2011-08-31 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / cfgloop.c
blob3f14551f1ab7c574a58e4e8a70fd11657c3a01f1
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "function.h"
29 #include "basic-block.h"
30 #include "cfgloop.h"
31 #include "diagnostic-core.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "tree-flow.h"
35 #include "pointer-set.h"
36 #include "output.h"
37 #include "ggc.h"
39 static void flow_loops_cfg_dump (FILE *);
41 /* Dump loop related CFG information. */
43 static void
44 flow_loops_cfg_dump (FILE *file)
46 basic_block bb;
48 if (!file)
49 return;
51 FOR_EACH_BB (bb)
53 edge succ;
54 edge_iterator ei;
56 fprintf (file, ";; %d succs { ", bb->index);
57 FOR_EACH_EDGE (succ, ei, bb->succs)
58 fprintf (file, "%d ", succ->dest->index);
59 fprintf (file, "}\n");
63 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
65 bool
66 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
68 unsigned odepth = loop_depth (outer);
70 return (loop_depth (loop) > odepth
71 && VEC_index (loop_p, loop->superloops, odepth) == outer);
74 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
75 loops within LOOP. */
77 struct loop *
78 superloop_at_depth (struct loop *loop, unsigned depth)
80 unsigned ldepth = loop_depth (loop);
82 gcc_assert (depth <= ldepth);
84 if (depth == ldepth)
85 return loop;
87 return VEC_index (loop_p, loop->superloops, depth);
90 /* Returns the list of the latch edges of LOOP. */
92 static VEC (edge, heap) *
93 get_loop_latch_edges (const struct loop *loop)
95 edge_iterator ei;
96 edge e;
97 VEC (edge, heap) *ret = NULL;
99 FOR_EACH_EDGE (e, ei, loop->header->preds)
101 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
102 VEC_safe_push (edge, heap, ret, e);
105 return ret;
108 /* Dump the loop information specified by LOOP to the stream FILE
109 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
111 void
112 flow_loop_dump (const struct loop *loop, FILE *file,
113 void (*loop_dump_aux) (const struct loop *, FILE *, int),
114 int verbose)
116 basic_block *bbs;
117 unsigned i;
118 VEC (edge, heap) *latches;
119 edge e;
121 if (! loop || ! loop->header)
122 return;
124 fprintf (file, ";;\n;; Loop %d\n", loop->num);
126 fprintf (file, ";; header %d, ", loop->header->index);
127 if (loop->latch)
128 fprintf (file, "latch %d\n", loop->latch->index);
129 else
131 fprintf (file, "multiple latches:");
132 latches = get_loop_latch_edges (loop);
133 FOR_EACH_VEC_ELT (edge, latches, i, e)
134 fprintf (file, " %d", e->src->index);
135 VEC_free (edge, heap, latches);
136 fprintf (file, "\n");
139 fprintf (file, ";; depth %d, outer %ld\n",
140 loop_depth (loop), (long) (loop_outer (loop)
141 ? loop_outer (loop)->num : -1));
143 fprintf (file, ";; nodes:");
144 bbs = get_loop_body (loop);
145 for (i = 0; i < loop->num_nodes; i++)
146 fprintf (file, " %d", bbs[i]->index);
147 free (bbs);
148 fprintf (file, "\n");
150 if (loop_dump_aux)
151 loop_dump_aux (loop, file, verbose);
154 /* Dump the loop information about loops to the stream FILE,
155 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
157 void
158 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
160 loop_iterator li;
161 struct loop *loop;
163 if (!current_loops || ! file)
164 return;
166 fprintf (file, ";; %d loops found\n", number_of_loops ());
168 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
170 flow_loop_dump (loop, file, loop_dump_aux, verbose);
173 if (verbose)
174 flow_loops_cfg_dump (file);
177 /* Free data allocated for LOOP. */
179 void
180 flow_loop_free (struct loop *loop)
182 struct loop_exit *exit, *next;
184 VEC_free (loop_p, gc, loop->superloops);
186 /* Break the list of the loop exit records. They will be freed when the
187 corresponding edge is rescanned or removed, and this avoids
188 accessing the (already released) head of the list stored in the
189 loop structure. */
190 for (exit = loop->exits->next; exit != loop->exits; exit = next)
192 next = exit->next;
193 exit->next = exit;
194 exit->prev = exit;
197 ggc_free (loop->exits);
198 ggc_free (loop);
201 /* Free all the memory allocated for LOOPS. */
203 void
204 flow_loops_free (struct loops *loops)
206 if (loops->larray)
208 unsigned i;
209 loop_p loop;
211 /* Free the loop descriptors. */
212 FOR_EACH_VEC_ELT (loop_p, loops->larray, i, loop)
214 if (!loop)
215 continue;
217 flow_loop_free (loop);
220 VEC_free (loop_p, gc, loops->larray);
224 /* Find the nodes contained within the LOOP with header HEADER.
225 Return the number of nodes within the loop. */
228 flow_loop_nodes_find (basic_block header, struct loop *loop)
230 VEC (basic_block, heap) *stack = NULL;
231 int num_nodes = 1;
232 edge latch;
233 edge_iterator latch_ei;
234 unsigned depth = loop_depth (loop);
236 header->loop_father = loop;
237 header->loop_depth = depth;
239 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
241 if (latch->src->loop_father == loop
242 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
243 continue;
245 num_nodes++;
246 VEC_safe_push (basic_block, heap, stack, latch->src);
247 latch->src->loop_father = loop;
248 latch->src->loop_depth = depth;
250 while (!VEC_empty (basic_block, stack))
252 basic_block node;
253 edge e;
254 edge_iterator ei;
256 node = VEC_pop (basic_block, stack);
258 FOR_EACH_EDGE (e, ei, node->preds)
260 basic_block ancestor = e->src;
262 if (ancestor->loop_father != loop)
264 ancestor->loop_father = loop;
265 ancestor->loop_depth = depth;
266 num_nodes++;
267 VEC_safe_push (basic_block, heap, stack, ancestor);
272 VEC_free (basic_block, heap, stack);
274 return num_nodes;
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
287 VEC_truncate (loop_p, loop->superloops, 0);
288 VEC_reserve (loop_p, gc, loop->superloops, depth);
289 FOR_EACH_VEC_ELT (loop_p, father->superloops, i, ploop)
290 VEC_quick_push (loop_p, loop->superloops, ploop);
291 VEC_quick_push (loop_p, loop->superloops, father);
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
304 loop->next = father->inner;
305 father->inner = loop;
307 establish_preds (loop, father);
310 /* Remove LOOP from the loop hierarchy tree. */
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
315 struct loop *prev, *father;
317 father = loop_outer (loop);
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
329 VEC_truncate (loop_p, loop->superloops, 0);
332 /* Allocates and returns new loop structure. */
334 struct loop *
335 alloc_loop (void)
337 struct loop *loop = ggc_alloc_cleared_loop ();
339 loop->exits = ggc_alloc_cleared_loop_exit ();
340 loop->exits->next = loop->exits->prev = loop->exits;
341 loop->can_be_parallel = false;
343 return loop;
346 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
347 (including the root of the loop tree). */
349 static void
350 init_loops_structure (struct loops *loops, unsigned num_loops)
352 struct loop *root;
354 memset (loops, 0, sizeof *loops);
355 loops->larray = VEC_alloc (loop_p, gc, num_loops);
357 /* Dummy loop containing whole function. */
358 root = alloc_loop ();
359 root->num_nodes = n_basic_blocks;
360 root->latch = EXIT_BLOCK_PTR;
361 root->header = ENTRY_BLOCK_PTR;
362 ENTRY_BLOCK_PTR->loop_father = root;
363 EXIT_BLOCK_PTR->loop_father = root;
365 VEC_quick_push (loop_p, loops->larray, root);
366 loops->tree_root = root;
369 /* Find all the natural loops in the function and save in LOOPS structure and
370 recalculate loop_depth information in basic block structures.
371 Return the number of natural loops found. */
374 flow_loops_find (struct loops *loops)
376 int b;
377 int num_loops;
378 edge e;
379 sbitmap headers;
380 int *dfs_order;
381 int *rc_order;
382 basic_block header;
383 basic_block bb;
385 /* Ensure that the dominators are computed. */
386 calculate_dominance_info (CDI_DOMINATORS);
388 /* Taking care of this degenerate case makes the rest of
389 this code simpler. */
390 if (n_basic_blocks == NUM_FIXED_BLOCKS)
392 init_loops_structure (loops, 1);
393 return 1;
396 dfs_order = NULL;
397 rc_order = NULL;
399 /* Count the number of loop headers. This should be the
400 same as the number of natural loops. */
401 headers = sbitmap_alloc (last_basic_block);
402 sbitmap_zero (headers);
404 num_loops = 0;
405 FOR_EACH_BB (header)
407 edge_iterator ei;
409 header->loop_depth = 0;
411 /* If we have an abnormal predecessor, do not consider the
412 loop (not worth the problems). */
413 if (bb_has_abnormal_pred (header))
414 continue;
416 FOR_EACH_EDGE (e, ei, header->preds)
418 basic_block latch = e->src;
420 gcc_assert (!(e->flags & EDGE_ABNORMAL));
422 /* Look for back edges where a predecessor is dominated
423 by this block. A natural loop has a single entry
424 node (header) that dominates all the nodes in the
425 loop. It also has single back edge to the header
426 from a latch node. */
427 if (latch != ENTRY_BLOCK_PTR
428 && dominated_by_p (CDI_DOMINATORS, latch, header))
430 /* Shared headers should be eliminated by now. */
431 SET_BIT (headers, header->index);
432 num_loops++;
437 /* Allocate loop structures. */
438 init_loops_structure (loops, num_loops + 1);
440 /* Find and record information about all the natural loops
441 in the CFG. */
442 FOR_EACH_BB (bb)
443 bb->loop_father = loops->tree_root;
445 if (num_loops)
447 /* Compute depth first search order of the CFG so that outer
448 natural loops will be found before inner natural loops. */
449 dfs_order = XNEWVEC (int, n_basic_blocks);
450 rc_order = XNEWVEC (int, n_basic_blocks);
451 pre_and_rev_post_order_compute (dfs_order, rc_order, false);
453 num_loops = 1;
455 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
457 struct loop *loop;
458 edge_iterator ei;
460 /* Search the nodes of the CFG in reverse completion order
461 so that we can find outer loops first. */
462 if (!TEST_BIT (headers, rc_order[b]))
463 continue;
465 header = BASIC_BLOCK (rc_order[b]);
467 loop = alloc_loop ();
468 VEC_quick_push (loop_p, loops->larray, loop);
470 loop->header = header;
471 loop->num = num_loops;
472 num_loops++;
474 flow_loop_tree_node_add (header->loop_father, loop);
475 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
477 /* Look for the latch for this header block, if it has just a
478 single one. */
479 FOR_EACH_EDGE (e, ei, header->preds)
481 basic_block latch = e->src;
483 if (flow_bb_inside_loop_p (loop, latch))
485 if (loop->latch != NULL)
487 /* More than one latch edge. */
488 loop->latch = NULL;
489 break;
491 loop->latch = latch;
496 free (dfs_order);
497 free (rc_order);
500 sbitmap_free (headers);
502 loops->exits = NULL;
503 return VEC_length (loop_p, loops->larray);
506 /* Ratio of frequencies of edges so that one of more latch edges is
507 considered to belong to inner loop with same header. */
508 #define HEAVY_EDGE_RATIO 8
510 /* Minimum number of samples for that we apply
511 find_subloop_latch_edge_by_profile heuristics. */
512 #define HEAVY_EDGE_MIN_SAMPLES 10
514 /* If the profile info is available, finds an edge in LATCHES that much more
515 frequent than the remaining edges. Returns such an edge, or NULL if we do
516 not find one.
518 We do not use guessed profile here, only the measured one. The guessed
519 profile is usually too flat and unreliable for this (and it is mostly based
520 on the loop structure of the program, so it does not make much sense to
521 derive the loop structure from it). */
523 static edge
524 find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
526 unsigned i;
527 edge e, me = NULL;
528 gcov_type mcount = 0, tcount = 0;
530 FOR_EACH_VEC_ELT (edge, latches, i, e)
532 if (e->count > mcount)
534 me = e;
535 mcount = e->count;
537 tcount += e->count;
540 if (tcount < HEAVY_EDGE_MIN_SAMPLES
541 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
542 return NULL;
544 if (dump_file)
545 fprintf (dump_file,
546 "Found latch edge %d -> %d using profile information.\n",
547 me->src->index, me->dest->index);
548 return me;
551 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
552 on the structure of induction variables. Returns this edge, or NULL if we
553 do not find any.
555 We are quite conservative, and look just for an obvious simple innermost
556 loop (which is the case where we would lose the most performance by not
557 disambiguating the loop). More precisely, we look for the following
558 situation: The source of the chosen latch edge dominates sources of all
559 the other latch edges. Additionally, the header does not contain a phi node
560 such that the argument from the chosen edge is equal to the argument from
561 another edge. */
563 static edge
564 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, VEC (edge, heap) *latches)
566 edge e, latch = VEC_index (edge, latches, 0);
567 unsigned i;
568 gimple phi;
569 gimple_stmt_iterator psi;
570 tree lop;
571 basic_block bb;
573 /* Find the candidate for the latch edge. */
574 for (i = 1; VEC_iterate (edge, latches, i, e); i++)
575 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
576 latch = e;
578 /* Verify that it dominates all the latch edges. */
579 FOR_EACH_VEC_ELT (edge, latches, i, e)
580 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
581 return NULL;
583 /* Check for a phi node that would deny that this is a latch edge of
584 a subloop. */
585 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
587 phi = gsi_stmt (psi);
588 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
590 /* Ignore the values that are not changed inside the subloop. */
591 if (TREE_CODE (lop) != SSA_NAME
592 || SSA_NAME_DEF_STMT (lop) == phi)
593 continue;
594 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
595 if (!bb || !flow_bb_inside_loop_p (loop, bb))
596 continue;
598 FOR_EACH_VEC_ELT (edge, latches, i, e)
599 if (e != latch
600 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
601 return NULL;
604 if (dump_file)
605 fprintf (dump_file,
606 "Found latch edge %d -> %d using iv structure.\n",
607 latch->src->index, latch->dest->index);
608 return latch;
611 /* If we can determine that one of the several latch edges of LOOP behaves
612 as a latch edge of a separate subloop, returns this edge. Otherwise
613 returns NULL. */
615 static edge
616 find_subloop_latch_edge (struct loop *loop)
618 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
619 edge latch = NULL;
621 if (VEC_length (edge, latches) > 1)
623 latch = find_subloop_latch_edge_by_profile (latches);
625 if (!latch
626 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
627 should use cfghook for this, but it is hard to imagine it would
628 be useful elsewhere. */
629 && current_ir_type () == IR_GIMPLE)
630 latch = find_subloop_latch_edge_by_ivs (loop, latches);
633 VEC_free (edge, heap, latches);
634 return latch;
637 /* Callback for make_forwarder_block. Returns true if the edge E is marked
638 in the set MFB_REIS_SET. */
640 static struct pointer_set_t *mfb_reis_set;
641 static bool
642 mfb_redirect_edges_in_set (edge e)
644 return pointer_set_contains (mfb_reis_set, e);
647 /* Creates a subloop of LOOP with latch edge LATCH. */
649 static void
650 form_subloop (struct loop *loop, edge latch)
652 edge_iterator ei;
653 edge e, new_entry;
654 struct loop *new_loop;
656 mfb_reis_set = pointer_set_create ();
657 FOR_EACH_EDGE (e, ei, loop->header->preds)
659 if (e != latch)
660 pointer_set_insert (mfb_reis_set, e);
662 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
663 NULL);
664 pointer_set_destroy (mfb_reis_set);
666 loop->header = new_entry->src;
668 /* Find the blocks and subloops that belong to the new loop, and add it to
669 the appropriate place in the loop tree. */
670 new_loop = alloc_loop ();
671 new_loop->header = new_entry->dest;
672 new_loop->latch = latch->src;
673 add_loop (new_loop, loop);
676 /* Make all the latch edges of LOOP to go to a single forwarder block --
677 a new latch of LOOP. */
679 static void
680 merge_latch_edges (struct loop *loop)
682 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
683 edge latch, e;
684 unsigned i;
686 gcc_assert (VEC_length (edge, latches) > 0);
688 if (VEC_length (edge, latches) == 1)
689 loop->latch = VEC_index (edge, latches, 0)->src;
690 else
692 if (dump_file)
693 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
695 mfb_reis_set = pointer_set_create ();
696 FOR_EACH_VEC_ELT (edge, latches, i, e)
697 pointer_set_insert (mfb_reis_set, e);
698 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
699 NULL);
700 pointer_set_destroy (mfb_reis_set);
702 loop->header = latch->dest;
703 loop->latch = latch->src;
706 VEC_free (edge, heap, latches);
709 /* LOOP may have several latch edges. Transform it into (possibly several)
710 loops with single latch edge. */
712 static void
713 disambiguate_multiple_latches (struct loop *loop)
715 edge e;
717 /* We eliminate the multiple latches by splitting the header to the forwarder
718 block F and the rest R, and redirecting the edges. There are two cases:
720 1) If there is a latch edge E that corresponds to a subloop (we guess
721 that based on profile -- if it is taken much more often than the
722 remaining edges; and on trees, using the information about induction
723 variables of the loops), we redirect E to R, all the remaining edges to
724 F, then rescan the loops and try again for the outer loop.
725 2) If there is no such edge, we redirect all latch edges to F, and the
726 entry edges to R, thus making F the single latch of the loop. */
728 if (dump_file)
729 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
730 loop->num);
732 /* During latch merging, we may need to redirect the entry edges to a new
733 block. This would cause problems if the entry edge was the one from the
734 entry block. To avoid having to handle this case specially, split
735 such entry edge. */
736 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
737 if (e)
738 split_edge (e);
740 while (1)
742 e = find_subloop_latch_edge (loop);
743 if (!e)
744 break;
746 form_subloop (loop, e);
749 merge_latch_edges (loop);
752 /* Split loops with multiple latch edges. */
754 void
755 disambiguate_loops_with_multiple_latches (void)
757 loop_iterator li;
758 struct loop *loop;
760 FOR_EACH_LOOP (li, loop, 0)
762 if (!loop->latch)
763 disambiguate_multiple_latches (loop);
767 /* Return nonzero if basic block BB belongs to LOOP. */
768 bool
769 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
771 struct loop *source_loop;
773 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
774 return 0;
776 source_loop = bb->loop_father;
777 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
780 /* Enumeration predicate for get_loop_body_with_size. */
781 static bool
782 glb_enum_p (const_basic_block bb, const void *glb_loop)
784 const struct loop *const loop = (const struct loop *) glb_loop;
785 return (bb != loop->header
786 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
789 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
790 order against direction of edges from latch. Specially, if
791 header != latch, latch is the 1-st block. LOOP cannot be the fake
792 loop tree root, and its size must be at most MAX_SIZE. The blocks
793 in the LOOP body are stored to BODY, and the size of the LOOP is
794 returned. */
796 unsigned
797 get_loop_body_with_size (const struct loop *loop, basic_block *body,
798 unsigned max_size)
800 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
801 body, max_size, loop);
804 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
805 order against direction of edges from latch. Specially, if
806 header != latch, latch is the 1-st block. */
808 basic_block *
809 get_loop_body (const struct loop *loop)
811 basic_block *body, bb;
812 unsigned tv = 0;
814 gcc_assert (loop->num_nodes);
816 body = XCNEWVEC (basic_block, loop->num_nodes);
818 if (loop->latch == EXIT_BLOCK_PTR)
820 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
821 special-case the fake loop that contains the whole function. */
822 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
823 body[tv++] = loop->header;
824 body[tv++] = EXIT_BLOCK_PTR;
825 FOR_EACH_BB (bb)
826 body[tv++] = bb;
828 else
829 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
831 gcc_assert (tv == loop->num_nodes);
832 return body;
835 /* Fills dominance descendants inside LOOP of the basic block BB into
836 array TOVISIT from index *TV. */
838 static void
839 fill_sons_in_loop (const struct loop *loop, basic_block bb,
840 basic_block *tovisit, int *tv)
842 basic_block son, postpone = NULL;
844 tovisit[(*tv)++] = bb;
845 for (son = first_dom_son (CDI_DOMINATORS, bb);
846 son;
847 son = next_dom_son (CDI_DOMINATORS, son))
849 if (!flow_bb_inside_loop_p (loop, son))
850 continue;
852 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
854 postpone = son;
855 continue;
857 fill_sons_in_loop (loop, son, tovisit, tv);
860 if (postpone)
861 fill_sons_in_loop (loop, postpone, tovisit, tv);
864 /* Gets body of a LOOP (that must be different from the outermost loop)
865 sorted by dominance relation. Additionally, if a basic block s dominates
866 the latch, then only blocks dominated by s are be after it. */
868 basic_block *
869 get_loop_body_in_dom_order (const struct loop *loop)
871 basic_block *tovisit;
872 int tv;
874 gcc_assert (loop->num_nodes);
876 tovisit = XCNEWVEC (basic_block, loop->num_nodes);
878 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
880 tv = 0;
881 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
883 gcc_assert (tv == (int) loop->num_nodes);
885 return tovisit;
888 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
890 basic_block *
891 get_loop_body_in_custom_order (const struct loop *loop,
892 int (*bb_comparator) (const void *, const void *))
894 basic_block *bbs = get_loop_body (loop);
896 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
898 return bbs;
901 /* Get body of a LOOP in breadth first sort order. */
903 basic_block *
904 get_loop_body_in_bfs_order (const struct loop *loop)
906 basic_block *blocks;
907 basic_block bb;
908 bitmap visited;
909 unsigned int i = 0;
910 unsigned int vc = 1;
912 gcc_assert (loop->num_nodes);
913 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
915 blocks = XCNEWVEC (basic_block, loop->num_nodes);
916 visited = BITMAP_ALLOC (NULL);
918 bb = loop->header;
919 while (i < loop->num_nodes)
921 edge e;
922 edge_iterator ei;
924 if (bitmap_set_bit (visited, bb->index))
925 /* This basic block is now visited */
926 blocks[i++] = bb;
928 FOR_EACH_EDGE (e, ei, bb->succs)
930 if (flow_bb_inside_loop_p (loop, e->dest))
932 if (bitmap_set_bit (visited, e->dest->index))
933 blocks[i++] = e->dest;
937 gcc_assert (i >= vc);
939 bb = blocks[vc++];
942 BITMAP_FREE (visited);
943 return blocks;
946 /* Hash function for struct loop_exit. */
948 static hashval_t
949 loop_exit_hash (const void *ex)
951 const struct loop_exit *const exit = (const struct loop_exit *) ex;
953 return htab_hash_pointer (exit->e);
956 /* Equality function for struct loop_exit. Compares with edge. */
958 static int
959 loop_exit_eq (const void *ex, const void *e)
961 const struct loop_exit *const exit = (const struct loop_exit *) ex;
963 return exit->e == e;
966 /* Frees the list of loop exit descriptions EX. */
968 static void
969 loop_exit_free (void *ex)
971 struct loop_exit *exit = (struct loop_exit *) ex, *next;
973 for (; exit; exit = next)
975 next = exit->next_e;
977 exit->next->prev = exit->prev;
978 exit->prev->next = exit->next;
980 ggc_free (exit);
984 /* Returns the list of records for E as an exit of a loop. */
986 static struct loop_exit *
987 get_exit_descriptions (edge e)
989 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
990 htab_hash_pointer (e));
993 /* Updates the lists of loop exits in that E appears.
994 If REMOVED is true, E is being removed, and we
995 just remove it from the lists of exits.
996 If NEW_EDGE is true and E is not a loop exit, we
997 do not try to remove it from loop exit lists. */
999 void
1000 rescan_loop_exit (edge e, bool new_edge, bool removed)
1002 void **slot;
1003 struct loop_exit *exits = NULL, *exit;
1004 struct loop *aloop, *cloop;
1006 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1007 return;
1009 if (!removed
1010 && e->src->loop_father != NULL
1011 && e->dest->loop_father != NULL
1012 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1014 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1015 for (aloop = e->src->loop_father;
1016 aloop != cloop;
1017 aloop = loop_outer (aloop))
1019 exit = ggc_alloc_loop_exit ();
1020 exit->e = e;
1022 exit->next = aloop->exits->next;
1023 exit->prev = aloop->exits;
1024 exit->next->prev = exit;
1025 exit->prev->next = exit;
1027 exit->next_e = exits;
1028 exits = exit;
1032 if (!exits && new_edge)
1033 return;
1035 slot = htab_find_slot_with_hash (current_loops->exits, e,
1036 htab_hash_pointer (e),
1037 exits ? INSERT : NO_INSERT);
1038 if (!slot)
1039 return;
1041 if (exits)
1043 if (*slot)
1044 loop_exit_free (*slot);
1045 *slot = exits;
1047 else
1048 htab_clear_slot (current_loops->exits, slot);
1051 /* For each loop, record list of exit edges, and start maintaining these
1052 lists. */
1054 void
1055 record_loop_exits (void)
1057 basic_block bb;
1058 edge_iterator ei;
1059 edge e;
1061 if (!current_loops)
1062 return;
1064 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1065 return;
1066 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1068 gcc_assert (current_loops->exits == NULL);
1069 current_loops->exits = htab_create_ggc (2 * number_of_loops (),
1070 loop_exit_hash, loop_exit_eq,
1071 loop_exit_free);
1073 FOR_EACH_BB (bb)
1075 FOR_EACH_EDGE (e, ei, bb->succs)
1077 rescan_loop_exit (e, true, false);
1082 /* Dumps information about the exit in *SLOT to FILE.
1083 Callback for htab_traverse. */
1085 static int
1086 dump_recorded_exit (void **slot, void *file)
1088 struct loop_exit *exit = (struct loop_exit *) *slot;
1089 unsigned n = 0;
1090 edge e = exit->e;
1092 for (; exit != NULL; exit = exit->next_e)
1093 n++;
1095 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1096 e->src->index, e->dest->index, n);
1098 return 1;
1101 /* Dumps the recorded exits of loops to FILE. */
1103 extern void dump_recorded_exits (FILE *);
1104 void
1105 dump_recorded_exits (FILE *file)
1107 if (!current_loops->exits)
1108 return;
1109 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1112 /* Releases lists of loop exits. */
1114 void
1115 release_recorded_exits (void)
1117 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1118 htab_delete (current_loops->exits);
1119 current_loops->exits = NULL;
1120 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1123 /* Returns the list of the exit edges of a LOOP. */
1125 VEC (edge, heap) *
1126 get_loop_exit_edges (const struct loop *loop)
1128 VEC (edge, heap) *edges = NULL;
1129 edge e;
1130 unsigned i;
1131 basic_block *body;
1132 edge_iterator ei;
1133 struct loop_exit *exit;
1135 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1137 /* If we maintain the lists of exits, use them. Otherwise we must
1138 scan the body of the loop. */
1139 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1141 for (exit = loop->exits->next; exit->e; exit = exit->next)
1142 VEC_safe_push (edge, heap, edges, exit->e);
1144 else
1146 body = get_loop_body (loop);
1147 for (i = 0; i < loop->num_nodes; i++)
1148 FOR_EACH_EDGE (e, ei, body[i]->succs)
1150 if (!flow_bb_inside_loop_p (loop, e->dest))
1151 VEC_safe_push (edge, heap, edges, e);
1153 free (body);
1156 return edges;
1159 /* Counts the number of conditional branches inside LOOP. */
1161 unsigned
1162 num_loop_branches (const struct loop *loop)
1164 unsigned i, n;
1165 basic_block * body;
1167 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1169 body = get_loop_body (loop);
1170 n = 0;
1171 for (i = 0; i < loop->num_nodes; i++)
1172 if (EDGE_COUNT (body[i]->succs) >= 2)
1173 n++;
1174 free (body);
1176 return n;
1179 /* Adds basic block BB to LOOP. */
1180 void
1181 add_bb_to_loop (basic_block bb, struct loop *loop)
1183 unsigned i;
1184 loop_p ploop;
1185 edge_iterator ei;
1186 edge e;
1188 gcc_assert (bb->loop_father == NULL);
1189 bb->loop_father = loop;
1190 bb->loop_depth = loop_depth (loop);
1191 loop->num_nodes++;
1192 FOR_EACH_VEC_ELT (loop_p, loop->superloops, i, ploop)
1193 ploop->num_nodes++;
1195 FOR_EACH_EDGE (e, ei, bb->succs)
1197 rescan_loop_exit (e, true, false);
1199 FOR_EACH_EDGE (e, ei, bb->preds)
1201 rescan_loop_exit (e, true, false);
1205 /* Remove basic block BB from loops. */
1206 void
1207 remove_bb_from_loops (basic_block bb)
1209 int i;
1210 struct loop *loop = bb->loop_father;
1211 loop_p ploop;
1212 edge_iterator ei;
1213 edge e;
1215 gcc_assert (loop != NULL);
1216 loop->num_nodes--;
1217 FOR_EACH_VEC_ELT (loop_p, loop->superloops, i, ploop)
1218 ploop->num_nodes--;
1219 bb->loop_father = NULL;
1220 bb->loop_depth = 0;
1222 FOR_EACH_EDGE (e, ei, bb->succs)
1224 rescan_loop_exit (e, false, true);
1226 FOR_EACH_EDGE (e, ei, bb->preds)
1228 rescan_loop_exit (e, false, true);
1232 /* Finds nearest common ancestor in loop tree for given loops. */
1233 struct loop *
1234 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1236 unsigned sdepth, ddepth;
1238 if (!loop_s) return loop_d;
1239 if (!loop_d) return loop_s;
1241 sdepth = loop_depth (loop_s);
1242 ddepth = loop_depth (loop_d);
1244 if (sdepth < ddepth)
1245 loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
1246 else if (sdepth > ddepth)
1247 loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
1249 while (loop_s != loop_d)
1251 loop_s = loop_outer (loop_s);
1252 loop_d = loop_outer (loop_d);
1254 return loop_s;
1257 /* Removes LOOP from structures and frees its data. */
1259 void
1260 delete_loop (struct loop *loop)
1262 /* Remove the loop from structure. */
1263 flow_loop_tree_node_remove (loop);
1265 /* Remove loop from loops array. */
1266 VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
1268 /* Free loop data. */
1269 flow_loop_free (loop);
1272 /* Cancels the LOOP; it must be innermost one. */
1274 static void
1275 cancel_loop (struct loop *loop)
1277 basic_block *bbs;
1278 unsigned i;
1279 struct loop *outer = loop_outer (loop);
1281 gcc_assert (!loop->inner);
1283 /* Move blocks up one level (they should be removed as soon as possible). */
1284 bbs = get_loop_body (loop);
1285 for (i = 0; i < loop->num_nodes; i++)
1286 bbs[i]->loop_father = outer;
1288 delete_loop (loop);
1291 /* Cancels LOOP and all its subloops. */
1292 void
1293 cancel_loop_tree (struct loop *loop)
1295 while (loop->inner)
1296 cancel_loop_tree (loop->inner);
1297 cancel_loop (loop);
1300 /* Checks that information about loops is correct
1301 -- sizes of loops are all right
1302 -- results of get_loop_body really belong to the loop
1303 -- loop header have just single entry edge and single latch edge
1304 -- loop latches have only single successor that is header of their loop
1305 -- irreducible loops are correctly marked
1307 DEBUG_FUNCTION void
1308 verify_loop_structure (void)
1310 unsigned *sizes, i, j;
1311 sbitmap irreds;
1312 basic_block *bbs, bb;
1313 struct loop *loop;
1314 int err = 0;
1315 edge e;
1316 unsigned num = number_of_loops ();
1317 loop_iterator li;
1318 struct loop_exit *exit, *mexit;
1320 /* Check sizes. */
1321 sizes = XCNEWVEC (unsigned, num);
1322 sizes[0] = 2;
1324 FOR_EACH_BB (bb)
1325 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1326 sizes[loop->num]++;
1328 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1330 i = loop->num;
1332 if (loop->num_nodes != sizes[i])
1334 error ("size of loop %d should be %d, not %d",
1335 i, sizes[i], loop->num_nodes);
1336 err = 1;
1340 /* Check get_loop_body. */
1341 FOR_EACH_LOOP (li, loop, 0)
1343 bbs = get_loop_body (loop);
1345 for (j = 0; j < loop->num_nodes; j++)
1346 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1348 error ("bb %d do not belong to loop %d",
1349 bbs[j]->index, loop->num);
1350 err = 1;
1352 free (bbs);
1355 /* Check headers and latches. */
1356 FOR_EACH_LOOP (li, loop, 0)
1358 i = loop->num;
1360 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1361 && EDGE_COUNT (loop->header->preds) != 2)
1363 error ("loop %d%'s header does not have exactly 2 entries", i);
1364 err = 1;
1366 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1368 if (!single_succ_p (loop->latch))
1370 error ("loop %d%'s latch does not have exactly 1 successor", i);
1371 err = 1;
1373 if (single_succ (loop->latch) != loop->header)
1375 error ("loop %d%'s latch does not have header as successor", i);
1376 err = 1;
1378 if (loop->latch->loop_father != loop)
1380 error ("loop %d%'s latch does not belong directly to it", i);
1381 err = 1;
1384 if (loop->header->loop_father != loop)
1386 error ("loop %d%'s header does not belong directly to it", i);
1387 err = 1;
1389 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1390 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1392 error ("loop %d%'s latch is marked as part of irreducible region", i);
1393 err = 1;
1397 /* Check irreducible loops. */
1398 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1400 /* Record old info. */
1401 irreds = sbitmap_alloc (last_basic_block);
1402 FOR_EACH_BB (bb)
1404 edge_iterator ei;
1405 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1406 SET_BIT (irreds, bb->index);
1407 else
1408 RESET_BIT (irreds, bb->index);
1409 FOR_EACH_EDGE (e, ei, bb->succs)
1410 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1411 e->flags |= EDGE_ALL_FLAGS + 1;
1414 /* Recount it. */
1415 mark_irreducible_loops ();
1417 /* Compare. */
1418 FOR_EACH_BB (bb)
1420 edge_iterator ei;
1422 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1423 && !TEST_BIT (irreds, bb->index))
1425 error ("basic block %d should be marked irreducible", bb->index);
1426 err = 1;
1428 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1429 && TEST_BIT (irreds, bb->index))
1431 error ("basic block %d should not be marked irreducible", bb->index);
1432 err = 1;
1434 FOR_EACH_EDGE (e, ei, bb->succs)
1436 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1437 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1439 error ("edge from %d to %d should be marked irreducible",
1440 e->src->index, e->dest->index);
1441 err = 1;
1443 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1444 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1446 error ("edge from %d to %d should not be marked irreducible",
1447 e->src->index, e->dest->index);
1448 err = 1;
1450 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1453 free (irreds);
1456 /* Check the recorded loop exits. */
1457 FOR_EACH_LOOP (li, loop, 0)
1459 if (!loop->exits || loop->exits->e != NULL)
1461 error ("corrupted head of the exits list of loop %d",
1462 loop->num);
1463 err = 1;
1465 else
1467 /* Check that the list forms a cycle, and all elements except
1468 for the head are nonnull. */
1469 for (mexit = loop->exits, exit = mexit->next, i = 0;
1470 exit->e && exit != mexit;
1471 exit = exit->next)
1473 if (i++ & 1)
1474 mexit = mexit->next;
1477 if (exit != loop->exits)
1479 error ("corrupted exits list of loop %d", loop->num);
1480 err = 1;
1484 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1486 if (loop->exits->next != loop->exits)
1488 error ("nonempty exits list of loop %d, but exits are not recorded",
1489 loop->num);
1490 err = 1;
1495 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1497 unsigned n_exits = 0, eloops;
1499 memset (sizes, 0, sizeof (unsigned) * num);
1500 FOR_EACH_BB (bb)
1502 edge_iterator ei;
1503 if (bb->loop_father == current_loops->tree_root)
1504 continue;
1505 FOR_EACH_EDGE (e, ei, bb->succs)
1507 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1508 continue;
1510 n_exits++;
1511 exit = get_exit_descriptions (e);
1512 if (!exit)
1514 error ("exit %d->%d not recorded",
1515 e->src->index, e->dest->index);
1516 err = 1;
1518 eloops = 0;
1519 for (; exit; exit = exit->next_e)
1520 eloops++;
1522 for (loop = bb->loop_father;
1523 loop != e->dest->loop_father;
1524 loop = loop_outer (loop))
1526 eloops--;
1527 sizes[loop->num]++;
1530 if (eloops != 0)
1532 error ("wrong list of exited loops for edge %d->%d",
1533 e->src->index, e->dest->index);
1534 err = 1;
1539 if (n_exits != htab_elements (current_loops->exits))
1541 error ("too many loop exits recorded");
1542 err = 1;
1545 FOR_EACH_LOOP (li, loop, 0)
1547 eloops = 0;
1548 for (exit = loop->exits->next; exit->e; exit = exit->next)
1549 eloops++;
1550 if (eloops != sizes[loop->num])
1552 error ("%d exits recorded for loop %d (having %d exits)",
1553 eloops, loop->num, sizes[loop->num]);
1554 err = 1;
1559 gcc_assert (!err);
1561 free (sizes);
1564 /* Returns latch edge of LOOP. */
1565 edge
1566 loop_latch_edge (const struct loop *loop)
1568 return find_edge (loop->latch, loop->header);
1571 /* Returns preheader edge of LOOP. */
1572 edge
1573 loop_preheader_edge (const struct loop *loop)
1575 edge e;
1576 edge_iterator ei;
1578 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1580 FOR_EACH_EDGE (e, ei, loop->header->preds)
1581 if (e->src != loop->latch)
1582 break;
1584 return e;
1587 /* Returns true if E is an exit of LOOP. */
1589 bool
1590 loop_exit_edge_p (const struct loop *loop, const_edge e)
1592 return (flow_bb_inside_loop_p (loop, e->src)
1593 && !flow_bb_inside_loop_p (loop, e->dest));
1596 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1597 or more than one exit. If loops do not have the exits recorded, NULL
1598 is returned always. */
1600 edge
1601 single_exit (const struct loop *loop)
1603 struct loop_exit *exit = loop->exits->next;
1605 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1606 return NULL;
1608 if (exit->e && exit->next == loop->exits)
1609 return exit->e;
1610 else
1611 return NULL;
1614 /* Returns true when BB has an incoming edge exiting LOOP. */
1616 bool
1617 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1619 edge e;
1620 edge_iterator ei;
1622 FOR_EACH_EDGE (e, ei, bb->preds)
1623 if (loop_exit_edge_p (loop, e))
1624 return true;
1626 return false;
1629 /* Returns true when BB has an outgoing edge exiting LOOP. */
1631 bool
1632 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1634 edge e;
1635 edge_iterator ei;
1637 FOR_EACH_EDGE (e, ei, bb->succs)
1638 if (loop_exit_edge_p (loop, e))
1639 return true;
1641 return false;