PR target/49824
[official-gcc.git] / gcc / cselib.c
blobb96c0cd07abbb189179028b59fa8460080457784
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "emit-rtl.h"
36 #include "diagnostic-core.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "hashtab.h"
40 #include "tree-pass.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44 #include "target.h"
45 #include "bitmap.h"
47 /* A list of cselib_val structures. */
48 struct elt_list {
49 struct elt_list *next;
50 cselib_val *elt;
53 static bool cselib_record_memory;
54 static bool cselib_preserve_constants;
55 static int entry_and_rtx_equal_p (const void *, const void *);
56 static hashval_t get_value_hash (const void *);
57 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
58 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
59 static void unchain_one_value (cselib_val *);
60 static void unchain_one_elt_list (struct elt_list **);
61 static void unchain_one_elt_loc_list (struct elt_loc_list **);
62 static int discard_useless_locs (void **, void *);
63 static int discard_useless_values (void **, void *);
64 static void remove_useless_values (void);
65 static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode);
66 static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode);
67 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
68 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
69 static cselib_val *cselib_lookup_mem (rtx, int);
70 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
71 static void cselib_invalidate_mem (rtx);
72 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
73 static void cselib_record_sets (rtx);
75 struct expand_value_data
77 bitmap regs_active;
78 cselib_expand_callback callback;
79 void *callback_arg;
80 bool dummy;
83 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
85 /* There are three ways in which cselib can look up an rtx:
86 - for a REG, the reg_values table (which is indexed by regno) is used
87 - for a MEM, we recursively look up its address and then follow the
88 addr_list of that value
89 - for everything else, we compute a hash value and go through the hash
90 table. Since different rtx's can still have the same hash value,
91 this involves walking the table entries for a given value and comparing
92 the locations of the entries with the rtx we are looking up. */
94 /* A table that enables us to look up elts by their value. */
95 static htab_t cselib_hash_table;
97 /* This is a global so we don't have to pass this through every function.
98 It is used in new_elt_loc_list to set SETTING_INSN. */
99 static rtx cselib_current_insn;
101 /* The unique id that the next create value will take. */
102 static unsigned int next_uid;
104 /* The number of registers we had when the varrays were last resized. */
105 static unsigned int cselib_nregs;
107 /* Count values without known locations, or with only locations that
108 wouldn't have been known except for debug insns. Whenever this
109 grows too big, we remove these useless values from the table.
111 Counting values with only debug values is a bit tricky. We don't
112 want to increment n_useless_values when we create a value for a
113 debug insn, for this would get n_useless_values out of sync, but we
114 want increment it if all locs in the list that were ever referenced
115 in nondebug insns are removed from the list.
117 In the general case, once we do that, we'd have to stop accepting
118 nondebug expressions in the loc list, to avoid having two values
119 equivalent that, without debug insns, would have been made into
120 separate values. However, because debug insns never introduce
121 equivalences themselves (no assignments), the only means for
122 growing loc lists is through nondebug assignments. If the locs
123 also happen to be referenced in debug insns, it will work just fine.
125 A consequence of this is that there's at most one debug-only loc in
126 each loc list. If we keep it in the first entry, testing whether
127 we have a debug-only loc list takes O(1).
129 Furthermore, since any additional entry in a loc list containing a
130 debug loc would have to come from an assignment (nondebug) that
131 references both the initial debug loc and the newly-equivalent loc,
132 the initial debug loc would be promoted to a nondebug loc, and the
133 loc list would not contain debug locs any more.
135 So the only case we have to be careful with in order to keep
136 n_useless_values in sync between debug and nondebug compilations is
137 to avoid incrementing n_useless_values when removing the single loc
138 from a value that turns out to not appear outside debug values. We
139 increment n_useless_debug_values instead, and leave such values
140 alone until, for other reasons, we garbage-collect useless
141 values. */
142 static int n_useless_values;
143 static int n_useless_debug_values;
145 /* Count values whose locs have been taken exclusively from debug
146 insns for the entire life of the value. */
147 static int n_debug_values;
149 /* Number of useless values before we remove them from the hash table. */
150 #define MAX_USELESS_VALUES 32
152 /* This table maps from register number to values. It does not
153 contain pointers to cselib_val structures, but rather elt_lists.
154 The purpose is to be able to refer to the same register in
155 different modes. The first element of the list defines the mode in
156 which the register was set; if the mode is unknown or the value is
157 no longer valid in that mode, ELT will be NULL for the first
158 element. */
159 static struct elt_list **reg_values;
160 static unsigned int reg_values_size;
161 #define REG_VALUES(i) reg_values[i]
163 /* The largest number of hard regs used by any entry added to the
164 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
165 static unsigned int max_value_regs;
167 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
168 in cselib_clear_table() for fast emptying. */
169 static unsigned int *used_regs;
170 static unsigned int n_used_regs;
172 /* We pass this to cselib_invalidate_mem to invalidate all of
173 memory for a non-const call instruction. */
174 static GTY(()) rtx callmem;
176 /* Set by discard_useless_locs if it deleted the last location of any
177 value. */
178 static int values_became_useless;
180 /* Used as stop element of the containing_mem list so we can check
181 presence in the list by checking the next pointer. */
182 static cselib_val dummy_val;
184 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
185 that is constant through the whole function and should never be
186 eliminated. */
187 static cselib_val *cfa_base_preserved_val;
188 static unsigned int cfa_base_preserved_regno;
190 /* Used to list all values that contain memory reference.
191 May or may not contain the useless values - the list is compacted
192 each time memory is invalidated. */
193 static cselib_val *first_containing_mem = &dummy_val;
194 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
196 /* If nonnull, cselib will call this function before freeing useless
197 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
198 void (*cselib_discard_hook) (cselib_val *);
200 /* If nonnull, cselib will call this function before recording sets or
201 even clobbering outputs of INSN. All the recorded sets will be
202 represented in the array sets[n_sets]. new_val_min can be used to
203 tell whether values present in sets are introduced by this
204 instruction. */
205 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
206 int n_sets);
208 #define PRESERVED_VALUE_P(RTX) \
209 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
213 /* Allocate a struct elt_list and fill in its two elements with the
214 arguments. */
216 static inline struct elt_list *
217 new_elt_list (struct elt_list *next, cselib_val *elt)
219 struct elt_list *el;
220 el = (struct elt_list *) pool_alloc (elt_list_pool);
221 el->next = next;
222 el->elt = elt;
223 return el;
226 /* Allocate a struct elt_loc_list and fill in its two elements with the
227 arguments. */
229 static inline struct elt_loc_list *
230 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
232 struct elt_loc_list *el;
233 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
234 el->next = next;
235 el->loc = loc;
236 el->setting_insn = cselib_current_insn;
237 gcc_assert (!next || !next->setting_insn
238 || !DEBUG_INSN_P (next->setting_insn));
240 /* If we're creating the first loc in a debug insn context, we've
241 just created a debug value. Count it. */
242 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
243 n_debug_values++;
245 return el;
248 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
249 originating from a debug insn, maintaining the debug values
250 count. */
252 static inline void
253 promote_debug_loc (struct elt_loc_list *l)
255 if (l->setting_insn && DEBUG_INSN_P (l->setting_insn)
256 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
258 n_debug_values--;
259 l->setting_insn = cselib_current_insn;
260 if (cselib_preserve_constants && l->next)
262 gcc_assert (l->next->setting_insn
263 && DEBUG_INSN_P (l->next->setting_insn)
264 && !l->next->next);
265 l->next->setting_insn = cselib_current_insn;
267 else
268 gcc_assert (!l->next);
272 /* The elt_list at *PL is no longer needed. Unchain it and free its
273 storage. */
275 static inline void
276 unchain_one_elt_list (struct elt_list **pl)
278 struct elt_list *l = *pl;
280 *pl = l->next;
281 pool_free (elt_list_pool, l);
284 /* Likewise for elt_loc_lists. */
286 static void
287 unchain_one_elt_loc_list (struct elt_loc_list **pl)
289 struct elt_loc_list *l = *pl;
291 *pl = l->next;
292 pool_free (elt_loc_list_pool, l);
295 /* Likewise for cselib_vals. This also frees the addr_list associated with
296 V. */
298 static void
299 unchain_one_value (cselib_val *v)
301 while (v->addr_list)
302 unchain_one_elt_list (&v->addr_list);
304 pool_free (cselib_val_pool, v);
307 /* Remove all entries from the hash table. Also used during
308 initialization. */
310 void
311 cselib_clear_table (void)
313 cselib_reset_table (1);
316 /* Remove from hash table all VALUEs except constants
317 and function invariants. */
319 static int
320 preserve_only_constants (void **x, void *info ATTRIBUTE_UNUSED)
322 cselib_val *v = (cselib_val *)*x;
324 if (v->locs != NULL
325 && v->locs->next == NULL)
327 if (CONSTANT_P (v->locs->loc)
328 && (GET_CODE (v->locs->loc) != CONST
329 || !references_value_p (v->locs->loc, 0)))
330 return 1;
331 if (cfa_base_preserved_val)
333 if (v == cfa_base_preserved_val)
334 return 1;
335 if (GET_CODE (v->locs->loc) == PLUS
336 && CONST_INT_P (XEXP (v->locs->loc, 1))
337 && XEXP (v->locs->loc, 0) == cfa_base_preserved_val->val_rtx)
338 return 1;
341 /* Keep around VALUEs that forward function invariant ENTRY_VALUEs
342 to corresponding parameter VALUEs. */
343 if (v->locs != NULL
344 && v->locs->next != NULL
345 && v->locs->next->next == NULL
346 && GET_CODE (v->locs->next->loc) == ENTRY_VALUE
347 && GET_CODE (v->locs->loc) == VALUE)
348 return 1;
350 htab_clear_slot (cselib_hash_table, x);
351 return 1;
354 /* Remove all entries from the hash table, arranging for the next
355 value to be numbered NUM. */
357 void
358 cselib_reset_table (unsigned int num)
360 unsigned int i;
362 max_value_regs = 0;
364 if (cfa_base_preserved_val)
366 unsigned int regno = cfa_base_preserved_regno;
367 unsigned int new_used_regs = 0;
368 for (i = 0; i < n_used_regs; i++)
369 if (used_regs[i] == regno)
371 new_used_regs = 1;
372 continue;
374 else
375 REG_VALUES (used_regs[i]) = 0;
376 gcc_assert (new_used_regs == 1);
377 n_used_regs = new_used_regs;
378 used_regs[0] = regno;
379 max_value_regs
380 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
382 else
384 for (i = 0; i < n_used_regs; i++)
385 REG_VALUES (used_regs[i]) = 0;
386 n_used_regs = 0;
389 if (cselib_preserve_constants)
390 htab_traverse (cselib_hash_table, preserve_only_constants, NULL);
391 else
392 htab_empty (cselib_hash_table);
394 n_useless_values = 0;
395 n_useless_debug_values = 0;
396 n_debug_values = 0;
398 next_uid = num;
400 first_containing_mem = &dummy_val;
403 /* Return the number of the next value that will be generated. */
405 unsigned int
406 cselib_get_next_uid (void)
408 return next_uid;
411 /* See the documentation of cselib_find_slot below. */
412 static enum machine_mode find_slot_memmode;
414 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
415 INSERTing if requested. When X is part of the address of a MEM,
416 MEMMODE should specify the mode of the MEM. While searching the
417 table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs
418 in X can be resolved. */
420 static void **
421 cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert,
422 enum machine_mode memmode)
424 void **slot;
425 find_slot_memmode = memmode;
426 slot = htab_find_slot_with_hash (cselib_hash_table, x, hash, insert);
427 find_slot_memmode = VOIDmode;
428 return slot;
431 /* The equality test for our hash table. The first argument ENTRY is a table
432 element (i.e. a cselib_val), while the second arg X is an rtx. We know
433 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
434 CONST of an appropriate mode. */
436 static int
437 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
439 struct elt_loc_list *l;
440 const cselib_val *const v = (const cselib_val *) entry;
441 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
442 enum machine_mode mode = GET_MODE (x);
444 gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
445 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
447 if (mode != GET_MODE (v->val_rtx))
448 return 0;
450 /* Unwrap X if necessary. */
451 if (GET_CODE (x) == CONST
452 && (CONST_INT_P (XEXP (x, 0))
453 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
454 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
455 x = XEXP (x, 0);
457 /* We don't guarantee that distinct rtx's have different hash values,
458 so we need to do a comparison. */
459 for (l = v->locs; l; l = l->next)
460 if (rtx_equal_for_cselib_1 (l->loc, x, find_slot_memmode))
462 promote_debug_loc (l);
463 return 1;
466 return 0;
469 /* The hash function for our hash table. The value is always computed with
470 cselib_hash_rtx when adding an element; this function just extracts the
471 hash value from a cselib_val structure. */
473 static hashval_t
474 get_value_hash (const void *entry)
476 const cselib_val *const v = (const cselib_val *) entry;
477 return v->hash;
480 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
481 only return true for values which point to a cselib_val whose value
482 element has been set to zero, which implies the cselib_val will be
483 removed. */
486 references_value_p (const_rtx x, int only_useless)
488 const enum rtx_code code = GET_CODE (x);
489 const char *fmt = GET_RTX_FORMAT (code);
490 int i, j;
492 if (GET_CODE (x) == VALUE
493 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
494 return 1;
496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
498 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
499 return 1;
500 else if (fmt[i] == 'E')
501 for (j = 0; j < XVECLEN (x, i); j++)
502 if (references_value_p (XVECEXP (x, i, j), only_useless))
503 return 1;
506 return 0;
509 /* For all locations found in X, delete locations that reference useless
510 values (i.e. values without any location). Called through
511 htab_traverse. */
513 static int
514 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
516 cselib_val *v = (cselib_val *)*x;
517 struct elt_loc_list **p = &v->locs;
518 bool had_locs = v->locs != NULL;
519 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
521 while (*p)
523 if (references_value_p ((*p)->loc, 1))
524 unchain_one_elt_loc_list (p);
525 else
526 p = &(*p)->next;
529 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
531 if (setting_insn && DEBUG_INSN_P (setting_insn))
532 n_useless_debug_values++;
533 else
534 n_useless_values++;
535 values_became_useless = 1;
537 return 1;
540 /* If X is a value with no locations, remove it from the hashtable. */
542 static int
543 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
545 cselib_val *v = (cselib_val *)*x;
547 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
549 if (cselib_discard_hook)
550 cselib_discard_hook (v);
552 CSELIB_VAL_PTR (v->val_rtx) = NULL;
553 htab_clear_slot (cselib_hash_table, x);
554 unchain_one_value (v);
555 n_useless_values--;
558 return 1;
561 /* Clean out useless values (i.e. those which no longer have locations
562 associated with them) from the hash table. */
564 static void
565 remove_useless_values (void)
567 cselib_val **p, *v;
569 /* First pass: eliminate locations that reference the value. That in
570 turn can make more values useless. */
573 values_became_useless = 0;
574 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
576 while (values_became_useless);
578 /* Second pass: actually remove the values. */
580 p = &first_containing_mem;
581 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
582 if (v->locs)
584 *p = v;
585 p = &(*p)->next_containing_mem;
587 *p = &dummy_val;
589 n_useless_values += n_useless_debug_values;
590 n_debug_values -= n_useless_debug_values;
591 n_useless_debug_values = 0;
593 htab_traverse (cselib_hash_table, discard_useless_values, 0);
595 gcc_assert (!n_useless_values);
598 /* Arrange for a value to not be removed from the hash table even if
599 it becomes useless. */
601 void
602 cselib_preserve_value (cselib_val *v)
604 PRESERVED_VALUE_P (v->val_rtx) = 1;
607 /* Test whether a value is preserved. */
609 bool
610 cselib_preserved_value_p (cselib_val *v)
612 return PRESERVED_VALUE_P (v->val_rtx);
615 /* Arrange for a REG value to be assumed constant through the whole function,
616 never invalidated and preserved across cselib_reset_table calls. */
618 void
619 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
621 if (cselib_preserve_constants
622 && v->locs
623 && REG_P (v->locs->loc))
625 cfa_base_preserved_val = v;
626 cfa_base_preserved_regno = regno;
630 /* Clean all non-constant expressions in the hash table, but retain
631 their values. */
633 void
634 cselib_preserve_only_values (void)
636 int i;
638 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
639 cselib_invalidate_regno (i, reg_raw_mode[i]);
641 cselib_invalidate_mem (callmem);
643 remove_useless_values ();
645 gcc_assert (first_containing_mem == &dummy_val);
648 /* Return the mode in which a register was last set. If X is not a
649 register, return its mode. If the mode in which the register was
650 set is not known, or the value was already clobbered, return
651 VOIDmode. */
653 enum machine_mode
654 cselib_reg_set_mode (const_rtx x)
656 if (!REG_P (x))
657 return GET_MODE (x);
659 if (REG_VALUES (REGNO (x)) == NULL
660 || REG_VALUES (REGNO (x))->elt == NULL)
661 return VOIDmode;
663 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
666 /* Return nonzero if we can prove that X and Y contain the same value, taking
667 our gathered information into account. */
670 rtx_equal_for_cselib_p (rtx x, rtx y)
672 return rtx_equal_for_cselib_1 (x, y, VOIDmode);
675 /* If x is a PLUS or an autoinc operation, expand the operation,
676 storing the offset, if any, in *OFF. */
678 static rtx
679 autoinc_split (rtx x, rtx *off, enum machine_mode memmode)
681 switch (GET_CODE (x))
683 case PLUS:
684 *off = XEXP (x, 1);
685 return XEXP (x, 0);
687 case PRE_DEC:
688 if (memmode == VOIDmode)
689 return x;
691 *off = GEN_INT (-GET_MODE_SIZE (memmode));
692 return XEXP (x, 0);
693 break;
695 case PRE_INC:
696 if (memmode == VOIDmode)
697 return x;
699 *off = GEN_INT (GET_MODE_SIZE (memmode));
700 return XEXP (x, 0);
702 case PRE_MODIFY:
703 return XEXP (x, 1);
705 case POST_DEC:
706 case POST_INC:
707 case POST_MODIFY:
708 return XEXP (x, 0);
710 default:
711 return x;
715 /* Return nonzero if we can prove that X and Y contain the same value,
716 taking our gathered information into account. MEMMODE holds the
717 mode of the enclosing MEM, if any, as required to deal with autoinc
718 addressing modes. If X and Y are not (known to be) part of
719 addresses, MEMMODE should be VOIDmode. */
721 static int
722 rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode)
724 enum rtx_code code;
725 const char *fmt;
726 int i;
728 if (REG_P (x) || MEM_P (x))
730 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
732 if (e)
733 x = e->val_rtx;
736 if (REG_P (y) || MEM_P (y))
738 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
740 if (e)
741 y = e->val_rtx;
744 if (x == y)
745 return 1;
747 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
748 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
750 if (GET_CODE (x) == VALUE)
752 cselib_val *e = CSELIB_VAL_PTR (x);
753 struct elt_loc_list *l;
755 for (l = e->locs; l; l = l->next)
757 rtx t = l->loc;
759 /* Avoid infinite recursion. */
760 if (REG_P (t) || MEM_P (t))
761 continue;
762 else if (rtx_equal_for_cselib_1 (t, y, memmode))
763 return 1;
766 return 0;
769 if (GET_CODE (y) == VALUE)
771 cselib_val *e = CSELIB_VAL_PTR (y);
772 struct elt_loc_list *l;
774 for (l = e->locs; l; l = l->next)
776 rtx t = l->loc;
778 if (REG_P (t) || MEM_P (t))
779 continue;
780 else if (rtx_equal_for_cselib_1 (x, t, memmode))
781 return 1;
784 return 0;
787 if (GET_MODE (x) != GET_MODE (y))
788 return 0;
790 if (GET_CODE (x) != GET_CODE (y))
792 rtx xorig = x, yorig = y;
793 rtx xoff = NULL, yoff = NULL;
795 x = autoinc_split (x, &xoff, memmode);
796 y = autoinc_split (y, &yoff, memmode);
798 if (!xoff != !yoff)
799 return 0;
801 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
802 return 0;
804 /* Don't recurse if nothing changed. */
805 if (x != xorig || y != yorig)
806 return rtx_equal_for_cselib_1 (x, y, memmode);
808 return 0;
811 /* These won't be handled correctly by the code below. */
812 switch (GET_CODE (x))
814 case CONST_DOUBLE:
815 case CONST_FIXED:
816 case DEBUG_EXPR:
817 return 0;
819 case DEBUG_IMPLICIT_PTR:
820 return DEBUG_IMPLICIT_PTR_DECL (x)
821 == DEBUG_IMPLICIT_PTR_DECL (y);
823 case DEBUG_PARAMETER_REF:
824 return DEBUG_PARAMETER_REF_DECL (x)
825 == DEBUG_PARAMETER_REF_DECL (y);
827 case ENTRY_VALUE:
828 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
829 use rtx_equal_for_cselib_1 to compare the operands. */
830 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
832 case LABEL_REF:
833 return XEXP (x, 0) == XEXP (y, 0);
835 case MEM:
836 /* We have to compare any autoinc operations in the addresses
837 using this MEM's mode. */
838 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
840 default:
841 break;
844 code = GET_CODE (x);
845 fmt = GET_RTX_FORMAT (code);
847 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
849 int j;
851 switch (fmt[i])
853 case 'w':
854 if (XWINT (x, i) != XWINT (y, i))
855 return 0;
856 break;
858 case 'n':
859 case 'i':
860 if (XINT (x, i) != XINT (y, i))
861 return 0;
862 break;
864 case 'V':
865 case 'E':
866 /* Two vectors must have the same length. */
867 if (XVECLEN (x, i) != XVECLEN (y, i))
868 return 0;
870 /* And the corresponding elements must match. */
871 for (j = 0; j < XVECLEN (x, i); j++)
872 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
873 XVECEXP (y, i, j), memmode))
874 return 0;
875 break;
877 case 'e':
878 if (i == 1
879 && targetm.commutative_p (x, UNKNOWN)
880 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
881 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
882 return 1;
883 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
884 return 0;
885 break;
887 case 'S':
888 case 's':
889 if (strcmp (XSTR (x, i), XSTR (y, i)))
890 return 0;
891 break;
893 case 'u':
894 /* These are just backpointers, so they don't matter. */
895 break;
897 case '0':
898 case 't':
899 break;
901 /* It is believed that rtx's at this level will never
902 contain anything but integers and other rtx's,
903 except for within LABEL_REFs and SYMBOL_REFs. */
904 default:
905 gcc_unreachable ();
908 return 1;
911 /* We need to pass down the mode of constants through the hash table
912 functions. For that purpose, wrap them in a CONST of the appropriate
913 mode. */
914 static rtx
915 wrap_constant (enum machine_mode mode, rtx x)
917 if (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
918 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
919 return x;
920 gcc_assert (mode != VOIDmode);
921 return gen_rtx_CONST (mode, x);
924 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
925 For registers and memory locations, we look up their cselib_val structure
926 and return its VALUE element.
927 Possible reasons for return 0 are: the object is volatile, or we couldn't
928 find a register or memory location in the table and CREATE is zero. If
929 CREATE is nonzero, table elts are created for regs and mem.
930 N.B. this hash function returns the same hash value for RTXes that
931 differ only in the order of operands, thus it is suitable for comparisons
932 that take commutativity into account.
933 If we wanted to also support associative rules, we'd have to use a different
934 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
935 MEMMODE indicates the mode of an enclosing MEM, and it's only
936 used to compute autoinc values.
937 We used to have a MODE argument for hashing for CONST_INTs, but that
938 didn't make sense, since it caused spurious hash differences between
939 (set (reg:SI 1) (const_int))
940 (plus:SI (reg:SI 2) (reg:SI 1))
942 (plus:SI (reg:SI 2) (const_int))
943 If the mode is important in any context, it must be checked specifically
944 in a comparison anyway, since relying on hash differences is unsafe. */
946 static unsigned int
947 cselib_hash_rtx (rtx x, int create, enum machine_mode memmode)
949 cselib_val *e;
950 int i, j;
951 enum rtx_code code;
952 const char *fmt;
953 unsigned int hash = 0;
955 code = GET_CODE (x);
956 hash += (unsigned) code + (unsigned) GET_MODE (x);
958 switch (code)
960 case MEM:
961 case REG:
962 e = cselib_lookup (x, GET_MODE (x), create, memmode);
963 if (! e)
964 return 0;
966 return e->hash;
968 case DEBUG_EXPR:
969 hash += ((unsigned) DEBUG_EXPR << 7)
970 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
971 return hash ? hash : (unsigned int) DEBUG_EXPR;
973 case DEBUG_IMPLICIT_PTR:
974 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
975 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
976 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
978 case DEBUG_PARAMETER_REF:
979 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
980 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
981 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
983 case ENTRY_VALUE:
984 /* ENTRY_VALUEs are function invariant, thus try to avoid
985 recursing on argument if ENTRY_VALUE is one of the
986 forms emitted by expand_debug_expr, otherwise
987 ENTRY_VALUE hash would depend on the current value
988 in some register or memory. */
989 if (REG_P (ENTRY_VALUE_EXP (x)))
990 hash += (unsigned int) REG
991 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
992 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
993 else if (MEM_P (ENTRY_VALUE_EXP (x))
994 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
995 hash += (unsigned int) MEM
996 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
997 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
998 else
999 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1000 return hash ? hash : (unsigned int) ENTRY_VALUE;
1002 case CONST_INT:
1003 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
1004 return hash ? hash : (unsigned int) CONST_INT;
1006 case CONST_DOUBLE:
1007 /* This is like the general case, except that it only counts
1008 the integers representing the constant. */
1009 hash += (unsigned) code + (unsigned) GET_MODE (x);
1010 if (GET_MODE (x) != VOIDmode)
1011 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1012 else
1013 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1014 + (unsigned) CONST_DOUBLE_HIGH (x));
1015 return hash ? hash : (unsigned int) CONST_DOUBLE;
1017 case CONST_FIXED:
1018 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1019 hash += fixed_hash (CONST_FIXED_VALUE (x));
1020 return hash ? hash : (unsigned int) CONST_FIXED;
1022 case CONST_VECTOR:
1024 int units;
1025 rtx elt;
1027 units = CONST_VECTOR_NUNITS (x);
1029 for (i = 0; i < units; ++i)
1031 elt = CONST_VECTOR_ELT (x, i);
1032 hash += cselib_hash_rtx (elt, 0, memmode);
1035 return hash;
1038 /* Assume there is only one rtx object for any given label. */
1039 case LABEL_REF:
1040 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1041 differences and differences between each stage's debugging dumps. */
1042 hash += (((unsigned int) LABEL_REF << 7)
1043 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1044 return hash ? hash : (unsigned int) LABEL_REF;
1046 case SYMBOL_REF:
1048 /* Don't hash on the symbol's address to avoid bootstrap differences.
1049 Different hash values may cause expressions to be recorded in
1050 different orders and thus different registers to be used in the
1051 final assembler. This also avoids differences in the dump files
1052 between various stages. */
1053 unsigned int h = 0;
1054 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1056 while (*p)
1057 h += (h << 7) + *p++; /* ??? revisit */
1059 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1060 return hash ? hash : (unsigned int) SYMBOL_REF;
1063 case PRE_DEC:
1064 case PRE_INC:
1065 /* We can't compute these without knowing the MEM mode. */
1066 gcc_assert (memmode != VOIDmode);
1067 i = GET_MODE_SIZE (memmode);
1068 if (code == PRE_DEC)
1069 i = -i;
1070 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1071 like (mem:MEMMODE (plus (reg) (const_int I))). */
1072 hash += (unsigned) PLUS - (unsigned)code
1073 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1074 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1075 return hash ? hash : 1 + (unsigned) PLUS;
1077 case PRE_MODIFY:
1078 gcc_assert (memmode != VOIDmode);
1079 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1081 case POST_DEC:
1082 case POST_INC:
1083 case POST_MODIFY:
1084 gcc_assert (memmode != VOIDmode);
1085 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1087 case PC:
1088 case CC0:
1089 case CALL:
1090 case UNSPEC_VOLATILE:
1091 return 0;
1093 case ASM_OPERANDS:
1094 if (MEM_VOLATILE_P (x))
1095 return 0;
1097 break;
1099 default:
1100 break;
1103 i = GET_RTX_LENGTH (code) - 1;
1104 fmt = GET_RTX_FORMAT (code);
1105 for (; i >= 0; i--)
1107 switch (fmt[i])
1109 case 'e':
1111 rtx tem = XEXP (x, i);
1112 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1114 if (tem_hash == 0)
1115 return 0;
1117 hash += tem_hash;
1119 break;
1120 case 'E':
1121 for (j = 0; j < XVECLEN (x, i); j++)
1123 unsigned int tem_hash
1124 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1126 if (tem_hash == 0)
1127 return 0;
1129 hash += tem_hash;
1131 break;
1133 case 's':
1135 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1137 if (p)
1138 while (*p)
1139 hash += *p++;
1140 break;
1143 case 'i':
1144 hash += XINT (x, i);
1145 break;
1147 case '0':
1148 case 't':
1149 /* unused */
1150 break;
1152 default:
1153 gcc_unreachable ();
1157 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1160 /* Create a new value structure for VALUE and initialize it. The mode of the
1161 value is MODE. */
1163 static inline cselib_val *
1164 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
1166 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
1168 gcc_assert (hash);
1169 gcc_assert (next_uid);
1171 e->hash = hash;
1172 e->uid = next_uid++;
1173 /* We use an alloc pool to allocate this RTL construct because it
1174 accounts for about 8% of the overall memory usage. We know
1175 precisely when we can have VALUE RTXen (when cselib is active)
1176 so we don't need to put them in garbage collected memory.
1177 ??? Why should a VALUE be an RTX in the first place? */
1178 e->val_rtx = (rtx) pool_alloc (value_pool);
1179 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1180 PUT_CODE (e->val_rtx, VALUE);
1181 PUT_MODE (e->val_rtx, mode);
1182 CSELIB_VAL_PTR (e->val_rtx) = e;
1183 e->addr_list = 0;
1184 e->locs = 0;
1185 e->next_containing_mem = 0;
1187 if (dump_file && (dump_flags & TDF_CSELIB))
1189 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1190 if (flag_dump_noaddr || flag_dump_unnumbered)
1191 fputs ("# ", dump_file);
1192 else
1193 fprintf (dump_file, "%p ", (void*)e);
1194 print_rtl_single (dump_file, x);
1195 fputc ('\n', dump_file);
1198 return e;
1201 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1202 contains the data at this address. X is a MEM that represents the
1203 value. Update the two value structures to represent this situation. */
1205 static void
1206 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1208 struct elt_loc_list *l;
1210 /* Avoid duplicates. */
1211 for (l = mem_elt->locs; l; l = l->next)
1212 if (MEM_P (l->loc)
1213 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1215 promote_debug_loc (l);
1216 return;
1219 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1220 mem_elt->locs
1221 = new_elt_loc_list (mem_elt->locs,
1222 replace_equiv_address_nv (x, addr_elt->val_rtx));
1223 if (mem_elt->next_containing_mem == NULL)
1225 mem_elt->next_containing_mem = first_containing_mem;
1226 first_containing_mem = mem_elt;
1230 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1231 If CREATE, make a new one if we haven't seen it before. */
1233 static cselib_val *
1234 cselib_lookup_mem (rtx x, int create)
1236 enum machine_mode mode = GET_MODE (x);
1237 enum machine_mode addr_mode;
1238 void **slot;
1239 cselib_val *addr;
1240 cselib_val *mem_elt;
1241 struct elt_list *l;
1243 if (MEM_VOLATILE_P (x) || mode == BLKmode
1244 || !cselib_record_memory
1245 || (FLOAT_MODE_P (mode) && flag_float_store))
1246 return 0;
1248 addr_mode = GET_MODE (XEXP (x, 0));
1249 if (addr_mode == VOIDmode)
1250 addr_mode = Pmode;
1252 /* Look up the value for the address. */
1253 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1254 if (! addr)
1255 return 0;
1257 /* Find a value that describes a value of our mode at that address. */
1258 for (l = addr->addr_list; l; l = l->next)
1259 if (GET_MODE (l->elt->val_rtx) == mode)
1261 promote_debug_loc (l->elt->locs);
1262 return l->elt;
1265 if (! create)
1266 return 0;
1268 mem_elt = new_cselib_val (next_uid, mode, x);
1269 add_mem_for_addr (addr, mem_elt, x);
1270 slot = cselib_find_slot (wrap_constant (mode, x), mem_elt->hash,
1271 INSERT, mode);
1272 *slot = mem_elt;
1273 return mem_elt;
1276 /* Search thru the possible substitutions in P. We prefer a non reg
1277 substitution because this allows us to expand the tree further. If
1278 we find, just a reg, take the lowest regno. There may be several
1279 non-reg results, we just take the first one because they will all
1280 expand to the same place. */
1282 static rtx
1283 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1284 int max_depth)
1286 rtx reg_result = NULL;
1287 unsigned int regno = UINT_MAX;
1288 struct elt_loc_list *p_in = p;
1290 for (; p; p = p -> next)
1292 /* Avoid infinite recursion trying to expand a reg into a
1293 the same reg. */
1294 if ((REG_P (p->loc))
1295 && (REGNO (p->loc) < regno)
1296 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1298 reg_result = p->loc;
1299 regno = REGNO (p->loc);
1301 /* Avoid infinite recursion and do not try to expand the
1302 value. */
1303 else if (GET_CODE (p->loc) == VALUE
1304 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1305 continue;
1306 else if (!REG_P (p->loc))
1308 rtx result, note;
1309 if (dump_file && (dump_flags & TDF_CSELIB))
1311 print_inline_rtx (dump_file, p->loc, 0);
1312 fprintf (dump_file, "\n");
1314 if (GET_CODE (p->loc) == LO_SUM
1315 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1316 && p->setting_insn
1317 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1318 && XEXP (note, 0) == XEXP (p->loc, 1))
1319 return XEXP (p->loc, 1);
1320 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1321 if (result)
1322 return result;
1327 if (regno != UINT_MAX)
1329 rtx result;
1330 if (dump_file && (dump_flags & TDF_CSELIB))
1331 fprintf (dump_file, "r%d\n", regno);
1333 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1334 if (result)
1335 return result;
1338 if (dump_file && (dump_flags & TDF_CSELIB))
1340 if (reg_result)
1342 print_inline_rtx (dump_file, reg_result, 0);
1343 fprintf (dump_file, "\n");
1345 else
1346 fprintf (dump_file, "NULL\n");
1348 return reg_result;
1352 /* Forward substitute and expand an expression out to its roots.
1353 This is the opposite of common subexpression. Because local value
1354 numbering is such a weak optimization, the expanded expression is
1355 pretty much unique (not from a pointer equals point of view but
1356 from a tree shape point of view.
1358 This function returns NULL if the expansion fails. The expansion
1359 will fail if there is no value number for one of the operands or if
1360 one of the operands has been overwritten between the current insn
1361 and the beginning of the basic block. For instance x has no
1362 expansion in:
1364 r1 <- r1 + 3
1365 x <- r1 + 8
1367 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1368 It is clear on return. */
1371 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1373 struct expand_value_data evd;
1375 evd.regs_active = regs_active;
1376 evd.callback = NULL;
1377 evd.callback_arg = NULL;
1378 evd.dummy = false;
1380 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1383 /* Same as cselib_expand_value_rtx, but using a callback to try to
1384 resolve some expressions. The CB function should return ORIG if it
1385 can't or does not want to deal with a certain RTX. Any other
1386 return value, including NULL, will be used as the expansion for
1387 VALUE, without any further changes. */
1390 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1391 cselib_expand_callback cb, void *data)
1393 struct expand_value_data evd;
1395 evd.regs_active = regs_active;
1396 evd.callback = cb;
1397 evd.callback_arg = data;
1398 evd.dummy = false;
1400 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1403 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1404 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1405 would return NULL or non-NULL, without allocating new rtx. */
1407 bool
1408 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1409 cselib_expand_callback cb, void *data)
1411 struct expand_value_data evd;
1413 evd.regs_active = regs_active;
1414 evd.callback = cb;
1415 evd.callback_arg = data;
1416 evd.dummy = true;
1418 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1421 /* Internal implementation of cselib_expand_value_rtx and
1422 cselib_expand_value_rtx_cb. */
1424 static rtx
1425 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1426 int max_depth)
1428 rtx copy, scopy;
1429 int i, j;
1430 RTX_CODE code;
1431 const char *format_ptr;
1432 enum machine_mode mode;
1434 code = GET_CODE (orig);
1436 /* For the context of dse, if we end up expand into a huge tree, we
1437 will not have a useful address, so we might as well just give up
1438 quickly. */
1439 if (max_depth <= 0)
1440 return NULL;
1442 switch (code)
1444 case REG:
1446 struct elt_list *l = REG_VALUES (REGNO (orig));
1448 if (l && l->elt == NULL)
1449 l = l->next;
1450 for (; l; l = l->next)
1451 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1453 rtx result;
1454 int regno = REGNO (orig);
1456 /* The only thing that we are not willing to do (this
1457 is requirement of dse and if others potential uses
1458 need this function we should add a parm to control
1459 it) is that we will not substitute the
1460 STACK_POINTER_REGNUM, FRAME_POINTER or the
1461 HARD_FRAME_POINTER.
1463 These expansions confuses the code that notices that
1464 stores into the frame go dead at the end of the
1465 function and that the frame is not effected by calls
1466 to subroutines. If you allow the
1467 STACK_POINTER_REGNUM substitution, then dse will
1468 think that parameter pushing also goes dead which is
1469 wrong. If you allow the FRAME_POINTER or the
1470 HARD_FRAME_POINTER then you lose the opportunity to
1471 make the frame assumptions. */
1472 if (regno == STACK_POINTER_REGNUM
1473 || regno == FRAME_POINTER_REGNUM
1474 || regno == HARD_FRAME_POINTER_REGNUM)
1475 return orig;
1477 bitmap_set_bit (evd->regs_active, regno);
1479 if (dump_file && (dump_flags & TDF_CSELIB))
1480 fprintf (dump_file, "expanding: r%d into: ", regno);
1482 result = expand_loc (l->elt->locs, evd, max_depth);
1483 bitmap_clear_bit (evd->regs_active, regno);
1485 if (result)
1486 return result;
1487 else
1488 return orig;
1492 case CONST_INT:
1493 case CONST_DOUBLE:
1494 case CONST_VECTOR:
1495 case SYMBOL_REF:
1496 case CODE_LABEL:
1497 case PC:
1498 case CC0:
1499 case SCRATCH:
1500 /* SCRATCH must be shared because they represent distinct values. */
1501 return orig;
1502 case CLOBBER:
1503 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1504 return orig;
1505 break;
1507 case CONST:
1508 if (shared_const_p (orig))
1509 return orig;
1510 break;
1512 case SUBREG:
1514 rtx subreg;
1516 if (evd->callback)
1518 subreg = evd->callback (orig, evd->regs_active, max_depth,
1519 evd->callback_arg);
1520 if (subreg != orig)
1521 return subreg;
1524 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1525 max_depth - 1);
1526 if (!subreg)
1527 return NULL;
1528 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1529 GET_MODE (SUBREG_REG (orig)),
1530 SUBREG_BYTE (orig));
1531 if (scopy == NULL
1532 || (GET_CODE (scopy) == SUBREG
1533 && !REG_P (SUBREG_REG (scopy))
1534 && !MEM_P (SUBREG_REG (scopy))))
1535 return NULL;
1537 return scopy;
1540 case VALUE:
1542 rtx result;
1544 if (dump_file && (dump_flags & TDF_CSELIB))
1546 fputs ("\nexpanding ", dump_file);
1547 print_rtl_single (dump_file, orig);
1548 fputs (" into...", dump_file);
1551 if (evd->callback)
1553 result = evd->callback (orig, evd->regs_active, max_depth,
1554 evd->callback_arg);
1556 if (result != orig)
1557 return result;
1560 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1561 return result;
1564 case DEBUG_EXPR:
1565 if (evd->callback)
1566 return evd->callback (orig, evd->regs_active, max_depth,
1567 evd->callback_arg);
1568 return orig;
1570 default:
1571 break;
1574 /* Copy the various flags, fields, and other information. We assume
1575 that all fields need copying, and then clear the fields that should
1576 not be copied. That is the sensible default behavior, and forces
1577 us to explicitly document why we are *not* copying a flag. */
1578 if (evd->dummy)
1579 copy = NULL;
1580 else
1581 copy = shallow_copy_rtx (orig);
1583 format_ptr = GET_RTX_FORMAT (code);
1585 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1586 switch (*format_ptr++)
1588 case 'e':
1589 if (XEXP (orig, i) != NULL)
1591 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1592 max_depth - 1);
1593 if (!result)
1594 return NULL;
1595 if (copy)
1596 XEXP (copy, i) = result;
1598 break;
1600 case 'E':
1601 case 'V':
1602 if (XVEC (orig, i) != NULL)
1604 if (copy)
1605 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1606 for (j = 0; j < XVECLEN (orig, i); j++)
1608 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1609 evd, max_depth - 1);
1610 if (!result)
1611 return NULL;
1612 if (copy)
1613 XVECEXP (copy, i, j) = result;
1616 break;
1618 case 't':
1619 case 'w':
1620 case 'i':
1621 case 's':
1622 case 'S':
1623 case 'T':
1624 case 'u':
1625 case 'B':
1626 case '0':
1627 /* These are left unchanged. */
1628 break;
1630 default:
1631 gcc_unreachable ();
1634 if (evd->dummy)
1635 return orig;
1637 mode = GET_MODE (copy);
1638 /* If an operand has been simplified into CONST_INT, which doesn't
1639 have a mode and the mode isn't derivable from whole rtx's mode,
1640 try simplify_*_operation first with mode from original's operand
1641 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1642 scopy = copy;
1643 switch (GET_RTX_CLASS (code))
1645 case RTX_UNARY:
1646 if (CONST_INT_P (XEXP (copy, 0))
1647 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1649 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1650 GET_MODE (XEXP (orig, 0)));
1651 if (scopy)
1652 return scopy;
1654 break;
1655 case RTX_COMM_ARITH:
1656 case RTX_BIN_ARITH:
1657 /* These expressions can derive operand modes from the whole rtx's mode. */
1658 break;
1659 case RTX_TERNARY:
1660 case RTX_BITFIELD_OPS:
1661 if (CONST_INT_P (XEXP (copy, 0))
1662 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1664 scopy = simplify_ternary_operation (code, mode,
1665 GET_MODE (XEXP (orig, 0)),
1666 XEXP (copy, 0), XEXP (copy, 1),
1667 XEXP (copy, 2));
1668 if (scopy)
1669 return scopy;
1671 break;
1672 case RTX_COMPARE:
1673 case RTX_COMM_COMPARE:
1674 if (CONST_INT_P (XEXP (copy, 0))
1675 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1676 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1677 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1679 scopy = simplify_relational_operation (code, mode,
1680 (GET_MODE (XEXP (orig, 0))
1681 != VOIDmode)
1682 ? GET_MODE (XEXP (orig, 0))
1683 : GET_MODE (XEXP (orig, 1)),
1684 XEXP (copy, 0),
1685 XEXP (copy, 1));
1686 if (scopy)
1687 return scopy;
1689 break;
1690 default:
1691 break;
1693 scopy = simplify_rtx (copy);
1694 if (scopy)
1695 return scopy;
1696 return copy;
1699 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1700 with VALUE expressions. This way, it becomes independent of changes
1701 to registers and memory.
1702 X isn't actually modified; if modifications are needed, new rtl is
1703 allocated. However, the return value can share rtl with X.
1704 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1707 cselib_subst_to_values (rtx x, enum machine_mode memmode)
1709 enum rtx_code code = GET_CODE (x);
1710 const char *fmt = GET_RTX_FORMAT (code);
1711 cselib_val *e;
1712 struct elt_list *l;
1713 rtx copy = x;
1714 int i;
1716 switch (code)
1718 case REG:
1719 l = REG_VALUES (REGNO (x));
1720 if (l && l->elt == NULL)
1721 l = l->next;
1722 for (; l; l = l->next)
1723 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1724 return l->elt->val_rtx;
1726 gcc_unreachable ();
1728 case MEM:
1729 e = cselib_lookup_mem (x, 0);
1730 /* This used to happen for autoincrements, but we deal with them
1731 properly now. Remove the if stmt for the next release. */
1732 if (! e)
1734 /* Assign a value that doesn't match any other. */
1735 e = new_cselib_val (next_uid, GET_MODE (x), x);
1737 return e->val_rtx;
1739 case ENTRY_VALUE:
1740 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1741 if (! e)
1742 break;
1743 return e->val_rtx;
1745 case CONST_DOUBLE:
1746 case CONST_VECTOR:
1747 case CONST_INT:
1748 case CONST_FIXED:
1749 return x;
1751 case PRE_DEC:
1752 case PRE_INC:
1753 gcc_assert (memmode != VOIDmode);
1754 i = GET_MODE_SIZE (memmode);
1755 if (code == PRE_DEC)
1756 i = -i;
1757 return cselib_subst_to_values (plus_constant (XEXP (x, 0), i),
1758 memmode);
1760 case PRE_MODIFY:
1761 gcc_assert (memmode != VOIDmode);
1762 return cselib_subst_to_values (XEXP (x, 1), memmode);
1764 case POST_DEC:
1765 case POST_INC:
1766 case POST_MODIFY:
1767 gcc_assert (memmode != VOIDmode);
1768 return cselib_subst_to_values (XEXP (x, 0), memmode);
1770 default:
1771 break;
1774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1776 if (fmt[i] == 'e')
1778 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1780 if (t != XEXP (x, i))
1782 if (x == copy)
1783 copy = shallow_copy_rtx (x);
1784 XEXP (copy, i) = t;
1787 else if (fmt[i] == 'E')
1789 int j;
1791 for (j = 0; j < XVECLEN (x, i); j++)
1793 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1795 if (t != XVECEXP (x, i, j))
1797 if (XVEC (x, i) == XVEC (copy, i))
1799 if (x == copy)
1800 copy = shallow_copy_rtx (x);
1801 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1803 XVECEXP (copy, i, j) = t;
1809 return copy;
1812 /* Look up the rtl expression X in our tables and return the value it
1813 has. If CREATE is zero, we return NULL if we don't know the value.
1814 Otherwise, we create a new one if possible, using mode MODE if X
1815 doesn't have a mode (i.e. because it's a constant). When X is part
1816 of an address, MEMMODE should be the mode of the enclosing MEM if
1817 we're tracking autoinc expressions. */
1819 static cselib_val *
1820 cselib_lookup_1 (rtx x, enum machine_mode mode,
1821 int create, enum machine_mode memmode)
1823 void **slot;
1824 cselib_val *e;
1825 unsigned int hashval;
1827 if (GET_MODE (x) != VOIDmode)
1828 mode = GET_MODE (x);
1830 if (GET_CODE (x) == VALUE)
1831 return CSELIB_VAL_PTR (x);
1833 if (REG_P (x))
1835 struct elt_list *l;
1836 unsigned int i = REGNO (x);
1838 l = REG_VALUES (i);
1839 if (l && l->elt == NULL)
1840 l = l->next;
1841 for (; l; l = l->next)
1842 if (mode == GET_MODE (l->elt->val_rtx))
1844 promote_debug_loc (l->elt->locs);
1845 return l->elt;
1848 if (! create)
1849 return 0;
1851 if (i < FIRST_PSEUDO_REGISTER)
1853 unsigned int n = hard_regno_nregs[i][mode];
1855 if (n > max_value_regs)
1856 max_value_regs = n;
1859 e = new_cselib_val (next_uid, GET_MODE (x), x);
1860 e->locs = new_elt_loc_list (e->locs, x);
1861 if (REG_VALUES (i) == 0)
1863 /* Maintain the invariant that the first entry of
1864 REG_VALUES, if present, must be the value used to set the
1865 register, or NULL. */
1866 used_regs[n_used_regs++] = i;
1867 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1869 else if (cselib_preserve_constants
1870 && GET_MODE_CLASS (mode) == MODE_INT)
1872 /* During var-tracking, try harder to find equivalences
1873 for SUBREGs. If a setter sets say a DImode register
1874 and user uses that register only in SImode, add a lowpart
1875 subreg location. */
1876 struct elt_list *lwider = NULL;
1877 l = REG_VALUES (i);
1878 if (l && l->elt == NULL)
1879 l = l->next;
1880 for (; l; l = l->next)
1881 if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT
1882 && GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
1883 > GET_MODE_SIZE (mode)
1884 && (lwider == NULL
1885 || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
1886 < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
1888 struct elt_loc_list *el;
1889 if (i < FIRST_PSEUDO_REGISTER
1890 && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1)
1891 continue;
1892 for (el = l->elt->locs; el; el = el->next)
1893 if (!REG_P (el->loc))
1894 break;
1895 if (el)
1896 lwider = l;
1898 if (lwider)
1900 rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx,
1901 GET_MODE (lwider->elt->val_rtx));
1902 if (sub)
1903 e->locs->next = new_elt_loc_list (e->locs->next, sub);
1906 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1907 slot = cselib_find_slot (x, e->hash, INSERT, memmode);
1908 *slot = e;
1909 return e;
1912 if (MEM_P (x))
1913 return cselib_lookup_mem (x, create);
1915 hashval = cselib_hash_rtx (x, create, memmode);
1916 /* Can't even create if hashing is not possible. */
1917 if (! hashval)
1918 return 0;
1920 slot = cselib_find_slot (wrap_constant (mode, x), hashval,
1921 create ? INSERT : NO_INSERT, memmode);
1922 if (slot == 0)
1923 return 0;
1925 e = (cselib_val *) *slot;
1926 if (e)
1927 return e;
1929 e = new_cselib_val (hashval, mode, x);
1931 /* We have to fill the slot before calling cselib_subst_to_values:
1932 the hash table is inconsistent until we do so, and
1933 cselib_subst_to_values will need to do lookups. */
1934 *slot = (void *) e;
1935 e->locs = new_elt_loc_list (e->locs,
1936 cselib_subst_to_values (x, memmode));
1937 return e;
1940 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
1942 cselib_val *
1943 cselib_lookup_from_insn (rtx x, enum machine_mode mode,
1944 int create, enum machine_mode memmode, rtx insn)
1946 cselib_val *ret;
1948 gcc_assert (!cselib_current_insn);
1949 cselib_current_insn = insn;
1951 ret = cselib_lookup (x, mode, create, memmode);
1953 cselib_current_insn = NULL;
1955 return ret;
1958 /* Wrapper for cselib_lookup_1, that logs the lookup result and
1959 maintains invariants related with debug insns. */
1961 cselib_val *
1962 cselib_lookup (rtx x, enum machine_mode mode,
1963 int create, enum machine_mode memmode)
1965 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
1967 /* ??? Should we return NULL if we're not to create an entry, the
1968 found loc is a debug loc and cselib_current_insn is not DEBUG?
1969 If so, we should also avoid converting val to non-DEBUG; probably
1970 easiest setting cselib_current_insn to NULL before the call
1971 above. */
1973 if (dump_file && (dump_flags & TDF_CSELIB))
1975 fputs ("cselib lookup ", dump_file);
1976 print_inline_rtx (dump_file, x, 2);
1977 fprintf (dump_file, " => %u:%u\n",
1978 ret ? ret->uid : 0,
1979 ret ? ret->hash : 0);
1982 return ret;
1985 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1986 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1987 is used to determine how many hard registers are being changed. If MODE
1988 is VOIDmode, then only REGNO is being changed; this is used when
1989 invalidating call clobbered registers across a call. */
1991 static void
1992 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1994 unsigned int endregno;
1995 unsigned int i;
1997 /* If we see pseudos after reload, something is _wrong_. */
1998 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1999 || reg_renumber[regno] < 0);
2001 /* Determine the range of registers that must be invalidated. For
2002 pseudos, only REGNO is affected. For hard regs, we must take MODE
2003 into account, and we must also invalidate lower register numbers
2004 if they contain values that overlap REGNO. */
2005 if (regno < FIRST_PSEUDO_REGISTER)
2007 gcc_assert (mode != VOIDmode);
2009 if (regno < max_value_regs)
2010 i = 0;
2011 else
2012 i = regno - max_value_regs;
2014 endregno = end_hard_regno (mode, regno);
2016 else
2018 i = regno;
2019 endregno = regno + 1;
2022 for (; i < endregno; i++)
2024 struct elt_list **l = &REG_VALUES (i);
2026 /* Go through all known values for this reg; if it overlaps the range
2027 we're invalidating, remove the value. */
2028 while (*l)
2030 cselib_val *v = (*l)->elt;
2031 bool had_locs;
2032 rtx setting_insn;
2033 struct elt_loc_list **p;
2034 unsigned int this_last = i;
2036 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2037 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2039 if (this_last < regno || v == NULL
2040 || (v == cfa_base_preserved_val
2041 && i == cfa_base_preserved_regno))
2043 l = &(*l)->next;
2044 continue;
2047 /* We have an overlap. */
2048 if (*l == REG_VALUES (i))
2050 /* Maintain the invariant that the first entry of
2051 REG_VALUES, if present, must be the value used to set
2052 the register, or NULL. This is also nice because
2053 then we won't push the same regno onto user_regs
2054 multiple times. */
2055 (*l)->elt = NULL;
2056 l = &(*l)->next;
2058 else
2059 unchain_one_elt_list (l);
2061 had_locs = v->locs != NULL;
2062 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2064 /* Now, we clear the mapping from value to reg. It must exist, so
2065 this code will crash intentionally if it doesn't. */
2066 for (p = &v->locs; ; p = &(*p)->next)
2068 rtx x = (*p)->loc;
2070 if (REG_P (x) && REGNO (x) == i)
2072 unchain_one_elt_loc_list (p);
2073 break;
2077 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2079 if (setting_insn && DEBUG_INSN_P (setting_insn))
2080 n_useless_debug_values++;
2081 else
2082 n_useless_values++;
2088 /* Return 1 if X has a value that can vary even between two
2089 executions of the program. 0 means X can be compared reliably
2090 against certain constants or near-constants. */
2092 static bool
2093 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
2095 /* We actually don't need to verify very hard. This is because
2096 if X has actually changed, we invalidate the memory anyway,
2097 so assume that all common memory addresses are
2098 invariant. */
2099 return 0;
2102 /* Invalidate any locations in the table which are changed because of a
2103 store to MEM_RTX. If this is called because of a non-const call
2104 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2106 static void
2107 cselib_invalidate_mem (rtx mem_rtx)
2109 cselib_val **vp, *v, *next;
2110 int num_mems = 0;
2111 rtx mem_addr;
2113 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2114 mem_rtx = canon_rtx (mem_rtx);
2116 vp = &first_containing_mem;
2117 for (v = *vp; v != &dummy_val; v = next)
2119 bool has_mem = false;
2120 struct elt_loc_list **p = &v->locs;
2121 bool had_locs = v->locs != NULL;
2122 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
2124 while (*p)
2126 rtx x = (*p)->loc;
2127 cselib_val *addr;
2128 struct elt_list **mem_chain;
2130 /* MEMs may occur in locations only at the top level; below
2131 that every MEM or REG is substituted by its VALUE. */
2132 if (!MEM_P (x))
2134 p = &(*p)->next;
2135 continue;
2137 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2138 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
2139 x, NULL_RTX, cselib_rtx_varies_p))
2141 has_mem = true;
2142 num_mems++;
2143 p = &(*p)->next;
2144 continue;
2147 /* This one overlaps. */
2148 /* We must have a mapping from this MEM's address to the
2149 value (E). Remove that, too. */
2150 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2151 mem_chain = &addr->addr_list;
2152 for (;;)
2154 if ((*mem_chain)->elt == v)
2156 unchain_one_elt_list (mem_chain);
2157 break;
2160 mem_chain = &(*mem_chain)->next;
2163 unchain_one_elt_loc_list (p);
2166 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2168 if (setting_insn && DEBUG_INSN_P (setting_insn))
2169 n_useless_debug_values++;
2170 else
2171 n_useless_values++;
2174 next = v->next_containing_mem;
2175 if (has_mem)
2177 *vp = v;
2178 vp = &(*vp)->next_containing_mem;
2180 else
2181 v->next_containing_mem = NULL;
2183 *vp = &dummy_val;
2186 /* Invalidate DEST, which is being assigned to or clobbered. */
2188 void
2189 cselib_invalidate_rtx (rtx dest)
2191 while (GET_CODE (dest) == SUBREG
2192 || GET_CODE (dest) == ZERO_EXTRACT
2193 || GET_CODE (dest) == STRICT_LOW_PART)
2194 dest = XEXP (dest, 0);
2196 if (REG_P (dest))
2197 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2198 else if (MEM_P (dest))
2199 cselib_invalidate_mem (dest);
2202 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2204 static void
2205 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
2206 void *data ATTRIBUTE_UNUSED)
2208 cselib_invalidate_rtx (dest);
2211 /* Record the result of a SET instruction. DEST is being set; the source
2212 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2213 describes its address. */
2215 static void
2216 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2218 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
2220 if (src_elt == 0 || side_effects_p (dest))
2221 return;
2223 if (dreg >= 0)
2225 if (dreg < FIRST_PSEUDO_REGISTER)
2227 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
2229 if (n > max_value_regs)
2230 max_value_regs = n;
2233 if (REG_VALUES (dreg) == 0)
2235 used_regs[n_used_regs++] = dreg;
2236 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2238 else
2240 /* The register should have been invalidated. */
2241 gcc_assert (REG_VALUES (dreg)->elt == 0);
2242 REG_VALUES (dreg)->elt = src_elt;
2245 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2246 n_useless_values--;
2247 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
2249 else if (MEM_P (dest) && dest_addr_elt != 0
2250 && cselib_record_memory)
2252 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2253 n_useless_values--;
2254 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2258 /* There is no good way to determine how many elements there can be
2259 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2260 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2262 struct cselib_record_autoinc_data
2264 struct cselib_set *sets;
2265 int n_sets;
2268 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2269 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2271 static int
2272 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2273 rtx dest, rtx src, rtx srcoff, void *arg)
2275 struct cselib_record_autoinc_data *data;
2276 data = (struct cselib_record_autoinc_data *)arg;
2278 data->sets[data->n_sets].dest = dest;
2280 if (srcoff)
2281 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2282 else
2283 data->sets[data->n_sets].src = src;
2285 data->n_sets++;
2287 return -1;
2290 /* Record the effects of any sets and autoincs in INSN. */
2291 static void
2292 cselib_record_sets (rtx insn)
2294 int n_sets = 0;
2295 int i;
2296 struct cselib_set sets[MAX_SETS];
2297 rtx body = PATTERN (insn);
2298 rtx cond = 0;
2299 int n_sets_before_autoinc;
2300 struct cselib_record_autoinc_data data;
2302 body = PATTERN (insn);
2303 if (GET_CODE (body) == COND_EXEC)
2305 cond = COND_EXEC_TEST (body);
2306 body = COND_EXEC_CODE (body);
2309 /* Find all sets. */
2310 if (GET_CODE (body) == SET)
2312 sets[0].src = SET_SRC (body);
2313 sets[0].dest = SET_DEST (body);
2314 n_sets = 1;
2316 else if (GET_CODE (body) == PARALLEL)
2318 /* Look through the PARALLEL and record the values being
2319 set, if possible. Also handle any CLOBBERs. */
2320 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2322 rtx x = XVECEXP (body, 0, i);
2324 if (GET_CODE (x) == SET)
2326 sets[n_sets].src = SET_SRC (x);
2327 sets[n_sets].dest = SET_DEST (x);
2328 n_sets++;
2333 if (n_sets == 1
2334 && MEM_P (sets[0].src)
2335 && !cselib_record_memory
2336 && MEM_READONLY_P (sets[0].src))
2338 rtx note = find_reg_equal_equiv_note (insn);
2340 if (note && CONSTANT_P (XEXP (note, 0)))
2341 sets[0].src = XEXP (note, 0);
2344 data.sets = sets;
2345 data.n_sets = n_sets_before_autoinc = n_sets;
2346 for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data);
2347 n_sets = data.n_sets;
2349 /* Look up the values that are read. Do this before invalidating the
2350 locations that are written. */
2351 for (i = 0; i < n_sets; i++)
2353 rtx dest = sets[i].dest;
2355 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2356 the low part after invalidating any knowledge about larger modes. */
2357 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2358 sets[i].dest = dest = XEXP (dest, 0);
2360 /* We don't know how to record anything but REG or MEM. */
2361 if (REG_P (dest)
2362 || (MEM_P (dest) && cselib_record_memory))
2364 rtx src = sets[i].src;
2365 if (cond)
2366 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2367 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2368 if (MEM_P (dest))
2370 enum machine_mode address_mode
2371 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2373 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2374 address_mode, 1,
2375 GET_MODE (dest));
2377 else
2378 sets[i].dest_addr_elt = 0;
2382 if (cselib_record_sets_hook)
2383 cselib_record_sets_hook (insn, sets, n_sets);
2385 /* Invalidate all locations written by this insn. Note that the elts we
2386 looked up in the previous loop aren't affected, just some of their
2387 locations may go away. */
2388 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2390 for (i = n_sets_before_autoinc; i < n_sets; i++)
2391 cselib_invalidate_rtx (sets[i].dest);
2393 /* If this is an asm, look for duplicate sets. This can happen when the
2394 user uses the same value as an output multiple times. This is valid
2395 if the outputs are not actually used thereafter. Treat this case as
2396 if the value isn't actually set. We do this by smashing the destination
2397 to pc_rtx, so that we won't record the value later. */
2398 if (n_sets >= 2 && asm_noperands (body) >= 0)
2400 for (i = 0; i < n_sets; i++)
2402 rtx dest = sets[i].dest;
2403 if (REG_P (dest) || MEM_P (dest))
2405 int j;
2406 for (j = i + 1; j < n_sets; j++)
2407 if (rtx_equal_p (dest, sets[j].dest))
2409 sets[i].dest = pc_rtx;
2410 sets[j].dest = pc_rtx;
2416 /* Now enter the equivalences in our tables. */
2417 for (i = 0; i < n_sets; i++)
2419 rtx dest = sets[i].dest;
2420 if (REG_P (dest)
2421 || (MEM_P (dest) && cselib_record_memory))
2422 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2426 /* Record the effects of INSN. */
2428 void
2429 cselib_process_insn (rtx insn)
2431 int i;
2432 rtx x;
2434 cselib_current_insn = insn;
2436 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
2437 if (LABEL_P (insn)
2438 || (CALL_P (insn)
2439 && find_reg_note (insn, REG_SETJMP, NULL))
2440 || (NONJUMP_INSN_P (insn)
2441 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2442 && MEM_VOLATILE_P (PATTERN (insn))))
2444 cselib_reset_table (next_uid);
2445 cselib_current_insn = NULL_RTX;
2446 return;
2449 if (! INSN_P (insn))
2451 cselib_current_insn = NULL_RTX;
2452 return;
2455 /* If this is a call instruction, forget anything stored in a
2456 call clobbered register, or, if this is not a const call, in
2457 memory. */
2458 if (CALL_P (insn))
2460 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2461 if (call_used_regs[i]
2462 || (REG_VALUES (i) && REG_VALUES (i)->elt
2463 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2464 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2465 cselib_invalidate_regno (i, reg_raw_mode[i]);
2467 /* Since it is not clear how cselib is going to be used, be
2468 conservative here and treat looping pure or const functions
2469 as if they were regular functions. */
2470 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2471 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2472 cselib_invalidate_mem (callmem);
2475 cselib_record_sets (insn);
2477 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2478 after we have processed the insn. */
2479 if (CALL_P (insn))
2480 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2481 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2482 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2484 cselib_current_insn = NULL_RTX;
2486 if (n_useless_values > MAX_USELESS_VALUES
2487 /* remove_useless_values is linear in the hash table size. Avoid
2488 quadratic behavior for very large hashtables with very few
2489 useless elements. */
2490 && ((unsigned int)n_useless_values
2491 > (cselib_hash_table->n_elements
2492 - cselib_hash_table->n_deleted
2493 - n_debug_values) / 4))
2494 remove_useless_values ();
2497 /* Initialize cselib for one pass. The caller must also call
2498 init_alias_analysis. */
2500 void
2501 cselib_init (int record_what)
2503 elt_list_pool = create_alloc_pool ("elt_list",
2504 sizeof (struct elt_list), 10);
2505 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2506 sizeof (struct elt_loc_list), 10);
2507 cselib_val_pool = create_alloc_pool ("cselib_val_list",
2508 sizeof (cselib_val), 10);
2509 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2510 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2511 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2513 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2514 see canon_true_dependence. This is only created once. */
2515 if (! callmem)
2516 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2518 cselib_nregs = max_reg_num ();
2520 /* We preserve reg_values to allow expensive clearing of the whole thing.
2521 Reallocate it however if it happens to be too large. */
2522 if (!reg_values || reg_values_size < cselib_nregs
2523 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2525 free (reg_values);
2526 /* Some space for newly emit instructions so we don't end up
2527 reallocating in between passes. */
2528 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2529 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2531 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2532 n_used_regs = 0;
2533 cselib_hash_table = htab_create (31, get_value_hash,
2534 entry_and_rtx_equal_p, NULL);
2535 next_uid = 1;
2538 /* Called when the current user is done with cselib. */
2540 void
2541 cselib_finish (void)
2543 cselib_discard_hook = NULL;
2544 cselib_preserve_constants = false;
2545 cfa_base_preserved_val = NULL;
2546 cfa_base_preserved_regno = INVALID_REGNUM;
2547 free_alloc_pool (elt_list_pool);
2548 free_alloc_pool (elt_loc_list_pool);
2549 free_alloc_pool (cselib_val_pool);
2550 free_alloc_pool (value_pool);
2551 cselib_clear_table ();
2552 htab_delete (cselib_hash_table);
2553 free (used_regs);
2554 used_regs = 0;
2555 cselib_hash_table = 0;
2556 n_useless_values = 0;
2557 n_useless_debug_values = 0;
2558 n_debug_values = 0;
2559 next_uid = 0;
2562 /* Dump the cselib_val *X to FILE *info. */
2564 static int
2565 dump_cselib_val (void **x, void *info)
2567 cselib_val *v = (cselib_val *)*x;
2568 FILE *out = (FILE *)info;
2569 bool need_lf = true;
2571 print_inline_rtx (out, v->val_rtx, 0);
2573 if (v->locs)
2575 struct elt_loc_list *l = v->locs;
2576 if (need_lf)
2578 fputc ('\n', out);
2579 need_lf = false;
2581 fputs (" locs:", out);
2584 fprintf (out, "\n from insn %i ",
2585 INSN_UID (l->setting_insn));
2586 print_inline_rtx (out, l->loc, 4);
2588 while ((l = l->next));
2589 fputc ('\n', out);
2591 else
2593 fputs (" no locs", out);
2594 need_lf = true;
2597 if (v->addr_list)
2599 struct elt_list *e = v->addr_list;
2600 if (need_lf)
2602 fputc ('\n', out);
2603 need_lf = false;
2605 fputs (" addr list:", out);
2608 fputs ("\n ", out);
2609 print_inline_rtx (out, e->elt->val_rtx, 2);
2611 while ((e = e->next));
2612 fputc ('\n', out);
2614 else
2616 fputs (" no addrs", out);
2617 need_lf = true;
2620 if (v->next_containing_mem == &dummy_val)
2621 fputs (" last mem\n", out);
2622 else if (v->next_containing_mem)
2624 fputs (" next mem ", out);
2625 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2626 fputc ('\n', out);
2628 else if (need_lf)
2629 fputc ('\n', out);
2631 return 1;
2634 /* Dump to OUT everything in the CSELIB table. */
2636 void
2637 dump_cselib_table (FILE *out)
2639 fprintf (out, "cselib hash table:\n");
2640 htab_traverse (cselib_hash_table, dump_cselib_val, out);
2641 if (first_containing_mem != &dummy_val)
2643 fputs ("first mem ", out);
2644 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2645 fputc ('\n', out);
2647 fprintf (out, "next uid %i\n", next_uid);
2650 #include "gt-cselib.h"