* crtstuff.c (__dso_handle): Set section from
[official-gcc.git] / gcc / combine.c
blob33512ec46359339a968c7efbb97c717cef45fe5e
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid;
135 static int max_uid_cuid;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static struct reg_stat *reg_stat;
257 /* Record the cuid of the last insn that invalidated memory
258 (anything that writes memory, and subroutine calls, but not pushes). */
260 static int mem_last_set;
262 /* Record the cuid of the last CALL_INSN
263 so we can tell whether a potential combination crosses any calls. */
265 static int last_call_cuid;
267 /* When `subst' is called, this is the insn that is being modified
268 (by combining in a previous insn). The PATTERN of this insn
269 is still the old pattern partially modified and it should not be
270 looked at, but this may be used to examine the successors of the insn
271 to judge whether a simplification is valid. */
273 static rtx subst_insn;
275 /* This is the lowest CUID that `subst' is currently dealing with.
276 get_last_value will not return a value if the register was set at or
277 after this CUID. If not for this mechanism, we could get confused if
278 I2 or I1 in try_combine were an insn that used the old value of a register
279 to obtain a new value. In that case, we might erroneously get the
280 new value of the register when we wanted the old one. */
282 static int subst_low_cuid;
284 /* This contains any hard registers that are used in newpat; reg_dead_at_p
285 must consider all these registers to be always live. */
287 static HARD_REG_SET newpat_used_regs;
289 /* This is an insn to which a LOG_LINKS entry has been added. If this
290 insn is the earlier than I2 or I3, combine should rescan starting at
291 that location. */
293 static rtx added_links_insn;
295 /* Basic block in which we are performing combines. */
296 static basic_block this_basic_block;
298 /* A bitmap indicating which blocks had registers go dead at entry.
299 After combine, we'll need to re-do global life analysis with
300 those blocks as starting points. */
301 static sbitmap refresh_blocks;
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
306 static int *uid_insn_cost;
308 /* Length of the currently allocated uid_insn_cost array. */
310 static int last_insn_cost;
312 /* Incremented for each label. */
314 static int label_tick;
316 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
317 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
319 static enum machine_mode nonzero_bits_mode;
321 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
322 be safely used. It is zero while computing them and after combine has
323 completed. This former test prevents propagating values based on
324 previously set values, which can be incorrect if a variable is modified
325 in a loop. */
327 static int nonzero_sign_valid;
330 /* Record one modification to rtl structure
331 to be undone by storing old_contents into *where. */
333 struct undo
335 struct undo *next;
336 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
337 union { rtx r; int i; enum machine_mode m; } old_contents;
338 union { rtx *r; int *i; } where;
341 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
342 num_undo says how many are currently recorded.
344 other_insn is nonzero if we have modified some other insn in the process
345 of working on subst_insn. It must be verified too. */
347 struct undobuf
349 struct undo *undos;
350 struct undo *frees;
351 rtx other_insn;
354 static struct undobuf undobuf;
356 /* Number of times the pseudo being substituted for
357 was found and replaced. */
359 static int n_occurrences;
361 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
362 enum machine_mode,
363 unsigned HOST_WIDE_INT,
364 unsigned HOST_WIDE_INT *);
365 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
366 enum machine_mode,
367 unsigned int, unsigned int *);
368 static void do_SUBST (rtx *, rtx);
369 static void do_SUBST_INT (int *, int);
370 static void init_reg_last (void);
371 static void setup_incoming_promotions (void);
372 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
373 static int cant_combine_insn_p (rtx);
374 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
375 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
376 static int contains_muldiv (rtx);
377 static rtx try_combine (rtx, rtx, rtx, int *);
378 static void undo_all (void);
379 static void undo_commit (void);
380 static rtx *find_split_point (rtx *, rtx);
381 static rtx subst (rtx, rtx, rtx, int, int);
382 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
383 static rtx simplify_if_then_else (rtx);
384 static rtx simplify_set (rtx);
385 static rtx simplify_logical (rtx);
386 static rtx expand_compound_operation (rtx);
387 static rtx expand_field_assignment (rtx);
388 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
389 rtx, unsigned HOST_WIDE_INT, int, int, int);
390 static rtx extract_left_shift (rtx, int);
391 static rtx make_compound_operation (rtx, enum rtx_code);
392 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
393 unsigned HOST_WIDE_INT *);
394 static rtx canon_reg_for_combine (rtx, rtx);
395 static rtx force_to_mode (rtx, enum machine_mode,
396 unsigned HOST_WIDE_INT, int);
397 static rtx if_then_else_cond (rtx, rtx *, rtx *);
398 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
399 static int rtx_equal_for_field_assignment_p (rtx, rtx);
400 static rtx make_field_assignment (rtx);
401 static rtx apply_distributive_law (rtx);
402 static rtx distribute_and_simplify_rtx (rtx, int);
403 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
404 unsigned HOST_WIDE_INT);
405 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
406 unsigned HOST_WIDE_INT);
407 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
408 HOST_WIDE_INT, enum machine_mode, int *);
409 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
410 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
411 int);
412 static int recog_for_combine (rtx *, rtx, rtx *);
413 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
414 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
415 static void update_table_tick (rtx);
416 static void record_value_for_reg (rtx, rtx, rtx);
417 static void check_conversions (rtx, rtx);
418 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
419 static void record_dead_and_set_regs (rtx);
420 static int get_last_value_validate (rtx *, rtx, int, int);
421 static rtx get_last_value (rtx);
422 static int use_crosses_set_p (rtx, int);
423 static void reg_dead_at_p_1 (rtx, rtx, void *);
424 static int reg_dead_at_p (rtx, rtx);
425 static void move_deaths (rtx, rtx, int, rtx, rtx *);
426 static int reg_bitfield_target_p (rtx, rtx);
427 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
428 static void distribute_links (rtx);
429 static void mark_used_regs_combine (rtx);
430 static int insn_cuid (rtx);
431 static void record_promoted_value (rtx, rtx);
432 static int unmentioned_reg_p_1 (rtx *, void *);
433 static bool unmentioned_reg_p (rtx, rtx);
434 static void record_truncated_value (rtx);
435 static bool reg_truncated_to_mode (enum machine_mode, rtx);
436 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
439 /* It is not safe to use ordinary gen_lowpart in combine.
440 See comments in gen_lowpart_for_combine. */
441 #undef RTL_HOOKS_GEN_LOWPART
442 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
444 /* Our implementation of gen_lowpart never emits a new pseudo. */
445 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
446 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
448 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
449 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
451 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
452 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
454 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
455 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
457 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
460 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
461 insn. The substitution can be undone by undo_all. If INTO is already
462 set to NEWVAL, do not record this change. Because computing NEWVAL might
463 also call SUBST, we have to compute it before we put anything into
464 the undo table. */
466 static void
467 do_SUBST (rtx *into, rtx newval)
469 struct undo *buf;
470 rtx oldval = *into;
472 if (oldval == newval)
473 return;
475 /* We'd like to catch as many invalid transformations here as
476 possible. Unfortunately, there are way too many mode changes
477 that are perfectly valid, so we'd waste too much effort for
478 little gain doing the checks here. Focus on catching invalid
479 transformations involving integer constants. */
480 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
481 && GET_CODE (newval) == CONST_INT)
483 /* Sanity check that we're replacing oldval with a CONST_INT
484 that is a valid sign-extension for the original mode. */
485 gcc_assert (INTVAL (newval)
486 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
488 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
489 CONST_INT is not valid, because after the replacement, the
490 original mode would be gone. Unfortunately, we can't tell
491 when do_SUBST is called to replace the operand thereof, so we
492 perform this test on oldval instead, checking whether an
493 invalid replacement took place before we got here. */
494 gcc_assert (!(GET_CODE (oldval) == SUBREG
495 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
496 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
497 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
500 if (undobuf.frees)
501 buf = undobuf.frees, undobuf.frees = buf->next;
502 else
503 buf = XNEW (struct undo);
505 buf->kind = UNDO_RTX;
506 buf->where.r = into;
507 buf->old_contents.r = oldval;
508 *into = newval;
510 buf->next = undobuf.undos, undobuf.undos = buf;
513 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
515 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
516 for the value of a HOST_WIDE_INT value (including CONST_INT) is
517 not safe. */
519 static void
520 do_SUBST_INT (int *into, int newval)
522 struct undo *buf;
523 int oldval = *into;
525 if (oldval == newval)
526 return;
528 if (undobuf.frees)
529 buf = undobuf.frees, undobuf.frees = buf->next;
530 else
531 buf = XNEW (struct undo);
533 buf->kind = UNDO_INT;
534 buf->where.i = into;
535 buf->old_contents.i = oldval;
536 *into = newval;
538 buf->next = undobuf.undos, undobuf.undos = buf;
541 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
543 /* Similar to SUBST, but just substitute the mode. This is used when
544 changing the mode of a pseudo-register, so that any other
545 references to the entry in the regno_reg_rtx array will change as
546 well. */
548 static void
549 do_SUBST_MODE (rtx *into, enum machine_mode newval)
551 struct undo *buf;
552 enum machine_mode oldval = GET_MODE (*into);
554 if (oldval == newval)
555 return;
557 if (undobuf.frees)
558 buf = undobuf.frees, undobuf.frees = buf->next;
559 else
560 buf = XNEW (struct undo);
562 buf->kind = UNDO_MODE;
563 buf->where.r = into;
564 buf->old_contents.m = oldval;
565 PUT_MODE (*into, newval);
567 buf->next = undobuf.undos, undobuf.undos = buf;
570 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
572 /* Subroutine of try_combine. Determine whether the combine replacement
573 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
574 that the original instruction sequence I1, I2 and I3. Note that I1
575 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
576 costs of all instructions can be estimated, and the replacements are
577 more expensive than the original sequence. */
579 static bool
580 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
582 int i1_cost, i2_cost, i3_cost;
583 int new_i2_cost, new_i3_cost;
584 int old_cost, new_cost;
586 /* Lookup the original insn_rtx_costs. */
587 i2_cost = INSN_UID (i2) <= last_insn_cost
588 ? uid_insn_cost[INSN_UID (i2)] : 0;
589 i3_cost = INSN_UID (i3) <= last_insn_cost
590 ? uid_insn_cost[INSN_UID (i3)] : 0;
592 if (i1)
594 i1_cost = INSN_UID (i1) <= last_insn_cost
595 ? uid_insn_cost[INSN_UID (i1)] : 0;
596 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
597 ? i1_cost + i2_cost + i3_cost : 0;
599 else
601 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
602 i1_cost = 0;
605 /* Calculate the replacement insn_rtx_costs. */
606 new_i3_cost = insn_rtx_cost (newpat);
607 if (newi2pat)
609 new_i2_cost = insn_rtx_cost (newi2pat);
610 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
611 ? new_i2_cost + new_i3_cost : 0;
613 else
615 new_cost = new_i3_cost;
616 new_i2_cost = 0;
619 if (undobuf.other_insn)
621 int old_other_cost, new_other_cost;
623 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
624 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
625 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
626 if (old_other_cost > 0 && new_other_cost > 0)
628 old_cost += old_other_cost;
629 new_cost += new_other_cost;
631 else
632 old_cost = 0;
635 /* Disallow this recombination if both new_cost and old_cost are
636 greater than zero, and new_cost is greater than old cost. */
637 if (old_cost > 0
638 && new_cost > old_cost)
640 if (dump_file)
642 if (i1)
644 fprintf (dump_file,
645 "rejecting combination of insns %d, %d and %d\n",
646 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
647 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
648 i1_cost, i2_cost, i3_cost, old_cost);
650 else
652 fprintf (dump_file,
653 "rejecting combination of insns %d and %d\n",
654 INSN_UID (i2), INSN_UID (i3));
655 fprintf (dump_file, "original costs %d + %d = %d\n",
656 i2_cost, i3_cost, old_cost);
659 if (newi2pat)
661 fprintf (dump_file, "replacement costs %d + %d = %d\n",
662 new_i2_cost, new_i3_cost, new_cost);
664 else
665 fprintf (dump_file, "replacement cost %d\n", new_cost);
668 return false;
671 /* Update the uid_insn_cost array with the replacement costs. */
672 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
673 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
674 if (i1)
675 uid_insn_cost[INSN_UID (i1)] = 0;
677 return true;
680 /* Main entry point for combiner. F is the first insn of the function.
681 NREGS is the first unused pseudo-reg number.
683 Return nonzero if the combiner has turned an indirect jump
684 instruction into a direct jump. */
685 static int
686 combine_instructions (rtx f, unsigned int nregs)
688 rtx insn, next;
689 #ifdef HAVE_cc0
690 rtx prev;
691 #endif
692 int i;
693 unsigned int j = 0;
694 rtx links, nextlinks;
695 sbitmap_iterator sbi;
697 int new_direct_jump_p = 0;
699 combine_attempts = 0;
700 combine_merges = 0;
701 combine_extras = 0;
702 combine_successes = 0;
704 combine_max_regno = nregs;
706 rtl_hooks = combine_rtl_hooks;
708 reg_stat = XCNEWVEC (struct reg_stat, nregs);
710 init_recog_no_volatile ();
712 /* Compute maximum uid value so uid_cuid can be allocated. */
714 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
715 if (INSN_UID (insn) > i)
716 i = INSN_UID (insn);
718 uid_cuid = XNEWVEC (int, i + 1);
719 max_uid_cuid = i;
721 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
723 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
724 problems when, for example, we have j <<= 1 in a loop. */
726 nonzero_sign_valid = 0;
728 /* Compute the mapping from uids to cuids.
729 Cuids are numbers assigned to insns, like uids,
730 except that cuids increase monotonically through the code.
732 Scan all SETs and see if we can deduce anything about what
733 bits are known to be zero for some registers and how many copies
734 of the sign bit are known to exist for those registers.
736 Also set any known values so that we can use it while searching
737 for what bits are known to be set. */
739 label_tick = 1;
741 setup_incoming_promotions ();
743 refresh_blocks = sbitmap_alloc (last_basic_block);
744 sbitmap_zero (refresh_blocks);
746 /* Allocate array of current insn_rtx_costs. */
747 uid_insn_cost = XCNEWVEC (int, max_uid_cuid + 1);
748 last_insn_cost = max_uid_cuid;
750 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
752 uid_cuid[INSN_UID (insn)] = ++i;
753 subst_low_cuid = i;
754 subst_insn = insn;
756 if (INSN_P (insn))
758 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
759 NULL);
760 record_dead_and_set_regs (insn);
762 #ifdef AUTO_INC_DEC
763 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
764 if (REG_NOTE_KIND (links) == REG_INC)
765 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
766 NULL);
767 #endif
769 /* Record the current insn_rtx_cost of this instruction. */
770 if (NONJUMP_INSN_P (insn))
771 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
772 if (dump_file)
773 fprintf(dump_file, "insn_cost %d: %d\n",
774 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
777 if (LABEL_P (insn))
778 label_tick++;
781 nonzero_sign_valid = 1;
783 /* Now scan all the insns in forward order. */
785 label_tick = 1;
786 last_call_cuid = 0;
787 mem_last_set = 0;
788 init_reg_last ();
789 setup_incoming_promotions ();
791 FOR_EACH_BB (this_basic_block)
793 for (insn = BB_HEAD (this_basic_block);
794 insn != NEXT_INSN (BB_END (this_basic_block));
795 insn = next ? next : NEXT_INSN (insn))
797 next = 0;
799 if (LABEL_P (insn))
800 label_tick++;
802 else if (INSN_P (insn))
804 /* See if we know about function return values before this
805 insn based upon SUBREG flags. */
806 check_conversions (insn, PATTERN (insn));
808 /* Try this insn with each insn it links back to. */
810 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
811 if ((next = try_combine (insn, XEXP (links, 0),
812 NULL_RTX, &new_direct_jump_p)) != 0)
813 goto retry;
815 /* Try each sequence of three linked insns ending with this one. */
817 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
819 rtx link = XEXP (links, 0);
821 /* If the linked insn has been replaced by a note, then there
822 is no point in pursuing this chain any further. */
823 if (NOTE_P (link))
824 continue;
826 for (nextlinks = LOG_LINKS (link);
827 nextlinks;
828 nextlinks = XEXP (nextlinks, 1))
829 if ((next = try_combine (insn, link,
830 XEXP (nextlinks, 0),
831 &new_direct_jump_p)) != 0)
832 goto retry;
835 #ifdef HAVE_cc0
836 /* Try to combine a jump insn that uses CC0
837 with a preceding insn that sets CC0, and maybe with its
838 logical predecessor as well.
839 This is how we make decrement-and-branch insns.
840 We need this special code because data flow connections
841 via CC0 do not get entered in LOG_LINKS. */
843 if (JUMP_P (insn)
844 && (prev = prev_nonnote_insn (insn)) != 0
845 && NONJUMP_INSN_P (prev)
846 && sets_cc0_p (PATTERN (prev)))
848 if ((next = try_combine (insn, prev,
849 NULL_RTX, &new_direct_jump_p)) != 0)
850 goto retry;
852 for (nextlinks = LOG_LINKS (prev); nextlinks;
853 nextlinks = XEXP (nextlinks, 1))
854 if ((next = try_combine (insn, prev,
855 XEXP (nextlinks, 0),
856 &new_direct_jump_p)) != 0)
857 goto retry;
860 /* Do the same for an insn that explicitly references CC0. */
861 if (NONJUMP_INSN_P (insn)
862 && (prev = prev_nonnote_insn (insn)) != 0
863 && NONJUMP_INSN_P (prev)
864 && sets_cc0_p (PATTERN (prev))
865 && GET_CODE (PATTERN (insn)) == SET
866 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
868 if ((next = try_combine (insn, prev,
869 NULL_RTX, &new_direct_jump_p)) != 0)
870 goto retry;
872 for (nextlinks = LOG_LINKS (prev); nextlinks;
873 nextlinks = XEXP (nextlinks, 1))
874 if ((next = try_combine (insn, prev,
875 XEXP (nextlinks, 0),
876 &new_direct_jump_p)) != 0)
877 goto retry;
880 /* Finally, see if any of the insns that this insn links to
881 explicitly references CC0. If so, try this insn, that insn,
882 and its predecessor if it sets CC0. */
883 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
884 if (NONJUMP_INSN_P (XEXP (links, 0))
885 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
886 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
887 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
888 && NONJUMP_INSN_P (prev)
889 && sets_cc0_p (PATTERN (prev))
890 && (next = try_combine (insn, XEXP (links, 0),
891 prev, &new_direct_jump_p)) != 0)
892 goto retry;
893 #endif
895 /* Try combining an insn with two different insns whose results it
896 uses. */
897 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
898 for (nextlinks = XEXP (links, 1); nextlinks;
899 nextlinks = XEXP (nextlinks, 1))
900 if ((next = try_combine (insn, XEXP (links, 0),
901 XEXP (nextlinks, 0),
902 &new_direct_jump_p)) != 0)
903 goto retry;
905 /* Try this insn with each REG_EQUAL note it links back to. */
906 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
908 rtx set, note;
909 rtx temp = XEXP (links, 0);
910 if ((set = single_set (temp)) != 0
911 && (note = find_reg_equal_equiv_note (temp)) != 0
912 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
913 /* Avoid using a register that may already been marked
914 dead by an earlier instruction. */
915 && ! unmentioned_reg_p (note, SET_SRC (set))
916 && (GET_MODE (note) == VOIDmode
917 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
918 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
920 /* Temporarily replace the set's source with the
921 contents of the REG_EQUAL note. The insn will
922 be deleted or recognized by try_combine. */
923 rtx orig = SET_SRC (set);
924 SET_SRC (set) = note;
925 next = try_combine (insn, temp, NULL_RTX,
926 &new_direct_jump_p);
927 if (next)
928 goto retry;
929 SET_SRC (set) = orig;
933 if (!NOTE_P (insn))
934 record_dead_and_set_regs (insn);
936 retry:
941 clear_bb_flags ();
943 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
944 BASIC_BLOCK (j)->flags |= BB_DIRTY;
945 new_direct_jump_p |= purge_all_dead_edges ();
946 delete_noop_moves ();
948 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
949 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
950 | PROP_KILL_DEAD_CODE);
952 /* Clean up. */
953 sbitmap_free (refresh_blocks);
954 free (uid_insn_cost);
955 free (reg_stat);
956 free (uid_cuid);
959 struct undo *undo, *next;
960 for (undo = undobuf.frees; undo; undo = next)
962 next = undo->next;
963 free (undo);
965 undobuf.frees = 0;
968 total_attempts += combine_attempts;
969 total_merges += combine_merges;
970 total_extras += combine_extras;
971 total_successes += combine_successes;
973 nonzero_sign_valid = 0;
974 rtl_hooks = general_rtl_hooks;
976 /* Make recognizer allow volatile MEMs again. */
977 init_recog ();
979 return new_direct_jump_p;
982 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
984 static void
985 init_reg_last (void)
987 unsigned int i;
988 for (i = 0; i < combine_max_regno; i++)
989 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
992 /* Set up any promoted values for incoming argument registers. */
994 static void
995 setup_incoming_promotions (void)
997 unsigned int regno;
998 rtx reg;
999 enum machine_mode mode;
1000 int unsignedp;
1001 rtx first = get_insns ();
1003 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1005 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1006 /* Check whether this register can hold an incoming pointer
1007 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1008 numbers, so translate if necessary due to register windows. */
1009 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
1010 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
1012 record_value_for_reg
1013 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
1014 : SIGN_EXTEND),
1015 GET_MODE (reg),
1016 gen_rtx_CLOBBER (mode, const0_rtx)));
1021 /* Called via note_stores. If X is a pseudo that is narrower than
1022 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1024 If we are setting only a portion of X and we can't figure out what
1025 portion, assume all bits will be used since we don't know what will
1026 be happening.
1028 Similarly, set how many bits of X are known to be copies of the sign bit
1029 at all locations in the function. This is the smallest number implied
1030 by any set of X. */
1032 static void
1033 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1034 void *data ATTRIBUTE_UNUSED)
1036 unsigned int num;
1038 if (REG_P (x)
1039 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1040 /* If this register is undefined at the start of the file, we can't
1041 say what its contents were. */
1042 && ! REGNO_REG_SET_P
1043 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1044 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1046 if (set == 0 || GET_CODE (set) == CLOBBER)
1048 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1049 reg_stat[REGNO (x)].sign_bit_copies = 1;
1050 return;
1053 /* If this is a complex assignment, see if we can convert it into a
1054 simple assignment. */
1055 set = expand_field_assignment (set);
1057 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1058 set what we know about X. */
1060 if (SET_DEST (set) == x
1061 || (GET_CODE (SET_DEST (set)) == SUBREG
1062 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1063 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1064 && SUBREG_REG (SET_DEST (set)) == x))
1066 rtx src = SET_SRC (set);
1068 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1069 /* If X is narrower than a word and SRC is a non-negative
1070 constant that would appear negative in the mode of X,
1071 sign-extend it for use in reg_stat[].nonzero_bits because some
1072 machines (maybe most) will actually do the sign-extension
1073 and this is the conservative approach.
1075 ??? For 2.5, try to tighten up the MD files in this regard
1076 instead of this kludge. */
1078 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1079 && GET_CODE (src) == CONST_INT
1080 && INTVAL (src) > 0
1081 && 0 != (INTVAL (src)
1082 & ((HOST_WIDE_INT) 1
1083 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1084 src = GEN_INT (INTVAL (src)
1085 | ((HOST_WIDE_INT) (-1)
1086 << GET_MODE_BITSIZE (GET_MODE (x))));
1087 #endif
1089 /* Don't call nonzero_bits if it cannot change anything. */
1090 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1091 reg_stat[REGNO (x)].nonzero_bits
1092 |= nonzero_bits (src, nonzero_bits_mode);
1093 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1094 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1095 || reg_stat[REGNO (x)].sign_bit_copies > num)
1096 reg_stat[REGNO (x)].sign_bit_copies = num;
1098 else
1100 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1101 reg_stat[REGNO (x)].sign_bit_copies = 1;
1106 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1107 insns that were previously combined into I3 or that will be combined
1108 into the merger of INSN and I3.
1110 Return 0 if the combination is not allowed for any reason.
1112 If the combination is allowed, *PDEST will be set to the single
1113 destination of INSN and *PSRC to the single source, and this function
1114 will return 1. */
1116 static int
1117 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1118 rtx *pdest, rtx *psrc)
1120 int i;
1121 rtx set = 0, src, dest;
1122 rtx p;
1123 #ifdef AUTO_INC_DEC
1124 rtx link;
1125 #endif
1126 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1127 && next_active_insn (succ) == i3)
1128 : next_active_insn (insn) == i3);
1130 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1131 or a PARALLEL consisting of such a SET and CLOBBERs.
1133 If INSN has CLOBBER parallel parts, ignore them for our processing.
1134 By definition, these happen during the execution of the insn. When it
1135 is merged with another insn, all bets are off. If they are, in fact,
1136 needed and aren't also supplied in I3, they may be added by
1137 recog_for_combine. Otherwise, it won't match.
1139 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1140 note.
1142 Get the source and destination of INSN. If more than one, can't
1143 combine. */
1145 if (GET_CODE (PATTERN (insn)) == SET)
1146 set = PATTERN (insn);
1147 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1148 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1150 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1152 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1153 rtx note;
1155 switch (GET_CODE (elt))
1157 /* This is important to combine floating point insns
1158 for the SH4 port. */
1159 case USE:
1160 /* Combining an isolated USE doesn't make sense.
1161 We depend here on combinable_i3pat to reject them. */
1162 /* The code below this loop only verifies that the inputs of
1163 the SET in INSN do not change. We call reg_set_between_p
1164 to verify that the REG in the USE does not change between
1165 I3 and INSN.
1166 If the USE in INSN was for a pseudo register, the matching
1167 insn pattern will likely match any register; combining this
1168 with any other USE would only be safe if we knew that the
1169 used registers have identical values, or if there was
1170 something to tell them apart, e.g. different modes. For
1171 now, we forgo such complicated tests and simply disallow
1172 combining of USES of pseudo registers with any other USE. */
1173 if (REG_P (XEXP (elt, 0))
1174 && GET_CODE (PATTERN (i3)) == PARALLEL)
1176 rtx i3pat = PATTERN (i3);
1177 int i = XVECLEN (i3pat, 0) - 1;
1178 unsigned int regno = REGNO (XEXP (elt, 0));
1182 rtx i3elt = XVECEXP (i3pat, 0, i);
1184 if (GET_CODE (i3elt) == USE
1185 && REG_P (XEXP (i3elt, 0))
1186 && (REGNO (XEXP (i3elt, 0)) == regno
1187 ? reg_set_between_p (XEXP (elt, 0),
1188 PREV_INSN (insn), i3)
1189 : regno >= FIRST_PSEUDO_REGISTER))
1190 return 0;
1192 while (--i >= 0);
1194 break;
1196 /* We can ignore CLOBBERs. */
1197 case CLOBBER:
1198 break;
1200 case SET:
1201 /* Ignore SETs whose result isn't used but not those that
1202 have side-effects. */
1203 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1204 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1205 || INTVAL (XEXP (note, 0)) <= 0)
1206 && ! side_effects_p (elt))
1207 break;
1209 /* If we have already found a SET, this is a second one and
1210 so we cannot combine with this insn. */
1211 if (set)
1212 return 0;
1214 set = elt;
1215 break;
1217 default:
1218 /* Anything else means we can't combine. */
1219 return 0;
1223 if (set == 0
1224 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1225 so don't do anything with it. */
1226 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1227 return 0;
1229 else
1230 return 0;
1232 if (set == 0)
1233 return 0;
1235 set = expand_field_assignment (set);
1236 src = SET_SRC (set), dest = SET_DEST (set);
1238 /* Don't eliminate a store in the stack pointer. */
1239 if (dest == stack_pointer_rtx
1240 /* Don't combine with an insn that sets a register to itself if it has
1241 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1242 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1243 /* Can't merge an ASM_OPERANDS. */
1244 || GET_CODE (src) == ASM_OPERANDS
1245 /* Can't merge a function call. */
1246 || GET_CODE (src) == CALL
1247 /* Don't eliminate a function call argument. */
1248 || (CALL_P (i3)
1249 && (find_reg_fusage (i3, USE, dest)
1250 || (REG_P (dest)
1251 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1252 && global_regs[REGNO (dest)])))
1253 /* Don't substitute into an incremented register. */
1254 || FIND_REG_INC_NOTE (i3, dest)
1255 || (succ && FIND_REG_INC_NOTE (succ, dest))
1256 /* Don't substitute into a non-local goto, this confuses CFG. */
1257 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1258 #if 0
1259 /* Don't combine the end of a libcall into anything. */
1260 /* ??? This gives worse code, and appears to be unnecessary, since no
1261 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1262 use REG_RETVAL notes for noconflict blocks, but other code here
1263 makes sure that those insns don't disappear. */
1264 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1265 #endif
1266 /* Make sure that DEST is not used after SUCC but before I3. */
1267 || (succ && ! all_adjacent
1268 && reg_used_between_p (dest, succ, i3))
1269 /* Make sure that the value that is to be substituted for the register
1270 does not use any registers whose values alter in between. However,
1271 If the insns are adjacent, a use can't cross a set even though we
1272 think it might (this can happen for a sequence of insns each setting
1273 the same destination; last_set of that register might point to
1274 a NOTE). If INSN has a REG_EQUIV note, the register is always
1275 equivalent to the memory so the substitution is valid even if there
1276 are intervening stores. Also, don't move a volatile asm or
1277 UNSPEC_VOLATILE across any other insns. */
1278 || (! all_adjacent
1279 && (((!MEM_P (src)
1280 || ! find_reg_note (insn, REG_EQUIV, src))
1281 && use_crosses_set_p (src, INSN_CUID (insn)))
1282 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1283 || GET_CODE (src) == UNSPEC_VOLATILE))
1284 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1285 better register allocation by not doing the combine. */
1286 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1287 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1288 /* Don't combine across a CALL_INSN, because that would possibly
1289 change whether the life span of some REGs crosses calls or not,
1290 and it is a pain to update that information.
1291 Exception: if source is a constant, moving it later can't hurt.
1292 Accept that special case, because it helps -fforce-addr a lot. */
1293 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1294 return 0;
1296 /* DEST must either be a REG or CC0. */
1297 if (REG_P (dest))
1299 /* If register alignment is being enforced for multi-word items in all
1300 cases except for parameters, it is possible to have a register copy
1301 insn referencing a hard register that is not allowed to contain the
1302 mode being copied and which would not be valid as an operand of most
1303 insns. Eliminate this problem by not combining with such an insn.
1305 Also, on some machines we don't want to extend the life of a hard
1306 register. */
1308 if (REG_P (src)
1309 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1310 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1311 /* Don't extend the life of a hard register unless it is
1312 user variable (if we have few registers) or it can't
1313 fit into the desired register (meaning something special
1314 is going on).
1315 Also avoid substituting a return register into I3, because
1316 reload can't handle a conflict with constraints of other
1317 inputs. */
1318 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1319 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1320 return 0;
1322 else if (GET_CODE (dest) != CC0)
1323 return 0;
1326 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1327 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1328 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1330 /* Don't substitute for a register intended as a clobberable
1331 operand. */
1332 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1333 if (rtx_equal_p (reg, dest))
1334 return 0;
1336 /* If the clobber represents an earlyclobber operand, we must not
1337 substitute an expression containing the clobbered register.
1338 As we do not analyze the constraint strings here, we have to
1339 make the conservative assumption. However, if the register is
1340 a fixed hard reg, the clobber cannot represent any operand;
1341 we leave it up to the machine description to either accept or
1342 reject use-and-clobber patterns. */
1343 if (!REG_P (reg)
1344 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1345 || !fixed_regs[REGNO (reg)])
1346 if (reg_overlap_mentioned_p (reg, src))
1347 return 0;
1350 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1351 or not), reject, unless nothing volatile comes between it and I3 */
1353 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1355 /* Make sure succ doesn't contain a volatile reference. */
1356 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1357 return 0;
1359 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1360 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1361 return 0;
1364 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1365 to be an explicit register variable, and was chosen for a reason. */
1367 if (GET_CODE (src) == ASM_OPERANDS
1368 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1369 return 0;
1371 /* If there are any volatile insns between INSN and I3, reject, because
1372 they might affect machine state. */
1374 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1375 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1376 return 0;
1378 /* If INSN contains an autoincrement or autodecrement, make sure that
1379 register is not used between there and I3, and not already used in
1380 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1381 Also insist that I3 not be a jump; if it were one
1382 and the incremented register were spilled, we would lose. */
1384 #ifdef AUTO_INC_DEC
1385 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1386 if (REG_NOTE_KIND (link) == REG_INC
1387 && (JUMP_P (i3)
1388 || reg_used_between_p (XEXP (link, 0), insn, i3)
1389 || (pred != NULL_RTX
1390 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1391 || (succ != NULL_RTX
1392 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1393 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1394 return 0;
1395 #endif
1397 #ifdef HAVE_cc0
1398 /* Don't combine an insn that follows a CC0-setting insn.
1399 An insn that uses CC0 must not be separated from the one that sets it.
1400 We do, however, allow I2 to follow a CC0-setting insn if that insn
1401 is passed as I1; in that case it will be deleted also.
1402 We also allow combining in this case if all the insns are adjacent
1403 because that would leave the two CC0 insns adjacent as well.
1404 It would be more logical to test whether CC0 occurs inside I1 or I2,
1405 but that would be much slower, and this ought to be equivalent. */
1407 p = prev_nonnote_insn (insn);
1408 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1409 && ! all_adjacent)
1410 return 0;
1411 #endif
1413 /* If we get here, we have passed all the tests and the combination is
1414 to be allowed. */
1416 *pdest = dest;
1417 *psrc = src;
1419 return 1;
1422 /* LOC is the location within I3 that contains its pattern or the component
1423 of a PARALLEL of the pattern. We validate that it is valid for combining.
1425 One problem is if I3 modifies its output, as opposed to replacing it
1426 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1427 so would produce an insn that is not equivalent to the original insns.
1429 Consider:
1431 (set (reg:DI 101) (reg:DI 100))
1432 (set (subreg:SI (reg:DI 101) 0) <foo>)
1434 This is NOT equivalent to:
1436 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1437 (set (reg:DI 101) (reg:DI 100))])
1439 Not only does this modify 100 (in which case it might still be valid
1440 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1442 We can also run into a problem if I2 sets a register that I1
1443 uses and I1 gets directly substituted into I3 (not via I2). In that
1444 case, we would be getting the wrong value of I2DEST into I3, so we
1445 must reject the combination. This case occurs when I2 and I1 both
1446 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1447 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1448 of a SET must prevent combination from occurring.
1450 Before doing the above check, we first try to expand a field assignment
1451 into a set of logical operations.
1453 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1454 we place a register that is both set and used within I3. If more than one
1455 such register is detected, we fail.
1457 Return 1 if the combination is valid, zero otherwise. */
1459 static int
1460 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1461 int i1_not_in_src, rtx *pi3dest_killed)
1463 rtx x = *loc;
1465 if (GET_CODE (x) == SET)
1467 rtx set = x ;
1468 rtx dest = SET_DEST (set);
1469 rtx src = SET_SRC (set);
1470 rtx inner_dest = dest;
1471 rtx subdest;
1473 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1474 || GET_CODE (inner_dest) == SUBREG
1475 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1476 inner_dest = XEXP (inner_dest, 0);
1478 /* Check for the case where I3 modifies its output, as discussed
1479 above. We don't want to prevent pseudos from being combined
1480 into the address of a MEM, so only prevent the combination if
1481 i1 or i2 set the same MEM. */
1482 if ((inner_dest != dest &&
1483 (!MEM_P (inner_dest)
1484 || rtx_equal_p (i2dest, inner_dest)
1485 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1486 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1487 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1489 /* This is the same test done in can_combine_p except we can't test
1490 all_adjacent; we don't have to, since this instruction will stay
1491 in place, thus we are not considering increasing the lifetime of
1492 INNER_DEST.
1494 Also, if this insn sets a function argument, combining it with
1495 something that might need a spill could clobber a previous
1496 function argument; the all_adjacent test in can_combine_p also
1497 checks this; here, we do a more specific test for this case. */
1499 || (REG_P (inner_dest)
1500 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1501 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1502 GET_MODE (inner_dest))))
1503 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1504 return 0;
1506 /* If DEST is used in I3, it is being killed in this insn, so
1507 record that for later. We have to consider paradoxical
1508 subregs here, since they kill the whole register, but we
1509 ignore partial subregs, STRICT_LOW_PART, etc.
1510 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1511 STACK_POINTER_REGNUM, since these are always considered to be
1512 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1513 subdest = dest;
1514 if (GET_CODE (subdest) == SUBREG
1515 && (GET_MODE_SIZE (GET_MODE (subdest))
1516 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1517 subdest = SUBREG_REG (subdest);
1518 if (pi3dest_killed
1519 && REG_P (subdest)
1520 && reg_referenced_p (subdest, PATTERN (i3))
1521 && REGNO (subdest) != FRAME_POINTER_REGNUM
1522 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1523 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1524 #endif
1525 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1526 && (REGNO (subdest) != ARG_POINTER_REGNUM
1527 || ! fixed_regs [REGNO (subdest)])
1528 #endif
1529 && REGNO (subdest) != STACK_POINTER_REGNUM)
1531 if (*pi3dest_killed)
1532 return 0;
1534 *pi3dest_killed = subdest;
1538 else if (GET_CODE (x) == PARALLEL)
1540 int i;
1542 for (i = 0; i < XVECLEN (x, 0); i++)
1543 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1544 i1_not_in_src, pi3dest_killed))
1545 return 0;
1548 return 1;
1551 /* Return 1 if X is an arithmetic expression that contains a multiplication
1552 and division. We don't count multiplications by powers of two here. */
1554 static int
1555 contains_muldiv (rtx x)
1557 switch (GET_CODE (x))
1559 case MOD: case DIV: case UMOD: case UDIV:
1560 return 1;
1562 case MULT:
1563 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1564 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1565 default:
1566 if (BINARY_P (x))
1567 return contains_muldiv (XEXP (x, 0))
1568 || contains_muldiv (XEXP (x, 1));
1570 if (UNARY_P (x))
1571 return contains_muldiv (XEXP (x, 0));
1573 return 0;
1577 /* Determine whether INSN can be used in a combination. Return nonzero if
1578 not. This is used in try_combine to detect early some cases where we
1579 can't perform combinations. */
1581 static int
1582 cant_combine_insn_p (rtx insn)
1584 rtx set;
1585 rtx src, dest;
1587 /* If this isn't really an insn, we can't do anything.
1588 This can occur when flow deletes an insn that it has merged into an
1589 auto-increment address. */
1590 if (! INSN_P (insn))
1591 return 1;
1593 /* Never combine loads and stores involving hard regs that are likely
1594 to be spilled. The register allocator can usually handle such
1595 reg-reg moves by tying. If we allow the combiner to make
1596 substitutions of likely-spilled regs, reload might die.
1597 As an exception, we allow combinations involving fixed regs; these are
1598 not available to the register allocator so there's no risk involved. */
1600 set = single_set (insn);
1601 if (! set)
1602 return 0;
1603 src = SET_SRC (set);
1604 dest = SET_DEST (set);
1605 if (GET_CODE (src) == SUBREG)
1606 src = SUBREG_REG (src);
1607 if (GET_CODE (dest) == SUBREG)
1608 dest = SUBREG_REG (dest);
1609 if (REG_P (src) && REG_P (dest)
1610 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1611 && ! fixed_regs[REGNO (src)]
1612 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1613 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1614 && ! fixed_regs[REGNO (dest)]
1615 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1616 return 1;
1618 return 0;
1621 struct likely_spilled_retval_info
1623 unsigned regno, nregs;
1624 unsigned mask;
1627 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1628 hard registers that are known to be written to / clobbered in full. */
1629 static void
1630 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1632 struct likely_spilled_retval_info *info = data;
1633 unsigned regno, nregs;
1634 unsigned new_mask;
1636 if (!REG_P (XEXP (set, 0)))
1637 return;
1638 regno = REGNO (x);
1639 if (regno >= info->regno + info->nregs)
1640 return;
1641 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1642 if (regno + nregs <= info->regno)
1643 return;
1644 new_mask = (2U << (nregs - 1)) - 1;
1645 if (regno < info->regno)
1646 new_mask >>= info->regno - regno;
1647 else
1648 new_mask <<= regno - info->regno;
1649 info->mask &= new_mask;
1652 /* Return nonzero iff part of the return value is live during INSN, and
1653 it is likely spilled. This can happen when more than one insn is needed
1654 to copy the return value, e.g. when we consider to combine into the
1655 second copy insn for a complex value. */
1657 static int
1658 likely_spilled_retval_p (rtx insn)
1660 rtx use = BB_END (this_basic_block);
1661 rtx reg, p;
1662 unsigned regno, nregs;
1663 /* We assume here that no machine mode needs more than
1664 32 hard registers when the value overlaps with a register
1665 for which FUNCTION_VALUE_REGNO_P is true. */
1666 unsigned mask;
1667 struct likely_spilled_retval_info info;
1669 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1670 return 0;
1671 reg = XEXP (PATTERN (use), 0);
1672 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1673 return 0;
1674 regno = REGNO (reg);
1675 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1676 if (nregs == 1)
1677 return 0;
1678 mask = (2U << (nregs - 1)) - 1;
1680 /* Disregard parts of the return value that are set later. */
1681 info.regno = regno;
1682 info.nregs = nregs;
1683 info.mask = mask;
1684 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1685 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1686 mask = info.mask;
1688 /* Check if any of the (probably) live return value registers is
1689 likely spilled. */
1690 nregs --;
1693 if ((mask & 1 << nregs)
1694 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1695 return 1;
1696 } while (nregs--);
1697 return 0;
1700 /* Adjust INSN after we made a change to its destination.
1702 Changing the destination can invalidate notes that say something about
1703 the results of the insn and a LOG_LINK pointing to the insn. */
1705 static void
1706 adjust_for_new_dest (rtx insn)
1708 rtx *loc;
1710 /* For notes, be conservative and simply remove them. */
1711 loc = &REG_NOTES (insn);
1712 while (*loc)
1714 enum reg_note kind = REG_NOTE_KIND (*loc);
1715 if (kind == REG_EQUAL || kind == REG_EQUIV)
1716 *loc = XEXP (*loc, 1);
1717 else
1718 loc = &XEXP (*loc, 1);
1721 /* The new insn will have a destination that was previously the destination
1722 of an insn just above it. Call distribute_links to make a LOG_LINK from
1723 the next use of that destination. */
1724 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1727 /* Return TRUE if combine can reuse reg X in mode MODE.
1728 ADDED_SETS is nonzero if the original set is still required. */
1729 static bool
1730 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1732 unsigned int regno;
1734 if (!REG_P(x))
1735 return false;
1737 regno = REGNO (x);
1738 /* Allow hard registers if the new mode is legal, and occupies no more
1739 registers than the old mode. */
1740 if (regno < FIRST_PSEUDO_REGISTER)
1741 return (HARD_REGNO_MODE_OK (regno, mode)
1742 && (hard_regno_nregs[regno][GET_MODE (x)]
1743 >= hard_regno_nregs[regno][mode]));
1745 /* Or a pseudo that is only used once. */
1746 return (REG_N_SETS (regno) == 1 && !added_sets
1747 && !REG_USERVAR_P (x));
1751 /* Check whether X, the destination of a set, refers to part of
1752 the register specified by REG. */
1754 static bool
1755 reg_subword_p (rtx x, rtx reg)
1757 /* Check that reg is an integer mode register. */
1758 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
1759 return false;
1761 if (GET_CODE (x) == STRICT_LOW_PART
1762 || GET_CODE (x) == ZERO_EXTRACT)
1763 x = XEXP (x, 0);
1765 return GET_CODE (x) == SUBREG
1766 && SUBREG_REG (x) == reg
1767 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
1771 /* Try to combine the insns I1 and I2 into I3.
1772 Here I1 and I2 appear earlier than I3.
1773 I1 can be zero; then we combine just I2 into I3.
1775 If we are combining three insns and the resulting insn is not recognized,
1776 try splitting it into two insns. If that happens, I2 and I3 are retained
1777 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1778 are pseudo-deleted.
1780 Return 0 if the combination does not work. Then nothing is changed.
1781 If we did the combination, return the insn at which combine should
1782 resume scanning.
1784 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1785 new direct jump instruction. */
1787 static rtx
1788 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1790 /* New patterns for I3 and I2, respectively. */
1791 rtx newpat, newi2pat = 0;
1792 rtvec newpat_vec_with_clobbers = 0;
1793 int substed_i2 = 0, substed_i1 = 0;
1794 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1795 int added_sets_1, added_sets_2;
1796 /* Total number of SETs to put into I3. */
1797 int total_sets;
1798 /* Nonzero if I2's body now appears in I3. */
1799 int i2_is_used;
1800 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1801 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1802 /* Contains I3 if the destination of I3 is used in its source, which means
1803 that the old life of I3 is being killed. If that usage is placed into
1804 I2 and not in I3, a REG_DEAD note must be made. */
1805 rtx i3dest_killed = 0;
1806 /* SET_DEST and SET_SRC of I2 and I1. */
1807 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1808 /* PATTERN (I2), or a copy of it in certain cases. */
1809 rtx i2pat;
1810 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1811 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1812 int i2dest_killed = 0, i1dest_killed = 0;
1813 int i1_feeds_i3 = 0;
1814 /* Notes that must be added to REG_NOTES in I3 and I2. */
1815 rtx new_i3_notes, new_i2_notes;
1816 /* Notes that we substituted I3 into I2 instead of the normal case. */
1817 int i3_subst_into_i2 = 0;
1818 /* Notes that I1, I2 or I3 is a MULT operation. */
1819 int have_mult = 0;
1820 int swap_i2i3 = 0;
1822 int maxreg;
1823 rtx temp;
1824 rtx link;
1825 int i;
1827 /* Exit early if one of the insns involved can't be used for
1828 combinations. */
1829 if (cant_combine_insn_p (i3)
1830 || cant_combine_insn_p (i2)
1831 || (i1 && cant_combine_insn_p (i1))
1832 || likely_spilled_retval_p (i3)
1833 /* We also can't do anything if I3 has a
1834 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1835 libcall. */
1836 #if 0
1837 /* ??? This gives worse code, and appears to be unnecessary, since no
1838 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1839 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1840 #endif
1842 return 0;
1844 combine_attempts++;
1845 undobuf.other_insn = 0;
1847 /* Reset the hard register usage information. */
1848 CLEAR_HARD_REG_SET (newpat_used_regs);
1850 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1851 code below, set I1 to be the earlier of the two insns. */
1852 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1853 temp = i1, i1 = i2, i2 = temp;
1855 added_links_insn = 0;
1857 /* First check for one important special-case that the code below will
1858 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1859 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1860 we may be able to replace that destination with the destination of I3.
1861 This occurs in the common code where we compute both a quotient and
1862 remainder into a structure, in which case we want to do the computation
1863 directly into the structure to avoid register-register copies.
1865 Note that this case handles both multiple sets in I2 and also
1866 cases where I2 has a number of CLOBBER or PARALLELs.
1868 We make very conservative checks below and only try to handle the
1869 most common cases of this. For example, we only handle the case
1870 where I2 and I3 are adjacent to avoid making difficult register
1871 usage tests. */
1873 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1874 && REG_P (SET_SRC (PATTERN (i3)))
1875 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1876 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1877 && GET_CODE (PATTERN (i2)) == PARALLEL
1878 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1879 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1880 below would need to check what is inside (and reg_overlap_mentioned_p
1881 doesn't support those codes anyway). Don't allow those destinations;
1882 the resulting insn isn't likely to be recognized anyway. */
1883 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1884 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1885 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1886 SET_DEST (PATTERN (i3)))
1887 && next_real_insn (i2) == i3)
1889 rtx p2 = PATTERN (i2);
1891 /* Make sure that the destination of I3,
1892 which we are going to substitute into one output of I2,
1893 is not used within another output of I2. We must avoid making this:
1894 (parallel [(set (mem (reg 69)) ...)
1895 (set (reg 69) ...)])
1896 which is not well-defined as to order of actions.
1897 (Besides, reload can't handle output reloads for this.)
1899 The problem can also happen if the dest of I3 is a memory ref,
1900 if another dest in I2 is an indirect memory ref. */
1901 for (i = 0; i < XVECLEN (p2, 0); i++)
1902 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1903 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1904 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1905 SET_DEST (XVECEXP (p2, 0, i))))
1906 break;
1908 if (i == XVECLEN (p2, 0))
1909 for (i = 0; i < XVECLEN (p2, 0); i++)
1910 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1911 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1912 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1914 combine_merges++;
1916 subst_insn = i3;
1917 subst_low_cuid = INSN_CUID (i2);
1919 added_sets_2 = added_sets_1 = 0;
1920 i2dest = SET_SRC (PATTERN (i3));
1921 i2dest_killed = dead_or_set_p (i2, i2dest);
1923 /* Replace the dest in I2 with our dest and make the resulting
1924 insn the new pattern for I3. Then skip to where we
1925 validate the pattern. Everything was set up above. */
1926 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1927 SET_DEST (PATTERN (i3)));
1929 newpat = p2;
1930 i3_subst_into_i2 = 1;
1931 goto validate_replacement;
1935 /* If I2 is setting a pseudo to a constant and I3 is setting some
1936 sub-part of it to another constant, merge them by making a new
1937 constant. */
1938 if (i1 == 0
1939 && (temp = single_set (i2)) != 0
1940 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1941 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1942 && GET_CODE (PATTERN (i3)) == SET
1943 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
1944 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
1945 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
1947 rtx dest = SET_DEST (PATTERN (i3));
1948 int offset = -1;
1949 int width = 0;
1951 if (GET_CODE (dest) == ZERO_EXTRACT)
1953 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
1954 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
1956 width = INTVAL (XEXP (dest, 1));
1957 offset = INTVAL (XEXP (dest, 2));
1958 dest = XEXP (dest, 0);
1959 if (BITS_BIG_ENDIAN)
1960 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
1963 else
1965 if (GET_CODE (dest) == STRICT_LOW_PART)
1966 dest = XEXP (dest, 0);
1967 width = GET_MODE_BITSIZE (GET_MODE (dest));
1968 offset = 0;
1971 if (offset >= 0)
1973 /* If this is the low part, we're done. */
1974 if (subreg_lowpart_p (dest))
1976 /* Handle the case where inner is twice the size of outer. */
1977 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
1978 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
1979 offset += GET_MODE_BITSIZE (GET_MODE (dest));
1980 /* Otherwise give up for now. */
1981 else
1982 offset = -1;
1985 if (offset >= 0)
1987 HOST_WIDE_INT mhi, ohi, ihi;
1988 HOST_WIDE_INT mlo, olo, ilo;
1989 rtx inner = SET_SRC (PATTERN (i3));
1990 rtx outer = SET_SRC (temp);
1992 if (GET_CODE (outer) == CONST_INT)
1994 olo = INTVAL (outer);
1995 ohi = olo < 0 ? -1 : 0;
1997 else
1999 olo = CONST_DOUBLE_LOW (outer);
2000 ohi = CONST_DOUBLE_HIGH (outer);
2003 if (GET_CODE (inner) == CONST_INT)
2005 ilo = INTVAL (inner);
2006 ihi = ilo < 0 ? -1 : 0;
2008 else
2010 ilo = CONST_DOUBLE_LOW (inner);
2011 ihi = CONST_DOUBLE_HIGH (inner);
2014 if (width < HOST_BITS_PER_WIDE_INT)
2016 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2017 mhi = 0;
2019 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2021 mhi = ((unsigned HOST_WIDE_INT) 1
2022 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2023 mlo = -1;
2025 else
2027 mlo = -1;
2028 mhi = -1;
2031 ilo &= mlo;
2032 ihi &= mhi;
2034 if (offset >= HOST_BITS_PER_WIDE_INT)
2036 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2037 mlo = 0;
2038 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2039 ilo = 0;
2041 else if (offset > 0)
2043 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2044 >> (HOST_BITS_PER_WIDE_INT - offset));
2045 mlo = mlo << offset;
2046 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2047 >> (HOST_BITS_PER_WIDE_INT - offset));
2048 ilo = ilo << offset;
2051 olo = (olo & ~mlo) | ilo;
2052 ohi = (ohi & ~mhi) | ihi;
2054 combine_merges++;
2055 subst_insn = i3;
2056 subst_low_cuid = INSN_CUID (i2);
2057 added_sets_2 = added_sets_1 = 0;
2058 i2dest = SET_DEST (temp);
2059 i2dest_killed = dead_or_set_p (i2, i2dest);
2061 SUBST (SET_SRC (temp),
2062 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2064 newpat = PATTERN (i2);
2065 goto validate_replacement;
2069 #ifndef HAVE_cc0
2070 /* If we have no I1 and I2 looks like:
2071 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2072 (set Y OP)])
2073 make up a dummy I1 that is
2074 (set Y OP)
2075 and change I2 to be
2076 (set (reg:CC X) (compare:CC Y (const_int 0)))
2078 (We can ignore any trailing CLOBBERs.)
2080 This undoes a previous combination and allows us to match a branch-and-
2081 decrement insn. */
2083 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2084 && XVECLEN (PATTERN (i2), 0) >= 2
2085 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2086 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2087 == MODE_CC)
2088 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2089 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2090 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2091 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2092 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2093 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2095 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2096 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2097 break;
2099 if (i == 1)
2101 /* We make I1 with the same INSN_UID as I2. This gives it
2102 the same INSN_CUID for value tracking. Our fake I1 will
2103 never appear in the insn stream so giving it the same INSN_UID
2104 as I2 will not cause a problem. */
2106 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2107 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2108 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
2109 NULL_RTX);
2111 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2112 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2113 SET_DEST (PATTERN (i1)));
2116 #endif
2118 /* Verify that I2 and I1 are valid for combining. */
2119 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2120 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2122 undo_all ();
2123 return 0;
2126 /* Record whether I2DEST is used in I2SRC and similarly for the other
2127 cases. Knowing this will help in register status updating below. */
2128 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2129 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2130 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2131 i2dest_killed = dead_or_set_p (i2, i2dest);
2132 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2134 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2135 in I2SRC. */
2136 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2138 /* Ensure that I3's pattern can be the destination of combines. */
2139 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2140 i1 && i2dest_in_i1src && i1_feeds_i3,
2141 &i3dest_killed))
2143 undo_all ();
2144 return 0;
2147 /* See if any of the insns is a MULT operation. Unless one is, we will
2148 reject a combination that is, since it must be slower. Be conservative
2149 here. */
2150 if (GET_CODE (i2src) == MULT
2151 || (i1 != 0 && GET_CODE (i1src) == MULT)
2152 || (GET_CODE (PATTERN (i3)) == SET
2153 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2154 have_mult = 1;
2156 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2157 We used to do this EXCEPT in one case: I3 has a post-inc in an
2158 output operand. However, that exception can give rise to insns like
2159 mov r3,(r3)+
2160 which is a famous insn on the PDP-11 where the value of r3 used as the
2161 source was model-dependent. Avoid this sort of thing. */
2163 #if 0
2164 if (!(GET_CODE (PATTERN (i3)) == SET
2165 && REG_P (SET_SRC (PATTERN (i3)))
2166 && MEM_P (SET_DEST (PATTERN (i3)))
2167 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2168 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2169 /* It's not the exception. */
2170 #endif
2171 #ifdef AUTO_INC_DEC
2172 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2173 if (REG_NOTE_KIND (link) == REG_INC
2174 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2175 || (i1 != 0
2176 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2178 undo_all ();
2179 return 0;
2181 #endif
2183 /* See if the SETs in I1 or I2 need to be kept around in the merged
2184 instruction: whenever the value set there is still needed past I3.
2185 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2187 For the SET in I1, we have two cases: If I1 and I2 independently
2188 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2189 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2190 in I1 needs to be kept around unless I1DEST dies or is set in either
2191 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2192 I1DEST. If so, we know I1 feeds into I2. */
2194 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2196 added_sets_1
2197 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2198 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2200 /* If the set in I2 needs to be kept around, we must make a copy of
2201 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2202 PATTERN (I2), we are only substituting for the original I1DEST, not into
2203 an already-substituted copy. This also prevents making self-referential
2204 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2205 I2DEST. */
2207 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2208 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2209 : PATTERN (i2));
2211 if (added_sets_2)
2212 i2pat = copy_rtx (i2pat);
2214 combine_merges++;
2216 /* Substitute in the latest insn for the regs set by the earlier ones. */
2218 maxreg = max_reg_num ();
2220 subst_insn = i3;
2222 #ifndef HAVE_cc0
2223 /* Many machines that don't use CC0 have insns that can both perform an
2224 arithmetic operation and set the condition code. These operations will
2225 be represented as a PARALLEL with the first element of the vector
2226 being a COMPARE of an arithmetic operation with the constant zero.
2227 The second element of the vector will set some pseudo to the result
2228 of the same arithmetic operation. If we simplify the COMPARE, we won't
2229 match such a pattern and so will generate an extra insn. Here we test
2230 for this case, where both the comparison and the operation result are
2231 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2232 I2SRC. Later we will make the PARALLEL that contains I2. */
2234 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2235 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2236 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2237 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2239 #ifdef SELECT_CC_MODE
2240 rtx *cc_use;
2241 enum machine_mode compare_mode;
2242 #endif
2244 newpat = PATTERN (i3);
2245 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2247 i2_is_used = 1;
2249 #ifdef SELECT_CC_MODE
2250 /* See if a COMPARE with the operand we substituted in should be done
2251 with the mode that is currently being used. If not, do the same
2252 processing we do in `subst' for a SET; namely, if the destination
2253 is used only once, try to replace it with a register of the proper
2254 mode and also replace the COMPARE. */
2255 if (undobuf.other_insn == 0
2256 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2257 &undobuf.other_insn))
2258 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2259 i2src, const0_rtx))
2260 != GET_MODE (SET_DEST (newpat))))
2262 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2263 compare_mode))
2265 unsigned int regno = REGNO (SET_DEST (newpat));
2266 rtx new_dest;
2268 if (regno < FIRST_PSEUDO_REGISTER)
2269 new_dest = gen_rtx_REG (compare_mode, regno);
2270 else
2272 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2273 new_dest = regno_reg_rtx[regno];
2276 SUBST (SET_DEST (newpat), new_dest);
2277 SUBST (XEXP (*cc_use, 0), new_dest);
2278 SUBST (SET_SRC (newpat),
2279 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2281 else
2282 undobuf.other_insn = 0;
2284 #endif
2286 else
2287 #endif
2289 /* It is possible that the source of I2 or I1 may be performing
2290 an unneeded operation, such as a ZERO_EXTEND of something
2291 that is known to have the high part zero. Handle that case
2292 by letting subst look at the innermost one of them.
2294 Another way to do this would be to have a function that tries
2295 to simplify a single insn instead of merging two or more
2296 insns. We don't do this because of the potential of infinite
2297 loops and because of the potential extra memory required.
2298 However, doing it the way we are is a bit of a kludge and
2299 doesn't catch all cases.
2301 But only do this if -fexpensive-optimizations since it slows
2302 things down and doesn't usually win.
2304 This is not done in the COMPARE case above because the
2305 unmodified I2PAT is used in the PARALLEL and so a pattern
2306 with a modified I2SRC would not match. */
2308 if (flag_expensive_optimizations)
2310 /* Pass pc_rtx so no substitutions are done, just
2311 simplifications. */
2312 if (i1)
2314 subst_low_cuid = INSN_CUID (i1);
2315 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2317 else
2319 subst_low_cuid = INSN_CUID (i2);
2320 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2324 n_occurrences = 0; /* `subst' counts here */
2326 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2327 need to make a unique copy of I2SRC each time we substitute it
2328 to avoid self-referential rtl. */
2330 subst_low_cuid = INSN_CUID (i2);
2331 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2332 ! i1_feeds_i3 && i1dest_in_i1src);
2333 substed_i2 = 1;
2335 /* Record whether i2's body now appears within i3's body. */
2336 i2_is_used = n_occurrences;
2339 /* If we already got a failure, don't try to do more. Otherwise,
2340 try to substitute in I1 if we have it. */
2342 if (i1 && GET_CODE (newpat) != CLOBBER)
2344 /* Before we can do this substitution, we must redo the test done
2345 above (see detailed comments there) that ensures that I1DEST
2346 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2348 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2349 0, (rtx*) 0))
2351 undo_all ();
2352 return 0;
2355 n_occurrences = 0;
2356 subst_low_cuid = INSN_CUID (i1);
2357 newpat = subst (newpat, i1dest, i1src, 0, 0);
2358 substed_i1 = 1;
2361 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2362 to count all the ways that I2SRC and I1SRC can be used. */
2363 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2364 && i2_is_used + added_sets_2 > 1)
2365 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2366 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2367 > 1))
2368 /* Fail if we tried to make a new register. */
2369 || max_reg_num () != maxreg
2370 /* Fail if we couldn't do something and have a CLOBBER. */
2371 || GET_CODE (newpat) == CLOBBER
2372 /* Fail if this new pattern is a MULT and we didn't have one before
2373 at the outer level. */
2374 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2375 && ! have_mult))
2377 undo_all ();
2378 return 0;
2381 /* If the actions of the earlier insns must be kept
2382 in addition to substituting them into the latest one,
2383 we must make a new PARALLEL for the latest insn
2384 to hold additional the SETs. */
2386 if (added_sets_1 || added_sets_2)
2388 combine_extras++;
2390 if (GET_CODE (newpat) == PARALLEL)
2392 rtvec old = XVEC (newpat, 0);
2393 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2394 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2395 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2396 sizeof (old->elem[0]) * old->num_elem);
2398 else
2400 rtx old = newpat;
2401 total_sets = 1 + added_sets_1 + added_sets_2;
2402 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2403 XVECEXP (newpat, 0, 0) = old;
2406 if (added_sets_1)
2407 XVECEXP (newpat, 0, --total_sets)
2408 = (GET_CODE (PATTERN (i1)) == PARALLEL
2409 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2411 if (added_sets_2)
2413 /* If there is no I1, use I2's body as is. We used to also not do
2414 the subst call below if I2 was substituted into I3,
2415 but that could lose a simplification. */
2416 if (i1 == 0)
2417 XVECEXP (newpat, 0, --total_sets) = i2pat;
2418 else
2419 /* See comment where i2pat is assigned. */
2420 XVECEXP (newpat, 0, --total_sets)
2421 = subst (i2pat, i1dest, i1src, 0, 0);
2425 /* We come here when we are replacing a destination in I2 with the
2426 destination of I3. */
2427 validate_replacement:
2429 /* Note which hard regs this insn has as inputs. */
2430 mark_used_regs_combine (newpat);
2432 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2433 consider splitting this pattern, we might need these clobbers. */
2434 if (i1 && GET_CODE (newpat) == PARALLEL
2435 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2437 int len = XVECLEN (newpat, 0);
2439 newpat_vec_with_clobbers = rtvec_alloc (len);
2440 for (i = 0; i < len; i++)
2441 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2444 /* Is the result of combination a valid instruction? */
2445 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2447 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2448 the second SET's destination is a register that is unused and isn't
2449 marked as an instruction that might trap in an EH region. In that case,
2450 we just need the first SET. This can occur when simplifying a divmod
2451 insn. We *must* test for this case here because the code below that
2452 splits two independent SETs doesn't handle this case correctly when it
2453 updates the register status.
2455 It's pointless doing this if we originally had two sets, one from
2456 i3, and one from i2. Combining then splitting the parallel results
2457 in the original i2 again plus an invalid insn (which we delete).
2458 The net effect is only to move instructions around, which makes
2459 debug info less accurate.
2461 Also check the case where the first SET's destination is unused.
2462 That would not cause incorrect code, but does cause an unneeded
2463 insn to remain. */
2465 if (insn_code_number < 0
2466 && !(added_sets_2 && i1 == 0)
2467 && GET_CODE (newpat) == PARALLEL
2468 && XVECLEN (newpat, 0) == 2
2469 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2470 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2471 && asm_noperands (newpat) < 0)
2473 rtx set0 = XVECEXP (newpat, 0, 0);
2474 rtx set1 = XVECEXP (newpat, 0, 1);
2475 rtx note;
2477 if (((REG_P (SET_DEST (set1))
2478 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2479 || (GET_CODE (SET_DEST (set1)) == SUBREG
2480 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2481 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2482 || INTVAL (XEXP (note, 0)) <= 0)
2483 && ! side_effects_p (SET_SRC (set1)))
2485 newpat = set0;
2486 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2489 else if (((REG_P (SET_DEST (set0))
2490 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2491 || (GET_CODE (SET_DEST (set0)) == SUBREG
2492 && find_reg_note (i3, REG_UNUSED,
2493 SUBREG_REG (SET_DEST (set0)))))
2494 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2495 || INTVAL (XEXP (note, 0)) <= 0)
2496 && ! side_effects_p (SET_SRC (set0)))
2498 newpat = set1;
2499 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2501 if (insn_code_number >= 0)
2503 /* If we will be able to accept this, we have made a
2504 change to the destination of I3. This requires us to
2505 do a few adjustments. */
2507 PATTERN (i3) = newpat;
2508 adjust_for_new_dest (i3);
2513 /* If we were combining three insns and the result is a simple SET
2514 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2515 insns. There are two ways to do this. It can be split using a
2516 machine-specific method (like when you have an addition of a large
2517 constant) or by combine in the function find_split_point. */
2519 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2520 && asm_noperands (newpat) < 0)
2522 rtx m_split, *split;
2524 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2525 use I2DEST as a scratch register will help. In the latter case,
2526 convert I2DEST to the mode of the source of NEWPAT if we can. */
2528 m_split = split_insns (newpat, i3);
2530 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2531 inputs of NEWPAT. */
2533 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2534 possible to try that as a scratch reg. This would require adding
2535 more code to make it work though. */
2537 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2539 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2541 /* First try to split using the original register as a
2542 scratch register. */
2543 m_split = split_insns (gen_rtx_PARALLEL
2544 (VOIDmode,
2545 gen_rtvec (2, newpat,
2546 gen_rtx_CLOBBER (VOIDmode,
2547 i2dest))),
2548 i3);
2550 /* If that didn't work, try changing the mode of I2DEST if
2551 we can. */
2552 if (m_split == 0
2553 && new_mode != GET_MODE (i2dest)
2554 && new_mode != VOIDmode
2555 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2557 enum machine_mode old_mode = GET_MODE (i2dest);
2558 rtx ni2dest;
2560 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2561 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2562 else
2564 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2565 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2568 m_split = split_insns (gen_rtx_PARALLEL
2569 (VOIDmode,
2570 gen_rtvec (2, newpat,
2571 gen_rtx_CLOBBER (VOIDmode,
2572 ni2dest))),
2573 i3);
2575 if (m_split == 0
2576 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2578 struct undo *buf;
2580 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2581 buf = undobuf.undos;
2582 undobuf.undos = buf->next;
2583 buf->next = undobuf.frees;
2584 undobuf.frees = buf;
2589 /* If recog_for_combine has discarded clobbers, try to use them
2590 again for the split. */
2591 if (m_split == 0 && newpat_vec_with_clobbers)
2592 m_split
2593 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2594 newpat_vec_with_clobbers), i3);
2596 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2598 m_split = PATTERN (m_split);
2599 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2600 if (insn_code_number >= 0)
2601 newpat = m_split;
2603 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2604 && (next_real_insn (i2) == i3
2605 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2607 rtx i2set, i3set;
2608 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2609 newi2pat = PATTERN (m_split);
2611 i3set = single_set (NEXT_INSN (m_split));
2612 i2set = single_set (m_split);
2614 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2616 /* If I2 or I3 has multiple SETs, we won't know how to track
2617 register status, so don't use these insns. If I2's destination
2618 is used between I2 and I3, we also can't use these insns. */
2620 if (i2_code_number >= 0 && i2set && i3set
2621 && (next_real_insn (i2) == i3
2622 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2623 insn_code_number = recog_for_combine (&newi3pat, i3,
2624 &new_i3_notes);
2625 if (insn_code_number >= 0)
2626 newpat = newi3pat;
2628 /* It is possible that both insns now set the destination of I3.
2629 If so, we must show an extra use of it. */
2631 if (insn_code_number >= 0)
2633 rtx new_i3_dest = SET_DEST (i3set);
2634 rtx new_i2_dest = SET_DEST (i2set);
2636 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2637 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2638 || GET_CODE (new_i3_dest) == SUBREG)
2639 new_i3_dest = XEXP (new_i3_dest, 0);
2641 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2642 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2643 || GET_CODE (new_i2_dest) == SUBREG)
2644 new_i2_dest = XEXP (new_i2_dest, 0);
2646 if (REG_P (new_i3_dest)
2647 && REG_P (new_i2_dest)
2648 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2649 REG_N_SETS (REGNO (new_i2_dest))++;
2653 /* If we can split it and use I2DEST, go ahead and see if that
2654 helps things be recognized. Verify that none of the registers
2655 are set between I2 and I3. */
2656 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2657 #ifdef HAVE_cc0
2658 && REG_P (i2dest)
2659 #endif
2660 /* We need I2DEST in the proper mode. If it is a hard register
2661 or the only use of a pseudo, we can change its mode.
2662 Make sure we don't change a hard register to have a mode that
2663 isn't valid for it, or change the number of registers. */
2664 && (GET_MODE (*split) == GET_MODE (i2dest)
2665 || GET_MODE (*split) == VOIDmode
2666 || can_change_dest_mode (i2dest, added_sets_2,
2667 GET_MODE (*split)))
2668 && (next_real_insn (i2) == i3
2669 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2670 /* We can't overwrite I2DEST if its value is still used by
2671 NEWPAT. */
2672 && ! reg_referenced_p (i2dest, newpat))
2674 rtx newdest = i2dest;
2675 enum rtx_code split_code = GET_CODE (*split);
2676 enum machine_mode split_mode = GET_MODE (*split);
2677 bool subst_done = false;
2678 newi2pat = NULL_RTX;
2680 /* Get NEWDEST as a register in the proper mode. We have already
2681 validated that we can do this. */
2682 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2684 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2685 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2686 else
2688 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
2689 newdest = regno_reg_rtx[REGNO (i2dest)];
2693 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2694 an ASHIFT. This can occur if it was inside a PLUS and hence
2695 appeared to be a memory address. This is a kludge. */
2696 if (split_code == MULT
2697 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2698 && INTVAL (XEXP (*split, 1)) > 0
2699 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2701 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2702 XEXP (*split, 0), GEN_INT (i)));
2703 /* Update split_code because we may not have a multiply
2704 anymore. */
2705 split_code = GET_CODE (*split);
2708 #ifdef INSN_SCHEDULING
2709 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2710 be written as a ZERO_EXTEND. */
2711 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2713 #ifdef LOAD_EXTEND_OP
2714 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2715 what it really is. */
2716 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2717 == SIGN_EXTEND)
2718 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2719 SUBREG_REG (*split)));
2720 else
2721 #endif
2722 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2723 SUBREG_REG (*split)));
2725 #endif
2727 /* Attempt to split binary operators using arithmetic identities. */
2728 if (BINARY_P (SET_SRC (newpat))
2729 && split_mode == GET_MODE (SET_SRC (newpat))
2730 && ! side_effects_p (SET_SRC (newpat)))
2732 rtx setsrc = SET_SRC (newpat);
2733 enum machine_mode mode = GET_MODE (setsrc);
2734 enum rtx_code code = GET_CODE (setsrc);
2735 rtx src_op0 = XEXP (setsrc, 0);
2736 rtx src_op1 = XEXP (setsrc, 1);
2738 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2739 if (rtx_equal_p (src_op0, src_op1))
2741 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2742 SUBST (XEXP (setsrc, 0), newdest);
2743 SUBST (XEXP (setsrc, 1), newdest);
2744 subst_done = true;
2746 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2747 else if ((code == PLUS || code == MULT)
2748 && GET_CODE (src_op0) == code
2749 && GET_CODE (XEXP (src_op0, 0)) == code
2750 && (INTEGRAL_MODE_P (mode)
2751 || (FLOAT_MODE_P (mode)
2752 && flag_unsafe_math_optimizations)))
2754 rtx p = XEXP (XEXP (src_op0, 0), 0);
2755 rtx q = XEXP (XEXP (src_op0, 0), 1);
2756 rtx r = XEXP (src_op0, 1);
2757 rtx s = src_op1;
2759 /* Split both "((X op Y) op X) op Y" and
2760 "((X op Y) op Y) op X" as "T op T" where T is
2761 "X op Y". */
2762 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2763 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2765 newi2pat = gen_rtx_SET (VOIDmode, newdest,
2766 XEXP (src_op0, 0));
2767 SUBST (XEXP (setsrc, 0), newdest);
2768 SUBST (XEXP (setsrc, 1), newdest);
2769 subst_done = true;
2771 /* Split "((X op X) op Y) op Y)" as "T op T" where
2772 T is "X op Y". */
2773 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2775 rtx tmp = simplify_gen_binary (code, mode, p, r);
2776 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2777 SUBST (XEXP (setsrc, 0), newdest);
2778 SUBST (XEXP (setsrc, 1), newdest);
2779 subst_done = true;
2784 if (!subst_done)
2786 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2787 SUBST (*split, newdest);
2790 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2792 /* recog_for_combine might have added CLOBBERs to newi2pat.
2793 Make sure NEWPAT does not depend on the clobbered regs. */
2794 if (GET_CODE (newi2pat) == PARALLEL)
2795 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2796 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2798 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2799 if (reg_overlap_mentioned_p (reg, newpat))
2801 undo_all ();
2802 return 0;
2806 /* If the split point was a MULT and we didn't have one before,
2807 don't use one now. */
2808 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2809 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2813 /* Check for a case where we loaded from memory in a narrow mode and
2814 then sign extended it, but we need both registers. In that case,
2815 we have a PARALLEL with both loads from the same memory location.
2816 We can split this into a load from memory followed by a register-register
2817 copy. This saves at least one insn, more if register allocation can
2818 eliminate the copy.
2820 We cannot do this if the destination of the first assignment is a
2821 condition code register or cc0. We eliminate this case by making sure
2822 the SET_DEST and SET_SRC have the same mode.
2824 We cannot do this if the destination of the second assignment is
2825 a register that we have already assumed is zero-extended. Similarly
2826 for a SUBREG of such a register. */
2828 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2829 && GET_CODE (newpat) == PARALLEL
2830 && XVECLEN (newpat, 0) == 2
2831 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2832 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2833 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2834 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2835 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2836 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2837 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2838 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2839 INSN_CUID (i2))
2840 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2841 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2842 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2843 (REG_P (temp)
2844 && reg_stat[REGNO (temp)].nonzero_bits != 0
2845 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2846 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2847 && (reg_stat[REGNO (temp)].nonzero_bits
2848 != GET_MODE_MASK (word_mode))))
2849 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2850 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2851 (REG_P (temp)
2852 && reg_stat[REGNO (temp)].nonzero_bits != 0
2853 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2854 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2855 && (reg_stat[REGNO (temp)].nonzero_bits
2856 != GET_MODE_MASK (word_mode)))))
2857 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2858 SET_SRC (XVECEXP (newpat, 0, 1)))
2859 && ! find_reg_note (i3, REG_UNUSED,
2860 SET_DEST (XVECEXP (newpat, 0, 0))))
2862 rtx ni2dest;
2864 newi2pat = XVECEXP (newpat, 0, 0);
2865 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2866 newpat = XVECEXP (newpat, 0, 1);
2867 SUBST (SET_SRC (newpat),
2868 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2869 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2871 if (i2_code_number >= 0)
2872 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2874 if (insn_code_number >= 0)
2875 swap_i2i3 = 1;
2878 /* Similarly, check for a case where we have a PARALLEL of two independent
2879 SETs but we started with three insns. In this case, we can do the sets
2880 as two separate insns. This case occurs when some SET allows two
2881 other insns to combine, but the destination of that SET is still live. */
2883 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2884 && GET_CODE (newpat) == PARALLEL
2885 && XVECLEN (newpat, 0) == 2
2886 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2887 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2888 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2889 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2890 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2891 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2892 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2893 INSN_CUID (i2))
2894 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2895 XVECEXP (newpat, 0, 0))
2896 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2897 XVECEXP (newpat, 0, 1))
2898 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2899 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2901 /* Normally, it doesn't matter which of the two is done first,
2902 but it does if one references cc0. In that case, it has to
2903 be first. */
2904 #ifdef HAVE_cc0
2905 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2907 newi2pat = XVECEXP (newpat, 0, 0);
2908 newpat = XVECEXP (newpat, 0, 1);
2910 else
2911 #endif
2913 newi2pat = XVECEXP (newpat, 0, 1);
2914 newpat = XVECEXP (newpat, 0, 0);
2917 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2919 if (i2_code_number >= 0)
2920 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2923 /* If it still isn't recognized, fail and change things back the way they
2924 were. */
2925 if ((insn_code_number < 0
2926 /* Is the result a reasonable ASM_OPERANDS? */
2927 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2929 undo_all ();
2930 return 0;
2933 /* If we had to change another insn, make sure it is valid also. */
2934 if (undobuf.other_insn)
2936 rtx other_pat = PATTERN (undobuf.other_insn);
2937 rtx new_other_notes;
2938 rtx note, next;
2940 CLEAR_HARD_REG_SET (newpat_used_regs);
2942 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2943 &new_other_notes);
2945 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2947 undo_all ();
2948 return 0;
2951 PATTERN (undobuf.other_insn) = other_pat;
2953 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2954 are still valid. Then add any non-duplicate notes added by
2955 recog_for_combine. */
2956 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2958 next = XEXP (note, 1);
2960 if (REG_NOTE_KIND (note) == REG_UNUSED
2961 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2963 if (REG_P (XEXP (note, 0)))
2964 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2966 remove_note (undobuf.other_insn, note);
2970 for (note = new_other_notes; note; note = XEXP (note, 1))
2971 if (REG_P (XEXP (note, 0)))
2972 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2974 distribute_notes (new_other_notes, undobuf.other_insn,
2975 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2977 #ifdef HAVE_cc0
2978 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2979 they are adjacent to each other or not. */
2981 rtx p = prev_nonnote_insn (i3);
2982 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2983 && sets_cc0_p (newi2pat))
2985 undo_all ();
2986 return 0;
2989 #endif
2991 /* Only allow this combination if insn_rtx_costs reports that the
2992 replacement instructions are cheaper than the originals. */
2993 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2995 undo_all ();
2996 return 0;
2999 /* We now know that we can do this combination. Merge the insns and
3000 update the status of registers and LOG_LINKS. */
3002 if (swap_i2i3)
3004 rtx insn;
3005 rtx link;
3006 rtx ni2dest;
3008 /* I3 now uses what used to be its destination and which is now
3009 I2's destination. This requires us to do a few adjustments. */
3010 PATTERN (i3) = newpat;
3011 adjust_for_new_dest (i3);
3013 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3014 so we still will.
3016 However, some later insn might be using I2's dest and have
3017 a LOG_LINK pointing at I3. We must remove this link.
3018 The simplest way to remove the link is to point it at I1,
3019 which we know will be a NOTE. */
3021 /* newi2pat is usually a SET here; however, recog_for_combine might
3022 have added some clobbers. */
3023 if (GET_CODE (newi2pat) == PARALLEL)
3024 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3025 else
3026 ni2dest = SET_DEST (newi2pat);
3028 for (insn = NEXT_INSN (i3);
3029 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3030 || insn != BB_HEAD (this_basic_block->next_bb));
3031 insn = NEXT_INSN (insn))
3033 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3035 for (link = LOG_LINKS (insn); link;
3036 link = XEXP (link, 1))
3037 if (XEXP (link, 0) == i3)
3038 XEXP (link, 0) = i1;
3040 break;
3046 rtx i3notes, i2notes, i1notes = 0;
3047 rtx i3links, i2links, i1links = 0;
3048 rtx midnotes = 0;
3049 unsigned int regno;
3050 /* Compute which registers we expect to eliminate. newi2pat may be setting
3051 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3052 same as i3dest, in which case newi2pat may be setting i1dest. */
3053 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3054 || i2dest_in_i2src || i2dest_in_i1src
3055 || !i2dest_killed
3056 ? 0 : i2dest);
3057 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3058 || (newi2pat && reg_set_p (i1dest, newi2pat))
3059 || !i1dest_killed
3060 ? 0 : i1dest);
3062 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3063 clear them. */
3064 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3065 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3066 if (i1)
3067 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3069 /* Ensure that we do not have something that should not be shared but
3070 occurs multiple times in the new insns. Check this by first
3071 resetting all the `used' flags and then copying anything is shared. */
3073 reset_used_flags (i3notes);
3074 reset_used_flags (i2notes);
3075 reset_used_flags (i1notes);
3076 reset_used_flags (newpat);
3077 reset_used_flags (newi2pat);
3078 if (undobuf.other_insn)
3079 reset_used_flags (PATTERN (undobuf.other_insn));
3081 i3notes = copy_rtx_if_shared (i3notes);
3082 i2notes = copy_rtx_if_shared (i2notes);
3083 i1notes = copy_rtx_if_shared (i1notes);
3084 newpat = copy_rtx_if_shared (newpat);
3085 newi2pat = copy_rtx_if_shared (newi2pat);
3086 if (undobuf.other_insn)
3087 reset_used_flags (PATTERN (undobuf.other_insn));
3089 INSN_CODE (i3) = insn_code_number;
3090 PATTERN (i3) = newpat;
3092 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3094 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3096 reset_used_flags (call_usage);
3097 call_usage = copy_rtx (call_usage);
3099 if (substed_i2)
3100 replace_rtx (call_usage, i2dest, i2src);
3102 if (substed_i1)
3103 replace_rtx (call_usage, i1dest, i1src);
3105 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3108 if (undobuf.other_insn)
3109 INSN_CODE (undobuf.other_insn) = other_code_number;
3111 /* We had one special case above where I2 had more than one set and
3112 we replaced a destination of one of those sets with the destination
3113 of I3. In that case, we have to update LOG_LINKS of insns later
3114 in this basic block. Note that this (expensive) case is rare.
3116 Also, in this case, we must pretend that all REG_NOTEs for I2
3117 actually came from I3, so that REG_UNUSED notes from I2 will be
3118 properly handled. */
3120 if (i3_subst_into_i2)
3122 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3123 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3124 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3125 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3126 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3127 && ! find_reg_note (i2, REG_UNUSED,
3128 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3129 for (temp = NEXT_INSN (i2);
3130 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3131 || BB_HEAD (this_basic_block) != temp);
3132 temp = NEXT_INSN (temp))
3133 if (temp != i3 && INSN_P (temp))
3134 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3135 if (XEXP (link, 0) == i2)
3136 XEXP (link, 0) = i3;
3138 if (i3notes)
3140 rtx link = i3notes;
3141 while (XEXP (link, 1))
3142 link = XEXP (link, 1);
3143 XEXP (link, 1) = i2notes;
3145 else
3146 i3notes = i2notes;
3147 i2notes = 0;
3150 LOG_LINKS (i3) = 0;
3151 REG_NOTES (i3) = 0;
3152 LOG_LINKS (i2) = 0;
3153 REG_NOTES (i2) = 0;
3155 if (newi2pat)
3157 INSN_CODE (i2) = i2_code_number;
3158 PATTERN (i2) = newi2pat;
3160 else
3161 SET_INSN_DELETED (i2);
3163 if (i1)
3165 LOG_LINKS (i1) = 0;
3166 REG_NOTES (i1) = 0;
3167 SET_INSN_DELETED (i1);
3170 /* Get death notes for everything that is now used in either I3 or
3171 I2 and used to die in a previous insn. If we built two new
3172 patterns, move from I1 to I2 then I2 to I3 so that we get the
3173 proper movement on registers that I2 modifies. */
3175 if (newi2pat)
3177 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3178 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3180 else
3181 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3182 i3, &midnotes);
3184 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3185 if (i3notes)
3186 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3187 elim_i2, elim_i1);
3188 if (i2notes)
3189 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3190 elim_i2, elim_i1);
3191 if (i1notes)
3192 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3193 elim_i2, elim_i1);
3194 if (midnotes)
3195 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3196 elim_i2, elim_i1);
3198 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3199 know these are REG_UNUSED and want them to go to the desired insn,
3200 so we always pass it as i3. We have not counted the notes in
3201 reg_n_deaths yet, so we need to do so now. */
3203 if (newi2pat && new_i2_notes)
3205 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3206 if (REG_P (XEXP (temp, 0)))
3207 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3209 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3212 if (new_i3_notes)
3214 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3215 if (REG_P (XEXP (temp, 0)))
3216 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3218 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3221 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3222 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3223 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3224 in that case, it might delete I2. Similarly for I2 and I1.
3225 Show an additional death due to the REG_DEAD note we make here. If
3226 we discard it in distribute_notes, we will decrement it again. */
3228 if (i3dest_killed)
3230 if (REG_P (i3dest_killed))
3231 REG_N_DEATHS (REGNO (i3dest_killed))++;
3233 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3234 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3235 NULL_RTX),
3236 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3237 else
3238 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3239 NULL_RTX),
3240 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3241 elim_i2, elim_i1);
3244 if (i2dest_in_i2src)
3246 if (REG_P (i2dest))
3247 REG_N_DEATHS (REGNO (i2dest))++;
3249 if (newi2pat && reg_set_p (i2dest, newi2pat))
3250 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3251 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3252 else
3253 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3254 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3255 NULL_RTX, NULL_RTX);
3258 if (i1dest_in_i1src)
3260 if (REG_P (i1dest))
3261 REG_N_DEATHS (REGNO (i1dest))++;
3263 if (newi2pat && reg_set_p (i1dest, newi2pat))
3264 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3265 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3266 else
3267 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3268 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3269 NULL_RTX, NULL_RTX);
3272 distribute_links (i3links);
3273 distribute_links (i2links);
3274 distribute_links (i1links);
3276 if (REG_P (i2dest))
3278 rtx link;
3279 rtx i2_insn = 0, i2_val = 0, set;
3281 /* The insn that used to set this register doesn't exist, and
3282 this life of the register may not exist either. See if one of
3283 I3's links points to an insn that sets I2DEST. If it does,
3284 that is now the last known value for I2DEST. If we don't update
3285 this and I2 set the register to a value that depended on its old
3286 contents, we will get confused. If this insn is used, thing
3287 will be set correctly in combine_instructions. */
3289 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3290 if ((set = single_set (XEXP (link, 0))) != 0
3291 && rtx_equal_p (i2dest, SET_DEST (set)))
3292 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3294 record_value_for_reg (i2dest, i2_insn, i2_val);
3296 /* If the reg formerly set in I2 died only once and that was in I3,
3297 zero its use count so it won't make `reload' do any work. */
3298 if (! added_sets_2
3299 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3300 && ! i2dest_in_i2src)
3302 regno = REGNO (i2dest);
3303 REG_N_SETS (regno)--;
3307 if (i1 && REG_P (i1dest))
3309 rtx link;
3310 rtx i1_insn = 0, i1_val = 0, set;
3312 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3313 if ((set = single_set (XEXP (link, 0))) != 0
3314 && rtx_equal_p (i1dest, SET_DEST (set)))
3315 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3317 record_value_for_reg (i1dest, i1_insn, i1_val);
3319 regno = REGNO (i1dest);
3320 if (! added_sets_1 && ! i1dest_in_i1src)
3321 REG_N_SETS (regno)--;
3324 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3325 been made to this insn. The order of
3326 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3327 can affect nonzero_bits of newpat */
3328 if (newi2pat)
3329 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3330 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3332 /* Set new_direct_jump_p if a new return or simple jump instruction
3333 has been created.
3335 If I3 is now an unconditional jump, ensure that it has a
3336 BARRIER following it since it may have initially been a
3337 conditional jump. It may also be the last nonnote insn. */
3339 if (returnjump_p (i3) || any_uncondjump_p (i3))
3341 *new_direct_jump_p = 1;
3342 mark_jump_label (PATTERN (i3), i3, 0);
3344 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3345 || !BARRIER_P (temp))
3346 emit_barrier_after (i3);
3349 if (undobuf.other_insn != NULL_RTX
3350 && (returnjump_p (undobuf.other_insn)
3351 || any_uncondjump_p (undobuf.other_insn)))
3353 *new_direct_jump_p = 1;
3355 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3356 || !BARRIER_P (temp))
3357 emit_barrier_after (undobuf.other_insn);
3360 /* An NOOP jump does not need barrier, but it does need cleaning up
3361 of CFG. */
3362 if (GET_CODE (newpat) == SET
3363 && SET_SRC (newpat) == pc_rtx
3364 && SET_DEST (newpat) == pc_rtx)
3365 *new_direct_jump_p = 1;
3368 combine_successes++;
3369 undo_commit ();
3371 if (added_links_insn
3372 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3373 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3374 return added_links_insn;
3375 else
3376 return newi2pat ? i2 : i3;
3379 /* Undo all the modifications recorded in undobuf. */
3381 static void
3382 undo_all (void)
3384 struct undo *undo, *next;
3386 for (undo = undobuf.undos; undo; undo = next)
3388 next = undo->next;
3389 switch (undo->kind)
3391 case UNDO_RTX:
3392 *undo->where.r = undo->old_contents.r;
3393 break;
3394 case UNDO_INT:
3395 *undo->where.i = undo->old_contents.i;
3396 break;
3397 case UNDO_MODE:
3398 PUT_MODE (*undo->where.r, undo->old_contents.m);
3399 break;
3400 default:
3401 gcc_unreachable ();
3404 undo->next = undobuf.frees;
3405 undobuf.frees = undo;
3408 undobuf.undos = 0;
3411 /* We've committed to accepting the changes we made. Move all
3412 of the undos to the free list. */
3414 static void
3415 undo_commit (void)
3417 struct undo *undo, *next;
3419 for (undo = undobuf.undos; undo; undo = next)
3421 next = undo->next;
3422 undo->next = undobuf.frees;
3423 undobuf.frees = undo;
3425 undobuf.undos = 0;
3429 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3430 where we have an arithmetic expression and return that point. LOC will
3431 be inside INSN.
3433 try_combine will call this function to see if an insn can be split into
3434 two insns. */
3436 static rtx *
3437 find_split_point (rtx *loc, rtx insn)
3439 rtx x = *loc;
3440 enum rtx_code code = GET_CODE (x);
3441 rtx *split;
3442 unsigned HOST_WIDE_INT len = 0;
3443 HOST_WIDE_INT pos = 0;
3444 int unsignedp = 0;
3445 rtx inner = NULL_RTX;
3447 /* First special-case some codes. */
3448 switch (code)
3450 case SUBREG:
3451 #ifdef INSN_SCHEDULING
3452 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3453 point. */
3454 if (MEM_P (SUBREG_REG (x)))
3455 return loc;
3456 #endif
3457 return find_split_point (&SUBREG_REG (x), insn);
3459 case MEM:
3460 #ifdef HAVE_lo_sum
3461 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3462 using LO_SUM and HIGH. */
3463 if (GET_CODE (XEXP (x, 0)) == CONST
3464 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3466 SUBST (XEXP (x, 0),
3467 gen_rtx_LO_SUM (Pmode,
3468 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3469 XEXP (x, 0)));
3470 return &XEXP (XEXP (x, 0), 0);
3472 #endif
3474 /* If we have a PLUS whose second operand is a constant and the
3475 address is not valid, perhaps will can split it up using
3476 the machine-specific way to split large constants. We use
3477 the first pseudo-reg (one of the virtual regs) as a placeholder;
3478 it will not remain in the result. */
3479 if (GET_CODE (XEXP (x, 0)) == PLUS
3480 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3481 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3483 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3484 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3485 subst_insn);
3487 /* This should have produced two insns, each of which sets our
3488 placeholder. If the source of the second is a valid address,
3489 we can make put both sources together and make a split point
3490 in the middle. */
3492 if (seq
3493 && NEXT_INSN (seq) != NULL_RTX
3494 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3495 && NONJUMP_INSN_P (seq)
3496 && GET_CODE (PATTERN (seq)) == SET
3497 && SET_DEST (PATTERN (seq)) == reg
3498 && ! reg_mentioned_p (reg,
3499 SET_SRC (PATTERN (seq)))
3500 && NONJUMP_INSN_P (NEXT_INSN (seq))
3501 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3502 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3503 && memory_address_p (GET_MODE (x),
3504 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3506 rtx src1 = SET_SRC (PATTERN (seq));
3507 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3509 /* Replace the placeholder in SRC2 with SRC1. If we can
3510 find where in SRC2 it was placed, that can become our
3511 split point and we can replace this address with SRC2.
3512 Just try two obvious places. */
3514 src2 = replace_rtx (src2, reg, src1);
3515 split = 0;
3516 if (XEXP (src2, 0) == src1)
3517 split = &XEXP (src2, 0);
3518 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3519 && XEXP (XEXP (src2, 0), 0) == src1)
3520 split = &XEXP (XEXP (src2, 0), 0);
3522 if (split)
3524 SUBST (XEXP (x, 0), src2);
3525 return split;
3529 /* If that didn't work, perhaps the first operand is complex and
3530 needs to be computed separately, so make a split point there.
3531 This will occur on machines that just support REG + CONST
3532 and have a constant moved through some previous computation. */
3534 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3535 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3536 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3537 return &XEXP (XEXP (x, 0), 0);
3539 break;
3541 case SET:
3542 #ifdef HAVE_cc0
3543 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3544 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3545 we need to put the operand into a register. So split at that
3546 point. */
3548 if (SET_DEST (x) == cc0_rtx
3549 && GET_CODE (SET_SRC (x)) != COMPARE
3550 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3551 && !OBJECT_P (SET_SRC (x))
3552 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3553 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3554 return &SET_SRC (x);
3555 #endif
3557 /* See if we can split SET_SRC as it stands. */
3558 split = find_split_point (&SET_SRC (x), insn);
3559 if (split && split != &SET_SRC (x))
3560 return split;
3562 /* See if we can split SET_DEST as it stands. */
3563 split = find_split_point (&SET_DEST (x), insn);
3564 if (split && split != &SET_DEST (x))
3565 return split;
3567 /* See if this is a bitfield assignment with everything constant. If
3568 so, this is an IOR of an AND, so split it into that. */
3569 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3570 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3571 <= HOST_BITS_PER_WIDE_INT)
3572 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3573 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3574 && GET_CODE (SET_SRC (x)) == CONST_INT
3575 && ((INTVAL (XEXP (SET_DEST (x), 1))
3576 + INTVAL (XEXP (SET_DEST (x), 2)))
3577 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3578 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3580 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3581 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3582 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3583 rtx dest = XEXP (SET_DEST (x), 0);
3584 enum machine_mode mode = GET_MODE (dest);
3585 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3586 rtx or_mask;
3588 if (BITS_BIG_ENDIAN)
3589 pos = GET_MODE_BITSIZE (mode) - len - pos;
3591 or_mask = gen_int_mode (src << pos, mode);
3592 if (src == mask)
3593 SUBST (SET_SRC (x),
3594 simplify_gen_binary (IOR, mode, dest, or_mask));
3595 else
3597 rtx negmask = gen_int_mode (~(mask << pos), mode);
3598 SUBST (SET_SRC (x),
3599 simplify_gen_binary (IOR, mode,
3600 simplify_gen_binary (AND, mode,
3601 dest, negmask),
3602 or_mask));
3605 SUBST (SET_DEST (x), dest);
3607 split = find_split_point (&SET_SRC (x), insn);
3608 if (split && split != &SET_SRC (x))
3609 return split;
3612 /* Otherwise, see if this is an operation that we can split into two.
3613 If so, try to split that. */
3614 code = GET_CODE (SET_SRC (x));
3616 switch (code)
3618 case AND:
3619 /* If we are AND'ing with a large constant that is only a single
3620 bit and the result is only being used in a context where we
3621 need to know if it is zero or nonzero, replace it with a bit
3622 extraction. This will avoid the large constant, which might
3623 have taken more than one insn to make. If the constant were
3624 not a valid argument to the AND but took only one insn to make,
3625 this is no worse, but if it took more than one insn, it will
3626 be better. */
3628 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3629 && REG_P (XEXP (SET_SRC (x), 0))
3630 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3631 && REG_P (SET_DEST (x))
3632 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3633 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3634 && XEXP (*split, 0) == SET_DEST (x)
3635 && XEXP (*split, 1) == const0_rtx)
3637 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3638 XEXP (SET_SRC (x), 0),
3639 pos, NULL_RTX, 1, 1, 0, 0);
3640 if (extraction != 0)
3642 SUBST (SET_SRC (x), extraction);
3643 return find_split_point (loc, insn);
3646 break;
3648 case NE:
3649 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3650 is known to be on, this can be converted into a NEG of a shift. */
3651 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3652 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3653 && 1 <= (pos = exact_log2
3654 (nonzero_bits (XEXP (SET_SRC (x), 0),
3655 GET_MODE (XEXP (SET_SRC (x), 0))))))
3657 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3659 SUBST (SET_SRC (x),
3660 gen_rtx_NEG (mode,
3661 gen_rtx_LSHIFTRT (mode,
3662 XEXP (SET_SRC (x), 0),
3663 GEN_INT (pos))));
3665 split = find_split_point (&SET_SRC (x), insn);
3666 if (split && split != &SET_SRC (x))
3667 return split;
3669 break;
3671 case SIGN_EXTEND:
3672 inner = XEXP (SET_SRC (x), 0);
3674 /* We can't optimize if either mode is a partial integer
3675 mode as we don't know how many bits are significant
3676 in those modes. */
3677 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3678 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3679 break;
3681 pos = 0;
3682 len = GET_MODE_BITSIZE (GET_MODE (inner));
3683 unsignedp = 0;
3684 break;
3686 case SIGN_EXTRACT:
3687 case ZERO_EXTRACT:
3688 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3689 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3691 inner = XEXP (SET_SRC (x), 0);
3692 len = INTVAL (XEXP (SET_SRC (x), 1));
3693 pos = INTVAL (XEXP (SET_SRC (x), 2));
3695 if (BITS_BIG_ENDIAN)
3696 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3697 unsignedp = (code == ZERO_EXTRACT);
3699 break;
3701 default:
3702 break;
3705 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3707 enum machine_mode mode = GET_MODE (SET_SRC (x));
3709 /* For unsigned, we have a choice of a shift followed by an
3710 AND or two shifts. Use two shifts for field sizes where the
3711 constant might be too large. We assume here that we can
3712 always at least get 8-bit constants in an AND insn, which is
3713 true for every current RISC. */
3715 if (unsignedp && len <= 8)
3717 SUBST (SET_SRC (x),
3718 gen_rtx_AND (mode,
3719 gen_rtx_LSHIFTRT
3720 (mode, gen_lowpart (mode, inner),
3721 GEN_INT (pos)),
3722 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3724 split = find_split_point (&SET_SRC (x), insn);
3725 if (split && split != &SET_SRC (x))
3726 return split;
3728 else
3730 SUBST (SET_SRC (x),
3731 gen_rtx_fmt_ee
3732 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3733 gen_rtx_ASHIFT (mode,
3734 gen_lowpart (mode, inner),
3735 GEN_INT (GET_MODE_BITSIZE (mode)
3736 - len - pos)),
3737 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3739 split = find_split_point (&SET_SRC (x), insn);
3740 if (split && split != &SET_SRC (x))
3741 return split;
3745 /* See if this is a simple operation with a constant as the second
3746 operand. It might be that this constant is out of range and hence
3747 could be used as a split point. */
3748 if (BINARY_P (SET_SRC (x))
3749 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3750 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3751 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3752 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3753 return &XEXP (SET_SRC (x), 1);
3755 /* Finally, see if this is a simple operation with its first operand
3756 not in a register. The operation might require this operand in a
3757 register, so return it as a split point. We can always do this
3758 because if the first operand were another operation, we would have
3759 already found it as a split point. */
3760 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3761 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3762 return &XEXP (SET_SRC (x), 0);
3764 return 0;
3766 case AND:
3767 case IOR:
3768 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3769 it is better to write this as (not (ior A B)) so we can split it.
3770 Similarly for IOR. */
3771 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3773 SUBST (*loc,
3774 gen_rtx_NOT (GET_MODE (x),
3775 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3776 GET_MODE (x),
3777 XEXP (XEXP (x, 0), 0),
3778 XEXP (XEXP (x, 1), 0))));
3779 return find_split_point (loc, insn);
3782 /* Many RISC machines have a large set of logical insns. If the
3783 second operand is a NOT, put it first so we will try to split the
3784 other operand first. */
3785 if (GET_CODE (XEXP (x, 1)) == NOT)
3787 rtx tem = XEXP (x, 0);
3788 SUBST (XEXP (x, 0), XEXP (x, 1));
3789 SUBST (XEXP (x, 1), tem);
3791 break;
3793 default:
3794 break;
3797 /* Otherwise, select our actions depending on our rtx class. */
3798 switch (GET_RTX_CLASS (code))
3800 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3801 case RTX_TERNARY:
3802 split = find_split_point (&XEXP (x, 2), insn);
3803 if (split)
3804 return split;
3805 /* ... fall through ... */
3806 case RTX_BIN_ARITH:
3807 case RTX_COMM_ARITH:
3808 case RTX_COMPARE:
3809 case RTX_COMM_COMPARE:
3810 split = find_split_point (&XEXP (x, 1), insn);
3811 if (split)
3812 return split;
3813 /* ... fall through ... */
3814 case RTX_UNARY:
3815 /* Some machines have (and (shift ...) ...) insns. If X is not
3816 an AND, but XEXP (X, 0) is, use it as our split point. */
3817 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3818 return &XEXP (x, 0);
3820 split = find_split_point (&XEXP (x, 0), insn);
3821 if (split)
3822 return split;
3823 return loc;
3825 default:
3826 /* Otherwise, we don't have a split point. */
3827 return 0;
3831 /* Throughout X, replace FROM with TO, and return the result.
3832 The result is TO if X is FROM;
3833 otherwise the result is X, but its contents may have been modified.
3834 If they were modified, a record was made in undobuf so that
3835 undo_all will (among other things) return X to its original state.
3837 If the number of changes necessary is too much to record to undo,
3838 the excess changes are not made, so the result is invalid.
3839 The changes already made can still be undone.
3840 undobuf.num_undo is incremented for such changes, so by testing that
3841 the caller can tell whether the result is valid.
3843 `n_occurrences' is incremented each time FROM is replaced.
3845 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3847 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3848 by copying if `n_occurrences' is nonzero. */
3850 static rtx
3851 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3853 enum rtx_code code = GET_CODE (x);
3854 enum machine_mode op0_mode = VOIDmode;
3855 const char *fmt;
3856 int len, i;
3857 rtx new;
3859 /* Two expressions are equal if they are identical copies of a shared
3860 RTX or if they are both registers with the same register number
3861 and mode. */
3863 #define COMBINE_RTX_EQUAL_P(X,Y) \
3864 ((X) == (Y) \
3865 || (REG_P (X) && REG_P (Y) \
3866 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3868 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3870 n_occurrences++;
3871 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3874 /* If X and FROM are the same register but different modes, they will
3875 not have been seen as equal above. However, flow.c will make a
3876 LOG_LINKS entry for that case. If we do nothing, we will try to
3877 rerecognize our original insn and, when it succeeds, we will
3878 delete the feeding insn, which is incorrect.
3880 So force this insn not to match in this (rare) case. */
3881 if (! in_dest && code == REG && REG_P (from)
3882 && REGNO (x) == REGNO (from))
3883 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3885 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3886 of which may contain things that can be combined. */
3887 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3888 return x;
3890 /* It is possible to have a subexpression appear twice in the insn.
3891 Suppose that FROM is a register that appears within TO.
3892 Then, after that subexpression has been scanned once by `subst',
3893 the second time it is scanned, TO may be found. If we were
3894 to scan TO here, we would find FROM within it and create a
3895 self-referent rtl structure which is completely wrong. */
3896 if (COMBINE_RTX_EQUAL_P (x, to))
3897 return to;
3899 /* Parallel asm_operands need special attention because all of the
3900 inputs are shared across the arms. Furthermore, unsharing the
3901 rtl results in recognition failures. Failure to handle this case
3902 specially can result in circular rtl.
3904 Solve this by doing a normal pass across the first entry of the
3905 parallel, and only processing the SET_DESTs of the subsequent
3906 entries. Ug. */
3908 if (code == PARALLEL
3909 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3910 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3912 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3914 /* If this substitution failed, this whole thing fails. */
3915 if (GET_CODE (new) == CLOBBER
3916 && XEXP (new, 0) == const0_rtx)
3917 return new;
3919 SUBST (XVECEXP (x, 0, 0), new);
3921 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3923 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3925 if (!REG_P (dest)
3926 && GET_CODE (dest) != CC0
3927 && GET_CODE (dest) != PC)
3929 new = subst (dest, from, to, 0, unique_copy);
3931 /* If this substitution failed, this whole thing fails. */
3932 if (GET_CODE (new) == CLOBBER
3933 && XEXP (new, 0) == const0_rtx)
3934 return new;
3936 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3940 else
3942 len = GET_RTX_LENGTH (code);
3943 fmt = GET_RTX_FORMAT (code);
3945 /* We don't need to process a SET_DEST that is a register, CC0,
3946 or PC, so set up to skip this common case. All other cases
3947 where we want to suppress replacing something inside a
3948 SET_SRC are handled via the IN_DEST operand. */
3949 if (code == SET
3950 && (REG_P (SET_DEST (x))
3951 || GET_CODE (SET_DEST (x)) == CC0
3952 || GET_CODE (SET_DEST (x)) == PC))
3953 fmt = "ie";
3955 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3956 constant. */
3957 if (fmt[0] == 'e')
3958 op0_mode = GET_MODE (XEXP (x, 0));
3960 for (i = 0; i < len; i++)
3962 if (fmt[i] == 'E')
3964 int j;
3965 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3967 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3969 new = (unique_copy && n_occurrences
3970 ? copy_rtx (to) : to);
3971 n_occurrences++;
3973 else
3975 new = subst (XVECEXP (x, i, j), from, to, 0,
3976 unique_copy);
3978 /* If this substitution failed, this whole thing
3979 fails. */
3980 if (GET_CODE (new) == CLOBBER
3981 && XEXP (new, 0) == const0_rtx)
3982 return new;
3985 SUBST (XVECEXP (x, i, j), new);
3988 else if (fmt[i] == 'e')
3990 /* If this is a register being set, ignore it. */
3991 new = XEXP (x, i);
3992 if (in_dest
3993 && i == 0
3994 && (((code == SUBREG || code == ZERO_EXTRACT)
3995 && REG_P (new))
3996 || code == STRICT_LOW_PART))
3999 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4001 /* In general, don't install a subreg involving two
4002 modes not tieable. It can worsen register
4003 allocation, and can even make invalid reload
4004 insns, since the reg inside may need to be copied
4005 from in the outside mode, and that may be invalid
4006 if it is an fp reg copied in integer mode.
4008 We allow two exceptions to this: It is valid if
4009 it is inside another SUBREG and the mode of that
4010 SUBREG and the mode of the inside of TO is
4011 tieable and it is valid if X is a SET that copies
4012 FROM to CC0. */
4014 if (GET_CODE (to) == SUBREG
4015 && ! MODES_TIEABLE_P (GET_MODE (to),
4016 GET_MODE (SUBREG_REG (to)))
4017 && ! (code == SUBREG
4018 && MODES_TIEABLE_P (GET_MODE (x),
4019 GET_MODE (SUBREG_REG (to))))
4020 #ifdef HAVE_cc0
4021 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4022 #endif
4024 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4026 #ifdef CANNOT_CHANGE_MODE_CLASS
4027 if (code == SUBREG
4028 && REG_P (to)
4029 && REGNO (to) < FIRST_PSEUDO_REGISTER
4030 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4031 GET_MODE (to),
4032 GET_MODE (x)))
4033 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4034 #endif
4036 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4037 n_occurrences++;
4039 else
4040 /* If we are in a SET_DEST, suppress most cases unless we
4041 have gone inside a MEM, in which case we want to
4042 simplify the address. We assume here that things that
4043 are actually part of the destination have their inner
4044 parts in the first expression. This is true for SUBREG,
4045 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4046 things aside from REG and MEM that should appear in a
4047 SET_DEST. */
4048 new = subst (XEXP (x, i), from, to,
4049 (((in_dest
4050 && (code == SUBREG || code == STRICT_LOW_PART
4051 || code == ZERO_EXTRACT))
4052 || code == SET)
4053 && i == 0), unique_copy);
4055 /* If we found that we will have to reject this combination,
4056 indicate that by returning the CLOBBER ourselves, rather than
4057 an expression containing it. This will speed things up as
4058 well as prevent accidents where two CLOBBERs are considered
4059 to be equal, thus producing an incorrect simplification. */
4061 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4062 return new;
4064 if (GET_CODE (x) == SUBREG
4065 && (GET_CODE (new) == CONST_INT
4066 || GET_CODE (new) == CONST_DOUBLE))
4068 enum machine_mode mode = GET_MODE (x);
4070 x = simplify_subreg (GET_MODE (x), new,
4071 GET_MODE (SUBREG_REG (x)),
4072 SUBREG_BYTE (x));
4073 if (! x)
4074 x = gen_rtx_CLOBBER (mode, const0_rtx);
4076 else if (GET_CODE (new) == CONST_INT
4077 && GET_CODE (x) == ZERO_EXTEND)
4079 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4080 new, GET_MODE (XEXP (x, 0)));
4081 gcc_assert (x);
4083 else
4084 SUBST (XEXP (x, i), new);
4089 /* Try to simplify X. If the simplification changed the code, it is likely
4090 that further simplification will help, so loop, but limit the number
4091 of repetitions that will be performed. */
4093 for (i = 0; i < 4; i++)
4095 /* If X is sufficiently simple, don't bother trying to do anything
4096 with it. */
4097 if (code != CONST_INT && code != REG && code != CLOBBER)
4098 x = combine_simplify_rtx (x, op0_mode, in_dest);
4100 if (GET_CODE (x) == code)
4101 break;
4103 code = GET_CODE (x);
4105 /* We no longer know the original mode of operand 0 since we
4106 have changed the form of X) */
4107 op0_mode = VOIDmode;
4110 return x;
4113 /* Simplify X, a piece of RTL. We just operate on the expression at the
4114 outer level; call `subst' to simplify recursively. Return the new
4115 expression.
4117 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4118 if we are inside a SET_DEST. */
4120 static rtx
4121 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4123 enum rtx_code code = GET_CODE (x);
4124 enum machine_mode mode = GET_MODE (x);
4125 rtx temp;
4126 int i;
4128 /* If this is a commutative operation, put a constant last and a complex
4129 expression first. We don't need to do this for comparisons here. */
4130 if (COMMUTATIVE_ARITH_P (x)
4131 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4133 temp = XEXP (x, 0);
4134 SUBST (XEXP (x, 0), XEXP (x, 1));
4135 SUBST (XEXP (x, 1), temp);
4138 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4139 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4140 things. Check for cases where both arms are testing the same
4141 condition.
4143 Don't do anything if all operands are very simple. */
4145 if ((BINARY_P (x)
4146 && ((!OBJECT_P (XEXP (x, 0))
4147 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4148 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4149 || (!OBJECT_P (XEXP (x, 1))
4150 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4151 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4152 || (UNARY_P (x)
4153 && (!OBJECT_P (XEXP (x, 0))
4154 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4155 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4157 rtx cond, true_rtx, false_rtx;
4159 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4160 if (cond != 0
4161 /* If everything is a comparison, what we have is highly unlikely
4162 to be simpler, so don't use it. */
4163 && ! (COMPARISON_P (x)
4164 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4166 rtx cop1 = const0_rtx;
4167 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4169 if (cond_code == NE && COMPARISON_P (cond))
4170 return x;
4172 /* Simplify the alternative arms; this may collapse the true and
4173 false arms to store-flag values. Be careful to use copy_rtx
4174 here since true_rtx or false_rtx might share RTL with x as a
4175 result of the if_then_else_cond call above. */
4176 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4177 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4179 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4180 is unlikely to be simpler. */
4181 if (general_operand (true_rtx, VOIDmode)
4182 && general_operand (false_rtx, VOIDmode))
4184 enum rtx_code reversed;
4186 /* Restarting if we generate a store-flag expression will cause
4187 us to loop. Just drop through in this case. */
4189 /* If the result values are STORE_FLAG_VALUE and zero, we can
4190 just make the comparison operation. */
4191 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4192 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4193 cond, cop1);
4194 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4195 && ((reversed = reversed_comparison_code_parts
4196 (cond_code, cond, cop1, NULL))
4197 != UNKNOWN))
4198 x = simplify_gen_relational (reversed, mode, VOIDmode,
4199 cond, cop1);
4201 /* Likewise, we can make the negate of a comparison operation
4202 if the result values are - STORE_FLAG_VALUE and zero. */
4203 else if (GET_CODE (true_rtx) == CONST_INT
4204 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4205 && false_rtx == const0_rtx)
4206 x = simplify_gen_unary (NEG, mode,
4207 simplify_gen_relational (cond_code,
4208 mode, VOIDmode,
4209 cond, cop1),
4210 mode);
4211 else if (GET_CODE (false_rtx) == CONST_INT
4212 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4213 && true_rtx == const0_rtx
4214 && ((reversed = reversed_comparison_code_parts
4215 (cond_code, cond, cop1, NULL))
4216 != UNKNOWN))
4217 x = simplify_gen_unary (NEG, mode,
4218 simplify_gen_relational (reversed,
4219 mode, VOIDmode,
4220 cond, cop1),
4221 mode);
4222 else
4223 return gen_rtx_IF_THEN_ELSE (mode,
4224 simplify_gen_relational (cond_code,
4225 mode,
4226 VOIDmode,
4227 cond,
4228 cop1),
4229 true_rtx, false_rtx);
4231 code = GET_CODE (x);
4232 op0_mode = VOIDmode;
4237 /* Try to fold this expression in case we have constants that weren't
4238 present before. */
4239 temp = 0;
4240 switch (GET_RTX_CLASS (code))
4242 case RTX_UNARY:
4243 if (op0_mode == VOIDmode)
4244 op0_mode = GET_MODE (XEXP (x, 0));
4245 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4246 break;
4247 case RTX_COMPARE:
4248 case RTX_COMM_COMPARE:
4250 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4251 if (cmp_mode == VOIDmode)
4253 cmp_mode = GET_MODE (XEXP (x, 1));
4254 if (cmp_mode == VOIDmode)
4255 cmp_mode = op0_mode;
4257 temp = simplify_relational_operation (code, mode, cmp_mode,
4258 XEXP (x, 0), XEXP (x, 1));
4260 break;
4261 case RTX_COMM_ARITH:
4262 case RTX_BIN_ARITH:
4263 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4264 break;
4265 case RTX_BITFIELD_OPS:
4266 case RTX_TERNARY:
4267 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4268 XEXP (x, 1), XEXP (x, 2));
4269 break;
4270 default:
4271 break;
4274 if (temp)
4276 x = temp;
4277 code = GET_CODE (temp);
4278 op0_mode = VOIDmode;
4279 mode = GET_MODE (temp);
4282 /* First see if we can apply the inverse distributive law. */
4283 if (code == PLUS || code == MINUS
4284 || code == AND || code == IOR || code == XOR)
4286 x = apply_distributive_law (x);
4287 code = GET_CODE (x);
4288 op0_mode = VOIDmode;
4291 /* If CODE is an associative operation not otherwise handled, see if we
4292 can associate some operands. This can win if they are constants or
4293 if they are logically related (i.e. (a & b) & a). */
4294 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4295 || code == AND || code == IOR || code == XOR
4296 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4297 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4298 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4300 if (GET_CODE (XEXP (x, 0)) == code)
4302 rtx other = XEXP (XEXP (x, 0), 0);
4303 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4304 rtx inner_op1 = XEXP (x, 1);
4305 rtx inner;
4307 /* Make sure we pass the constant operand if any as the second
4308 one if this is a commutative operation. */
4309 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4311 rtx tem = inner_op0;
4312 inner_op0 = inner_op1;
4313 inner_op1 = tem;
4315 inner = simplify_binary_operation (code == MINUS ? PLUS
4316 : code == DIV ? MULT
4317 : code,
4318 mode, inner_op0, inner_op1);
4320 /* For commutative operations, try the other pair if that one
4321 didn't simplify. */
4322 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4324 other = XEXP (XEXP (x, 0), 1);
4325 inner = simplify_binary_operation (code, mode,
4326 XEXP (XEXP (x, 0), 0),
4327 XEXP (x, 1));
4330 if (inner)
4331 return simplify_gen_binary (code, mode, other, inner);
4335 /* A little bit of algebraic simplification here. */
4336 switch (code)
4338 case MEM:
4339 /* Ensure that our address has any ASHIFTs converted to MULT in case
4340 address-recognizing predicates are called later. */
4341 temp = make_compound_operation (XEXP (x, 0), MEM);
4342 SUBST (XEXP (x, 0), temp);
4343 break;
4345 case SUBREG:
4346 if (op0_mode == VOIDmode)
4347 op0_mode = GET_MODE (SUBREG_REG (x));
4349 /* See if this can be moved to simplify_subreg. */
4350 if (CONSTANT_P (SUBREG_REG (x))
4351 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4352 /* Don't call gen_lowpart if the inner mode
4353 is VOIDmode and we cannot simplify it, as SUBREG without
4354 inner mode is invalid. */
4355 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4356 || gen_lowpart_common (mode, SUBREG_REG (x))))
4357 return gen_lowpart (mode, SUBREG_REG (x));
4359 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4360 break;
4362 rtx temp;
4363 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4364 SUBREG_BYTE (x));
4365 if (temp)
4366 return temp;
4369 /* Don't change the mode of the MEM if that would change the meaning
4370 of the address. */
4371 if (MEM_P (SUBREG_REG (x))
4372 && (MEM_VOLATILE_P (SUBREG_REG (x))
4373 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4374 return gen_rtx_CLOBBER (mode, const0_rtx);
4376 /* Note that we cannot do any narrowing for non-constants since
4377 we might have been counting on using the fact that some bits were
4378 zero. We now do this in the SET. */
4380 break;
4382 case NEG:
4383 temp = expand_compound_operation (XEXP (x, 0));
4385 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4386 replaced by (lshiftrt X C). This will convert
4387 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4389 if (GET_CODE (temp) == ASHIFTRT
4390 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4391 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4392 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4393 INTVAL (XEXP (temp, 1)));
4395 /* If X has only a single bit that might be nonzero, say, bit I, convert
4396 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4397 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4398 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4399 or a SUBREG of one since we'd be making the expression more
4400 complex if it was just a register. */
4402 if (!REG_P (temp)
4403 && ! (GET_CODE (temp) == SUBREG
4404 && REG_P (SUBREG_REG (temp)))
4405 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4407 rtx temp1 = simplify_shift_const
4408 (NULL_RTX, ASHIFTRT, mode,
4409 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4410 GET_MODE_BITSIZE (mode) - 1 - i),
4411 GET_MODE_BITSIZE (mode) - 1 - i);
4413 /* If all we did was surround TEMP with the two shifts, we
4414 haven't improved anything, so don't use it. Otherwise,
4415 we are better off with TEMP1. */
4416 if (GET_CODE (temp1) != ASHIFTRT
4417 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4418 || XEXP (XEXP (temp1, 0), 0) != temp)
4419 return temp1;
4421 break;
4423 case TRUNCATE:
4424 /* We can't handle truncation to a partial integer mode here
4425 because we don't know the real bitsize of the partial
4426 integer mode. */
4427 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4428 break;
4430 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4431 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4432 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4433 SUBST (XEXP (x, 0),
4434 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4435 GET_MODE_MASK (mode), 0));
4437 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4438 whose value is a comparison can be replaced with a subreg if
4439 STORE_FLAG_VALUE permits. */
4440 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4441 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4442 && (temp = get_last_value (XEXP (x, 0)))
4443 && COMPARISON_P (temp))
4444 return gen_lowpart (mode, XEXP (x, 0));
4445 break;
4447 #ifdef HAVE_cc0
4448 case COMPARE:
4449 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4450 using cc0, in which case we want to leave it as a COMPARE
4451 so we can distinguish it from a register-register-copy. */
4452 if (XEXP (x, 1) == const0_rtx)
4453 return XEXP (x, 0);
4455 /* x - 0 is the same as x unless x's mode has signed zeros and
4456 allows rounding towards -infinity. Under those conditions,
4457 0 - 0 is -0. */
4458 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4459 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4460 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4461 return XEXP (x, 0);
4462 break;
4463 #endif
4465 case CONST:
4466 /* (const (const X)) can become (const X). Do it this way rather than
4467 returning the inner CONST since CONST can be shared with a
4468 REG_EQUAL note. */
4469 if (GET_CODE (XEXP (x, 0)) == CONST)
4470 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4471 break;
4473 #ifdef HAVE_lo_sum
4474 case LO_SUM:
4475 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4476 can add in an offset. find_split_point will split this address up
4477 again if it doesn't match. */
4478 if (GET_CODE (XEXP (x, 0)) == HIGH
4479 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4480 return XEXP (x, 1);
4481 break;
4482 #endif
4484 case PLUS:
4485 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4486 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4487 bit-field and can be replaced by either a sign_extend or a
4488 sign_extract. The `and' may be a zero_extend and the two
4489 <c>, -<c> constants may be reversed. */
4490 if (GET_CODE (XEXP (x, 0)) == XOR
4491 && GET_CODE (XEXP (x, 1)) == CONST_INT
4492 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4493 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4494 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4495 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4496 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4497 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4498 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4499 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4500 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4501 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4502 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4503 == (unsigned int) i + 1))))
4504 return simplify_shift_const
4505 (NULL_RTX, ASHIFTRT, mode,
4506 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4507 XEXP (XEXP (XEXP (x, 0), 0), 0),
4508 GET_MODE_BITSIZE (mode) - (i + 1)),
4509 GET_MODE_BITSIZE (mode) - (i + 1));
4511 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4512 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4513 the bitsize of the mode - 1. This allows simplification of
4514 "a = (b & 8) == 0;" */
4515 if (XEXP (x, 1) == constm1_rtx
4516 && !REG_P (XEXP (x, 0))
4517 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4518 && REG_P (SUBREG_REG (XEXP (x, 0))))
4519 && nonzero_bits (XEXP (x, 0), mode) == 1)
4520 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4521 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4522 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4523 GET_MODE_BITSIZE (mode) - 1),
4524 GET_MODE_BITSIZE (mode) - 1);
4526 /* If we are adding two things that have no bits in common, convert
4527 the addition into an IOR. This will often be further simplified,
4528 for example in cases like ((a & 1) + (a & 2)), which can
4529 become a & 3. */
4531 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4532 && (nonzero_bits (XEXP (x, 0), mode)
4533 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4535 /* Try to simplify the expression further. */
4536 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4537 temp = combine_simplify_rtx (tor, mode, in_dest);
4539 /* If we could, great. If not, do not go ahead with the IOR
4540 replacement, since PLUS appears in many special purpose
4541 address arithmetic instructions. */
4542 if (GET_CODE (temp) != CLOBBER && temp != tor)
4543 return temp;
4545 break;
4547 case MINUS:
4548 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4549 (and <foo> (const_int pow2-1)) */
4550 if (GET_CODE (XEXP (x, 1)) == AND
4551 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4552 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4553 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4554 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4555 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4556 break;
4558 case MULT:
4559 /* If we have (mult (plus A B) C), apply the distributive law and then
4560 the inverse distributive law to see if things simplify. This
4561 occurs mostly in addresses, often when unrolling loops. */
4563 if (GET_CODE (XEXP (x, 0)) == PLUS)
4565 rtx result = distribute_and_simplify_rtx (x, 0);
4566 if (result)
4567 return result;
4570 /* Try simplify a*(b/c) as (a*b)/c. */
4571 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4572 && GET_CODE (XEXP (x, 0)) == DIV)
4574 rtx tem = simplify_binary_operation (MULT, mode,
4575 XEXP (XEXP (x, 0), 0),
4576 XEXP (x, 1));
4577 if (tem)
4578 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4580 break;
4582 case UDIV:
4583 /* If this is a divide by a power of two, treat it as a shift if
4584 its first operand is a shift. */
4585 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4586 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4587 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4588 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4589 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4590 || GET_CODE (XEXP (x, 0)) == ROTATE
4591 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4592 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4593 break;
4595 case EQ: case NE:
4596 case GT: case GTU: case GE: case GEU:
4597 case LT: case LTU: case LE: case LEU:
4598 case UNEQ: case LTGT:
4599 case UNGT: case UNGE:
4600 case UNLT: case UNLE:
4601 case UNORDERED: case ORDERED:
4602 /* If the first operand is a condition code, we can't do anything
4603 with it. */
4604 if (GET_CODE (XEXP (x, 0)) == COMPARE
4605 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4606 && ! CC0_P (XEXP (x, 0))))
4608 rtx op0 = XEXP (x, 0);
4609 rtx op1 = XEXP (x, 1);
4610 enum rtx_code new_code;
4612 if (GET_CODE (op0) == COMPARE)
4613 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4615 /* Simplify our comparison, if possible. */
4616 new_code = simplify_comparison (code, &op0, &op1);
4618 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4619 if only the low-order bit is possibly nonzero in X (such as when
4620 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4621 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4622 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4623 (plus X 1).
4625 Remove any ZERO_EXTRACT we made when thinking this was a
4626 comparison. It may now be simpler to use, e.g., an AND. If a
4627 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4628 the call to make_compound_operation in the SET case. */
4630 if (STORE_FLAG_VALUE == 1
4631 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4632 && op1 == const0_rtx
4633 && mode == GET_MODE (op0)
4634 && nonzero_bits (op0, mode) == 1)
4635 return gen_lowpart (mode,
4636 expand_compound_operation (op0));
4638 else if (STORE_FLAG_VALUE == 1
4639 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4640 && op1 == const0_rtx
4641 && mode == GET_MODE (op0)
4642 && (num_sign_bit_copies (op0, mode)
4643 == GET_MODE_BITSIZE (mode)))
4645 op0 = expand_compound_operation (op0);
4646 return simplify_gen_unary (NEG, mode,
4647 gen_lowpart (mode, op0),
4648 mode);
4651 else if (STORE_FLAG_VALUE == 1
4652 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4653 && op1 == const0_rtx
4654 && mode == GET_MODE (op0)
4655 && nonzero_bits (op0, mode) == 1)
4657 op0 = expand_compound_operation (op0);
4658 return simplify_gen_binary (XOR, mode,
4659 gen_lowpart (mode, op0),
4660 const1_rtx);
4663 else if (STORE_FLAG_VALUE == 1
4664 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4665 && op1 == const0_rtx
4666 && mode == GET_MODE (op0)
4667 && (num_sign_bit_copies (op0, mode)
4668 == GET_MODE_BITSIZE (mode)))
4670 op0 = expand_compound_operation (op0);
4671 return plus_constant (gen_lowpart (mode, op0), 1);
4674 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4675 those above. */
4676 if (STORE_FLAG_VALUE == -1
4677 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4678 && op1 == const0_rtx
4679 && (num_sign_bit_copies (op0, mode)
4680 == GET_MODE_BITSIZE (mode)))
4681 return gen_lowpart (mode,
4682 expand_compound_operation (op0));
4684 else if (STORE_FLAG_VALUE == -1
4685 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4686 && op1 == const0_rtx
4687 && mode == GET_MODE (op0)
4688 && nonzero_bits (op0, mode) == 1)
4690 op0 = expand_compound_operation (op0);
4691 return simplify_gen_unary (NEG, mode,
4692 gen_lowpart (mode, op0),
4693 mode);
4696 else if (STORE_FLAG_VALUE == -1
4697 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4698 && op1 == const0_rtx
4699 && mode == GET_MODE (op0)
4700 && (num_sign_bit_copies (op0, mode)
4701 == GET_MODE_BITSIZE (mode)))
4703 op0 = expand_compound_operation (op0);
4704 return simplify_gen_unary (NOT, mode,
4705 gen_lowpart (mode, op0),
4706 mode);
4709 /* If X is 0/1, (eq X 0) is X-1. */
4710 else if (STORE_FLAG_VALUE == -1
4711 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4712 && op1 == const0_rtx
4713 && mode == GET_MODE (op0)
4714 && nonzero_bits (op0, mode) == 1)
4716 op0 = expand_compound_operation (op0);
4717 return plus_constant (gen_lowpart (mode, op0), -1);
4720 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4721 one bit that might be nonzero, we can convert (ne x 0) to
4722 (ashift x c) where C puts the bit in the sign bit. Remove any
4723 AND with STORE_FLAG_VALUE when we are done, since we are only
4724 going to test the sign bit. */
4725 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4726 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4727 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4728 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4729 && op1 == const0_rtx
4730 && mode == GET_MODE (op0)
4731 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4733 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4734 expand_compound_operation (op0),
4735 GET_MODE_BITSIZE (mode) - 1 - i);
4736 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4737 return XEXP (x, 0);
4738 else
4739 return x;
4742 /* If the code changed, return a whole new comparison. */
4743 if (new_code != code)
4744 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4746 /* Otherwise, keep this operation, but maybe change its operands.
4747 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4748 SUBST (XEXP (x, 0), op0);
4749 SUBST (XEXP (x, 1), op1);
4751 break;
4753 case IF_THEN_ELSE:
4754 return simplify_if_then_else (x);
4756 case ZERO_EXTRACT:
4757 case SIGN_EXTRACT:
4758 case ZERO_EXTEND:
4759 case SIGN_EXTEND:
4760 /* If we are processing SET_DEST, we are done. */
4761 if (in_dest)
4762 return x;
4764 return expand_compound_operation (x);
4766 case SET:
4767 return simplify_set (x);
4769 case AND:
4770 case IOR:
4771 return simplify_logical (x);
4773 case ASHIFT:
4774 case LSHIFTRT:
4775 case ASHIFTRT:
4776 case ROTATE:
4777 case ROTATERT:
4778 /* If this is a shift by a constant amount, simplify it. */
4779 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4780 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4781 INTVAL (XEXP (x, 1)));
4783 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4784 SUBST (XEXP (x, 1),
4785 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4786 ((HOST_WIDE_INT) 1
4787 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4788 - 1,
4789 0));
4790 break;
4792 default:
4793 break;
4796 return x;
4799 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4801 static rtx
4802 simplify_if_then_else (rtx x)
4804 enum machine_mode mode = GET_MODE (x);
4805 rtx cond = XEXP (x, 0);
4806 rtx true_rtx = XEXP (x, 1);
4807 rtx false_rtx = XEXP (x, 2);
4808 enum rtx_code true_code = GET_CODE (cond);
4809 int comparison_p = COMPARISON_P (cond);
4810 rtx temp;
4811 int i;
4812 enum rtx_code false_code;
4813 rtx reversed;
4815 /* Simplify storing of the truth value. */
4816 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4817 return simplify_gen_relational (true_code, mode, VOIDmode,
4818 XEXP (cond, 0), XEXP (cond, 1));
4820 /* Also when the truth value has to be reversed. */
4821 if (comparison_p
4822 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4823 && (reversed = reversed_comparison (cond, mode)))
4824 return reversed;
4826 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4827 in it is being compared against certain values. Get the true and false
4828 comparisons and see if that says anything about the value of each arm. */
4830 if (comparison_p
4831 && ((false_code = reversed_comparison_code (cond, NULL))
4832 != UNKNOWN)
4833 && REG_P (XEXP (cond, 0)))
4835 HOST_WIDE_INT nzb;
4836 rtx from = XEXP (cond, 0);
4837 rtx true_val = XEXP (cond, 1);
4838 rtx false_val = true_val;
4839 int swapped = 0;
4841 /* If FALSE_CODE is EQ, swap the codes and arms. */
4843 if (false_code == EQ)
4845 swapped = 1, true_code = EQ, false_code = NE;
4846 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4849 /* If we are comparing against zero and the expression being tested has
4850 only a single bit that might be nonzero, that is its value when it is
4851 not equal to zero. Similarly if it is known to be -1 or 0. */
4853 if (true_code == EQ && true_val == const0_rtx
4854 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4855 false_code = EQ, false_val = GEN_INT (nzb);
4856 else if (true_code == EQ && true_val == const0_rtx
4857 && (num_sign_bit_copies (from, GET_MODE (from))
4858 == GET_MODE_BITSIZE (GET_MODE (from))))
4859 false_code = EQ, false_val = constm1_rtx;
4861 /* Now simplify an arm if we know the value of the register in the
4862 branch and it is used in the arm. Be careful due to the potential
4863 of locally-shared RTL. */
4865 if (reg_mentioned_p (from, true_rtx))
4866 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4867 from, true_val),
4868 pc_rtx, pc_rtx, 0, 0);
4869 if (reg_mentioned_p (from, false_rtx))
4870 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4871 from, false_val),
4872 pc_rtx, pc_rtx, 0, 0);
4874 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4875 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4877 true_rtx = XEXP (x, 1);
4878 false_rtx = XEXP (x, 2);
4879 true_code = GET_CODE (cond);
4882 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4883 reversed, do so to avoid needing two sets of patterns for
4884 subtract-and-branch insns. Similarly if we have a constant in the true
4885 arm, the false arm is the same as the first operand of the comparison, or
4886 the false arm is more complicated than the true arm. */
4888 if (comparison_p
4889 && reversed_comparison_code (cond, NULL) != UNKNOWN
4890 && (true_rtx == pc_rtx
4891 || (CONSTANT_P (true_rtx)
4892 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4893 || true_rtx == const0_rtx
4894 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4895 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4896 && !OBJECT_P (false_rtx))
4897 || reg_mentioned_p (true_rtx, false_rtx)
4898 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4900 true_code = reversed_comparison_code (cond, NULL);
4901 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4902 SUBST (XEXP (x, 1), false_rtx);
4903 SUBST (XEXP (x, 2), true_rtx);
4905 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4906 cond = XEXP (x, 0);
4908 /* It is possible that the conditional has been simplified out. */
4909 true_code = GET_CODE (cond);
4910 comparison_p = COMPARISON_P (cond);
4913 /* If the two arms are identical, we don't need the comparison. */
4915 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4916 return true_rtx;
4918 /* Convert a == b ? b : a to "a". */
4919 if (true_code == EQ && ! side_effects_p (cond)
4920 && !HONOR_NANS (mode)
4921 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4922 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4923 return false_rtx;
4924 else if (true_code == NE && ! side_effects_p (cond)
4925 && !HONOR_NANS (mode)
4926 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4927 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4928 return true_rtx;
4930 /* Look for cases where we have (abs x) or (neg (abs X)). */
4932 if (GET_MODE_CLASS (mode) == MODE_INT
4933 && GET_CODE (false_rtx) == NEG
4934 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4935 && comparison_p
4936 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4937 && ! side_effects_p (true_rtx))
4938 switch (true_code)
4940 case GT:
4941 case GE:
4942 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4943 case LT:
4944 case LE:
4945 return
4946 simplify_gen_unary (NEG, mode,
4947 simplify_gen_unary (ABS, mode, true_rtx, mode),
4948 mode);
4949 default:
4950 break;
4953 /* Look for MIN or MAX. */
4955 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4956 && comparison_p
4957 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4958 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4959 && ! side_effects_p (cond))
4960 switch (true_code)
4962 case GE:
4963 case GT:
4964 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4965 case LE:
4966 case LT:
4967 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4968 case GEU:
4969 case GTU:
4970 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4971 case LEU:
4972 case LTU:
4973 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4974 default:
4975 break;
4978 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4979 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4980 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4981 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4982 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4983 neither 1 or -1, but it isn't worth checking for. */
4985 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4986 && comparison_p
4987 && GET_MODE_CLASS (mode) == MODE_INT
4988 && ! side_effects_p (x))
4990 rtx t = make_compound_operation (true_rtx, SET);
4991 rtx f = make_compound_operation (false_rtx, SET);
4992 rtx cond_op0 = XEXP (cond, 0);
4993 rtx cond_op1 = XEXP (cond, 1);
4994 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4995 enum machine_mode m = mode;
4996 rtx z = 0, c1 = NULL_RTX;
4998 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4999 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5000 || GET_CODE (t) == ASHIFT
5001 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5002 && rtx_equal_p (XEXP (t, 0), f))
5003 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5005 /* If an identity-zero op is commutative, check whether there
5006 would be a match if we swapped the operands. */
5007 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5008 || GET_CODE (t) == XOR)
5009 && rtx_equal_p (XEXP (t, 1), f))
5010 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5011 else if (GET_CODE (t) == SIGN_EXTEND
5012 && (GET_CODE (XEXP (t, 0)) == PLUS
5013 || GET_CODE (XEXP (t, 0)) == MINUS
5014 || GET_CODE (XEXP (t, 0)) == IOR
5015 || GET_CODE (XEXP (t, 0)) == XOR
5016 || GET_CODE (XEXP (t, 0)) == ASHIFT
5017 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5018 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5019 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5020 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5021 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5022 && (num_sign_bit_copies (f, GET_MODE (f))
5023 > (unsigned int)
5024 (GET_MODE_BITSIZE (mode)
5025 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5027 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5028 extend_op = SIGN_EXTEND;
5029 m = GET_MODE (XEXP (t, 0));
5031 else if (GET_CODE (t) == SIGN_EXTEND
5032 && (GET_CODE (XEXP (t, 0)) == PLUS
5033 || GET_CODE (XEXP (t, 0)) == IOR
5034 || GET_CODE (XEXP (t, 0)) == XOR)
5035 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5036 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5037 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5038 && (num_sign_bit_copies (f, GET_MODE (f))
5039 > (unsigned int)
5040 (GET_MODE_BITSIZE (mode)
5041 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5043 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5044 extend_op = SIGN_EXTEND;
5045 m = GET_MODE (XEXP (t, 0));
5047 else if (GET_CODE (t) == ZERO_EXTEND
5048 && (GET_CODE (XEXP (t, 0)) == PLUS
5049 || GET_CODE (XEXP (t, 0)) == MINUS
5050 || GET_CODE (XEXP (t, 0)) == IOR
5051 || GET_CODE (XEXP (t, 0)) == XOR
5052 || GET_CODE (XEXP (t, 0)) == ASHIFT
5053 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5054 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5055 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5056 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5057 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5058 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5059 && ((nonzero_bits (f, GET_MODE (f))
5060 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5061 == 0))
5063 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5064 extend_op = ZERO_EXTEND;
5065 m = GET_MODE (XEXP (t, 0));
5067 else if (GET_CODE (t) == ZERO_EXTEND
5068 && (GET_CODE (XEXP (t, 0)) == PLUS
5069 || GET_CODE (XEXP (t, 0)) == IOR
5070 || GET_CODE (XEXP (t, 0)) == XOR)
5071 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5072 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5073 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5074 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5075 && ((nonzero_bits (f, GET_MODE (f))
5076 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5077 == 0))
5079 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5080 extend_op = ZERO_EXTEND;
5081 m = GET_MODE (XEXP (t, 0));
5084 if (z)
5086 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5087 cond_op0, cond_op1),
5088 pc_rtx, pc_rtx, 0, 0);
5089 temp = simplify_gen_binary (MULT, m, temp,
5090 simplify_gen_binary (MULT, m, c1,
5091 const_true_rtx));
5092 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5093 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5095 if (extend_op != UNKNOWN)
5096 temp = simplify_gen_unary (extend_op, mode, temp, m);
5098 return temp;
5102 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5103 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5104 negation of a single bit, we can convert this operation to a shift. We
5105 can actually do this more generally, but it doesn't seem worth it. */
5107 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5108 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5109 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5110 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5111 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5112 == GET_MODE_BITSIZE (mode))
5113 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5114 return
5115 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5116 gen_lowpart (mode, XEXP (cond, 0)), i);
5118 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5119 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5120 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5121 && GET_MODE (XEXP (cond, 0)) == mode
5122 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5123 == nonzero_bits (XEXP (cond, 0), mode)
5124 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5125 return XEXP (cond, 0);
5127 return x;
5130 /* Simplify X, a SET expression. Return the new expression. */
5132 static rtx
5133 simplify_set (rtx x)
5135 rtx src = SET_SRC (x);
5136 rtx dest = SET_DEST (x);
5137 enum machine_mode mode
5138 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5139 rtx other_insn;
5140 rtx *cc_use;
5142 /* (set (pc) (return)) gets written as (return). */
5143 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5144 return src;
5146 /* Now that we know for sure which bits of SRC we are using, see if we can
5147 simplify the expression for the object knowing that we only need the
5148 low-order bits. */
5150 if (GET_MODE_CLASS (mode) == MODE_INT
5151 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5153 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5154 SUBST (SET_SRC (x), src);
5157 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5158 the comparison result and try to simplify it unless we already have used
5159 undobuf.other_insn. */
5160 if ((GET_MODE_CLASS (mode) == MODE_CC
5161 || GET_CODE (src) == COMPARE
5162 || CC0_P (dest))
5163 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5164 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5165 && COMPARISON_P (*cc_use)
5166 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5168 enum rtx_code old_code = GET_CODE (*cc_use);
5169 enum rtx_code new_code;
5170 rtx op0, op1, tmp;
5171 int other_changed = 0;
5172 enum machine_mode compare_mode = GET_MODE (dest);
5174 if (GET_CODE (src) == COMPARE)
5175 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5176 else
5177 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5179 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5180 op0, op1);
5181 if (!tmp)
5182 new_code = old_code;
5183 else if (!CONSTANT_P (tmp))
5185 new_code = GET_CODE (tmp);
5186 op0 = XEXP (tmp, 0);
5187 op1 = XEXP (tmp, 1);
5189 else
5191 rtx pat = PATTERN (other_insn);
5192 undobuf.other_insn = other_insn;
5193 SUBST (*cc_use, tmp);
5195 /* Attempt to simplify CC user. */
5196 if (GET_CODE (pat) == SET)
5198 rtx new = simplify_rtx (SET_SRC (pat));
5199 if (new != NULL_RTX)
5200 SUBST (SET_SRC (pat), new);
5203 /* Convert X into a no-op move. */
5204 SUBST (SET_DEST (x), pc_rtx);
5205 SUBST (SET_SRC (x), pc_rtx);
5206 return x;
5209 /* Simplify our comparison, if possible. */
5210 new_code = simplify_comparison (new_code, &op0, &op1);
5212 #ifdef SELECT_CC_MODE
5213 /* If this machine has CC modes other than CCmode, check to see if we
5214 need to use a different CC mode here. */
5215 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5216 compare_mode = GET_MODE (op0);
5217 else
5218 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5220 #ifndef HAVE_cc0
5221 /* If the mode changed, we have to change SET_DEST, the mode in the
5222 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5223 a hard register, just build new versions with the proper mode. If it
5224 is a pseudo, we lose unless it is only time we set the pseudo, in
5225 which case we can safely change its mode. */
5226 if (compare_mode != GET_MODE (dest))
5228 if (can_change_dest_mode (dest, 0, compare_mode))
5230 unsigned int regno = REGNO (dest);
5231 rtx new_dest;
5233 if (regno < FIRST_PSEUDO_REGISTER)
5234 new_dest = gen_rtx_REG (compare_mode, regno);
5235 else
5237 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5238 new_dest = regno_reg_rtx[regno];
5241 SUBST (SET_DEST (x), new_dest);
5242 SUBST (XEXP (*cc_use, 0), new_dest);
5243 other_changed = 1;
5245 dest = new_dest;
5248 #endif /* cc0 */
5249 #endif /* SELECT_CC_MODE */
5251 /* If the code changed, we have to build a new comparison in
5252 undobuf.other_insn. */
5253 if (new_code != old_code)
5255 int other_changed_previously = other_changed;
5256 unsigned HOST_WIDE_INT mask;
5258 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5259 dest, const0_rtx));
5260 other_changed = 1;
5262 /* If the only change we made was to change an EQ into an NE or
5263 vice versa, OP0 has only one bit that might be nonzero, and OP1
5264 is zero, check if changing the user of the condition code will
5265 produce a valid insn. If it won't, we can keep the original code
5266 in that insn by surrounding our operation with an XOR. */
5268 if (((old_code == NE && new_code == EQ)
5269 || (old_code == EQ && new_code == NE))
5270 && ! other_changed_previously && op1 == const0_rtx
5271 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5272 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5274 rtx pat = PATTERN (other_insn), note = 0;
5276 if ((recog_for_combine (&pat, other_insn, &note) < 0
5277 && ! check_asm_operands (pat)))
5279 PUT_CODE (*cc_use, old_code);
5280 other_changed = 0;
5282 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5283 op0, GEN_INT (mask));
5288 if (other_changed)
5289 undobuf.other_insn = other_insn;
5291 #ifdef HAVE_cc0
5292 /* If we are now comparing against zero, change our source if
5293 needed. If we do not use cc0, we always have a COMPARE. */
5294 if (op1 == const0_rtx && dest == cc0_rtx)
5296 SUBST (SET_SRC (x), op0);
5297 src = op0;
5299 else
5300 #endif
5302 /* Otherwise, if we didn't previously have a COMPARE in the
5303 correct mode, we need one. */
5304 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5306 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5307 src = SET_SRC (x);
5309 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5311 SUBST(SET_SRC (x), op0);
5312 src = SET_SRC (x);
5314 else
5316 /* Otherwise, update the COMPARE if needed. */
5317 SUBST (XEXP (src, 0), op0);
5318 SUBST (XEXP (src, 1), op1);
5321 else
5323 /* Get SET_SRC in a form where we have placed back any
5324 compound expressions. Then do the checks below. */
5325 src = make_compound_operation (src, SET);
5326 SUBST (SET_SRC (x), src);
5329 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5330 and X being a REG or (subreg (reg)), we may be able to convert this to
5331 (set (subreg:m2 x) (op)).
5333 We can always do this if M1 is narrower than M2 because that means that
5334 we only care about the low bits of the result.
5336 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5337 perform a narrower operation than requested since the high-order bits will
5338 be undefined. On machine where it is defined, this transformation is safe
5339 as long as M1 and M2 have the same number of words. */
5341 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5342 && !OBJECT_P (SUBREG_REG (src))
5343 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5344 / UNITS_PER_WORD)
5345 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5346 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5347 #ifndef WORD_REGISTER_OPERATIONS
5348 && (GET_MODE_SIZE (GET_MODE (src))
5349 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5350 #endif
5351 #ifdef CANNOT_CHANGE_MODE_CLASS
5352 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5353 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5354 GET_MODE (SUBREG_REG (src)),
5355 GET_MODE (src)))
5356 #endif
5357 && (REG_P (dest)
5358 || (GET_CODE (dest) == SUBREG
5359 && REG_P (SUBREG_REG (dest)))))
5361 SUBST (SET_DEST (x),
5362 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5363 dest));
5364 SUBST (SET_SRC (x), SUBREG_REG (src));
5366 src = SET_SRC (x), dest = SET_DEST (x);
5369 #ifdef HAVE_cc0
5370 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5371 in SRC. */
5372 if (dest == cc0_rtx
5373 && GET_CODE (src) == SUBREG
5374 && subreg_lowpart_p (src)
5375 && (GET_MODE_BITSIZE (GET_MODE (src))
5376 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5378 rtx inner = SUBREG_REG (src);
5379 enum machine_mode inner_mode = GET_MODE (inner);
5381 /* Here we make sure that we don't have a sign bit on. */
5382 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5383 && (nonzero_bits (inner, inner_mode)
5384 < ((unsigned HOST_WIDE_INT) 1
5385 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5387 SUBST (SET_SRC (x), inner);
5388 src = SET_SRC (x);
5391 #endif
5393 #ifdef LOAD_EXTEND_OP
5394 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5395 would require a paradoxical subreg. Replace the subreg with a
5396 zero_extend to avoid the reload that would otherwise be required. */
5398 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5399 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5400 && SUBREG_BYTE (src) == 0
5401 && (GET_MODE_SIZE (GET_MODE (src))
5402 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5403 && MEM_P (SUBREG_REG (src)))
5405 SUBST (SET_SRC (x),
5406 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5407 GET_MODE (src), SUBREG_REG (src)));
5409 src = SET_SRC (x);
5411 #endif
5413 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5414 are comparing an item known to be 0 or -1 against 0, use a logical
5415 operation instead. Check for one of the arms being an IOR of the other
5416 arm with some value. We compute three terms to be IOR'ed together. In
5417 practice, at most two will be nonzero. Then we do the IOR's. */
5419 if (GET_CODE (dest) != PC
5420 && GET_CODE (src) == IF_THEN_ELSE
5421 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5422 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5423 && XEXP (XEXP (src, 0), 1) == const0_rtx
5424 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5425 #ifdef HAVE_conditional_move
5426 && ! can_conditionally_move_p (GET_MODE (src))
5427 #endif
5428 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5429 GET_MODE (XEXP (XEXP (src, 0), 0)))
5430 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5431 && ! side_effects_p (src))
5433 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5434 ? XEXP (src, 1) : XEXP (src, 2));
5435 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5436 ? XEXP (src, 2) : XEXP (src, 1));
5437 rtx term1 = const0_rtx, term2, term3;
5439 if (GET_CODE (true_rtx) == IOR
5440 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5441 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5442 else if (GET_CODE (true_rtx) == IOR
5443 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5444 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5445 else if (GET_CODE (false_rtx) == IOR
5446 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5447 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5448 else if (GET_CODE (false_rtx) == IOR
5449 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5450 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5452 term2 = simplify_gen_binary (AND, GET_MODE (src),
5453 XEXP (XEXP (src, 0), 0), true_rtx);
5454 term3 = simplify_gen_binary (AND, GET_MODE (src),
5455 simplify_gen_unary (NOT, GET_MODE (src),
5456 XEXP (XEXP (src, 0), 0),
5457 GET_MODE (src)),
5458 false_rtx);
5460 SUBST (SET_SRC (x),
5461 simplify_gen_binary (IOR, GET_MODE (src),
5462 simplify_gen_binary (IOR, GET_MODE (src),
5463 term1, term2),
5464 term3));
5466 src = SET_SRC (x);
5469 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5470 whole thing fail. */
5471 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5472 return src;
5473 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5474 return dest;
5475 else
5476 /* Convert this into a field assignment operation, if possible. */
5477 return make_field_assignment (x);
5480 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5481 result. */
5483 static rtx
5484 simplify_logical (rtx x)
5486 enum machine_mode mode = GET_MODE (x);
5487 rtx op0 = XEXP (x, 0);
5488 rtx op1 = XEXP (x, 1);
5490 switch (GET_CODE (x))
5492 case AND:
5493 /* We can call simplify_and_const_int only if we don't lose
5494 any (sign) bits when converting INTVAL (op1) to
5495 "unsigned HOST_WIDE_INT". */
5496 if (GET_CODE (op1) == CONST_INT
5497 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5498 || INTVAL (op1) > 0))
5500 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5501 if (GET_CODE (x) != AND)
5502 return x;
5504 op0 = XEXP (x, 0);
5505 op1 = XEXP (x, 1);
5508 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5509 apply the distributive law and then the inverse distributive
5510 law to see if things simplify. */
5511 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5513 rtx result = distribute_and_simplify_rtx (x, 0);
5514 if (result)
5515 return result;
5517 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5519 rtx result = distribute_and_simplify_rtx (x, 1);
5520 if (result)
5521 return result;
5523 break;
5525 case IOR:
5526 /* If we have (ior (and A B) C), apply the distributive law and then
5527 the inverse distributive law to see if things simplify. */
5529 if (GET_CODE (op0) == AND)
5531 rtx result = distribute_and_simplify_rtx (x, 0);
5532 if (result)
5533 return result;
5536 if (GET_CODE (op1) == AND)
5538 rtx result = distribute_and_simplify_rtx (x, 1);
5539 if (result)
5540 return result;
5542 break;
5544 default:
5545 gcc_unreachable ();
5548 return x;
5551 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5552 operations" because they can be replaced with two more basic operations.
5553 ZERO_EXTEND is also considered "compound" because it can be replaced with
5554 an AND operation, which is simpler, though only one operation.
5556 The function expand_compound_operation is called with an rtx expression
5557 and will convert it to the appropriate shifts and AND operations,
5558 simplifying at each stage.
5560 The function make_compound_operation is called to convert an expression
5561 consisting of shifts and ANDs into the equivalent compound expression.
5562 It is the inverse of this function, loosely speaking. */
5564 static rtx
5565 expand_compound_operation (rtx x)
5567 unsigned HOST_WIDE_INT pos = 0, len;
5568 int unsignedp = 0;
5569 unsigned int modewidth;
5570 rtx tem;
5572 switch (GET_CODE (x))
5574 case ZERO_EXTEND:
5575 unsignedp = 1;
5576 case SIGN_EXTEND:
5577 /* We can't necessarily use a const_int for a multiword mode;
5578 it depends on implicitly extending the value.
5579 Since we don't know the right way to extend it,
5580 we can't tell whether the implicit way is right.
5582 Even for a mode that is no wider than a const_int,
5583 we can't win, because we need to sign extend one of its bits through
5584 the rest of it, and we don't know which bit. */
5585 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5586 return x;
5588 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5589 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5590 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5591 reloaded. If not for that, MEM's would very rarely be safe.
5593 Reject MODEs bigger than a word, because we might not be able
5594 to reference a two-register group starting with an arbitrary register
5595 (and currently gen_lowpart might crash for a SUBREG). */
5597 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5598 return x;
5600 /* Reject MODEs that aren't scalar integers because turning vector
5601 or complex modes into shifts causes problems. */
5603 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5604 return x;
5606 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5607 /* If the inner object has VOIDmode (the only way this can happen
5608 is if it is an ASM_OPERANDS), we can't do anything since we don't
5609 know how much masking to do. */
5610 if (len == 0)
5611 return x;
5613 break;
5615 case ZERO_EXTRACT:
5616 unsignedp = 1;
5618 /* ... fall through ... */
5620 case SIGN_EXTRACT:
5621 /* If the operand is a CLOBBER, just return it. */
5622 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5623 return XEXP (x, 0);
5625 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5626 || GET_CODE (XEXP (x, 2)) != CONST_INT
5627 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5628 return x;
5630 /* Reject MODEs that aren't scalar integers because turning vector
5631 or complex modes into shifts causes problems. */
5633 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5634 return x;
5636 len = INTVAL (XEXP (x, 1));
5637 pos = INTVAL (XEXP (x, 2));
5639 /* This should stay within the object being extracted, fail otherwise. */
5640 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5641 return x;
5643 if (BITS_BIG_ENDIAN)
5644 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5646 break;
5648 default:
5649 return x;
5651 /* Convert sign extension to zero extension, if we know that the high
5652 bit is not set, as this is easier to optimize. It will be converted
5653 back to cheaper alternative in make_extraction. */
5654 if (GET_CODE (x) == SIGN_EXTEND
5655 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5656 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5657 & ~(((unsigned HOST_WIDE_INT)
5658 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5659 >> 1))
5660 == 0)))
5662 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5663 rtx temp2 = expand_compound_operation (temp);
5665 /* Make sure this is a profitable operation. */
5666 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5667 return temp2;
5668 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5669 return temp;
5670 else
5671 return x;
5674 /* We can optimize some special cases of ZERO_EXTEND. */
5675 if (GET_CODE (x) == ZERO_EXTEND)
5677 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5678 know that the last value didn't have any inappropriate bits
5679 set. */
5680 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5681 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5682 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5683 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5684 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5685 return XEXP (XEXP (x, 0), 0);
5687 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5688 if (GET_CODE (XEXP (x, 0)) == SUBREG
5689 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5690 && subreg_lowpart_p (XEXP (x, 0))
5691 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5692 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5693 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5694 return SUBREG_REG (XEXP (x, 0));
5696 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5697 is a comparison and STORE_FLAG_VALUE permits. This is like
5698 the first case, but it works even when GET_MODE (x) is larger
5699 than HOST_WIDE_INT. */
5700 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5701 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5702 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5703 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5704 <= HOST_BITS_PER_WIDE_INT)
5705 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5706 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5707 return XEXP (XEXP (x, 0), 0);
5709 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5710 if (GET_CODE (XEXP (x, 0)) == SUBREG
5711 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5712 && subreg_lowpart_p (XEXP (x, 0))
5713 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5714 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5715 <= HOST_BITS_PER_WIDE_INT)
5716 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5717 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5718 return SUBREG_REG (XEXP (x, 0));
5722 /* If we reach here, we want to return a pair of shifts. The inner
5723 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5724 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5725 logical depending on the value of UNSIGNEDP.
5727 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5728 converted into an AND of a shift.
5730 We must check for the case where the left shift would have a negative
5731 count. This can happen in a case like (x >> 31) & 255 on machines
5732 that can't shift by a constant. On those machines, we would first
5733 combine the shift with the AND to produce a variable-position
5734 extraction. Then the constant of 31 would be substituted in to produce
5735 a such a position. */
5737 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5738 if (modewidth + len >= pos)
5740 enum machine_mode mode = GET_MODE (x);
5741 tem = gen_lowpart (mode, XEXP (x, 0));
5742 if (!tem || GET_CODE (tem) == CLOBBER)
5743 return x;
5744 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5745 tem, modewidth - pos - len);
5746 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5747 mode, tem, modewidth - len);
5749 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5750 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5751 simplify_shift_const (NULL_RTX, LSHIFTRT,
5752 GET_MODE (x),
5753 XEXP (x, 0), pos),
5754 ((HOST_WIDE_INT) 1 << len) - 1);
5755 else
5756 /* Any other cases we can't handle. */
5757 return x;
5759 /* If we couldn't do this for some reason, return the original
5760 expression. */
5761 if (GET_CODE (tem) == CLOBBER)
5762 return x;
5764 return tem;
5767 /* X is a SET which contains an assignment of one object into
5768 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5769 or certain SUBREGS). If possible, convert it into a series of
5770 logical operations.
5772 We half-heartedly support variable positions, but do not at all
5773 support variable lengths. */
5775 static rtx
5776 expand_field_assignment (rtx x)
5778 rtx inner;
5779 rtx pos; /* Always counts from low bit. */
5780 int len;
5781 rtx mask, cleared, masked;
5782 enum machine_mode compute_mode;
5784 /* Loop until we find something we can't simplify. */
5785 while (1)
5787 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5788 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5790 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5791 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5792 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5794 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5795 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5797 inner = XEXP (SET_DEST (x), 0);
5798 len = INTVAL (XEXP (SET_DEST (x), 1));
5799 pos = XEXP (SET_DEST (x), 2);
5801 /* A constant position should stay within the width of INNER. */
5802 if (GET_CODE (pos) == CONST_INT
5803 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5804 break;
5806 if (BITS_BIG_ENDIAN)
5808 if (GET_CODE (pos) == CONST_INT)
5809 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5810 - INTVAL (pos));
5811 else if (GET_CODE (pos) == MINUS
5812 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5813 && (INTVAL (XEXP (pos, 1))
5814 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5815 /* If position is ADJUST - X, new position is X. */
5816 pos = XEXP (pos, 0);
5817 else
5818 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5819 GEN_INT (GET_MODE_BITSIZE (
5820 GET_MODE (inner))
5821 - len),
5822 pos);
5826 /* A SUBREG between two modes that occupy the same numbers of words
5827 can be done by moving the SUBREG to the source. */
5828 else if (GET_CODE (SET_DEST (x)) == SUBREG
5829 /* We need SUBREGs to compute nonzero_bits properly. */
5830 && nonzero_sign_valid
5831 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5832 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5833 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5834 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5836 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5837 gen_lowpart
5838 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5839 SET_SRC (x)));
5840 continue;
5842 else
5843 break;
5845 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5846 inner = SUBREG_REG (inner);
5848 compute_mode = GET_MODE (inner);
5850 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5851 if (! SCALAR_INT_MODE_P (compute_mode))
5853 enum machine_mode imode;
5855 /* Don't do anything for vector or complex integral types. */
5856 if (! FLOAT_MODE_P (compute_mode))
5857 break;
5859 /* Try to find an integral mode to pun with. */
5860 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5861 if (imode == BLKmode)
5862 break;
5864 compute_mode = imode;
5865 inner = gen_lowpart (imode, inner);
5868 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5869 if (len >= HOST_BITS_PER_WIDE_INT)
5870 break;
5872 /* Now compute the equivalent expression. Make a copy of INNER
5873 for the SET_DEST in case it is a MEM into which we will substitute;
5874 we don't want shared RTL in that case. */
5875 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5876 cleared = simplify_gen_binary (AND, compute_mode,
5877 simplify_gen_unary (NOT, compute_mode,
5878 simplify_gen_binary (ASHIFT,
5879 compute_mode,
5880 mask, pos),
5881 compute_mode),
5882 inner);
5883 masked = simplify_gen_binary (ASHIFT, compute_mode,
5884 simplify_gen_binary (
5885 AND, compute_mode,
5886 gen_lowpart (compute_mode, SET_SRC (x)),
5887 mask),
5888 pos);
5890 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5891 simplify_gen_binary (IOR, compute_mode,
5892 cleared, masked));
5895 return x;
5898 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5899 it is an RTX that represents a variable starting position; otherwise,
5900 POS is the (constant) starting bit position (counted from the LSB).
5902 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5903 signed reference.
5905 IN_DEST is nonzero if this is a reference in the destination of a
5906 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5907 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5908 be used.
5910 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5911 ZERO_EXTRACT should be built even for bits starting at bit 0.
5913 MODE is the desired mode of the result (if IN_DEST == 0).
5915 The result is an RTX for the extraction or NULL_RTX if the target
5916 can't handle it. */
5918 static rtx
5919 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5920 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5921 int in_dest, int in_compare)
5923 /* This mode describes the size of the storage area
5924 to fetch the overall value from. Within that, we
5925 ignore the POS lowest bits, etc. */
5926 enum machine_mode is_mode = GET_MODE (inner);
5927 enum machine_mode inner_mode;
5928 enum machine_mode wanted_inner_mode;
5929 enum machine_mode wanted_inner_reg_mode = word_mode;
5930 enum machine_mode pos_mode = word_mode;
5931 enum machine_mode extraction_mode = word_mode;
5932 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5933 rtx new = 0;
5934 rtx orig_pos_rtx = pos_rtx;
5935 HOST_WIDE_INT orig_pos;
5937 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5939 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5940 consider just the QI as the memory to extract from.
5941 The subreg adds or removes high bits; its mode is
5942 irrelevant to the meaning of this extraction,
5943 since POS and LEN count from the lsb. */
5944 if (MEM_P (SUBREG_REG (inner)))
5945 is_mode = GET_MODE (SUBREG_REG (inner));
5946 inner = SUBREG_REG (inner);
5948 else if (GET_CODE (inner) == ASHIFT
5949 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5950 && pos_rtx == 0 && pos == 0
5951 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5953 /* We're extracting the least significant bits of an rtx
5954 (ashift X (const_int C)), where LEN > C. Extract the
5955 least significant (LEN - C) bits of X, giving an rtx
5956 whose mode is MODE, then shift it left C times. */
5957 new = make_extraction (mode, XEXP (inner, 0),
5958 0, 0, len - INTVAL (XEXP (inner, 1)),
5959 unsignedp, in_dest, in_compare);
5960 if (new != 0)
5961 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5964 inner_mode = GET_MODE (inner);
5966 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5967 pos = INTVAL (pos_rtx), pos_rtx = 0;
5969 /* See if this can be done without an extraction. We never can if the
5970 width of the field is not the same as that of some integer mode. For
5971 registers, we can only avoid the extraction if the position is at the
5972 low-order bit and this is either not in the destination or we have the
5973 appropriate STRICT_LOW_PART operation available.
5975 For MEM, we can avoid an extract if the field starts on an appropriate
5976 boundary and we can change the mode of the memory reference. */
5978 if (tmode != BLKmode
5979 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5980 && !MEM_P (inner)
5981 && (inner_mode == tmode
5982 || !REG_P (inner)
5983 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
5984 GET_MODE_BITSIZE (inner_mode))
5985 || reg_truncated_to_mode (tmode, inner))
5986 && (! in_dest
5987 || (REG_P (inner)
5988 && have_insn_for (STRICT_LOW_PART, tmode))))
5989 || (MEM_P (inner) && pos_rtx == 0
5990 && (pos
5991 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5992 : BITS_PER_UNIT)) == 0
5993 /* We can't do this if we are widening INNER_MODE (it
5994 may not be aligned, for one thing). */
5995 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5996 && (inner_mode == tmode
5997 || (! mode_dependent_address_p (XEXP (inner, 0))
5998 && ! MEM_VOLATILE_P (inner))))))
6000 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6001 field. If the original and current mode are the same, we need not
6002 adjust the offset. Otherwise, we do if bytes big endian.
6004 If INNER is not a MEM, get a piece consisting of just the field
6005 of interest (in this case POS % BITS_PER_WORD must be 0). */
6007 if (MEM_P (inner))
6009 HOST_WIDE_INT offset;
6011 /* POS counts from lsb, but make OFFSET count in memory order. */
6012 if (BYTES_BIG_ENDIAN)
6013 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6014 else
6015 offset = pos / BITS_PER_UNIT;
6017 new = adjust_address_nv (inner, tmode, offset);
6019 else if (REG_P (inner))
6021 if (tmode != inner_mode)
6023 /* We can't call gen_lowpart in a DEST since we
6024 always want a SUBREG (see below) and it would sometimes
6025 return a new hard register. */
6026 if (pos || in_dest)
6028 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6030 if (WORDS_BIG_ENDIAN
6031 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6032 final_word = ((GET_MODE_SIZE (inner_mode)
6033 - GET_MODE_SIZE (tmode))
6034 / UNITS_PER_WORD) - final_word;
6036 final_word *= UNITS_PER_WORD;
6037 if (BYTES_BIG_ENDIAN &&
6038 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6039 final_word += (GET_MODE_SIZE (inner_mode)
6040 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6042 /* Avoid creating invalid subregs, for example when
6043 simplifying (x>>32)&255. */
6044 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6045 return NULL_RTX;
6047 new = gen_rtx_SUBREG (tmode, inner, final_word);
6049 else
6050 new = gen_lowpart (tmode, inner);
6052 else
6053 new = inner;
6055 else
6056 new = force_to_mode (inner, tmode,
6057 len >= HOST_BITS_PER_WIDE_INT
6058 ? ~(unsigned HOST_WIDE_INT) 0
6059 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6062 /* If this extraction is going into the destination of a SET,
6063 make a STRICT_LOW_PART unless we made a MEM. */
6065 if (in_dest)
6066 return (MEM_P (new) ? new
6067 : (GET_CODE (new) != SUBREG
6068 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6069 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6071 if (mode == tmode)
6072 return new;
6074 if (GET_CODE (new) == CONST_INT)
6075 return gen_int_mode (INTVAL (new), mode);
6077 /* If we know that no extraneous bits are set, and that the high
6078 bit is not set, convert the extraction to the cheaper of
6079 sign and zero extension, that are equivalent in these cases. */
6080 if (flag_expensive_optimizations
6081 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6082 && ((nonzero_bits (new, tmode)
6083 & ~(((unsigned HOST_WIDE_INT)
6084 GET_MODE_MASK (tmode))
6085 >> 1))
6086 == 0)))
6088 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6089 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6091 /* Prefer ZERO_EXTENSION, since it gives more information to
6092 backends. */
6093 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6094 return temp;
6095 return temp1;
6098 /* Otherwise, sign- or zero-extend unless we already are in the
6099 proper mode. */
6101 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6102 mode, new));
6105 /* Unless this is a COMPARE or we have a funny memory reference,
6106 don't do anything with zero-extending field extracts starting at
6107 the low-order bit since they are simple AND operations. */
6108 if (pos_rtx == 0 && pos == 0 && ! in_dest
6109 && ! in_compare && unsignedp)
6110 return 0;
6112 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6113 if the position is not a constant and the length is not 1. In all
6114 other cases, we would only be going outside our object in cases when
6115 an original shift would have been undefined. */
6116 if (MEM_P (inner)
6117 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6118 || (pos_rtx != 0 && len != 1)))
6119 return 0;
6121 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6122 and the mode for the result. */
6123 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6125 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6126 pos_mode = mode_for_extraction (EP_insv, 2);
6127 extraction_mode = mode_for_extraction (EP_insv, 3);
6130 if (! in_dest && unsignedp
6131 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6133 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6134 pos_mode = mode_for_extraction (EP_extzv, 3);
6135 extraction_mode = mode_for_extraction (EP_extzv, 0);
6138 if (! in_dest && ! unsignedp
6139 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6141 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6142 pos_mode = mode_for_extraction (EP_extv, 3);
6143 extraction_mode = mode_for_extraction (EP_extv, 0);
6146 /* Never narrow an object, since that might not be safe. */
6148 if (mode != VOIDmode
6149 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6150 extraction_mode = mode;
6152 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6153 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6154 pos_mode = GET_MODE (pos_rtx);
6156 /* If this is not from memory, the desired mode is the preferred mode
6157 for an extraction pattern's first input operand, or word_mode if there
6158 is none. */
6159 if (!MEM_P (inner))
6160 wanted_inner_mode = wanted_inner_reg_mode;
6161 else
6163 /* Be careful not to go beyond the extracted object and maintain the
6164 natural alignment of the memory. */
6165 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6166 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6167 > GET_MODE_BITSIZE (wanted_inner_mode))
6169 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6170 gcc_assert (wanted_inner_mode != VOIDmode);
6173 /* If we have to change the mode of memory and cannot, the desired mode
6174 is EXTRACTION_MODE. */
6175 if (inner_mode != wanted_inner_mode
6176 && (mode_dependent_address_p (XEXP (inner, 0))
6177 || MEM_VOLATILE_P (inner)
6178 || pos_rtx))
6179 wanted_inner_mode = extraction_mode;
6182 orig_pos = pos;
6184 if (BITS_BIG_ENDIAN)
6186 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6187 BITS_BIG_ENDIAN style. If position is constant, compute new
6188 position. Otherwise, build subtraction.
6189 Note that POS is relative to the mode of the original argument.
6190 If it's a MEM we need to recompute POS relative to that.
6191 However, if we're extracting from (or inserting into) a register,
6192 we want to recompute POS relative to wanted_inner_mode. */
6193 int width = (MEM_P (inner)
6194 ? GET_MODE_BITSIZE (is_mode)
6195 : GET_MODE_BITSIZE (wanted_inner_mode));
6197 if (pos_rtx == 0)
6198 pos = width - len - pos;
6199 else
6200 pos_rtx
6201 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6202 /* POS may be less than 0 now, but we check for that below.
6203 Note that it can only be less than 0 if !MEM_P (inner). */
6206 /* If INNER has a wider mode, and this is a constant extraction, try to
6207 make it smaller and adjust the byte to point to the byte containing
6208 the value. */
6209 if (wanted_inner_mode != VOIDmode
6210 && inner_mode != wanted_inner_mode
6211 && ! pos_rtx
6212 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6213 && MEM_P (inner)
6214 && ! mode_dependent_address_p (XEXP (inner, 0))
6215 && ! MEM_VOLATILE_P (inner))
6217 int offset = 0;
6219 /* The computations below will be correct if the machine is big
6220 endian in both bits and bytes or little endian in bits and bytes.
6221 If it is mixed, we must adjust. */
6223 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6224 adjust OFFSET to compensate. */
6225 if (BYTES_BIG_ENDIAN
6226 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6227 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6229 /* We can now move to the desired byte. */
6230 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6231 * GET_MODE_SIZE (wanted_inner_mode);
6232 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6234 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6235 && is_mode != wanted_inner_mode)
6236 offset = (GET_MODE_SIZE (is_mode)
6237 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6239 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6242 /* If INNER is not memory, we can always get it into the proper mode. If we
6243 are changing its mode, POS must be a constant and smaller than the size
6244 of the new mode. */
6245 else if (!MEM_P (inner))
6247 if (GET_MODE (inner) != wanted_inner_mode
6248 && (pos_rtx != 0
6249 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6250 return 0;
6252 if (orig_pos < 0)
6253 return 0;
6255 inner = force_to_mode (inner, wanted_inner_mode,
6256 pos_rtx
6257 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6258 ? ~(unsigned HOST_WIDE_INT) 0
6259 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6260 << orig_pos),
6264 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6265 have to zero extend. Otherwise, we can just use a SUBREG. */
6266 if (pos_rtx != 0
6267 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6269 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6271 /* If we know that no extraneous bits are set, and that the high
6272 bit is not set, convert extraction to cheaper one - either
6273 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6274 cases. */
6275 if (flag_expensive_optimizations
6276 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6277 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6278 & ~(((unsigned HOST_WIDE_INT)
6279 GET_MODE_MASK (GET_MODE (pos_rtx)))
6280 >> 1))
6281 == 0)))
6283 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6285 /* Prefer ZERO_EXTENSION, since it gives more information to
6286 backends. */
6287 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6288 temp = temp1;
6290 pos_rtx = temp;
6292 else if (pos_rtx != 0
6293 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6294 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6296 /* Make POS_RTX unless we already have it and it is correct. If we don't
6297 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6298 be a CONST_INT. */
6299 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6300 pos_rtx = orig_pos_rtx;
6302 else if (pos_rtx == 0)
6303 pos_rtx = GEN_INT (pos);
6305 /* Make the required operation. See if we can use existing rtx. */
6306 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6307 extraction_mode, inner, GEN_INT (len), pos_rtx);
6308 if (! in_dest)
6309 new = gen_lowpart (mode, new);
6311 return new;
6314 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6315 with any other operations in X. Return X without that shift if so. */
6317 static rtx
6318 extract_left_shift (rtx x, int count)
6320 enum rtx_code code = GET_CODE (x);
6321 enum machine_mode mode = GET_MODE (x);
6322 rtx tem;
6324 switch (code)
6326 case ASHIFT:
6327 /* This is the shift itself. If it is wide enough, we will return
6328 either the value being shifted if the shift count is equal to
6329 COUNT or a shift for the difference. */
6330 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6331 && INTVAL (XEXP (x, 1)) >= count)
6332 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6333 INTVAL (XEXP (x, 1)) - count);
6334 break;
6336 case NEG: case NOT:
6337 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6338 return simplify_gen_unary (code, mode, tem, mode);
6340 break;
6342 case PLUS: case IOR: case XOR: case AND:
6343 /* If we can safely shift this constant and we find the inner shift,
6344 make a new operation. */
6345 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6346 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6347 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6348 return simplify_gen_binary (code, mode, tem,
6349 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6351 break;
6353 default:
6354 break;
6357 return 0;
6360 /* Look at the expression rooted at X. Look for expressions
6361 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6362 Form these expressions.
6364 Return the new rtx, usually just X.
6366 Also, for machines like the VAX that don't have logical shift insns,
6367 try to convert logical to arithmetic shift operations in cases where
6368 they are equivalent. This undoes the canonicalizations to logical
6369 shifts done elsewhere.
6371 We try, as much as possible, to re-use rtl expressions to save memory.
6373 IN_CODE says what kind of expression we are processing. Normally, it is
6374 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6375 being kludges), it is MEM. When processing the arguments of a comparison
6376 or a COMPARE against zero, it is COMPARE. */
6378 static rtx
6379 make_compound_operation (rtx x, enum rtx_code in_code)
6381 enum rtx_code code = GET_CODE (x);
6382 enum machine_mode mode = GET_MODE (x);
6383 int mode_width = GET_MODE_BITSIZE (mode);
6384 rtx rhs, lhs;
6385 enum rtx_code next_code;
6386 int i;
6387 rtx new = 0;
6388 rtx tem;
6389 const char *fmt;
6391 /* Select the code to be used in recursive calls. Once we are inside an
6392 address, we stay there. If we have a comparison, set to COMPARE,
6393 but once inside, go back to our default of SET. */
6395 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6396 : ((code == COMPARE || COMPARISON_P (x))
6397 && XEXP (x, 1) == const0_rtx) ? COMPARE
6398 : in_code == COMPARE ? SET : in_code);
6400 /* Process depending on the code of this operation. If NEW is set
6401 nonzero, it will be returned. */
6403 switch (code)
6405 case ASHIFT:
6406 /* Convert shifts by constants into multiplications if inside
6407 an address. */
6408 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6409 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6410 && INTVAL (XEXP (x, 1)) >= 0)
6412 new = make_compound_operation (XEXP (x, 0), next_code);
6413 new = gen_rtx_MULT (mode, new,
6414 GEN_INT ((HOST_WIDE_INT) 1
6415 << INTVAL (XEXP (x, 1))));
6417 break;
6419 case AND:
6420 /* If the second operand is not a constant, we can't do anything
6421 with it. */
6422 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6423 break;
6425 /* If the constant is a power of two minus one and the first operand
6426 is a logical right shift, make an extraction. */
6427 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6428 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6430 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6431 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6432 0, in_code == COMPARE);
6435 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6436 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6437 && subreg_lowpart_p (XEXP (x, 0))
6438 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6439 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6441 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6442 next_code);
6443 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6444 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6445 0, in_code == COMPARE);
6447 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6448 else if ((GET_CODE (XEXP (x, 0)) == XOR
6449 || GET_CODE (XEXP (x, 0)) == IOR)
6450 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6451 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6452 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6454 /* Apply the distributive law, and then try to make extractions. */
6455 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6456 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6457 XEXP (x, 1)),
6458 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6459 XEXP (x, 1)));
6460 new = make_compound_operation (new, in_code);
6463 /* If we are have (and (rotate X C) M) and C is larger than the number
6464 of bits in M, this is an extraction. */
6466 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6467 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6468 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6469 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6471 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6472 new = make_extraction (mode, new,
6473 (GET_MODE_BITSIZE (mode)
6474 - INTVAL (XEXP (XEXP (x, 0), 1))),
6475 NULL_RTX, i, 1, 0, in_code == COMPARE);
6478 /* On machines without logical shifts, if the operand of the AND is
6479 a logical shift and our mask turns off all the propagated sign
6480 bits, we can replace the logical shift with an arithmetic shift. */
6481 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6482 && !have_insn_for (LSHIFTRT, mode)
6483 && have_insn_for (ASHIFTRT, mode)
6484 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6485 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6486 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6487 && mode_width <= HOST_BITS_PER_WIDE_INT)
6489 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6491 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6492 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6493 SUBST (XEXP (x, 0),
6494 gen_rtx_ASHIFTRT (mode,
6495 make_compound_operation
6496 (XEXP (XEXP (x, 0), 0), next_code),
6497 XEXP (XEXP (x, 0), 1)));
6500 /* If the constant is one less than a power of two, this might be
6501 representable by an extraction even if no shift is present.
6502 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6503 we are in a COMPARE. */
6504 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6505 new = make_extraction (mode,
6506 make_compound_operation (XEXP (x, 0),
6507 next_code),
6508 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6510 /* If we are in a comparison and this is an AND with a power of two,
6511 convert this into the appropriate bit extract. */
6512 else if (in_code == COMPARE
6513 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6514 new = make_extraction (mode,
6515 make_compound_operation (XEXP (x, 0),
6516 next_code),
6517 i, NULL_RTX, 1, 1, 0, 1);
6519 break;
6521 case LSHIFTRT:
6522 /* If the sign bit is known to be zero, replace this with an
6523 arithmetic shift. */
6524 if (have_insn_for (ASHIFTRT, mode)
6525 && ! have_insn_for (LSHIFTRT, mode)
6526 && mode_width <= HOST_BITS_PER_WIDE_INT
6527 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6529 new = gen_rtx_ASHIFTRT (mode,
6530 make_compound_operation (XEXP (x, 0),
6531 next_code),
6532 XEXP (x, 1));
6533 break;
6536 /* ... fall through ... */
6538 case ASHIFTRT:
6539 lhs = XEXP (x, 0);
6540 rhs = XEXP (x, 1);
6542 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6543 this is a SIGN_EXTRACT. */
6544 if (GET_CODE (rhs) == CONST_INT
6545 && GET_CODE (lhs) == ASHIFT
6546 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6547 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6549 new = make_compound_operation (XEXP (lhs, 0), next_code);
6550 new = make_extraction (mode, new,
6551 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6552 NULL_RTX, mode_width - INTVAL (rhs),
6553 code == LSHIFTRT, 0, in_code == COMPARE);
6554 break;
6557 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6558 If so, try to merge the shifts into a SIGN_EXTEND. We could
6559 also do this for some cases of SIGN_EXTRACT, but it doesn't
6560 seem worth the effort; the case checked for occurs on Alpha. */
6562 if (!OBJECT_P (lhs)
6563 && ! (GET_CODE (lhs) == SUBREG
6564 && (OBJECT_P (SUBREG_REG (lhs))))
6565 && GET_CODE (rhs) == CONST_INT
6566 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6567 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6568 new = make_extraction (mode, make_compound_operation (new, next_code),
6569 0, NULL_RTX, mode_width - INTVAL (rhs),
6570 code == LSHIFTRT, 0, in_code == COMPARE);
6572 break;
6574 case SUBREG:
6575 /* Call ourselves recursively on the inner expression. If we are
6576 narrowing the object and it has a different RTL code from
6577 what it originally did, do this SUBREG as a force_to_mode. */
6579 tem = make_compound_operation (SUBREG_REG (x), in_code);
6582 rtx simplified;
6583 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6584 SUBREG_BYTE (x));
6586 if (simplified)
6587 tem = simplified;
6589 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6590 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6591 && subreg_lowpart_p (x))
6593 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6596 /* If we have something other than a SUBREG, we might have
6597 done an expansion, so rerun ourselves. */
6598 if (GET_CODE (newer) != SUBREG)
6599 newer = make_compound_operation (newer, in_code);
6601 return newer;
6604 if (simplified)
6605 return tem;
6607 break;
6609 default:
6610 break;
6613 if (new)
6615 x = gen_lowpart (mode, new);
6616 code = GET_CODE (x);
6619 /* Now recursively process each operand of this operation. */
6620 fmt = GET_RTX_FORMAT (code);
6621 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6622 if (fmt[i] == 'e')
6624 new = make_compound_operation (XEXP (x, i), next_code);
6625 SUBST (XEXP (x, i), new);
6628 /* If this is a commutative operation, the changes to the operands
6629 may have made it noncanonical. */
6630 if (COMMUTATIVE_ARITH_P (x)
6631 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6633 tem = XEXP (x, 0);
6634 SUBST (XEXP (x, 0), XEXP (x, 1));
6635 SUBST (XEXP (x, 1), tem);
6638 return x;
6641 /* Given M see if it is a value that would select a field of bits
6642 within an item, but not the entire word. Return -1 if not.
6643 Otherwise, return the starting position of the field, where 0 is the
6644 low-order bit.
6646 *PLEN is set to the length of the field. */
6648 static int
6649 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6651 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6652 int pos = exact_log2 (m & -m);
6653 int len = 0;
6655 if (pos >= 0)
6656 /* Now shift off the low-order zero bits and see if we have a
6657 power of two minus 1. */
6658 len = exact_log2 ((m >> pos) + 1);
6660 if (len <= 0)
6661 pos = -1;
6663 *plen = len;
6664 return pos;
6667 /* If X refers to a register that equals REG in value, replace these
6668 references with REG. */
6669 static rtx
6670 canon_reg_for_combine (rtx x, rtx reg)
6672 rtx op0, op1, op2;
6673 const char *fmt;
6674 int i;
6675 bool copied;
6677 enum rtx_code code = GET_CODE (x);
6678 switch (GET_RTX_CLASS (code))
6680 case RTX_UNARY:
6681 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6682 if (op0 != XEXP (x, 0))
6683 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6684 GET_MODE (reg));
6685 break;
6687 case RTX_BIN_ARITH:
6688 case RTX_COMM_ARITH:
6689 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6690 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6691 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6692 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6693 break;
6695 case RTX_COMPARE:
6696 case RTX_COMM_COMPARE:
6697 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6698 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6699 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6700 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6701 GET_MODE (op0), op0, op1);
6702 break;
6704 case RTX_TERNARY:
6705 case RTX_BITFIELD_OPS:
6706 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6707 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6708 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6709 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6710 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6711 GET_MODE (op0), op0, op1, op2);
6713 case RTX_OBJ:
6714 if (REG_P (x))
6716 if (rtx_equal_p (get_last_value (reg), x)
6717 || rtx_equal_p (reg, get_last_value (x)))
6718 return reg;
6719 else
6720 break;
6723 /* fall through */
6725 default:
6726 fmt = GET_RTX_FORMAT (code);
6727 copied = false;
6728 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6729 if (fmt[i] == 'e')
6731 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6732 if (op != XEXP (x, i))
6734 if (!copied)
6736 copied = true;
6737 x = copy_rtx (x);
6739 XEXP (x, i) = op;
6742 else if (fmt[i] == 'E')
6744 int j;
6745 for (j = 0; j < XVECLEN (x, i); j++)
6747 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6748 if (op != XVECEXP (x, i, j))
6750 if (!copied)
6752 copied = true;
6753 x = copy_rtx (x);
6755 XVECEXP (x, i, j) = op;
6760 break;
6763 return x;
6766 /* Return X converted to MODE. If the value is already truncated to
6767 MODE we can just return a subreg even though in the general case we
6768 would need an explicit truncation. */
6770 static rtx
6771 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
6773 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
6774 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
6775 GET_MODE_BITSIZE (GET_MODE (x)))
6776 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
6777 return gen_lowpart (mode, x);
6778 else
6779 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
6782 /* See if X can be simplified knowing that we will only refer to it in
6783 MODE and will only refer to those bits that are nonzero in MASK.
6784 If other bits are being computed or if masking operations are done
6785 that select a superset of the bits in MASK, they can sometimes be
6786 ignored.
6788 Return a possibly simplified expression, but always convert X to
6789 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6791 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6792 are all off in X. This is used when X will be complemented, by either
6793 NOT, NEG, or XOR. */
6795 static rtx
6796 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6797 int just_select)
6799 enum rtx_code code = GET_CODE (x);
6800 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6801 enum machine_mode op_mode;
6802 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6803 rtx op0, op1, temp;
6805 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6806 code below will do the wrong thing since the mode of such an
6807 expression is VOIDmode.
6809 Also do nothing if X is a CLOBBER; this can happen if X was
6810 the return value from a call to gen_lowpart. */
6811 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6812 return x;
6814 /* We want to perform the operation is its present mode unless we know
6815 that the operation is valid in MODE, in which case we do the operation
6816 in MODE. */
6817 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6818 && have_insn_for (code, mode))
6819 ? mode : GET_MODE (x));
6821 /* It is not valid to do a right-shift in a narrower mode
6822 than the one it came in with. */
6823 if ((code == LSHIFTRT || code == ASHIFTRT)
6824 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6825 op_mode = GET_MODE (x);
6827 /* Truncate MASK to fit OP_MODE. */
6828 if (op_mode)
6829 mask &= GET_MODE_MASK (op_mode);
6831 /* When we have an arithmetic operation, or a shift whose count we
6832 do not know, we need to assume that all bits up to the highest-order
6833 bit in MASK will be needed. This is how we form such a mask. */
6834 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6835 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6836 else
6837 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6838 - 1);
6840 /* Determine what bits of X are guaranteed to be (non)zero. */
6841 nonzero = nonzero_bits (x, mode);
6843 /* If none of the bits in X are needed, return a zero. */
6844 if (! just_select && (nonzero & mask) == 0)
6845 x = const0_rtx;
6847 /* If X is a CONST_INT, return a new one. Do this here since the
6848 test below will fail. */
6849 if (GET_CODE (x) == CONST_INT)
6851 if (SCALAR_INT_MODE_P (mode))
6852 return gen_int_mode (INTVAL (x) & mask, mode);
6853 else
6855 x = GEN_INT (INTVAL (x) & mask);
6856 return gen_lowpart_common (mode, x);
6860 /* If X is narrower than MODE and we want all the bits in X's mode, just
6861 get X in the proper mode. */
6862 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6863 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6864 return gen_lowpart (mode, x);
6866 switch (code)
6868 case CLOBBER:
6869 /* If X is a (clobber (const_int)), return it since we know we are
6870 generating something that won't match. */
6871 return x;
6873 case SIGN_EXTEND:
6874 case ZERO_EXTEND:
6875 case ZERO_EXTRACT:
6876 case SIGN_EXTRACT:
6877 x = expand_compound_operation (x);
6878 if (GET_CODE (x) != code)
6879 return force_to_mode (x, mode, mask, next_select);
6880 break;
6882 case SUBREG:
6883 if (subreg_lowpart_p (x)
6884 /* We can ignore the effect of this SUBREG if it narrows the mode or
6885 if the constant masks to zero all the bits the mode doesn't
6886 have. */
6887 && ((GET_MODE_SIZE (GET_MODE (x))
6888 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6889 || (0 == (mask
6890 & GET_MODE_MASK (GET_MODE (x))
6891 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6892 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6893 break;
6895 case AND:
6896 /* If this is an AND with a constant, convert it into an AND
6897 whose constant is the AND of that constant with MASK. If it
6898 remains an AND of MASK, delete it since it is redundant. */
6900 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6902 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6903 mask & INTVAL (XEXP (x, 1)));
6905 /* If X is still an AND, see if it is an AND with a mask that
6906 is just some low-order bits. If so, and it is MASK, we don't
6907 need it. */
6909 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6910 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6911 == mask))
6912 x = XEXP (x, 0);
6914 /* If it remains an AND, try making another AND with the bits
6915 in the mode mask that aren't in MASK turned on. If the
6916 constant in the AND is wide enough, this might make a
6917 cheaper constant. */
6919 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6920 && GET_MODE_MASK (GET_MODE (x)) != mask
6921 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6923 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6924 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6925 int width = GET_MODE_BITSIZE (GET_MODE (x));
6926 rtx y;
6928 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6929 number, sign extend it. */
6930 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6931 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6932 cval |= (HOST_WIDE_INT) -1 << width;
6934 y = simplify_gen_binary (AND, GET_MODE (x),
6935 XEXP (x, 0), GEN_INT (cval));
6936 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6937 x = y;
6940 break;
6943 goto binop;
6945 case PLUS:
6946 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6947 low-order bits (as in an alignment operation) and FOO is already
6948 aligned to that boundary, mask C1 to that boundary as well.
6949 This may eliminate that PLUS and, later, the AND. */
6952 unsigned int width = GET_MODE_BITSIZE (mode);
6953 unsigned HOST_WIDE_INT smask = mask;
6955 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6956 number, sign extend it. */
6958 if (width < HOST_BITS_PER_WIDE_INT
6959 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6960 smask |= (HOST_WIDE_INT) -1 << width;
6962 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6963 && exact_log2 (- smask) >= 0
6964 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6965 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6966 return force_to_mode (plus_constant (XEXP (x, 0),
6967 (INTVAL (XEXP (x, 1)) & smask)),
6968 mode, smask, next_select);
6971 /* ... fall through ... */
6973 case MULT:
6974 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6975 most significant bit in MASK since carries from those bits will
6976 affect the bits we are interested in. */
6977 mask = fuller_mask;
6978 goto binop;
6980 case MINUS:
6981 /* If X is (minus C Y) where C's least set bit is larger than any bit
6982 in the mask, then we may replace with (neg Y). */
6983 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6984 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6985 & -INTVAL (XEXP (x, 0))))
6986 > mask))
6988 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6989 GET_MODE (x));
6990 return force_to_mode (x, mode, mask, next_select);
6993 /* Similarly, if C contains every bit in the fuller_mask, then we may
6994 replace with (not Y). */
6995 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6996 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6997 == INTVAL (XEXP (x, 0))))
6999 x = simplify_gen_unary (NOT, GET_MODE (x),
7000 XEXP (x, 1), GET_MODE (x));
7001 return force_to_mode (x, mode, mask, next_select);
7004 mask = fuller_mask;
7005 goto binop;
7007 case IOR:
7008 case XOR:
7009 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7010 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7011 operation which may be a bitfield extraction. Ensure that the
7012 constant we form is not wider than the mode of X. */
7014 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7015 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7016 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7017 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7018 && GET_CODE (XEXP (x, 1)) == CONST_INT
7019 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7020 + floor_log2 (INTVAL (XEXP (x, 1))))
7021 < GET_MODE_BITSIZE (GET_MODE (x)))
7022 && (INTVAL (XEXP (x, 1))
7023 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7025 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7026 << INTVAL (XEXP (XEXP (x, 0), 1)));
7027 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7028 XEXP (XEXP (x, 0), 0), temp);
7029 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7030 XEXP (XEXP (x, 0), 1));
7031 return force_to_mode (x, mode, mask, next_select);
7034 binop:
7035 /* For most binary operations, just propagate into the operation and
7036 change the mode if we have an operation of that mode. */
7038 op0 = gen_lowpart_or_truncate (op_mode,
7039 force_to_mode (XEXP (x, 0), mode, mask,
7040 next_select));
7041 op1 = gen_lowpart_or_truncate (op_mode,
7042 force_to_mode (XEXP (x, 1), mode, mask,
7043 next_select));
7045 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7046 x = simplify_gen_binary (code, op_mode, op0, op1);
7047 break;
7049 case ASHIFT:
7050 /* For left shifts, do the same, but just for the first operand.
7051 However, we cannot do anything with shifts where we cannot
7052 guarantee that the counts are smaller than the size of the mode
7053 because such a count will have a different meaning in a
7054 wider mode. */
7056 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7057 && INTVAL (XEXP (x, 1)) >= 0
7058 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7059 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7060 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7061 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7062 break;
7064 /* If the shift count is a constant and we can do arithmetic in
7065 the mode of the shift, refine which bits we need. Otherwise, use the
7066 conservative form of the mask. */
7067 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7068 && INTVAL (XEXP (x, 1)) >= 0
7069 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7070 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7071 mask >>= INTVAL (XEXP (x, 1));
7072 else
7073 mask = fuller_mask;
7075 op0 = gen_lowpart_or_truncate (op_mode,
7076 force_to_mode (XEXP (x, 0), op_mode,
7077 mask, next_select));
7079 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7080 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7081 break;
7083 case LSHIFTRT:
7084 /* Here we can only do something if the shift count is a constant,
7085 this shift constant is valid for the host, and we can do arithmetic
7086 in OP_MODE. */
7088 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7089 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7090 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7092 rtx inner = XEXP (x, 0);
7093 unsigned HOST_WIDE_INT inner_mask;
7095 /* Select the mask of the bits we need for the shift operand. */
7096 inner_mask = mask << INTVAL (XEXP (x, 1));
7098 /* We can only change the mode of the shift if we can do arithmetic
7099 in the mode of the shift and INNER_MASK is no wider than the
7100 width of X's mode. */
7101 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7102 op_mode = GET_MODE (x);
7104 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7106 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7107 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7110 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7111 shift and AND produces only copies of the sign bit (C2 is one less
7112 than a power of two), we can do this with just a shift. */
7114 if (GET_CODE (x) == LSHIFTRT
7115 && GET_CODE (XEXP (x, 1)) == CONST_INT
7116 /* The shift puts one of the sign bit copies in the least significant
7117 bit. */
7118 && ((INTVAL (XEXP (x, 1))
7119 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7120 >= GET_MODE_BITSIZE (GET_MODE (x)))
7121 && exact_log2 (mask + 1) >= 0
7122 /* Number of bits left after the shift must be more than the mask
7123 needs. */
7124 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7125 <= GET_MODE_BITSIZE (GET_MODE (x)))
7126 /* Must be more sign bit copies than the mask needs. */
7127 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7128 >= exact_log2 (mask + 1)))
7129 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7130 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7131 - exact_log2 (mask + 1)));
7133 goto shiftrt;
7135 case ASHIFTRT:
7136 /* If we are just looking for the sign bit, we don't need this shift at
7137 all, even if it has a variable count. */
7138 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7139 && (mask == ((unsigned HOST_WIDE_INT) 1
7140 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7141 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7143 /* If this is a shift by a constant, get a mask that contains those bits
7144 that are not copies of the sign bit. We then have two cases: If
7145 MASK only includes those bits, this can be a logical shift, which may
7146 allow simplifications. If MASK is a single-bit field not within
7147 those bits, we are requesting a copy of the sign bit and hence can
7148 shift the sign bit to the appropriate location. */
7150 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7151 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7153 int i;
7155 /* If the considered data is wider than HOST_WIDE_INT, we can't
7156 represent a mask for all its bits in a single scalar.
7157 But we only care about the lower bits, so calculate these. */
7159 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7161 nonzero = ~(HOST_WIDE_INT) 0;
7163 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7164 is the number of bits a full-width mask would have set.
7165 We need only shift if these are fewer than nonzero can
7166 hold. If not, we must keep all bits set in nonzero. */
7168 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7169 < HOST_BITS_PER_WIDE_INT)
7170 nonzero >>= INTVAL (XEXP (x, 1))
7171 + HOST_BITS_PER_WIDE_INT
7172 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7174 else
7176 nonzero = GET_MODE_MASK (GET_MODE (x));
7177 nonzero >>= INTVAL (XEXP (x, 1));
7180 if ((mask & ~nonzero) == 0)
7182 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7183 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7184 if (GET_CODE (x) != ASHIFTRT)
7185 return force_to_mode (x, mode, mask, next_select);
7188 else if ((i = exact_log2 (mask)) >= 0)
7190 x = simplify_shift_const
7191 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7192 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7194 if (GET_CODE (x) != ASHIFTRT)
7195 return force_to_mode (x, mode, mask, next_select);
7199 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7200 even if the shift count isn't a constant. */
7201 if (mask == 1)
7202 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7203 XEXP (x, 0), XEXP (x, 1));
7205 shiftrt:
7207 /* If this is a zero- or sign-extension operation that just affects bits
7208 we don't care about, remove it. Be sure the call above returned
7209 something that is still a shift. */
7211 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7212 && GET_CODE (XEXP (x, 1)) == CONST_INT
7213 && INTVAL (XEXP (x, 1)) >= 0
7214 && (INTVAL (XEXP (x, 1))
7215 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7216 && GET_CODE (XEXP (x, 0)) == ASHIFT
7217 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7218 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7219 next_select);
7221 break;
7223 case ROTATE:
7224 case ROTATERT:
7225 /* If the shift count is constant and we can do computations
7226 in the mode of X, compute where the bits we care about are.
7227 Otherwise, we can't do anything. Don't change the mode of
7228 the shift or propagate MODE into the shift, though. */
7229 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7230 && INTVAL (XEXP (x, 1)) >= 0)
7232 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7233 GET_MODE (x), GEN_INT (mask),
7234 XEXP (x, 1));
7235 if (temp && GET_CODE (temp) == CONST_INT)
7236 SUBST (XEXP (x, 0),
7237 force_to_mode (XEXP (x, 0), GET_MODE (x),
7238 INTVAL (temp), next_select));
7240 break;
7242 case NEG:
7243 /* If we just want the low-order bit, the NEG isn't needed since it
7244 won't change the low-order bit. */
7245 if (mask == 1)
7246 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7248 /* We need any bits less significant than the most significant bit in
7249 MASK since carries from those bits will affect the bits we are
7250 interested in. */
7251 mask = fuller_mask;
7252 goto unop;
7254 case NOT:
7255 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7256 same as the XOR case above. Ensure that the constant we form is not
7257 wider than the mode of X. */
7259 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7260 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7261 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7262 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7263 < GET_MODE_BITSIZE (GET_MODE (x)))
7264 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7266 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7267 GET_MODE (x));
7268 temp = simplify_gen_binary (XOR, GET_MODE (x),
7269 XEXP (XEXP (x, 0), 0), temp);
7270 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7271 temp, XEXP (XEXP (x, 0), 1));
7273 return force_to_mode (x, mode, mask, next_select);
7276 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7277 use the full mask inside the NOT. */
7278 mask = fuller_mask;
7280 unop:
7281 op0 = gen_lowpart_or_truncate (op_mode,
7282 force_to_mode (XEXP (x, 0), mode, mask,
7283 next_select));
7284 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7285 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7286 break;
7288 case NE:
7289 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7290 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7291 which is equal to STORE_FLAG_VALUE. */
7292 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7293 && GET_MODE (XEXP (x, 0)) == mode
7294 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7295 && (nonzero_bits (XEXP (x, 0), mode)
7296 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7297 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7299 break;
7301 case IF_THEN_ELSE:
7302 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7303 written in a narrower mode. We play it safe and do not do so. */
7305 SUBST (XEXP (x, 1),
7306 gen_lowpart_or_truncate (GET_MODE (x),
7307 force_to_mode (XEXP (x, 1), mode,
7308 mask, next_select)));
7309 SUBST (XEXP (x, 2),
7310 gen_lowpart_or_truncate (GET_MODE (x),
7311 force_to_mode (XEXP (x, 2), mode,
7312 mask, next_select)));
7313 break;
7315 default:
7316 break;
7319 /* Ensure we return a value of the proper mode. */
7320 return gen_lowpart_or_truncate (mode, x);
7323 /* Return nonzero if X is an expression that has one of two values depending on
7324 whether some other value is zero or nonzero. In that case, we return the
7325 value that is being tested, *PTRUE is set to the value if the rtx being
7326 returned has a nonzero value, and *PFALSE is set to the other alternative.
7328 If we return zero, we set *PTRUE and *PFALSE to X. */
7330 static rtx
7331 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7333 enum machine_mode mode = GET_MODE (x);
7334 enum rtx_code code = GET_CODE (x);
7335 rtx cond0, cond1, true0, true1, false0, false1;
7336 unsigned HOST_WIDE_INT nz;
7338 /* If we are comparing a value against zero, we are done. */
7339 if ((code == NE || code == EQ)
7340 && XEXP (x, 1) == const0_rtx)
7342 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7343 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7344 return XEXP (x, 0);
7347 /* If this is a unary operation whose operand has one of two values, apply
7348 our opcode to compute those values. */
7349 else if (UNARY_P (x)
7350 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7352 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7353 *pfalse = simplify_gen_unary (code, mode, false0,
7354 GET_MODE (XEXP (x, 0)));
7355 return cond0;
7358 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7359 make can't possibly match and would suppress other optimizations. */
7360 else if (code == COMPARE)
7363 /* If this is a binary operation, see if either side has only one of two
7364 values. If either one does or if both do and they are conditional on
7365 the same value, compute the new true and false values. */
7366 else if (BINARY_P (x))
7368 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7369 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7371 if ((cond0 != 0 || cond1 != 0)
7372 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7374 /* If if_then_else_cond returned zero, then true/false are the
7375 same rtl. We must copy one of them to prevent invalid rtl
7376 sharing. */
7377 if (cond0 == 0)
7378 true0 = copy_rtx (true0);
7379 else if (cond1 == 0)
7380 true1 = copy_rtx (true1);
7382 if (COMPARISON_P (x))
7384 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7385 true0, true1);
7386 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7387 false0, false1);
7389 else
7391 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7392 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7395 return cond0 ? cond0 : cond1;
7398 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7399 operands is zero when the other is nonzero, and vice-versa,
7400 and STORE_FLAG_VALUE is 1 or -1. */
7402 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7403 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7404 || code == UMAX)
7405 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7407 rtx op0 = XEXP (XEXP (x, 0), 1);
7408 rtx op1 = XEXP (XEXP (x, 1), 1);
7410 cond0 = XEXP (XEXP (x, 0), 0);
7411 cond1 = XEXP (XEXP (x, 1), 0);
7413 if (COMPARISON_P (cond0)
7414 && COMPARISON_P (cond1)
7415 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7416 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7417 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7418 || ((swap_condition (GET_CODE (cond0))
7419 == reversed_comparison_code (cond1, NULL))
7420 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7421 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7422 && ! side_effects_p (x))
7424 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7425 *pfalse = simplify_gen_binary (MULT, mode,
7426 (code == MINUS
7427 ? simplify_gen_unary (NEG, mode,
7428 op1, mode)
7429 : op1),
7430 const_true_rtx);
7431 return cond0;
7435 /* Similarly for MULT, AND and UMIN, except that for these the result
7436 is always zero. */
7437 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7438 && (code == MULT || code == AND || code == UMIN)
7439 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7441 cond0 = XEXP (XEXP (x, 0), 0);
7442 cond1 = XEXP (XEXP (x, 1), 0);
7444 if (COMPARISON_P (cond0)
7445 && COMPARISON_P (cond1)
7446 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7447 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7448 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7449 || ((swap_condition (GET_CODE (cond0))
7450 == reversed_comparison_code (cond1, NULL))
7451 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7452 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7453 && ! side_effects_p (x))
7455 *ptrue = *pfalse = const0_rtx;
7456 return cond0;
7461 else if (code == IF_THEN_ELSE)
7463 /* If we have IF_THEN_ELSE already, extract the condition and
7464 canonicalize it if it is NE or EQ. */
7465 cond0 = XEXP (x, 0);
7466 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7467 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7468 return XEXP (cond0, 0);
7469 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7471 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7472 return XEXP (cond0, 0);
7474 else
7475 return cond0;
7478 /* If X is a SUBREG, we can narrow both the true and false values
7479 if the inner expression, if there is a condition. */
7480 else if (code == SUBREG
7481 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7482 &true0, &false0)))
7484 true0 = simplify_gen_subreg (mode, true0,
7485 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7486 false0 = simplify_gen_subreg (mode, false0,
7487 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7488 if (true0 && false0)
7490 *ptrue = true0;
7491 *pfalse = false0;
7492 return cond0;
7496 /* If X is a constant, this isn't special and will cause confusions
7497 if we treat it as such. Likewise if it is equivalent to a constant. */
7498 else if (CONSTANT_P (x)
7499 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7502 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7503 will be least confusing to the rest of the compiler. */
7504 else if (mode == BImode)
7506 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7507 return x;
7510 /* If X is known to be either 0 or -1, those are the true and
7511 false values when testing X. */
7512 else if (x == constm1_rtx || x == const0_rtx
7513 || (mode != VOIDmode
7514 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7516 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7517 return x;
7520 /* Likewise for 0 or a single bit. */
7521 else if (SCALAR_INT_MODE_P (mode)
7522 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7523 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7525 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7526 return x;
7529 /* Otherwise fail; show no condition with true and false values the same. */
7530 *ptrue = *pfalse = x;
7531 return 0;
7534 /* Return the value of expression X given the fact that condition COND
7535 is known to be true when applied to REG as its first operand and VAL
7536 as its second. X is known to not be shared and so can be modified in
7537 place.
7539 We only handle the simplest cases, and specifically those cases that
7540 arise with IF_THEN_ELSE expressions. */
7542 static rtx
7543 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7545 enum rtx_code code = GET_CODE (x);
7546 rtx temp;
7547 const char *fmt;
7548 int i, j;
7550 if (side_effects_p (x))
7551 return x;
7553 /* If either operand of the condition is a floating point value,
7554 then we have to avoid collapsing an EQ comparison. */
7555 if (cond == EQ
7556 && rtx_equal_p (x, reg)
7557 && ! FLOAT_MODE_P (GET_MODE (x))
7558 && ! FLOAT_MODE_P (GET_MODE (val)))
7559 return val;
7561 if (cond == UNEQ && rtx_equal_p (x, reg))
7562 return val;
7564 /* If X is (abs REG) and we know something about REG's relationship
7565 with zero, we may be able to simplify this. */
7567 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7568 switch (cond)
7570 case GE: case GT: case EQ:
7571 return XEXP (x, 0);
7572 case LT: case LE:
7573 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7574 XEXP (x, 0),
7575 GET_MODE (XEXP (x, 0)));
7576 default:
7577 break;
7580 /* The only other cases we handle are MIN, MAX, and comparisons if the
7581 operands are the same as REG and VAL. */
7583 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7585 if (rtx_equal_p (XEXP (x, 0), val))
7586 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7588 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7590 if (COMPARISON_P (x))
7592 if (comparison_dominates_p (cond, code))
7593 return const_true_rtx;
7595 code = reversed_comparison_code (x, NULL);
7596 if (code != UNKNOWN
7597 && comparison_dominates_p (cond, code))
7598 return const0_rtx;
7599 else
7600 return x;
7602 else if (code == SMAX || code == SMIN
7603 || code == UMIN || code == UMAX)
7605 int unsignedp = (code == UMIN || code == UMAX);
7607 /* Do not reverse the condition when it is NE or EQ.
7608 This is because we cannot conclude anything about
7609 the value of 'SMAX (x, y)' when x is not equal to y,
7610 but we can when x equals y. */
7611 if ((code == SMAX || code == UMAX)
7612 && ! (cond == EQ || cond == NE))
7613 cond = reverse_condition (cond);
7615 switch (cond)
7617 case GE: case GT:
7618 return unsignedp ? x : XEXP (x, 1);
7619 case LE: case LT:
7620 return unsignedp ? x : XEXP (x, 0);
7621 case GEU: case GTU:
7622 return unsignedp ? XEXP (x, 1) : x;
7623 case LEU: case LTU:
7624 return unsignedp ? XEXP (x, 0) : x;
7625 default:
7626 break;
7631 else if (code == SUBREG)
7633 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7634 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7636 if (SUBREG_REG (x) != r)
7638 /* We must simplify subreg here, before we lose track of the
7639 original inner_mode. */
7640 new = simplify_subreg (GET_MODE (x), r,
7641 inner_mode, SUBREG_BYTE (x));
7642 if (new)
7643 return new;
7644 else
7645 SUBST (SUBREG_REG (x), r);
7648 return x;
7650 /* We don't have to handle SIGN_EXTEND here, because even in the
7651 case of replacing something with a modeless CONST_INT, a
7652 CONST_INT is already (supposed to be) a valid sign extension for
7653 its narrower mode, which implies it's already properly
7654 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7655 story is different. */
7656 else if (code == ZERO_EXTEND)
7658 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7659 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7661 if (XEXP (x, 0) != r)
7663 /* We must simplify the zero_extend here, before we lose
7664 track of the original inner_mode. */
7665 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7666 r, inner_mode);
7667 if (new)
7668 return new;
7669 else
7670 SUBST (XEXP (x, 0), r);
7673 return x;
7676 fmt = GET_RTX_FORMAT (code);
7677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7679 if (fmt[i] == 'e')
7680 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7681 else if (fmt[i] == 'E')
7682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7683 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7684 cond, reg, val));
7687 return x;
7690 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7691 assignment as a field assignment. */
7693 static int
7694 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7696 if (x == y || rtx_equal_p (x, y))
7697 return 1;
7699 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7700 return 0;
7702 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7703 Note that all SUBREGs of MEM are paradoxical; otherwise they
7704 would have been rewritten. */
7705 if (MEM_P (x) && GET_CODE (y) == SUBREG
7706 && MEM_P (SUBREG_REG (y))
7707 && rtx_equal_p (SUBREG_REG (y),
7708 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7709 return 1;
7711 if (MEM_P (y) && GET_CODE (x) == SUBREG
7712 && MEM_P (SUBREG_REG (x))
7713 && rtx_equal_p (SUBREG_REG (x),
7714 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7715 return 1;
7717 /* We used to see if get_last_value of X and Y were the same but that's
7718 not correct. In one direction, we'll cause the assignment to have
7719 the wrong destination and in the case, we'll import a register into this
7720 insn that might have already have been dead. So fail if none of the
7721 above cases are true. */
7722 return 0;
7725 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7726 Return that assignment if so.
7728 We only handle the most common cases. */
7730 static rtx
7731 make_field_assignment (rtx x)
7733 rtx dest = SET_DEST (x);
7734 rtx src = SET_SRC (x);
7735 rtx assign;
7736 rtx rhs, lhs;
7737 HOST_WIDE_INT c1;
7738 HOST_WIDE_INT pos;
7739 unsigned HOST_WIDE_INT len;
7740 rtx other;
7741 enum machine_mode mode;
7743 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7744 a clear of a one-bit field. We will have changed it to
7745 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7746 for a SUBREG. */
7748 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7749 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7750 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7751 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7753 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7754 1, 1, 1, 0);
7755 if (assign != 0)
7756 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7757 return x;
7760 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7761 && subreg_lowpart_p (XEXP (src, 0))
7762 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7763 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7764 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7765 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7766 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7767 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7769 assign = make_extraction (VOIDmode, dest, 0,
7770 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7771 1, 1, 1, 0);
7772 if (assign != 0)
7773 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7774 return x;
7777 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7778 one-bit field. */
7779 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7780 && XEXP (XEXP (src, 0), 0) == const1_rtx
7781 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7783 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7784 1, 1, 1, 0);
7785 if (assign != 0)
7786 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7787 return x;
7790 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7791 SRC is an AND with all bits of that field set, then we can discard
7792 the AND. */
7793 if (GET_CODE (dest) == ZERO_EXTRACT
7794 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7795 && GET_CODE (src) == AND
7796 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7798 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7799 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7800 unsigned HOST_WIDE_INT ze_mask;
7802 if (width >= HOST_BITS_PER_WIDE_INT)
7803 ze_mask = -1;
7804 else
7805 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7807 /* Complete overlap. We can remove the source AND. */
7808 if ((and_mask & ze_mask) == ze_mask)
7809 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7811 /* Partial overlap. We can reduce the source AND. */
7812 if ((and_mask & ze_mask) != and_mask)
7814 mode = GET_MODE (src);
7815 src = gen_rtx_AND (mode, XEXP (src, 0),
7816 gen_int_mode (and_mask & ze_mask, mode));
7817 return gen_rtx_SET (VOIDmode, dest, src);
7821 /* The other case we handle is assignments into a constant-position
7822 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7823 a mask that has all one bits except for a group of zero bits and
7824 OTHER is known to have zeros where C1 has ones, this is such an
7825 assignment. Compute the position and length from C1. Shift OTHER
7826 to the appropriate position, force it to the required mode, and
7827 make the extraction. Check for the AND in both operands. */
7829 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7830 return x;
7832 rhs = expand_compound_operation (XEXP (src, 0));
7833 lhs = expand_compound_operation (XEXP (src, 1));
7835 if (GET_CODE (rhs) == AND
7836 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7837 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7838 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7839 else if (GET_CODE (lhs) == AND
7840 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7841 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7842 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7843 else
7844 return x;
7846 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7847 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7848 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7849 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7850 return x;
7852 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7853 if (assign == 0)
7854 return x;
7856 /* The mode to use for the source is the mode of the assignment, or of
7857 what is inside a possible STRICT_LOW_PART. */
7858 mode = (GET_CODE (assign) == STRICT_LOW_PART
7859 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7861 /* Shift OTHER right POS places and make it the source, restricting it
7862 to the proper length and mode. */
7864 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7865 GET_MODE (src),
7866 other, pos),
7867 dest);
7868 src = force_to_mode (src, mode,
7869 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7870 ? ~(unsigned HOST_WIDE_INT) 0
7871 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7874 /* If SRC is masked by an AND that does not make a difference in
7875 the value being stored, strip it. */
7876 if (GET_CODE (assign) == ZERO_EXTRACT
7877 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7878 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7879 && GET_CODE (src) == AND
7880 && GET_CODE (XEXP (src, 1)) == CONST_INT
7881 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7882 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7883 src = XEXP (src, 0);
7885 return gen_rtx_SET (VOIDmode, assign, src);
7888 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7889 if so. */
7891 static rtx
7892 apply_distributive_law (rtx x)
7894 enum rtx_code code = GET_CODE (x);
7895 enum rtx_code inner_code;
7896 rtx lhs, rhs, other;
7897 rtx tem;
7899 /* Distributivity is not true for floating point as it can change the
7900 value. So we don't do it unless -funsafe-math-optimizations. */
7901 if (FLOAT_MODE_P (GET_MODE (x))
7902 && ! flag_unsafe_math_optimizations)
7903 return x;
7905 /* The outer operation can only be one of the following: */
7906 if (code != IOR && code != AND && code != XOR
7907 && code != PLUS && code != MINUS)
7908 return x;
7910 lhs = XEXP (x, 0);
7911 rhs = XEXP (x, 1);
7913 /* If either operand is a primitive we can't do anything, so get out
7914 fast. */
7915 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7916 return x;
7918 lhs = expand_compound_operation (lhs);
7919 rhs = expand_compound_operation (rhs);
7920 inner_code = GET_CODE (lhs);
7921 if (inner_code != GET_CODE (rhs))
7922 return x;
7924 /* See if the inner and outer operations distribute. */
7925 switch (inner_code)
7927 case LSHIFTRT:
7928 case ASHIFTRT:
7929 case AND:
7930 case IOR:
7931 /* These all distribute except over PLUS. */
7932 if (code == PLUS || code == MINUS)
7933 return x;
7934 break;
7936 case MULT:
7937 if (code != PLUS && code != MINUS)
7938 return x;
7939 break;
7941 case ASHIFT:
7942 /* This is also a multiply, so it distributes over everything. */
7943 break;
7945 case SUBREG:
7946 /* Non-paradoxical SUBREGs distributes over all operations,
7947 provided the inner modes and byte offsets are the same, this
7948 is an extraction of a low-order part, we don't convert an fp
7949 operation to int or vice versa, this is not a vector mode,
7950 and we would not be converting a single-word operation into a
7951 multi-word operation. The latter test is not required, but
7952 it prevents generating unneeded multi-word operations. Some
7953 of the previous tests are redundant given the latter test,
7954 but are retained because they are required for correctness.
7956 We produce the result slightly differently in this case. */
7958 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7959 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7960 || ! subreg_lowpart_p (lhs)
7961 || (GET_MODE_CLASS (GET_MODE (lhs))
7962 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7963 || (GET_MODE_SIZE (GET_MODE (lhs))
7964 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7965 || VECTOR_MODE_P (GET_MODE (lhs))
7966 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
7967 /* Result might need to be truncated. Don't change mode if
7968 explicit truncation is needed. */
7969 || !TRULY_NOOP_TRUNCATION
7970 (GET_MODE_BITSIZE (GET_MODE (x)),
7971 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
7972 return x;
7974 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7975 SUBREG_REG (lhs), SUBREG_REG (rhs));
7976 return gen_lowpart (GET_MODE (x), tem);
7978 default:
7979 return x;
7982 /* Set LHS and RHS to the inner operands (A and B in the example
7983 above) and set OTHER to the common operand (C in the example).
7984 There is only one way to do this unless the inner operation is
7985 commutative. */
7986 if (COMMUTATIVE_ARITH_P (lhs)
7987 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7988 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7989 else if (COMMUTATIVE_ARITH_P (lhs)
7990 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7991 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7992 else if (COMMUTATIVE_ARITH_P (lhs)
7993 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7994 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7995 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7996 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7997 else
7998 return x;
8000 /* Form the new inner operation, seeing if it simplifies first. */
8001 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8003 /* There is one exception to the general way of distributing:
8004 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8005 if (code == XOR && inner_code == IOR)
8007 inner_code = AND;
8008 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8011 /* We may be able to continuing distributing the result, so call
8012 ourselves recursively on the inner operation before forming the
8013 outer operation, which we return. */
8014 return simplify_gen_binary (inner_code, GET_MODE (x),
8015 apply_distributive_law (tem), other);
8018 /* See if X is of the form (* (+ A B) C), and if so convert to
8019 (+ (* A C) (* B C)) and try to simplify.
8021 Most of the time, this results in no change. However, if some of
8022 the operands are the same or inverses of each other, simplifications
8023 will result.
8025 For example, (and (ior A B) (not B)) can occur as the result of
8026 expanding a bit field assignment. When we apply the distributive
8027 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8028 which then simplifies to (and (A (not B))).
8030 Note that no checks happen on the validity of applying the inverse
8031 distributive law. This is pointless since we can do it in the
8032 few places where this routine is called.
8034 N is the index of the term that is decomposed (the arithmetic operation,
8035 i.e. (+ A B) in the first example above). !N is the index of the term that
8036 is distributed, i.e. of C in the first example above. */
8037 static rtx
8038 distribute_and_simplify_rtx (rtx x, int n)
8040 enum machine_mode mode;
8041 enum rtx_code outer_code, inner_code;
8042 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8044 decomposed = XEXP (x, n);
8045 if (!ARITHMETIC_P (decomposed))
8046 return NULL_RTX;
8048 mode = GET_MODE (x);
8049 outer_code = GET_CODE (x);
8050 distributed = XEXP (x, !n);
8052 inner_code = GET_CODE (decomposed);
8053 inner_op0 = XEXP (decomposed, 0);
8054 inner_op1 = XEXP (decomposed, 1);
8056 /* Special case (and (xor B C) (not A)), which is equivalent to
8057 (xor (ior A B) (ior A C)) */
8058 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8060 distributed = XEXP (distributed, 0);
8061 outer_code = IOR;
8064 if (n == 0)
8066 /* Distribute the second term. */
8067 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8068 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8070 else
8072 /* Distribute the first term. */
8073 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8074 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8077 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8078 new_op0, new_op1));
8079 if (GET_CODE (tmp) != outer_code
8080 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8081 return tmp;
8083 return NULL_RTX;
8086 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8087 in MODE. Return an equivalent form, if different from (and VAROP
8088 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8090 static rtx
8091 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8092 unsigned HOST_WIDE_INT constop)
8094 unsigned HOST_WIDE_INT nonzero;
8095 unsigned HOST_WIDE_INT orig_constop;
8096 rtx orig_varop;
8097 int i;
8099 orig_varop = varop;
8100 orig_constop = constop;
8101 if (GET_CODE (varop) == CLOBBER)
8102 return NULL_RTX;
8104 /* Simplify VAROP knowing that we will be only looking at some of the
8105 bits in it.
8107 Note by passing in CONSTOP, we guarantee that the bits not set in
8108 CONSTOP are not significant and will never be examined. We must
8109 ensure that is the case by explicitly masking out those bits
8110 before returning. */
8111 varop = force_to_mode (varop, mode, constop, 0);
8113 /* If VAROP is a CLOBBER, we will fail so return it. */
8114 if (GET_CODE (varop) == CLOBBER)
8115 return varop;
8117 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8118 to VAROP and return the new constant. */
8119 if (GET_CODE (varop) == CONST_INT)
8120 return gen_int_mode (INTVAL (varop) & constop, mode);
8122 /* See what bits may be nonzero in VAROP. Unlike the general case of
8123 a call to nonzero_bits, here we don't care about bits outside
8124 MODE. */
8126 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8128 /* Turn off all bits in the constant that are known to already be zero.
8129 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8130 which is tested below. */
8132 constop &= nonzero;
8134 /* If we don't have any bits left, return zero. */
8135 if (constop == 0)
8136 return const0_rtx;
8138 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8139 a power of two, we can replace this with an ASHIFT. */
8140 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8141 && (i = exact_log2 (constop)) >= 0)
8142 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8144 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8145 or XOR, then try to apply the distributive law. This may eliminate
8146 operations if either branch can be simplified because of the AND.
8147 It may also make some cases more complex, but those cases probably
8148 won't match a pattern either with or without this. */
8150 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8151 return
8152 gen_lowpart
8153 (mode,
8154 apply_distributive_law
8155 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8156 simplify_and_const_int (NULL_RTX,
8157 GET_MODE (varop),
8158 XEXP (varop, 0),
8159 constop),
8160 simplify_and_const_int (NULL_RTX,
8161 GET_MODE (varop),
8162 XEXP (varop, 1),
8163 constop))));
8165 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8166 the AND and see if one of the operands simplifies to zero. If so, we
8167 may eliminate it. */
8169 if (GET_CODE (varop) == PLUS
8170 && exact_log2 (constop + 1) >= 0)
8172 rtx o0, o1;
8174 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8175 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8176 if (o0 == const0_rtx)
8177 return o1;
8178 if (o1 == const0_rtx)
8179 return o0;
8182 /* Make a SUBREG if necessary. If we can't make it, fail. */
8183 varop = gen_lowpart (mode, varop);
8184 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8185 return NULL_RTX;
8187 /* If we are only masking insignificant bits, return VAROP. */
8188 if (constop == nonzero)
8189 return varop;
8191 if (varop == orig_varop && constop == orig_constop)
8192 return NULL_RTX;
8194 /* Otherwise, return an AND. */
8195 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8199 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8200 in MODE.
8202 Return an equivalent form, if different from X. Otherwise, return X. If
8203 X is zero, we are to always construct the equivalent form. */
8205 static rtx
8206 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8207 unsigned HOST_WIDE_INT constop)
8209 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8210 if (tem)
8211 return tem;
8213 if (!x)
8214 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8215 gen_int_mode (constop, mode));
8216 if (GET_MODE (x) != mode)
8217 x = gen_lowpart (mode, x);
8218 return x;
8221 /* Given a REG, X, compute which bits in X can be nonzero.
8222 We don't care about bits outside of those defined in MODE.
8224 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8225 a shift, AND, or zero_extract, we can do better. */
8227 static rtx
8228 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8229 rtx known_x ATTRIBUTE_UNUSED,
8230 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8231 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8232 unsigned HOST_WIDE_INT *nonzero)
8234 rtx tem;
8236 /* If X is a register whose nonzero bits value is current, use it.
8237 Otherwise, if X is a register whose value we can find, use that
8238 value. Otherwise, use the previously-computed global nonzero bits
8239 for this register. */
8241 if (reg_stat[REGNO (x)].last_set_value != 0
8242 && (reg_stat[REGNO (x)].last_set_mode == mode
8243 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8244 && GET_MODE_CLASS (mode) == MODE_INT))
8245 && (reg_stat[REGNO (x)].last_set_label == label_tick
8246 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8247 && REG_N_SETS (REGNO (x)) == 1
8248 && ! REGNO_REG_SET_P
8249 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8250 REGNO (x))))
8251 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8253 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8254 return NULL;
8257 tem = get_last_value (x);
8259 if (tem)
8261 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8262 /* If X is narrower than MODE and TEM is a non-negative
8263 constant that would appear negative in the mode of X,
8264 sign-extend it for use in reg_nonzero_bits because some
8265 machines (maybe most) will actually do the sign-extension
8266 and this is the conservative approach.
8268 ??? For 2.5, try to tighten up the MD files in this regard
8269 instead of this kludge. */
8271 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8272 && GET_CODE (tem) == CONST_INT
8273 && INTVAL (tem) > 0
8274 && 0 != (INTVAL (tem)
8275 & ((HOST_WIDE_INT) 1
8276 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8277 tem = GEN_INT (INTVAL (tem)
8278 | ((HOST_WIDE_INT) (-1)
8279 << GET_MODE_BITSIZE (GET_MODE (x))));
8280 #endif
8281 return tem;
8283 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8285 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8287 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8288 /* We don't know anything about the upper bits. */
8289 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8290 *nonzero &= mask;
8293 return NULL;
8296 /* Return the number of bits at the high-order end of X that are known to
8297 be equal to the sign bit. X will be used in mode MODE; if MODE is
8298 VOIDmode, X will be used in its own mode. The returned value will always
8299 be between 1 and the number of bits in MODE. */
8301 static rtx
8302 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8303 rtx known_x ATTRIBUTE_UNUSED,
8304 enum machine_mode known_mode
8305 ATTRIBUTE_UNUSED,
8306 unsigned int known_ret ATTRIBUTE_UNUSED,
8307 unsigned int *result)
8309 rtx tem;
8311 if (reg_stat[REGNO (x)].last_set_value != 0
8312 && reg_stat[REGNO (x)].last_set_mode == mode
8313 && (reg_stat[REGNO (x)].last_set_label == label_tick
8314 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8315 && REG_N_SETS (REGNO (x)) == 1
8316 && ! REGNO_REG_SET_P
8317 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8318 REGNO (x))))
8319 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8321 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8322 return NULL;
8325 tem = get_last_value (x);
8326 if (tem != 0)
8327 return tem;
8329 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8330 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8331 *result = reg_stat[REGNO (x)].sign_bit_copies;
8333 return NULL;
8336 /* Return the number of "extended" bits there are in X, when interpreted
8337 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8338 unsigned quantities, this is the number of high-order zero bits.
8339 For signed quantities, this is the number of copies of the sign bit
8340 minus 1. In both case, this function returns the number of "spare"
8341 bits. For example, if two quantities for which this function returns
8342 at least 1 are added, the addition is known not to overflow.
8344 This function will always return 0 unless called during combine, which
8345 implies that it must be called from a define_split. */
8347 unsigned int
8348 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8350 if (nonzero_sign_valid == 0)
8351 return 0;
8353 return (unsignedp
8354 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8355 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8356 - floor_log2 (nonzero_bits (x, mode)))
8357 : 0)
8358 : num_sign_bit_copies (x, mode) - 1);
8361 /* This function is called from `simplify_shift_const' to merge two
8362 outer operations. Specifically, we have already found that we need
8363 to perform operation *POP0 with constant *PCONST0 at the outermost
8364 position. We would now like to also perform OP1 with constant CONST1
8365 (with *POP0 being done last).
8367 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8368 the resulting operation. *PCOMP_P is set to 1 if we would need to
8369 complement the innermost operand, otherwise it is unchanged.
8371 MODE is the mode in which the operation will be done. No bits outside
8372 the width of this mode matter. It is assumed that the width of this mode
8373 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8375 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8376 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8377 result is simply *PCONST0.
8379 If the resulting operation cannot be expressed as one operation, we
8380 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8382 static int
8383 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8385 enum rtx_code op0 = *pop0;
8386 HOST_WIDE_INT const0 = *pconst0;
8388 const0 &= GET_MODE_MASK (mode);
8389 const1 &= GET_MODE_MASK (mode);
8391 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8392 if (op0 == AND)
8393 const1 &= const0;
8395 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8396 if OP0 is SET. */
8398 if (op1 == UNKNOWN || op0 == SET)
8399 return 1;
8401 else if (op0 == UNKNOWN)
8402 op0 = op1, const0 = const1;
8404 else if (op0 == op1)
8406 switch (op0)
8408 case AND:
8409 const0 &= const1;
8410 break;
8411 case IOR:
8412 const0 |= const1;
8413 break;
8414 case XOR:
8415 const0 ^= const1;
8416 break;
8417 case PLUS:
8418 const0 += const1;
8419 break;
8420 case NEG:
8421 op0 = UNKNOWN;
8422 break;
8423 default:
8424 break;
8428 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8429 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8430 return 0;
8432 /* If the two constants aren't the same, we can't do anything. The
8433 remaining six cases can all be done. */
8434 else if (const0 != const1)
8435 return 0;
8437 else
8438 switch (op0)
8440 case IOR:
8441 if (op1 == AND)
8442 /* (a & b) | b == b */
8443 op0 = SET;
8444 else /* op1 == XOR */
8445 /* (a ^ b) | b == a | b */
8447 break;
8449 case XOR:
8450 if (op1 == AND)
8451 /* (a & b) ^ b == (~a) & b */
8452 op0 = AND, *pcomp_p = 1;
8453 else /* op1 == IOR */
8454 /* (a | b) ^ b == a & ~b */
8455 op0 = AND, const0 = ~const0;
8456 break;
8458 case AND:
8459 if (op1 == IOR)
8460 /* (a | b) & b == b */
8461 op0 = SET;
8462 else /* op1 == XOR */
8463 /* (a ^ b) & b) == (~a) & b */
8464 *pcomp_p = 1;
8465 break;
8466 default:
8467 break;
8470 /* Check for NO-OP cases. */
8471 const0 &= GET_MODE_MASK (mode);
8472 if (const0 == 0
8473 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8474 op0 = UNKNOWN;
8475 else if (const0 == 0 && op0 == AND)
8476 op0 = SET;
8477 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8478 && op0 == AND)
8479 op0 = UNKNOWN;
8481 /* ??? Slightly redundant with the above mask, but not entirely.
8482 Moving this above means we'd have to sign-extend the mode mask
8483 for the final test. */
8484 const0 = trunc_int_for_mode (const0, mode);
8486 *pop0 = op0;
8487 *pconst0 = const0;
8489 return 1;
8492 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8493 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8494 simplify it. Otherwise, return a simplified value.
8496 The shift is normally computed in the widest mode we find in VAROP, as
8497 long as it isn't a different number of words than RESULT_MODE. Exceptions
8498 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8500 static rtx
8501 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8502 rtx varop, int orig_count)
8504 enum rtx_code orig_code = code;
8505 rtx orig_varop = varop;
8506 int count;
8507 enum machine_mode mode = result_mode;
8508 enum machine_mode shift_mode, tmode;
8509 unsigned int mode_words
8510 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8511 /* We form (outer_op (code varop count) (outer_const)). */
8512 enum rtx_code outer_op = UNKNOWN;
8513 HOST_WIDE_INT outer_const = 0;
8514 int complement_p = 0;
8515 rtx new, x;
8517 /* Make sure and truncate the "natural" shift on the way in. We don't
8518 want to do this inside the loop as it makes it more difficult to
8519 combine shifts. */
8520 if (SHIFT_COUNT_TRUNCATED)
8521 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8523 /* If we were given an invalid count, don't do anything except exactly
8524 what was requested. */
8526 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8527 return NULL_RTX;
8529 count = orig_count;
8531 /* Unless one of the branches of the `if' in this loop does a `continue',
8532 we will `break' the loop after the `if'. */
8534 while (count != 0)
8536 /* If we have an operand of (clobber (const_int 0)), fail. */
8537 if (GET_CODE (varop) == CLOBBER)
8538 return NULL_RTX;
8540 /* If we discovered we had to complement VAROP, leave. Making a NOT
8541 here would cause an infinite loop. */
8542 if (complement_p)
8543 break;
8545 /* Convert ROTATERT to ROTATE. */
8546 if (code == ROTATERT)
8548 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8549 code = ROTATE;
8550 if (VECTOR_MODE_P (result_mode))
8551 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8552 else
8553 count = bitsize - count;
8556 /* We need to determine what mode we will do the shift in. If the
8557 shift is a right shift or a ROTATE, we must always do it in the mode
8558 it was originally done in. Otherwise, we can do it in MODE, the
8559 widest mode encountered. */
8560 shift_mode
8561 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8562 ? result_mode : mode);
8564 /* Handle cases where the count is greater than the size of the mode
8565 minus 1. For ASHIFT, use the size minus one as the count (this can
8566 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8567 take the count modulo the size. For other shifts, the result is
8568 zero.
8570 Since these shifts are being produced by the compiler by combining
8571 multiple operations, each of which are defined, we know what the
8572 result is supposed to be. */
8574 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8576 if (code == ASHIFTRT)
8577 count = GET_MODE_BITSIZE (shift_mode) - 1;
8578 else if (code == ROTATE || code == ROTATERT)
8579 count %= GET_MODE_BITSIZE (shift_mode);
8580 else
8582 /* We can't simply return zero because there may be an
8583 outer op. */
8584 varop = const0_rtx;
8585 count = 0;
8586 break;
8590 /* An arithmetic right shift of a quantity known to be -1 or 0
8591 is a no-op. */
8592 if (code == ASHIFTRT
8593 && (num_sign_bit_copies (varop, shift_mode)
8594 == GET_MODE_BITSIZE (shift_mode)))
8596 count = 0;
8597 break;
8600 /* If we are doing an arithmetic right shift and discarding all but
8601 the sign bit copies, this is equivalent to doing a shift by the
8602 bitsize minus one. Convert it into that shift because it will often
8603 allow other simplifications. */
8605 if (code == ASHIFTRT
8606 && (count + num_sign_bit_copies (varop, shift_mode)
8607 >= GET_MODE_BITSIZE (shift_mode)))
8608 count = GET_MODE_BITSIZE (shift_mode) - 1;
8610 /* We simplify the tests below and elsewhere by converting
8611 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8612 `make_compound_operation' will convert it to an ASHIFTRT for
8613 those machines (such as VAX) that don't have an LSHIFTRT. */
8614 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8615 && code == ASHIFTRT
8616 && ((nonzero_bits (varop, shift_mode)
8617 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8618 == 0))
8619 code = LSHIFTRT;
8621 if (code == LSHIFTRT
8622 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8623 && !(nonzero_bits (varop, shift_mode) >> count))
8624 varop = const0_rtx;
8625 if (code == ASHIFT
8626 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8627 && !((nonzero_bits (varop, shift_mode) << count)
8628 & GET_MODE_MASK (shift_mode)))
8629 varop = const0_rtx;
8631 switch (GET_CODE (varop))
8633 case SIGN_EXTEND:
8634 case ZERO_EXTEND:
8635 case SIGN_EXTRACT:
8636 case ZERO_EXTRACT:
8637 new = expand_compound_operation (varop);
8638 if (new != varop)
8640 varop = new;
8641 continue;
8643 break;
8645 case MEM:
8646 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8647 minus the width of a smaller mode, we can do this with a
8648 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8649 if ((code == ASHIFTRT || code == LSHIFTRT)
8650 && ! mode_dependent_address_p (XEXP (varop, 0))
8651 && ! MEM_VOLATILE_P (varop)
8652 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8653 MODE_INT, 1)) != BLKmode)
8655 new = adjust_address_nv (varop, tmode,
8656 BYTES_BIG_ENDIAN ? 0
8657 : count / BITS_PER_UNIT);
8659 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8660 : ZERO_EXTEND, mode, new);
8661 count = 0;
8662 continue;
8664 break;
8666 case SUBREG:
8667 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8668 the same number of words as what we've seen so far. Then store
8669 the widest mode in MODE. */
8670 if (subreg_lowpart_p (varop)
8671 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8672 > GET_MODE_SIZE (GET_MODE (varop)))
8673 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8674 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8675 == mode_words)
8677 varop = SUBREG_REG (varop);
8678 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8679 mode = GET_MODE (varop);
8680 continue;
8682 break;
8684 case MULT:
8685 /* Some machines use MULT instead of ASHIFT because MULT
8686 is cheaper. But it is still better on those machines to
8687 merge two shifts into one. */
8688 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8689 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8691 varop
8692 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8693 XEXP (varop, 0),
8694 GEN_INT (exact_log2 (
8695 INTVAL (XEXP (varop, 1)))));
8696 continue;
8698 break;
8700 case UDIV:
8701 /* Similar, for when divides are cheaper. */
8702 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8703 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8705 varop
8706 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8707 XEXP (varop, 0),
8708 GEN_INT (exact_log2 (
8709 INTVAL (XEXP (varop, 1)))));
8710 continue;
8712 break;
8714 case ASHIFTRT:
8715 /* If we are extracting just the sign bit of an arithmetic
8716 right shift, that shift is not needed. However, the sign
8717 bit of a wider mode may be different from what would be
8718 interpreted as the sign bit in a narrower mode, so, if
8719 the result is narrower, don't discard the shift. */
8720 if (code == LSHIFTRT
8721 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8722 && (GET_MODE_BITSIZE (result_mode)
8723 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8725 varop = XEXP (varop, 0);
8726 continue;
8729 /* ... fall through ... */
8731 case LSHIFTRT:
8732 case ASHIFT:
8733 case ROTATE:
8734 /* Here we have two nested shifts. The result is usually the
8735 AND of a new shift with a mask. We compute the result below. */
8736 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8737 && INTVAL (XEXP (varop, 1)) >= 0
8738 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8739 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8740 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8741 && !VECTOR_MODE_P (result_mode))
8743 enum rtx_code first_code = GET_CODE (varop);
8744 unsigned int first_count = INTVAL (XEXP (varop, 1));
8745 unsigned HOST_WIDE_INT mask;
8746 rtx mask_rtx;
8748 /* We have one common special case. We can't do any merging if
8749 the inner code is an ASHIFTRT of a smaller mode. However, if
8750 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8751 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8752 we can convert it to
8753 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8754 This simplifies certain SIGN_EXTEND operations. */
8755 if (code == ASHIFT && first_code == ASHIFTRT
8756 && count == (GET_MODE_BITSIZE (result_mode)
8757 - GET_MODE_BITSIZE (GET_MODE (varop))))
8759 /* C3 has the low-order C1 bits zero. */
8761 mask = (GET_MODE_MASK (mode)
8762 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8764 varop = simplify_and_const_int (NULL_RTX, result_mode,
8765 XEXP (varop, 0), mask);
8766 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8767 varop, count);
8768 count = first_count;
8769 code = ASHIFTRT;
8770 continue;
8773 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8774 than C1 high-order bits equal to the sign bit, we can convert
8775 this to either an ASHIFT or an ASHIFTRT depending on the
8776 two counts.
8778 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8780 if (code == ASHIFTRT && first_code == ASHIFT
8781 && GET_MODE (varop) == shift_mode
8782 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8783 > first_count))
8785 varop = XEXP (varop, 0);
8786 count -= first_count;
8787 if (count < 0)
8789 count = -count;
8790 code = ASHIFT;
8793 continue;
8796 /* There are some cases we can't do. If CODE is ASHIFTRT,
8797 we can only do this if FIRST_CODE is also ASHIFTRT.
8799 We can't do the case when CODE is ROTATE and FIRST_CODE is
8800 ASHIFTRT.
8802 If the mode of this shift is not the mode of the outer shift,
8803 we can't do this if either shift is a right shift or ROTATE.
8805 Finally, we can't do any of these if the mode is too wide
8806 unless the codes are the same.
8808 Handle the case where the shift codes are the same
8809 first. */
8811 if (code == first_code)
8813 if (GET_MODE (varop) != result_mode
8814 && (code == ASHIFTRT || code == LSHIFTRT
8815 || code == ROTATE))
8816 break;
8818 count += first_count;
8819 varop = XEXP (varop, 0);
8820 continue;
8823 if (code == ASHIFTRT
8824 || (code == ROTATE && first_code == ASHIFTRT)
8825 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8826 || (GET_MODE (varop) != result_mode
8827 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8828 || first_code == ROTATE
8829 || code == ROTATE)))
8830 break;
8832 /* To compute the mask to apply after the shift, shift the
8833 nonzero bits of the inner shift the same way the
8834 outer shift will. */
8836 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8838 mask_rtx
8839 = simplify_const_binary_operation (code, result_mode, mask_rtx,
8840 GEN_INT (count));
8842 /* Give up if we can't compute an outer operation to use. */
8843 if (mask_rtx == 0
8844 || GET_CODE (mask_rtx) != CONST_INT
8845 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8846 INTVAL (mask_rtx),
8847 result_mode, &complement_p))
8848 break;
8850 /* If the shifts are in the same direction, we add the
8851 counts. Otherwise, we subtract them. */
8852 if ((code == ASHIFTRT || code == LSHIFTRT)
8853 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8854 count += first_count;
8855 else
8856 count -= first_count;
8858 /* If COUNT is positive, the new shift is usually CODE,
8859 except for the two exceptions below, in which case it is
8860 FIRST_CODE. If the count is negative, FIRST_CODE should
8861 always be used */
8862 if (count > 0
8863 && ((first_code == ROTATE && code == ASHIFT)
8864 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8865 code = first_code;
8866 else if (count < 0)
8867 code = first_code, count = -count;
8869 varop = XEXP (varop, 0);
8870 continue;
8873 /* If we have (A << B << C) for any shift, we can convert this to
8874 (A << C << B). This wins if A is a constant. Only try this if
8875 B is not a constant. */
8877 else if (GET_CODE (varop) == code
8878 && GET_CODE (XEXP (varop, 0)) == CONST_INT
8879 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8881 rtx new = simplify_const_binary_operation (code, mode,
8882 XEXP (varop, 0),
8883 GEN_INT (count));
8884 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8885 count = 0;
8886 continue;
8888 break;
8890 case NOT:
8891 /* Make this fit the case below. */
8892 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8893 GEN_INT (GET_MODE_MASK (mode)));
8894 continue;
8896 case IOR:
8897 case AND:
8898 case XOR:
8899 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8900 with C the size of VAROP - 1 and the shift is logical if
8901 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8902 we have an (le X 0) operation. If we have an arithmetic shift
8903 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8904 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8906 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8907 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8908 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8909 && (code == LSHIFTRT || code == ASHIFTRT)
8910 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8911 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8913 count = 0;
8914 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8915 const0_rtx);
8917 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8918 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8920 continue;
8923 /* If we have (shift (logical)), move the logical to the outside
8924 to allow it to possibly combine with another logical and the
8925 shift to combine with another shift. This also canonicalizes to
8926 what a ZERO_EXTRACT looks like. Also, some machines have
8927 (and (shift)) insns. */
8929 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8930 /* We can't do this if we have (ashiftrt (xor)) and the
8931 constant has its sign bit set in shift_mode. */
8932 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8933 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8934 shift_mode))
8935 && (new = simplify_const_binary_operation (code, result_mode,
8936 XEXP (varop, 1),
8937 GEN_INT (count))) != 0
8938 && GET_CODE (new) == CONST_INT
8939 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8940 INTVAL (new), result_mode, &complement_p))
8942 varop = XEXP (varop, 0);
8943 continue;
8946 /* If we can't do that, try to simplify the shift in each arm of the
8947 logical expression, make a new logical expression, and apply
8948 the inverse distributive law. This also can't be done
8949 for some (ashiftrt (xor)). */
8950 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8951 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8952 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8953 shift_mode)))
8955 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8956 XEXP (varop, 0), count);
8957 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8958 XEXP (varop, 1), count);
8960 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
8961 lhs, rhs);
8962 varop = apply_distributive_law (varop);
8964 count = 0;
8965 continue;
8967 break;
8969 case EQ:
8970 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8971 says that the sign bit can be tested, FOO has mode MODE, C is
8972 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8973 that may be nonzero. */
8974 if (code == LSHIFTRT
8975 && XEXP (varop, 1) == const0_rtx
8976 && GET_MODE (XEXP (varop, 0)) == result_mode
8977 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8978 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8979 && STORE_FLAG_VALUE == -1
8980 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8981 && merge_outer_ops (&outer_op, &outer_const, XOR,
8982 (HOST_WIDE_INT) 1, result_mode,
8983 &complement_p))
8985 varop = XEXP (varop, 0);
8986 count = 0;
8987 continue;
8989 break;
8991 case NEG:
8992 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8993 than the number of bits in the mode is equivalent to A. */
8994 if (code == LSHIFTRT
8995 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8996 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8998 varop = XEXP (varop, 0);
8999 count = 0;
9000 continue;
9003 /* NEG commutes with ASHIFT since it is multiplication. Move the
9004 NEG outside to allow shifts to combine. */
9005 if (code == ASHIFT
9006 && merge_outer_ops (&outer_op, &outer_const, NEG,
9007 (HOST_WIDE_INT) 0, result_mode,
9008 &complement_p))
9010 varop = XEXP (varop, 0);
9011 continue;
9013 break;
9015 case PLUS:
9016 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9017 is one less than the number of bits in the mode is
9018 equivalent to (xor A 1). */
9019 if (code == LSHIFTRT
9020 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9021 && XEXP (varop, 1) == constm1_rtx
9022 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9023 && merge_outer_ops (&outer_op, &outer_const, XOR,
9024 (HOST_WIDE_INT) 1, result_mode,
9025 &complement_p))
9027 count = 0;
9028 varop = XEXP (varop, 0);
9029 continue;
9032 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9033 that might be nonzero in BAR are those being shifted out and those
9034 bits are known zero in FOO, we can replace the PLUS with FOO.
9035 Similarly in the other operand order. This code occurs when
9036 we are computing the size of a variable-size array. */
9038 if ((code == ASHIFTRT || code == LSHIFTRT)
9039 && count < HOST_BITS_PER_WIDE_INT
9040 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9041 && (nonzero_bits (XEXP (varop, 1), result_mode)
9042 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9044 varop = XEXP (varop, 0);
9045 continue;
9047 else if ((code == ASHIFTRT || code == LSHIFTRT)
9048 && count < HOST_BITS_PER_WIDE_INT
9049 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9050 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9051 >> count)
9052 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9053 & nonzero_bits (XEXP (varop, 1),
9054 result_mode)))
9056 varop = XEXP (varop, 1);
9057 continue;
9060 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9061 if (code == ASHIFT
9062 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9063 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9064 XEXP (varop, 1),
9065 GEN_INT (count))) != 0
9066 && GET_CODE (new) == CONST_INT
9067 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9068 INTVAL (new), result_mode, &complement_p))
9070 varop = XEXP (varop, 0);
9071 continue;
9074 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9075 signbit', and attempt to change the PLUS to an XOR and move it to
9076 the outer operation as is done above in the AND/IOR/XOR case
9077 leg for shift(logical). See details in logical handling above
9078 for reasoning in doing so. */
9079 if (code == LSHIFTRT
9080 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9081 && mode_signbit_p (result_mode, XEXP (varop, 1))
9082 && (new = simplify_const_binary_operation (code, result_mode,
9083 XEXP (varop, 1),
9084 GEN_INT (count))) != 0
9085 && GET_CODE (new) == CONST_INT
9086 && merge_outer_ops (&outer_op, &outer_const, XOR,
9087 INTVAL (new), result_mode, &complement_p))
9089 varop = XEXP (varop, 0);
9090 continue;
9093 break;
9095 case MINUS:
9096 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9097 with C the size of VAROP - 1 and the shift is logical if
9098 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9099 we have a (gt X 0) operation. If the shift is arithmetic with
9100 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9101 we have a (neg (gt X 0)) operation. */
9103 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9104 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9105 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9106 && (code == LSHIFTRT || code == ASHIFTRT)
9107 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9108 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9109 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9111 count = 0;
9112 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9113 const0_rtx);
9115 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9116 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9118 continue;
9120 break;
9122 case TRUNCATE:
9123 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9124 if the truncate does not affect the value. */
9125 if (code == LSHIFTRT
9126 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9127 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9128 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9129 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9130 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9132 rtx varop_inner = XEXP (varop, 0);
9134 varop_inner
9135 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9136 XEXP (varop_inner, 0),
9137 GEN_INT
9138 (count + INTVAL (XEXP (varop_inner, 1))));
9139 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9140 count = 0;
9141 continue;
9143 break;
9145 default:
9146 break;
9149 break;
9152 /* We need to determine what mode to do the shift in. If the shift is
9153 a right shift or ROTATE, we must always do it in the mode it was
9154 originally done in. Otherwise, we can do it in MODE, the widest mode
9155 encountered. The code we care about is that of the shift that will
9156 actually be done, not the shift that was originally requested. */
9157 shift_mode
9158 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9159 ? result_mode : mode);
9161 /* We have now finished analyzing the shift. The result should be
9162 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9163 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9164 to the result of the shift. OUTER_CONST is the relevant constant,
9165 but we must turn off all bits turned off in the shift. */
9167 if (outer_op == UNKNOWN
9168 && orig_code == code && orig_count == count
9169 && varop == orig_varop
9170 && shift_mode == GET_MODE (varop))
9171 return NULL_RTX;
9173 /* Make a SUBREG if necessary. If we can't make it, fail. */
9174 varop = gen_lowpart (shift_mode, varop);
9175 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9176 return NULL_RTX;
9178 /* If we have an outer operation and we just made a shift, it is
9179 possible that we could have simplified the shift were it not
9180 for the outer operation. So try to do the simplification
9181 recursively. */
9183 if (outer_op != UNKNOWN)
9184 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9185 else
9186 x = NULL_RTX;
9188 if (x == NULL_RTX)
9189 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9191 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9192 turn off all the bits that the shift would have turned off. */
9193 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9194 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9195 GET_MODE_MASK (result_mode) >> orig_count);
9197 /* Do the remainder of the processing in RESULT_MODE. */
9198 x = gen_lowpart_or_truncate (result_mode, x);
9200 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9201 operation. */
9202 if (complement_p)
9203 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9205 if (outer_op != UNKNOWN)
9207 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9208 outer_const = trunc_int_for_mode (outer_const, result_mode);
9210 if (outer_op == AND)
9211 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9212 else if (outer_op == SET)
9213 /* This means that we have determined that the result is
9214 equivalent to a constant. This should be rare. */
9215 x = GEN_INT (outer_const);
9216 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9217 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9218 else
9219 x = simplify_gen_binary (outer_op, result_mode, x,
9220 GEN_INT (outer_const));
9223 return x;
9226 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9227 The result of the shift is RESULT_MODE. If we cannot simplify it,
9228 return X or, if it is NULL, synthesize the expression with
9229 simplify_gen_binary. Otherwise, return a simplified value.
9231 The shift is normally computed in the widest mode we find in VAROP, as
9232 long as it isn't a different number of words than RESULT_MODE. Exceptions
9233 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9235 static rtx
9236 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9237 rtx varop, int count)
9239 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9240 if (tem)
9241 return tem;
9243 if (!x)
9244 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9245 if (GET_MODE (x) != result_mode)
9246 x = gen_lowpart (result_mode, x);
9247 return x;
9251 /* Like recog, but we receive the address of a pointer to a new pattern.
9252 We try to match the rtx that the pointer points to.
9253 If that fails, we may try to modify or replace the pattern,
9254 storing the replacement into the same pointer object.
9256 Modifications include deletion or addition of CLOBBERs.
9258 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9259 the CLOBBERs are placed.
9261 The value is the final insn code from the pattern ultimately matched,
9262 or -1. */
9264 static int
9265 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9267 rtx pat = *pnewpat;
9268 int insn_code_number;
9269 int num_clobbers_to_add = 0;
9270 int i;
9271 rtx notes = 0;
9272 rtx old_notes, old_pat;
9274 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9275 we use to indicate that something didn't match. If we find such a
9276 thing, force rejection. */
9277 if (GET_CODE (pat) == PARALLEL)
9278 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9279 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9280 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9281 return -1;
9283 old_pat = PATTERN (insn);
9284 old_notes = REG_NOTES (insn);
9285 PATTERN (insn) = pat;
9286 REG_NOTES (insn) = 0;
9288 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9290 /* If it isn't, there is the possibility that we previously had an insn
9291 that clobbered some register as a side effect, but the combined
9292 insn doesn't need to do that. So try once more without the clobbers
9293 unless this represents an ASM insn. */
9295 if (insn_code_number < 0 && ! check_asm_operands (pat)
9296 && GET_CODE (pat) == PARALLEL)
9298 int pos;
9300 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9301 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9303 if (i != pos)
9304 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9305 pos++;
9308 SUBST_INT (XVECLEN (pat, 0), pos);
9310 if (pos == 1)
9311 pat = XVECEXP (pat, 0, 0);
9313 PATTERN (insn) = pat;
9314 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9316 PATTERN (insn) = old_pat;
9317 REG_NOTES (insn) = old_notes;
9319 /* Recognize all noop sets, these will be killed by followup pass. */
9320 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9321 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9323 /* If we had any clobbers to add, make a new pattern than contains
9324 them. Then check to make sure that all of them are dead. */
9325 if (num_clobbers_to_add)
9327 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9328 rtvec_alloc (GET_CODE (pat) == PARALLEL
9329 ? (XVECLEN (pat, 0)
9330 + num_clobbers_to_add)
9331 : num_clobbers_to_add + 1));
9333 if (GET_CODE (pat) == PARALLEL)
9334 for (i = 0; i < XVECLEN (pat, 0); i++)
9335 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9336 else
9337 XVECEXP (newpat, 0, 0) = pat;
9339 add_clobbers (newpat, insn_code_number);
9341 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9342 i < XVECLEN (newpat, 0); i++)
9344 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9345 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9346 return -1;
9347 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9348 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9350 pat = newpat;
9353 *pnewpat = pat;
9354 *pnotes = notes;
9356 return insn_code_number;
9359 /* Like gen_lowpart_general but for use by combine. In combine it
9360 is not possible to create any new pseudoregs. However, it is
9361 safe to create invalid memory addresses, because combine will
9362 try to recognize them and all they will do is make the combine
9363 attempt fail.
9365 If for some reason this cannot do its job, an rtx
9366 (clobber (const_int 0)) is returned.
9367 An insn containing that will not be recognized. */
9369 static rtx
9370 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9372 enum machine_mode imode = GET_MODE (x);
9373 unsigned int osize = GET_MODE_SIZE (omode);
9374 unsigned int isize = GET_MODE_SIZE (imode);
9375 rtx result;
9377 if (omode == imode)
9378 return x;
9380 /* Return identity if this is a CONST or symbolic reference. */
9381 if (omode == Pmode
9382 && (GET_CODE (x) == CONST
9383 || GET_CODE (x) == SYMBOL_REF
9384 || GET_CODE (x) == LABEL_REF))
9385 return x;
9387 /* We can only support MODE being wider than a word if X is a
9388 constant integer or has a mode the same size. */
9389 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9390 && ! ((imode == VOIDmode
9391 && (GET_CODE (x) == CONST_INT
9392 || GET_CODE (x) == CONST_DOUBLE))
9393 || isize == osize))
9394 goto fail;
9396 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9397 won't know what to do. So we will strip off the SUBREG here and
9398 process normally. */
9399 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9401 x = SUBREG_REG (x);
9403 /* For use in case we fall down into the address adjustments
9404 further below, we need to adjust the known mode and size of
9405 x; imode and isize, since we just adjusted x. */
9406 imode = GET_MODE (x);
9408 if (imode == omode)
9409 return x;
9411 isize = GET_MODE_SIZE (imode);
9414 result = gen_lowpart_common (omode, x);
9416 #ifdef CANNOT_CHANGE_MODE_CLASS
9417 if (result != 0 && GET_CODE (result) == SUBREG)
9418 record_subregs_of_mode (result);
9419 #endif
9421 if (result)
9422 return result;
9424 if (MEM_P (x))
9426 int offset = 0;
9428 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9429 address. */
9430 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9431 goto fail;
9433 /* If we want to refer to something bigger than the original memref,
9434 generate a paradoxical subreg instead. That will force a reload
9435 of the original memref X. */
9436 if (isize < osize)
9437 return gen_rtx_SUBREG (omode, x, 0);
9439 if (WORDS_BIG_ENDIAN)
9440 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9442 /* Adjust the address so that the address-after-the-data is
9443 unchanged. */
9444 if (BYTES_BIG_ENDIAN)
9445 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9447 return adjust_address_nv (x, omode, offset);
9450 /* If X is a comparison operator, rewrite it in a new mode. This
9451 probably won't match, but may allow further simplifications. */
9452 else if (COMPARISON_P (x))
9453 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9455 /* If we couldn't simplify X any other way, just enclose it in a
9456 SUBREG. Normally, this SUBREG won't match, but some patterns may
9457 include an explicit SUBREG or we may simplify it further in combine. */
9458 else
9460 int offset = 0;
9461 rtx res;
9463 offset = subreg_lowpart_offset (omode, imode);
9464 if (imode == VOIDmode)
9466 imode = int_mode_for_mode (omode);
9467 x = gen_lowpart_common (imode, x);
9468 if (x == NULL)
9469 goto fail;
9471 res = simplify_gen_subreg (omode, x, imode, offset);
9472 if (res)
9473 return res;
9476 fail:
9477 return gen_rtx_CLOBBER (imode, const0_rtx);
9480 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9481 comparison code that will be tested.
9483 The result is a possibly different comparison code to use. *POP0 and
9484 *POP1 may be updated.
9486 It is possible that we might detect that a comparison is either always
9487 true or always false. However, we do not perform general constant
9488 folding in combine, so this knowledge isn't useful. Such tautologies
9489 should have been detected earlier. Hence we ignore all such cases. */
9491 static enum rtx_code
9492 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9494 rtx op0 = *pop0;
9495 rtx op1 = *pop1;
9496 rtx tem, tem1;
9497 int i;
9498 enum machine_mode mode, tmode;
9500 /* Try a few ways of applying the same transformation to both operands. */
9501 while (1)
9503 #ifndef WORD_REGISTER_OPERATIONS
9504 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9505 so check specially. */
9506 if (code != GTU && code != GEU && code != LTU && code != LEU
9507 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9508 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9509 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9510 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9511 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9512 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9513 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9514 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9515 && XEXP (op0, 1) == XEXP (op1, 1)
9516 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9517 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9518 && (INTVAL (XEXP (op0, 1))
9519 == (GET_MODE_BITSIZE (GET_MODE (op0))
9520 - (GET_MODE_BITSIZE
9521 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9523 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9524 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9526 #endif
9528 /* If both operands are the same constant shift, see if we can ignore the
9529 shift. We can if the shift is a rotate or if the bits shifted out of
9530 this shift are known to be zero for both inputs and if the type of
9531 comparison is compatible with the shift. */
9532 if (GET_CODE (op0) == GET_CODE (op1)
9533 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9534 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9535 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9536 && (code != GT && code != LT && code != GE && code != LE))
9537 || (GET_CODE (op0) == ASHIFTRT
9538 && (code != GTU && code != LTU
9539 && code != GEU && code != LEU)))
9540 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9541 && INTVAL (XEXP (op0, 1)) >= 0
9542 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9543 && XEXP (op0, 1) == XEXP (op1, 1))
9545 enum machine_mode mode = GET_MODE (op0);
9546 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9547 int shift_count = INTVAL (XEXP (op0, 1));
9549 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9550 mask &= (mask >> shift_count) << shift_count;
9551 else if (GET_CODE (op0) == ASHIFT)
9552 mask = (mask & (mask << shift_count)) >> shift_count;
9554 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9555 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9556 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9557 else
9558 break;
9561 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9562 SUBREGs are of the same mode, and, in both cases, the AND would
9563 be redundant if the comparison was done in the narrower mode,
9564 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9565 and the operand's possibly nonzero bits are 0xffffff01; in that case
9566 if we only care about QImode, we don't need the AND). This case
9567 occurs if the output mode of an scc insn is not SImode and
9568 STORE_FLAG_VALUE == 1 (e.g., the 386).
9570 Similarly, check for a case where the AND's are ZERO_EXTEND
9571 operations from some narrower mode even though a SUBREG is not
9572 present. */
9574 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9575 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9576 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9578 rtx inner_op0 = XEXP (op0, 0);
9579 rtx inner_op1 = XEXP (op1, 0);
9580 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9581 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9582 int changed = 0;
9584 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9585 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9586 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9587 && (GET_MODE (SUBREG_REG (inner_op0))
9588 == GET_MODE (SUBREG_REG (inner_op1)))
9589 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9590 <= HOST_BITS_PER_WIDE_INT)
9591 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9592 GET_MODE (SUBREG_REG (inner_op0)))))
9593 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9594 GET_MODE (SUBREG_REG (inner_op1))))))
9596 op0 = SUBREG_REG (inner_op0);
9597 op1 = SUBREG_REG (inner_op1);
9599 /* The resulting comparison is always unsigned since we masked
9600 off the original sign bit. */
9601 code = unsigned_condition (code);
9603 changed = 1;
9606 else if (c0 == c1)
9607 for (tmode = GET_CLASS_NARROWEST_MODE
9608 (GET_MODE_CLASS (GET_MODE (op0)));
9609 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9610 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9612 op0 = gen_lowpart (tmode, inner_op0);
9613 op1 = gen_lowpart (tmode, inner_op1);
9614 code = unsigned_condition (code);
9615 changed = 1;
9616 break;
9619 if (! changed)
9620 break;
9623 /* If both operands are NOT, we can strip off the outer operation
9624 and adjust the comparison code for swapped operands; similarly for
9625 NEG, except that this must be an equality comparison. */
9626 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9627 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9628 && (code == EQ || code == NE)))
9629 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9631 else
9632 break;
9635 /* If the first operand is a constant, swap the operands and adjust the
9636 comparison code appropriately, but don't do this if the second operand
9637 is already a constant integer. */
9638 if (swap_commutative_operands_p (op0, op1))
9640 tem = op0, op0 = op1, op1 = tem;
9641 code = swap_condition (code);
9644 /* We now enter a loop during which we will try to simplify the comparison.
9645 For the most part, we only are concerned with comparisons with zero,
9646 but some things may really be comparisons with zero but not start
9647 out looking that way. */
9649 while (GET_CODE (op1) == CONST_INT)
9651 enum machine_mode mode = GET_MODE (op0);
9652 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9653 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9654 int equality_comparison_p;
9655 int sign_bit_comparison_p;
9656 int unsigned_comparison_p;
9657 HOST_WIDE_INT const_op;
9659 /* We only want to handle integral modes. This catches VOIDmode,
9660 CCmode, and the floating-point modes. An exception is that we
9661 can handle VOIDmode if OP0 is a COMPARE or a comparison
9662 operation. */
9664 if (GET_MODE_CLASS (mode) != MODE_INT
9665 && ! (mode == VOIDmode
9666 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9667 break;
9669 /* Get the constant we are comparing against and turn off all bits
9670 not on in our mode. */
9671 const_op = INTVAL (op1);
9672 if (mode != VOIDmode)
9673 const_op = trunc_int_for_mode (const_op, mode);
9674 op1 = GEN_INT (const_op);
9676 /* If we are comparing against a constant power of two and the value
9677 being compared can only have that single bit nonzero (e.g., it was
9678 `and'ed with that bit), we can replace this with a comparison
9679 with zero. */
9680 if (const_op
9681 && (code == EQ || code == NE || code == GE || code == GEU
9682 || code == LT || code == LTU)
9683 && mode_width <= HOST_BITS_PER_WIDE_INT
9684 && exact_log2 (const_op) >= 0
9685 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9687 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9688 op1 = const0_rtx, const_op = 0;
9691 /* Similarly, if we are comparing a value known to be either -1 or
9692 0 with -1, change it to the opposite comparison against zero. */
9694 if (const_op == -1
9695 && (code == EQ || code == NE || code == GT || code == LE
9696 || code == GEU || code == LTU)
9697 && num_sign_bit_copies (op0, mode) == mode_width)
9699 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9700 op1 = const0_rtx, const_op = 0;
9703 /* Do some canonicalizations based on the comparison code. We prefer
9704 comparisons against zero and then prefer equality comparisons.
9705 If we can reduce the size of a constant, we will do that too. */
9707 switch (code)
9709 case LT:
9710 /* < C is equivalent to <= (C - 1) */
9711 if (const_op > 0)
9713 const_op -= 1;
9714 op1 = GEN_INT (const_op);
9715 code = LE;
9716 /* ... fall through to LE case below. */
9718 else
9719 break;
9721 case LE:
9722 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9723 if (const_op < 0)
9725 const_op += 1;
9726 op1 = GEN_INT (const_op);
9727 code = LT;
9730 /* If we are doing a <= 0 comparison on a value known to have
9731 a zero sign bit, we can replace this with == 0. */
9732 else if (const_op == 0
9733 && mode_width <= HOST_BITS_PER_WIDE_INT
9734 && (nonzero_bits (op0, mode)
9735 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9736 code = EQ;
9737 break;
9739 case GE:
9740 /* >= C is equivalent to > (C - 1). */
9741 if (const_op > 0)
9743 const_op -= 1;
9744 op1 = GEN_INT (const_op);
9745 code = GT;
9746 /* ... fall through to GT below. */
9748 else
9749 break;
9751 case GT:
9752 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9753 if (const_op < 0)
9755 const_op += 1;
9756 op1 = GEN_INT (const_op);
9757 code = GE;
9760 /* If we are doing a > 0 comparison on a value known to have
9761 a zero sign bit, we can replace this with != 0. */
9762 else if (const_op == 0
9763 && mode_width <= HOST_BITS_PER_WIDE_INT
9764 && (nonzero_bits (op0, mode)
9765 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9766 code = NE;
9767 break;
9769 case LTU:
9770 /* < C is equivalent to <= (C - 1). */
9771 if (const_op > 0)
9773 const_op -= 1;
9774 op1 = GEN_INT (const_op);
9775 code = LEU;
9776 /* ... fall through ... */
9779 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9780 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9781 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9783 const_op = 0, op1 = const0_rtx;
9784 code = GE;
9785 break;
9787 else
9788 break;
9790 case LEU:
9791 /* unsigned <= 0 is equivalent to == 0 */
9792 if (const_op == 0)
9793 code = EQ;
9795 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9796 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9797 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9799 const_op = 0, op1 = const0_rtx;
9800 code = GE;
9802 break;
9804 case GEU:
9805 /* >= C is equivalent to > (C - 1). */
9806 if (const_op > 1)
9808 const_op -= 1;
9809 op1 = GEN_INT (const_op);
9810 code = GTU;
9811 /* ... fall through ... */
9814 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9815 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9816 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9818 const_op = 0, op1 = const0_rtx;
9819 code = LT;
9820 break;
9822 else
9823 break;
9825 case GTU:
9826 /* unsigned > 0 is equivalent to != 0 */
9827 if (const_op == 0)
9828 code = NE;
9830 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9831 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9832 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9834 const_op = 0, op1 = const0_rtx;
9835 code = LT;
9837 break;
9839 default:
9840 break;
9843 /* Compute some predicates to simplify code below. */
9845 equality_comparison_p = (code == EQ || code == NE);
9846 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9847 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9848 || code == GEU);
9850 /* If this is a sign bit comparison and we can do arithmetic in
9851 MODE, say that we will only be needing the sign bit of OP0. */
9852 if (sign_bit_comparison_p
9853 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9854 op0 = force_to_mode (op0, mode,
9855 ((HOST_WIDE_INT) 1
9856 << (GET_MODE_BITSIZE (mode) - 1)),
9859 /* Now try cases based on the opcode of OP0. If none of the cases
9860 does a "continue", we exit this loop immediately after the
9861 switch. */
9863 switch (GET_CODE (op0))
9865 case ZERO_EXTRACT:
9866 /* If we are extracting a single bit from a variable position in
9867 a constant that has only a single bit set and are comparing it
9868 with zero, we can convert this into an equality comparison
9869 between the position and the location of the single bit. */
9870 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9871 have already reduced the shift count modulo the word size. */
9872 if (!SHIFT_COUNT_TRUNCATED
9873 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9874 && XEXP (op0, 1) == const1_rtx
9875 && equality_comparison_p && const_op == 0
9876 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9878 if (BITS_BIG_ENDIAN)
9880 enum machine_mode new_mode
9881 = mode_for_extraction (EP_extzv, 1);
9882 if (new_mode == MAX_MACHINE_MODE)
9883 i = BITS_PER_WORD - 1 - i;
9884 else
9886 mode = new_mode;
9887 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9891 op0 = XEXP (op0, 2);
9892 op1 = GEN_INT (i);
9893 const_op = i;
9895 /* Result is nonzero iff shift count is equal to I. */
9896 code = reverse_condition (code);
9897 continue;
9900 /* ... fall through ... */
9902 case SIGN_EXTRACT:
9903 tem = expand_compound_operation (op0);
9904 if (tem != op0)
9906 op0 = tem;
9907 continue;
9909 break;
9911 case NOT:
9912 /* If testing for equality, we can take the NOT of the constant. */
9913 if (equality_comparison_p
9914 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9916 op0 = XEXP (op0, 0);
9917 op1 = tem;
9918 continue;
9921 /* If just looking at the sign bit, reverse the sense of the
9922 comparison. */
9923 if (sign_bit_comparison_p)
9925 op0 = XEXP (op0, 0);
9926 code = (code == GE ? LT : GE);
9927 continue;
9929 break;
9931 case NEG:
9932 /* If testing for equality, we can take the NEG of the constant. */
9933 if (equality_comparison_p
9934 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9936 op0 = XEXP (op0, 0);
9937 op1 = tem;
9938 continue;
9941 /* The remaining cases only apply to comparisons with zero. */
9942 if (const_op != 0)
9943 break;
9945 /* When X is ABS or is known positive,
9946 (neg X) is < 0 if and only if X != 0. */
9948 if (sign_bit_comparison_p
9949 && (GET_CODE (XEXP (op0, 0)) == ABS
9950 || (mode_width <= HOST_BITS_PER_WIDE_INT
9951 && (nonzero_bits (XEXP (op0, 0), mode)
9952 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9954 op0 = XEXP (op0, 0);
9955 code = (code == LT ? NE : EQ);
9956 continue;
9959 /* If we have NEG of something whose two high-order bits are the
9960 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9961 if (num_sign_bit_copies (op0, mode) >= 2)
9963 op0 = XEXP (op0, 0);
9964 code = swap_condition (code);
9965 continue;
9967 break;
9969 case ROTATE:
9970 /* If we are testing equality and our count is a constant, we
9971 can perform the inverse operation on our RHS. */
9972 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9973 && (tem = simplify_binary_operation (ROTATERT, mode,
9974 op1, XEXP (op0, 1))) != 0)
9976 op0 = XEXP (op0, 0);
9977 op1 = tem;
9978 continue;
9981 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9982 a particular bit. Convert it to an AND of a constant of that
9983 bit. This will be converted into a ZERO_EXTRACT. */
9984 if (const_op == 0 && sign_bit_comparison_p
9985 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9986 && mode_width <= HOST_BITS_PER_WIDE_INT)
9988 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9989 ((HOST_WIDE_INT) 1
9990 << (mode_width - 1
9991 - INTVAL (XEXP (op0, 1)))));
9992 code = (code == LT ? NE : EQ);
9993 continue;
9996 /* Fall through. */
9998 case ABS:
9999 /* ABS is ignorable inside an equality comparison with zero. */
10000 if (const_op == 0 && equality_comparison_p)
10002 op0 = XEXP (op0, 0);
10003 continue;
10005 break;
10007 case SIGN_EXTEND:
10008 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10009 (compare FOO CONST) if CONST fits in FOO's mode and we
10010 are either testing inequality or have an unsigned
10011 comparison with ZERO_EXTEND or a signed comparison with
10012 SIGN_EXTEND. But don't do it if we don't have a compare
10013 insn of the given mode, since we'd have to revert it
10014 later on, and then we wouldn't know whether to sign- or
10015 zero-extend. */
10016 mode = GET_MODE (XEXP (op0, 0));
10017 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10018 && ! unsigned_comparison_p
10019 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10020 && ((unsigned HOST_WIDE_INT) const_op
10021 < (((unsigned HOST_WIDE_INT) 1
10022 << (GET_MODE_BITSIZE (mode) - 1))))
10023 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10025 op0 = XEXP (op0, 0);
10026 continue;
10028 break;
10030 case SUBREG:
10031 /* Check for the case where we are comparing A - C1 with C2, that is
10033 (subreg:MODE (plus (A) (-C1))) op (C2)
10035 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10036 comparison in the wider mode. One of the following two conditions
10037 must be true in order for this to be valid:
10039 1. The mode extension results in the same bit pattern being added
10040 on both sides and the comparison is equality or unsigned. As
10041 C2 has been truncated to fit in MODE, the pattern can only be
10042 all 0s or all 1s.
10044 2. The mode extension results in the sign bit being copied on
10045 each side.
10047 The difficulty here is that we have predicates for A but not for
10048 (A - C1) so we need to check that C1 is within proper bounds so
10049 as to perturbate A as little as possible. */
10051 if (mode_width <= HOST_BITS_PER_WIDE_INT
10052 && subreg_lowpart_p (op0)
10053 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10054 && GET_CODE (SUBREG_REG (op0)) == PLUS
10055 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10057 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10058 rtx a = XEXP (SUBREG_REG (op0), 0);
10059 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10061 if ((c1 > 0
10062 && (unsigned HOST_WIDE_INT) c1
10063 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10064 && (equality_comparison_p || unsigned_comparison_p)
10065 /* (A - C1) zero-extends if it is positive and sign-extends
10066 if it is negative, C2 both zero- and sign-extends. */
10067 && ((0 == (nonzero_bits (a, inner_mode)
10068 & ~GET_MODE_MASK (mode))
10069 && const_op >= 0)
10070 /* (A - C1) sign-extends if it is positive and 1-extends
10071 if it is negative, C2 both sign- and 1-extends. */
10072 || (num_sign_bit_copies (a, inner_mode)
10073 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10074 - mode_width)
10075 && const_op < 0)))
10076 || ((unsigned HOST_WIDE_INT) c1
10077 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10078 /* (A - C1) always sign-extends, like C2. */
10079 && num_sign_bit_copies (a, inner_mode)
10080 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10081 - (mode_width - 1))))
10083 op0 = SUBREG_REG (op0);
10084 continue;
10088 /* If the inner mode is narrower and we are extracting the low part,
10089 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10090 if (subreg_lowpart_p (op0)
10091 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10092 /* Fall through */ ;
10093 else
10094 break;
10096 /* ... fall through ... */
10098 case ZERO_EXTEND:
10099 mode = GET_MODE (XEXP (op0, 0));
10100 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10101 && (unsigned_comparison_p || equality_comparison_p)
10102 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10103 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10104 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10106 op0 = XEXP (op0, 0);
10107 continue;
10109 break;
10111 case PLUS:
10112 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10113 this for equality comparisons due to pathological cases involving
10114 overflows. */
10115 if (equality_comparison_p
10116 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10117 op1, XEXP (op0, 1))))
10119 op0 = XEXP (op0, 0);
10120 op1 = tem;
10121 continue;
10124 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10125 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10126 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10128 op0 = XEXP (XEXP (op0, 0), 0);
10129 code = (code == LT ? EQ : NE);
10130 continue;
10132 break;
10134 case MINUS:
10135 /* We used to optimize signed comparisons against zero, but that
10136 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10137 arrive here as equality comparisons, or (GEU, LTU) are
10138 optimized away. No need to special-case them. */
10140 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10141 (eq B (minus A C)), whichever simplifies. We can only do
10142 this for equality comparisons due to pathological cases involving
10143 overflows. */
10144 if (equality_comparison_p
10145 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10146 XEXP (op0, 1), op1)))
10148 op0 = XEXP (op0, 0);
10149 op1 = tem;
10150 continue;
10153 if (equality_comparison_p
10154 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10155 XEXP (op0, 0), op1)))
10157 op0 = XEXP (op0, 1);
10158 op1 = tem;
10159 continue;
10162 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10163 of bits in X minus 1, is one iff X > 0. */
10164 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10165 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10166 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10167 == mode_width - 1
10168 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10170 op0 = XEXP (op0, 1);
10171 code = (code == GE ? LE : GT);
10172 continue;
10174 break;
10176 case XOR:
10177 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10178 if C is zero or B is a constant. */
10179 if (equality_comparison_p
10180 && 0 != (tem = simplify_binary_operation (XOR, mode,
10181 XEXP (op0, 1), op1)))
10183 op0 = XEXP (op0, 0);
10184 op1 = tem;
10185 continue;
10187 break;
10189 case EQ: case NE:
10190 case UNEQ: case LTGT:
10191 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10192 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10193 case UNORDERED: case ORDERED:
10194 /* We can't do anything if OP0 is a condition code value, rather
10195 than an actual data value. */
10196 if (const_op != 0
10197 || CC0_P (XEXP (op0, 0))
10198 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10199 break;
10201 /* Get the two operands being compared. */
10202 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10203 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10204 else
10205 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10207 /* Check for the cases where we simply want the result of the
10208 earlier test or the opposite of that result. */
10209 if (code == NE || code == EQ
10210 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10211 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10212 && (STORE_FLAG_VALUE
10213 & (((HOST_WIDE_INT) 1
10214 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10215 && (code == LT || code == GE)))
10217 enum rtx_code new_code;
10218 if (code == LT || code == NE)
10219 new_code = GET_CODE (op0);
10220 else
10221 new_code = reversed_comparison_code (op0, NULL);
10223 if (new_code != UNKNOWN)
10225 code = new_code;
10226 op0 = tem;
10227 op1 = tem1;
10228 continue;
10231 break;
10233 case IOR:
10234 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10235 iff X <= 0. */
10236 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10237 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10238 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10240 op0 = XEXP (op0, 1);
10241 code = (code == GE ? GT : LE);
10242 continue;
10244 break;
10246 case AND:
10247 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10248 will be converted to a ZERO_EXTRACT later. */
10249 if (const_op == 0 && equality_comparison_p
10250 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10251 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10253 op0 = simplify_and_const_int
10254 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10255 XEXP (op0, 1),
10256 XEXP (XEXP (op0, 0), 1)),
10257 (HOST_WIDE_INT) 1);
10258 continue;
10261 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10262 zero and X is a comparison and C1 and C2 describe only bits set
10263 in STORE_FLAG_VALUE, we can compare with X. */
10264 if (const_op == 0 && equality_comparison_p
10265 && mode_width <= HOST_BITS_PER_WIDE_INT
10266 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10267 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10268 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10269 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10270 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10272 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10273 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10274 if ((~STORE_FLAG_VALUE & mask) == 0
10275 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10276 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10277 && COMPARISON_P (tem))))
10279 op0 = XEXP (XEXP (op0, 0), 0);
10280 continue;
10284 /* If we are doing an equality comparison of an AND of a bit equal
10285 to the sign bit, replace this with a LT or GE comparison of
10286 the underlying value. */
10287 if (equality_comparison_p
10288 && const_op == 0
10289 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10290 && mode_width <= HOST_BITS_PER_WIDE_INT
10291 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10292 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10294 op0 = XEXP (op0, 0);
10295 code = (code == EQ ? GE : LT);
10296 continue;
10299 /* If this AND operation is really a ZERO_EXTEND from a narrower
10300 mode, the constant fits within that mode, and this is either an
10301 equality or unsigned comparison, try to do this comparison in
10302 the narrower mode.
10304 Note that in:
10306 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10307 -> (ne:DI (reg:SI 4) (const_int 0))
10309 unless TRULY_NOOP_TRUNCATION allows it or the register is
10310 known to hold a value of the required mode the
10311 transformation is invalid. */
10312 if ((equality_comparison_p || unsigned_comparison_p)
10313 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10314 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10315 & GET_MODE_MASK (mode))
10316 + 1)) >= 0
10317 && const_op >> i == 0
10318 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10319 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10320 GET_MODE_BITSIZE (GET_MODE (op0)))
10321 || (REG_P (XEXP (op0, 0))
10322 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10324 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10325 continue;
10328 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10329 fits in both M1 and M2 and the SUBREG is either paradoxical
10330 or represents the low part, permute the SUBREG and the AND
10331 and try again. */
10332 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10334 unsigned HOST_WIDE_INT c1;
10335 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10336 /* Require an integral mode, to avoid creating something like
10337 (AND:SF ...). */
10338 if (SCALAR_INT_MODE_P (tmode)
10339 /* It is unsafe to commute the AND into the SUBREG if the
10340 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10341 not defined. As originally written the upper bits
10342 have a defined value due to the AND operation.
10343 However, if we commute the AND inside the SUBREG then
10344 they no longer have defined values and the meaning of
10345 the code has been changed. */
10346 && (0
10347 #ifdef WORD_REGISTER_OPERATIONS
10348 || (mode_width > GET_MODE_BITSIZE (tmode)
10349 && mode_width <= BITS_PER_WORD)
10350 #endif
10351 || (mode_width <= GET_MODE_BITSIZE (tmode)
10352 && subreg_lowpart_p (XEXP (op0, 0))))
10353 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10354 && mode_width <= HOST_BITS_PER_WIDE_INT
10355 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10356 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10357 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10358 && c1 != mask
10359 && c1 != GET_MODE_MASK (tmode))
10361 op0 = simplify_gen_binary (AND, tmode,
10362 SUBREG_REG (XEXP (op0, 0)),
10363 gen_int_mode (c1, tmode));
10364 op0 = gen_lowpart (mode, op0);
10365 continue;
10369 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10370 if (const_op == 0 && equality_comparison_p
10371 && XEXP (op0, 1) == const1_rtx
10372 && GET_CODE (XEXP (op0, 0)) == NOT)
10374 op0 = simplify_and_const_int
10375 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10376 code = (code == NE ? EQ : NE);
10377 continue;
10380 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10381 (eq (and (lshiftrt X) 1) 0).
10382 Also handle the case where (not X) is expressed using xor. */
10383 if (const_op == 0 && equality_comparison_p
10384 && XEXP (op0, 1) == const1_rtx
10385 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10387 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10388 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10390 if (GET_CODE (shift_op) == NOT
10391 || (GET_CODE (shift_op) == XOR
10392 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10393 && GET_CODE (shift_count) == CONST_INT
10394 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10395 && (INTVAL (XEXP (shift_op, 1))
10396 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10398 op0 = simplify_and_const_int
10399 (NULL_RTX, mode,
10400 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10401 (HOST_WIDE_INT) 1);
10402 code = (code == NE ? EQ : NE);
10403 continue;
10406 break;
10408 case ASHIFT:
10409 /* If we have (compare (ashift FOO N) (const_int C)) and
10410 the high order N bits of FOO (N+1 if an inequality comparison)
10411 are known to be zero, we can do this by comparing FOO with C
10412 shifted right N bits so long as the low-order N bits of C are
10413 zero. */
10414 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10415 && INTVAL (XEXP (op0, 1)) >= 0
10416 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10417 < HOST_BITS_PER_WIDE_INT)
10418 && ((const_op
10419 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10420 && mode_width <= HOST_BITS_PER_WIDE_INT
10421 && (nonzero_bits (XEXP (op0, 0), mode)
10422 & ~(mask >> (INTVAL (XEXP (op0, 1))
10423 + ! equality_comparison_p))) == 0)
10425 /* We must perform a logical shift, not an arithmetic one,
10426 as we want the top N bits of C to be zero. */
10427 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10429 temp >>= INTVAL (XEXP (op0, 1));
10430 op1 = gen_int_mode (temp, mode);
10431 op0 = XEXP (op0, 0);
10432 continue;
10435 /* If we are doing a sign bit comparison, it means we are testing
10436 a particular bit. Convert it to the appropriate AND. */
10437 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10438 && mode_width <= HOST_BITS_PER_WIDE_INT)
10440 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10441 ((HOST_WIDE_INT) 1
10442 << (mode_width - 1
10443 - INTVAL (XEXP (op0, 1)))));
10444 code = (code == LT ? NE : EQ);
10445 continue;
10448 /* If this an equality comparison with zero and we are shifting
10449 the low bit to the sign bit, we can convert this to an AND of the
10450 low-order bit. */
10451 if (const_op == 0 && equality_comparison_p
10452 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10453 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10454 == mode_width - 1)
10456 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10457 (HOST_WIDE_INT) 1);
10458 continue;
10460 break;
10462 case ASHIFTRT:
10463 /* If this is an equality comparison with zero, we can do this
10464 as a logical shift, which might be much simpler. */
10465 if (equality_comparison_p && const_op == 0
10466 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10468 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10469 XEXP (op0, 0),
10470 INTVAL (XEXP (op0, 1)));
10471 continue;
10474 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10475 do the comparison in a narrower mode. */
10476 if (! unsigned_comparison_p
10477 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10478 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10479 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10480 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10481 MODE_INT, 1)) != BLKmode
10482 && (((unsigned HOST_WIDE_INT) const_op
10483 + (GET_MODE_MASK (tmode) >> 1) + 1)
10484 <= GET_MODE_MASK (tmode)))
10486 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10487 continue;
10490 /* Likewise if OP0 is a PLUS of a sign extension with a
10491 constant, which is usually represented with the PLUS
10492 between the shifts. */
10493 if (! unsigned_comparison_p
10494 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10495 && GET_CODE (XEXP (op0, 0)) == PLUS
10496 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10497 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10498 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10499 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10500 MODE_INT, 1)) != BLKmode
10501 && (((unsigned HOST_WIDE_INT) const_op
10502 + (GET_MODE_MASK (tmode) >> 1) + 1)
10503 <= GET_MODE_MASK (tmode)))
10505 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10506 rtx add_const = XEXP (XEXP (op0, 0), 1);
10507 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10508 add_const, XEXP (op0, 1));
10510 op0 = simplify_gen_binary (PLUS, tmode,
10511 gen_lowpart (tmode, inner),
10512 new_const);
10513 continue;
10516 /* ... fall through ... */
10517 case LSHIFTRT:
10518 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10519 the low order N bits of FOO are known to be zero, we can do this
10520 by comparing FOO with C shifted left N bits so long as no
10521 overflow occurs. */
10522 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10523 && INTVAL (XEXP (op0, 1)) >= 0
10524 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10525 && mode_width <= HOST_BITS_PER_WIDE_INT
10526 && (nonzero_bits (XEXP (op0, 0), mode)
10527 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10528 && (((unsigned HOST_WIDE_INT) const_op
10529 + (GET_CODE (op0) != LSHIFTRT
10530 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10531 + 1)
10532 : 0))
10533 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10535 /* If the shift was logical, then we must make the condition
10536 unsigned. */
10537 if (GET_CODE (op0) == LSHIFTRT)
10538 code = unsigned_condition (code);
10540 const_op <<= INTVAL (XEXP (op0, 1));
10541 op1 = GEN_INT (const_op);
10542 op0 = XEXP (op0, 0);
10543 continue;
10546 /* If we are using this shift to extract just the sign bit, we
10547 can replace this with an LT or GE comparison. */
10548 if (const_op == 0
10549 && (equality_comparison_p || sign_bit_comparison_p)
10550 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10551 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10552 == mode_width - 1)
10554 op0 = XEXP (op0, 0);
10555 code = (code == NE || code == GT ? LT : GE);
10556 continue;
10558 break;
10560 default:
10561 break;
10564 break;
10567 /* Now make any compound operations involved in this comparison. Then,
10568 check for an outmost SUBREG on OP0 that is not doing anything or is
10569 paradoxical. The latter transformation must only be performed when
10570 it is known that the "extra" bits will be the same in op0 and op1 or
10571 that they don't matter. There are three cases to consider:
10573 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10574 care bits and we can assume they have any convenient value. So
10575 making the transformation is safe.
10577 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10578 In this case the upper bits of op0 are undefined. We should not make
10579 the simplification in that case as we do not know the contents of
10580 those bits.
10582 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10583 UNKNOWN. In that case we know those bits are zeros or ones. We must
10584 also be sure that they are the same as the upper bits of op1.
10586 We can never remove a SUBREG for a non-equality comparison because
10587 the sign bit is in a different place in the underlying object. */
10589 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10590 op1 = make_compound_operation (op1, SET);
10592 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10593 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10594 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10595 && (code == NE || code == EQ))
10597 if (GET_MODE_SIZE (GET_MODE (op0))
10598 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10600 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10601 implemented. */
10602 if (REG_P (SUBREG_REG (op0)))
10604 op0 = SUBREG_REG (op0);
10605 op1 = gen_lowpart (GET_MODE (op0), op1);
10608 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10609 <= HOST_BITS_PER_WIDE_INT)
10610 && (nonzero_bits (SUBREG_REG (op0),
10611 GET_MODE (SUBREG_REG (op0)))
10612 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10614 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10616 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10617 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10618 op0 = SUBREG_REG (op0), op1 = tem;
10622 /* We now do the opposite procedure: Some machines don't have compare
10623 insns in all modes. If OP0's mode is an integer mode smaller than a
10624 word and we can't do a compare in that mode, see if there is a larger
10625 mode for which we can do the compare. There are a number of cases in
10626 which we can use the wider mode. */
10628 mode = GET_MODE (op0);
10629 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10630 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10631 && ! have_insn_for (COMPARE, mode))
10632 for (tmode = GET_MODE_WIDER_MODE (mode);
10633 (tmode != VOIDmode
10634 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10635 tmode = GET_MODE_WIDER_MODE (tmode))
10636 if (have_insn_for (COMPARE, tmode))
10638 int zero_extended;
10640 /* If the only nonzero bits in OP0 and OP1 are those in the
10641 narrower mode and this is an equality or unsigned comparison,
10642 we can use the wider mode. Similarly for sign-extended
10643 values, in which case it is true for all comparisons. */
10644 zero_extended = ((code == EQ || code == NE
10645 || code == GEU || code == GTU
10646 || code == LEU || code == LTU)
10647 && (nonzero_bits (op0, tmode)
10648 & ~GET_MODE_MASK (mode)) == 0
10649 && ((GET_CODE (op1) == CONST_INT
10650 || (nonzero_bits (op1, tmode)
10651 & ~GET_MODE_MASK (mode)) == 0)));
10653 if (zero_extended
10654 || ((num_sign_bit_copies (op0, tmode)
10655 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10656 - GET_MODE_BITSIZE (mode)))
10657 && (num_sign_bit_copies (op1, tmode)
10658 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10659 - GET_MODE_BITSIZE (mode)))))
10661 /* If OP0 is an AND and we don't have an AND in MODE either,
10662 make a new AND in the proper mode. */
10663 if (GET_CODE (op0) == AND
10664 && !have_insn_for (AND, mode))
10665 op0 = simplify_gen_binary (AND, tmode,
10666 gen_lowpart (tmode,
10667 XEXP (op0, 0)),
10668 gen_lowpart (tmode,
10669 XEXP (op0, 1)));
10671 op0 = gen_lowpart (tmode, op0);
10672 if (zero_extended && GET_CODE (op1) == CONST_INT)
10673 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10674 op1 = gen_lowpart (tmode, op1);
10675 break;
10678 /* If this is a test for negative, we can make an explicit
10679 test of the sign bit. */
10681 if (op1 == const0_rtx && (code == LT || code == GE)
10682 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10684 op0 = simplify_gen_binary (AND, tmode,
10685 gen_lowpart (tmode, op0),
10686 GEN_INT ((HOST_WIDE_INT) 1
10687 << (GET_MODE_BITSIZE (mode)
10688 - 1)));
10689 code = (code == LT) ? NE : EQ;
10690 break;
10694 #ifdef CANONICALIZE_COMPARISON
10695 /* If this machine only supports a subset of valid comparisons, see if we
10696 can convert an unsupported one into a supported one. */
10697 CANONICALIZE_COMPARISON (code, op0, op1);
10698 #endif
10700 *pop0 = op0;
10701 *pop1 = op1;
10703 return code;
10706 /* Utility function for record_value_for_reg. Count number of
10707 rtxs in X. */
10708 static int
10709 count_rtxs (rtx x)
10711 enum rtx_code code = GET_CODE (x);
10712 const char *fmt;
10713 int i, ret = 1;
10715 if (GET_RTX_CLASS (code) == '2'
10716 || GET_RTX_CLASS (code) == 'c')
10718 rtx x0 = XEXP (x, 0);
10719 rtx x1 = XEXP (x, 1);
10721 if (x0 == x1)
10722 return 1 + 2 * count_rtxs (x0);
10724 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10725 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10726 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10727 return 2 + 2 * count_rtxs (x0)
10728 + count_rtxs (x == XEXP (x1, 0)
10729 ? XEXP (x1, 1) : XEXP (x1, 0));
10731 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10732 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10733 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10734 return 2 + 2 * count_rtxs (x1)
10735 + count_rtxs (x == XEXP (x0, 0)
10736 ? XEXP (x0, 1) : XEXP (x0, 0));
10739 fmt = GET_RTX_FORMAT (code);
10740 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10741 if (fmt[i] == 'e')
10742 ret += count_rtxs (XEXP (x, i));
10744 return ret;
10747 /* Utility function for following routine. Called when X is part of a value
10748 being stored into last_set_value. Sets last_set_table_tick
10749 for each register mentioned. Similar to mention_regs in cse.c */
10751 static void
10752 update_table_tick (rtx x)
10754 enum rtx_code code = GET_CODE (x);
10755 const char *fmt = GET_RTX_FORMAT (code);
10756 int i;
10758 if (code == REG)
10760 unsigned int regno = REGNO (x);
10761 unsigned int endregno
10762 = regno + (regno < FIRST_PSEUDO_REGISTER
10763 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10764 unsigned int r;
10766 for (r = regno; r < endregno; r++)
10767 reg_stat[r].last_set_table_tick = label_tick;
10769 return;
10772 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10773 /* Note that we can't have an "E" in values stored; see
10774 get_last_value_validate. */
10775 if (fmt[i] == 'e')
10777 /* Check for identical subexpressions. If x contains
10778 identical subexpression we only have to traverse one of
10779 them. */
10780 if (i == 0 && ARITHMETIC_P (x))
10782 /* Note that at this point x1 has already been
10783 processed. */
10784 rtx x0 = XEXP (x, 0);
10785 rtx x1 = XEXP (x, 1);
10787 /* If x0 and x1 are identical then there is no need to
10788 process x0. */
10789 if (x0 == x1)
10790 break;
10792 /* If x0 is identical to a subexpression of x1 then while
10793 processing x1, x0 has already been processed. Thus we
10794 are done with x. */
10795 if (ARITHMETIC_P (x1)
10796 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10797 break;
10799 /* If x1 is identical to a subexpression of x0 then we
10800 still have to process the rest of x0. */
10801 if (ARITHMETIC_P (x0)
10802 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10804 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10805 break;
10809 update_table_tick (XEXP (x, i));
10813 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10814 are saying that the register is clobbered and we no longer know its
10815 value. If INSN is zero, don't update reg_stat[].last_set; this is
10816 only permitted with VALUE also zero and is used to invalidate the
10817 register. */
10819 static void
10820 record_value_for_reg (rtx reg, rtx insn, rtx value)
10822 unsigned int regno = REGNO (reg);
10823 unsigned int endregno
10824 = regno + (regno < FIRST_PSEUDO_REGISTER
10825 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10826 unsigned int i;
10828 /* If VALUE contains REG and we have a previous value for REG, substitute
10829 the previous value. */
10830 if (value && insn && reg_overlap_mentioned_p (reg, value))
10832 rtx tem;
10834 /* Set things up so get_last_value is allowed to see anything set up to
10835 our insn. */
10836 subst_low_cuid = INSN_CUID (insn);
10837 tem = get_last_value (reg);
10839 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10840 it isn't going to be useful and will take a lot of time to process,
10841 so just use the CLOBBER. */
10843 if (tem)
10845 if (ARITHMETIC_P (tem)
10846 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10847 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10848 tem = XEXP (tem, 0);
10849 else if (count_occurrences (value, reg, 1) >= 2)
10851 /* If there are two or more occurrences of REG in VALUE,
10852 prevent the value from growing too much. */
10853 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10854 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10857 value = replace_rtx (copy_rtx (value), reg, tem);
10861 /* For each register modified, show we don't know its value, that
10862 we don't know about its bitwise content, that its value has been
10863 updated, and that we don't know the location of the death of the
10864 register. */
10865 for (i = regno; i < endregno; i++)
10867 if (insn)
10868 reg_stat[i].last_set = insn;
10870 reg_stat[i].last_set_value = 0;
10871 reg_stat[i].last_set_mode = 0;
10872 reg_stat[i].last_set_nonzero_bits = 0;
10873 reg_stat[i].last_set_sign_bit_copies = 0;
10874 reg_stat[i].last_death = 0;
10875 reg_stat[i].truncated_to_mode = 0;
10878 /* Mark registers that are being referenced in this value. */
10879 if (value)
10880 update_table_tick (value);
10882 /* Now update the status of each register being set.
10883 If someone is using this register in this block, set this register
10884 to invalid since we will get confused between the two lives in this
10885 basic block. This makes using this register always invalid. In cse, we
10886 scan the table to invalidate all entries using this register, but this
10887 is too much work for us. */
10889 for (i = regno; i < endregno; i++)
10891 reg_stat[i].last_set_label = label_tick;
10892 if (!insn || (value && reg_stat[i].last_set_table_tick == label_tick))
10893 reg_stat[i].last_set_invalid = 1;
10894 else
10895 reg_stat[i].last_set_invalid = 0;
10898 /* The value being assigned might refer to X (like in "x++;"). In that
10899 case, we must replace it with (clobber (const_int 0)) to prevent
10900 infinite loops. */
10901 if (value && ! get_last_value_validate (&value, insn,
10902 reg_stat[regno].last_set_label, 0))
10904 value = copy_rtx (value);
10905 if (! get_last_value_validate (&value, insn,
10906 reg_stat[regno].last_set_label, 1))
10907 value = 0;
10910 /* For the main register being modified, update the value, the mode, the
10911 nonzero bits, and the number of sign bit copies. */
10913 reg_stat[regno].last_set_value = value;
10915 if (value)
10917 enum machine_mode mode = GET_MODE (reg);
10918 subst_low_cuid = INSN_CUID (insn);
10919 reg_stat[regno].last_set_mode = mode;
10920 if (GET_MODE_CLASS (mode) == MODE_INT
10921 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10922 mode = nonzero_bits_mode;
10923 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10924 reg_stat[regno].last_set_sign_bit_copies
10925 = num_sign_bit_copies (value, GET_MODE (reg));
10929 /* Called via note_stores from record_dead_and_set_regs to handle one
10930 SET or CLOBBER in an insn. DATA is the instruction in which the
10931 set is occurring. */
10933 static void
10934 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10936 rtx record_dead_insn = (rtx) data;
10938 if (GET_CODE (dest) == SUBREG)
10939 dest = SUBREG_REG (dest);
10941 if (!record_dead_insn)
10943 if (REG_P (dest))
10944 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
10945 return;
10948 if (REG_P (dest))
10950 /* If we are setting the whole register, we know its value. Otherwise
10951 show that we don't know the value. We can handle SUBREG in
10952 some cases. */
10953 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10954 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10955 else if (GET_CODE (setter) == SET
10956 && GET_CODE (SET_DEST (setter)) == SUBREG
10957 && SUBREG_REG (SET_DEST (setter)) == dest
10958 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10959 && subreg_lowpart_p (SET_DEST (setter)))
10960 record_value_for_reg (dest, record_dead_insn,
10961 gen_lowpart (GET_MODE (dest),
10962 SET_SRC (setter)));
10963 else
10964 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10966 else if (MEM_P (dest)
10967 /* Ignore pushes, they clobber nothing. */
10968 && ! push_operand (dest, GET_MODE (dest)))
10969 mem_last_set = INSN_CUID (record_dead_insn);
10972 /* Update the records of when each REG was most recently set or killed
10973 for the things done by INSN. This is the last thing done in processing
10974 INSN in the combiner loop.
10976 We update reg_stat[], in particular fields last_set, last_set_value,
10977 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10978 last_death, and also the similar information mem_last_set (which insn
10979 most recently modified memory) and last_call_cuid (which insn was the
10980 most recent subroutine call). */
10982 static void
10983 record_dead_and_set_regs (rtx insn)
10985 rtx link;
10986 unsigned int i;
10988 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10990 if (REG_NOTE_KIND (link) == REG_DEAD
10991 && REG_P (XEXP (link, 0)))
10993 unsigned int regno = REGNO (XEXP (link, 0));
10994 unsigned int endregno
10995 = regno + (regno < FIRST_PSEUDO_REGISTER
10996 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10997 : 1);
10999 for (i = regno; i < endregno; i++)
11000 reg_stat[i].last_death = insn;
11002 else if (REG_NOTE_KIND (link) == REG_INC)
11003 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11006 if (CALL_P (insn))
11008 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11009 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11011 reg_stat[i].last_set_value = 0;
11012 reg_stat[i].last_set_mode = 0;
11013 reg_stat[i].last_set_nonzero_bits = 0;
11014 reg_stat[i].last_set_sign_bit_copies = 0;
11015 reg_stat[i].last_death = 0;
11016 reg_stat[i].truncated_to_mode = 0;
11019 last_call_cuid = mem_last_set = INSN_CUID (insn);
11021 /* We can't combine into a call pattern. Remember, though, that
11022 the return value register is set at this CUID. We could
11023 still replace a register with the return value from the
11024 wrong subroutine call! */
11025 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11027 else
11028 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11031 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11032 register present in the SUBREG, so for each such SUBREG go back and
11033 adjust nonzero and sign bit information of the registers that are
11034 known to have some zero/sign bits set.
11036 This is needed because when combine blows the SUBREGs away, the
11037 information on zero/sign bits is lost and further combines can be
11038 missed because of that. */
11040 static void
11041 record_promoted_value (rtx insn, rtx subreg)
11043 rtx links, set;
11044 unsigned int regno = REGNO (SUBREG_REG (subreg));
11045 enum machine_mode mode = GET_MODE (subreg);
11047 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11048 return;
11050 for (links = LOG_LINKS (insn); links;)
11052 insn = XEXP (links, 0);
11053 set = single_set (insn);
11055 if (! set || !REG_P (SET_DEST (set))
11056 || REGNO (SET_DEST (set)) != regno
11057 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11059 links = XEXP (links, 1);
11060 continue;
11063 if (reg_stat[regno].last_set == insn)
11065 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11066 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11069 if (REG_P (SET_SRC (set)))
11071 regno = REGNO (SET_SRC (set));
11072 links = LOG_LINKS (insn);
11074 else
11075 break;
11079 /* Check if X, a register, is known to contain a value already
11080 truncated to MODE. In this case we can use a subreg to refer to
11081 the truncated value even though in the generic case we would need
11082 an explicit truncation. */
11084 static bool
11085 reg_truncated_to_mode (enum machine_mode mode, rtx x)
11087 enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
11089 if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
11090 return false;
11091 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11092 return true;
11093 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11094 GET_MODE_BITSIZE (truncated)))
11095 return true;
11096 return false;
11099 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11100 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11101 a truncate into a subreg using this information. */
11103 static void
11104 record_truncated_value (rtx x)
11106 enum machine_mode truncated_mode;
11108 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11110 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11111 truncated_mode = GET_MODE (x);
11113 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11114 return;
11116 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11117 GET_MODE_BITSIZE (original_mode)))
11118 return;
11120 x = SUBREG_REG (x);
11122 /* ??? For hard-regs we now record everything. We might be able to
11123 optimize this using last_set_mode. */
11124 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11125 truncated_mode = GET_MODE (x);
11126 else
11127 return;
11129 if (reg_stat[REGNO (x)].truncated_to_mode == 0
11130 || reg_stat[REGNO (x)].truncation_label < label_tick
11131 || (GET_MODE_SIZE (truncated_mode)
11132 < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
11134 reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
11135 reg_stat[REGNO (x)].truncation_label = label_tick;
11139 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11140 found, note what it implies to the registers used in it. */
11142 static void
11143 check_conversions (rtx insn, rtx x)
11145 if (GET_CODE (x) == SUBREG || REG_P (x))
11147 if (GET_CODE (x) == SUBREG
11148 && SUBREG_PROMOTED_VAR_P (x)
11149 && REG_P (SUBREG_REG (x)))
11150 record_promoted_value (insn, x);
11152 record_truncated_value (x);
11154 else
11156 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11157 int i, j;
11159 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11160 switch (format[i])
11162 case 'e':
11163 check_conversions (insn, XEXP (x, i));
11164 break;
11165 case 'V':
11166 case 'E':
11167 if (XVEC (x, i) != 0)
11168 for (j = 0; j < XVECLEN (x, i); j++)
11169 check_conversions (insn, XVECEXP (x, i, j));
11170 break;
11175 /* Utility routine for the following function. Verify that all the registers
11176 mentioned in *LOC are valid when *LOC was part of a value set when
11177 label_tick == TICK. Return 0 if some are not.
11179 If REPLACE is nonzero, replace the invalid reference with
11180 (clobber (const_int 0)) and return 1. This replacement is useful because
11181 we often can get useful information about the form of a value (e.g., if
11182 it was produced by a shift that always produces -1 or 0) even though
11183 we don't know exactly what registers it was produced from. */
11185 static int
11186 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11188 rtx x = *loc;
11189 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11190 int len = GET_RTX_LENGTH (GET_CODE (x));
11191 int i;
11193 if (REG_P (x))
11195 unsigned int regno = REGNO (x);
11196 unsigned int endregno
11197 = regno + (regno < FIRST_PSEUDO_REGISTER
11198 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11199 unsigned int j;
11201 for (j = regno; j < endregno; j++)
11202 if (reg_stat[j].last_set_invalid
11203 /* If this is a pseudo-register that was only set once and not
11204 live at the beginning of the function, it is always valid. */
11205 || (! (regno >= FIRST_PSEUDO_REGISTER
11206 && REG_N_SETS (regno) == 1
11207 && (! REGNO_REG_SET_P
11208 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11209 regno)))
11210 && reg_stat[j].last_set_label > tick))
11212 if (replace)
11213 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11214 return replace;
11217 return 1;
11219 /* If this is a memory reference, make sure that there were
11220 no stores after it that might have clobbered the value. We don't
11221 have alias info, so we assume any store invalidates it. */
11222 else if (MEM_P (x) && !MEM_READONLY_P (x)
11223 && INSN_CUID (insn) <= mem_last_set)
11225 if (replace)
11226 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11227 return replace;
11230 for (i = 0; i < len; i++)
11232 if (fmt[i] == 'e')
11234 /* Check for identical subexpressions. If x contains
11235 identical subexpression we only have to traverse one of
11236 them. */
11237 if (i == 1 && ARITHMETIC_P (x))
11239 /* Note that at this point x0 has already been checked
11240 and found valid. */
11241 rtx x0 = XEXP (x, 0);
11242 rtx x1 = XEXP (x, 1);
11244 /* If x0 and x1 are identical then x is also valid. */
11245 if (x0 == x1)
11246 return 1;
11248 /* If x1 is identical to a subexpression of x0 then
11249 while checking x0, x1 has already been checked. Thus
11250 it is valid and so as x. */
11251 if (ARITHMETIC_P (x0)
11252 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11253 return 1;
11255 /* If x0 is identical to a subexpression of x1 then x is
11256 valid iff the rest of x1 is valid. */
11257 if (ARITHMETIC_P (x1)
11258 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11259 return
11260 get_last_value_validate (&XEXP (x1,
11261 x0 == XEXP (x1, 0) ? 1 : 0),
11262 insn, tick, replace);
11265 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11266 replace) == 0)
11267 return 0;
11269 /* Don't bother with these. They shouldn't occur anyway. */
11270 else if (fmt[i] == 'E')
11271 return 0;
11274 /* If we haven't found a reason for it to be invalid, it is valid. */
11275 return 1;
11278 /* Get the last value assigned to X, if known. Some registers
11279 in the value may be replaced with (clobber (const_int 0)) if their value
11280 is known longer known reliably. */
11282 static rtx
11283 get_last_value (rtx x)
11285 unsigned int regno;
11286 rtx value;
11288 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11289 then convert it to the desired mode. If this is a paradoxical SUBREG,
11290 we cannot predict what values the "extra" bits might have. */
11291 if (GET_CODE (x) == SUBREG
11292 && subreg_lowpart_p (x)
11293 && (GET_MODE_SIZE (GET_MODE (x))
11294 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11295 && (value = get_last_value (SUBREG_REG (x))) != 0)
11296 return gen_lowpart (GET_MODE (x), value);
11298 if (!REG_P (x))
11299 return 0;
11301 regno = REGNO (x);
11302 value = reg_stat[regno].last_set_value;
11304 /* If we don't have a value, or if it isn't for this basic block and
11305 it's either a hard register, set more than once, or it's a live
11306 at the beginning of the function, return 0.
11308 Because if it's not live at the beginning of the function then the reg
11309 is always set before being used (is never used without being set).
11310 And, if it's set only once, and it's always set before use, then all
11311 uses must have the same last value, even if it's not from this basic
11312 block. */
11314 if (value == 0
11315 || (reg_stat[regno].last_set_label != label_tick
11316 && (regno < FIRST_PSEUDO_REGISTER
11317 || REG_N_SETS (regno) != 1
11318 || (REGNO_REG_SET_P
11319 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11320 regno)))))
11321 return 0;
11323 /* If the value was set in a later insn than the ones we are processing,
11324 we can't use it even if the register was only set once. */
11325 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11326 return 0;
11328 /* If the value has all its registers valid, return it. */
11329 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11330 reg_stat[regno].last_set_label, 0))
11331 return value;
11333 /* Otherwise, make a copy and replace any invalid register with
11334 (clobber (const_int 0)). If that fails for some reason, return 0. */
11336 value = copy_rtx (value);
11337 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11338 reg_stat[regno].last_set_label, 1))
11339 return value;
11341 return 0;
11344 /* Return nonzero if expression X refers to a REG or to memory
11345 that is set in an instruction more recent than FROM_CUID. */
11347 static int
11348 use_crosses_set_p (rtx x, int from_cuid)
11350 const char *fmt;
11351 int i;
11352 enum rtx_code code = GET_CODE (x);
11354 if (code == REG)
11356 unsigned int regno = REGNO (x);
11357 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11358 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11360 #ifdef PUSH_ROUNDING
11361 /* Don't allow uses of the stack pointer to be moved,
11362 because we don't know whether the move crosses a push insn. */
11363 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11364 return 1;
11365 #endif
11366 for (; regno < endreg; regno++)
11367 if (reg_stat[regno].last_set
11368 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11369 return 1;
11370 return 0;
11373 if (code == MEM && mem_last_set > from_cuid)
11374 return 1;
11376 fmt = GET_RTX_FORMAT (code);
11378 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11380 if (fmt[i] == 'E')
11382 int j;
11383 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11384 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11385 return 1;
11387 else if (fmt[i] == 'e'
11388 && use_crosses_set_p (XEXP (x, i), from_cuid))
11389 return 1;
11391 return 0;
11394 /* Define three variables used for communication between the following
11395 routines. */
11397 static unsigned int reg_dead_regno, reg_dead_endregno;
11398 static int reg_dead_flag;
11400 /* Function called via note_stores from reg_dead_at_p.
11402 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11403 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11405 static void
11406 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11408 unsigned int regno, endregno;
11410 if (!REG_P (dest))
11411 return;
11413 regno = REGNO (dest);
11414 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11415 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11417 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11418 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11421 /* Return nonzero if REG is known to be dead at INSN.
11423 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11424 referencing REG, it is dead. If we hit a SET referencing REG, it is
11425 live. Otherwise, see if it is live or dead at the start of the basic
11426 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11427 must be assumed to be always live. */
11429 static int
11430 reg_dead_at_p (rtx reg, rtx insn)
11432 basic_block block;
11433 unsigned int i;
11435 /* Set variables for reg_dead_at_p_1. */
11436 reg_dead_regno = REGNO (reg);
11437 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11438 ? hard_regno_nregs[reg_dead_regno]
11439 [GET_MODE (reg)]
11440 : 1);
11442 reg_dead_flag = 0;
11444 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11445 we allow the machine description to decide whether use-and-clobber
11446 patterns are OK. */
11447 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11449 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11450 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11451 return 0;
11454 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11455 beginning of function. */
11456 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11457 insn = prev_nonnote_insn (insn))
11459 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11460 if (reg_dead_flag)
11461 return reg_dead_flag == 1 ? 1 : 0;
11463 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11464 return 1;
11467 /* Get the basic block that we were in. */
11468 if (insn == 0)
11469 block = ENTRY_BLOCK_PTR->next_bb;
11470 else
11472 FOR_EACH_BB (block)
11473 if (insn == BB_HEAD (block))
11474 break;
11476 if (block == EXIT_BLOCK_PTR)
11477 return 0;
11480 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11481 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11482 return 0;
11484 return 1;
11487 /* Note hard registers in X that are used. This code is similar to
11488 that in flow.c, but much simpler since we don't care about pseudos. */
11490 static void
11491 mark_used_regs_combine (rtx x)
11493 RTX_CODE code = GET_CODE (x);
11494 unsigned int regno;
11495 int i;
11497 switch (code)
11499 case LABEL_REF:
11500 case SYMBOL_REF:
11501 case CONST_INT:
11502 case CONST:
11503 case CONST_DOUBLE:
11504 case CONST_VECTOR:
11505 case PC:
11506 case ADDR_VEC:
11507 case ADDR_DIFF_VEC:
11508 case ASM_INPUT:
11509 #ifdef HAVE_cc0
11510 /* CC0 must die in the insn after it is set, so we don't need to take
11511 special note of it here. */
11512 case CC0:
11513 #endif
11514 return;
11516 case CLOBBER:
11517 /* If we are clobbering a MEM, mark any hard registers inside the
11518 address as used. */
11519 if (MEM_P (XEXP (x, 0)))
11520 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11521 return;
11523 case REG:
11524 regno = REGNO (x);
11525 /* A hard reg in a wide mode may really be multiple registers.
11526 If so, mark all of them just like the first. */
11527 if (regno < FIRST_PSEUDO_REGISTER)
11529 unsigned int endregno, r;
11531 /* None of this applies to the stack, frame or arg pointers. */
11532 if (regno == STACK_POINTER_REGNUM
11533 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11534 || regno == HARD_FRAME_POINTER_REGNUM
11535 #endif
11536 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11537 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11538 #endif
11539 || regno == FRAME_POINTER_REGNUM)
11540 return;
11542 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11543 for (r = regno; r < endregno; r++)
11544 SET_HARD_REG_BIT (newpat_used_regs, r);
11546 return;
11548 case SET:
11550 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11551 the address. */
11552 rtx testreg = SET_DEST (x);
11554 while (GET_CODE (testreg) == SUBREG
11555 || GET_CODE (testreg) == ZERO_EXTRACT
11556 || GET_CODE (testreg) == STRICT_LOW_PART)
11557 testreg = XEXP (testreg, 0);
11559 if (MEM_P (testreg))
11560 mark_used_regs_combine (XEXP (testreg, 0));
11562 mark_used_regs_combine (SET_SRC (x));
11564 return;
11566 default:
11567 break;
11570 /* Recursively scan the operands of this expression. */
11573 const char *fmt = GET_RTX_FORMAT (code);
11575 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11577 if (fmt[i] == 'e')
11578 mark_used_regs_combine (XEXP (x, i));
11579 else if (fmt[i] == 'E')
11581 int j;
11583 for (j = 0; j < XVECLEN (x, i); j++)
11584 mark_used_regs_combine (XVECEXP (x, i, j));
11590 /* Remove register number REGNO from the dead registers list of INSN.
11592 Return the note used to record the death, if there was one. */
11595 remove_death (unsigned int regno, rtx insn)
11597 rtx note = find_regno_note (insn, REG_DEAD, regno);
11599 if (note)
11601 REG_N_DEATHS (regno)--;
11602 remove_note (insn, note);
11605 return note;
11608 /* For each register (hardware or pseudo) used within expression X, if its
11609 death is in an instruction with cuid between FROM_CUID (inclusive) and
11610 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11611 list headed by PNOTES.
11613 That said, don't move registers killed by maybe_kill_insn.
11615 This is done when X is being merged by combination into TO_INSN. These
11616 notes will then be distributed as needed. */
11618 static void
11619 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11620 rtx *pnotes)
11622 const char *fmt;
11623 int len, i;
11624 enum rtx_code code = GET_CODE (x);
11626 if (code == REG)
11628 unsigned int regno = REGNO (x);
11629 rtx where_dead = reg_stat[regno].last_death;
11630 rtx before_dead, after_dead;
11632 /* Don't move the register if it gets killed in between from and to. */
11633 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11634 && ! reg_referenced_p (x, maybe_kill_insn))
11635 return;
11637 /* WHERE_DEAD could be a USE insn made by combine, so first we
11638 make sure that we have insns with valid INSN_CUID values. */
11639 before_dead = where_dead;
11640 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11641 before_dead = PREV_INSN (before_dead);
11643 after_dead = where_dead;
11644 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11645 after_dead = NEXT_INSN (after_dead);
11647 if (before_dead && after_dead
11648 && INSN_CUID (before_dead) >= from_cuid
11649 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11650 || (where_dead != after_dead
11651 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11653 rtx note = remove_death (regno, where_dead);
11655 /* It is possible for the call above to return 0. This can occur
11656 when last_death points to I2 or I1 that we combined with.
11657 In that case make a new note.
11659 We must also check for the case where X is a hard register
11660 and NOTE is a death note for a range of hard registers
11661 including X. In that case, we must put REG_DEAD notes for
11662 the remaining registers in place of NOTE. */
11664 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11665 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11666 > GET_MODE_SIZE (GET_MODE (x))))
11668 unsigned int deadregno = REGNO (XEXP (note, 0));
11669 unsigned int deadend
11670 = (deadregno + hard_regno_nregs[deadregno]
11671 [GET_MODE (XEXP (note, 0))]);
11672 unsigned int ourend
11673 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11674 unsigned int i;
11676 for (i = deadregno; i < deadend; i++)
11677 if (i < regno || i >= ourend)
11678 REG_NOTES (where_dead)
11679 = gen_rtx_EXPR_LIST (REG_DEAD,
11680 regno_reg_rtx[i],
11681 REG_NOTES (where_dead));
11684 /* If we didn't find any note, or if we found a REG_DEAD note that
11685 covers only part of the given reg, and we have a multi-reg hard
11686 register, then to be safe we must check for REG_DEAD notes
11687 for each register other than the first. They could have
11688 their own REG_DEAD notes lying around. */
11689 else if ((note == 0
11690 || (note != 0
11691 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11692 < GET_MODE_SIZE (GET_MODE (x)))))
11693 && regno < FIRST_PSEUDO_REGISTER
11694 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11696 unsigned int ourend
11697 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11698 unsigned int i, offset;
11699 rtx oldnotes = 0;
11701 if (note)
11702 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11703 else
11704 offset = 1;
11706 for (i = regno + offset; i < ourend; i++)
11707 move_deaths (regno_reg_rtx[i],
11708 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11711 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11713 XEXP (note, 1) = *pnotes;
11714 *pnotes = note;
11716 else
11717 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11719 REG_N_DEATHS (regno)++;
11722 return;
11725 else if (GET_CODE (x) == SET)
11727 rtx dest = SET_DEST (x);
11729 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11731 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11732 that accesses one word of a multi-word item, some
11733 piece of everything register in the expression is used by
11734 this insn, so remove any old death. */
11735 /* ??? So why do we test for equality of the sizes? */
11737 if (GET_CODE (dest) == ZERO_EXTRACT
11738 || GET_CODE (dest) == STRICT_LOW_PART
11739 || (GET_CODE (dest) == SUBREG
11740 && (((GET_MODE_SIZE (GET_MODE (dest))
11741 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11742 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11743 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11745 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11746 return;
11749 /* If this is some other SUBREG, we know it replaces the entire
11750 value, so use that as the destination. */
11751 if (GET_CODE (dest) == SUBREG)
11752 dest = SUBREG_REG (dest);
11754 /* If this is a MEM, adjust deaths of anything used in the address.
11755 For a REG (the only other possibility), the entire value is
11756 being replaced so the old value is not used in this insn. */
11758 if (MEM_P (dest))
11759 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11760 to_insn, pnotes);
11761 return;
11764 else if (GET_CODE (x) == CLOBBER)
11765 return;
11767 len = GET_RTX_LENGTH (code);
11768 fmt = GET_RTX_FORMAT (code);
11770 for (i = 0; i < len; i++)
11772 if (fmt[i] == 'E')
11774 int j;
11775 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11776 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11777 to_insn, pnotes);
11779 else if (fmt[i] == 'e')
11780 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11784 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11785 pattern of an insn. X must be a REG. */
11787 static int
11788 reg_bitfield_target_p (rtx x, rtx body)
11790 int i;
11792 if (GET_CODE (body) == SET)
11794 rtx dest = SET_DEST (body);
11795 rtx target;
11796 unsigned int regno, tregno, endregno, endtregno;
11798 if (GET_CODE (dest) == ZERO_EXTRACT)
11799 target = XEXP (dest, 0);
11800 else if (GET_CODE (dest) == STRICT_LOW_PART)
11801 target = SUBREG_REG (XEXP (dest, 0));
11802 else
11803 return 0;
11805 if (GET_CODE (target) == SUBREG)
11806 target = SUBREG_REG (target);
11808 if (!REG_P (target))
11809 return 0;
11811 tregno = REGNO (target), regno = REGNO (x);
11812 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11813 return target == x;
11815 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11816 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11818 return endregno > tregno && regno < endtregno;
11821 else if (GET_CODE (body) == PARALLEL)
11822 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11823 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11824 return 1;
11826 return 0;
11829 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11830 as appropriate. I3 and I2 are the insns resulting from the combination
11831 insns including FROM (I2 may be zero).
11833 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11834 not need REG_DEAD notes because they are being substituted for. This
11835 saves searching in the most common cases.
11837 Each note in the list is either ignored or placed on some insns, depending
11838 on the type of note. */
11840 static void
11841 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11842 rtx elim_i1)
11844 rtx note, next_note;
11845 rtx tem;
11847 for (note = notes; note; note = next_note)
11849 rtx place = 0, place2 = 0;
11851 next_note = XEXP (note, 1);
11852 switch (REG_NOTE_KIND (note))
11854 case REG_BR_PROB:
11855 case REG_BR_PRED:
11856 /* Doesn't matter much where we put this, as long as it's somewhere.
11857 It is preferable to keep these notes on branches, which is most
11858 likely to be i3. */
11859 place = i3;
11860 break;
11862 case REG_VALUE_PROFILE:
11863 /* Just get rid of this note, as it is unused later anyway. */
11864 break;
11866 case REG_NON_LOCAL_GOTO:
11867 if (JUMP_P (i3))
11868 place = i3;
11869 else
11871 gcc_assert (i2 && JUMP_P (i2));
11872 place = i2;
11874 break;
11876 case REG_EH_REGION:
11877 /* These notes must remain with the call or trapping instruction. */
11878 if (CALL_P (i3))
11879 place = i3;
11880 else if (i2 && CALL_P (i2))
11881 place = i2;
11882 else
11884 gcc_assert (flag_non_call_exceptions);
11885 if (may_trap_p (i3))
11886 place = i3;
11887 else if (i2 && may_trap_p (i2))
11888 place = i2;
11889 /* ??? Otherwise assume we've combined things such that we
11890 can now prove that the instructions can't trap. Drop the
11891 note in this case. */
11893 break;
11895 case REG_NORETURN:
11896 case REG_SETJMP:
11897 /* These notes must remain with the call. It should not be
11898 possible for both I2 and I3 to be a call. */
11899 if (CALL_P (i3))
11900 place = i3;
11901 else
11903 gcc_assert (i2 && CALL_P (i2));
11904 place = i2;
11906 break;
11908 case REG_UNUSED:
11909 /* Any clobbers for i3 may still exist, and so we must process
11910 REG_UNUSED notes from that insn.
11912 Any clobbers from i2 or i1 can only exist if they were added by
11913 recog_for_combine. In that case, recog_for_combine created the
11914 necessary REG_UNUSED notes. Trying to keep any original
11915 REG_UNUSED notes from these insns can cause incorrect output
11916 if it is for the same register as the original i3 dest.
11917 In that case, we will notice that the register is set in i3,
11918 and then add a REG_UNUSED note for the destination of i3, which
11919 is wrong. However, it is possible to have REG_UNUSED notes from
11920 i2 or i1 for register which were both used and clobbered, so
11921 we keep notes from i2 or i1 if they will turn into REG_DEAD
11922 notes. */
11924 /* If this register is set or clobbered in I3, put the note there
11925 unless there is one already. */
11926 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11928 if (from_insn != i3)
11929 break;
11931 if (! (REG_P (XEXP (note, 0))
11932 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11933 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11934 place = i3;
11936 /* Otherwise, if this register is used by I3, then this register
11937 now dies here, so we must put a REG_DEAD note here unless there
11938 is one already. */
11939 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11940 && ! (REG_P (XEXP (note, 0))
11941 ? find_regno_note (i3, REG_DEAD,
11942 REGNO (XEXP (note, 0)))
11943 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11945 PUT_REG_NOTE_KIND (note, REG_DEAD);
11946 place = i3;
11948 break;
11950 case REG_EQUAL:
11951 case REG_EQUIV:
11952 case REG_NOALIAS:
11953 /* These notes say something about results of an insn. We can
11954 only support them if they used to be on I3 in which case they
11955 remain on I3. Otherwise they are ignored.
11957 If the note refers to an expression that is not a constant, we
11958 must also ignore the note since we cannot tell whether the
11959 equivalence is still true. It might be possible to do
11960 slightly better than this (we only have a problem if I2DEST
11961 or I1DEST is present in the expression), but it doesn't
11962 seem worth the trouble. */
11964 if (from_insn == i3
11965 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11966 place = i3;
11967 break;
11969 case REG_INC:
11970 case REG_NO_CONFLICT:
11971 /* These notes say something about how a register is used. They must
11972 be present on any use of the register in I2 or I3. */
11973 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11974 place = i3;
11976 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11978 if (place)
11979 place2 = i2;
11980 else
11981 place = i2;
11983 break;
11985 case REG_LABEL:
11986 /* This can show up in several ways -- either directly in the
11987 pattern, or hidden off in the constant pool with (or without?)
11988 a REG_EQUAL note. */
11989 /* ??? Ignore the without-reg_equal-note problem for now. */
11990 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11991 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11992 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11993 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11994 place = i3;
11996 if (i2
11997 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11998 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11999 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12000 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12002 if (place)
12003 place2 = i2;
12004 else
12005 place = i2;
12008 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12009 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12010 if (place && JUMP_P (place))
12012 rtx label = JUMP_LABEL (place);
12014 if (!label)
12015 JUMP_LABEL (place) = XEXP (note, 0);
12016 else
12018 gcc_assert (label == XEXP (note, 0));
12019 if (LABEL_P (label))
12020 LABEL_NUSES (label)--;
12022 place = 0;
12024 if (place2 && JUMP_P (place2))
12026 rtx label = JUMP_LABEL (place2);
12028 if (!label)
12029 JUMP_LABEL (place2) = XEXP (note, 0);
12030 else
12032 gcc_assert (label == XEXP (note, 0));
12033 if (LABEL_P (label))
12034 LABEL_NUSES (label)--;
12036 place2 = 0;
12038 break;
12040 case REG_NONNEG:
12041 /* This note says something about the value of a register prior
12042 to the execution of an insn. It is too much trouble to see
12043 if the note is still correct in all situations. It is better
12044 to simply delete it. */
12045 break;
12047 case REG_RETVAL:
12048 /* If the insn previously containing this note still exists,
12049 put it back where it was. Otherwise move it to the previous
12050 insn. Adjust the corresponding REG_LIBCALL note. */
12051 if (!NOTE_P (from_insn))
12052 place = from_insn;
12053 else
12055 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12056 place = prev_real_insn (from_insn);
12057 if (tem && place)
12058 XEXP (tem, 0) = place;
12059 /* If we're deleting the last remaining instruction of a
12060 libcall sequence, don't add the notes. */
12061 else if (XEXP (note, 0) == from_insn)
12062 tem = place = 0;
12063 /* Don't add the dangling REG_RETVAL note. */
12064 else if (! tem)
12065 place = 0;
12067 break;
12069 case REG_LIBCALL:
12070 /* This is handled similarly to REG_RETVAL. */
12071 if (!NOTE_P (from_insn))
12072 place = from_insn;
12073 else
12075 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12076 place = next_real_insn (from_insn);
12077 if (tem && place)
12078 XEXP (tem, 0) = place;
12079 /* If we're deleting the last remaining instruction of a
12080 libcall sequence, don't add the notes. */
12081 else if (XEXP (note, 0) == from_insn)
12082 tem = place = 0;
12083 /* Don't add the dangling REG_LIBCALL note. */
12084 else if (! tem)
12085 place = 0;
12087 break;
12089 case REG_DEAD:
12090 /* If the register is used as an input in I3, it dies there.
12091 Similarly for I2, if it is nonzero and adjacent to I3.
12093 If the register is not used as an input in either I3 or I2
12094 and it is not one of the registers we were supposed to eliminate,
12095 there are two possibilities. We might have a non-adjacent I2
12096 or we might have somehow eliminated an additional register
12097 from a computation. For example, we might have had A & B where
12098 we discover that B will always be zero. In this case we will
12099 eliminate the reference to A.
12101 In both cases, we must search to see if we can find a previous
12102 use of A and put the death note there. */
12104 if (from_insn
12105 && CALL_P (from_insn)
12106 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12107 place = from_insn;
12108 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12109 place = i3;
12110 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12111 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12112 place = i2;
12114 if (place == 0
12115 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12116 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12117 break;
12119 if (place == 0)
12121 basic_block bb = this_basic_block;
12123 /* You might think you could search back from FROM_INSN
12124 rather than from I3, but combine tries to split invalid
12125 combined instructions. This can result in the old I2
12126 or I1 moving later in the insn sequence. */
12127 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12129 if (! INSN_P (tem))
12131 if (tem == BB_HEAD (bb))
12132 break;
12133 continue;
12136 /* If the register is being set at TEM, see if that is all
12137 TEM is doing. If so, delete TEM. Otherwise, make this
12138 into a REG_UNUSED note instead. Don't delete sets to
12139 global register vars. */
12140 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12141 || !global_regs[REGNO (XEXP (note, 0))])
12142 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12144 rtx set = single_set (tem);
12145 rtx inner_dest = 0;
12146 #ifdef HAVE_cc0
12147 rtx cc0_setter = NULL_RTX;
12148 #endif
12150 if (set != 0)
12151 for (inner_dest = SET_DEST (set);
12152 (GET_CODE (inner_dest) == STRICT_LOW_PART
12153 || GET_CODE (inner_dest) == SUBREG
12154 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12155 inner_dest = XEXP (inner_dest, 0))
12158 /* Verify that it was the set, and not a clobber that
12159 modified the register.
12161 CC0 targets must be careful to maintain setter/user
12162 pairs. If we cannot delete the setter due to side
12163 effects, mark the user with an UNUSED note instead
12164 of deleting it. */
12166 if (set != 0 && ! side_effects_p (SET_SRC (set))
12167 && rtx_equal_p (XEXP (note, 0), inner_dest)
12168 #ifdef HAVE_cc0
12169 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12170 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12171 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12172 #endif
12175 /* Move the notes and links of TEM elsewhere.
12176 This might delete other dead insns recursively.
12177 First set the pattern to something that won't use
12178 any register. */
12179 rtx old_notes = REG_NOTES (tem);
12181 PATTERN (tem) = pc_rtx;
12182 REG_NOTES (tem) = NULL;
12184 distribute_notes (old_notes, tem, tem, NULL_RTX,
12185 NULL_RTX, NULL_RTX);
12186 distribute_links (LOG_LINKS (tem));
12188 SET_INSN_DELETED (tem);
12190 #ifdef HAVE_cc0
12191 /* Delete the setter too. */
12192 if (cc0_setter)
12194 PATTERN (cc0_setter) = pc_rtx;
12195 old_notes = REG_NOTES (cc0_setter);
12196 REG_NOTES (cc0_setter) = NULL;
12198 distribute_notes (old_notes, cc0_setter,
12199 cc0_setter, NULL_RTX,
12200 NULL_RTX, NULL_RTX);
12201 distribute_links (LOG_LINKS (cc0_setter));
12203 SET_INSN_DELETED (cc0_setter);
12205 #endif
12207 else
12209 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12211 /* If there isn't already a REG_UNUSED note, put one
12212 here. Do not place a REG_DEAD note, even if
12213 the register is also used here; that would not
12214 match the algorithm used in lifetime analysis
12215 and can cause the consistency check in the
12216 scheduler to fail. */
12217 if (! find_regno_note (tem, REG_UNUSED,
12218 REGNO (XEXP (note, 0))))
12219 place = tem;
12220 break;
12223 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12224 || (CALL_P (tem)
12225 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12227 /* This may not be the correct place for the death
12228 note if FROM_INSN is before TEM, and the reg is
12229 set between FROM_INSN and TEM. The reg might
12230 die two or more times. An existing death note
12231 means we are looking at the wrong live range. */
12232 if (from_insn
12233 && INSN_CUID (from_insn) < INSN_CUID (tem)
12234 && find_regno_note (tem, REG_DEAD,
12235 REGNO (XEXP (note, 0))))
12237 tem = from_insn;
12238 if (tem == BB_HEAD (bb))
12239 break;
12240 continue;
12243 place = tem;
12245 /* If we are doing a 3->2 combination, and we have a
12246 register which formerly died in i3 and was not used
12247 by i2, which now no longer dies in i3 and is used in
12248 i2 but does not die in i2, and place is between i2
12249 and i3, then we may need to move a link from place to
12250 i2. */
12251 if (i2 && INSN_UID (place) <= max_uid_cuid
12252 && INSN_CUID (place) > INSN_CUID (i2)
12253 && from_insn
12254 && INSN_CUID (from_insn) > INSN_CUID (i2)
12255 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12257 rtx links = LOG_LINKS (place);
12258 LOG_LINKS (place) = 0;
12259 distribute_links (links);
12261 break;
12264 if (tem == BB_HEAD (bb))
12265 break;
12268 /* We haven't found an insn for the death note and it
12269 is still a REG_DEAD note, but we have hit the beginning
12270 of the block. If the existing life info says the reg
12271 was dead, there's nothing left to do. Otherwise, we'll
12272 need to do a global life update after combine. */
12273 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12274 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12275 REGNO (XEXP (note, 0))))
12276 SET_BIT (refresh_blocks, this_basic_block->index);
12279 /* If the register is set or already dead at PLACE, we needn't do
12280 anything with this note if it is still a REG_DEAD note.
12281 We check here if it is set at all, not if is it totally replaced,
12282 which is what `dead_or_set_p' checks, so also check for it being
12283 set partially. */
12285 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12287 unsigned int regno = REGNO (XEXP (note, 0));
12289 /* Similarly, if the instruction on which we want to place
12290 the note is a noop, we'll need do a global live update
12291 after we remove them in delete_noop_moves. */
12292 if (noop_move_p (place))
12293 SET_BIT (refresh_blocks, this_basic_block->index);
12295 if (dead_or_set_p (place, XEXP (note, 0))
12296 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12298 /* Unless the register previously died in PLACE, clear
12299 last_death. [I no longer understand why this is
12300 being done.] */
12301 if (reg_stat[regno].last_death != place)
12302 reg_stat[regno].last_death = 0;
12303 place = 0;
12305 else
12306 reg_stat[regno].last_death = place;
12308 /* If this is a death note for a hard reg that is occupying
12309 multiple registers, ensure that we are still using all
12310 parts of the object. If we find a piece of the object
12311 that is unused, we must arrange for an appropriate REG_DEAD
12312 note to be added for it. However, we can't just emit a USE
12313 and tag the note to it, since the register might actually
12314 be dead; so we recourse, and the recursive call then finds
12315 the previous insn that used this register. */
12317 if (place && regno < FIRST_PSEUDO_REGISTER
12318 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12320 unsigned int endregno
12321 = regno + hard_regno_nregs[regno]
12322 [GET_MODE (XEXP (note, 0))];
12323 int all_used = 1;
12324 unsigned int i;
12326 for (i = regno; i < endregno; i++)
12327 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12328 && ! find_regno_fusage (place, USE, i))
12329 || dead_or_set_regno_p (place, i))
12330 all_used = 0;
12332 if (! all_used)
12334 /* Put only REG_DEAD notes for pieces that are
12335 not already dead or set. */
12337 for (i = regno; i < endregno;
12338 i += hard_regno_nregs[i][reg_raw_mode[i]])
12340 rtx piece = regno_reg_rtx[i];
12341 basic_block bb = this_basic_block;
12343 if (! dead_or_set_p (place, piece)
12344 && ! reg_bitfield_target_p (piece,
12345 PATTERN (place)))
12347 rtx new_note
12348 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12350 distribute_notes (new_note, place, place,
12351 NULL_RTX, NULL_RTX, NULL_RTX);
12353 else if (! refers_to_regno_p (i, i + 1,
12354 PATTERN (place), 0)
12355 && ! find_regno_fusage (place, USE, i))
12356 for (tem = PREV_INSN (place); ;
12357 tem = PREV_INSN (tem))
12359 if (! INSN_P (tem))
12361 if (tem == BB_HEAD (bb))
12363 SET_BIT (refresh_blocks,
12364 this_basic_block->index);
12365 break;
12367 continue;
12369 if (dead_or_set_p (tem, piece)
12370 || reg_bitfield_target_p (piece,
12371 PATTERN (tem)))
12373 REG_NOTES (tem)
12374 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12375 REG_NOTES (tem));
12376 break;
12382 place = 0;
12386 break;
12388 default:
12389 /* Any other notes should not be present at this point in the
12390 compilation. */
12391 gcc_unreachable ();
12394 if (place)
12396 XEXP (note, 1) = REG_NOTES (place);
12397 REG_NOTES (place) = note;
12399 else if ((REG_NOTE_KIND (note) == REG_DEAD
12400 || REG_NOTE_KIND (note) == REG_UNUSED)
12401 && REG_P (XEXP (note, 0)))
12402 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12404 if (place2)
12406 if ((REG_NOTE_KIND (note) == REG_DEAD
12407 || REG_NOTE_KIND (note) == REG_UNUSED)
12408 && REG_P (XEXP (note, 0)))
12409 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12411 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12412 REG_NOTE_KIND (note),
12413 XEXP (note, 0),
12414 REG_NOTES (place2));
12419 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12420 I3, I2, and I1 to new locations. This is also called to add a link
12421 pointing at I3 when I3's destination is changed. */
12423 static void
12424 distribute_links (rtx links)
12426 rtx link, next_link;
12428 for (link = links; link; link = next_link)
12430 rtx place = 0;
12431 rtx insn;
12432 rtx set, reg;
12434 next_link = XEXP (link, 1);
12436 /* If the insn that this link points to is a NOTE or isn't a single
12437 set, ignore it. In the latter case, it isn't clear what we
12438 can do other than ignore the link, since we can't tell which
12439 register it was for. Such links wouldn't be used by combine
12440 anyway.
12442 It is not possible for the destination of the target of the link to
12443 have been changed by combine. The only potential of this is if we
12444 replace I3, I2, and I1 by I3 and I2. But in that case the
12445 destination of I2 also remains unchanged. */
12447 if (NOTE_P (XEXP (link, 0))
12448 || (set = single_set (XEXP (link, 0))) == 0)
12449 continue;
12451 reg = SET_DEST (set);
12452 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12453 || GET_CODE (reg) == STRICT_LOW_PART)
12454 reg = XEXP (reg, 0);
12456 /* A LOG_LINK is defined as being placed on the first insn that uses
12457 a register and points to the insn that sets the register. Start
12458 searching at the next insn after the target of the link and stop
12459 when we reach a set of the register or the end of the basic block.
12461 Note that this correctly handles the link that used to point from
12462 I3 to I2. Also note that not much searching is typically done here
12463 since most links don't point very far away. */
12465 for (insn = NEXT_INSN (XEXP (link, 0));
12466 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12467 || BB_HEAD (this_basic_block->next_bb) != insn));
12468 insn = NEXT_INSN (insn))
12469 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12471 if (reg_referenced_p (reg, PATTERN (insn)))
12472 place = insn;
12473 break;
12475 else if (CALL_P (insn)
12476 && find_reg_fusage (insn, USE, reg))
12478 place = insn;
12479 break;
12481 else if (INSN_P (insn) && reg_set_p (reg, insn))
12482 break;
12484 /* If we found a place to put the link, place it there unless there
12485 is already a link to the same insn as LINK at that point. */
12487 if (place)
12489 rtx link2;
12491 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12492 if (XEXP (link2, 0) == XEXP (link, 0))
12493 break;
12495 if (link2 == 0)
12497 XEXP (link, 1) = LOG_LINKS (place);
12498 LOG_LINKS (place) = link;
12500 /* Set added_links_insn to the earliest insn we added a
12501 link to. */
12502 if (added_links_insn == 0
12503 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12504 added_links_insn = place;
12510 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12511 Check whether the expression pointer to by LOC is a register or
12512 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12513 Otherwise return zero. */
12515 static int
12516 unmentioned_reg_p_1 (rtx *loc, void *expr)
12518 rtx x = *loc;
12520 if (x != NULL_RTX
12521 && (REG_P (x) || MEM_P (x))
12522 && ! reg_mentioned_p (x, (rtx) expr))
12523 return 1;
12524 return 0;
12527 /* Check for any register or memory mentioned in EQUIV that is not
12528 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12529 of EXPR where some registers may have been replaced by constants. */
12531 static bool
12532 unmentioned_reg_p (rtx equiv, rtx expr)
12534 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12537 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12539 static int
12540 insn_cuid (rtx insn)
12542 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12543 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12544 insn = NEXT_INSN (insn);
12546 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12548 return INSN_CUID (insn);
12551 void
12552 dump_combine_stats (FILE *file)
12554 fprintf
12555 (file,
12556 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12557 combine_attempts, combine_merges, combine_extras, combine_successes);
12560 void
12561 dump_combine_total_stats (FILE *file)
12563 fprintf
12564 (file,
12565 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12566 total_attempts, total_merges, total_extras, total_successes);
12570 static bool
12571 gate_handle_combine (void)
12573 return (optimize > 0);
12576 /* Try combining insns through substitution. */
12577 static unsigned int
12578 rest_of_handle_combine (void)
12580 int rebuild_jump_labels_after_combine
12581 = combine_instructions (get_insns (), max_reg_num ());
12583 /* Combining insns may have turned an indirect jump into a
12584 direct jump. Rebuild the JUMP_LABEL fields of jumping
12585 instructions. */
12586 if (rebuild_jump_labels_after_combine)
12588 timevar_push (TV_JUMP);
12589 rebuild_jump_labels (get_insns ());
12590 timevar_pop (TV_JUMP);
12592 delete_dead_jumptables ();
12593 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12595 return 0;
12598 struct tree_opt_pass pass_combine =
12600 "combine", /* name */
12601 gate_handle_combine, /* gate */
12602 rest_of_handle_combine, /* execute */
12603 NULL, /* sub */
12604 NULL, /* next */
12605 0, /* static_pass_number */
12606 TV_COMBINE, /* tv_id */
12607 0, /* properties_required */
12608 0, /* properties_provided */
12609 0, /* properties_destroyed */
12610 0, /* todo_flags_start */
12611 TODO_dump_func |
12612 TODO_ggc_collect, /* todo_flags_finish */
12613 'c' /* letter */