* doc/install.texi (Downloading GCC): Clarify mention of
[official-gcc.git] / gcc / tree-ssa-propagate.c
blobf9ece62a9a877f32a05647eef90e25d640aa2142
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
96 5- Simulation terminates when all three work lists are drained.
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
103 It is also important to compute def-use information before calling
104 ssa_propagate.
106 References:
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
132 /* Array of control flow edges on the worklist. */
133 static VEC(basic_block,heap) *cfg_blocks;
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
139 static sbitmap bb_in_list;
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
164 /* Return true if the block worklist empty. */
166 static inline bool
167 cfg_blocks_empty_p (void)
169 return (cfg_blocks_num == 0);
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
176 static void
177 cfg_blocks_add (basic_block bb)
179 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
182 if (cfg_blocks_empty_p ())
184 cfg_blocks_tail = cfg_blocks_head = 0;
185 cfg_blocks_num = 1;
187 else
189 cfg_blocks_num++;
190 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
192 /* We have to grow the array now. Adjust to queue to occupy
193 the full space of the original array. We do not need to
194 initialize the newly allocated portion of the array
195 because we keep track of CFG_BLOCKS_HEAD and
196 CFG_BLOCKS_HEAD. */
197 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
198 cfg_blocks_head = 0;
199 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
201 else
202 cfg_blocks_tail = ((cfg_blocks_tail + 1)
203 % VEC_length (basic_block, cfg_blocks));
206 VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
207 SET_BIT (bb_in_list, bb->index);
211 /* Remove a block from the worklist. */
213 static basic_block
214 cfg_blocks_get (void)
216 basic_block bb;
218 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
220 gcc_assert (!cfg_blocks_empty_p ());
221 gcc_assert (bb);
223 cfg_blocks_head = ((cfg_blocks_head + 1)
224 % VEC_length (basic_block, cfg_blocks));
225 --cfg_blocks_num;
226 RESET_BIT (bb_in_list, bb->index);
228 return bb;
232 /* We have just defined a new value for VAR. If IS_VARYING is true,
233 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
234 them to INTERESTING_SSA_EDGES. */
236 static void
237 add_ssa_edge (tree var, bool is_varying)
239 imm_use_iterator iter;
240 use_operand_p use_p;
242 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
244 tree use_stmt = USE_STMT (use_p);
246 if (!DONT_SIMULATE_AGAIN (use_stmt)
247 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
249 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
250 if (is_varying)
251 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
252 else
253 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
259 /* Add edge E to the control flow worklist. */
261 static void
262 add_control_edge (edge e)
264 basic_block bb = e->dest;
265 if (bb == EXIT_BLOCK_PTR)
266 return;
268 /* If the edge had already been executed, skip it. */
269 if (e->flags & EDGE_EXECUTABLE)
270 return;
272 e->flags |= EDGE_EXECUTABLE;
274 /* If the block is already in the list, we're done. */
275 if (TEST_BIT (bb_in_list, bb->index))
276 return;
278 cfg_blocks_add (bb);
280 if (dump_file && (dump_flags & TDF_DETAILS))
281 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
282 e->src->index, e->dest->index);
286 /* Simulate the execution of STMT and update the work lists accordingly. */
288 static void
289 simulate_stmt (tree stmt)
291 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
292 edge taken_edge = NULL;
293 tree output_name = NULL_TREE;
295 /* Don't bother visiting statements that are already
296 considered varying by the propagator. */
297 if (DONT_SIMULATE_AGAIN (stmt))
298 return;
300 if (TREE_CODE (stmt) == PHI_NODE)
302 val = ssa_prop_visit_phi (stmt);
303 output_name = PHI_RESULT (stmt);
305 else
306 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
308 if (val == SSA_PROP_VARYING)
310 DONT_SIMULATE_AGAIN (stmt) = 1;
312 /* If the statement produced a new varying value, add the SSA
313 edges coming out of OUTPUT_NAME. */
314 if (output_name)
315 add_ssa_edge (output_name, true);
317 /* If STMT transfers control out of its basic block, add
318 all outgoing edges to the work list. */
319 if (stmt_ends_bb_p (stmt))
321 edge e;
322 edge_iterator ei;
323 basic_block bb = bb_for_stmt (stmt);
324 FOR_EACH_EDGE (e, ei, bb->succs)
325 add_control_edge (e);
328 else if (val == SSA_PROP_INTERESTING)
330 /* If the statement produced new value, add the SSA edges coming
331 out of OUTPUT_NAME. */
332 if (output_name)
333 add_ssa_edge (output_name, false);
335 /* If we know which edge is going to be taken out of this block,
336 add it to the CFG work list. */
337 if (taken_edge)
338 add_control_edge (taken_edge);
342 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
343 drain. This pops statements off the given WORKLIST and processes
344 them until there are no more statements on WORKLIST.
345 We take a pointer to WORKLIST because it may be reallocated when an
346 SSA edge is added to it in simulate_stmt. */
348 static void
349 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
351 /* Drain the entire worklist. */
352 while (VEC_length (tree, *worklist) > 0)
354 basic_block bb;
356 /* Pull the statement to simulate off the worklist. */
357 tree stmt = VEC_pop (tree, *worklist);
359 /* If this statement was already visited by simulate_block, then
360 we don't need to visit it again here. */
361 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
362 continue;
364 /* STMT is no longer in a worklist. */
365 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
367 if (dump_file && (dump_flags & TDF_DETAILS))
369 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
370 print_generic_stmt (dump_file, stmt, dump_flags);
373 bb = bb_for_stmt (stmt);
375 /* PHI nodes are always visited, regardless of whether or not
376 the destination block is executable. Otherwise, visit the
377 statement only if its block is marked executable. */
378 if (TREE_CODE (stmt) == PHI_NODE
379 || TEST_BIT (executable_blocks, bb->index))
380 simulate_stmt (stmt);
385 /* Simulate the execution of BLOCK. Evaluate the statement associated
386 with each variable reference inside the block. */
388 static void
389 simulate_block (basic_block block)
391 tree phi;
393 /* There is nothing to do for the exit block. */
394 if (block == EXIT_BLOCK_PTR)
395 return;
397 if (dump_file && (dump_flags & TDF_DETAILS))
398 fprintf (dump_file, "\nSimulating block %d\n", block->index);
400 /* Always simulate PHI nodes, even if we have simulated this block
401 before. */
402 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
403 simulate_stmt (phi);
405 /* If this is the first time we've simulated this block, then we
406 must simulate each of its statements. */
407 if (!TEST_BIT (executable_blocks, block->index))
409 block_stmt_iterator j;
410 unsigned int normal_edge_count;
411 edge e, normal_edge;
412 edge_iterator ei;
414 /* Note that we have simulated this block. */
415 SET_BIT (executable_blocks, block->index);
417 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
419 tree stmt = bsi_stmt (j);
421 /* If this statement is already in the worklist then
422 "cancel" it. The reevaluation implied by the worklist
423 entry will produce the same value we generate here and
424 thus reevaluating it again from the worklist is
425 pointless. */
426 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
427 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
429 simulate_stmt (stmt);
432 /* We can not predict when abnormal edges will be executed, so
433 once a block is considered executable, we consider any
434 outgoing abnormal edges as executable.
436 At the same time, if this block has only one successor that is
437 reached by non-abnormal edges, then add that successor to the
438 worklist. */
439 normal_edge_count = 0;
440 normal_edge = NULL;
441 FOR_EACH_EDGE (e, ei, block->succs)
443 if (e->flags & EDGE_ABNORMAL)
444 add_control_edge (e);
445 else
447 normal_edge_count++;
448 normal_edge = e;
452 if (normal_edge_count == 1)
453 add_control_edge (normal_edge);
458 /* Initialize local data structures and work lists. */
460 static void
461 ssa_prop_init (void)
463 edge e;
464 edge_iterator ei;
465 basic_block bb;
466 size_t i;
468 /* Worklists of SSA edges. */
469 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
470 varying_ssa_edges = VEC_alloc (tree, gc, 20);
472 executable_blocks = sbitmap_alloc (last_basic_block);
473 sbitmap_zero (executable_blocks);
475 bb_in_list = sbitmap_alloc (last_basic_block);
476 sbitmap_zero (bb_in_list);
478 if (dump_file && (dump_flags & TDF_DETAILS))
479 dump_immediate_uses (dump_file);
481 cfg_blocks = VEC_alloc (basic_block, heap, 20);
482 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
484 /* Initialize the values for every SSA_NAME. */
485 for (i = 1; i < num_ssa_names; i++)
486 if (ssa_name (i))
487 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
489 /* Initially assume that every edge in the CFG is not executable.
490 (including the edges coming out of ENTRY_BLOCK_PTR). */
491 FOR_ALL_BB (bb)
493 block_stmt_iterator si;
495 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
496 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 e->flags &= ~EDGE_EXECUTABLE;
502 /* Seed the algorithm by adding the successors of the entry block to the
503 edge worklist. */
504 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
505 add_control_edge (e);
509 /* Free allocated storage. */
511 static void
512 ssa_prop_fini (void)
514 VEC_free (tree, gc, interesting_ssa_edges);
515 VEC_free (tree, gc, varying_ssa_edges);
516 VEC_free (basic_block, heap, cfg_blocks);
517 cfg_blocks = NULL;
518 sbitmap_free (bb_in_list);
519 sbitmap_free (executable_blocks);
523 /* Get the main expression from statement STMT. */
525 tree
526 get_rhs (tree stmt)
528 enum tree_code code = TREE_CODE (stmt);
530 switch (code)
532 case RETURN_EXPR:
533 stmt = TREE_OPERAND (stmt, 0);
534 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
535 return stmt;
536 /* FALLTHRU */
538 case MODIFY_EXPR:
539 stmt = TREE_OPERAND (stmt, 1);
540 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
541 return TREE_OPERAND (stmt, 0);
542 else
543 return stmt;
545 case COND_EXPR:
546 return COND_EXPR_COND (stmt);
547 case SWITCH_EXPR:
548 return SWITCH_COND (stmt);
549 case GOTO_EXPR:
550 return GOTO_DESTINATION (stmt);
551 case LABEL_EXPR:
552 return LABEL_EXPR_LABEL (stmt);
554 default:
555 return stmt;
560 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
561 GIMPLE expression no changes are done and the function returns
562 false. */
564 bool
565 set_rhs (tree *stmt_p, tree expr)
567 tree stmt = *stmt_p, op;
568 enum tree_code code = TREE_CODE (expr);
569 stmt_ann_t ann;
570 tree var;
571 ssa_op_iter iter;
573 /* Verify the constant folded result is valid gimple. */
574 if (TREE_CODE_CLASS (code) == tcc_binary)
576 if (!is_gimple_val (TREE_OPERAND (expr, 0))
577 || !is_gimple_val (TREE_OPERAND (expr, 1)))
578 return false;
580 else if (TREE_CODE_CLASS (code) == tcc_unary)
582 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
583 return false;
585 else if (code == ADDR_EXPR)
587 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
588 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
589 return false;
591 else if (code == COMPOUND_EXPR
592 || code == MODIFY_EXPR)
593 return false;
595 if (EXPR_HAS_LOCATION (stmt)
596 && EXPR_P (expr)
597 && ! EXPR_HAS_LOCATION (expr)
598 && TREE_SIDE_EFFECTS (expr)
599 && TREE_CODE (expr) != LABEL_EXPR)
600 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
602 switch (TREE_CODE (stmt))
604 case RETURN_EXPR:
605 op = TREE_OPERAND (stmt, 0);
606 if (TREE_CODE (op) != MODIFY_EXPR)
608 TREE_OPERAND (stmt, 0) = expr;
609 break;
611 stmt = op;
612 /* FALLTHRU */
614 case MODIFY_EXPR:
615 op = TREE_OPERAND (stmt, 1);
616 if (TREE_CODE (op) == WITH_SIZE_EXPR)
617 stmt = op;
618 TREE_OPERAND (stmt, 1) = expr;
619 break;
621 case COND_EXPR:
622 if (!is_gimple_condexpr (expr))
623 return false;
624 COND_EXPR_COND (stmt) = expr;
625 break;
626 case SWITCH_EXPR:
627 SWITCH_COND (stmt) = expr;
628 break;
629 case GOTO_EXPR:
630 GOTO_DESTINATION (stmt) = expr;
631 break;
632 case LABEL_EXPR:
633 LABEL_EXPR_LABEL (stmt) = expr;
634 break;
636 default:
637 /* Replace the whole statement with EXPR. If EXPR has no side
638 effects, then replace *STMT_P with an empty statement. */
639 ann = stmt_ann (stmt);
640 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
641 (*stmt_p)->common.ann = (tree_ann_t) ann;
643 if (in_ssa_p
644 && TREE_SIDE_EFFECTS (expr))
646 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
647 replacement. */
648 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
650 if (TREE_CODE (var) == SSA_NAME)
651 SSA_NAME_DEF_STMT (var) = *stmt_p;
654 break;
657 return true;
661 /* Entry point to the propagation engine.
663 VISIT_STMT is called for every statement visited.
664 VISIT_PHI is called for every PHI node visited. */
666 void
667 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
668 ssa_prop_visit_phi_fn visit_phi)
670 ssa_prop_visit_stmt = visit_stmt;
671 ssa_prop_visit_phi = visit_phi;
673 ssa_prop_init ();
675 /* Iterate until the worklists are empty. */
676 while (!cfg_blocks_empty_p ()
677 || VEC_length (tree, interesting_ssa_edges) > 0
678 || VEC_length (tree, varying_ssa_edges) > 0)
680 if (!cfg_blocks_empty_p ())
682 /* Pull the next block to simulate off the worklist. */
683 basic_block dest_block = cfg_blocks_get ();
684 simulate_block (dest_block);
687 /* In order to move things to varying as quickly as
688 possible,process the VARYING_SSA_EDGES worklist first. */
689 process_ssa_edge_worklist (&varying_ssa_edges);
691 /* Now process the INTERESTING_SSA_EDGES worklist. */
692 process_ssa_edge_worklist (&interesting_ssa_edges);
695 ssa_prop_fini ();
699 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
701 tree
702 first_vdef (tree stmt)
704 ssa_op_iter iter;
705 tree op;
707 /* Simply return the first operand we arrive at. */
708 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
709 return (op);
711 gcc_unreachable ();
715 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
716 is a non-volatile pointer dereference, a structure reference or a
717 reference to a single _DECL. Ignore volatile memory references
718 because they are not interesting for the optimizers. */
720 bool
721 stmt_makes_single_load (tree stmt)
723 tree rhs;
725 if (TREE_CODE (stmt) != MODIFY_EXPR)
726 return false;
728 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
729 return false;
731 rhs = TREE_OPERAND (stmt, 1);
732 STRIP_NOPS (rhs);
734 return (!TREE_THIS_VOLATILE (rhs)
735 && (DECL_P (rhs)
736 || REFERENCE_CLASS_P (rhs)));
740 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
741 is a non-volatile pointer dereference, a structure reference or a
742 reference to a single _DECL. Ignore volatile memory references
743 because they are not interesting for the optimizers. */
745 bool
746 stmt_makes_single_store (tree stmt)
748 tree lhs;
750 if (TREE_CODE (stmt) != MODIFY_EXPR)
751 return false;
753 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
754 return false;
756 lhs = TREE_OPERAND (stmt, 0);
757 STRIP_NOPS (lhs);
759 return (!TREE_THIS_VOLATILE (lhs)
760 && (DECL_P (lhs)
761 || REFERENCE_CLASS_P (lhs)));
765 /* If STMT makes a single memory load and all the virtual use operands
766 have the same value in array VALUES, return it. Otherwise, return
767 NULL. */
769 prop_value_t *
770 get_value_loaded_by (tree stmt, prop_value_t *values)
772 ssa_op_iter i;
773 tree vuse;
774 prop_value_t *prev_val = NULL;
775 prop_value_t *val = NULL;
777 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
779 val = &values[SSA_NAME_VERSION (vuse)];
780 if (prev_val && prev_val->value != val->value)
781 return NULL;
782 prev_val = val;
785 return val;
789 /* Propagation statistics. */
790 struct prop_stats_d
792 long num_const_prop;
793 long num_copy_prop;
794 long num_pred_folded;
797 static struct prop_stats_d prop_stats;
799 /* Replace USE references in statement STMT with the values stored in
800 PROP_VALUE. Return true if at least one reference was replaced. If
801 REPLACED_ADDRESSES_P is given, it will be set to true if an address
802 constant was replaced. */
804 bool
805 replace_uses_in (tree stmt, bool *replaced_addresses_p,
806 prop_value_t *prop_value)
808 bool replaced = false;
809 use_operand_p use;
810 ssa_op_iter iter;
812 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
814 tree tuse = USE_FROM_PTR (use);
815 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
817 if (val == tuse || val == NULL_TREE)
818 continue;
820 if (TREE_CODE (stmt) == ASM_EXPR
821 && !may_propagate_copy_into_asm (tuse))
822 continue;
824 if (!may_propagate_copy (tuse, val))
825 continue;
827 if (TREE_CODE (val) != SSA_NAME)
828 prop_stats.num_const_prop++;
829 else
830 prop_stats.num_copy_prop++;
832 propagate_value (use, val);
834 replaced = true;
835 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
836 *replaced_addresses_p = true;
839 return replaced;
843 /* Replace the VUSE references in statement STMT with the values
844 stored in PROP_VALUE. Return true if a reference was replaced. If
845 REPLACED_ADDRESSES_P is given, it will be set to true if an address
846 constant was replaced.
848 Replacing VUSE operands is slightly more complex than replacing
849 regular USEs. We are only interested in two types of replacements
850 here:
852 1- If the value to be replaced is a constant or an SSA name for a
853 GIMPLE register, then we are making a copy/constant propagation
854 from a memory store. For instance,
856 # a_3 = V_MAY_DEF <a_2>
857 a.b = x_1;
859 # VUSE <a_3>
860 y_4 = a.b;
862 This replacement is only possible iff STMT is an assignment
863 whose RHS is identical to the LHS of the statement that created
864 the VUSE(s) that we are replacing. Otherwise, we may do the
865 wrong replacement:
867 # a_3 = V_MAY_DEF <a_2>
868 # b_5 = V_MAY_DEF <b_4>
869 *p = 10;
871 # VUSE <b_5>
872 x_8 = b;
874 Even though 'b_5' acquires the value '10' during propagation,
875 there is no way for the propagator to tell whether the
876 replacement is correct in every reached use, because values are
877 computed at definition sites. Therefore, when doing final
878 substitution of propagated values, we have to check each use
879 site. Since the RHS of STMT ('b') is different from the LHS of
880 the originating statement ('*p'), we cannot replace 'b' with
881 '10'.
883 Similarly, when merging values from PHI node arguments,
884 propagators need to take care not to merge the same values
885 stored in different locations:
887 if (...)
888 # a_3 = V_MAY_DEF <a_2>
889 a.b = 3;
890 else
891 # a_4 = V_MAY_DEF <a_2>
892 a.c = 3;
893 # a_5 = PHI <a_3, a_4>
895 It would be wrong to propagate '3' into 'a_5' because that
896 operation merges two stores to different memory locations.
899 2- If the value to be replaced is an SSA name for a virtual
900 register, then we simply replace each VUSE operand with its
901 value from PROP_VALUE. This is the same replacement done by
902 replace_uses_in. */
904 static bool
905 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
906 prop_value_t *prop_value)
908 bool replaced = false;
909 ssa_op_iter iter;
910 use_operand_p vuse;
912 if (stmt_makes_single_load (stmt))
914 /* If STMT is an assignment whose RHS is a single memory load,
915 see if we are trying to propagate a constant or a GIMPLE
916 register (case #1 above). */
917 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
918 tree rhs = TREE_OPERAND (stmt, 1);
920 if (val
921 && val->value
922 && (is_gimple_reg (val->value)
923 || is_gimple_min_invariant (val->value))
924 && simple_cst_equal (rhs, val->mem_ref) == 1)
927 /* If we are replacing a constant address, inform our
928 caller. */
929 if (TREE_CODE (val->value) != SSA_NAME
930 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
931 && replaced_addresses_p)
932 *replaced_addresses_p = true;
934 /* We can only perform the substitution if the load is done
935 from the same memory location as the original store.
936 Since we already know that there are no intervening
937 stores between DEF_STMT and STMT, we only need to check
938 that the RHS of STMT is the same as the memory reference
939 propagated together with the value. */
940 TREE_OPERAND (stmt, 1) = val->value;
942 if (TREE_CODE (val->value) != SSA_NAME)
943 prop_stats.num_const_prop++;
944 else
945 prop_stats.num_copy_prop++;
947 /* Since we have replaced the whole RHS of STMT, there
948 is no point in checking the other VUSEs, as they will
949 all have the same value. */
950 return true;
954 /* Otherwise, the values for every VUSE operand must be other
955 SSA_NAMEs that can be propagated into STMT. */
956 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
958 tree var = USE_FROM_PTR (vuse);
959 tree val = prop_value[SSA_NAME_VERSION (var)].value;
961 if (val == NULL_TREE || var == val)
962 continue;
964 /* Constants and copies propagated between real and virtual
965 operands are only possible in the cases handled above. They
966 should be ignored in any other context. */
967 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
968 continue;
970 propagate_value (vuse, val);
971 prop_stats.num_copy_prop++;
972 replaced = true;
975 return replaced;
979 /* Replace propagated values into all the arguments for PHI using the
980 values from PROP_VALUE. */
982 static void
983 replace_phi_args_in (tree phi, prop_value_t *prop_value)
985 int i;
986 bool replaced = false;
987 tree prev_phi = NULL;
989 if (dump_file && (dump_flags & TDF_DETAILS))
990 prev_phi = unshare_expr (phi);
992 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
994 tree arg = PHI_ARG_DEF (phi, i);
996 if (TREE_CODE (arg) == SSA_NAME)
998 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1000 if (val && val != arg && may_propagate_copy (arg, val))
1002 if (TREE_CODE (val) != SSA_NAME)
1003 prop_stats.num_const_prop++;
1004 else
1005 prop_stats.num_copy_prop++;
1007 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1008 replaced = true;
1010 /* If we propagated a copy and this argument flows
1011 through an abnormal edge, update the replacement
1012 accordingly. */
1013 if (TREE_CODE (val) == SSA_NAME
1014 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1015 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1020 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1022 fprintf (dump_file, "Folded PHI node: ");
1023 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1024 fprintf (dump_file, " into: ");
1025 print_generic_stmt (dump_file, phi, TDF_SLIM);
1026 fprintf (dump_file, "\n");
1031 /* If STMT has a predicate whose value can be computed using the value
1032 range information computed by VRP, compute its value and return true.
1033 Otherwise, return false. */
1035 static bool
1036 fold_predicate_in (tree stmt)
1038 tree *pred_p = NULL;
1039 bool modify_expr_p = false;
1040 tree val;
1042 if (TREE_CODE (stmt) == MODIFY_EXPR
1043 && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1045 modify_expr_p = true;
1046 pred_p = &TREE_OPERAND (stmt, 1);
1048 else if (TREE_CODE (stmt) == COND_EXPR)
1049 pred_p = &COND_EXPR_COND (stmt);
1050 else
1051 return false;
1053 val = vrp_evaluate_conditional (*pred_p, true);
1054 if (val)
1056 if (modify_expr_p)
1057 val = fold_convert (TREE_TYPE (*pred_p), val);
1059 if (dump_file)
1061 fprintf (dump_file, "Folding predicate ");
1062 print_generic_expr (dump_file, *pred_p, 0);
1063 fprintf (dump_file, " to ");
1064 print_generic_expr (dump_file, val, 0);
1065 fprintf (dump_file, "\n");
1068 prop_stats.num_pred_folded++;
1069 *pred_p = val;
1070 return true;
1073 return false;
1077 /* Perform final substitution and folding of propagated values.
1079 PROP_VALUE[I] contains the single value that should be substituted
1080 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1081 substituted.
1083 If USE_RANGES_P is true, statements that contain predicate
1084 expressions are evaluated with a call to vrp_evaluate_conditional.
1085 This will only give meaningful results when called from tree-vrp.c
1086 (the information used by vrp_evaluate_conditional is built by the
1087 VRP pass). */
1089 void
1090 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1092 basic_block bb;
1094 if (prop_value == NULL && !use_ranges_p)
1095 return;
1097 if (dump_file && (dump_flags & TDF_DETAILS))
1098 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1100 memset (&prop_stats, 0, sizeof (prop_stats));
1102 /* Substitute values in every statement of every basic block. */
1103 FOR_EACH_BB (bb)
1105 block_stmt_iterator i;
1106 tree phi;
1108 /* Propagate known values into PHI nodes. */
1109 if (prop_value)
1110 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1111 replace_phi_args_in (phi, prop_value);
1113 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1115 bool replaced_address, did_replace;
1116 tree prev_stmt = NULL;
1117 tree stmt = bsi_stmt (i);
1119 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1120 range information for names and they are discarded
1121 afterwards. */
1122 if (TREE_CODE (stmt) == MODIFY_EXPR
1123 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1124 continue;
1126 /* Replace the statement with its folded version and mark it
1127 folded. */
1128 did_replace = false;
1129 replaced_address = false;
1130 if (dump_file && (dump_flags & TDF_DETAILS))
1131 prev_stmt = unshare_expr (stmt);
1133 /* If we have range information, see if we can fold
1134 predicate expressions. */
1135 if (use_ranges_p)
1136 did_replace = fold_predicate_in (stmt);
1138 if (prop_value)
1140 /* Only replace real uses if we couldn't fold the
1141 statement using value range information (value range
1142 information is not collected on virtuals, so we only
1143 need to check this for real uses). */
1144 if (!did_replace)
1145 did_replace |= replace_uses_in (stmt, &replaced_address,
1146 prop_value);
1148 did_replace |= replace_vuses_in (stmt, &replaced_address,
1149 prop_value);
1152 /* If we made a replacement, fold and cleanup the statement. */
1153 if (did_replace)
1155 tree old_stmt = stmt;
1156 tree rhs;
1158 fold_stmt (bsi_stmt_ptr (i));
1159 stmt = bsi_stmt (i);
1161 /* If we folded a builtin function, we'll likely
1162 need to rename VDEFs. */
1163 mark_new_vars_to_rename (stmt);
1165 /* If we cleaned up EH information from the statement,
1166 remove EH edges. */
1167 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1168 tree_purge_dead_eh_edges (bb);
1170 rhs = get_rhs (stmt);
1171 if (TREE_CODE (rhs) == ADDR_EXPR)
1172 recompute_tree_invariant_for_addr_expr (rhs);
1174 if (dump_file && (dump_flags & TDF_DETAILS))
1176 fprintf (dump_file, "Folded statement: ");
1177 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1178 fprintf (dump_file, " into: ");
1179 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1180 fprintf (dump_file, "\n");
1184 /* Some statements may be simplified using ranges. For
1185 example, division may be replaced by shifts, modulo
1186 replaced with bitwise and, etc. Do this after
1187 substituting constants, folding, etc so that we're
1188 presented with a fully propagated, canonicalized
1189 statement. */
1190 if (use_ranges_p)
1191 simplify_stmt_using_ranges (stmt);
1196 if (dump_file && (dump_flags & TDF_STATS))
1198 fprintf (dump_file, "Constants propagated: %6ld\n",
1199 prop_stats.num_const_prop);
1200 fprintf (dump_file, "Copies propagated: %6ld\n",
1201 prop_stats.num_copy_prop);
1202 fprintf (dump_file, "Predicates folded: %6ld\n",
1203 prop_stats.num_pred_folded);
1207 #include "gt-tree-ssa-propagate.h"