children and attributes by pushing new ones
5798 onto the beginning of the list. Reverse the lists for DIE so that
5799 they are in order of addition. */
5801 static void
5802 reverse_die_lists (dw_die_ref die)
5804 dw_die_ref c, cp, cn;
5805 dw_attr_ref a, ap, an;
5807 for (a = die->die_attr, ap = 0; a; a = an)
5809 an = a->dw_attr_next;
5810 a->dw_attr_next = ap;
5811 ap = a;
5814 die->die_attr = ap;
5816 for (c = die->die_child, cp = 0; c; c = cn)
5818 cn = c->die_sib;
5819 c->die_sib = cp;
5820 cp = c;
5823 die->die_child = cp;
5826 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5827 reverse all dies in add_sibling_attributes, which runs through all the dies,
5828 it would reverse all the dies. Now, however, since we don't call
5829 reverse_die_lists in add_sibling_attributes, we need a routine to
5830 recursively reverse all the dies. This is that routine. */
5832 static void
5833 reverse_all_dies (dw_die_ref die)
5835 dw_die_ref c;
5837 reverse_die_lists (die);
5839 for (c = die->die_child; c; c = c->die_sib)
5840 reverse_all_dies (c);
5843 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5844 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5845 DIE that marks the start of the DIEs for this include file. */
5847 static dw_die_ref
5848 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5850 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5851 dw_die_ref new_unit = gen_compile_unit_die (filename);
5853 new_unit->die_sib = old_unit;
5854 return new_unit;
5857 /* Close an include-file CU and reopen the enclosing one. */
5859 static dw_die_ref
5860 pop_compile_unit (dw_die_ref old_unit)
5862 dw_die_ref new_unit = old_unit->die_sib;
5864 old_unit->die_sib = NULL;
5865 return new_unit;
5868 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5869 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5871 /* Calculate the checksum of a location expression. */
5873 static inline void
5874 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5876 CHECKSUM (loc->dw_loc_opc);
5877 CHECKSUM (loc->dw_loc_oprnd1);
5878 CHECKSUM (loc->dw_loc_oprnd2);
5881 /* Calculate the checksum of an attribute. */
5883 static void
5884 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5886 dw_loc_descr_ref loc;
5887 rtx r;
5889 CHECKSUM (at->dw_attr);
5891 /* We don't care about differences in file numbering. */
5892 if (at->dw_attr == DW_AT_decl_file
5893 /* Or that this was compiled with a different compiler snapshot; if
5894 the output is the same, that's what matters. */
5895 || at->dw_attr == DW_AT_producer)
5896 return;
5898 switch (AT_class (at))
5900 case dw_val_class_const:
5901 CHECKSUM (at->dw_attr_val.v.val_int);
5902 break;
5903 case dw_val_class_unsigned_const:
5904 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5905 break;
5906 case dw_val_class_long_long:
5907 CHECKSUM (at->dw_attr_val.v.val_long_long);
5908 break;
5909 case dw_val_class_vec:
5910 CHECKSUM (at->dw_attr_val.v.val_vec);
5911 break;
5912 case dw_val_class_flag:
5913 CHECKSUM (at->dw_attr_val.v.val_flag);
5914 break;
5915 case dw_val_class_str:
5916 CHECKSUM_STRING (AT_string (at));
5917 break;
5919 case dw_val_class_addr:
5920 r = AT_addr (at);
5921 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5922 CHECKSUM_STRING (XSTR (r, 0));
5923 break;
5925 case dw_val_class_offset:
5926 CHECKSUM (at->dw_attr_val.v.val_offset);
5927 break;
5929 case dw_val_class_loc:
5930 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5931 loc_checksum (loc, ctx);
5932 break;
5934 case dw_val_class_die_ref:
5935 die_checksum (AT_ref (at), ctx, mark);
5936 break;
5938 case dw_val_class_fde_ref:
5939 case dw_val_class_lbl_id:
5940 case dw_val_class_lbl_offset:
5941 break;
5943 default:
5944 break;
5948 /* Calculate the checksum of a DIE. */
5950 static void
5951 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5953 dw_die_ref c;
5954 dw_attr_ref a;
5956 /* To avoid infinite recursion. */
5957 if (die->die_mark)
5959 CHECKSUM (die->die_mark);
5960 return;
5962 die->die_mark = ++(*mark);
5964 CHECKSUM (die->die_tag);
5966 for (a = die->die_attr; a; a = a->dw_attr_next)
5967 attr_checksum (a, ctx, mark);
5969 for (c = die->die_child; c; c = c->die_sib)
5970 die_checksum (c, ctx, mark);
5973 #undef CHECKSUM
5974 #undef CHECKSUM_STRING
5976 /* Do the location expressions look same? */
5977 static inline int
5978 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5980 return loc1->dw_loc_opc == loc2->dw_loc_opc
5981 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5982 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5985 /* Do the values look the same? */
5986 static int
5987 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5989 dw_loc_descr_ref loc1, loc2;
5990 rtx r1, r2;
5992 if (v1->val_class != v2->val_class)
5993 return 0;
5995 switch (v1->val_class)
5997 case dw_val_class_const:
5998 return v1->v.val_int == v2->v.val_int;
5999 case dw_val_class_unsigned_const:
6000 return v1->v.val_unsigned == v2->v.val_unsigned;
6001 case dw_val_class_long_long:
6002 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6003 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6004 case dw_val_class_vec:
6005 if (v1->v.val_vec.length != v2->v.val_vec.length
6006 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6007 return 0;
6008 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6009 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6010 return 0;
6011 return 1;
6012 case dw_val_class_flag:
6013 return v1->v.val_flag == v2->v.val_flag;
6014 case dw_val_class_str:
6015 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6017 case dw_val_class_addr:
6018 r1 = v1->v.val_addr;
6019 r2 = v2->v.val_addr;
6020 if (GET_CODE (r1) != GET_CODE (r2))
6021 return 0;
6022 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6023 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6025 case dw_val_class_offset:
6026 return v1->v.val_offset == v2->v.val_offset;
6028 case dw_val_class_loc:
6029 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6030 loc1 && loc2;
6031 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6032 if (!same_loc_p (loc1, loc2, mark))
6033 return 0;
6034 return !loc1 && !loc2;
6036 case dw_val_class_die_ref:
6037 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6039 case dw_val_class_fde_ref:
6040 case dw_val_class_lbl_id:
6041 case dw_val_class_lbl_offset:
6042 return 1;
6044 default:
6045 return 1;
6049 /* Do the attributes look the same? */
6051 static int
6052 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6054 if (at1->dw_attr != at2->dw_attr)
6055 return 0;
6057 /* We don't care about differences in file numbering. */
6058 if (at1->dw_attr == DW_AT_decl_file
6059 /* Or that this was compiled with a different compiler snapshot; if
6060 the output is the same, that's what matters. */
6061 || at1->dw_attr == DW_AT_producer)
6062 return 1;
6064 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6067 /* Do the dies look the same? */
6069 static int
6070 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6072 dw_die_ref c1, c2;
6073 dw_attr_ref a1, a2;
6075 /* To avoid infinite recursion. */
6076 if (die1->die_mark)
6077 return die1->die_mark == die2->die_mark;
6078 die1->die_mark = die2->die_mark = ++(*mark);
6080 if (die1->die_tag != die2->die_tag)
6081 return 0;
6083 for (a1 = die1->die_attr, a2 = die2->die_attr;
6084 a1 && a2;
6085 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
6086 if (!same_attr_p (a1, a2, mark))
6087 return 0;
6088 if (a1 || a2)
6089 return 0;
6091 for (c1 = die1->die_child, c2 = die2->die_child;
6092 c1 && c2;
6093 c1 = c1->die_sib, c2 = c2->die_sib)
6094 if (!same_die_p (c1, c2, mark))
6095 return 0;
6096 if (c1 || c2)
6097 return 0;
6099 return 1;
6102 /* Do the dies look the same? Wrapper around same_die_p. */
6104 static int
6105 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6107 int mark = 0;
6108 int ret = same_die_p (die1, die2, &mark);
6110 unmark_all_dies (die1);
6111 unmark_all_dies (die2);
6113 return ret;
6116 /* The prefix to attach to symbols on DIEs in the current comdat debug
6117 info section. */
6118 static char *comdat_symbol_id;
6120 /* The index of the current symbol within the current comdat CU. */
6121 static unsigned int comdat_symbol_number;
6123 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6124 children, and set comdat_symbol_id accordingly. */
6126 static void
6127 compute_section_prefix (dw_die_ref unit_die)
6129 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6130 const char *base = die_name ? lbasename (die_name) : "anonymous";
6131 char *name = alloca (strlen (base) + 64);
6132 char *p;
6133 int i, mark;
6134 unsigned char checksum[16];
6135 struct md5_ctx ctx;
6137 /* Compute the checksum of the DIE, then append part of it as hex digits to
6138 the name filename of the unit. */
6140 md5_init_ctx (&ctx);
6141 mark = 0;
6142 die_checksum (unit_die, &ctx, &mark);
6143 unmark_all_dies (unit_die);
6144 md5_finish_ctx (&ctx, checksum);
6146 sprintf (name, "%s.", base);
6147 clean_symbol_name (name);
6149 p = name + strlen (name);
6150 for (i = 0; i < 4; i++)
6152 sprintf (p, "%.2x", checksum[i]);
6153 p += 2;
6156 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6157 comdat_symbol_number = 0;
6160 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6162 static int
6163 is_type_die (dw_die_ref die)
6165 switch (die->die_tag)
6167 case DW_TAG_array_type:
6168 case DW_TAG_class_type:
6169 case DW_TAG_enumeration_type:
6170 case DW_TAG_pointer_type:
6171 case DW_TAG_reference_type:
6172 case DW_TAG_string_type:
6173 case DW_TAG_structure_type:
6174 case DW_TAG_subroutine_type:
6175 case DW_TAG_union_type:
6176 case DW_TAG_ptr_to_member_type:
6177 case DW_TAG_set_type:
6178 case DW_TAG_subrange_type:
6179 case DW_TAG_base_type:
6180 case DW_TAG_const_type:
6181 case DW_TAG_file_type:
6182 case DW_TAG_packed_type:
6183 case DW_TAG_volatile_type:
6184 case DW_TAG_typedef:
6185 return 1;
6186 default:
6187 return 0;
6191 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6192 Basically, we want to choose the bits that are likely to be shared between
6193 compilations (types) and leave out the bits that are specific to individual
6194 compilations (functions). */
6196 static int
6197 is_comdat_die (dw_die_ref c)
6199 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6200 we do for stabs. The advantage is a greater likelihood of sharing between
6201 objects that don't include headers in the same order (and therefore would
6202 put the base types in a different comdat). jason 8/28/00 */
6204 if (c->die_tag == DW_TAG_base_type)
6205 return 0;
6207 if (c->die_tag == DW_TAG_pointer_type
6208 || c->die_tag == DW_TAG_reference_type
6209 || c->die_tag == DW_TAG_const_type
6210 || c->die_tag == DW_TAG_volatile_type)
6212 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6214 return t ? is_comdat_die (t) : 0;
6217 return is_type_die (c);
6220 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6221 compilation unit. */
6223 static int
6224 is_symbol_die (dw_die_ref c)
6226 return (is_type_die (c)
6227 || (get_AT (c, DW_AT_declaration)
6228 && !get_AT (c, DW_AT_specification)));
6231 static char *
6232 gen_internal_sym (const char *prefix)
6234 char buf[256];
6236 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6237 return xstrdup (buf);
6240 /* Assign symbols to all worthy DIEs under DIE. */
6242 static void
6243 assign_symbol_names (dw_die_ref die)
6245 dw_die_ref c;
6247 if (is_symbol_die (die))
6249 if (comdat_symbol_id)
6251 char *p = alloca (strlen (comdat_symbol_id) + 64);
6253 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6254 comdat_symbol_id, comdat_symbol_number++);
6255 die->die_symbol = xstrdup (p);
6257 else
6258 die->die_symbol = gen_internal_sym ("LDIE");
6261 for (c = die->die_child; c != NULL; c = c->die_sib)
6262 assign_symbol_names (c);
6265 struct cu_hash_table_entry
6267 dw_die_ref cu;
6268 unsigned min_comdat_num, max_comdat_num;
6269 struct cu_hash_table_entry *next;
6272 /* Routines to manipulate hash table of CUs. */
6273 static hashval_t
6274 htab_cu_hash (const void *of)
6276 const struct cu_hash_table_entry *entry = of;
6278 return htab_hash_string (entry->cu->die_symbol);
6281 static int
6282 htab_cu_eq (const void *of1, const void *of2)
6284 const struct cu_hash_table_entry *entry1 = of1;
6285 const struct die_struct *entry2 = of2;
6287 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6290 static void
6291 htab_cu_del (void *what)
6293 struct cu_hash_table_entry *next, *entry = what;
6295 while (entry)
6297 next = entry->next;
6298 free (entry);
6299 entry = next;
6303 /* Check whether we have already seen this CU and set up SYM_NUM
6304 accordingly. */
6305 static int
6306 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6308 struct cu_hash_table_entry dummy;
6309 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6311 dummy.max_comdat_num = 0;
6313 slot = (struct cu_hash_table_entry **)
6314 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6315 INSERT);
6316 entry = *slot;
6318 for (; entry; last = entry, entry = entry->next)
6320 if (same_die_p_wrap (cu, entry->cu))
6321 break;
6324 if (entry)
6326 *sym_num = entry->min_comdat_num;
6327 return 1;
6330 entry = XCNEW (struct cu_hash_table_entry);
6331 entry->cu = cu;
6332 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6333 entry->next = *slot;
6334 *slot = entry;
6336 return 0;
6339 /* Record SYM_NUM to record of CU in HTABLE. */
6340 static void
6341 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6343 struct cu_hash_table_entry **slot, *entry;
6345 slot = (struct cu_hash_table_entry **)
6346 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6347 NO_INSERT);
6348 entry = *slot;
6350 entry->max_comdat_num = sym_num;
6353 /* Traverse the DIE (which is always comp_unit_die), and set up
6354 additional compilation units for each of the include files we see
6355 bracketed by BINCL/EINCL. */
6357 static void
6358 break_out_includes (dw_die_ref die)
6360 dw_die_ref *ptr;
6361 dw_die_ref unit = NULL;
6362 limbo_die_node *node, **pnode;
6363 htab_t cu_hash_table;
6365 for (ptr = &(die->die_child); *ptr;)
6367 dw_die_ref c = *ptr;
6369 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6370 || (unit && is_comdat_die (c)))
6372 /* This DIE is for a secondary CU; remove it from the main one. */
6373 *ptr = c->die_sib;
6375 if (c->die_tag == DW_TAG_GNU_BINCL)
6377 unit = push_new_compile_unit (unit, c);
6378 free_die (c);
6380 else if (c->die_tag == DW_TAG_GNU_EINCL)
6382 unit = pop_compile_unit (unit);
6383 free_die (c);
6385 else
6386 add_child_die (unit, c);
6388 else
6390 /* Leave this DIE in the main CU. */
6391 ptr = &(c->die_sib);
6392 continue;
6396 #if 0
6397 /* We can only use this in debugging, since the frontend doesn't check
6398 to make sure that we leave every include file we enter. */
6399 gcc_assert (!unit);
6400 #endif
6402 assign_symbol_names (die);
6403 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6404 for (node = limbo_die_list, pnode = &limbo_die_list;
6405 node;
6406 node = node->next)
6408 int is_dupl;
6410 compute_section_prefix (node->die);
6411 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6412 &comdat_symbol_number);
6413 assign_symbol_names (node->die);
6414 if (is_dupl)
6415 *pnode = node->next;
6416 else
6418 pnode = &node->next;
6419 record_comdat_symbol_number (node->die, cu_hash_table,
6420 comdat_symbol_number);
6423 htab_delete (cu_hash_table);
6426 /* Traverse the DIE and add a sibling attribute if it may have the
6427 effect of speeding up access to siblings. To save some space,
6428 avoid generating sibling attributes for DIE's without children. */
6430 static void
6431 add_sibling_attributes (dw_die_ref die)
6433 dw_die_ref c;
6435 if (die->die_tag != DW_TAG_compile_unit
6436 && die->die_sib && die->die_child != NULL)
6437 /* Add the sibling link to the front of the attribute list. */
6438 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6440 for (c = die->die_child; c != NULL; c = c->die_sib)
6441 add_sibling_attributes (c);
6444 /* Output all location lists for the DIE and its children. */
6446 static void
6447 output_location_lists (dw_die_ref die)
6449 dw_die_ref c;
6450 dw_attr_ref d_attr;
6452 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6453 if (AT_class (d_attr) == dw_val_class_loc_list)
6454 output_loc_list (AT_loc_list (d_attr));
6456 for (c = die->die_child; c != NULL; c = c->die_sib)
6457 output_location_lists (c);
6461 /* The format of each DIE (and its attribute value pairs) is encoded in an
6462 abbreviation table. This routine builds the abbreviation table and assigns
6463 a unique abbreviation id for each abbreviation entry. The children of each
6464 die are visited recursively. */
6466 static void
6467 build_abbrev_table (dw_die_ref die)
6469 unsigned long abbrev_id;
6470 unsigned int n_alloc;
6471 dw_die_ref c;
6472 dw_attr_ref d_attr, a_attr;
6474 /* Scan the DIE references, and mark as external any that refer to
6475 DIEs from other CUs (i.e. those which are not marked). */
6476 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6477 if (AT_class (d_attr) == dw_val_class_die_ref
6478 && AT_ref (d_attr)->die_mark == 0)
6480 gcc_assert (AT_ref (d_attr)->die_symbol);
6482 set_AT_ref_external (d_attr, 1);
6485 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6487 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6489 if (abbrev->die_tag == die->die_tag)
6491 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6493 a_attr = abbrev->die_attr;
6494 d_attr = die->die_attr;
6496 while (a_attr != NULL && d_attr != NULL)
6498 if ((a_attr->dw_attr != d_attr->dw_attr)
6499 || (value_format (a_attr) != value_format (d_attr)))
6500 break;
6502 a_attr = a_attr->dw_attr_next;
6503 d_attr = d_attr->dw_attr_next;
6506 if (a_attr == NULL && d_attr == NULL)
6507 break;
6512 if (abbrev_id >= abbrev_die_table_in_use)
6514 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6516 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6517 abbrev_die_table = ggc_realloc (abbrev_die_table,
6518 sizeof (dw_die_ref) * n_alloc);
6520 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6521 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6522 abbrev_die_table_allocated = n_alloc;
6525 ++abbrev_die_table_in_use;
6526 abbrev_die_table[abbrev_id] = die;
6529 die->die_abbrev = abbrev_id;
6530 for (c = die->die_child; c != NULL; c = c->die_sib)
6531 build_abbrev_table (c);
6534 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6536 static int
6537 constant_size (long unsigned int value)
6539 int log;
6541 if (value == 0)
6542 log = 0;
6543 else
6544 log = floor_log2 (value);
6546 log = log / 8;
6547 log = 1 << (floor_log2 (log) + 1);
6549 return log;
6552 /* Return the size of a DIE as it is represented in the
6553 .debug_info section. */
6555 static unsigned long
6556 size_of_die (dw_die_ref die)
6558 unsigned long size = 0;
6559 dw_attr_ref a;
6561 size += size_of_uleb128 (die->die_abbrev);
6562 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6564 switch (AT_class (a))
6566 case dw_val_class_addr:
6567 size += DWARF2_ADDR_SIZE;
6568 break;
6569 case dw_val_class_offset:
6570 size += DWARF_OFFSET_SIZE;
6571 break;
6572 case dw_val_class_loc:
6574 unsigned long lsize = size_of_locs (AT_loc (a));
6576 /* Block length. */
6577 size += constant_size (lsize);
6578 size += lsize;
6580 break;
6581 case dw_val_class_loc_list:
6582 size += DWARF_OFFSET_SIZE;
6583 break;
6584 case dw_val_class_range_list:
6585 size += DWARF_OFFSET_SIZE;
6586 break;
6587 case dw_val_class_const:
6588 size += size_of_sleb128 (AT_int (a));
6589 break;
6590 case dw_val_class_unsigned_const:
6591 size += constant_size (AT_unsigned (a));
6592 break;
6593 case dw_val_class_long_long:
6594 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6595 break;
6596 case dw_val_class_vec:
6597 size += 1 + (a->dw_attr_val.v.val_vec.length
6598 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6599 break;
6600 case dw_val_class_flag:
6601 size += 1;
6602 break;
6603 case dw_val_class_die_ref:
6604 if (AT_ref_external (a))
6605 size += DWARF2_ADDR_SIZE;
6606 else
6607 size += DWARF_OFFSET_SIZE;
6608 break;
6609 case dw_val_class_fde_ref:
6610 size += DWARF_OFFSET_SIZE;
6611 break;
6612 case dw_val_class_lbl_id:
6613 size += DWARF2_ADDR_SIZE;
6614 break;
6615 case dw_val_class_lbl_offset:
6616 size += DWARF_OFFSET_SIZE;
6617 break;
6618 case dw_val_class_str:
6619 if (AT_string_form (a) == DW_FORM_strp)
6620 size += DWARF_OFFSET_SIZE;
6621 else
6622 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6623 break;
6624 default:
6625 gcc_unreachable ();
6629 return size;
6632 /* Size the debugging information associated with a given DIE. Visits the
6633 DIE's children recursively. Updates the global variable next_die_offset, on
6634 each time through. Uses the current value of next_die_offset to update the
6635 die_offset field in each DIE. */
6637 static void
6638 calc_die_sizes (dw_die_ref die)
6640 dw_die_ref c;
6642 die->die_offset = next_die_offset;
6643 next_die_offset += size_of_die (die);
6645 for (c = die->die_child; c != NULL; c = c->die_sib)
6646 calc_die_sizes (c);
6648 if (die->die_child != NULL)
6649 /* Count the null byte used to terminate sibling lists. */
6650 next_die_offset += 1;
6653 /* Set the marks for a die and its children. We do this so
6654 that we know whether or not a reference needs to use FORM_ref_addr; only
6655 DIEs in the same CU will be marked. We used to clear out the offset
6656 and use that as the flag, but ran into ordering problems. */
6658 static void
6659 mark_dies (dw_die_ref die)
6661 dw_die_ref c;
6663 gcc_assert (!die->die_mark);
6665 die->die_mark = 1;
6666 for (c = die->die_child; c; c = c->die_sib)
6667 mark_dies (c);
6670 /* Clear the marks for a die and its children. */
6672 static void
6673 unmark_dies (dw_die_ref die)
6675 dw_die_ref c;
6677 gcc_assert (die->die_mark);
6679 die->die_mark = 0;
6680 for (c = die->die_child; c; c = c->die_sib)
6681 unmark_dies (c);
6684 /* Clear the marks for a die, its children and referred dies. */
6686 static void
6687 unmark_all_dies (dw_die_ref die)
6689 dw_die_ref c;
6690 dw_attr_ref a;
6692 if (!die->die_mark)
6693 return;
6694 die->die_mark = 0;
6696 for (c = die->die_child; c; c = c->die_sib)
6697 unmark_all_dies (c);
6699 for (a = die->die_attr; a; a = a->dw_attr_next)
6700 if (AT_class (a) == dw_val_class_die_ref)
6701 unmark_all_dies (AT_ref (a));
6704 /* Return the size of the .debug_pubnames table generated for the
6705 compilation unit. */
6707 static unsigned long
6708 size_of_pubnames (void)
6710 unsigned long size;
6711 unsigned i;
6713 size = DWARF_PUBNAMES_HEADER_SIZE;
6714 for (i = 0; i < pubname_table_in_use; i++)
6716 pubname_ref p = &pubname_table[i];
6717 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6720 size += DWARF_OFFSET_SIZE;
6721 return size;
6724 /* Return the size of the information in the .debug_aranges section. */
6726 static unsigned long
6727 size_of_aranges (void)
6729 unsigned long size;
6731 size = DWARF_ARANGES_HEADER_SIZE;
6733 /* Count the address/length pair for this compilation unit. */
6734 size += 2 * DWARF2_ADDR_SIZE;
6735 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6737 /* Count the two zero words used to terminated the address range table. */
6738 size += 2 * DWARF2_ADDR_SIZE;
6739 return size;
6742 /* Select the encoding of an attribute value. */
6744 static enum dwarf_form
6745 value_format (dw_attr_ref a)
6747 switch (a->dw_attr_val.val_class)
6749 case dw_val_class_addr:
6750 return DW_FORM_addr;
6751 case dw_val_class_range_list:
6752 case dw_val_class_offset:
6753 switch (DWARF_OFFSET_SIZE)
6755 case 4:
6756 return DW_FORM_data4;
6757 case 8:
6758 return DW_FORM_data8;
6759 default:
6760 gcc_unreachable ();
6762 case dw_val_class_loc_list:
6763 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6764 .debug_loc section */
6765 return DW_FORM_data4;
6766 case dw_val_class_loc:
6767 switch (constant_size (size_of_locs (AT_loc (a))))
6769 case 1:
6770 return DW_FORM_block1;
6771 case 2:
6772 return DW_FORM_block2;
6773 default:
6774 gcc_unreachable ();
6776 case dw_val_class_const:
6777 return DW_FORM_sdata;
6778 case dw_val_class_unsigned_const:
6779 switch (constant_size (AT_unsigned (a)))
6781 case 1:
6782 return DW_FORM_data1;
6783 case 2:
6784 return DW_FORM_data2;
6785 case 4:
6786 return DW_FORM_data4;
6787 case 8:
6788 return DW_FORM_data8;
6789 default:
6790 gcc_unreachable ();
6792 case dw_val_class_long_long:
6793 return DW_FORM_block1;
6794 case dw_val_class_vec:
6795 return DW_FORM_block1;
6796 case dw_val_class_flag:
6797 return DW_FORM_flag;
6798 case dw_val_class_die_ref:
6799 if (AT_ref_external (a))
6800 return DW_FORM_ref_addr;
6801 else
6802 return DW_FORM_ref;
6803 case dw_val_class_fde_ref:
6804 return DW_FORM_data;
6805 case dw_val_class_lbl_id:
6806 return DW_FORM_addr;
6807 case dw_val_class_lbl_offset:
6808 return DW_FORM_data;
6809 case dw_val_class_str:
6810 return AT_string_form (a);
6812 default:
6813 gcc_unreachable ();
6817 /* Output the encoding of an attribute value. */
6819 static void
6820 output_value_format (dw_attr_ref a)
6822 enum dwarf_form form = value_format (a);
6824 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6827 /* Output the .debug_abbrev section which defines the DIE abbreviation
6828 table. */
6830 static void
6831 output_abbrev_section (void)
6833 unsigned long abbrev_id;
6835 dw_attr_ref a_attr;
6837 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6839 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6841 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6842 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6843 dwarf_tag_name (abbrev->die_tag));
6845 if (abbrev->die_child != NULL)
6846 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6847 else
6848 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6850 for (a_attr = abbrev->die_attr; a_attr != NULL;
6851 a_attr = a_attr->dw_attr_next)
6853 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6854 dwarf_attr_name (a_attr->dw_attr));
6855 output_value_format (a_attr);
6858 dw2_asm_output_data (1, 0, NULL);
6859 dw2_asm_output_data (1, 0, NULL);
6862 /* Terminate the table. */
6863 dw2_asm_output_data (1, 0, NULL);
6866 /* Output a symbol we can use to refer to this DIE from another CU. */
6868 static inline void
6869 output_die_symbol (dw_die_ref die)
6871 char *sym = die->die_symbol;
6873 if (sym == 0)
6874 return;
6876 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6877 /* We make these global, not weak; if the target doesn't support
6878 .linkonce, it doesn't support combining the sections, so debugging
6879 will break. */
6880 targetm.asm_out.globalize_label (asm_out_file, sym);
6882 ASM_OUTPUT_LABEL (asm_out_file, sym);
6885 /* Return a new location list, given the begin and end range, and the
6886 expression. gensym tells us whether to generate a new internal symbol for
6887 this location list node, which is done for the head of the list only. */
6889 static inline dw_loc_list_ref
6890 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6891 const char *section, unsigned int gensym)
6893 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6895 retlist->begin = begin;
6896 retlist->end = end;
6897 retlist->expr = expr;
6898 retlist->section = section;
6899 if (gensym)
6900 retlist->ll_symbol = gen_internal_sym ("LLST");
6902 return retlist;
6905 /* Add a location description expression to a location list. */
6907 static inline void
6908 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6909 const char *begin, const char *end,
6910 const char *section)
6912 dw_loc_list_ref *d;
6914 /* Find the end of the chain. */
6915 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6918 /* Add a new location list node to the list. */
6919 *d = new_loc_list (descr, begin, end, section, 0);
6922 static void
6923 dwarf2out_switch_text_section (void)
6925 dw_fde_ref fde;
6927 gcc_assert (cfun);
6929 fde = &fde_table[fde_table_in_use - 1];
6930 fde->dw_fde_switched_sections = true;
6931 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6932 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6933 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6934 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6935 have_multiple_function_sections = true;
6938 /* Output the location list given to us. */
6940 static void
6941 output_loc_list (dw_loc_list_ref list_head)
6943 dw_loc_list_ref curr = list_head;
6945 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6947 /* Walk the location list, and output each range + expression. */
6948 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6950 unsigned long size;
6951 if (!have_multiple_function_sections)
6953 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6954 "Location list begin address (%s)",
6955 list_head->ll_symbol);
6956 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6957 "Location list end address (%s)",
6958 list_head->ll_symbol);
6960 else
6962 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6963 "Location list begin address (%s)",
6964 list_head->ll_symbol);
6965 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6966 "Location list end address (%s)",
6967 list_head->ll_symbol);
6969 size = size_of_locs (curr->expr);
6971 /* Output the block length for this list of location operations. */
6972 gcc_assert (size <= 0xffff);
6973 dw2_asm_output_data (2, size, "%s", "Location expression size");
6975 output_loc_sequence (curr->expr);
6978 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6979 "Location list terminator begin (%s)",
6980 list_head->ll_symbol);
6981 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6982 "Location list terminator end (%s)",
6983 list_head->ll_symbol);
6986 /* Output the DIE and its attributes. Called recursively to generate
6987 the definitions of each child DIE. */
6989 static void
6990 output_die (dw_die_ref die)
6992 dw_attr_ref a;
6993 dw_die_ref c;
6994 unsigned long size;
6996 /* If someone in another CU might refer to us, set up a symbol for
6997 them to point to. */
6998 if (die->die_symbol)
6999 output_die_symbol (die);
7001 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7002 die->die_offset, dwarf_tag_name (die->die_tag));
7004 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
7006 const char *name = dwarf_attr_name (a->dw_attr);
7008 switch (AT_class (a))
7010 case dw_val_class_addr:
7011 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7012 break;
7014 case dw_val_class_offset:
7015 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7016 "%s", name);
7017 break;
7019 case dw_val_class_range_list:
7021 char *p = strchr (ranges_section_label, '\0');
7023 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7024 a->dw_attr_val.v.val_offset);
7025 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7026 "%s", name);
7027 *p = '\0';
7029 break;
7031 case dw_val_class_loc:
7032 size = size_of_locs (AT_loc (a));
7034 /* Output the block length for this list of location operations. */
7035 dw2_asm_output_data (constant_size (size), size, "%s", name);
7037 output_loc_sequence (AT_loc (a));
7038 break;
7040 case dw_val_class_const:
7041 /* ??? It would be slightly more efficient to use a scheme like is
7042 used for unsigned constants below, but gdb 4.x does not sign
7043 extend. Gdb 5.x does sign extend. */
7044 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7045 break;
7047 case dw_val_class_unsigned_const:
7048 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7049 AT_unsigned (a), "%s", name);
7050 break;
7052 case dw_val_class_long_long:
7054 unsigned HOST_WIDE_INT first, second;
7056 dw2_asm_output_data (1,
7057 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7058 "%s", name);
7060 if (WORDS_BIG_ENDIAN)
7062 first = a->dw_attr_val.v.val_long_long.hi;
7063 second = a->dw_attr_val.v.val_long_long.low;
7065 else
7067 first = a->dw_attr_val.v.val_long_long.low;
7068 second = a->dw_attr_val.v.val_long_long.hi;
7071 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7072 first, "long long constant");
7073 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7074 second, NULL);
7076 break;
7078 case dw_val_class_vec:
7080 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7081 unsigned int len = a->dw_attr_val.v.val_vec.length;
7082 unsigned int i;
7083 unsigned char *p;
7085 dw2_asm_output_data (1, len * elt_size, "%s", name);
7086 if (elt_size > sizeof (HOST_WIDE_INT))
7088 elt_size /= 2;
7089 len *= 2;
7091 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7092 i < len;
7093 i++, p += elt_size)
7094 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7095 "fp or vector constant word %u", i);
7096 break;
7099 case dw_val_class_flag:
7100 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7101 break;
7103 case dw_val_class_loc_list:
7105 char *sym = AT_loc_list (a)->ll_symbol;
7107 gcc_assert (sym);
7108 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
7110 break;
7112 case dw_val_class_die_ref:
7113 if (AT_ref_external (a))
7115 char *sym = AT_ref (a)->die_symbol;
7117 gcc_assert (sym);
7118 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7120 else
7122 gcc_assert (AT_ref (a)->die_offset);
7123 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7124 "%s", name);
7126 break;
7128 case dw_val_class_fde_ref:
7130 char l1[20];
7132 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7133 a->dw_attr_val.v.val_fde_index * 2);
7134 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7136 break;
7138 case dw_val_class_lbl_id:
7139 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7140 break;
7142 case dw_val_class_lbl_offset:
7143 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7144 break;
7146 case dw_val_class_str:
7147 if (AT_string_form (a) == DW_FORM_strp)
7148 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7149 a->dw_attr_val.v.val_str->label,
7150 "%s: \"%s\"", name, AT_string (a));
7151 else
7152 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7153 break;
7155 default:
7156 gcc_unreachable ();
7160 for (c = die->die_child; c != NULL; c = c->die_sib)
7161 output_die (c);
7163 /* Add null byte to terminate sibling list. */
7164 if (die->die_child != NULL)
7165 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7166 die->die_offset);
7169 /* Output the compilation unit that appears at the beginning of the
7170 .debug_info section, and precedes the DIE descriptions. */
7172 static void
7173 output_compilation_unit_header (void)
7175 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7176 dw2_asm_output_data (4, 0xffffffff,
7177 "Initial length escape value indicating 64-bit DWARF extension");
7178 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7179 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7180 "Length of Compilation Unit Info");
7181 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7182 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7183 "Offset Into Abbrev. Section");
7184 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7187 /* Output the compilation unit DIE and its children. */
7189 static void
7190 output_comp_unit (dw_die_ref die, int output_if_empty)
7192 const char *secname;
7193 char *oldsym, *tmp;
7195 /* Unless we are outputting main CU, we may throw away empty ones. */
7196 if (!output_if_empty && die->die_child == NULL)
7197 return;
7199 /* Even if there are no children of this DIE, we must output the information
7200 about the compilation unit. Otherwise, on an empty translation unit, we
7201 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7202 will then complain when examining the file. First mark all the DIEs in
7203 this CU so we know which get local refs. */
7204 mark_dies (die);
7206 build_abbrev_table (die);
7208 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7209 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7210 calc_die_sizes (die);
7212 oldsym = die->die_symbol;
7213 if (oldsym)
7215 tmp = alloca (strlen (oldsym) + 24);
7217 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7218 secname = tmp;
7219 die->die_symbol = NULL;
7220 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7222 else
7223 switch_to_section (debug_info_section);
7225 /* Output debugging information. */
7226 output_compilation_unit_header ();
7227 output_die (die);
7229 /* Leave the marks on the main CU, so we can check them in
7230 output_pubnames. */
7231 if (oldsym)
7233 unmark_dies (die);
7234 die->die_symbol = oldsym;
7238 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7239 output of lang_hooks.decl_printable_name for C++ looks like
7240 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7242 static const char *
7243 dwarf2_name (tree decl, int scope)
7245 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7248 /* Add a new entry to .debug_pubnames if appropriate. */
7250 static void
7251 add_pubname (tree decl, dw_die_ref die)
7253 pubname_ref p;
7255 if (! TREE_PUBLIC (decl))
7256 return;
7258 if (pubname_table_in_use == pubname_table_allocated)
7260 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7261 pubname_table
7262 = ggc_realloc (pubname_table,
7263 (pubname_table_allocated * sizeof (pubname_entry)));
7264 memset (pubname_table + pubname_table_in_use, 0,
7265 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7268 p = &pubname_table[pubname_table_in_use++];
7269 p->die = die;
7270 p->name = xstrdup (dwarf2_name (decl, 1));
7273 /* Output the public names table used to speed up access to externally
7274 visible names. For now, only generate entries for externally
7275 visible procedures. */
7277 static void
7278 output_pubnames (void)
7280 unsigned i;
7281 unsigned long pubnames_length = size_of_pubnames ();
7283 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7284 dw2_asm_output_data (4, 0xffffffff,
7285 "Initial length escape value indicating 64-bit DWARF extension");
7286 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7287 "Length of Public Names Info");
7288 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7289 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7290 "Offset of Compilation Unit Info");
7291 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7292 "Compilation Unit Length");
7294 for (i = 0; i < pubname_table_in_use; i++)
7296 pubname_ref pub = &pubname_table[i];
7298 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7299 gcc_assert (pub->die->die_mark);
7301 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7302 "DIE offset");
7304 dw2_asm_output_nstring (pub->name, -1, "external name");
7307 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7310 /* Add a new entry to .debug_aranges if appropriate. */
7312 static void
7313 add_arange (tree decl, dw_die_ref die)
7315 if (! DECL_SECTION_NAME (decl))
7316 return;
7318 if (arange_table_in_use == arange_table_allocated)
7320 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7321 arange_table = ggc_realloc (arange_table,
7322 (arange_table_allocated
7323 * sizeof (dw_die_ref)));
7324 memset (arange_table + arange_table_in_use, 0,
7325 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7328 arange_table[arange_table_in_use++] = die;
7331 /* Output the information that goes into the .debug_aranges table.
7332 Namely, define the beginning and ending address range of the
7333 text section generated for this compilation unit. */
7335 static void
7336 output_aranges (void)
7338 unsigned i;
7339 unsigned long aranges_length = size_of_aranges ();
7341 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7342 dw2_asm_output_data (4, 0xffffffff,
7343 "Initial length escape value indicating 64-bit DWARF extension");
7344 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7345 "Length of Address Ranges Info");
7346 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7347 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7348 "Offset of Compilation Unit Info");
7349 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7350 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7352 /* We need to align to twice the pointer size here. */
7353 if (DWARF_ARANGES_PAD_SIZE)
7355 /* Pad using a 2 byte words so that padding is correct for any
7356 pointer size. */
7357 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7358 2 * DWARF2_ADDR_SIZE);
7359 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7360 dw2_asm_output_data (2, 0, NULL);
7363 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7364 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7365 text_section_label, "Length");
7366 if (flag_reorder_blocks_and_partition)
7368 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7369 "Address");
7370 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7371 cold_text_section_label, "Length");
7374 for (i = 0; i < arange_table_in_use; i++)
7376 dw_die_ref die = arange_table[i];
7378 /* We shouldn't see aranges for DIEs outside of the main CU. */
7379 gcc_assert (die->die_mark);
7381 if (die->die_tag == DW_TAG_subprogram)
7383 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7384 "Address");
7385 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7386 get_AT_low_pc (die), "Length");
7388 else
7390 /* A static variable; extract the symbol from DW_AT_location.
7391 Note that this code isn't currently hit, as we only emit
7392 aranges for functions (jason 9/23/99). */
7393 dw_attr_ref a = get_AT (die, DW_AT_location);
7394 dw_loc_descr_ref loc;
7396 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7398 loc = AT_loc (a);
7399 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7401 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7402 loc->dw_loc_oprnd1.v.val_addr, "Address");
7403 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7404 get_AT_unsigned (die, DW_AT_byte_size),
7405 "Length");
7409 /* Output the terminator words. */
7410 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7411 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7414 /* Add a new entry to .debug_ranges. Return the offset at which it
7415 was placed. */
7417 static unsigned int
7418 add_ranges (tree block)
7420 unsigned int in_use = ranges_table_in_use;
7422 if (in_use == ranges_table_allocated)
7424 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7425 ranges_table
7426 = ggc_realloc (ranges_table, (ranges_table_allocated
7427 * sizeof (struct dw_ranges_struct)));
7428 memset (ranges_table + ranges_table_in_use, 0,
7429 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7432 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7433 ranges_table_in_use = in_use + 1;
7435 return in_use * 2 * DWARF2_ADDR_SIZE;
7438 static void
7439 output_ranges (void)
7441 unsigned i;
7442 static const char *const start_fmt = "Offset 0x%x";
7443 const char *fmt = start_fmt;
7445 for (i = 0; i < ranges_table_in_use; i++)
7447 int block_num = ranges_table[i].block_num;
7449 if (block_num)
7451 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7452 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7454 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7455 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7457 /* If all code is in the text section, then the compilation
7458 unit base address defaults to DW_AT_low_pc, which is the
7459 base of the text section. */
7460 if (!have_multiple_function_sections)
7462 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7463 text_section_label,
7464 fmt, i * 2 * DWARF2_ADDR_SIZE);
7465 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7466 text_section_label, NULL);
7469 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7470 compilation unit base address to zero, which allows us to
7471 use absolute addresses, and not worry about whether the
7472 target supports cross-section arithmetic. */
7473 else
7475 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7476 fmt, i * 2 * DWARF2_ADDR_SIZE);
7477 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7480 fmt = NULL;
7482 else
7484 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7485 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7486 fmt = start_fmt;
7491 /* Data structure containing information about input files. */
7492 struct file_info
7494 char *path; /* Complete file name. */
7495 char *fname; /* File name part. */
7496 int length; /* Length of entire string. */
7497 int file_idx; /* Index in input file table. */
7498 int dir_idx; /* Index in directory table. */
7501 /* Data structure containing information about directories with source
7502 files. */
7503 struct dir_info
7505 char *path; /* Path including directory name. */
7506 int length; /* Path length. */
7507 int prefix; /* Index of directory entry which is a prefix. */
7508 int count; /* Number of files in this directory. */
7509 int dir_idx; /* Index of directory used as base. */
7510 int used; /* Used in the end? */
7513 /* Callback function for file_info comparison. We sort by looking at
7514 the directories in the path. */
7516 static int
7517 file_info_cmp (const void *p1, const void *p2)
7519 const struct file_info *s1 = p1;
7520 const struct file_info *s2 = p2;
7521 unsigned char *cp1;
7522 unsigned char *cp2;
7524 /* Take care of file names without directories. We need to make sure that
7525 we return consistent values to qsort since some will get confused if
7526 we return the same value when identical operands are passed in opposite
7527 orders. So if neither has a directory, return 0 and otherwise return
7528 1 or -1 depending on which one has the directory. */
7529 if ((s1->path == s1->fname || s2->path == s2->fname))
7530 return (s2->path == s2->fname) - (s1->path == s1->fname);
7532 cp1 = (unsigned char *) s1->path;
7533 cp2 = (unsigned char *) s2->path;
7535 while (1)
7537 ++cp1;
7538 ++cp2;
7539 /* Reached the end of the first path? If so, handle like above. */
7540 if ((cp1 == (unsigned char *) s1->fname)
7541 || (cp2 == (unsigned char *) s2->fname))
7542 return ((cp2 == (unsigned char *) s2->fname)
7543 - (cp1 == (unsigned char *) s1->fname));
7545 /* Character of current path component the same? */
7546 else if (*cp1 != *cp2)
7547 return *cp1 - *cp2;
7551 /* Output the directory table and the file name table. We try to minimize
7552 the total amount of memory needed. A heuristic is used to avoid large
7553 slowdowns with many input files. */
7555 static void
7556 output_file_names (void)
7558 struct file_info *files;
7559 struct dir_info *dirs;
7560 int *saved;
7561 int *savehere;
7562 int *backmap;
7563 size_t ndirs;
7564 int idx_offset;
7565 size_t i;
7566 int idx;
7568 /* Handle the case where file_table is empty. */
7569 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7571 dw2_asm_output_data (1, 0, "End directory table");
7572 dw2_asm_output_data (1, 0, "End file name table");
7573 return;
7576 /* Allocate the various arrays we need. */
7577 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7578 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7580 /* Sort the file names. */
7581 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7583 char *f;
7585 /* Skip all leading "./". */
7586 f = VARRAY_CHAR_PTR (file_table, i);
7587 while (f[0] == '.' && f[1] == '/')
7588 f += 2;
7590 /* Create a new array entry. */
7591 files[i].path = f;
7592 files[i].length = strlen (f);
7593 files[i].file_idx = i;
7595 /* Search for the file name part. */
7596 f = strrchr (f, '/');
7597 files[i].fname = f == NULL ? files[i].path : f + 1;
7600 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7601 sizeof (files[0]), file_info_cmp);
7603 /* Find all the different directories used. */
7604 dirs[0].path = files[1].path;
7605 dirs[0].length = files[1].fname - files[1].path;
7606 dirs[0].prefix = -1;
7607 dirs[0].count = 1;
7608 dirs[0].dir_idx = 0;
7609 dirs[0].used = 0;
7610 files[1].dir_idx = 0;
7611 ndirs = 1;
7613 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7614 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7615 && memcmp (dirs[ndirs - 1].path, files[i].path,
7616 dirs[ndirs - 1].length) == 0)
7618 /* Same directory as last entry. */
7619 files[i].dir_idx = ndirs - 1;
7620 ++dirs[ndirs - 1].count;
7622 else
7624 size_t j;
7626 /* This is a new directory. */
7627 dirs[ndirs].path = files[i].path;
7628 dirs[ndirs].length = files[i].fname - files[i].path;
7629 dirs[ndirs].count = 1;
7630 dirs[ndirs].dir_idx = ndirs;
7631 dirs[ndirs].used = 0;
7632 files[i].dir_idx = ndirs;
7634 /* Search for a prefix. */
7635 dirs[ndirs].prefix = -1;
7636 for (j = 0; j < ndirs; j++)
7637 if (dirs[j].length < dirs[ndirs].length
7638 && dirs[j].length > 1
7639 && (dirs[ndirs].prefix == -1
7640 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7641 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7642 dirs[ndirs].prefix = j;
7644 ++ndirs;
7647 /* Now to the actual work. We have to find a subset of the directories which
7648 allow expressing the file name using references to the directory table
7649 with the least amount of characters. We do not do an exhaustive search
7650 where we would have to check out every combination of every single
7651 possible prefix. Instead we use a heuristic which provides nearly optimal
7652 results in most cases and never is much off. */
7653 saved = alloca (ndirs * sizeof (int));
7654 savehere = alloca (ndirs * sizeof (int));
7656 memset (saved, '\0', ndirs * sizeof (saved[0]));
7657 for (i = 0; i < ndirs; i++)
7659 size_t j;
7660 int total;
7662 /* We can always save some space for the current directory. But this
7663 does not mean it will be enough to justify adding the directory. */
7664 savehere[i] = dirs[i].length;
7665 total = (savehere[i] - saved[i]) * dirs[i].count;
7667 for (j = i + 1; j < ndirs; j++)
7669 savehere[j] = 0;
7670 if (saved[j] < dirs[i].length)
7672 /* Determine whether the dirs[i] path is a prefix of the
7673 dirs[j] path. */
7674 int k;
7676 k = dirs[j].prefix;
7677 while (k != -1 && k != (int) i)
7678 k = dirs[k].prefix;
7680 if (k == (int) i)
7682 /* Yes it is. We can possibly safe some memory but
7683 writing the filenames in dirs[j] relative to
7684 dirs[i]. */
7685 savehere[j] = dirs[i].length;
7686 total += (savehere[j] - saved[j]) * dirs[j].count;
7691 /* Check whether we can safe enough to justify adding the dirs[i]
7692 directory. */
7693 if (total > dirs[i].length + 1)
7695 /* It's worthwhile adding. */
7696 for (j = i; j < ndirs; j++)
7697 if (savehere[j] > 0)
7699 /* Remember how much we saved for this directory so far. */
7700 saved[j] = savehere[j];
7702 /* Remember the prefix directory. */
7703 dirs[j].dir_idx = i;
7708 /* We have to emit them in the order they appear in the file_table array
7709 since the index is used in the debug info generation. To do this
7710 efficiently we generate a back-mapping of the indices first. */
7711 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7712 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7714 backmap[files[i].file_idx] = i;
7716 /* Mark this directory as used. */
7717 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7720 /* That was it. We are ready to emit the information. First emit the
7721 directory name table. We have to make sure the first actually emitted
7722 directory name has index one; zero is reserved for the current working
7723 directory. Make sure we do not confuse these indices with the one for the
7724 constructed table (even though most of the time they are identical). */
7725 idx = 1;
7726 idx_offset = dirs[0].length > 0 ? 1 : 0;
7727 for (i = 1 - idx_offset; i < ndirs; i++)
7728 if (dirs[i].used != 0)
7730 dirs[i].used = idx++;
7731 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7732 "Directory Entry: 0x%x", dirs[i].used);
7735 dw2_asm_output_data (1, 0, "End directory table");
7737 /* Correct the index for the current working directory entry if it
7738 exists. */
7739 if (idx_offset == 0)
7740 dirs[0].used = 0;
7742 /* Now write all the file names. */
7743 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7745 int file_idx = backmap[i];
7746 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7748 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7749 "File Entry: 0x%lx", (unsigned long) i);
7751 /* Include directory index. */
7752 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7754 /* Modification time. */
7755 dw2_asm_output_data_uleb128 (0, NULL);
7757 /* File length in bytes. */
7758 dw2_asm_output_data_uleb128 (0, NULL);
7761 dw2_asm_output_data (1, 0, "End file name table");
7765 /* Output the source line number correspondence information. This
7766 information goes into the .debug_line section. */
7768 static void
7769 output_line_info (void)
7771 char l1[20], l2[20], p1[20], p2[20];
7772 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7773 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7774 unsigned opc;
7775 unsigned n_op_args;
7776 unsigned long lt_index;
7777 unsigned long current_line;
7778 long line_offset;
7779 long line_delta;
7780 unsigned long current_file;
7781 unsigned long function;
7783 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7784 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7785 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7786 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7788 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7789 dw2_asm_output_data (4, 0xffffffff,
7790 "Initial length escape value indicating 64-bit DWARF extension");
7791 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7792 "Length of Source Line Info");
7793 ASM_OUTPUT_LABEL (asm_out_file, l1);
7795 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7796 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7797 ASM_OUTPUT_LABEL (asm_out_file, p1);
7799 /* Define the architecture-dependent minimum instruction length (in
7800 bytes). In this implementation of DWARF, this field is used for
7801 information purposes only. Since GCC generates assembly language,
7802 we have no a priori knowledge of how many instruction bytes are
7803 generated for each source line, and therefore can use only the
7804 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7805 commands. Accordingly, we fix this as `1', which is "correct
7806 enough" for all architectures, and don't let the target override. */
7807 dw2_asm_output_data (1, 1,
7808 "Minimum Instruction Length");
7810 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7811 "Default is_stmt_start flag");
7812 dw2_asm_output_data (1, DWARF_LINE_BASE,
7813 "Line Base Value (Special Opcodes)");
7814 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7815 "Line Range Value (Special Opcodes)");
7816 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7817 "Special Opcode Base");
7819 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7821 switch (opc)
7823 case DW_LNS_advance_pc:
7824 case DW_LNS_advance_line:
7825 case DW_LNS_set_file:
7826 case DW_LNS_set_column:
7827 case DW_LNS_fixed_advance_pc:
7828 n_op_args = 1;
7829 break;
7830 default:
7831 n_op_args = 0;
7832 break;
7835 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7836 opc, n_op_args);
7839 /* Write out the information about the files we use. */
7840 output_file_names ();
7841 ASM_OUTPUT_LABEL (asm_out_file, p2);
7843 /* We used to set the address register to the first location in the text
7844 section here, but that didn't accomplish anything since we already
7845 have a line note for the opening brace of the first function. */
7847 /* Generate the line number to PC correspondence table, encoded as
7848 a series of state machine operations. */
7849 current_file = 1;
7850 current_line = 1;
7852 if (cfun && in_cold_section_p)
7853 strcpy (prev_line_label, cfun->cold_section_label);
7854 else
7855 strcpy (prev_line_label, text_section_label);
7856 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7858 dw_line_info_ref line_info = &line_info_table[lt_index];
7860 #if 0
7861 /* Disable this optimization for now; GDB wants to see two line notes
7862 at the beginning of a function so it can find the end of the
7863 prologue. */
7865 /* Don't emit anything for redundant notes. Just updating the
7866 address doesn't accomplish anything, because we already assume
7867 that anything after the last address is this line. */
7868 if (line_info->dw_line_num == current_line
7869 && line_info->dw_file_num == current_file)
7870 continue;
7871 #endif
7873 /* Emit debug info for the address of the current line.
7875 Unfortunately, we have little choice here currently, and must always
7876 use the most general form. GCC does not know the address delta
7877 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7878 attributes which will give an upper bound on the address range. We
7879 could perhaps use length attributes to determine when it is safe to
7880 use DW_LNS_fixed_advance_pc. */
7882 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7883 if (0)
7885 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7886 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7887 "DW_LNS_fixed_advance_pc");
7888 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7890 else
7892 /* This can handle any delta. This takes
7893 4+DWARF2_ADDR_SIZE bytes. */
7894 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7895 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7896 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7897 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7900 strcpy (prev_line_label, line_label);
7902 /* Emit debug info for the source file of the current line, if
7903 different from the previous line. */
7904 if (line_info->dw_file_num != current_file)
7906 current_file = line_info->dw_file_num;
7907 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7908 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7909 VARRAY_CHAR_PTR (file_table,
7910 current_file));
7913 /* Emit debug info for the current line number, choosing the encoding
7914 that uses the least amount of space. */
7915 if (line_info->dw_line_num != current_line)
7917 line_offset = line_info->dw_line_num - current_line;
7918 line_delta = line_offset - DWARF_LINE_BASE;
7919 current_line = line_info->dw_line_num;
7920 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7921 /* This can handle deltas from -10 to 234, using the current
7922 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7923 takes 1 byte. */
7924 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7925 "line %lu", current_line);
7926 else
7928 /* This can handle any delta. This takes at least 4 bytes,
7929 depending on the value being encoded. */
7930 dw2_asm_output_data (1, DW_LNS_advance_line,
7931 "advance to line %lu", current_line);
7932 dw2_asm_output_data_sleb128 (line_offset, NULL);
7933 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7936 else
7937 /* We still need to start a new row, so output a copy insn. */
7938 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7941 /* Emit debug info for the address of the end of the function. */
7942 if (0)
7944 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7945 "DW_LNS_fixed_advance_pc");
7946 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7948 else
7950 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7951 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7952 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7953 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7956 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7957 dw2_asm_output_data_uleb128 (1, NULL);
7958 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7960 function = 0;
7961 current_file = 1;
7962 current_line = 1;
7963 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7965 dw_separate_line_info_ref line_info
7966 = &separate_line_info_table[lt_index];
7968 #if 0
7969 /* Don't emit anything for redundant notes. */
7970 if (line_info->dw_line_num == current_line
7971 && line_info->dw_file_num == current_file
7972 && line_info->function == function)
7973 goto cont;
7974 #endif
7976 /* Emit debug info for the address of the current line. If this is
7977 a new function, or the first line of a function, then we need
7978 to handle it differently. */
7979 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7980 lt_index);
7981 if (function != line_info->function)
7983 function = line_info->function;
7985 /* Set the address register to the first line in the function. */
7986 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7987 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7988 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7989 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7991 else
7993 /* ??? See the DW_LNS_advance_pc comment above. */
7994 if (0)
7996 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7997 "DW_LNS_fixed_advance_pc");
7998 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8000 else
8002 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8003 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8004 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8005 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8009 strcpy (prev_line_label, line_label);
8011 /* Emit debug info for the source file of the current line, if
8012 different from the previous line. */
8013 if (line_info->dw_file_num != current_file)
8015 current_file = line_info->dw_file_num;
8016 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8017 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
8018 VARRAY_CHAR_PTR (file_table,
8019 current_file));
8022 /* Emit debug info for the current line number, choosing the encoding
8023 that uses the least amount of space. */
8024 if (line_info->dw_line_num != current_line)
8026 line_offset = line_info->dw_line_num - current_line;
8027 line_delta = line_offset - DWARF_LINE_BASE;
8028 current_line = line_info->dw_line_num;
8029 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8030 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8031 "line %lu", current_line);
8032 else
8034 dw2_asm_output_data (1, DW_LNS_advance_line,
8035 "advance to line %lu", current_line);
8036 dw2_asm_output_data_sleb128 (line_offset, NULL);
8037 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8040 else
8041 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8043 #if 0
8044 cont:
8045 #endif
8047 lt_index++;
8049 /* If we're done with a function, end its sequence. */
8050 if (lt_index == separate_line_info_table_in_use
8051 || separate_line_info_table[lt_index].function != function)
8053 current_file = 1;
8054 current_line = 1;
8056 /* Emit debug info for the address of the end of the function. */
8057 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8058 if (0)
8060 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8061 "DW_LNS_fixed_advance_pc");
8062 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8064 else
8066 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8067 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8068 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8069 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8072 /* Output the marker for the end of this sequence. */
8073 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8074 dw2_asm_output_data_uleb128 (1, NULL);
8075 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8079 /* Output the marker for the end of the line number info. */
8080 ASM_OUTPUT_LABEL (asm_out_file, l2);
8083 /* Given a pointer to a tree node for some base type, return a pointer to
8084 a DIE that describes the given type.
8086 This routine must only be called for GCC type nodes that correspond to
8087 Dwarf base (fundamental) types. */
8089 static dw_die_ref
8090 base_type_die (tree type)
8092 dw_die_ref base_type_result;
8093 enum dwarf_type encoding;
8095 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8096 return 0;
8098 switch (TREE_CODE (type))
8100 case INTEGER_TYPE:
8101 if (TYPE_STRING_FLAG (type))
8103 if (TYPE_UNSIGNED (type))
8104 encoding = DW_ATE_unsigned_char;
8105 else
8106 encoding = DW_ATE_signed_char;
8108 else if (TYPE_UNSIGNED (type))
8109 encoding = DW_ATE_unsigned;
8110 else
8111 encoding = DW_ATE_signed;
8112 break;
8114 case REAL_TYPE:
8115 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8116 encoding = DW_ATE_decimal_float;
8117 else
8118 encoding = DW_ATE_float;
8119 break;
8121 /* Dwarf2 doesn't know anything about complex ints, so use
8122 a user defined type for it. */
8123 case COMPLEX_TYPE:
8124 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8125 encoding = DW_ATE_complex_float;
8126 else
8127 encoding = DW_ATE_lo_user;
8128 break;
8130 case BOOLEAN_TYPE:
8131 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8132 encoding = DW_ATE_boolean;
8133 break;
8135 default:
8136 /* No other TREE_CODEs are Dwarf fundamental types. */
8137 gcc_unreachable ();
8140 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8142 /* This probably indicates a bug. */
8143 if (! TYPE_NAME (type))
8144 add_name_attribute (base_type_result, "__unknown__");
8146 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8147 int_size_in_bytes (type));
8148 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8150 return base_type_result;
8153 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8154 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8155 a given type is generally the same as the given type, except that if the
8156 given type is a pointer or reference type, then the root type of the given
8157 type is the root type of the "basis" type for the pointer or reference
8158 type. (This definition of the "root" type is recursive.) Also, the root
8159 type of a `const' qualified type or a `volatile' qualified type is the
8160 root type of the given type without the qualifiers. */
8162 static tree
8163 root_type (tree type)
8165 if (TREE_CODE (type) == ERROR_MARK)
8166 return error_mark_node;
8168 switch (TREE_CODE (type))
8170 case ERROR_MARK:
8171 return error_mark_node;
8173 case POINTER_TYPE:
8174 case REFERENCE_TYPE:
8175 return type_main_variant (root_type (TREE_TYPE (type)));
8177 default:
8178 return type_main_variant (type);
8182 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8183 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8185 static inline int
8186 is_base_type (tree type)
8188 switch (TREE_CODE (type))
8190 case ERROR_MARK:
8191 case VOID_TYPE:
8192 case INTEGER_TYPE:
8193 case REAL_TYPE:
8194 case COMPLEX_TYPE:
8195 case BOOLEAN_TYPE:
8196 return 1;
8198 case ARRAY_TYPE:
8199 case RECORD_TYPE:
8200 case UNION_TYPE:
8201 case QUAL_UNION_TYPE:
8202 case ENUMERAL_TYPE:
8203 case FUNCTION_TYPE:
8204 case METHOD_TYPE:
8205 case POINTER_TYPE:
8206 case REFERENCE_TYPE:
8207 case OFFSET_TYPE:
8208 case LANG_TYPE:
8209 case VECTOR_TYPE:
8210 return 0;
8212 default:
8213 gcc_unreachable ();
8216 return 0;
8219 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8220 node, return the size in bits for the type if it is a constant, or else
8221 return the alignment for the type if the type's size is not constant, or
8222 else return BITS_PER_WORD if the type actually turns out to be an
8223 ERROR_MARK node. */
8225 static inline unsigned HOST_WIDE_INT
8226 simple_type_size_in_bits (tree type)
8228 if (TREE_CODE (type) == ERROR_MARK)
8229 return BITS_PER_WORD;
8230 else if (TYPE_SIZE (type) == NULL_TREE)
8231 return 0;
8232 else if (host_integerp (TYPE_SIZE (type), 1))
8233 return tree_low_cst (TYPE_SIZE (type), 1);
8234 else
8235 return TYPE_ALIGN (type);
8238 /* Return true if the debug information for the given type should be
8239 emitted as a subrange type. */
8241 static inline bool
8242 is_subrange_type (tree type)
8244 tree subtype = TREE_TYPE (type);
8246 /* Subrange types are identified by the fact that they are integer
8247 types, and that they have a subtype which is either an integer type
8248 or an enumeral type. */
8250 if (TREE_CODE (type) != INTEGER_TYPE
8251 || subtype == NULL_TREE)
8252 return false;
8254 if (TREE_CODE (subtype) != INTEGER_TYPE
8255 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8256 return false;
8258 if (TREE_CODE (type) == TREE_CODE (subtype)
8259 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8260 && TYPE_MIN_VALUE (type) != NULL
8261 && TYPE_MIN_VALUE (subtype) != NULL
8262 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8263 && TYPE_MAX_VALUE (type) != NULL
8264 && TYPE_MAX_VALUE (subtype) != NULL
8265 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8267 /* The type and its subtype have the same representation. If in
8268 addition the two types also have the same name, then the given
8269 type is not a subrange type, but rather a plain base type. */
8270 /* FIXME: brobecker/2004-03-22:
8271 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8272 therefore be sufficient to check the TYPE_SIZE node pointers
8273 rather than checking the actual size. Unfortunately, we have
8274 found some cases, such as in the Ada "integer" type, where
8275 this is not the case. Until this problem is solved, we need to
8276 keep checking the actual size. */
8277 tree type_name = TYPE_NAME (type);
8278 tree subtype_name = TYPE_NAME (subtype);
8280 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8281 type_name = DECL_NAME (type_name);
8283 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8284 subtype_name = DECL_NAME (subtype_name);
8286 if (type_name == subtype_name)
8287 return false;
8290 return true;
8293 /* Given a pointer to a tree node for a subrange type, return a pointer
8294 to a DIE that describes the given type. */
8296 static dw_die_ref
8297 subrange_type_die (tree type, dw_die_ref context_die)
8299 dw_die_ref subrange_die;
8300 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8302 if (context_die == NULL)
8303 context_die = comp_unit_die;
8305 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8307 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8309 /* The size of the subrange type and its base type do not match,
8310 so we need to generate a size attribute for the subrange type. */
8311 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8314 if (TYPE_MIN_VALUE (type) != NULL)
8315 add_bound_info (subrange_die, DW_AT_lower_bound,
8316 TYPE_MIN_VALUE (type));
8317 if (TYPE_MAX_VALUE (type) != NULL)
8318 add_bound_info (subrange_die, DW_AT_upper_bound,
8319 TYPE_MAX_VALUE (type));
8321 return subrange_die;
8324 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8325 entry that chains various modifiers in front of the given type. */
8327 static dw_die_ref
8328 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8329 dw_die_ref context_die)
8331 enum tree_code code = TREE_CODE (type);
8332 dw_die_ref mod_type_die;
8333 dw_die_ref sub_die = NULL;
8334 tree item_type = NULL;
8335 tree qualified_type;
8336 tree name;
8338 if (code == ERROR_MARK)
8339 return NULL;
8341 /* See if we already have the appropriately qualified variant of
8342 this type. */
8343 qualified_type
8344 = get_qualified_type (type,
8345 ((is_const_type ? TYPE_QUAL_CONST : 0)
8346 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8348 /* If we do, then we can just use its DIE, if it exists. */
8349 if (qualified_type)
8351 mod_type_die = lookup_type_die (qualified_type);
8352 if (mod_type_die)
8353 return mod_type_die;
8356 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8358 /* Handle C typedef types. */
8359 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8361 tree dtype = TREE_TYPE (name);
8363 if (qualified_type == dtype)
8365 /* For a named type, use the typedef. */
8366 gen_type_die (qualified_type, context_die);
8367 return lookup_type_die (qualified_type);
8369 else if (DECL_ORIGINAL_TYPE (name)
8370 && (is_const_type < TYPE_READONLY (dtype)
8371 || is_volatile_type < TYPE_VOLATILE (dtype)))
8372 /* cv-unqualified version of named type. Just use the unnamed
8373 type to which it refers. */
8374 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8375 is_const_type, is_volatile_type,
8376 context_die);
8377 /* Else cv-qualified version of named type; fall through. */
8380 if (is_const_type)
8382 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8383 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8385 else if (is_volatile_type)
8387 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8388 sub_die = modified_type_die (type, 0, 0, context_die);
8390 else if (code == POINTER_TYPE)
8392 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8393 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8394 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8395 item_type = TREE_TYPE (type);
8397 else if (code == REFERENCE_TYPE)
8399 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8400 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8401 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8402 item_type = TREE_TYPE (type);
8404 else if (is_subrange_type (type))
8406 mod_type_die = subrange_type_die (type, context_die);
8407 item_type = TREE_TYPE (type);
8409 else if (is_base_type (type))
8410 mod_type_die = base_type_die (type);
8411 else
8413 gen_type_die (type, context_die);
8415 /* We have to get the type_main_variant here (and pass that to the
8416 `lookup_type_die' routine) because the ..._TYPE node we have
8417 might simply be a *copy* of some original type node (where the
8418 copy was created to help us keep track of typedef names) and
8419 that copy might have a different TYPE_UID from the original
8420 ..._TYPE node. */
8421 if (TREE_CODE (type) != VECTOR_TYPE)
8422 return lookup_type_die (type_main_variant (type));
8423 else
8424 /* Vectors have the debugging information in the type,
8425 not the main variant. */
8426 return lookup_type_die (type);
8429 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8430 don't output a DW_TAG_typedef, since there isn't one in the
8431 user's program; just attach a DW_AT_name to the type. */
8432 if (name
8433 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8435 if (TREE_CODE (name) == TYPE_DECL)
8436 /* Could just call add_name_and_src_coords_attributes here,
8437 but since this is a builtin type it doesn't have any
8438 useful source coordinates anyway. */
8439 name = DECL_NAME (name);
8440 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8443 if (qualified_type)
8444 equate_type_number_to_die (qualified_type, mod_type_die);
8446 if (item_type)
8447 /* We must do this after the equate_type_number_to_die call, in case
8448 this is a recursive type. This ensures that the modified_type_die
8449 recursion will terminate even if the type is recursive. Recursive
8450 types are possible in Ada. */
8451 sub_die = modified_type_die (item_type,
8452 TYPE_READONLY (item_type),
8453 TYPE_VOLATILE (item_type),
8454 context_die);
8456 if (sub_die != NULL)
8457 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8459 return mod_type_die;
8462 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8463 an enumerated type. */
8465 static inline int
8466 type_is_enum (tree type)
8468 return TREE_CODE (type) == ENUMERAL_TYPE;
8471 /* Return the DBX register number described by a given RTL node. */
8473 static unsigned int
8474 dbx_reg_number (rtx rtl)
8476 unsigned regno = REGNO (rtl);
8478 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8480 #ifdef LEAF_REG_REMAP
8481 regno = LEAF_REG_REMAP (regno);
8482 #endif
8484 return DBX_REGISTER_NUMBER (regno);
8487 /* Optionally add a DW_OP_piece term to a location description expression.
8488 DW_OP_piece is only added if the location description expression already
8489 doesn't end with DW_OP_piece. */
8491 static void
8492 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8494 dw_loc_descr_ref loc;
8496 if (*list_head != NULL)
8498 /* Find the end of the chain. */
8499 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8502 if (loc->dw_loc_opc != DW_OP_piece)
8503 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8507 /* Return a location descriptor that designates a machine register or
8508 zero if there is none. */
8510 static dw_loc_descr_ref
8511 reg_loc_descriptor (rtx rtl)
8513 rtx regs;
8515 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8516 return 0;
8518 regs = targetm.dwarf_register_span (rtl);
8520 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8521 return multiple_reg_loc_descriptor (rtl, regs);
8522 else
8523 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8526 /* Return a location descriptor that designates a machine register for
8527 a given hard register number. */
8529 static dw_loc_descr_ref
8530 one_reg_loc_descriptor (unsigned int regno)
8532 if (regno <= 31)
8533 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8534 else
8535 return new_loc_descr (DW_OP_regx, regno, 0);
8538 /* Given an RTL of a register, return a location descriptor that
8539 designates a value that spans more than one register. */
8541 static dw_loc_descr_ref
8542 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8544 int nregs, size, i;
8545 unsigned reg;
8546 dw_loc_descr_ref loc_result = NULL;
8548 reg = REGNO (rtl);
8549 #ifdef LEAF_REG_REMAP
8550 reg = LEAF_REG_REMAP (reg);
8551 #endif
8552 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8553 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8555 /* Simple, contiguous registers. */
8556 if (regs == NULL_RTX)
8558 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8560 loc_result = NULL;
8561 while (nregs--)
8563 dw_loc_descr_ref t;
8565 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8566 add_loc_descr (&loc_result, t);
8567 add_loc_descr_op_piece (&loc_result, size);
8568 ++reg;
8570 return loc_result;
8573 /* Now onto stupid register sets in non contiguous locations. */
8575 gcc_assert (GET_CODE (regs) == PARALLEL);
8577 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8578 loc_result = NULL;
8580 for (i = 0; i < XVECLEN (regs, 0); ++i)
8582 dw_loc_descr_ref t;
8584 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8585 add_loc_descr (&loc_result, t);
8586 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8587 add_loc_descr_op_piece (&loc_result, size);
8589 return loc_result;
8592 /* Return a location descriptor that designates a constant. */
8594 static dw_loc_descr_ref
8595 int_loc_descriptor (HOST_WIDE_INT i)
8597 enum dwarf_location_atom op;
8599 /* Pick the smallest representation of a constant, rather than just
8600 defaulting to the LEB encoding. */
8601 if (i >= 0)
8603 if (i <= 31)
8604 op = DW_OP_lit0 + i;
8605 else if (i <= 0xff)
8606 op = DW_OP_const1u;
8607 else if (i <= 0xffff)
8608 op = DW_OP_const2u;
8609 else if (HOST_BITS_PER_WIDE_INT == 32
8610 || i <= 0xffffffff)
8611 op = DW_OP_const4u;
8612 else
8613 op = DW_OP_constu;
8615 else
8617 if (i >= -0x80)
8618 op = DW_OP_const1s;
8619 else if (i >= -0x8000)
8620 op = DW_OP_const2s;
8621 else if (HOST_BITS_PER_WIDE_INT == 32
8622 || i >= -0x80000000)
8623 op = DW_OP_const4s;
8624 else
8625 op = DW_OP_consts;
8628 return new_loc_descr (op, i, 0);
8631 /* Return a location descriptor that designates a base+offset location. */
8633 static dw_loc_descr_ref
8634 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8636 unsigned int regno;
8638 /* We only use "frame base" when we're sure we're talking about the
8639 post-prologue local stack frame. We do this by *not* running
8640 register elimination until this point, and recognizing the special
8641 argument pointer and soft frame pointer rtx's. */
8642 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8644 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8646 if (elim != reg)
8648 if (GET_CODE (elim) == PLUS)
8650 offset += INTVAL (XEXP (elim, 1));
8651 elim = XEXP (elim, 0);
8653 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8654 : stack_pointer_rtx));
8655 offset += frame_pointer_fb_offset;
8657 return new_loc_descr (DW_OP_fbreg, offset, 0);
8661 regno = dbx_reg_number (reg);
8662 if (regno <= 31)
8663 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8664 else
8665 return new_loc_descr (DW_OP_bregx, regno, offset);
8668 /* Return true if this RTL expression describes a base+offset calculation. */
8670 static inline int
8671 is_based_loc (rtx rtl)
8673 return (GET_CODE (rtl) == PLUS
8674 && ((REG_P (XEXP (rtl, 0))
8675 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8676 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8679 /* The following routine converts the RTL for a variable or parameter
8680 (resident in memory) into an equivalent Dwarf representation of a
8681 mechanism for getting the address of that same variable onto the top of a
8682 hypothetical "address evaluation" stack.
8684 When creating memory location descriptors, we are effectively transforming
8685 the RTL for a memory-resident object into its Dwarf postfix expression
8686 equivalent. This routine recursively descends an RTL tree, turning
8687 it into Dwarf postfix code as it goes.
8689 MODE is the mode of the memory reference, needed to handle some
8690 autoincrement addressing modes.
8692 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8693 location list for RTL.
8695 Return 0 if we can't represent the location. */
8697 static dw_loc_descr_ref
8698 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8700 dw_loc_descr_ref mem_loc_result = NULL;
8701 enum dwarf_location_atom op;
8703 /* Note that for a dynamically sized array, the location we will generate a
8704 description of here will be the lowest numbered location which is
8705 actually within the array. That's *not* necessarily the same as the
8706 zeroth element of the array. */
8708 rtl = targetm.delegitimize_address (rtl);
8710 switch (GET_CODE (rtl))
8712 case POST_INC:
8713 case POST_DEC:
8714 case POST_MODIFY:
8715 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8716 just fall into the SUBREG code. */
8718 /* ... fall through ... */
8720 case SUBREG:
8721 /* The case of a subreg may arise when we have a local (register)
8722 variable or a formal (register) parameter which doesn't quite fill
8723 up an entire register. For now, just assume that it is
8724 legitimate to make the Dwarf info refer to the whole register which
8725 contains the given subreg. */
8726 rtl = XEXP (rtl, 0);
8728 /* ... fall through ... */
8730 case REG:
8731 /* Whenever a register number forms a part of the description of the
8732 method for calculating the (dynamic) address of a memory resident
8733 object, DWARF rules require the register number be referred to as
8734 a "base register". This distinction is not based in any way upon
8735 what category of register the hardware believes the given register
8736 belongs to. This is strictly DWARF terminology we're dealing with
8737 here. Note that in cases where the location of a memory-resident
8738 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8739 OP_CONST (0)) the actual DWARF location descriptor that we generate
8740 may just be OP_BASEREG (basereg). This may look deceptively like
8741 the object in question was allocated to a register (rather than in
8742 memory) so DWARF consumers need to be aware of the subtle
8743 distinction between OP_REG and OP_BASEREG. */
8744 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8745 mem_loc_result = based_loc_descr (rtl, 0);
8746 break;
8748 case MEM:
8749 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8750 if (mem_loc_result != 0)
8751 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8752 break;
8754 case LO_SUM:
8755 rtl = XEXP (rtl, 1);
8757 /* ... fall through ... */
8759 case LABEL_REF:
8760 /* Some ports can transform a symbol ref into a label ref, because
8761 the symbol ref is too far away and has to be dumped into a constant
8762 pool. */
8763 case CONST:
8764 case SYMBOL_REF:
8765 /* Alternatively, the symbol in the constant pool might be referenced
8766 by a different symbol. */
8767 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8769 bool marked;
8770 rtx tmp = get_pool_constant_mark (rtl, &marked);
8772 if (GET_CODE (tmp) == SYMBOL_REF)
8774 rtl = tmp;
8775 if (CONSTANT_POOL_ADDRESS_P (tmp))
8776 get_pool_constant_mark (tmp, &marked);
8777 else
8778 marked = true;
8781 /* If all references to this pool constant were optimized away,
8782 it was not output and thus we can't represent it.
8783 FIXME: might try to use DW_OP_const_value here, though
8784 DW_OP_piece complicates it. */
8785 if (!marked)
8786 return 0;
8789 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8790 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8791 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8792 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8793 break;
8795 case PRE_MODIFY:
8796 /* Extract the PLUS expression nested inside and fall into
8797 PLUS code below. */
8798 rtl = XEXP (rtl, 1);
8799 goto plus;
8801 case PRE_INC:
8802 case PRE_DEC:
8803 /* Turn these into a PLUS expression and fall into the PLUS code
8804 below. */
8805 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8806 GEN_INT (GET_CODE (rtl) == PRE_INC
8807 ? GET_MODE_UNIT_SIZE (mode)
8808 : -GET_MODE_UNIT_SIZE (mode)));
8810 /* ... fall through ... */
8812 case PLUS:
8813 plus:
8814 if (is_based_loc (rtl))
8815 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8816 INTVAL (XEXP (rtl, 1)));
8817 else
8819 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8820 if (mem_loc_result == 0)
8821 break;
8823 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8824 && INTVAL (XEXP (rtl, 1)) >= 0)
8825 add_loc_descr (&mem_loc_result,
8826 new_loc_descr (DW_OP_plus_uconst,
8827 INTVAL (XEXP (rtl, 1)), 0));
8828 else
8830 add_loc_descr (&mem_loc_result,
8831 mem_loc_descriptor (XEXP (rtl, 1), mode));
8832 add_loc_descr (&mem_loc_result,
8833 new_loc_descr (DW_OP_plus, 0, 0));
8836 break;
8838 /* If a pseudo-reg is optimized away, it is possible for it to
8839 be replaced with a MEM containing a multiply or shift. */
8840 case MULT:
8841 op = DW_OP_mul;
8842 goto do_binop;
8844 case ASHIFT:
8845 op = DW_OP_shl;
8846 goto do_binop;
8848 case ASHIFTRT:
8849 op = DW_OP_shra;
8850 goto do_binop;
8852 case LSHIFTRT:
8853 op = DW_OP_shr;
8854 goto do_binop;
8856 do_binop:
8858 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8859 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8861 if (op0 == 0 || op1 == 0)
8862 break;
8864 mem_loc_result = op0;
8865 add_loc_descr (&mem_loc_result, op1);
8866 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8867 break;
8870 case CONST_INT:
8871 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8872 break;
8874 default:
8875 gcc_unreachable ();
8878 return mem_loc_result;
8881 /* Return a descriptor that describes the concatenation of two locations.
8882 This is typically a complex variable. */
8884 static dw_loc_descr_ref
8885 concat_loc_descriptor (rtx x0, rtx x1)
8887 dw_loc_descr_ref cc_loc_result = NULL;
8888 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8889 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8891 if (x0_ref == 0 || x1_ref == 0)
8892 return 0;
8894 cc_loc_result = x0_ref;
8895 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8897 add_loc_descr (&cc_loc_result, x1_ref);
8898 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8900 return cc_loc_result;
8903 /* Output a proper Dwarf location descriptor for a variable or parameter
8904 which is either allocated in a register or in a memory location. For a
8905 register, we just generate an OP_REG and the register number. For a
8906 memory location we provide a Dwarf postfix expression describing how to
8907 generate the (dynamic) address of the object onto the address stack.
8909 If we don't know how to describe it, return 0. */
8911 static dw_loc_descr_ref
8912 loc_descriptor (rtx rtl)
8914 dw_loc_descr_ref loc_result = NULL;
8916 switch (GET_CODE (rtl))
8918 case SUBREG:
8919 /* The case of a subreg may arise when we have a local (register)
8920 variable or a formal (register) parameter which doesn't quite fill
8921 up an entire register. For now, just assume that it is
8922 legitimate to make the Dwarf info refer to the whole register which
8923 contains the given subreg. */
8924 rtl = SUBREG_REG (rtl);
8926 /* ... fall through ... */
8928 case REG:
8929 loc_result = reg_loc_descriptor (rtl);
8930 break;
8932 case MEM:
8933 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8934 break;
8936 case CONCAT:
8937 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8938 break;
8940 case VAR_LOCATION:
8941 /* Single part. */
8942 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8944 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
8945 break;
8948 rtl = XEXP (rtl, 1);
8949 /* FALLTHRU */
8951 case PARALLEL:
8953 rtvec par_elems = XVEC (rtl, 0);
8954 int num_elem = GET_NUM_ELEM (par_elems);
8955 enum machine_mode mode;
8956 int i;
8958 /* Create the first one, so we have something to add to. */
8959 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
8960 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8961 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8962 for (i = 1; i < num_elem; i++)
8964 dw_loc_descr_ref temp;
8966 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
8967 add_loc_descr (&loc_result, temp);
8968 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8969 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8972 break;
8974 default:
8975 gcc_unreachable ();
8978 return loc_result;
8981 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8982 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8983 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8984 top-level invocation, and we require the address of LOC; is 0 if we require
8985 the value of LOC. */
8987 static dw_loc_descr_ref
8988 loc_descriptor_from_tree_1 (tree loc, int want_address)
8990 dw_loc_descr_ref ret, ret1;
8991 int have_address = 0;
8992 enum dwarf_location_atom op;
8994 /* ??? Most of the time we do not take proper care for sign/zero
8995 extending the values properly. Hopefully this won't be a real
8996 problem... */
8998 switch (TREE_CODE (loc))
9000 case ERROR_MARK:
9001 return 0;
9003 case PLACEHOLDER_EXPR:
9004 /* This case involves extracting fields from an object to determine the
9005 position of other fields. We don't try to encode this here. The
9006 only user of this is Ada, which encodes the needed information using
9007 the names of types. */
9008 return 0;
9010 case CALL_EXPR:
9011 return 0;
9013 case PREINCREMENT_EXPR:
9014 case PREDECREMENT_EXPR:
9015 case POSTINCREMENT_EXPR:
9016 case POSTDECREMENT_EXPR:
9017 /* There are no opcodes for these operations. */
9018 return 0;
9020 case ADDR_EXPR:
9021 /* If we already want an address, there's nothing we can do. */
9022 if (want_address)
9023 return 0;
9025 /* Otherwise, process the argument and look for the address. */
9026 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9028 case VAR_DECL:
9029 if (DECL_THREAD_LOCAL_P (loc))
9031 rtx rtl;
9033 /* If this is not defined, we have no way to emit the data. */
9034 if (!targetm.asm_out.output_dwarf_dtprel)
9035 return 0;
9037 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9038 look up addresses of objects in the current module. */
9039 if (DECL_EXTERNAL (loc))
9040 return 0;
9042 rtl = rtl_for_decl_location (loc);
9043 if (rtl == NULL_RTX)
9044 return 0;
9046 if (!MEM_P (rtl))
9047 return 0;
9048 rtl = XEXP (rtl, 0);
9049 if (! CONSTANT_P (rtl))
9050 return 0;
9052 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9053 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9054 ret->dw_loc_oprnd1.v.val_addr = rtl;
9056 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9057 add_loc_descr (&ret, ret1);
9059 have_address = 1;
9060 break;
9062 /* FALLTHRU */
9064 case PARM_DECL:
9065 if (DECL_HAS_VALUE_EXPR_P (loc))
9066 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9067 want_address);
9068 /* FALLTHRU */
9070 case RESULT_DECL:
9072 rtx rtl = rtl_for_decl_location (loc);
9074 if (rtl == NULL_RTX)
9075 return 0;
9076 else if (GET_CODE (rtl) == CONST_INT)
9078 HOST_WIDE_INT val = INTVAL (rtl);
9079 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9080 val &= GET_MODE_MASK (DECL_MODE (loc));
9081 ret = int_loc_descriptor (val);
9083 else if (GET_CODE (rtl) == CONST_STRING)
9084 return 0;
9085 else if (CONSTANT_P (rtl))
9087 ret = new_loc_descr (DW_OP_addr, 0, 0);
9088 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9089 ret->dw_loc_oprnd1.v.val_addr = rtl;
9091 else
9093 enum machine_mode mode;
9095 /* Certain constructs can only be represented at top-level. */
9096 if (want_address == 2)
9097 return loc_descriptor (rtl);
9099 mode = GET_MODE (rtl);
9100 if (MEM_P (rtl))
9102 rtl = XEXP (rtl, 0);
9103 have_address = 1;
9105 ret = mem_loc_descriptor (rtl, mode);
9108 break;
9110 case INDIRECT_REF:
9111 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9112 have_address = 1;
9113 break;
9115 case COMPOUND_EXPR:
9116 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9118 case NOP_EXPR:
9119 case CONVERT_EXPR:
9120 case NON_LVALUE_EXPR:
9121 case VIEW_CONVERT_EXPR:
9122 case SAVE_EXPR:
9123 case MODIFY_EXPR:
9124 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9126 case COMPONENT_REF:
9127 case BIT_FIELD_REF:
9128 case ARRAY_REF:
9129 case ARRAY_RANGE_REF:
9131 tree obj, offset;
9132 HOST_WIDE_INT bitsize, bitpos, bytepos;
9133 enum machine_mode mode;
9134 int volatilep;
9135 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9137 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9138 &unsignedp, &volatilep, false);
9140 if (obj == loc)
9141 return 0;
9143 ret = loc_descriptor_from_tree_1 (obj, 1);
9144 if (ret == 0
9145 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9146 return 0;
9148 if (offset != NULL_TREE)
9150 /* Variable offset. */
9151 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9152 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9155 bytepos = bitpos / BITS_PER_UNIT;
9156 if (bytepos > 0)
9157 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9158 else if (bytepos < 0)
9160 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9161 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9164 have_address = 1;
9165 break;
9168 case INTEGER_CST:
9169 if (host_integerp (loc, 0))
9170 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9171 else
9172 return 0;
9173 break;
9175 case CONSTRUCTOR:
9177 /* Get an RTL for this, if something has been emitted. */
9178 rtx rtl = lookup_constant_def (loc);
9179 enum machine_mode mode;
9181 if (!rtl || !MEM_P (rtl))
9182 return 0;
9183 mode = GET_MODE (rtl);
9184 rtl = XEXP (rtl, 0);
9185 ret = mem_loc_descriptor (rtl, mode);
9186 have_address = 1;
9187 break;
9190 case TRUTH_AND_EXPR:
9191 case TRUTH_ANDIF_EXPR:
9192 case BIT_AND_EXPR:
9193 op = DW_OP_and;
9194 goto do_binop;
9196 case TRUTH_XOR_EXPR:
9197 case BIT_XOR_EXPR:
9198 op = DW_OP_xor;
9199 goto do_binop;
9201 case TRUTH_OR_EXPR:
9202 case TRUTH_ORIF_EXPR:
9203 case BIT_IOR_EXPR:
9204 op = DW_OP_or;
9205 goto do_binop;
9207 case FLOOR_DIV_EXPR:
9208 case CEIL_DIV_EXPR:
9209 case ROUND_DIV_EXPR:
9210 case TRUNC_DIV_EXPR:
9211 op = DW_OP_div;
9212 goto do_binop;
9214 case MINUS_EXPR:
9215 op = DW_OP_minus;
9216 goto do_binop;
9218 case FLOOR_MOD_EXPR:
9219 case CEIL_MOD_EXPR:
9220 case ROUND_MOD_EXPR:
9221 case TRUNC_MOD_EXPR:
9222 op = DW_OP_mod;
9223 goto do_binop;
9225 case MULT_EXPR:
9226 op = DW_OP_mul;
9227 goto do_binop;
9229 case LSHIFT_EXPR:
9230 op = DW_OP_shl;
9231 goto do_binop;
9233 case RSHIFT_EXPR:
9234 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9235 goto do_binop;
9237 case PLUS_EXPR:
9238 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9239 && host_integerp (TREE_OPERAND (loc, 1), 0))
9241 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9242 if (ret == 0)
9243 return 0;
9245 add_loc_descr (&ret,
9246 new_loc_descr (DW_OP_plus_uconst,
9247 tree_low_cst (TREE_OPERAND (loc, 1),
9249 0));
9250 break;
9253 op = DW_OP_plus;
9254 goto do_binop;
9256 case LE_EXPR:
9257 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9258 return 0;
9260 op = DW_OP_le;
9261 goto do_binop;
9263 case GE_EXPR:
9264 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9265 return 0;
9267 op = DW_OP_ge;
9268 goto do_binop;
9270 case LT_EXPR:
9271 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9272 return 0;
9274 op = DW_OP_lt;
9275 goto do_binop;
9277 case GT_EXPR:
9278 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9279 return 0;
9281 op = DW_OP_gt;
9282 goto do_binop;
9284 case EQ_EXPR:
9285 op = DW_OP_eq;
9286 goto do_binop;
9288 case NE_EXPR:
9289 op = DW_OP_ne;
9290 goto do_binop;
9292 do_binop:
9293 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9294 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9295 if (ret == 0 || ret1 == 0)
9296 return 0;
9298 add_loc_descr (&ret, ret1);
9299 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9300 break;
9302 case TRUTH_NOT_EXPR:
9303 case BIT_NOT_EXPR:
9304 op = DW_OP_not;
9305 goto do_unop;
9307 case ABS_EXPR:
9308 op = DW_OP_abs;
9309 goto do_unop;
9311 case NEGATE_EXPR:
9312 op = DW_OP_neg;
9313 goto do_unop;
9315 do_unop:
9316 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9317 if (ret == 0)
9318 return 0;
9320 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9321 break;
9323 case MIN_EXPR:
9324 case MAX_EXPR:
9326 const enum tree_code code =
9327 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9329 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9330 build2 (code, integer_type_node,
9331 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9332 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9335 /* ... fall through ... */
9337 case COND_EXPR:
9339 dw_loc_descr_ref lhs
9340 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9341 dw_loc_descr_ref rhs
9342 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9343 dw_loc_descr_ref bra_node, jump_node, tmp;
9345 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9346 if (ret == 0 || lhs == 0 || rhs == 0)
9347 return 0;
9349 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9350 add_loc_descr (&ret, bra_node);
9352 add_loc_descr (&ret, rhs);
9353 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9354 add_loc_descr (&ret, jump_node);
9356 add_loc_descr (&ret, lhs);
9357 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9358 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9360 /* ??? Need a node to point the skip at. Use a nop. */
9361 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9362 add_loc_descr (&ret, tmp);
9363 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9364 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9366 break;
9368 case FIX_TRUNC_EXPR:
9369 case FIX_CEIL_EXPR:
9370 case FIX_FLOOR_EXPR:
9371 case FIX_ROUND_EXPR:
9372 return 0;
9374 default:
9375 /* Leave front-end specific codes as simply unknown. This comes
9376 up, for instance, with the C STMT_EXPR. */
9377 if ((unsigned int) TREE_CODE (loc)
9378 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9379 return 0;
9381 #ifdef ENABLE_CHECKING
9382 /* Otherwise this is a generic code; we should just lists all of
9383 these explicitly. We forgot one. */
9384 gcc_unreachable ();
9385 #else
9386 /* In a release build, we want to degrade gracefully: better to
9387 generate incomplete debugging information than to crash. */
9388 return NULL;
9389 #endif
9392 /* Show if we can't fill the request for an address. */
9393 if (want_address && !have_address)
9394 return 0;
9396 /* If we've got an address and don't want one, dereference. */
9397 if (!want_address && have_address && ret)
9399 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9401 if (size > DWARF2_ADDR_SIZE || size == -1)
9402 return 0;
9403 else if (size == DWARF2_ADDR_SIZE)
9404 op = DW_OP_deref;
9405 else
9406 op = DW_OP_deref_size;
9408 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9411 return ret;
9414 static inline dw_loc_descr_ref
9415 loc_descriptor_from_tree (tree loc)
9417 return loc_descriptor_from_tree_1 (loc, 2);
9420 /* Given a value, round it up to the lowest multiple of `boundary'
9421 which is not less than the value itself. */
9423 static inline HOST_WIDE_INT
9424 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9426 return (((value + boundary - 1) / boundary) * boundary);
9429 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9430 pointer to the declared type for the relevant field variable, or return
9431 `integer_type_node' if the given node turns out to be an
9432 ERROR_MARK node. */
9434 static inline tree
9435 field_type (tree decl)
9437 tree type;
9439 if (TREE_CODE (decl) == ERROR_MARK)
9440 return integer_type_node;
9442 type = DECL_BIT_FIELD_TYPE (decl);
9443 if (type == NULL_TREE)
9444 type = TREE_TYPE (decl);
9446 return type;
9449 /* Given a pointer to a tree node, return the alignment in bits for
9450 it, or else return BITS_PER_WORD if the node actually turns out to
9451 be an ERROR_MARK node. */
9453 static inline unsigned
9454 simple_type_align_in_bits (tree type)
9456 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9459 static inline unsigned
9460 simple_decl_align_in_bits (tree decl)
9462 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9465 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9466 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9467 or return 0 if we are unable to determine what that offset is, either
9468 because the argument turns out to be a pointer to an ERROR_MARK node, or
9469 because the offset is actually variable. (We can't handle the latter case
9470 just yet). */
9472 static HOST_WIDE_INT
9473 field_byte_offset (tree decl)
9475 unsigned int type_align_in_bits;
9476 unsigned int decl_align_in_bits;
9477 unsigned HOST_WIDE_INT type_size_in_bits;
9478 HOST_WIDE_INT object_offset_in_bits;
9479 tree type;
9480 tree field_size_tree;
9481 HOST_WIDE_INT bitpos_int;
9482 HOST_WIDE_INT deepest_bitpos;
9483 unsigned HOST_WIDE_INT field_size_in_bits;
9485 if (TREE_CODE (decl) == ERROR_MARK)
9486 return 0;
9488 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9490 type = field_type (decl);
9491 field_size_tree = DECL_SIZE (decl);
9493 /* The size could be unspecified if there was an error, or for
9494 a flexible array member. */
9495 if (! field_size_tree)
9496 field_size_tree = bitsize_zero_node;
9498 /* We cannot yet cope with fields whose positions are variable, so
9499 for now, when we see such things, we simply return 0. Someday, we may
9500 be able to handle such cases, but it will be damn difficult. */
9501 if (! host_integerp (bit_position (decl), 0))
9502 return 0;
9504 bitpos_int = int_bit_position (decl);
9506 /* If we don't know the size of the field, pretend it's a full word. */
9507 if (host_integerp (field_size_tree, 1))
9508 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9509 else
9510 field_size_in_bits = BITS_PER_WORD;
9512 type_size_in_bits = simple_type_size_in_bits (type);
9513 type_align_in_bits = simple_type_align_in_bits (type);
9514 decl_align_in_bits = simple_decl_align_in_bits (decl);
9516 /* The GCC front-end doesn't make any attempt to keep track of the starting
9517 bit offset (relative to the start of the containing structure type) of the
9518 hypothetical "containing object" for a bit-field. Thus, when computing
9519 the byte offset value for the start of the "containing object" of a
9520 bit-field, we must deduce this information on our own. This can be rather
9521 tricky to do in some cases. For example, handling the following structure
9522 type definition when compiling for an i386/i486 target (which only aligns
9523 long long's to 32-bit boundaries) can be very tricky:
9525 struct S { int field1; long long field2:31; };
9527 Fortunately, there is a simple rule-of-thumb which can be used in such
9528 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9529 structure shown above. It decides to do this based upon one simple rule
9530 for bit-field allocation. GCC allocates each "containing object" for each
9531 bit-field at the first (i.e. lowest addressed) legitimate alignment
9532 boundary (based upon the required minimum alignment for the declared type
9533 of the field) which it can possibly use, subject to the condition that
9534 there is still enough available space remaining in the containing object
9535 (when allocated at the selected point) to fully accommodate all of the
9536 bits of the bit-field itself.
9538 This simple rule makes it obvious why GCC allocates 8 bytes for each
9539 object of the structure type shown above. When looking for a place to
9540 allocate the "containing object" for `field2', the compiler simply tries
9541 to allocate a 64-bit "containing object" at each successive 32-bit
9542 boundary (starting at zero) until it finds a place to allocate that 64-
9543 bit field such that at least 31 contiguous (and previously unallocated)
9544 bits remain within that selected 64 bit field. (As it turns out, for the
9545 example above, the compiler finds it is OK to allocate the "containing
9546 object" 64-bit field at bit-offset zero within the structure type.)
9548 Here we attempt to work backwards from the limited set of facts we're
9549 given, and we try to deduce from those facts, where GCC must have believed
9550 that the containing object started (within the structure type). The value
9551 we deduce is then used (by the callers of this routine) to generate
9552 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9553 and, in the case of DW_AT_location, regular fields as well). */
9555 /* Figure out the bit-distance from the start of the structure to the
9556 "deepest" bit of the bit-field. */
9557 deepest_bitpos = bitpos_int + field_size_in_bits;
9559 /* This is the tricky part. Use some fancy footwork to deduce where the
9560 lowest addressed bit of the containing object must be. */
9561 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9563 /* Round up to type_align by default. This works best for bitfields. */
9564 object_offset_in_bits += type_align_in_bits - 1;
9565 object_offset_in_bits /= type_align_in_bits;
9566 object_offset_in_bits *= type_align_in_bits;
9568 if (object_offset_in_bits > bitpos_int)
9570 /* Sigh, the decl must be packed. */
9571 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9573 /* Round up to decl_align instead. */
9574 object_offset_in_bits += decl_align_in_bits - 1;
9575 object_offset_in_bits /= decl_align_in_bits;
9576 object_offset_in_bits *= decl_align_in_bits;
9579 return object_offset_in_bits / BITS_PER_UNIT;
9582 /* The following routines define various Dwarf attributes and any data
9583 associated with them. */
9585 /* Add a location description attribute value to a DIE.
9587 This emits location attributes suitable for whole variables and
9588 whole parameters. Note that the location attributes for struct fields are
9589 generated by the routine `data_member_location_attribute' below. */
9591 static inline void
9592 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9593 dw_loc_descr_ref descr)
9595 if (descr != 0)
9596 add_AT_loc (die, attr_kind, descr);
9599 /* Attach the specialized form of location attribute used for data members of
9600 struct and union types. In the special case of a FIELD_DECL node which
9601 represents a bit-field, the "offset" part of this special location
9602 descriptor must indicate the distance in bytes from the lowest-addressed
9603 byte of the containing struct or union type to the lowest-addressed byte of
9604 the "containing object" for the bit-field. (See the `field_byte_offset'
9605 function above).
9607 For any given bit-field, the "containing object" is a hypothetical object
9608 (of some integral or enum type) within which the given bit-field lives. The
9609 type of this hypothetical "containing object" is always the same as the
9610 declared type of the individual bit-field itself (for GCC anyway... the
9611 DWARF spec doesn't actually mandate this). Note that it is the size (in
9612 bytes) of the hypothetical "containing object" which will be given in the
9613 DW_AT_byte_size attribute for this bit-field. (See the
9614 `byte_size_attribute' function below.) It is also used when calculating the
9615 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9616 function below.) */
9618 static void
9619 add_data_member_location_attribute (dw_die_ref die, tree decl)
9621 HOST_WIDE_INT offset;
9622 dw_loc_descr_ref loc_descr = 0;
9624 if (TREE_CODE (decl) == TREE_BINFO)
9626 /* We're working on the TAG_inheritance for a base class. */
9627 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9629 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9630 aren't at a fixed offset from all (sub)objects of the same
9631 type. We need to extract the appropriate offset from our
9632 vtable. The following dwarf expression means
9634 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9636 This is specific to the V3 ABI, of course. */
9638 dw_loc_descr_ref tmp;
9640 /* Make a copy of the object address. */
9641 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9642 add_loc_descr (&loc_descr, tmp);
9644 /* Extract the vtable address. */
9645 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9646 add_loc_descr (&loc_descr, tmp);
9648 /* Calculate the address of the offset. */
9649 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9650 gcc_assert (offset < 0);
9652 tmp = int_loc_descriptor (-offset);
9653 add_loc_descr (&loc_descr, tmp);
9654 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9655 add_loc_descr (&loc_descr, tmp);
9657 /* Extract the offset. */
9658 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9659 add_loc_descr (&loc_descr, tmp);
9661 /* Add it to the object address. */
9662 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9663 add_loc_descr (&loc_descr, tmp);
9665 else
9666 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9668 else
9669 offset = field_byte_offset (decl);
9671 if (! loc_descr)
9673 enum dwarf_location_atom op;
9675 /* The DWARF2 standard says that we should assume that the structure
9676 address is already on the stack, so we can specify a structure field
9677 address by using DW_OP_plus_uconst. */
9679 #ifdef MIPS_DEBUGGING_INFO
9680 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9681 operator correctly. It works only if we leave the offset on the
9682 stack. */
9683 op = DW_OP_constu;
9684 #else
9685 op = DW_OP_plus_uconst;
9686 #endif
9688 loc_descr = new_loc_descr (op, offset, 0);
9691 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9694 /* Writes integer values to dw_vec_const array. */
9696 static void
9697 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9699 while (size != 0)
9701 *dest++ = val & 0xff;
9702 val >>= 8;
9703 --size;
9707 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9709 static HOST_WIDE_INT
9710 extract_int (const unsigned char *src, unsigned int size)
9712 HOST_WIDE_INT val = 0;
9714 src += size;
9715 while (size != 0)
9717 val <<= 8;
9718 val |= *--src & 0xff;
9719 --size;
9721 return val;
9724 /* Writes floating point values to dw_vec_const array. */
9726 static void
9727 insert_float (rtx rtl, unsigned char *array)
9729 REAL_VALUE_TYPE rv;
9730 long val[4];
9731 int i;
9733 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9734 real_to_target (val, &rv, GET_MODE (rtl));
9736 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9737 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9739 insert_int (val[i], 4, array);
9740 array += 4;
9744 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9745 does not have a "location" either in memory or in a register. These
9746 things can arise in GNU C when a constant is passed as an actual parameter
9747 to an inlined function. They can also arise in C++ where declared
9748 constants do not necessarily get memory "homes". */
9750 static void
9751 add_const_value_attribute (dw_die_ref die, rtx rtl)
9753 switch (GET_CODE (rtl))
9755 case CONST_INT:
9757 HOST_WIDE_INT val = INTVAL (rtl);
9759 if (val < 0)
9760 add_AT_int (die, DW_AT_const_value, val);
9761 else
9762 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9764 break;
9766 case CONST_DOUBLE:
9767 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9768 floating-point constant. A CONST_DOUBLE is used whenever the
9769 constant requires more than one word in order to be adequately
9770 represented. We output CONST_DOUBLEs as blocks. */
9772 enum machine_mode mode = GET_MODE (rtl);
9774 if (SCALAR_FLOAT_MODE_P (mode))
9776 unsigned int length = GET_MODE_SIZE (mode);
9777 unsigned char *array = ggc_alloc (length);
9779 insert_float (rtl, array);
9780 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9782 else
9784 /* ??? We really should be using HOST_WIDE_INT throughout. */
9785 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9787 add_AT_long_long (die, DW_AT_const_value,
9788 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9791 break;
9793 case CONST_VECTOR:
9795 enum machine_mode mode = GET_MODE (rtl);
9796 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9797 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9798 unsigned char *array = ggc_alloc (length * elt_size);
9799 unsigned int i;
9800 unsigned char *p;
9802 switch (GET_MODE_CLASS (mode))
9804 case MODE_VECTOR_INT:
9805 for (i = 0, p = array; i < length; i++, p += elt_size)
9807 rtx elt = CONST_VECTOR_ELT (rtl, i);
9808 HOST_WIDE_INT lo, hi;
9810 switch (GET_CODE (elt))
9812 case CONST_INT:
9813 lo = INTVAL (elt);
9814 hi = -(lo < 0);
9815 break;
9817 case CONST_DOUBLE:
9818 lo = CONST_DOUBLE_LOW (elt);
9819 hi = CONST_DOUBLE_HIGH (elt);
9820 break;
9822 default:
9823 gcc_unreachable ();
9826 if (elt_size <= sizeof (HOST_WIDE_INT))
9827 insert_int (lo, elt_size, p);
9828 else
9830 unsigned char *p0 = p;
9831 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9833 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9834 if (WORDS_BIG_ENDIAN)
9836 p0 = p1;
9837 p1 = p;
9839 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9840 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9843 break;
9845 case MODE_VECTOR_FLOAT:
9846 for (i = 0, p = array; i < length; i++, p += elt_size)
9848 rtx elt = CONST_VECTOR_ELT (rtl, i);
9849 insert_float (elt, p);
9851 break;
9853 default:
9854 gcc_unreachable ();
9857 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9859 break;
9861 case CONST_STRING:
9862 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9863 break;
9865 case SYMBOL_REF:
9866 case LABEL_REF:
9867 case CONST:
9868 add_AT_addr (die, DW_AT_const_value, rtl);
9869 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9870 break;
9872 case PLUS:
9873 /* In cases where an inlined instance of an inline function is passed
9874 the address of an `auto' variable (which is local to the caller) we
9875 can get a situation where the DECL_RTL of the artificial local
9876 variable (for the inlining) which acts as a stand-in for the
9877 corresponding formal parameter (of the inline function) will look
9878 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9879 exactly a compile-time constant expression, but it isn't the address
9880 of the (artificial) local variable either. Rather, it represents the
9881 *value* which the artificial local variable always has during its
9882 lifetime. We currently have no way to represent such quasi-constant
9883 values in Dwarf, so for now we just punt and generate nothing. */
9884 break;
9886 default:
9887 /* No other kinds of rtx should be possible here. */
9888 gcc_unreachable ();
9893 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9894 for use in a later add_const_value_attribute call. */
9896 static rtx
9897 rtl_for_decl_init (tree init, tree type)
9899 rtx rtl = NULL_RTX;
9901 /* If a variable is initialized with a string constant without embedded
9902 zeros, build CONST_STRING. */
9903 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9905 tree enttype = TREE_TYPE (type);
9906 tree domain = TYPE_DOMAIN (type);
9907 enum machine_mode mode = TYPE_MODE (enttype);
9909 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9910 && domain
9911 && integer_zerop (TYPE_MIN_VALUE (domain))
9912 && compare_tree_int (TYPE_MAX_VALUE (domain),
9913 TREE_STRING_LENGTH (init) - 1) == 0
9914 && ((size_t) TREE_STRING_LENGTH (init)
9915 == strlen (TREE_STRING_POINTER (init)) + 1))
9916 rtl = gen_rtx_CONST_STRING (VOIDmode,
9917 ggc_strdup (TREE_STRING_POINTER (init)));
9919 /* If the initializer is something that we know will expand into an
9920 immediate RTL constant, expand it now. Expanding anything else
9921 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9922 /* Aggregate, vector, and complex types may contain constructors that may
9923 result in code being generated when expand_expr is called, so we can't
9924 handle them here. Integer and float are useful and safe types to handle
9925 here. */
9926 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9927 && initializer_constant_valid_p (init, type) == null_pointer_node)
9929 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9931 /* If expand_expr returns a MEM, it wasn't immediate. */
9932 gcc_assert (!rtl || !MEM_P (rtl));
9935 return rtl;
9938 /* Generate RTL for the variable DECL to represent its location. */
9940 static rtx
9941 rtl_for_decl_location (tree decl)
9943 rtx rtl;
9945 /* Here we have to decide where we are going to say the parameter "lives"
9946 (as far as the debugger is concerned). We only have a couple of
9947 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9949 DECL_RTL normally indicates where the parameter lives during most of the
9950 activation of the function. If optimization is enabled however, this
9951 could be either NULL or else a pseudo-reg. Both of those cases indicate
9952 that the parameter doesn't really live anywhere (as far as the code
9953 generation parts of GCC are concerned) during most of the function's
9954 activation. That will happen (for example) if the parameter is never
9955 referenced within the function.
9957 We could just generate a location descriptor here for all non-NULL
9958 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9959 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9960 where DECL_RTL is NULL or is a pseudo-reg.
9962 Note however that we can only get away with using DECL_INCOMING_RTL as
9963 a backup substitute for DECL_RTL in certain limited cases. In cases
9964 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9965 we can be sure that the parameter was passed using the same type as it is
9966 declared to have within the function, and that its DECL_INCOMING_RTL
9967 points us to a place where a value of that type is passed.
9969 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9970 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9971 because in these cases DECL_INCOMING_RTL points us to a value of some
9972 type which is *different* from the type of the parameter itself. Thus,
9973 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9974 such cases, the debugger would end up (for example) trying to fetch a
9975 `float' from a place which actually contains the first part of a
9976 `double'. That would lead to really incorrect and confusing
9977 output at debug-time.
9979 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9980 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9981 are a couple of exceptions however. On little-endian machines we can
9982 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9983 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9984 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9985 when (on a little-endian machine) a non-prototyped function has a
9986 parameter declared to be of type `short' or `char'. In such cases,
9987 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9988 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9989 passed `int' value. If the debugger then uses that address to fetch
9990 a `short' or a `char' (on a little-endian machine) the result will be
9991 the correct data, so we allow for such exceptional cases below.
9993 Note that our goal here is to describe the place where the given formal
9994 parameter lives during most of the function's activation (i.e. between the
9995 end of the prologue and the start of the epilogue). We'll do that as best
9996 as we can. Note however that if the given formal parameter is modified
9997 sometime during the execution of the function, then a stack backtrace (at
9998 debug-time) will show the function as having been called with the *new*
9999 value rather than the value which was originally passed in. This happens
10000 rarely enough that it is not a major problem, but it *is* a problem, and
10001 I'd like to fix it.
10003 A future version of dwarf2out.c may generate two additional attributes for
10004 any given DW_TAG_formal_parameter DIE which will describe the "passed
10005 type" and the "passed location" for the given formal parameter in addition
10006 to the attributes we now generate to indicate the "declared type" and the
10007 "active location" for each parameter. This additional set of attributes
10008 could be used by debuggers for stack backtraces. Separately, note that
10009 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10010 This happens (for example) for inlined-instances of inline function formal
10011 parameters which are never referenced. This really shouldn't be
10012 happening. All PARM_DECL nodes should get valid non-NULL
10013 DECL_INCOMING_RTL values. FIXME. */
10015 /* Use DECL_RTL as the "location" unless we find something better. */
10016 rtl = DECL_RTL_IF_SET (decl);
10018 /* When generating abstract instances, ignore everything except
10019 constants, symbols living in memory, and symbols living in
10020 fixed registers. */
10021 if (! reload_completed)
10023 if (rtl
10024 && (CONSTANT_P (rtl)
10025 || (MEM_P (rtl)
10026 && CONSTANT_P (XEXP (rtl, 0)))
10027 || (REG_P (rtl)
10028 && TREE_CODE (decl) == VAR_DECL
10029 && TREE_STATIC (decl))))
10031 rtl = targetm.delegitimize_address (rtl);
10032 return rtl;
10034 rtl = NULL_RTX;
10036 else if (TREE_CODE (decl) == PARM_DECL)
10038 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10040 tree declared_type = TREE_TYPE (decl);
10041 tree passed_type = DECL_ARG_TYPE (decl);
10042 enum machine_mode dmode = TYPE_MODE (declared_type);
10043 enum machine_mode pmode = TYPE_MODE (passed_type);
10045 /* This decl represents a formal parameter which was optimized out.
10046 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10047 all cases where (rtl == NULL_RTX) just below. */
10048 if (dmode == pmode)
10049 rtl = DECL_INCOMING_RTL (decl);
10050 else if (SCALAR_INT_MODE_P (dmode)
10051 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10052 && DECL_INCOMING_RTL (decl))
10054 rtx inc = DECL_INCOMING_RTL (decl);
10055 if (REG_P (inc))
10056 rtl = inc;
10057 else if (MEM_P (inc))
10059 if (BYTES_BIG_ENDIAN)
10060 rtl = adjust_address_nv (inc, dmode,
10061 GET_MODE_SIZE (pmode)
10062 - GET_MODE_SIZE (dmode));
10063 else
10064 rtl = inc;
10069 /* If the parm was passed in registers, but lives on the stack, then
10070 make a big endian correction if the mode of the type of the
10071 parameter is not the same as the mode of the rtl. */
10072 /* ??? This is the same series of checks that are made in dbxout.c before
10073 we reach the big endian correction code there. It isn't clear if all
10074 of these checks are necessary here, but keeping them all is the safe
10075 thing to do. */
10076 else if (MEM_P (rtl)
10077 && XEXP (rtl, 0) != const0_rtx
10078 && ! CONSTANT_P (XEXP (rtl, 0))
10079 /* Not passed in memory. */
10080 && !MEM_P (DECL_INCOMING_RTL (decl))
10081 /* Not passed by invisible reference. */
10082 && (!REG_P (XEXP (rtl, 0))
10083 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10084 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10085 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10086 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10087 #endif
10089 /* Big endian correction check. */
10090 && BYTES_BIG_ENDIAN
10091 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10092 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10093 < UNITS_PER_WORD))
10095 int offset = (UNITS_PER_WORD
10096 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10098 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10099 plus_constant (XEXP (rtl, 0), offset));
10102 else if (TREE_CODE (decl) == VAR_DECL
10103 && rtl
10104 && MEM_P (rtl)
10105 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10106 && BYTES_BIG_ENDIAN)
10108 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10109 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10111 /* If a variable is declared "register" yet is smaller than
10112 a register, then if we store the variable to memory, it
10113 looks like we're storing a register-sized value, when in
10114 fact we are not. We need to adjust the offset of the
10115 storage location to reflect the actual value's bytes,
10116 else gdb will not be able to display it. */
10117 if (rsize > dsize)
10118 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10119 plus_constant (XEXP (rtl, 0), rsize-dsize));
10122 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10123 and will have been substituted directly into all expressions that use it.
10124 C does not have such a concept, but C++ and other languages do. */
10125 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10126 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10128 if (rtl)
10129 rtl = targetm.delegitimize_address (rtl);
10131 /* If we don't look past the constant pool, we risk emitting a
10132 reference to a constant pool entry that isn't referenced from
10133 code, and thus is not emitted. */
10134 if (rtl)
10135 rtl = avoid_constant_pool_reference (rtl);
10137 return rtl;
10140 /* We need to figure out what section we should use as the base for the
10141 address ranges where a given location is valid.
10142 1. If this particular DECL has a section associated with it, use that.
10143 2. If this function has a section associated with it, use that.
10144 3. Otherwise, use the text section.
10145 XXX: If you split a variable across multiple sections, we won't notice. */
10147 static const char *
10148 secname_for_decl (tree decl)
10150 const char *secname;
10152 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10154 tree sectree = DECL_SECTION_NAME (decl);
10155 secname = TREE_STRING_POINTER (sectree);
10157 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10159 tree sectree = DECL_SECTION_NAME (current_function_decl);
10160 secname = TREE_STRING_POINTER (sectree);
10162 else if (cfun && in_cold_section_p)
10163 secname = cfun->cold_section_label;
10164 else
10165 secname = text_section_label;
10167 return secname;
10170 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10171 data attribute for a variable or a parameter. We generate the
10172 DW_AT_const_value attribute only in those cases where the given variable
10173 or parameter does not have a true "location" either in memory or in a
10174 register. This can happen (for example) when a constant is passed as an
10175 actual argument in a call to an inline function. (It's possible that
10176 these things can crop up in other ways also.) Note that one type of
10177 constant value which can be passed into an inlined function is a constant
10178 pointer. This can happen for example if an actual argument in an inlined
10179 function call evaluates to a compile-time constant address. */
10181 static void
10182 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10183 enum dwarf_attribute attr)
10185 rtx rtl;
10186 dw_loc_descr_ref descr;
10187 var_loc_list *loc_list;
10188 struct var_loc_node *node;
10189 if (TREE_CODE (decl) == ERROR_MARK)
10190 return;
10192 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10193 || TREE_CODE (decl) == RESULT_DECL);
10195 /* See if we possibly have multiple locations for this variable. */
10196 loc_list = lookup_decl_loc (decl);
10198 /* If it truly has multiple locations, the first and last node will
10199 differ. */
10200 if (loc_list && loc_list->first != loc_list->last)
10202 const char *endname, *secname;
10203 dw_loc_list_ref list;
10204 rtx varloc;
10206 /* Now that we know what section we are using for a base,
10207 actually construct the list of locations.
10208 The first location information is what is passed to the
10209 function that creates the location list, and the remaining
10210 locations just get added on to that list.
10211 Note that we only know the start address for a location
10212 (IE location changes), so to build the range, we use
10213 the range [current location start, next location start].
10214 This means we have to special case the last node, and generate
10215 a range of [last location start, end of function label]. */
10217 node = loc_list->first;
10218 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10219 secname = secname_for_decl (decl);
10221 list = new_loc_list (loc_descriptor (varloc),
10222 node->label, node->next->label, secname, 1);
10223 node = node->next;
10225 for (; node->next; node = node->next)
10226 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10228 /* The variable has a location between NODE->LABEL and
10229 NODE->NEXT->LABEL. */
10230 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10231 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10232 node->label, node->next->label, secname);
10235 /* If the variable has a location at the last label
10236 it keeps its location until the end of function. */
10237 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10239 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10241 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10242 if (!current_function_decl)
10243 endname = text_end_label;
10244 else
10246 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10247 current_function_funcdef_no);
10248 endname = ggc_strdup (label_id);
10250 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10251 node->label, endname, secname);
10254 /* Finally, add the location list to the DIE, and we are done. */
10255 add_AT_loc_list (die, attr, list);
10256 return;
10259 /* Try to get some constant RTL for this decl, and use that as the value of
10260 the location. */
10262 rtl = rtl_for_decl_location (decl);
10263 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10265 add_const_value_attribute (die, rtl);
10266 return;
10269 /* If we have tried to generate the location otherwise, and it
10270 didn't work out (we wouldn't be here if we did), and we have a one entry
10271 location list, try generating a location from that. */
10272 if (loc_list && loc_list->first)
10274 node = loc_list->first;
10275 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10276 if (descr)
10278 add_AT_location_description (die, attr, descr);
10279 return;
10283 /* We couldn't get any rtl, so try directly generating the location
10284 description from the tree. */
10285 descr = loc_descriptor_from_tree (decl);
10286 if (descr)
10288 add_AT_location_description (die, attr, descr);
10289 return;
10293 /* If we don't have a copy of this variable in memory for some reason (such
10294 as a C++ member constant that doesn't have an out-of-line definition),
10295 we should tell the debugger about the constant value. */
10297 static void
10298 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10300 tree init = DECL_INITIAL (decl);
10301 tree type = TREE_TYPE (decl);
10302 rtx rtl;
10304 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10305 /* OK */;
10306 else
10307 return;
10309 rtl = rtl_for_decl_init (init, type);
10310 if (rtl)
10311 add_const_value_attribute (var_die, rtl);
10314 /* Convert the CFI instructions for the current function into a
10315 location list. This is used for DW_AT_frame_base when we targeting
10316 a dwarf2 consumer that does not support the dwarf3
10317 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10318 expressions. */
10320 static dw_loc_list_ref
10321 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10323 dw_fde_ref fde;
10324 dw_loc_list_ref list, *list_tail;
10325 dw_cfi_ref cfi;
10326 dw_cfa_location last_cfa, next_cfa;
10327 const char *start_label, *last_label, *section;
10329 fde = &fde_table[fde_table_in_use - 1];
10331 section = secname_for_decl (current_function_decl);
10332 list_tail = &list;
10333 list = NULL;
10335 next_cfa.reg = INVALID_REGNUM;
10336 next_cfa.offset = 0;
10337 next_cfa.indirect = 0;
10338 next_cfa.base_offset = 0;
10340 start_label = fde->dw_fde_begin;
10342 /* ??? Bald assumption that the CIE opcode list does not contain
10343 advance opcodes. */
10344 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10345 lookup_cfa_1 (cfi, &next_cfa);
10347 last_cfa = next_cfa;
10348 last_label = start_label;
10350 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10351 switch (cfi->dw_cfi_opc)
10353 case DW_CFA_advance_loc1:
10354 case DW_CFA_advance_loc2:
10355 case DW_CFA_advance_loc4:
10356 if (!cfa_equal_p (&last_cfa, &next_cfa))
10358 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10359 start_label, last_label, section,
10360 list == NULL);
10362 list_tail = &(*list_tail)->dw_loc_next;
10363 last_cfa = next_cfa;
10364 start_label = last_label;
10366 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10367 break;
10369 case DW_CFA_advance_loc:
10370 /* The encoding is complex enough that we should never emit this. */
10371 case DW_CFA_remember_state:
10372 case DW_CFA_restore_state:
10373 /* We don't handle these two in this function. It would be possible
10374 if it were to be required. */
10375 gcc_unreachable ();
10377 default:
10378 lookup_cfa_1 (cfi, &next_cfa);
10379 break;
10382 if (!cfa_equal_p (&last_cfa, &next_cfa))
10384 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10385 start_label, last_label, section,
10386 list == NULL);
10387 list_tail = &(*list_tail)->dw_loc_next;
10388 start_label = last_label;
10390 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10391 start_label, fde->dw_fde_end, section,
10392 list == NULL);
10394 return list;
10397 /* Compute a displacement from the "steady-state frame pointer" to the
10398 frame base (often the same as the CFA), and store it in
10399 frame_pointer_fb_offset. OFFSET is added to the displacement
10400 before the latter is negated. */
10402 static void
10403 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10405 rtx reg, elim;
10407 #ifdef FRAME_POINTER_CFA_OFFSET
10408 reg = frame_pointer_rtx;
10409 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10410 #else
10411 reg = arg_pointer_rtx;
10412 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10413 #endif
10415 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10416 if (GET_CODE (elim) == PLUS)
10418 offset += INTVAL (XEXP (elim, 1));
10419 elim = XEXP (elim, 0);
10421 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10422 : stack_pointer_rtx));
10424 frame_pointer_fb_offset = -offset;
10427 /* Generate a DW_AT_name attribute given some string value to be included as
10428 the value of the attribute. */
10430 static void
10431 add_name_attribute (dw_die_ref die, const char *name_string)
10433 if (name_string != NULL && *name_string != 0)
10435 if (demangle_name_func)
10436 name_string = (*demangle_name_func) (name_string);
10438 add_AT_string (die, DW_AT_name, name_string);
10442 /* Generate a DW_AT_comp_dir attribute for DIE. */
10444 static void
10445 add_comp_dir_attribute (dw_die_ref die)
10447 const char *wd = get_src_pwd ();
10448 if (wd != NULL)
10449 add_AT_string (die, DW_AT_comp_dir, wd);
10452 /* Given a tree node describing an array bound (either lower or upper) output
10453 a representation for that bound. */
10455 static void
10456 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10458 switch (TREE_CODE (bound))
10460 case ERROR_MARK:
10461 return;
10463 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10464 case INTEGER_CST:
10465 if (! host_integerp (bound, 0)
10466 || (bound_attr == DW_AT_lower_bound
10467 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10468 || (is_fortran () && integer_onep (bound)))))
10469 /* Use the default. */
10471 else
10472 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10473 break;
10475 case CONVERT_EXPR:
10476 case NOP_EXPR:
10477 case NON_LVALUE_EXPR:
10478 case VIEW_CONVERT_EXPR:
10479 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10480 break;
10482 case SAVE_EXPR:
10483 break;
10485 case VAR_DECL:
10486 case PARM_DECL:
10487 case RESULT_DECL:
10489 dw_die_ref decl_die = lookup_decl_die (bound);
10491 /* ??? Can this happen, or should the variable have been bound
10492 first? Probably it can, since I imagine that we try to create
10493 the types of parameters in the order in which they exist in
10494 the list, and won't have created a forward reference to a
10495 later parameter. */
10496 if (decl_die != NULL)
10497 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10498 break;
10501 default:
10503 /* Otherwise try to create a stack operation procedure to
10504 evaluate the value of the array bound. */
10506 dw_die_ref ctx, decl_die;
10507 dw_loc_descr_ref loc;
10509 loc = loc_descriptor_from_tree (bound);
10510 if (loc == NULL)
10511 break;
10513 if (current_function_decl == 0)
10514 ctx = comp_unit_die;
10515 else
10516 ctx = lookup_decl_die (current_function_decl);
10518 decl_die = new_die (DW_TAG_variable, ctx, bound);
10519 add_AT_flag (decl_die, DW_AT_artificial, 1);
10520 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10521 add_AT_loc (decl_die, DW_AT_location, loc);
10523 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10524 break;
10529 /* Note that the block of subscript information for an array type also
10530 includes information about the element type of type given array type. */
10532 static void
10533 add_subscript_info (dw_die_ref type_die, tree type)
10535 #ifndef MIPS_DEBUGGING_INFO
10536 unsigned dimension_number;
10537 #endif
10538 tree lower, upper;
10539 dw_die_ref subrange_die;
10541 /* The GNU compilers represent multidimensional array types as sequences of
10542 one dimensional array types whose element types are themselves array
10543 types. Here we squish that down, so that each multidimensional array
10544 type gets only one array_type DIE in the Dwarf debugging info. The draft
10545 Dwarf specification say that we are allowed to do this kind of
10546 compression in C (because there is no difference between an array or
10547 arrays and a multidimensional array in C) but for other source languages
10548 (e.g. Ada) we probably shouldn't do this. */
10550 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10551 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10552 We work around this by disabling this feature. See also
10553 gen_array_type_die. */
10554 #ifndef MIPS_DEBUGGING_INFO
10555 for (dimension_number = 0;
10556 TREE_CODE (type) == ARRAY_TYPE;
10557 type = TREE_TYPE (type), dimension_number++)
10558 #endif
10560 tree domain = TYPE_DOMAIN (type);
10562 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10563 and (in GNU C only) variable bounds. Handle all three forms
10564 here. */
10565 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10566 if (domain)
10568 /* We have an array type with specified bounds. */
10569 lower = TYPE_MIN_VALUE (domain);
10570 upper = TYPE_MAX_VALUE (domain);
10572 /* Define the index type. */
10573 if (TREE_TYPE (domain))
10575 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10576 TREE_TYPE field. We can't emit debug info for this
10577 because it is an unnamed integral type. */
10578 if (TREE_CODE (domain) == INTEGER_TYPE
10579 && TYPE_NAME (domain) == NULL_TREE
10580 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10581 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10583 else
10584 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10585 type_die);
10588 /* ??? If upper is NULL, the array has unspecified length,
10589 but it does have a lower bound. This happens with Fortran
10590 dimension arr(N:*)
10591 Since the debugger is definitely going to need to know N
10592 to produce useful results, go ahead and output the lower
10593 bound solo, and hope the debugger can cope. */
10595 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10596 if (upper)
10597 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10600 /* Otherwise we have an array type with an unspecified length. The
10601 DWARF-2 spec does not say how to handle this; let's just leave out the
10602 bounds. */
10606 static void
10607 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10609 unsigned size;
10611 switch (TREE_CODE (tree_node))
10613 case ERROR_MARK:
10614 size = 0;
10615 break;
10616 case ENUMERAL_TYPE:
10617 case RECORD_TYPE:
10618 case UNION_TYPE:
10619 case QUAL_UNION_TYPE:
10620 size = int_size_in_bytes (tree_node);
10621 break;
10622 case FIELD_DECL:
10623 /* For a data member of a struct or union, the DW_AT_byte_size is
10624 generally given as the number of bytes normally allocated for an
10625 object of the *declared* type of the member itself. This is true
10626 even for bit-fields. */
10627 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10628 break;
10629 default:
10630 gcc_unreachable ();
10633 /* Note that `size' might be -1 when we get to this point. If it is, that
10634 indicates that the byte size of the entity in question is variable. We
10635 have no good way of expressing this fact in Dwarf at the present time,
10636 so just let the -1 pass on through. */
10637 add_AT_unsigned (die, DW_AT_byte_size, size);
10640 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10641 which specifies the distance in bits from the highest order bit of the
10642 "containing object" for the bit-field to the highest order bit of the
10643 bit-field itself.
10645 For any given bit-field, the "containing object" is a hypothetical object
10646 (of some integral or enum type) within which the given bit-field lives. The
10647 type of this hypothetical "containing object" is always the same as the
10648 declared type of the individual bit-field itself. The determination of the
10649 exact location of the "containing object" for a bit-field is rather
10650 complicated. It's handled by the `field_byte_offset' function (above).
10652 Note that it is the size (in bytes) of the hypothetical "containing object"
10653 which will be given in the DW_AT_byte_size attribute for this bit-field.
10654 (See `byte_size_attribute' above). */
10656 static inline void
10657 add_bit_offset_attribute (dw_die_ref die, tree decl)
10659 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10660 tree type = DECL_BIT_FIELD_TYPE (decl);
10661 HOST_WIDE_INT bitpos_int;
10662 HOST_WIDE_INT highest_order_object_bit_offset;
10663 HOST_WIDE_INT highest_order_field_bit_offset;
10664 HOST_WIDE_INT unsigned bit_offset;
10666 /* Must be a field and a bit field. */
10667 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10669 /* We can't yet handle bit-fields whose offsets are variable, so if we
10670 encounter such things, just return without generating any attribute
10671 whatsoever. Likewise for variable or too large size. */
10672 if (! host_integerp (bit_position (decl), 0)
10673 || ! host_integerp (DECL_SIZE (decl), 1))
10674 return;
10676 bitpos_int = int_bit_position (decl);
10678 /* Note that the bit offset is always the distance (in bits) from the
10679 highest-order bit of the "containing object" to the highest-order bit of
10680 the bit-field itself. Since the "high-order end" of any object or field
10681 is different on big-endian and little-endian machines, the computation
10682 below must take account of these differences. */
10683 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10684 highest_order_field_bit_offset = bitpos_int;
10686 if (! BYTES_BIG_ENDIAN)
10688 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10689 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10692 bit_offset
10693 = (! BYTES_BIG_ENDIAN
10694 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10695 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10697 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10700 /* For a FIELD_DECL node which represents a bit field, output an attribute
10701 which specifies the length in bits of the given field. */
10703 static inline void
10704 add_bit_size_attribute (dw_die_ref die, tree decl)
10706 /* Must be a field and a bit field. */
10707 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10708 && DECL_BIT_FIELD_TYPE (decl));
10710 if (host_integerp (DECL_SIZE (decl), 1))
10711 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10714 /* If the compiled language is ANSI C, then add a 'prototyped'
10715 attribute, if arg types are given for the parameters of a function. */
10717 static inline void
10718 add_prototyped_attribute (dw_die_ref die, tree func_type)
10720 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10721 && TYPE_ARG_TYPES (func_type) != NULL)
10722 add_AT_flag (die, DW_AT_prototyped, 1);
10725 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10726 by looking in either the type declaration or object declaration
10727 equate table. */
10729 static inline void
10730 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10732 dw_die_ref origin_die = NULL;
10734 if (TREE_CODE (origin) != FUNCTION_DECL)
10736 /* We may have gotten separated from the block for the inlined
10737 function, if we're in an exception handler or some such; make
10738 sure that the abstract function has been written out.
10740 Doing this for nested functions is wrong, however; functions are
10741 distinct units, and our context might not even be inline. */
10742 tree fn = origin;
10744 if (TYPE_P (fn))
10745 fn = TYPE_STUB_DECL (fn);
10747 fn = decl_function_context (fn);
10748 if (fn)
10749 dwarf2out_abstract_function (fn);
10752 if (DECL_P (origin))
10753 origin_die = lookup_decl_die (origin);
10754 else if (TYPE_P (origin))
10755 origin_die = lookup_type_die (origin);
10757 /* XXX: Functions that are never lowered don't always have correct block
10758 trees (in the case of java, they simply have no block tree, in some other
10759 languages). For these functions, there is nothing we can really do to
10760 output correct debug info for inlined functions in all cases. Rather
10761 than die, we'll just produce deficient debug info now, in that we will
10762 have variables without a proper abstract origin. In the future, when all
10763 functions are lowered, we should re-add a gcc_assert (origin_die)
10764 here. */
10766 if (origin_die)
10767 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10770 /* We do not currently support the pure_virtual attribute. */
10772 static inline void
10773 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10775 if (DECL_VINDEX (func_decl))
10777 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10779 if (host_integerp (DECL_VINDEX (func_decl), 0))
10780 add_AT_loc (die, DW_AT_vtable_elem_location,
10781 new_loc_descr (DW_OP_constu,
10782 tree_low_cst (DECL_VINDEX (func_decl), 0),
10783 0));
10785 /* GNU extension: Record what type this method came from originally. */
10786 if (debug_info_level > DINFO_LEVEL_TERSE)
10787 add_AT_die_ref (die, DW_AT_containing_type,
10788 lookup_type_die (DECL_CONTEXT (func_decl)));
10792 /* Add source coordinate attributes for the given decl. */
10794 static void
10795 add_src_coords_attributes (dw_die_ref die, tree decl)
10797 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10798 unsigned file_index = lookup_filename (s.file);
10800 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10801 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10804 /* Add a DW_AT_name attribute and source coordinate attribute for the
10805 given decl, but only if it actually has a name. */
10807 static void
10808 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10810 tree decl_name;
10812 decl_name = DECL_NAME (decl);
10813 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10815 add_name_attribute (die, dwarf2_name (decl, 0));
10816 if (! DECL_ARTIFICIAL (decl))
10817 add_src_coords_attributes (die, decl);
10819 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10820 && TREE_PUBLIC (decl)
10821 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10822 && !DECL_ABSTRACT (decl)
10823 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10824 add_AT_string (die, DW_AT_MIPS_linkage_name,
10825 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10828 #ifdef VMS_DEBUGGING_INFO
10829 /* Get the function's name, as described by its RTL. This may be different
10830 from the DECL_NAME name used in the source file. */
10831 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10833 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10834 XEXP (DECL_RTL (decl), 0));
10835 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10837 #endif
10840 /* Push a new declaration scope. */
10842 static void
10843 push_decl_scope (tree scope)
10845 VEC_safe_push (tree, gc, decl_scope_table, scope);
10848 /* Pop a declaration scope. */
10850 static inline void
10851 pop_decl_scope (void)
10853 VEC_pop (tree, decl_scope_table);
10856 /* Return the DIE for the scope that immediately contains this type.
10857 Non-named types get global scope. Named types nested in other
10858 types get their containing scope if it's open, or global scope
10859 otherwise. All other types (i.e. function-local named types) get
10860 the current active scope. */
10862 static dw_die_ref
10863 scope_die_for (tree t, dw_die_ref context_die)
10865 dw_die_ref scope_die = NULL;
10866 tree containing_scope;
10867 int i;
10869 /* Non-types always go in the current scope. */
10870 gcc_assert (TYPE_P (t));
10872 containing_scope = TYPE_CONTEXT (t);
10874 /* Use the containing namespace if it was passed in (for a declaration). */
10875 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10877 if (context_die == lookup_decl_die (containing_scope))
10878 /* OK */;
10879 else
10880 containing_scope = NULL_TREE;
10883 /* Ignore function type "scopes" from the C frontend. They mean that
10884 a tagged type is local to a parmlist of a function declarator, but
10885 that isn't useful to DWARF. */
10886 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10887 containing_scope = NULL_TREE;
10889 if (containing_scope == NULL_TREE)
10890 scope_die = comp_unit_die;
10891 else if (TYPE_P (containing_scope))
10893 /* For types, we can just look up the appropriate DIE. But
10894 first we check to see if we're in the middle of emitting it
10895 so we know where the new DIE should go. */
10896 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10897 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10898 break;
10900 if (i < 0)
10902 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10903 || TREE_ASM_WRITTEN (containing_scope));
10905 /* If none of the current dies are suitable, we get file scope. */
10906 scope_die = comp_unit_die;
10908 else
10909 scope_die = lookup_type_die (containing_scope);
10911 else
10912 scope_die = context_die;
10914 return scope_die;
10917 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10919 static inline int
10920 local_scope_p (dw_die_ref context_die)
10922 for (; context_die; context_die = context_die->die_parent)
10923 if (context_die->die_tag == DW_TAG_inlined_subroutine
10924 || context_die->die_tag == DW_TAG_subprogram)
10925 return 1;
10927 return 0;
10930 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10931 whether or not to treat a DIE in this context as a declaration. */
10933 static inline int
10934 class_or_namespace_scope_p (dw_die_ref context_die)
10936 return (context_die
10937 && (context_die->die_tag == DW_TAG_structure_type
10938 || context_die->die_tag == DW_TAG_union_type
10939 || context_die->die_tag == DW_TAG_namespace));
10942 /* Many forms of DIEs require a "type description" attribute. This
10943 routine locates the proper "type descriptor" die for the type given
10944 by 'type', and adds a DW_AT_type attribute below the given die. */
10946 static void
10947 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10948 int decl_volatile, dw_die_ref context_die)
10950 enum tree_code code = TREE_CODE (type);
10951 dw_die_ref type_die = NULL;
10953 /* ??? If this type is an unnamed subrange type of an integral or
10954 floating-point type, use the inner type. This is because we have no
10955 support for unnamed types in base_type_die. This can happen if this is
10956 an Ada subrange type. Correct solution is emit a subrange type die. */
10957 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10958 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10959 type = TREE_TYPE (type), code = TREE_CODE (type);
10961 if (code == ERROR_MARK
10962 /* Handle a special case. For functions whose return type is void, we
10963 generate *no* type attribute. (Note that no object may have type
10964 `void', so this only applies to function return types). */
10965 || code == VOID_TYPE)
10966 return;
10968 type_die = modified_type_die (type,
10969 decl_const || TYPE_READONLY (type),
10970 decl_volatile || TYPE_VOLATILE (type),
10971 context_die);
10973 if (type_die != NULL)
10974 add_AT_die_ref (object_die, DW_AT_type, type_die);
10977 /* Given an object die, add the calling convention attribute for the
10978 function call type. */
10979 static void
10980 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10982 enum dwarf_calling_convention value = DW_CC_normal;
10984 value = targetm.dwarf_calling_convention (type);
10986 /* Only add the attribute if the backend requests it, and
10987 is not DW_CC_normal. */
10988 if (value && (value != DW_CC_normal))
10989 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10992 /* Given a tree pointer to a struct, class, union, or enum type node, return
10993 a pointer to the (string) tag name for the given type, or zero if the type
10994 was declared without a tag. */
10996 static const char *
10997 type_tag (tree type)
10999 const char *name = 0;
11001 if (TYPE_NAME (type) != 0)
11003 tree t = 0;
11005 /* Find the IDENTIFIER_NODE for the type name. */
11006 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11007 t = TYPE_NAME (type);
11009 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11010 a TYPE_DECL node, regardless of whether or not a `typedef' was
11011 involved. */
11012 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11013 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11014 t = DECL_NAME (TYPE_NAME (type));
11016 /* Now get the name as a string, or invent one. */
11017 if (t != 0)
11018 name = IDENTIFIER_POINTER (t);
11021 return (name == 0 || *name == '\0') ? 0 : name;
11024 /* Return the type associated with a data member, make a special check
11025 for bit field types. */
11027 static inline tree
11028 member_declared_type (tree member)
11030 return (DECL_BIT_FIELD_TYPE (member)
11031 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11034 /* Get the decl's label, as described by its RTL. This may be different
11035 from the DECL_NAME name used in the source file. */
11037 #if 0
11038 static const char *
11039 decl_start_label (tree decl)
11041 rtx x;
11042 const char *fnname;
11044 x = DECL_RTL (decl);
11045 gcc_assert (MEM_P (x));
11047 x = XEXP (x, 0);
11048 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11050 fnname = XSTR (x, 0);
11051 return fnname;
11053 #endif
11055 /* These routines generate the internal representation of the DIE's for
11056 the compilation unit. Debugging information is collected by walking
11057 the declaration trees passed in from dwarf2out_decl(). */
11059 static void
11060 gen_array_type_die (tree type, dw_die_ref context_die)
11062 dw_die_ref scope_die = scope_die_for (type, context_die);
11063 dw_die_ref array_die;
11064 tree element_type;
11066 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11067 the inner array type comes before the outer array type. Thus we must
11068 call gen_type_die before we call new_die. See below also. */
11069 #ifdef MIPS_DEBUGGING_INFO
11070 gen_type_die (TREE_TYPE (type), context_die);
11071 #endif
11073 array_die = new_die (DW_TAG_array_type, scope_die, type);
11074 add_name_attribute (array_die, type_tag (type));
11075 equate_type_number_to_die (type, array_die);
11077 if (TREE_CODE (type) == VECTOR_TYPE)
11079 /* The frontend feeds us a representation for the vector as a struct
11080 containing an array. Pull out the array type. */
11081 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11082 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11085 #if 0
11086 /* We default the array ordering. SDB will probably do
11087 the right things even if DW_AT_ordering is not present. It's not even
11088 an issue until we start to get into multidimensional arrays anyway. If
11089 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11090 then we'll have to put the DW_AT_ordering attribute back in. (But if
11091 and when we find out that we need to put these in, we will only do so
11092 for multidimensional arrays. */
11093 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11094 #endif
11096 #ifdef MIPS_DEBUGGING_INFO
11097 /* The SGI compilers handle arrays of unknown bound by setting
11098 AT_declaration and not emitting any subrange DIEs. */
11099 if (! TYPE_DOMAIN (type))
11100 add_AT_flag (array_die, DW_AT_declaration, 1);
11101 else
11102 #endif
11103 add_subscript_info (array_die, type);
11105 /* Add representation of the type of the elements of this array type. */
11106 element_type = TREE_TYPE (type);
11108 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11109 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11110 We work around this by disabling this feature. See also
11111 add_subscript_info. */
11112 #ifndef MIPS_DEBUGGING_INFO
11113 while (TREE_CODE (element_type) == ARRAY_TYPE)
11114 element_type = TREE_TYPE (element_type);
11116 gen_type_die (element_type, context_die);
11117 #endif
11119 add_type_attribute (array_die, element_type, 0, 0, context_die);
11122 #if 0
11123 static void
11124 gen_entry_point_die (tree decl, dw_die_ref context_die)
11126 tree origin = decl_ultimate_origin (decl);
11127 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11129 if (origin != NULL)
11130 add_abstract_origin_attribute (decl_die, origin);
11131 else
11133 add_name_and_src_coords_attributes (decl_die, decl);
11134 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11135 0, 0, context_die);
11138 if (DECL_ABSTRACT (decl))
11139 equate_decl_number_to_die (decl, decl_die);
11140 else
11141 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11143 #endif
11145 /* Walk through the list of incomplete types again, trying once more to
11146 emit full debugging info for them. */
11148 static void
11149 retry_incomplete_types (void)
11151 int i;
11153 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11154 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11157 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11159 static void
11160 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11162 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11164 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11165 be incomplete and such types are not marked. */
11166 add_abstract_origin_attribute (type_die, type);
11169 /* Generate a DIE to represent an inlined instance of a structure type. */
11171 static void
11172 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11174 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11176 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11177 be incomplete and such types are not marked. */
11178 add_abstract_origin_attribute (type_die, type);
11181 /* Generate a DIE to represent an inlined instance of a union type. */
11183 static void
11184 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11186 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11188 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11189 be incomplete and such types are not marked. */
11190 add_abstract_origin_attribute (type_die, type);
11193 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11194 include all of the information about the enumeration values also. Each
11195 enumerated type name/value is listed as a child of the enumerated type
11196 DIE. */
11198 static dw_die_ref
11199 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11201 dw_die_ref type_die = lookup_type_die (type);
11203 if (type_die == NULL)
11205 type_die = new_die (DW_TAG_enumeration_type,
11206 scope_die_for (type, context_die), type);
11207 equate_type_number_to_die (type, type_die);
11208 add_name_attribute (type_die, type_tag (type));
11210 else if (! TYPE_SIZE (type))
11211 return type_die;
11212 else
11213 remove_AT (type_die, DW_AT_declaration);
11215 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11216 given enum type is incomplete, do not generate the DW_AT_byte_size
11217 attribute or the DW_AT_element_list attribute. */
11218 if (TYPE_SIZE (type))
11220 tree link;
11222 TREE_ASM_WRITTEN (type) = 1;
11223 add_byte_size_attribute (type_die, type);
11224 if (TYPE_STUB_DECL (type) != NULL_TREE)
11225 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11227 /* If the first reference to this type was as the return type of an
11228 inline function, then it may not have a parent. Fix this now. */
11229 if (type_die->die_parent == NULL)
11230 add_child_die (scope_die_for (type, context_die), type_die);
11232 for (link = TYPE_VALUES (type);
11233 link != NULL; link = TREE_CHAIN (link))
11235 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11236 tree value = TREE_VALUE (link);
11238 add_name_attribute (enum_die,
11239 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11241 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11242 /* DWARF2 does not provide a way of indicating whether or
11243 not enumeration constants are signed or unsigned. GDB
11244 always assumes the values are signed, so we output all
11245 values as if they were signed. That means that
11246 enumeration constants with very large unsigned values
11247 will appear to have negative values in the debugger. */
11248 add_AT_int (enum_die, DW_AT_const_value,
11249 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11252 else
11253 add_AT_flag (type_die, DW_AT_declaration, 1);
11255 return type_die;
11258 /* Generate a DIE to represent either a real live formal parameter decl or to
11259 represent just the type of some formal parameter position in some function
11260 type.
11262 Note that this routine is a bit unusual because its argument may be a
11263 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11264 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11265 node. If it's the former then this function is being called to output a
11266 DIE to represent a formal parameter object (or some inlining thereof). If
11267 it's the latter, then this function is only being called to output a
11268 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11269 argument type of some subprogram type. */
11271 static dw_die_ref
11272 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11274 dw_die_ref parm_die
11275 = new_die (DW_TAG_formal_parameter, context_die, node);
11276 tree origin;
11278 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11280 case tcc_declaration:
11281 origin = decl_ultimate_origin (node);
11282 if (origin != NULL)
11283 add_abstract_origin_attribute (parm_die, origin);
11284 else
11286 add_name_and_src_coords_attributes (parm_die, node);
11287 add_type_attribute (parm_die, TREE_TYPE (node),
11288 TREE_READONLY (node),
11289 TREE_THIS_VOLATILE (node),
11290 context_die);
11291 if (DECL_ARTIFICIAL (node))
11292 add_AT_flag (parm_die, DW_AT_artificial, 1);
11295 equate_decl_number_to_die (node, parm_die);
11296 if (! DECL_ABSTRACT (node))
11297 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11299 break;
11301 case tcc_type:
11302 /* We were called with some kind of a ..._TYPE node. */
11303 add_type_attribute (parm_die, node, 0, 0, context_die);
11304 break;
11306 default:
11307 gcc_unreachable ();
11310 return parm_die;
11313 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11314 at the end of an (ANSI prototyped) formal parameters list. */
11316 static void
11317 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11319 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11322 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11323 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11324 parameters as specified in some function type specification (except for
11325 those which appear as part of a function *definition*). */
11327 static void
11328 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11330 tree link;
11331 tree formal_type = NULL;
11332 tree first_parm_type;
11333 tree arg;
11335 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11337 arg = DECL_ARGUMENTS (function_or_method_type);
11338 function_or_method_type = TREE_TYPE (function_or_method_type);
11340 else
11341 arg = NULL_TREE;
11343 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11345 /* Make our first pass over the list of formal parameter types and output a
11346 DW_TAG_formal_parameter DIE for each one. */
11347 for (link = first_parm_type; link; )
11349 dw_die_ref parm_die;
11351 formal_type = TREE_VALUE (link);
11352 if (formal_type == void_type_node)
11353 break;
11355 /* Output a (nameless) DIE to represent the formal parameter itself. */
11356 parm_die = gen_formal_parameter_die (formal_type, context_die);
11357 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11358 && link == first_parm_type)
11359 || (arg && DECL_ARTIFICIAL (arg)))
11360 add_AT_flag (parm_die, DW_AT_artificial, 1);
11362 link = TREE_CHAIN (link);
11363 if (arg)
11364 arg = TREE_CHAIN (arg);
11367 /* If this function type has an ellipsis, add a
11368 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11369 if (formal_type != void_type_node)
11370 gen_unspecified_parameters_die (function_or_method_type, context_die);
11372 /* Make our second (and final) pass over the list of formal parameter types
11373 and output DIEs to represent those types (as necessary). */
11374 for (link = TYPE_ARG_TYPES (function_or_method_type);
11375 link && TREE_VALUE (link);
11376 link = TREE_CHAIN (link))
11377 gen_type_die (TREE_VALUE (link), context_die);
11380 /* We want to generate the DIE for TYPE so that we can generate the
11381 die for MEMBER, which has been defined; we will need to refer back
11382 to the member declaration nested within TYPE. If we're trying to
11383 generate minimal debug info for TYPE, processing TYPE won't do the
11384 trick; we need to attach the member declaration by hand. */
11386 static void
11387 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11389 gen_type_die (type, context_die);
11391 /* If we're trying to avoid duplicate debug info, we may not have
11392 emitted the member decl for this function. Emit it now. */
11393 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11394 && ! lookup_decl_die (member))
11396 dw_die_ref type_die;
11397 gcc_assert (!decl_ultimate_origin (member));
11399 push_decl_scope (type);
11400 type_die = lookup_type_die (type);
11401 if (TREE_CODE (member) == FUNCTION_DECL)
11402 gen_subprogram_die (member, type_die);
11403 else if (TREE_CODE (member) == FIELD_DECL)
11405 /* Ignore the nameless fields that are used to skip bits but handle
11406 C++ anonymous unions and structs. */
11407 if (DECL_NAME (member) != NULL_TREE
11408 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11409 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11411 gen_type_die (member_declared_type (member), type_die);
11412 gen_field_die (member, type_die);
11415 else
11416 gen_variable_die (member, type_die);
11418 pop_decl_scope ();
11422 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11423 may later generate inlined and/or out-of-line instances of. */
11425 static void
11426 dwarf2out_abstract_function (tree decl)
11428 dw_die_ref old_die;
11429 tree save_fn;
11430 tree context;
11431 int was_abstract = DECL_ABSTRACT (decl);
11433 /* Make sure we have the actual abstract inline, not a clone. */
11434 decl = DECL_ORIGIN (decl);
11436 old_die = lookup_decl_die (decl);
11437 if (old_die && get_AT (old_die, DW_AT_inline))
11438 /* We've already generated the abstract instance. */
11439 return;
11441 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11442 we don't get confused by DECL_ABSTRACT. */
11443 if (debug_info_level > DINFO_LEVEL_TERSE)
11445 context = decl_class_context (decl);
11446 if (context)
11447 gen_type_die_for_member
11448 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11451 /* Pretend we've just finished compiling this function. */
11452 save_fn = current_function_decl;
11453 current_function_decl = decl;
11455 set_decl_abstract_flags (decl, 1);
11456 dwarf2out_decl (decl);
11457 if (! was_abstract)
11458 set_decl_abstract_flags (decl, 0);
11460 current_function_decl = save_fn;
11463 /* Generate a DIE to represent a declared function (either file-scope or
11464 block-local). */
11466 static void
11467 gen_subprogram_die (tree decl, dw_die_ref context_die)
11469 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11470 tree origin = decl_ultimate_origin (decl);
11471 dw_die_ref subr_die;
11472 tree fn_arg_types;
11473 tree outer_scope;
11474 dw_die_ref old_die = lookup_decl_die (decl);
11475 int declaration = (current_function_decl != decl
11476 || class_or_namespace_scope_p (context_die));
11478 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11479 started to generate the abstract instance of an inline, decided to output
11480 its containing class, and proceeded to emit the declaration of the inline
11481 from the member list for the class. If so, DECLARATION takes priority;
11482 we'll get back to the abstract instance when done with the class. */
11484 /* The class-scope declaration DIE must be the primary DIE. */
11485 if (origin && declaration && class_or_namespace_scope_p (context_die))
11487 origin = NULL;
11488 gcc_assert (!old_die);
11491 /* Now that the C++ front end lazily declares artificial member fns, we
11492 might need to retrofit the declaration into its class. */
11493 if (!declaration && !origin && !old_die
11494 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11495 && !class_or_namespace_scope_p (context_die)
11496 && debug_info_level > DINFO_LEVEL_TERSE)
11497 old_die = force_decl_die (decl);
11499 if (origin != NULL)
11501 gcc_assert (!declaration || local_scope_p (context_die));
11503 /* Fixup die_parent for the abstract instance of a nested
11504 inline function. */
11505 if (old_die && old_die->die_parent == NULL)
11506 add_child_die (context_die, old_die);
11508 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11509 add_abstract_origin_attribute (subr_die, origin);
11511 else if (old_die)
11513 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11514 unsigned file_index = lookup_filename (s.file);
11516 if (!get_AT_flag (old_die, DW_AT_declaration)
11517 /* We can have a normal definition following an inline one in the
11518 case of redefinition of GNU C extern inlines.
11519 It seems reasonable to use AT_specification in this case. */
11520 && !get_AT (old_die, DW_AT_inline))
11522 /* Detect and ignore this case, where we are trying to output
11523 something we have already output. */
11524 return;
11527 /* If the definition comes from the same place as the declaration,
11528 maybe use the old DIE. We always want the DIE for this function
11529 that has the *_pc attributes to be under comp_unit_die so the
11530 debugger can find it. We also need to do this for abstract
11531 instances of inlines, since the spec requires the out-of-line copy
11532 to have the same parent. For local class methods, this doesn't
11533 apply; we just use the old DIE. */
11534 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11535 && (DECL_ARTIFICIAL (decl)
11536 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11537 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11538 == (unsigned) s.line))))
11540 subr_die = old_die;
11542 /* Clear out the declaration attribute and the formal parameters.
11543 Do not remove all children, because it is possible that this
11544 declaration die was forced using force_decl_die(). In such
11545 cases die that forced declaration die (e.g. TAG_imported_module)
11546 is one of the children that we do not want to remove. */
11547 remove_AT (subr_die, DW_AT_declaration);
11548 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11550 else
11552 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11553 add_AT_specification (subr_die, old_die);
11554 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11555 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11556 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11557 != (unsigned) s.line)
11558 add_AT_unsigned
11559 (subr_die, DW_AT_decl_line, s.line);
11562 else
11564 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11566 if (TREE_PUBLIC (decl))
11567 add_AT_flag (subr_die, DW_AT_external, 1);
11569 add_name_and_src_coords_attributes (subr_die, decl);
11570 if (debug_info_level > DINFO_LEVEL_TERSE)
11572 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11573 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11574 0, 0, context_die);
11577 add_pure_or_virtual_attribute (subr_die, decl);
11578 if (DECL_ARTIFICIAL (decl))
11579 add_AT_flag (subr_die, DW_AT_artificial, 1);
11581 if (TREE_PROTECTED (decl))
11582 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11583 else if (TREE_PRIVATE (decl))
11584 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11587 if (declaration)
11589 if (!old_die || !get_AT (old_die, DW_AT_inline))
11591 add_AT_flag (subr_die, DW_AT_declaration, 1);
11593 /* The first time we see a member function, it is in the context of
11594 the class to which it belongs. We make sure of this by emitting
11595 the class first. The next time is the definition, which is
11596 handled above. The two may come from the same source text.
11598 Note that force_decl_die() forces function declaration die. It is
11599 later reused to represent definition. */
11600 equate_decl_number_to_die (decl, subr_die);
11603 else if (DECL_ABSTRACT (decl))
11605 if (DECL_DECLARED_INLINE_P (decl))
11607 if (cgraph_function_possibly_inlined_p (decl))
11608 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11609 else
11610 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11612 else
11614 if (cgraph_function_possibly_inlined_p (decl))
11615 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11616 else
11617 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11620 equate_decl_number_to_die (decl, subr_die);
11622 else if (!DECL_EXTERNAL (decl))
11624 HOST_WIDE_INT cfa_fb_offset;
11626 if (!old_die || !get_AT (old_die, DW_AT_inline))
11627 equate_decl_number_to_die (decl, subr_die);
11629 if (!flag_reorder_blocks_and_partition)
11631 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11632 current_function_funcdef_no);
11633 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11634 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11635 current_function_funcdef_no);
11636 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11638 add_pubname (decl, subr_die);
11639 add_arange (decl, subr_die);
11641 else
11642 { /* Do nothing for now; maybe need to duplicate die, one for
11643 hot section and ond for cold section, then use the hot/cold
11644 section begin/end labels to generate the aranges... */
11646 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11647 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11648 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11649 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11651 add_pubname (decl, subr_die);
11652 add_arange (decl, subr_die);
11653 add_arange (decl, subr_die);
11657 #ifdef MIPS_DEBUGGING_INFO
11658 /* Add a reference to the FDE for this routine. */
11659 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11660 #endif
11662 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11664 /* We define the "frame base" as the function's CFA. This is more
11665 convenient for several reasons: (1) It's stable across the prologue
11666 and epilogue, which makes it better than just a frame pointer,
11667 (2) With dwarf3, there exists a one-byte encoding that allows us
11668 to reference the .debug_frame data by proxy, but failing that,
11669 (3) We can at least reuse the code inspection and interpretation
11670 code that determines the CFA position at various points in the
11671 function. */
11672 /* ??? Use some command-line or configury switch to enable the use
11673 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11674 consumers that understand it; fall back to "pure" dwarf2 and
11675 convert the CFA data into a location list. */
11677 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11678 if (list->dw_loc_next)
11679 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11680 else
11681 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11684 /* Compute a displacement from the "steady-state frame pointer" to
11685 the CFA. The former is what all stack slots and argument slots
11686 will reference in the rtl; the later is what we've told the
11687 debugger about. We'll need to adjust all frame_base references
11688 by this displacement. */
11689 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11691 if (cfun->static_chain_decl)
11692 add_AT_location_description (subr_die, DW_AT_static_link,
11693 loc_descriptor_from_tree (cfun->static_chain_decl));
11696 /* Now output descriptions of the arguments for this function. This gets
11697 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11698 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11699 `...' at the end of the formal parameter list. In order to find out if
11700 there was a trailing ellipsis or not, we must instead look at the type
11701 associated with the FUNCTION_DECL. This will be a node of type
11702 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11703 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11704 an ellipsis at the end. */
11706 /* In the case where we are describing a mere function declaration, all we
11707 need to do here (and all we *can* do here) is to describe the *types* of
11708 its formal parameters. */
11709 if (debug_info_level <= DINFO_LEVEL_TERSE)
11711 else if (declaration)
11712 gen_formal_types_die (decl, subr_die);
11713 else
11715 /* Generate DIEs to represent all known formal parameters. */
11716 tree arg_decls = DECL_ARGUMENTS (decl);
11717 tree parm;
11719 /* When generating DIEs, generate the unspecified_parameters DIE
11720 instead if we come across the arg "__builtin_va_alist" */
11721 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11722 if (TREE_CODE (parm) == PARM_DECL)
11724 if (DECL_NAME (parm)
11725 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11726 "__builtin_va_alist"))
11727 gen_unspecified_parameters_die (parm, subr_die);
11728 else
11729 gen_decl_die (parm, subr_die);
11732 /* Decide whether we need an unspecified_parameters DIE at the end.
11733 There are 2 more cases to do this for: 1) the ansi ... declaration -
11734 this is detectable when the end of the arg list is not a
11735 void_type_node 2) an unprototyped function declaration (not a
11736 definition). This just means that we have no info about the
11737 parameters at all. */
11738 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11739 if (fn_arg_types != NULL)
11741 /* This is the prototyped case, check for.... */
11742 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11743 gen_unspecified_parameters_die (decl, subr_die);
11745 else if (DECL_INITIAL (decl) == NULL_TREE)
11746 gen_unspecified_parameters_die (decl, subr_die);
11749 /* Output Dwarf info for all of the stuff within the body of the function
11750 (if it has one - it may be just a declaration). */
11751 outer_scope = DECL_INITIAL (decl);
11753 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11754 a function. This BLOCK actually represents the outermost binding contour
11755 for the function, i.e. the contour in which the function's formal
11756 parameters and labels get declared. Curiously, it appears that the front
11757 end doesn't actually put the PARM_DECL nodes for the current function onto
11758 the BLOCK_VARS list for this outer scope, but are strung off of the
11759 DECL_ARGUMENTS list for the function instead.
11761 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11762 the LABEL_DECL nodes for the function however, and we output DWARF info
11763 for those in decls_for_scope. Just within the `outer_scope' there will be
11764 a BLOCK node representing the function's outermost pair of curly braces,
11765 and any blocks used for the base and member initializers of a C++
11766 constructor function. */
11767 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11769 /* Emit a DW_TAG_variable DIE for a named return value. */
11770 if (DECL_NAME (DECL_RESULT (decl)))
11771 gen_decl_die (DECL_RESULT (decl), subr_die);
11773 current_function_has_inlines = 0;
11774 decls_for_scope (outer_scope, subr_die, 0);
11776 #if 0 && defined (MIPS_DEBUGGING_INFO)
11777 if (current_function_has_inlines)
11779 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11780 if (! comp_unit_has_inlines)
11782 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11783 comp_unit_has_inlines = 1;
11786 #endif
11788 /* Add the calling convention attribute if requested. */
11789 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11793 /* Generate a DIE to represent a declared data object. */
11795 static void
11796 gen_variable_die (tree decl, dw_die_ref context_die)
11798 tree origin = decl_ultimate_origin (decl);
11799 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11801 dw_die_ref old_die = lookup_decl_die (decl);
11802 int declaration = (DECL_EXTERNAL (decl)
11803 /* If DECL is COMDAT and has not actually been
11804 emitted, we cannot take its address; there
11805 might end up being no definition anywhere in
11806 the program. For example, consider the C++
11807 test case:
11809 template <class T>
11810 struct S { static const int i = 7; };
11812 template <class T>
11813 const int S<T>::i;
11815 int f() { return S<int>::i; }
11817 Here, S<int>::i is not DECL_EXTERNAL, but no
11818 definition is required, so the compiler will
11819 not emit a definition. */
11820 || (TREE_CODE (decl) == VAR_DECL
11821 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11822 || class_or_namespace_scope_p (context_die));
11824 if (origin != NULL)
11825 add_abstract_origin_attribute (var_die, origin);
11827 /* Loop unrolling can create multiple blocks that refer to the same
11828 static variable, so we must test for the DW_AT_declaration flag.
11830 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11831 copy decls and set the DECL_ABSTRACT flag on them instead of
11832 sharing them.
11834 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11836 ??? The declare_in_namespace support causes us to get two DIEs for one
11837 variable, both of which are declarations. We want to avoid considering
11838 one to be a specification, so we must test that this DIE is not a
11839 declaration. */
11840 else if (old_die && TREE_STATIC (decl) && ! declaration
11841 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11843 /* This is a definition of a C++ class level static. */
11844 add_AT_specification (var_die, old_die);
11845 if (DECL_NAME (decl))
11847 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11848 unsigned file_index = lookup_filename (s.file);
11850 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11851 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11853 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11854 != (unsigned) s.line)
11856 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11859 else
11861 add_name_and_src_coords_attributes (var_die, decl);
11862 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11863 TREE_THIS_VOLATILE (decl), context_die);
11865 if (TREE_PUBLIC (decl))
11866 add_AT_flag (var_die, DW_AT_external, 1);
11868 if (DECL_ARTIFICIAL (decl))
11869 add_AT_flag (var_die, DW_AT_artificial, 1);
11871 if (TREE_PROTECTED (decl))
11872 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11873 else if (TREE_PRIVATE (decl))
11874 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11877 if (declaration)
11878 add_AT_flag (var_die, DW_AT_declaration, 1);
11880 if (DECL_ABSTRACT (decl) || declaration)
11881 equate_decl_number_to_die (decl, var_die);
11883 if (! declaration && ! DECL_ABSTRACT (decl))
11885 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11886 add_pubname (decl, var_die);
11888 else
11889 tree_add_const_value_attribute (var_die, decl);
11892 /* Generate a DIE to represent a label identifier. */
11894 static void
11895 gen_label_die (tree decl, dw_die_ref context_die)
11897 tree origin = decl_ultimate_origin (decl);
11898 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11899 rtx insn;
11900 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11902 if (origin != NULL)
11903 add_abstract_origin_attribute (lbl_die, origin);
11904 else
11905 add_name_and_src_coords_attributes (lbl_die, decl);
11907 if (DECL_ABSTRACT (decl))
11908 equate_decl_number_to_die (decl, lbl_die);
11909 else
11911 insn = DECL_RTL_IF_SET (decl);
11913 /* Deleted labels are programmer specified labels which have been
11914 eliminated because of various optimizations. We still emit them
11915 here so that it is possible to put breakpoints on them. */
11916 if (insn
11917 && (LABEL_P (insn)
11918 || ((NOTE_P (insn)
11919 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11921 /* When optimization is enabled (via -O) some parts of the compiler
11922 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11923 represent source-level labels which were explicitly declared by
11924 the user. This really shouldn't be happening though, so catch
11925 it if it ever does happen. */
11926 gcc_assert (!INSN_DELETED_P (insn));
11928 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11929 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11934 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
11935 attributes to the DIE for a block STMT, to describe where the inlined
11936 function was called from. This is similar to add_src_coords_attributes. */
11938 static inline void
11939 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
11941 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
11942 unsigned file_index = lookup_filename (s.file);
11944 add_AT_unsigned (die, DW_AT_call_file, file_index);
11945 add_AT_unsigned (die, DW_AT_call_line, s.line);
11948 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11949 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11951 static inline void
11952 add_high_low_attributes (tree stmt, dw_die_ref die)
11954 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11956 if (BLOCK_FRAGMENT_CHAIN (stmt))
11958 tree chain;
11960 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11962 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11965 add_ranges (chain);
11966 chain = BLOCK_FRAGMENT_CHAIN (chain);
11968 while (chain);
11969 add_ranges (NULL);
11971 else
11973 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11974 BLOCK_NUMBER (stmt));
11975 add_AT_lbl_id (die, DW_AT_low_pc, label);
11976 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11977 BLOCK_NUMBER (stmt));
11978 add_AT_lbl_id (die, DW_AT_high_pc, label);
11982 /* Generate a DIE for a lexical block. */
11984 static void
11985 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11987 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11989 if (! BLOCK_ABSTRACT (stmt))
11990 add_high_low_attributes (stmt, stmt_die);
11992 decls_for_scope (stmt, stmt_die, depth);
11995 /* Generate a DIE for an inlined subprogram. */
11997 static void
11998 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12000 tree decl = block_ultimate_origin (stmt);
12002 /* Emit info for the abstract instance first, if we haven't yet. We
12003 must emit this even if the block is abstract, otherwise when we
12004 emit the block below (or elsewhere), we may end up trying to emit
12005 a die whose origin die hasn't been emitted, and crashing. */
12006 dwarf2out_abstract_function (decl);
12008 if (! BLOCK_ABSTRACT (stmt))
12010 dw_die_ref subr_die
12011 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12013 add_abstract_origin_attribute (subr_die, decl);
12014 add_high_low_attributes (stmt, subr_die);
12015 add_call_src_coords_attributes (stmt, subr_die);
12017 decls_for_scope (stmt, subr_die, depth);
12018 current_function_has_inlines = 1;
12020 else
12021 /* We may get here if we're the outer block of function A that was
12022 inlined into function B that was inlined into function C. When
12023 generating debugging info for C, dwarf2out_abstract_function(B)
12024 would mark all inlined blocks as abstract, including this one.
12025 So, we wouldn't (and shouldn't) expect labels to be generated
12026 for this one. Instead, just emit debugging info for
12027 declarations within the block. This is particularly important
12028 in the case of initializers of arguments passed from B to us:
12029 if they're statement expressions containing declarations, we
12030 wouldn't generate dies for their abstract variables, and then,
12031 when generating dies for the real variables, we'd die (pun
12032 intended :-) */
12033 gen_lexical_block_die (stmt, context_die, depth);
12036 /* Generate a DIE for a field in a record, or structure. */
12038 static void
12039 gen_field_die (tree decl, dw_die_ref context_die)
12041 dw_die_ref decl_die;
12043 if (TREE_TYPE (decl) == error_mark_node)
12044 return;
12046 decl_die = new_die (DW_TAG_member, context_die, decl);
12047 add_name_and_src_coords_attributes (decl_die, decl);
12048 add_type_attribute (decl_die, member_declared_type (decl),
12049 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12050 context_die);
12052 if (DECL_BIT_FIELD_TYPE (decl))
12054 add_byte_size_attribute (decl_die, decl);
12055 add_bit_size_attribute (decl_die, decl);
12056 add_bit_offset_attribute (decl_die, decl);
12059 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12060 add_data_member_location_attribute (decl_die, decl);
12062 if (DECL_ARTIFICIAL (decl))
12063 add_AT_flag (decl_die, DW_AT_artificial, 1);
12065 if (TREE_PROTECTED (decl))
12066 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12067 else if (TREE_PRIVATE (decl))
12068 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12070 /* Equate decl number to die, so that we can look up this decl later on. */
12071 equate_decl_number_to_die (decl, decl_die);
12074 #if 0
12075 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12076 Use modified_type_die instead.
12077 We keep this code here just in case these types of DIEs may be needed to
12078 represent certain things in other languages (e.g. Pascal) someday. */
12080 static void
12081 gen_pointer_type_die (tree type, dw_die_ref context_die)
12083 dw_die_ref ptr_die
12084 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12086 equate_type_number_to_die (type, ptr_die);
12087 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12088 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12091 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12092 Use modified_type_die instead.
12093 We keep this code here just in case these types of DIEs may be needed to
12094 represent certain things in other languages (e.g. Pascal) someday. */
12096 static void
12097 gen_reference_type_die (tree type, dw_die_ref context_die)
12099 dw_die_ref ref_die
12100 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12102 equate_type_number_to_die (type, ref_die);
12103 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12104 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12106 #endif
12108 /* Generate a DIE for a pointer to a member type. */
12110 static void
12111 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12113 dw_die_ref ptr_die
12114 = new_die (DW_TAG_ptr_to_member_type,
12115 scope_die_for (type, context_die), type);
12117 equate_type_number_to_die (type, ptr_die);
12118 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12119 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12120 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12123 /* Generate the DIE for the compilation unit. */
12125 static dw_die_ref
12126 gen_compile_unit_die (const char *filename)
12128 dw_die_ref die;
12129 char producer[250];
12130 const char *language_string = lang_hooks.name;
12131 int language;
12133 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12135 if (filename)
12137 add_name_attribute (die, filename);
12138 /* Don't add cwd for <built-in>. */
12139 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12140 add_comp_dir_attribute (die);
12143 sprintf (producer, "%s %s", language_string, version_string);
12145 #ifdef MIPS_DEBUGGING_INFO
12146 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12147 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12148 not appear in the producer string, the debugger reaches the conclusion
12149 that the object file is stripped and has no debugging information.
12150 To get the MIPS/SGI debugger to believe that there is debugging
12151 information in the object file, we add a -g to the producer string. */
12152 if (debug_info_level > DINFO_LEVEL_TERSE)
12153 strcat (producer, " -g");
12154 #endif
12156 add_AT_string (die, DW_AT_producer, producer);
12158 if (strcmp (language_string, "GNU C++") == 0)
12159 language = DW_LANG_C_plus_plus;
12160 else if (strcmp (language_string, "GNU Ada") == 0)
12161 language = DW_LANG_Ada95;
12162 else if (strcmp (language_string, "GNU F77") == 0)
12163 language = DW_LANG_Fortran77;
12164 else if (strcmp (language_string, "GNU F95") == 0)
12165 language = DW_LANG_Fortran95;
12166 else if (strcmp (language_string, "GNU Pascal") == 0)
12167 language = DW_LANG_Pascal83;
12168 else if (strcmp (language_string, "GNU Java") == 0)
12169 language = DW_LANG_Java;
12170 else
12171 language = DW_LANG_C89;
12173 add_AT_unsigned (die, DW_AT_language, language);
12174 return die;
12177 /* Generate the DIE for a base class. */
12179 static void
12180 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12182 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12184 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12185 add_data_member_location_attribute (die, binfo);
12187 if (BINFO_VIRTUAL_P (binfo))
12188 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12190 if (access == access_public_node)
12191 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12192 else if (access == access_protected_node)
12193 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12196 /* Generate a DIE for a class member. */
12198 static void
12199 gen_member_die (tree type, dw_die_ref context_die)
12201 tree member;
12202 tree binfo = TYPE_BINFO (type);
12203 dw_die_ref child;
12205 /* If this is not an incomplete type, output descriptions of each of its
12206 members. Note that as we output the DIEs necessary to represent the
12207 members of this record or union type, we will also be trying to output
12208 DIEs to represent the *types* of those members. However the `type'
12209 function (above) will specifically avoid generating type DIEs for member
12210 types *within* the list of member DIEs for this (containing) type except
12211 for those types (of members) which are explicitly marked as also being
12212 members of this (containing) type themselves. The g++ front- end can
12213 force any given type to be treated as a member of some other (containing)
12214 type by setting the TYPE_CONTEXT of the given (member) type to point to
12215 the TREE node representing the appropriate (containing) type. */
12217 /* First output info about the base classes. */
12218 if (binfo)
12220 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12221 int i;
12222 tree base;
12224 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12225 gen_inheritance_die (base,
12226 (accesses ? VEC_index (tree, accesses, i)
12227 : access_public_node), context_die);
12230 /* Now output info about the data members and type members. */
12231 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12233 /* If we thought we were generating minimal debug info for TYPE
12234 and then changed our minds, some of the member declarations
12235 may have already been defined. Don't define them again, but
12236 do put them in the right order. */
12238 child = lookup_decl_die (member);
12239 if (child)
12240 splice_child_die (context_die, child);
12241 else
12242 gen_decl_die (member, context_die);
12245 /* Now output info about the function members (if any). */
12246 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12248 /* Don't include clones in the member list. */
12249 if (DECL_ABSTRACT_ORIGIN (member))
12250 continue;
12252 child = lookup_decl_die (member);
12253 if (child)
12254 splice_child_die (context_die, child);
12255 else
12256 gen_decl_die (member, context_die);
12260 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12261 is set, we pretend that the type was never defined, so we only get the
12262 member DIEs needed by later specification DIEs. */
12264 static void
12265 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12267 dw_die_ref type_die = lookup_type_die (type);
12268 dw_die_ref scope_die = 0;
12269 int nested = 0;
12270 int complete = (TYPE_SIZE (type)
12271 && (! TYPE_STUB_DECL (type)
12272 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12273 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12275 if (type_die && ! complete)
12276 return;
12278 if (TYPE_CONTEXT (type) != NULL_TREE
12279 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12280 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12281 nested = 1;
12283 scope_die = scope_die_for (type, context_die);
12285 if (! type_die || (nested && scope_die == comp_unit_die))
12286 /* First occurrence of type or toplevel definition of nested class. */
12288 dw_die_ref old_die = type_die;
12290 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12291 ? DW_TAG_structure_type : DW_TAG_union_type,
12292 scope_die, type);
12293 equate_type_number_to_die (type, type_die);
12294 if (old_die)
12295 add_AT_specification (type_die, old_die);
12296 else
12297 add_name_attribute (type_die, type_tag (type));
12299 else
12300 remove_AT (type_die, DW_AT_declaration);
12302 /* If this type has been completed, then give it a byte_size attribute and
12303 then give a list of members. */
12304 if (complete && !ns_decl)
12306 /* Prevent infinite recursion in cases where the type of some member of
12307 this type is expressed in terms of this type itself. */
12308 TREE_ASM_WRITTEN (type) = 1;
12309 add_byte_size_attribute (type_die, type);
12310 if (TYPE_STUB_DECL (type) != NULL_TREE)
12311 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12313 /* If the first reference to this type was as the return type of an
12314 inline function, then it may not have a parent. Fix this now. */
12315 if (type_die->die_parent == NULL)
12316 add_child_die (scope_die, type_die);
12318 push_decl_scope (type);
12319 gen_member_die (type, type_die);
12320 pop_decl_scope ();
12322 /* GNU extension: Record what type our vtable lives in. */
12323 if (TYPE_VFIELD (type))
12325 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12327 gen_type_die (vtype, context_die);
12328 add_AT_die_ref (type_die, DW_AT_containing_type,
12329 lookup_type_die (vtype));
12332 else
12334 add_AT_flag (type_die, DW_AT_declaration, 1);
12336 /* We don't need to do this for function-local types. */
12337 if (TYPE_STUB_DECL (type)
12338 && ! decl_function_context (TYPE_STUB_DECL (type)))
12339 VEC_safe_push (tree, gc, incomplete_types, type);
12343 /* Generate a DIE for a subroutine _type_. */
12345 static void
12346 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12348 tree return_type = TREE_TYPE (type);
12349 dw_die_ref subr_die
12350 = new_die (DW_TAG_subroutine_type,
12351 scope_die_for (type, context_die), type);
12353 equate_type_number_to_die (type, subr_die);
12354 add_prototyped_attribute (subr_die, type);
12355 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12356 gen_formal_types_die (type, subr_die);
12359 /* Generate a DIE for a type definition. */
12361 static void
12362 gen_typedef_die (tree decl, dw_die_ref context_die)
12364 dw_die_ref type_die;
12365 tree origin;
12367 if (TREE_ASM_WRITTEN (decl))
12368 return;
12370 TREE_ASM_WRITTEN (decl) = 1;
12371 type_die = new_die (DW_TAG_typedef, context_die, decl);
12372 origin = decl_ultimate_origin (decl);
12373 if (origin != NULL)
12374 add_abstract_origin_attribute (type_die, origin);
12375 else
12377 tree type;
12379 add_name_and_src_coords_attributes (type_die, decl);
12380 if (DECL_ORIGINAL_TYPE (decl))
12382 type = DECL_ORIGINAL_TYPE (decl);
12384 gcc_assert (type != TREE_TYPE (decl));
12385 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12387 else
12388 type = TREE_TYPE (decl);
12390 add_type_attribute (type_die, type, TREE_READONLY (decl),
12391 TREE_THIS_VOLATILE (decl), context_die);
12394 if (DECL_ABSTRACT (decl))
12395 equate_decl_number_to_die (decl, type_die);
12398 /* Generate a type description DIE. */
12400 static void
12401 gen_type_die (tree type, dw_die_ref context_die)
12403 int need_pop;
12405 if (type == NULL_TREE || type == error_mark_node)
12406 return;
12408 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12409 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12411 if (TREE_ASM_WRITTEN (type))
12412 return;
12414 /* Prevent broken recursion; we can't hand off to the same type. */
12415 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12417 TREE_ASM_WRITTEN (type) = 1;
12418 gen_decl_die (TYPE_NAME (type), context_die);
12419 return;
12422 /* We are going to output a DIE to represent the unqualified version
12423 of this type (i.e. without any const or volatile qualifiers) so
12424 get the main variant (i.e. the unqualified version) of this type
12425 now. (Vectors are special because the debugging info is in the
12426 cloned type itself). */
12427 if (TREE_CODE (type) != VECTOR_TYPE)
12428 type = type_main_variant (type);
12430 if (TREE_ASM_WRITTEN (type))
12431 return;
12433 switch (TREE_CODE (type))
12435 case ERROR_MARK:
12436 break;
12438 case POINTER_TYPE:
12439 case REFERENCE_TYPE:
12440 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12441 ensures that the gen_type_die recursion will terminate even if the
12442 type is recursive. Recursive types are possible in Ada. */
12443 /* ??? We could perhaps do this for all types before the switch
12444 statement. */
12445 TREE_ASM_WRITTEN (type) = 1;
12447 /* For these types, all that is required is that we output a DIE (or a
12448 set of DIEs) to represent the "basis" type. */
12449 gen_type_die (TREE_TYPE (type), context_die);
12450 break;
12452 case OFFSET_TYPE:
12453 /* This code is used for C++ pointer-to-data-member types.
12454 Output a description of the relevant class type. */
12455 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12457 /* Output a description of the type of the object pointed to. */
12458 gen_type_die (TREE_TYPE (type), context_die);
12460 /* Now output a DIE to represent this pointer-to-data-member type
12461 itself. */
12462 gen_ptr_to_mbr_type_die (type, context_die);
12463 break;
12465 case FUNCTION_TYPE:
12466 /* Force out return type (in case it wasn't forced out already). */
12467 gen_type_die (TREE_TYPE (type), context_die);
12468 gen_subroutine_type_die (type, context_die);
12469 break;
12471 case METHOD_TYPE:
12472 /* Force out return type (in case it wasn't forced out already). */
12473 gen_type_die (TREE_TYPE (type), context_die);
12474 gen_subroutine_type_die (type, context_die);
12475 break;
12477 case ARRAY_TYPE:
12478 gen_array_type_die (type, context_die);
12479 break;
12481 case VECTOR_TYPE:
12482 gen_array_type_die (type, context_die);
12483 break;
12485 case ENUMERAL_TYPE:
12486 case RECORD_TYPE:
12487 case UNION_TYPE:
12488 case QUAL_UNION_TYPE:
12489 /* If this is a nested type whose containing class hasn't been written
12490 out yet, writing it out will cover this one, too. This does not apply
12491 to instantiations of member class templates; they need to be added to
12492 the containing class as they are generated. FIXME: This hurts the
12493 idea of combining type decls from multiple TUs, since we can't predict
12494 what set of template instantiations we'll get. */
12495 if (TYPE_CONTEXT (type)
12496 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12497 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12499 gen_type_die (TYPE_CONTEXT (type), context_die);
12501 if (TREE_ASM_WRITTEN (type))
12502 return;
12504 /* If that failed, attach ourselves to the stub. */
12505 push_decl_scope (TYPE_CONTEXT (type));
12506 context_die = lookup_type_die (TYPE_CONTEXT (type));
12507 need_pop = 1;
12509 else
12511 declare_in_namespace (type, context_die);
12512 need_pop = 0;
12515 if (TREE_CODE (type) == ENUMERAL_TYPE)
12516 gen_enumeration_type_die (type, context_die);
12517 else
12518 gen_struct_or_union_type_die (type, context_die);
12520 if (need_pop)
12521 pop_decl_scope ();
12523 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12524 it up if it is ever completed. gen_*_type_die will set it for us
12525 when appropriate. */
12526 return;
12528 case VOID_TYPE:
12529 case INTEGER_TYPE:
12530 case REAL_TYPE:
12531 case COMPLEX_TYPE:
12532 case BOOLEAN_TYPE:
12533 /* No DIEs needed for fundamental types. */
12534 break;
12536 case LANG_TYPE:
12537 /* No Dwarf representation currently defined. */
12538 break;
12540 default:
12541 gcc_unreachable ();
12544 TREE_ASM_WRITTEN (type) = 1;
12547 /* Generate a DIE for a tagged type instantiation. */
12549 static void
12550 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12552 if (type == NULL_TREE || type == error_mark_node)
12553 return;
12555 /* We are going to output a DIE to represent the unqualified version of
12556 this type (i.e. without any const or volatile qualifiers) so make sure
12557 that we have the main variant (i.e. the unqualified version) of this
12558 type now. */
12559 gcc_assert (type == type_main_variant (type));
12561 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12562 an instance of an unresolved type. */
12564 switch (TREE_CODE (type))
12566 case ERROR_MARK:
12567 break;
12569 case ENUMERAL_TYPE:
12570 gen_inlined_enumeration_type_die (type, context_die);
12571 break;
12573 case RECORD_TYPE:
12574 gen_inlined_structure_type_die (type, context_die);
12575 break;
12577 case UNION_TYPE:
12578 case QUAL_UNION_TYPE:
12579 gen_inlined_union_type_die (type, context_die);
12580 break;
12582 default:
12583 gcc_unreachable ();
12587 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12588 things which are local to the given block. */
12590 static void
12591 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12593 int must_output_die = 0;
12594 tree origin;
12595 tree decl;
12596 enum tree_code origin_code;
12598 /* Ignore blocks that are NULL. */
12599 if (stmt == NULL_TREE)
12600 return;
12602 /* If the block is one fragment of a non-contiguous block, do not
12603 process the variables, since they will have been done by the
12604 origin block. Do process subblocks. */
12605 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12607 tree sub;
12609 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12610 gen_block_die (sub, context_die, depth + 1);
12612 return;
12615 /* Determine the "ultimate origin" of this block. This block may be an
12616 inlined instance of an inlined instance of inline function, so we have
12617 to trace all of the way back through the origin chain to find out what
12618 sort of node actually served as the original seed for the creation of
12619 the current block. */
12620 origin = block_ultimate_origin (stmt);
12621 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12623 /* Determine if we need to output any Dwarf DIEs at all to represent this
12624 block. */
12625 if (origin_code == FUNCTION_DECL)
12626 /* The outer scopes for inlinings *must* always be represented. We
12627 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12628 must_output_die = 1;
12629 else
12631 /* In the case where the current block represents an inlining of the
12632 "body block" of an inline function, we must *NOT* output any DIE for
12633 this block because we have already output a DIE to represent the whole
12634 inlined function scope and the "body block" of any function doesn't
12635 really represent a different scope according to ANSI C rules. So we
12636 check here to make sure that this block does not represent a "body
12637 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12638 if (! is_body_block (origin ? origin : stmt))
12640 /* Determine if this block directly contains any "significant"
12641 local declarations which we will need to output DIEs for. */
12642 if (debug_info_level > DINFO_LEVEL_TERSE)
12643 /* We are not in terse mode so *any* local declaration counts
12644 as being a "significant" one. */
12645 must_output_die = (BLOCK_VARS (stmt) != NULL
12646 && (TREE_USED (stmt)
12647 || TREE_ASM_WRITTEN (stmt)
12648 || BLOCK_ABSTRACT (stmt)));
12649 else
12650 /* We are in terse mode, so only local (nested) function
12651 definitions count as "significant" local declarations. */
12652 for (decl = BLOCK_VARS (stmt);
12653 decl != NULL; decl = TREE_CHAIN (decl))
12654 if (TREE_CODE (decl) == FUNCTION_DECL
12655 && DECL_INITIAL (decl))
12657 must_output_die = 1;
12658 break;
12663 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12664 DIE for any block which contains no significant local declarations at
12665 all. Rather, in such cases we just call `decls_for_scope' so that any
12666 needed Dwarf info for any sub-blocks will get properly generated. Note
12667 that in terse mode, our definition of what constitutes a "significant"
12668 local declaration gets restricted to include only inlined function
12669 instances and local (nested) function definitions. */
12670 if (must_output_die)
12672 if (origin_code == FUNCTION_DECL)
12673 gen_inlined_subroutine_die (stmt, context_die, depth);
12674 else
12675 gen_lexical_block_die (stmt, context_die, depth);
12677 else
12678 decls_for_scope (stmt, context_die, depth);
12681 /* Generate all of the decls declared within a given scope and (recursively)
12682 all of its sub-blocks. */
12684 static void
12685 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12687 tree decl;
12688 tree subblocks;
12690 /* Ignore NULL blocks. */
12691 if (stmt == NULL_TREE)
12692 return;
12694 if (TREE_USED (stmt))
12696 /* Output the DIEs to represent all of the data objects and typedefs
12697 declared directly within this block but not within any nested
12698 sub-blocks. Also, nested function and tag DIEs have been
12699 generated with a parent of NULL; fix that up now. */
12700 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12702 dw_die_ref die;
12704 if (TREE_CODE (decl) == FUNCTION_DECL)
12705 die = lookup_decl_die (decl);
12706 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12707 die = lookup_type_die (TREE_TYPE (decl));
12708 else
12709 die = NULL;
12711 if (die != NULL && die->die_parent == NULL)
12712 add_child_die (context_die, die);
12713 /* Do not produce debug information for static variables since
12714 these might be optimized out. We are called for these later
12715 in cgraph_varpool_analyze_pending_decls. */
12716 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12718 else
12719 gen_decl_die (decl, context_die);
12723 /* If we're at -g1, we're not interested in subblocks. */
12724 if (debug_info_level <= DINFO_LEVEL_TERSE)
12725 return;
12727 /* Output the DIEs to represent all sub-blocks (and the items declared
12728 therein) of this block. */
12729 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12730 subblocks != NULL;
12731 subblocks = BLOCK_CHAIN (subblocks))
12732 gen_block_die (subblocks, context_die, depth + 1);
12735 /* Is this a typedef we can avoid emitting? */
12737 static inline int
12738 is_redundant_typedef (tree decl)
12740 if (TYPE_DECL_IS_STUB (decl))
12741 return 1;
12743 if (DECL_ARTIFICIAL (decl)
12744 && DECL_CONTEXT (decl)
12745 && is_tagged_type (DECL_CONTEXT (decl))
12746 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12747 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12748 /* Also ignore the artificial member typedef for the class name. */
12749 return 1;
12751 return 0;
12754 /* Returns the DIE for decl. A DIE will always be returned. */
12756 static dw_die_ref
12757 force_decl_die (tree decl)
12759 dw_die_ref decl_die;
12760 unsigned saved_external_flag;
12761 tree save_fn = NULL_TREE;
12762 decl_die = lookup_decl_die (decl);
12763 if (!decl_die)
12765 dw_die_ref context_die;
12766 tree decl_context = DECL_CONTEXT (decl);
12767 if (decl_context)
12769 /* Find die that represents this context. */
12770 if (TYPE_P (decl_context))
12771 context_die = force_type_die (decl_context);
12772 else
12773 context_die = force_decl_die (decl_context);
12775 else
12776 context_die = comp_unit_die;
12778 decl_die = lookup_decl_die (decl);
12779 if (decl_die)
12780 return decl_die;
12782 switch (TREE_CODE (decl))
12784 case FUNCTION_DECL:
12785 /* Clear current_function_decl, so that gen_subprogram_die thinks
12786 that this is a declaration. At this point, we just want to force
12787 declaration die. */
12788 save_fn = current_function_decl;
12789 current_function_decl = NULL_TREE;
12790 gen_subprogram_die (decl, context_die);
12791 current_function_decl = save_fn;
12792 break;
12794 case VAR_DECL:
12795 /* Set external flag to force declaration die. Restore it after
12796 gen_decl_die() call. */
12797 saved_external_flag = DECL_EXTERNAL (decl);
12798 DECL_EXTERNAL (decl) = 1;
12799 gen_decl_die (decl, context_die);
12800 DECL_EXTERNAL (decl) = saved_external_flag;
12801 break;
12803 case NAMESPACE_DECL:
12804 dwarf2out_decl (decl);
12805 break;
12807 default:
12808 gcc_unreachable ();
12811 /* We should be able to find the DIE now. */
12812 if (!decl_die)
12813 decl_die = lookup_decl_die (decl);
12814 gcc_assert (decl_die);
12817 return decl_die;
12820 /* Returns the DIE for TYPE. A DIE is always returned. */
12822 static dw_die_ref
12823 force_type_die (tree type)
12825 dw_die_ref type_die;
12827 type_die = lookup_type_die (type);
12828 if (!type_die)
12830 dw_die_ref context_die;
12831 if (TYPE_CONTEXT (type))
12833 if (TYPE_P (TYPE_CONTEXT (type)))
12834 context_die = force_type_die (TYPE_CONTEXT (type));
12835 else
12836 context_die = force_decl_die (TYPE_CONTEXT (type));
12838 else
12839 context_die = comp_unit_die;
12841 type_die = lookup_type_die (type);
12842 if (type_die)
12843 return type_die;
12844 gen_type_die (type, context_die);
12845 type_die = lookup_type_die (type);
12846 gcc_assert (type_die);
12848 return type_die;
12851 /* Force out any required namespaces to be able to output DECL,
12852 and return the new context_die for it, if it's changed. */
12854 static dw_die_ref
12855 setup_namespace_context (tree thing, dw_die_ref context_die)
12857 tree context = (DECL_P (thing)
12858 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12859 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12860 /* Force out the namespace. */
12861 context_die = force_decl_die (context);
12863 return context_die;
12866 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12867 type) within its namespace, if appropriate.
12869 For compatibility with older debuggers, namespace DIEs only contain
12870 declarations; all definitions are emitted at CU scope. */
12872 static void
12873 declare_in_namespace (tree thing, dw_die_ref context_die)
12875 dw_die_ref ns_context;
12877 if (debug_info_level <= DINFO_LEVEL_TERSE)
12878 return;
12880 /* If this decl is from an inlined function, then don't try to emit it in its
12881 namespace, as we will get confused. It would have already been emitted
12882 when the abstract instance of the inline function was emitted anyways. */
12883 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12884 return;
12886 ns_context = setup_namespace_context (thing, context_die);
12888 if (ns_context != context_die)
12890 if (DECL_P (thing))
12891 gen_decl_die (thing, ns_context);
12892 else
12893 gen_type_die (thing, ns_context);
12897 /* Generate a DIE for a namespace or namespace alias. */
12899 static void
12900 gen_namespace_die (tree decl)
12902 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12904 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12905 they are an alias of. */
12906 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12908 /* Output a real namespace. */
12909 dw_die_ref namespace_die
12910 = new_die (DW_TAG_namespace, context_die, decl);
12911 add_name_and_src_coords_attributes (namespace_die, decl);
12912 equate_decl_number_to_die (decl, namespace_die);
12914 else
12916 /* Output a namespace alias. */
12918 /* Force out the namespace we are an alias of, if necessary. */
12919 dw_die_ref origin_die
12920 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12922 /* Now create the namespace alias DIE. */
12923 dw_die_ref namespace_die
12924 = new_die (DW_TAG_imported_declaration, context_die, decl);
12925 add_name_and_src_coords_attributes (namespace_die, decl);
12926 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12927 equate_decl_number_to_die (decl, namespace_die);
12931 /* Generate Dwarf debug information for a decl described by DECL. */
12933 static void
12934 gen_decl_die (tree decl, dw_die_ref context_die)
12936 tree origin;
12938 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12939 return;
12941 switch (TREE_CODE (decl))
12943 case ERROR_MARK:
12944 break;
12946 case CONST_DECL:
12947 /* The individual enumerators of an enum type get output when we output
12948 the Dwarf representation of the relevant enum type itself. */
12949 break;
12951 case FUNCTION_DECL:
12952 /* Don't output any DIEs to represent mere function declarations,
12953 unless they are class members or explicit block externs. */
12954 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12955 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12956 break;
12958 #if 0
12959 /* FIXME */
12960 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12961 on local redeclarations of global functions. That seems broken. */
12962 if (current_function_decl != decl)
12963 /* This is only a declaration. */;
12964 #endif
12966 /* If we're emitting a clone, emit info for the abstract instance. */
12967 if (DECL_ORIGIN (decl) != decl)
12968 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12970 /* If we're emitting an out-of-line copy of an inline function,
12971 emit info for the abstract instance and set up to refer to it. */
12972 else if (cgraph_function_possibly_inlined_p (decl)
12973 && ! DECL_ABSTRACT (decl)
12974 && ! class_or_namespace_scope_p (context_die)
12975 /* dwarf2out_abstract_function won't emit a die if this is just
12976 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12977 that case, because that works only if we have a die. */
12978 && DECL_INITIAL (decl) != NULL_TREE)
12980 dwarf2out_abstract_function (decl);
12981 set_decl_origin_self (decl);
12984 /* Otherwise we're emitting the primary DIE for this decl. */
12985 else if (debug_info_level > DINFO_LEVEL_TERSE)
12987 /* Before we describe the FUNCTION_DECL itself, make sure that we
12988 have described its return type. */
12989 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12991 /* And its virtual context. */
12992 if (DECL_VINDEX (decl) != NULL_TREE)
12993 gen_type_die (DECL_CONTEXT (decl), context_die);
12995 /* And its containing type. */
12996 origin = decl_class_context (decl);
12997 if (origin != NULL_TREE)
12998 gen_type_die_for_member (origin, decl, context_die);
13000 /* And its containing namespace. */
13001 declare_in_namespace (decl, context_die);
13004 /* Now output a DIE to represent the function itself. */
13005 gen_subprogram_die (decl, context_die);
13006 break;
13008 case TYPE_DECL:
13009 /* If we are in terse mode, don't generate any DIEs to represent any
13010 actual typedefs. */
13011 if (debug_info_level <= DINFO_LEVEL_TERSE)
13012 break;
13014 /* In the special case of a TYPE_DECL node representing the declaration
13015 of some type tag, if the given TYPE_DECL is marked as having been
13016 instantiated from some other (original) TYPE_DECL node (e.g. one which
13017 was generated within the original definition of an inline function) we
13018 have to generate a special (abbreviated) DW_TAG_structure_type,
13019 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13020 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13022 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13023 break;
13026 if (is_redundant_typedef (decl))
13027 gen_type_die (TREE_TYPE (decl), context_die);
13028 else
13029 /* Output a DIE to represent the typedef itself. */
13030 gen_typedef_die (decl, context_die);
13031 break;
13033 case LABEL_DECL:
13034 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13035 gen_label_die (decl, context_die);
13036 break;
13038 case VAR_DECL:
13039 case RESULT_DECL:
13040 /* If we are in terse mode, don't generate any DIEs to represent any
13041 variable declarations or definitions. */
13042 if (debug_info_level <= DINFO_LEVEL_TERSE)
13043 break;
13045 /* Output any DIEs that are needed to specify the type of this data
13046 object. */
13047 gen_type_die (TREE_TYPE (decl), context_die);
13049 /* And its containing type. */
13050 origin = decl_class_context (decl);
13051 if (origin != NULL_TREE)
13052 gen_type_die_for_member (origin, decl, context_die);
13054 /* And its containing namespace. */
13055 declare_in_namespace (decl, context_die);
13057 /* Now output the DIE to represent the data object itself. This gets
13058 complicated because of the possibility that the VAR_DECL really
13059 represents an inlined instance of a formal parameter for an inline
13060 function. */
13061 origin = decl_ultimate_origin (decl);
13062 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13063 gen_formal_parameter_die (decl, context_die);
13064 else
13065 gen_variable_die (decl, context_die);
13066 break;
13068 case FIELD_DECL:
13069 /* Ignore the nameless fields that are used to skip bits but handle C++
13070 anonymous unions and structs. */
13071 if (DECL_NAME (decl) != NULL_TREE
13072 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13073 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13075 gen_type_die (member_declared_type (decl), context_die);
13076 gen_field_die (decl, context_die);
13078 break;
13080 case PARM_DECL:
13081 gen_type_die (TREE_TYPE (decl), context_die);
13082 gen_formal_parameter_die (decl, context_die);
13083 break;
13085 case NAMESPACE_DECL:
13086 gen_namespace_die (decl);
13087 break;
13089 default:
13090 /* Probably some frontend-internal decl. Assume we don't care. */
13091 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13092 break;
13096 /* Output debug information for global decl DECL. Called from toplev.c after
13097 compilation proper has finished. */
13099 static void
13100 dwarf2out_global_decl (tree decl)
13102 /* Output DWARF2 information for file-scope tentative data object
13103 declarations, file-scope (extern) function declarations (which had no
13104 corresponding body) and file-scope tagged type declarations and
13105 definitions which have not yet been forced out. */
13106 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13107 dwarf2out_decl (decl);
13110 /* Output debug information for type decl DECL. Called from toplev.c
13111 and from language front ends (to record built-in types). */
13112 static void
13113 dwarf2out_type_decl (tree decl, int local)
13115 if (!local)
13116 dwarf2out_decl (decl);
13119 /* Output debug information for imported module or decl. */
13121 static void
13122 dwarf2out_imported_module_or_decl (tree decl, tree context)
13124 dw_die_ref imported_die, at_import_die;
13125 dw_die_ref scope_die;
13126 unsigned file_index;
13127 expanded_location xloc;
13129 if (debug_info_level <= DINFO_LEVEL_TERSE)
13130 return;
13132 gcc_assert (decl);
13134 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13135 We need decl DIE for reference and scope die. First, get DIE for the decl
13136 itself. */
13138 /* Get the scope die for decl context. Use comp_unit_die for global module
13139 or decl. If die is not found for non globals, force new die. */
13140 if (!context)
13141 scope_die = comp_unit_die;
13142 else if (TYPE_P (context))
13143 scope_die = force_type_die (context);
13144 else
13145 scope_die = force_decl_die (context);
13147 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13148 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13149 at_import_die = force_type_die (TREE_TYPE (decl));
13150 else
13152 at_import_die = lookup_decl_die (decl);
13153 if (!at_import_die)
13155 /* If we're trying to avoid duplicate debug info, we may not have
13156 emitted the member decl for this field. Emit it now. */
13157 if (TREE_CODE (decl) == FIELD_DECL)
13159 tree type = DECL_CONTEXT (decl);
13160 dw_die_ref type_context_die;
13162 if (TYPE_CONTEXT (type))
13163 if (TYPE_P (TYPE_CONTEXT (type)))
13164 type_context_die = force_type_die (TYPE_CONTEXT (type));
13165 else
13166 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13167 else
13168 type_context_die = comp_unit_die;
13169 gen_type_die_for_member (type, decl, type_context_die);
13171 at_import_die = force_decl_die (decl);
13175 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13176 if (TREE_CODE (decl) == NAMESPACE_DECL)
13177 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13178 else
13179 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13181 xloc = expand_location (input_location);
13182 file_index = lookup_filename (xloc.file);
13183 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13184 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13185 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13188 /* Write the debugging output for DECL. */
13190 void
13191 dwarf2out_decl (tree decl)
13193 dw_die_ref context_die = comp_unit_die;
13195 switch (TREE_CODE (decl))
13197 case ERROR_MARK:
13198 return;
13200 case FUNCTION_DECL:
13201 /* What we would really like to do here is to filter out all mere
13202 file-scope declarations of file-scope functions which are never
13203 referenced later within this translation unit (and keep all of ones
13204 that *are* referenced later on) but we aren't clairvoyant, so we have
13205 no idea which functions will be referenced in the future (i.e. later
13206 on within the current translation unit). So here we just ignore all
13207 file-scope function declarations which are not also definitions. If
13208 and when the debugger needs to know something about these functions,
13209 it will have to hunt around and find the DWARF information associated
13210 with the definition of the function.
13212 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13213 nodes represent definitions and which ones represent mere
13214 declarations. We have to check DECL_INITIAL instead. That's because
13215 the C front-end supports some weird semantics for "extern inline"
13216 function definitions. These can get inlined within the current
13217 translation unit (and thus, we need to generate Dwarf info for their
13218 abstract instances so that the Dwarf info for the concrete inlined
13219 instances can have something to refer to) but the compiler never
13220 generates any out-of-lines instances of such things (despite the fact
13221 that they *are* definitions).
13223 The important point is that the C front-end marks these "extern
13224 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13225 them anyway. Note that the C++ front-end also plays some similar games
13226 for inline function definitions appearing within include files which
13227 also contain `#pragma interface' pragmas. */
13228 if (DECL_INITIAL (decl) == NULL_TREE)
13229 return;
13231 /* If we're a nested function, initially use a parent of NULL; if we're
13232 a plain function, this will be fixed up in decls_for_scope. If
13233 we're a method, it will be ignored, since we already have a DIE. */
13234 if (decl_function_context (decl)
13235 /* But if we're in terse mode, we don't care about scope. */
13236 && debug_info_level > DINFO_LEVEL_TERSE)
13237 context_die = NULL;
13238 break;
13240 case VAR_DECL:
13241 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13242 declaration and if the declaration was never even referenced from
13243 within this entire compilation unit. We suppress these DIEs in
13244 order to save space in the .debug section (by eliminating entries
13245 which are probably useless). Note that we must not suppress
13246 block-local extern declarations (whether used or not) because that
13247 would screw-up the debugger's name lookup mechanism and cause it to
13248 miss things which really ought to be in scope at a given point. */
13249 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13250 return;
13252 /* For local statics lookup proper context die. */
13253 if (TREE_STATIC (decl) && decl_function_context (decl))
13254 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13256 /* If we are in terse mode, don't generate any DIEs to represent any
13257 variable declarations or definitions. */
13258 if (debug_info_level <= DINFO_LEVEL_TERSE)
13259 return;
13260 break;
13262 case NAMESPACE_DECL:
13263 if (debug_info_level <= DINFO_LEVEL_TERSE)
13264 return;
13265 if (lookup_decl_die (decl) != NULL)
13266 return;
13267 break;
13269 case TYPE_DECL:
13270 /* Don't emit stubs for types unless they are needed by other DIEs. */
13271 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13272 return;
13274 /* Don't bother trying to generate any DIEs to represent any of the
13275 normal built-in types for the language we are compiling. */
13276 if (DECL_IS_BUILTIN (decl))
13278 /* OK, we need to generate one for `bool' so GDB knows what type
13279 comparisons have. */
13280 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13281 == DW_LANG_C_plus_plus)
13282 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13283 && ! DECL_IGNORED_P (decl))
13284 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13286 return;
13289 /* If we are in terse mode, don't generate any DIEs for types. */
13290 if (debug_info_level <= DINFO_LEVEL_TERSE)
13291 return;
13293 /* If we're a function-scope tag, initially use a parent of NULL;
13294 this will be fixed up in decls_for_scope. */
13295 if (decl_function_context (decl))
13296 context_die = NULL;
13298 break;
13300 default:
13301 return;
13304 gen_decl_die (decl, context_die);
13307 /* Output a marker (i.e. a label) for the beginning of the generated code for
13308 a lexical block. */
13310 static void
13311 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13312 unsigned int blocknum)
13314 switch_to_section (current_function_section ());
13315 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13318 /* Output a marker (i.e. a label) for the end of the generated code for a
13319 lexical block. */
13321 static void
13322 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13324 switch_to_section (current_function_section ());
13325 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13328 /* Returns nonzero if it is appropriate not to emit any debugging
13329 information for BLOCK, because it doesn't contain any instructions.
13331 Don't allow this for blocks with nested functions or local classes
13332 as we would end up with orphans, and in the presence of scheduling
13333 we may end up calling them anyway. */
13335 static bool
13336 dwarf2out_ignore_block (tree block)
13338 tree decl;
13340 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13341 if (TREE_CODE (decl) == FUNCTION_DECL
13342 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13343 return 0;
13345 return 1;
13348 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13349 dwarf2out.c) and return its "index". The index of each (known) filename is
13350 just a unique number which is associated with only that one filename. We
13351 need such numbers for the sake of generating labels (in the .debug_sfnames
13352 section) and references to those files numbers (in the .debug_srcinfo
13353 and.debug_macinfo sections). If the filename given as an argument is not
13354 found in our current list, add it to the list and assign it the next
13355 available unique index number. In order to speed up searches, we remember
13356 the index of the filename was looked up last. This handles the majority of
13357 all searches. */
13359 static unsigned
13360 lookup_filename (const char *file_name)
13362 size_t i, n;
13363 char *save_file_name;
13365 /* Check to see if the file name that was searched on the previous
13366 call matches this file name. If so, return the index. */
13367 if (file_table_last_lookup_index != 0)
13369 const char *last
13370 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13371 if (strcmp (file_name, last) == 0)
13372 return file_table_last_lookup_index;
13375 /* Didn't match the previous lookup, search the table. */
13376 n = VARRAY_ACTIVE_SIZE (file_table);
13377 for (i = 1; i < n; i++)
13378 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13380 file_table_last_lookup_index = i;
13381 return i;
13384 /* Add the new entry to the end of the filename table. */
13385 file_table_last_lookup_index = n;
13386 save_file_name = (char *) ggc_strdup (file_name);
13387 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13388 VARRAY_PUSH_UINT (file_table_emitted, 0);
13390 /* If the assembler is emitting the file table, and we aren't eliminating
13391 unused debug types, then we must emit .file here. If we are eliminating
13392 unused debug types, then this will be done by the maybe_emit_file call in
13393 prune_unused_types_walk_attribs. */
13395 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13396 return maybe_emit_file (i);
13398 return i;
13401 /* If the assembler will construct the file table, then translate the compiler
13402 internal file table number into the assembler file table number, and emit
13403 a .file directive if we haven't already emitted one yet. The file table
13404 numbers are different because we prune debug info for unused variables and
13405 types, which may include filenames. */
13407 static int
13408 maybe_emit_file (int fileno)
13410 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13412 if (!VARRAY_UINT (file_table_emitted, fileno))
13414 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13415 fprintf (asm_out_file, "\t.file %u ",
13416 VARRAY_UINT (file_table_emitted, fileno));
13417 output_quoted_string (asm_out_file,
13418 VARRAY_CHAR_PTR (file_table, fileno));
13419 fputc ('\n', asm_out_file);
13421 return VARRAY_UINT (file_table_emitted, fileno);
13423 else
13424 return fileno;
13427 /* Initialize the compiler internal file table. */
13429 static void
13430 init_file_table (void)
13432 /* Allocate the initial hunk of the file_table. */
13433 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13434 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13436 /* Skip the first entry - file numbers begin at 1. */
13437 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13438 VARRAY_PUSH_UINT (file_table_emitted, 0);
13439 file_table_last_lookup_index = 0;
13442 /* Called by the final INSN scan whenever we see a var location. We
13443 use it to drop labels in the right places, and throw the location in
13444 our lookup table. */
13446 static void
13447 dwarf2out_var_location (rtx loc_note)
13449 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13450 struct var_loc_node *newloc;
13451 rtx prev_insn;
13452 static rtx last_insn;
13453 static const char *last_label;
13454 tree decl;
13456 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13457 return;
13458 prev_insn = PREV_INSN (loc_note);
13460 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13461 /* If the insn we processed last time is the previous insn
13462 and it is also a var location note, use the label we emitted
13463 last time. */
13464 if (last_insn != NULL_RTX
13465 && last_insn == prev_insn
13466 && NOTE_P (prev_insn)
13467 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13469 newloc->label = last_label;
13471 else
13473 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13474 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13475 loclabel_num++;
13476 newloc->label = ggc_strdup (loclabel);
13478 newloc->var_loc_note = loc_note;
13479 newloc->next = NULL;
13481 if (cfun && in_cold_section_p)
13482 newloc->section_label = cfun->cold_section_label;
13483 else
13484 newloc->section_label = text_section_label;
13486 last_insn = loc_note;
13487 last_label = newloc->label;
13488 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13489 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13490 && DECL_P (DECL_DEBUG_EXPR (decl)))
13491 decl = DECL_DEBUG_EXPR (decl);
13492 add_var_loc_to_decl (decl, newloc);
13495 /* We need to reset the locations at the beginning of each
13496 function. We can't do this in the end_function hook, because the
13497 declarations that use the locations won't have been output when
13498 that hook is called. Also compute have_multiple_function_sections here. */
13500 static void
13501 dwarf2out_begin_function (tree fun)
13503 htab_empty (decl_loc_table);
13505 if (function_section (fun) != text_section)
13506 have_multiple_function_sections = true;
13509 /* Output a label to mark the beginning of a source code line entry
13510 and record information relating to this source line, in
13511 'line_info_table' for later output of the .debug_line section. */
13513 static void
13514 dwarf2out_source_line (unsigned int line, const char *filename)
13516 if (debug_info_level >= DINFO_LEVEL_NORMAL
13517 && line != 0)
13519 switch_to_section (current_function_section ());
13521 /* If requested, emit something human-readable. */
13522 if (flag_debug_asm)
13523 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13524 filename, line);
13526 if (DWARF2_ASM_LINE_DEBUG_INFO)
13528 unsigned file_num = lookup_filename (filename);
13530 file_num = maybe_emit_file (file_num);
13532 /* Emit the .loc directive understood by GNU as. */
13533 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13535 /* Indicate that line number info exists. */
13536 line_info_table_in_use++;
13538 else if (function_section (current_function_decl) != text_section)
13540 dw_separate_line_info_ref line_info;
13541 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13542 separate_line_info_table_in_use);
13544 /* Expand the line info table if necessary. */
13545 if (separate_line_info_table_in_use
13546 == separate_line_info_table_allocated)
13548 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13549 separate_line_info_table
13550 = ggc_realloc (separate_line_info_table,
13551 separate_line_info_table_allocated
13552 * sizeof (dw_separate_line_info_entry));
13553 memset (separate_line_info_table
13554 + separate_line_info_table_in_use,
13556 (LINE_INFO_TABLE_INCREMENT
13557 * sizeof (dw_separate_line_info_entry)));
13560 /* Add the new entry at the end of the line_info_table. */
13561 line_info
13562 = &separate_line_info_table[separate_line_info_table_in_use++];
13563 line_info->dw_file_num = lookup_filename (filename);
13564 line_info->dw_line_num = line;
13565 line_info->function = current_function_funcdef_no;
13567 else
13569 dw_line_info_ref line_info;
13571 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13572 line_info_table_in_use);
13574 /* Expand the line info table if necessary. */
13575 if (line_info_table_in_use == line_info_table_allocated)
13577 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13578 line_info_table
13579 = ggc_realloc (line_info_table,
13580 (line_info_table_allocated
13581 * sizeof (dw_line_info_entry)));
13582 memset (line_info_table + line_info_table_in_use, 0,
13583 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13586 /* Add the new entry at the end of the line_info_table. */
13587 line_info = &line_info_table[line_info_table_in_use++];
13588 line_info->dw_file_num = lookup_filename (filename);
13589 line_info->dw_line_num = line;
13594 /* Record the beginning of a new source file. */
13596 static void
13597 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13599 if (flag_eliminate_dwarf2_dups)
13601 /* Record the beginning of the file for break_out_includes. */
13602 dw_die_ref bincl_die;
13604 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13605 add_AT_string (bincl_die, DW_AT_name, filename);
13608 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13610 int fileno;
13612 switch_to_section (debug_macinfo_section);
13613 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13614 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13615 lineno);
13617 fileno = maybe_emit_file (lookup_filename (filename));
13618 dw2_asm_output_data_uleb128 (fileno, "Filename we just started");
13622 /* Record the end of a source file. */
13624 static void
13625 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13627 if (flag_eliminate_dwarf2_dups)
13628 /* Record the end of the file for break_out_includes. */
13629 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13631 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13633 switch_to_section (debug_macinfo_section);
13634 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13638 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13639 the tail part of the directive line, i.e. the part which is past the
13640 initial whitespace, #, whitespace, directive-name, whitespace part. */
13642 static void
13643 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13644 const char *buffer ATTRIBUTE_UNUSED)
13646 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13648 switch_to_section (debug_macinfo_section);
13649 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13650 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13651 dw2_asm_output_nstring (buffer, -1, "The macro");
13655 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13656 the tail part of the directive line, i.e. the part which is past the
13657 initial whitespace, #, whitespace, directive-name, whitespace part. */
13659 static void
13660 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13661 const char *buffer ATTRIBUTE_UNUSED)
13663 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13665 switch_to_section (debug_macinfo_section);
13666 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13667 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13668 dw2_asm_output_nstring (buffer, -1, "The macro");
13672 /* Set up for Dwarf output at the start of compilation. */
13674 static void
13675 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13677 init_file_table ();
13679 /* Allocate the decl_die_table. */
13680 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13681 decl_die_table_eq, NULL);
13683 /* Allocate the decl_loc_table. */
13684 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13685 decl_loc_table_eq, NULL);
13687 /* Allocate the initial hunk of the decl_scope_table. */
13688 decl_scope_table = VEC_alloc (tree, gc, 256);
13690 /* Allocate the initial hunk of the abbrev_die_table. */
13691 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13692 * sizeof (dw_die_ref));
13693 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13694 /* Zero-th entry is allocated, but unused. */
13695 abbrev_die_table_in_use = 1;
13697 /* Allocate the initial hunk of the line_info_table. */
13698 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13699 * sizeof (dw_line_info_entry));
13700 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13702 /* Zero-th entry is allocated, but unused. */
13703 line_info_table_in_use = 1;
13705 /* Generate the initial DIE for the .debug section. Note that the (string)
13706 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13707 will (typically) be a relative pathname and that this pathname should be
13708 taken as being relative to the directory from which the compiler was
13709 invoked when the given (base) source file was compiled. We will fill
13710 in this value in dwarf2out_finish. */
13711 comp_unit_die = gen_compile_unit_die (NULL);
13713 incomplete_types = VEC_alloc (tree, gc, 64);
13715 used_rtx_array = VEC_alloc (rtx, gc, 32);
13717 debug_info_section = get_section (DEBUG_INFO_SECTION,
13718 SECTION_DEBUG, NULL);
13719 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13720 SECTION_DEBUG, NULL);
13721 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13722 SECTION_DEBUG, NULL);
13723 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13724 SECTION_DEBUG, NULL);
13725 debug_line_section = get_section (DEBUG_LINE_SECTION,
13726 SECTION_DEBUG, NULL);
13727 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13728 SECTION_DEBUG, NULL);
13729 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13730 SECTION_DEBUG, NULL);
13731 debug_str_section = get_section (DEBUG_STR_SECTION,
13732 DEBUG_STR_SECTION_FLAGS, NULL);
13733 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13734 SECTION_DEBUG, NULL);
13736 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13737 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13738 DEBUG_ABBREV_SECTION_LABEL, 0);
13739 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13740 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13741 COLD_TEXT_SECTION_LABEL, 0);
13742 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13744 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13745 DEBUG_INFO_SECTION_LABEL, 0);
13746 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13747 DEBUG_LINE_SECTION_LABEL, 0);
13748 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13749 DEBUG_RANGES_SECTION_LABEL, 0);
13750 switch_to_section (debug_abbrev_section);
13751 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13752 switch_to_section (debug_info_section);
13753 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13754 switch_to_section (debug_line_section);
13755 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13757 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13759 switch_to_section (debug_macinfo_section);
13760 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13761 DEBUG_MACINFO_SECTION_LABEL, 0);
13762 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13765 switch_to_section (text_section);
13766 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13767 if (flag_reorder_blocks_and_partition)
13769 switch_to_section (unlikely_text_section ());
13770 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13774 /* A helper function for dwarf2out_finish called through
13775 ht_forall. Emit one queued .debug_str string. */
13777 static int
13778 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13780 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13782 if (node->form == DW_FORM_strp)
13784 switch_to_section (debug_str_section);
13785 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13786 assemble_string (node->str, strlen (node->str) + 1);
13789 return 1;
13794 /* Clear the marks for a die and its children.
13795 Be cool if the mark isn't set. */
13797 static void
13798 prune_unmark_dies (dw_die_ref die)
13800 dw_die_ref c;
13801 die->die_mark = 0;
13802 for (c = die->die_child; c; c = c->die_sib)
13803 prune_unmark_dies (c);
13807 /* Given DIE that we're marking as used, find any other dies
13808 it references as attributes and mark them as used. */
13810 static void
13811 prune_unused_types_walk_attribs (dw_die_ref die)
13813 dw_attr_ref a;
13815 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13817 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13819 /* A reference to another DIE.
13820 Make sure that it will get emitted. */
13821 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13823 else if (a->dw_attr == DW_AT_decl_file || a->dw_attr == DW_AT_call_file)
13825 /* A reference to a file. Make sure the file name is emitted. */
13826 a->dw_attr_val.v.val_unsigned =
13827 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13833 /* Mark DIE as being used. If DOKIDS is true, then walk down
13834 to DIE's children. */
13836 static void
13837 prune_unused_types_mark (dw_die_ref die, int dokids)
13839 dw_die_ref c;
13841 if (die->die_mark == 0)
13843 /* We haven't done this node yet. Mark it as used. */
13844 die->die_mark = 1;
13846 /* We also have to mark its parents as used.
13847 (But we don't want to mark our parents' kids due to this.) */
13848 if (die->die_parent)
13849 prune_unused_types_mark (die->die_parent, 0);
13851 /* Mark any referenced nodes. */
13852 prune_unused_types_walk_attribs (die);
13854 /* If this node is a specification,
13855 also mark the definition, if it exists. */
13856 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13857 prune_unused_types_mark (die->die_definition, 1);
13860 if (dokids && die->die_mark != 2)
13862 /* We need to walk the children, but haven't done so yet.
13863 Remember that we've walked the kids. */
13864 die->die_mark = 2;
13866 /* Walk them. */
13867 for (c = die->die_child; c; c = c->die_sib)
13869 /* If this is an array type, we need to make sure our
13870 kids get marked, even if they're types. */
13871 if (die->die_tag == DW_TAG_array_type)
13872 prune_unused_types_mark (c, 1);
13873 else
13874 prune_unused_types_walk (c);
13880 /* Walk the tree DIE and mark types that we actually use. */
13882 static void
13883 prune_unused_types_walk (dw_die_ref die)
13885 dw_die_ref c;
13887 /* Don't do anything if this node is already marked. */
13888 if (die->die_mark)
13889 return;
13891 switch (die->die_tag) {
13892 case DW_TAG_const_type:
13893 case DW_TAG_packed_type:
13894 case DW_TAG_pointer_type:
13895 case DW_TAG_reference_type:
13896 case DW_TAG_volatile_type:
13897 case DW_TAG_typedef:
13898 case DW_TAG_array_type:
13899 case DW_TAG_structure_type:
13900 case DW_TAG_union_type:
13901 case DW_TAG_class_type:
13902 case DW_TAG_friend:
13903 case DW_TAG_variant_part:
13904 case DW_TAG_enumeration_type:
13905 case DW_TAG_subroutine_type:
13906 case DW_TAG_string_type:
13907 case DW_TAG_set_type:
13908 case DW_TAG_subrange_type:
13909 case DW_TAG_ptr_to_member_type:
13910 case DW_TAG_file_type:
13911 /* It's a type node --- don't mark it. */
13912 return;
13914 default:
13915 /* Mark everything else. */
13916 break;
13919 die->die_mark = 1;
13921 /* Now, mark any dies referenced from here. */
13922 prune_unused_types_walk_attribs (die);
13924 /* Mark children. */
13925 for (c = die->die_child; c; c = c->die_sib)
13926 prune_unused_types_walk (c);
13930 /* Remove from the tree DIE any dies that aren't marked. */
13932 static void
13933 prune_unused_types_prune (dw_die_ref die)
13935 dw_die_ref c, p, n;
13937 gcc_assert (die->die_mark);
13939 p = NULL;
13940 for (c = die->die_child; c; c = n)
13942 n = c->die_sib;
13943 if (c->die_mark)
13945 prune_unused_types_prune (c);
13946 p = c;
13948 else
13950 if (p)
13951 p->die_sib = n;
13952 else
13953 die->die_child = n;
13954 free_die (c);
13960 /* Remove dies representing declarations that we never use. */
13962 static void
13963 prune_unused_types (void)
13965 unsigned int i;
13966 limbo_die_node *node;
13968 /* Clear all the marks. */
13969 prune_unmark_dies (comp_unit_die);
13970 for (node = limbo_die_list; node; node = node->next)
13971 prune_unmark_dies (node->die);
13973 /* Set the mark on nodes that are actually used. */
13974 prune_unused_types_walk (comp_unit_die);
13975 for (node = limbo_die_list; node; node = node->next)
13976 prune_unused_types_walk (node->die);
13978 /* Also set the mark on nodes referenced from the
13979 pubname_table or arange_table. */
13980 for (i = 0; i < pubname_table_in_use; i++)
13981 prune_unused_types_mark (pubname_table[i].die, 1);
13982 for (i = 0; i < arange_table_in_use; i++)
13983 prune_unused_types_mark (arange_table[i], 1);
13985 /* Get rid of nodes that aren't marked. */
13986 prune_unused_types_prune (comp_unit_die);
13987 for (node = limbo_die_list; node; node = node->next)
13988 prune_unused_types_prune (node->die);
13990 /* Leave the marks clear. */
13991 prune_unmark_dies (comp_unit_die);
13992 for (node = limbo_die_list; node; node = node->next)
13993 prune_unmark_dies (node->die);
13996 /* Output stuff that dwarf requires at the end of every file,
13997 and generate the DWARF-2 debugging info. */
13999 static void
14000 dwarf2out_finish (const char *filename)
14002 limbo_die_node *node, *next_node;
14003 dw_die_ref die = 0;
14005 /* Add the name for the main input file now. We delayed this from
14006 dwarf2out_init to avoid complications with PCH. */
14007 add_name_attribute (comp_unit_die, filename);
14008 if (filename[0] != DIR_SEPARATOR)
14009 add_comp_dir_attribute (comp_unit_die);
14010 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14012 size_t i;
14013 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
14014 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
14015 /* Don't add cwd for <built-in>. */
14016 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
14018 add_comp_dir_attribute (comp_unit_die);
14019 break;
14023 /* Traverse the limbo die list, and add parent/child links. The only
14024 dies without parents that should be here are concrete instances of
14025 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14026 For concrete instances, we can get the parent die from the abstract
14027 instance. */
14028 for (node = limbo_die_list; node; node = next_node)
14030 next_node = node->next;
14031 die = node->die;
14033 if (die->die_parent == NULL)
14035 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14037 if (origin)
14038 add_child_die (origin->die_parent, die);
14039 else if (die == comp_unit_die)
14041 else if (errorcount > 0 || sorrycount > 0)
14042 /* It's OK to be confused by errors in the input. */
14043 add_child_die (comp_unit_die, die);
14044 else
14046 /* In certain situations, the lexical block containing a
14047 nested function can be optimized away, which results
14048 in the nested function die being orphaned. Likewise
14049 with the return type of that nested function. Force
14050 this to be a child of the containing function.
14052 It may happen that even the containing function got fully
14053 inlined and optimized out. In that case we are lost and
14054 assign the empty child. This should not be big issue as
14055 the function is likely unreachable too. */
14056 tree context = NULL_TREE;
14058 gcc_assert (node->created_for);
14060 if (DECL_P (node->created_for))
14061 context = DECL_CONTEXT (node->created_for);
14062 else if (TYPE_P (node->created_for))
14063 context = TYPE_CONTEXT (node->created_for);
14065 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14067 origin = lookup_decl_die (context);
14068 if (origin)
14069 add_child_die (origin, die);
14070 else
14071 add_child_die (comp_unit_die, die);
14076 limbo_die_list = NULL;
14078 /* Walk through the list of incomplete types again, trying once more to
14079 emit full debugging info for them. */
14080 retry_incomplete_types ();
14082 /* We need to reverse all the dies before break_out_includes, or
14083 we'll see the end of an include file before the beginning. */
14084 reverse_all_dies (comp_unit_die);
14086 if (flag_eliminate_unused_debug_types)
14087 prune_unused_types ();
14089 /* Generate separate CUs for each of the include files we've seen.
14090 They will go into limbo_die_list. */
14091 if (flag_eliminate_dwarf2_dups)
14092 break_out_includes (comp_unit_die);
14094 /* Traverse the DIE's and add add sibling attributes to those DIE's
14095 that have children. */
14096 add_sibling_attributes (comp_unit_die);
14097 for (node = limbo_die_list; node; node = node->next)
14098 add_sibling_attributes (node->die);
14100 /* Output a terminator label for the .text section. */
14101 switch_to_section (text_section);
14102 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14103 if (flag_reorder_blocks_and_partition)
14105 switch_to_section (unlikely_text_section ());
14106 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14109 /* Output the source line correspondence table. We must do this
14110 even if there is no line information. Otherwise, on an empty
14111 translation unit, we will generate a present, but empty,
14112 .debug_info section. IRIX 6.5 `nm' will then complain when
14113 examining the file. */
14114 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14116 switch_to_section (debug_line_section);
14117 output_line_info ();
14120 /* We can only use the low/high_pc attributes if all of the code was
14121 in .text. */
14122 if (!have_multiple_function_sections)
14124 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14125 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14128 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14129 "base address". Use zero so that these addresses become absolute. */
14130 else if (have_location_lists || ranges_table_in_use)
14131 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14133 /* Output location list section if necessary. */
14134 if (have_location_lists)
14136 /* Output the location lists info. */
14137 switch_to_section (debug_loc_section);
14138 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14139 DEBUG_LOC_SECTION_LABEL, 0);
14140 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14141 output_location_lists (die);
14144 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14145 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
14146 debug_line_section_label);
14148 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14149 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14151 /* Output all of the compilation units. We put the main one last so that
14152 the offsets are available to output_pubnames. */
14153 for (node = limbo_die_list; node; node = node->next)
14154 output_comp_unit (node->die, 0);
14156 output_comp_unit (comp_unit_die, 0);
14158 /* Output the abbreviation table. */
14159 switch_to_section (debug_abbrev_section);
14160 output_abbrev_section ();
14162 /* Output public names table if necessary. */
14163 if (pubname_table_in_use)
14165 switch_to_section (debug_pubnames_section);
14166 output_pubnames ();
14169 /* Output the address range information. We only put functions in the arange
14170 table, so don't write it out if we don't have any. */
14171 if (fde_table_in_use)
14173 switch_to_section (debug_aranges_section);
14174 output_aranges ();
14177 /* Output ranges section if necessary. */
14178 if (ranges_table_in_use)
14180 switch_to_section (debug_ranges_section);
14181 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14182 output_ranges ();
14185 /* Have to end the macro section. */
14186 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14188 switch_to_section (debug_macinfo_section);
14189 dw2_asm_output_data (1, 0, "End compilation unit");
14192 /* If we emitted any DW_FORM_strp form attribute, output the string
14193 table too. */
14194 if (debug_str_hash)
14195 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14197 #else
14199 /* This should never be used, but its address is needed for comparisons. */
14200 const struct gcc_debug_hooks dwarf2_debug_hooks;
14202 #endif /* DWARF2_DEBUGGING_INFO */
14204 #include "gt-dwarf2out.h"