gcc/ChangeLog:
[official-gcc.git] / gcc / expr.c
blobb194866313d9d1751cc4d085225f8800cf48b385
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-ssa-live.h"
58 #include "tree-outof-ssa.h"
59 #include "tree-ssa-address.h"
60 #include "builtins.h"
61 #include "tree-chkp.h"
62 #include "rtl-chkp.h"
63 #include "ccmp.h"
66 /* If this is nonzero, we do not bother generating VOLATILE
67 around volatile memory references, and we are willing to
68 output indirect addresses. If cse is to follow, we reject
69 indirect addresses so a useful potential cse is generated;
70 if it is used only once, instruction combination will produce
71 the same indirect address eventually. */
72 int cse_not_expected;
74 static bool block_move_libcall_safe_for_call_parm (void);
75 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
76 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT);
78 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
79 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
80 static rtx_insn *compress_float_constant (rtx, rtx);
81 static rtx get_subtarget (rtx);
82 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
83 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
84 unsigned HOST_WIDE_INT, machine_mode,
85 tree, int, alias_set_type, bool);
86 static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool);
87 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
88 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
89 machine_mode, tree, alias_set_type, bool, bool);
91 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
93 static int is_aligning_offset (const_tree, const_tree);
94 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
95 static rtx do_store_flag (sepops, rtx, machine_mode);
96 #ifdef PUSH_ROUNDING
97 static void emit_single_push_insn (machine_mode, rtx, tree);
98 #endif
99 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
100 profile_probability);
101 static rtx const_vector_from_tree (tree);
102 static rtx const_scalar_mask_from_tree (tree);
103 static tree tree_expr_size (const_tree);
104 static HOST_WIDE_INT int_expr_size (tree);
107 /* This is run to set up which modes can be used
108 directly in memory and to initialize the block move optab. It is run
109 at the beginning of compilation and when the target is reinitialized. */
111 void
112 init_expr_target (void)
114 rtx pat;
115 machine_mode mode;
116 int num_clobbers;
117 rtx mem, mem1;
118 rtx reg;
120 /* Try indexing by frame ptr and try by stack ptr.
121 It is known that on the Convex the stack ptr isn't a valid index.
122 With luck, one or the other is valid on any machine. */
123 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
124 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
126 /* A scratch register we can modify in-place below to avoid
127 useless RTL allocations. */
128 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
130 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
131 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
132 PATTERN (insn) = pat;
134 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
135 mode = (machine_mode) ((int) mode + 1))
137 int regno;
139 direct_load[(int) mode] = direct_store[(int) mode] = 0;
140 PUT_MODE (mem, mode);
141 PUT_MODE (mem1, mode);
143 /* See if there is some register that can be used in this mode and
144 directly loaded or stored from memory. */
146 if (mode != VOIDmode && mode != BLKmode)
147 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
148 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
149 regno++)
151 if (! HARD_REGNO_MODE_OK (regno, mode))
152 continue;
154 set_mode_and_regno (reg, mode, regno);
156 SET_SRC (pat) = mem;
157 SET_DEST (pat) = reg;
158 if (recog (pat, insn, &num_clobbers) >= 0)
159 direct_load[(int) mode] = 1;
161 SET_SRC (pat) = mem1;
162 SET_DEST (pat) = reg;
163 if (recog (pat, insn, &num_clobbers) >= 0)
164 direct_load[(int) mode] = 1;
166 SET_SRC (pat) = reg;
167 SET_DEST (pat) = mem;
168 if (recog (pat, insn, &num_clobbers) >= 0)
169 direct_store[(int) mode] = 1;
171 SET_SRC (pat) = reg;
172 SET_DEST (pat) = mem1;
173 if (recog (pat, insn, &num_clobbers) >= 0)
174 direct_store[(int) mode] = 1;
178 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
180 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
181 mode = GET_MODE_WIDER_MODE (mode))
183 machine_mode srcmode;
184 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
185 srcmode = GET_MODE_WIDER_MODE (srcmode))
187 enum insn_code ic;
189 ic = can_extend_p (mode, srcmode, 0);
190 if (ic == CODE_FOR_nothing)
191 continue;
193 PUT_MODE (mem, srcmode);
195 if (insn_operand_matches (ic, 1, mem))
196 float_extend_from_mem[mode][srcmode] = true;
201 /* This is run at the start of compiling a function. */
203 void
204 init_expr (void)
206 memset (&crtl->expr, 0, sizeof (crtl->expr));
209 /* Copy data from FROM to TO, where the machine modes are not the same.
210 Both modes may be integer, or both may be floating, or both may be
211 fixed-point.
212 UNSIGNEDP should be nonzero if FROM is an unsigned type.
213 This causes zero-extension instead of sign-extension. */
215 void
216 convert_move (rtx to, rtx from, int unsignedp)
218 machine_mode to_mode = GET_MODE (to);
219 machine_mode from_mode = GET_MODE (from);
220 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
221 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
222 enum insn_code code;
223 rtx libcall;
225 /* rtx code for making an equivalent value. */
226 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
227 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
230 gcc_assert (to_real == from_real);
231 gcc_assert (to_mode != BLKmode);
232 gcc_assert (from_mode != BLKmode);
234 /* If the source and destination are already the same, then there's
235 nothing to do. */
236 if (to == from)
237 return;
239 /* If FROM is a SUBREG that indicates that we have already done at least
240 the required extension, strip it. We don't handle such SUBREGs as
241 TO here. */
243 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
244 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
245 >= GET_MODE_PRECISION (to_mode))
246 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
247 from = gen_lowpart (to_mode, from), from_mode = to_mode;
249 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
251 if (to_mode == from_mode
252 || (from_mode == VOIDmode && CONSTANT_P (from)))
254 emit_move_insn (to, from);
255 return;
258 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
260 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
262 if (VECTOR_MODE_P (to_mode))
263 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
264 else
265 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
267 emit_move_insn (to, from);
268 return;
271 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
273 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
274 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
275 return;
278 if (to_real)
280 rtx value;
281 rtx_insn *insns;
282 convert_optab tab;
284 gcc_assert ((GET_MODE_PRECISION (from_mode)
285 != GET_MODE_PRECISION (to_mode))
286 || (DECIMAL_FLOAT_MODE_P (from_mode)
287 != DECIMAL_FLOAT_MODE_P (to_mode)));
289 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
290 /* Conversion between decimal float and binary float, same size. */
291 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
292 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
293 tab = sext_optab;
294 else
295 tab = trunc_optab;
297 /* Try converting directly if the insn is supported. */
299 code = convert_optab_handler (tab, to_mode, from_mode);
300 if (code != CODE_FOR_nothing)
302 emit_unop_insn (code, to, from,
303 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
304 return;
307 /* Otherwise use a libcall. */
308 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
310 /* Is this conversion implemented yet? */
311 gcc_assert (libcall);
313 start_sequence ();
314 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
315 1, from, from_mode);
316 insns = get_insns ();
317 end_sequence ();
318 emit_libcall_block (insns, to, value,
319 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
320 from)
321 : gen_rtx_FLOAT_EXTEND (to_mode, from));
322 return;
325 /* Handle pointer conversion. */ /* SPEE 900220. */
326 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
328 convert_optab ctab;
330 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
331 ctab = trunc_optab;
332 else if (unsignedp)
333 ctab = zext_optab;
334 else
335 ctab = sext_optab;
337 if (convert_optab_handler (ctab, to_mode, from_mode)
338 != CODE_FOR_nothing)
340 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
341 to, from, UNKNOWN);
342 return;
346 /* Targets are expected to provide conversion insns between PxImode and
347 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
348 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
350 machine_mode full_mode
351 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
353 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
354 != CODE_FOR_nothing);
356 if (full_mode != from_mode)
357 from = convert_to_mode (full_mode, from, unsignedp);
358 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
359 to, from, UNKNOWN);
360 return;
362 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
364 rtx new_from;
365 machine_mode full_mode
366 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
367 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
368 enum insn_code icode;
370 icode = convert_optab_handler (ctab, full_mode, from_mode);
371 gcc_assert (icode != CODE_FOR_nothing);
373 if (to_mode == full_mode)
375 emit_unop_insn (icode, to, from, UNKNOWN);
376 return;
379 new_from = gen_reg_rtx (full_mode);
380 emit_unop_insn (icode, new_from, from, UNKNOWN);
382 /* else proceed to integer conversions below. */
383 from_mode = full_mode;
384 from = new_from;
387 /* Make sure both are fixed-point modes or both are not. */
388 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
389 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
390 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
392 /* If we widen from_mode to to_mode and they are in the same class,
393 we won't saturate the result.
394 Otherwise, always saturate the result to play safe. */
395 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
396 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
397 expand_fixed_convert (to, from, 0, 0);
398 else
399 expand_fixed_convert (to, from, 0, 1);
400 return;
403 /* Now both modes are integers. */
405 /* Handle expanding beyond a word. */
406 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
407 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
409 rtx_insn *insns;
410 rtx lowpart;
411 rtx fill_value;
412 rtx lowfrom;
413 int i;
414 machine_mode lowpart_mode;
415 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
417 /* Try converting directly if the insn is supported. */
418 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
419 != CODE_FOR_nothing)
421 /* If FROM is a SUBREG, put it into a register. Do this
422 so that we always generate the same set of insns for
423 better cse'ing; if an intermediate assignment occurred,
424 we won't be doing the operation directly on the SUBREG. */
425 if (optimize > 0 && GET_CODE (from) == SUBREG)
426 from = force_reg (from_mode, from);
427 emit_unop_insn (code, to, from, equiv_code);
428 return;
430 /* Next, try converting via full word. */
431 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
432 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
433 != CODE_FOR_nothing))
435 rtx word_to = gen_reg_rtx (word_mode);
436 if (REG_P (to))
438 if (reg_overlap_mentioned_p (to, from))
439 from = force_reg (from_mode, from);
440 emit_clobber (to);
442 convert_move (word_to, from, unsignedp);
443 emit_unop_insn (code, to, word_to, equiv_code);
444 return;
447 /* No special multiword conversion insn; do it by hand. */
448 start_sequence ();
450 /* Since we will turn this into a no conflict block, we must ensure
451 the source does not overlap the target so force it into an isolated
452 register when maybe so. Likewise for any MEM input, since the
453 conversion sequence might require several references to it and we
454 must ensure we're getting the same value every time. */
456 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
457 from = force_reg (from_mode, from);
459 /* Get a copy of FROM widened to a word, if necessary. */
460 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
461 lowpart_mode = word_mode;
462 else
463 lowpart_mode = from_mode;
465 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
467 lowpart = gen_lowpart (lowpart_mode, to);
468 emit_move_insn (lowpart, lowfrom);
470 /* Compute the value to put in each remaining word. */
471 if (unsignedp)
472 fill_value = const0_rtx;
473 else
474 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
475 LT, lowfrom, const0_rtx,
476 lowpart_mode, 0, -1);
478 /* Fill the remaining words. */
479 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
481 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
482 rtx subword = operand_subword (to, index, 1, to_mode);
484 gcc_assert (subword);
486 if (fill_value != subword)
487 emit_move_insn (subword, fill_value);
490 insns = get_insns ();
491 end_sequence ();
493 emit_insn (insns);
494 return;
497 /* Truncating multi-word to a word or less. */
498 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
499 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
501 if (!((MEM_P (from)
502 && ! MEM_VOLATILE_P (from)
503 && direct_load[(int) to_mode]
504 && ! mode_dependent_address_p (XEXP (from, 0),
505 MEM_ADDR_SPACE (from)))
506 || REG_P (from)
507 || GET_CODE (from) == SUBREG))
508 from = force_reg (from_mode, from);
509 convert_move (to, gen_lowpart (word_mode, from), 0);
510 return;
513 /* Now follow all the conversions between integers
514 no more than a word long. */
516 /* For truncation, usually we can just refer to FROM in a narrower mode. */
517 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
518 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
520 if (!((MEM_P (from)
521 && ! MEM_VOLATILE_P (from)
522 && direct_load[(int) to_mode]
523 && ! mode_dependent_address_p (XEXP (from, 0),
524 MEM_ADDR_SPACE (from)))
525 || REG_P (from)
526 || GET_CODE (from) == SUBREG))
527 from = force_reg (from_mode, from);
528 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
529 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
530 from = copy_to_reg (from);
531 emit_move_insn (to, gen_lowpart (to_mode, from));
532 return;
535 /* Handle extension. */
536 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
538 /* Convert directly if that works. */
539 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
540 != CODE_FOR_nothing)
542 emit_unop_insn (code, to, from, equiv_code);
543 return;
545 else
547 machine_mode intermediate;
548 rtx tmp;
549 int shift_amount;
551 /* Search for a mode to convert via. */
552 for (intermediate = from_mode; intermediate != VOIDmode;
553 intermediate = GET_MODE_WIDER_MODE (intermediate))
554 if (((can_extend_p (to_mode, intermediate, unsignedp)
555 != CODE_FOR_nothing)
556 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
557 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
558 && (can_extend_p (intermediate, from_mode, unsignedp)
559 != CODE_FOR_nothing))
561 convert_move (to, convert_to_mode (intermediate, from,
562 unsignedp), unsignedp);
563 return;
566 /* No suitable intermediate mode.
567 Generate what we need with shifts. */
568 shift_amount = (GET_MODE_PRECISION (to_mode)
569 - GET_MODE_PRECISION (from_mode));
570 from = gen_lowpart (to_mode, force_reg (from_mode, from));
571 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
572 to, unsignedp);
573 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
574 to, unsignedp);
575 if (tmp != to)
576 emit_move_insn (to, tmp);
577 return;
581 /* Support special truncate insns for certain modes. */
582 if (convert_optab_handler (trunc_optab, to_mode,
583 from_mode) != CODE_FOR_nothing)
585 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
586 to, from, UNKNOWN);
587 return;
590 /* Handle truncation of volatile memrefs, and so on;
591 the things that couldn't be truncated directly,
592 and for which there was no special instruction.
594 ??? Code above formerly short-circuited this, for most integer
595 mode pairs, with a force_reg in from_mode followed by a recursive
596 call to this routine. Appears always to have been wrong. */
597 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
599 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
600 emit_move_insn (to, temp);
601 return;
604 /* Mode combination is not recognized. */
605 gcc_unreachable ();
608 /* Return an rtx for a value that would result
609 from converting X to mode MODE.
610 Both X and MODE may be floating, or both integer.
611 UNSIGNEDP is nonzero if X is an unsigned value.
612 This can be done by referring to a part of X in place
613 or by copying to a new temporary with conversion. */
616 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
618 return convert_modes (mode, VOIDmode, x, unsignedp);
621 /* Return an rtx for a value that would result
622 from converting X from mode OLDMODE to mode MODE.
623 Both modes may be floating, or both integer.
624 UNSIGNEDP is nonzero if X is an unsigned value.
626 This can be done by referring to a part of X in place
627 or by copying to a new temporary with conversion.
629 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
632 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
634 rtx temp;
636 /* If FROM is a SUBREG that indicates that we have already done at least
637 the required extension, strip it. */
639 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
640 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
641 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
642 x = gen_lowpart (mode, SUBREG_REG (x));
644 if (GET_MODE (x) != VOIDmode)
645 oldmode = GET_MODE (x);
647 if (mode == oldmode)
648 return x;
650 if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT)
652 /* If the caller did not tell us the old mode, then there is not
653 much to do with respect to canonicalization. We have to
654 assume that all the bits are significant. */
655 if (GET_MODE_CLASS (oldmode) != MODE_INT)
656 oldmode = MAX_MODE_INT;
657 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
658 GET_MODE_PRECISION (mode),
659 unsignedp ? UNSIGNED : SIGNED);
660 return immed_wide_int_const (w, mode);
663 /* We can do this with a gen_lowpart if both desired and current modes
664 are integer, and this is either a constant integer, a register, or a
665 non-volatile MEM. */
666 if (GET_MODE_CLASS (mode) == MODE_INT
667 && GET_MODE_CLASS (oldmode) == MODE_INT
668 && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
669 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode])
670 || (REG_P (x)
671 && (!HARD_REGISTER_P (x)
672 || HARD_REGNO_MODE_OK (REGNO (x), mode))
673 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)))))
675 return gen_lowpart (mode, x);
677 /* Converting from integer constant into mode is always equivalent to an
678 subreg operation. */
679 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
681 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
682 return simplify_gen_subreg (mode, x, oldmode, 0);
685 temp = gen_reg_rtx (mode);
686 convert_move (temp, x, unsignedp);
687 return temp;
690 /* Return the largest alignment we can use for doing a move (or store)
691 of MAX_PIECES. ALIGN is the largest alignment we could use. */
693 static unsigned int
694 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
696 machine_mode tmode;
698 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
699 if (align >= GET_MODE_ALIGNMENT (tmode))
700 align = GET_MODE_ALIGNMENT (tmode);
701 else
703 machine_mode tmode, xmode;
705 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
706 tmode != VOIDmode;
707 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
708 if (GET_MODE_SIZE (tmode) > max_pieces
709 || SLOW_UNALIGNED_ACCESS (tmode, align))
710 break;
712 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
715 return align;
718 /* Return the widest integer mode no wider than SIZE. If no such mode
719 can be found, return VOIDmode. */
721 static machine_mode
722 widest_int_mode_for_size (unsigned int size)
724 machine_mode tmode, mode = VOIDmode;
726 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
727 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
728 if (GET_MODE_SIZE (tmode) < size)
729 mode = tmode;
731 return mode;
734 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
735 and should be performed piecewise. */
737 static bool
738 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
739 enum by_pieces_operation op)
741 return targetm.use_by_pieces_infrastructure_p (len, align, op,
742 optimize_insn_for_speed_p ());
745 /* Determine whether the LEN bytes can be moved by using several move
746 instructions. Return nonzero if a call to move_by_pieces should
747 succeed. */
749 bool
750 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
752 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
755 /* Return number of insns required to perform operation OP by pieces
756 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
758 unsigned HOST_WIDE_INT
759 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
760 unsigned int max_size, by_pieces_operation op)
762 unsigned HOST_WIDE_INT n_insns = 0;
764 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
766 while (max_size > 1 && l > 0)
768 machine_mode mode;
769 enum insn_code icode;
771 mode = widest_int_mode_for_size (max_size);
773 if (mode == VOIDmode)
774 break;
775 unsigned int modesize = GET_MODE_SIZE (mode);
777 icode = optab_handler (mov_optab, mode);
778 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
780 unsigned HOST_WIDE_INT n_pieces = l / modesize;
781 l %= modesize;
782 switch (op)
784 default:
785 n_insns += n_pieces;
786 break;
788 case COMPARE_BY_PIECES:
789 int batch = targetm.compare_by_pieces_branch_ratio (mode);
790 int batch_ops = 4 * batch - 1;
791 unsigned HOST_WIDE_INT full = n_pieces / batch;
792 n_insns += full * batch_ops;
793 if (n_pieces % batch != 0)
794 n_insns++;
795 break;
799 max_size = modesize;
802 gcc_assert (!l);
803 return n_insns;
806 /* Used when performing piecewise block operations, holds information
807 about one of the memory objects involved. The member functions
808 can be used to generate code for loading from the object and
809 updating the address when iterating. */
811 class pieces_addr
813 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
814 stack pushes. */
815 rtx m_obj;
816 /* The address of the object. Can differ from that seen in the
817 MEM rtx if we copied the address to a register. */
818 rtx m_addr;
819 /* Nonzero if the address on the object has an autoincrement already,
820 signifies whether that was an increment or decrement. */
821 signed char m_addr_inc;
822 /* Nonzero if we intend to use autoinc without the address already
823 having autoinc form. We will insert add insns around each memory
824 reference, expecting later passes to form autoinc addressing modes.
825 The only supported options are predecrement and postincrement. */
826 signed char m_explicit_inc;
827 /* True if we have either of the two possible cases of using
828 autoincrement. */
829 bool m_auto;
830 /* True if this is an address to be used for load operations rather
831 than stores. */
832 bool m_is_load;
834 /* Optionally, a function to obtain constants for any given offset into
835 the objects, and data associated with it. */
836 by_pieces_constfn m_constfn;
837 void *m_cfndata;
838 public:
839 pieces_addr (rtx, bool, by_pieces_constfn, void *);
840 rtx adjust (machine_mode, HOST_WIDE_INT);
841 void increment_address (HOST_WIDE_INT);
842 void maybe_predec (HOST_WIDE_INT);
843 void maybe_postinc (HOST_WIDE_INT);
844 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
845 int get_addr_inc ()
847 return m_addr_inc;
851 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
852 true if the operation to be performed on this object is a load
853 rather than a store. For stores, OBJ can be NULL, in which case we
854 assume the operation is a stack push. For loads, the optional
855 CONSTFN and its associated CFNDATA can be used in place of the
856 memory load. */
858 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
859 void *cfndata)
860 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
862 m_addr_inc = 0;
863 m_auto = false;
864 if (obj)
866 rtx addr = XEXP (obj, 0);
867 rtx_code code = GET_CODE (addr);
868 m_addr = addr;
869 bool dec = code == PRE_DEC || code == POST_DEC;
870 bool inc = code == PRE_INC || code == POST_INC;
871 m_auto = inc || dec;
872 if (m_auto)
873 m_addr_inc = dec ? -1 : 1;
875 /* While we have always looked for these codes here, the code
876 implementing the memory operation has never handled them.
877 Support could be added later if necessary or beneficial. */
878 gcc_assert (code != PRE_INC && code != POST_DEC);
880 else
882 m_addr = NULL_RTX;
883 if (!is_load)
885 m_auto = true;
886 if (STACK_GROWS_DOWNWARD)
887 m_addr_inc = -1;
888 else
889 m_addr_inc = 1;
891 else
892 gcc_assert (constfn != NULL);
894 m_explicit_inc = 0;
895 if (constfn)
896 gcc_assert (is_load);
899 /* Decide whether to use autoinc for an address involved in a memory op.
900 MODE is the mode of the accesses, REVERSE is true if we've decided to
901 perform the operation starting from the end, and LEN is the length of
902 the operation. Don't override an earlier decision to set m_auto. */
904 void
905 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
906 HOST_WIDE_INT len)
908 if (m_auto || m_obj == NULL_RTX)
909 return;
911 bool use_predec = (m_is_load
912 ? USE_LOAD_PRE_DECREMENT (mode)
913 : USE_STORE_PRE_DECREMENT (mode));
914 bool use_postinc = (m_is_load
915 ? USE_LOAD_POST_INCREMENT (mode)
916 : USE_STORE_POST_INCREMENT (mode));
917 machine_mode addr_mode = get_address_mode (m_obj);
919 if (use_predec && reverse)
921 m_addr = copy_to_mode_reg (addr_mode,
922 plus_constant (addr_mode,
923 m_addr, len));
924 m_auto = true;
925 m_explicit_inc = -1;
927 else if (use_postinc && !reverse)
929 m_addr = copy_to_mode_reg (addr_mode, m_addr);
930 m_auto = true;
931 m_explicit_inc = 1;
933 else if (CONSTANT_P (m_addr))
934 m_addr = copy_to_mode_reg (addr_mode, m_addr);
937 /* Adjust the address to refer to the data at OFFSET in MODE. If we
938 are using autoincrement for this address, we don't add the offset,
939 but we still modify the MEM's properties. */
942 pieces_addr::adjust (machine_mode mode, HOST_WIDE_INT offset)
944 if (m_constfn)
945 return m_constfn (m_cfndata, offset, mode);
946 if (m_obj == NULL_RTX)
947 return NULL_RTX;
948 if (m_auto)
949 return adjust_automodify_address (m_obj, mode, m_addr, offset);
950 else
951 return adjust_address (m_obj, mode, offset);
954 /* Emit an add instruction to increment the address by SIZE. */
956 void
957 pieces_addr::increment_address (HOST_WIDE_INT size)
959 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
960 emit_insn (gen_add2_insn (m_addr, amount));
963 /* If we are supposed to decrement the address after each access, emit code
964 to do so now. Increment by SIZE (which has should have the correct sign
965 already). */
967 void
968 pieces_addr::maybe_predec (HOST_WIDE_INT size)
970 if (m_explicit_inc >= 0)
971 return;
972 gcc_assert (HAVE_PRE_DECREMENT);
973 increment_address (size);
976 /* If we are supposed to decrement the address after each access, emit code
977 to do so now. Increment by SIZE. */
979 void
980 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
982 if (m_explicit_inc <= 0)
983 return;
984 gcc_assert (HAVE_POST_INCREMENT);
985 increment_address (size);
988 /* This structure is used by do_op_by_pieces to describe the operation
989 to be performed. */
991 class op_by_pieces_d
993 protected:
994 pieces_addr m_to, m_from;
995 unsigned HOST_WIDE_INT m_len;
996 HOST_WIDE_INT m_offset;
997 unsigned int m_align;
998 unsigned int m_max_size;
999 bool m_reverse;
1001 /* Virtual functions, overriden by derived classes for the specific
1002 operation. */
1003 virtual void generate (rtx, rtx, machine_mode) = 0;
1004 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1005 virtual void finish_mode (machine_mode)
1009 public:
1010 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1011 unsigned HOST_WIDE_INT, unsigned int);
1012 void run ();
1015 /* The constructor for an op_by_pieces_d structure. We require two
1016 objects named TO and FROM, which are identified as loads or stores
1017 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1018 and its associated FROM_CFN_DATA can be used to replace loads with
1019 constant values. LEN describes the length of the operation. */
1021 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1022 rtx from, bool from_load,
1023 by_pieces_constfn from_cfn,
1024 void *from_cfn_data,
1025 unsigned HOST_WIDE_INT len,
1026 unsigned int align)
1027 : m_to (to, to_load, NULL, NULL),
1028 m_from (from, from_load, from_cfn, from_cfn_data),
1029 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1031 int toi = m_to.get_addr_inc ();
1032 int fromi = m_from.get_addr_inc ();
1033 if (toi >= 0 && fromi >= 0)
1034 m_reverse = false;
1035 else if (toi <= 0 && fromi <= 0)
1036 m_reverse = true;
1037 else
1038 gcc_unreachable ();
1040 m_offset = m_reverse ? len : 0;
1041 align = MIN (to ? MEM_ALIGN (to) : align,
1042 from ? MEM_ALIGN (from) : align);
1044 /* If copying requires more than two move insns,
1045 copy addresses to registers (to make displacements shorter)
1046 and use post-increment if available. */
1047 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1049 /* Find the mode of the largest comparison. */
1050 machine_mode mode = widest_int_mode_for_size (m_max_size);
1052 m_from.decide_autoinc (mode, m_reverse, len);
1053 m_to.decide_autoinc (mode, m_reverse, len);
1056 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1057 m_align = align;
1060 /* This function contains the main loop used for expanding a block
1061 operation. First move what we can in the largest integer mode,
1062 then go to successively smaller modes. For every access, call
1063 GENFUN with the two operands and the EXTRA_DATA. */
1065 void
1066 op_by_pieces_d::run ()
1068 while (m_max_size > 1 && m_len > 0)
1070 machine_mode mode = widest_int_mode_for_size (m_max_size);
1072 if (mode == VOIDmode)
1073 break;
1075 if (prepare_mode (mode, m_align))
1077 unsigned int size = GET_MODE_SIZE (mode);
1078 rtx to1 = NULL_RTX, from1;
1080 while (m_len >= size)
1082 if (m_reverse)
1083 m_offset -= size;
1085 to1 = m_to.adjust (mode, m_offset);
1086 from1 = m_from.adjust (mode, m_offset);
1088 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1089 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1091 generate (to1, from1, mode);
1093 m_to.maybe_postinc (size);
1094 m_from.maybe_postinc (size);
1096 if (!m_reverse)
1097 m_offset += size;
1099 m_len -= size;
1102 finish_mode (mode);
1105 m_max_size = GET_MODE_SIZE (mode);
1108 /* The code above should have handled everything. */
1109 gcc_assert (!m_len);
1112 /* Derived class from op_by_pieces_d, providing support for block move
1113 operations. */
1115 class move_by_pieces_d : public op_by_pieces_d
1117 insn_gen_fn m_gen_fun;
1118 void generate (rtx, rtx, machine_mode);
1119 bool prepare_mode (machine_mode, unsigned int);
1121 public:
1122 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1123 unsigned int align)
1124 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1127 rtx finish_endp (int);
1130 /* Return true if MODE can be used for a set of copies, given an
1131 alignment ALIGN. Prepare whatever data is necessary for later
1132 calls to generate. */
1134 bool
1135 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1137 insn_code icode = optab_handler (mov_optab, mode);
1138 m_gen_fun = GEN_FCN (icode);
1139 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1142 /* A callback used when iterating for a compare_by_pieces_operation.
1143 OP0 and OP1 are the values that have been loaded and should be
1144 compared in MODE. If OP0 is NULL, this means we should generate a
1145 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1146 gen function that should be used to generate the mode. */
1148 void
1149 move_by_pieces_d::generate (rtx op0, rtx op1,
1150 machine_mode mode ATTRIBUTE_UNUSED)
1152 #ifdef PUSH_ROUNDING
1153 if (op0 == NULL_RTX)
1155 emit_single_push_insn (mode, op1, NULL);
1156 return;
1158 #endif
1159 emit_insn (m_gen_fun (op0, op1));
1162 /* Perform the final adjustment at the end of a string to obtain the
1163 correct return value for the block operation. If ENDP is 1 return
1164 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1165 end minus one byte ala stpcpy. */
1168 move_by_pieces_d::finish_endp (int endp)
1170 gcc_assert (!m_reverse);
1171 if (endp == 2)
1173 m_to.maybe_postinc (-1);
1174 --m_offset;
1176 return m_to.adjust (QImode, m_offset);
1179 /* Generate several move instructions to copy LEN bytes from block FROM to
1180 block TO. (These are MEM rtx's with BLKmode).
1182 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1183 used to push FROM to the stack.
1185 ALIGN is maximum stack alignment we can assume.
1187 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1188 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1189 stpcpy. */
1192 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1193 unsigned int align, int endp)
1195 #ifndef PUSH_ROUNDING
1196 if (to == NULL)
1197 gcc_unreachable ();
1198 #endif
1200 move_by_pieces_d data (to, from, len, align);
1202 data.run ();
1204 if (endp)
1205 return data.finish_endp (endp);
1206 else
1207 return to;
1210 /* Derived class from op_by_pieces_d, providing support for block move
1211 operations. */
1213 class store_by_pieces_d : public op_by_pieces_d
1215 insn_gen_fn m_gen_fun;
1216 void generate (rtx, rtx, machine_mode);
1217 bool prepare_mode (machine_mode, unsigned int);
1219 public:
1220 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1221 unsigned HOST_WIDE_INT len, unsigned int align)
1222 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1225 rtx finish_endp (int);
1228 /* Return true if MODE can be used for a set of stores, given an
1229 alignment ALIGN. Prepare whatever data is necessary for later
1230 calls to generate. */
1232 bool
1233 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1235 insn_code icode = optab_handler (mov_optab, mode);
1236 m_gen_fun = GEN_FCN (icode);
1237 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1240 /* A callback used when iterating for a store_by_pieces_operation.
1241 OP0 and OP1 are the values that have been loaded and should be
1242 compared in MODE. If OP0 is NULL, this means we should generate a
1243 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1244 gen function that should be used to generate the mode. */
1246 void
1247 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1249 emit_insn (m_gen_fun (op0, op1));
1252 /* Perform the final adjustment at the end of a string to obtain the
1253 correct return value for the block operation. If ENDP is 1 return
1254 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1255 end minus one byte ala stpcpy. */
1258 store_by_pieces_d::finish_endp (int endp)
1260 gcc_assert (!m_reverse);
1261 if (endp == 2)
1263 m_to.maybe_postinc (-1);
1264 --m_offset;
1266 return m_to.adjust (QImode, m_offset);
1269 /* Determine whether the LEN bytes generated by CONSTFUN can be
1270 stored to memory using several move instructions. CONSTFUNDATA is
1271 a pointer which will be passed as argument in every CONSTFUN call.
1272 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1273 a memset operation and false if it's a copy of a constant string.
1274 Return nonzero if a call to store_by_pieces should succeed. */
1277 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1278 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
1279 void *constfundata, unsigned int align, bool memsetp)
1281 unsigned HOST_WIDE_INT l;
1282 unsigned int max_size;
1283 HOST_WIDE_INT offset = 0;
1284 machine_mode mode;
1285 enum insn_code icode;
1286 int reverse;
1287 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1288 rtx cst ATTRIBUTE_UNUSED;
1290 if (len == 0)
1291 return 1;
1293 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1294 memsetp
1295 ? SET_BY_PIECES
1296 : STORE_BY_PIECES,
1297 optimize_insn_for_speed_p ()))
1298 return 0;
1300 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1302 /* We would first store what we can in the largest integer mode, then go to
1303 successively smaller modes. */
1305 for (reverse = 0;
1306 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1307 reverse++)
1309 l = len;
1310 max_size = STORE_MAX_PIECES + 1;
1311 while (max_size > 1 && l > 0)
1313 mode = widest_int_mode_for_size (max_size);
1315 if (mode == VOIDmode)
1316 break;
1318 icode = optab_handler (mov_optab, mode);
1319 if (icode != CODE_FOR_nothing
1320 && align >= GET_MODE_ALIGNMENT (mode))
1322 unsigned int size = GET_MODE_SIZE (mode);
1324 while (l >= size)
1326 if (reverse)
1327 offset -= size;
1329 cst = (*constfun) (constfundata, offset, mode);
1330 if (!targetm.legitimate_constant_p (mode, cst))
1331 return 0;
1333 if (!reverse)
1334 offset += size;
1336 l -= size;
1340 max_size = GET_MODE_SIZE (mode);
1343 /* The code above should have handled everything. */
1344 gcc_assert (!l);
1347 return 1;
1350 /* Generate several move instructions to store LEN bytes generated by
1351 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1352 pointer which will be passed as argument in every CONSTFUN call.
1353 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1354 a memset operation and false if it's a copy of a constant string.
1355 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1356 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1357 stpcpy. */
1360 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1361 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
1362 void *constfundata, unsigned int align, bool memsetp, int endp)
1364 if (len == 0)
1366 gcc_assert (endp != 2);
1367 return to;
1370 gcc_assert (targetm.use_by_pieces_infrastructure_p
1371 (len, align,
1372 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1373 optimize_insn_for_speed_p ()));
1375 store_by_pieces_d data (to, constfun, constfundata, len, align);
1376 data.run ();
1378 if (endp)
1379 return data.finish_endp (endp);
1380 else
1381 return to;
1384 /* Callback routine for clear_by_pieces.
1385 Return const0_rtx unconditionally. */
1387 static rtx
1388 clear_by_pieces_1 (void *, HOST_WIDE_INT, machine_mode)
1390 return const0_rtx;
1393 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1394 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1396 static void
1397 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1399 if (len == 0)
1400 return;
1402 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1403 data.run ();
1406 /* Context used by compare_by_pieces_genfn. It stores the fail label
1407 to jump to in case of miscomparison, and for branch ratios greater than 1,
1408 it stores an accumulator and the current and maximum counts before
1409 emitting another branch. */
1411 class compare_by_pieces_d : public op_by_pieces_d
1413 rtx_code_label *m_fail_label;
1414 rtx m_accumulator;
1415 int m_count, m_batch;
1417 void generate (rtx, rtx, machine_mode);
1418 bool prepare_mode (machine_mode, unsigned int);
1419 void finish_mode (machine_mode);
1420 public:
1421 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1422 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1423 rtx_code_label *fail_label)
1424 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1426 m_fail_label = fail_label;
1430 /* A callback used when iterating for a compare_by_pieces_operation.
1431 OP0 and OP1 are the values that have been loaded and should be
1432 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1433 context structure. */
1435 void
1436 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1438 if (m_batch > 1)
1440 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1441 true, OPTAB_LIB_WIDEN);
1442 if (m_count != 0)
1443 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1444 true, OPTAB_LIB_WIDEN);
1445 m_accumulator = temp;
1447 if (++m_count < m_batch)
1448 return;
1450 m_count = 0;
1451 op0 = m_accumulator;
1452 op1 = const0_rtx;
1453 m_accumulator = NULL_RTX;
1455 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1456 m_fail_label, profile_probability::uninitialized ());
1459 /* Return true if MODE can be used for a set of moves and comparisons,
1460 given an alignment ALIGN. Prepare whatever data is necessary for
1461 later calls to generate. */
1463 bool
1464 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1466 insn_code icode = optab_handler (mov_optab, mode);
1467 if (icode == CODE_FOR_nothing
1468 || align < GET_MODE_ALIGNMENT (mode)
1469 || !can_compare_p (EQ, mode, ccp_jump))
1470 return false;
1471 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1472 if (m_batch < 0)
1473 return false;
1474 m_accumulator = NULL_RTX;
1475 m_count = 0;
1476 return true;
1479 /* Called after expanding a series of comparisons in MODE. If we have
1480 accumulated results for which we haven't emitted a branch yet, do
1481 so now. */
1483 void
1484 compare_by_pieces_d::finish_mode (machine_mode mode)
1486 if (m_accumulator != NULL_RTX)
1487 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1488 NULL_RTX, NULL, m_fail_label,
1489 profile_probability::uninitialized ());
1492 /* Generate several move instructions to compare LEN bytes from blocks
1493 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1495 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1496 used to push FROM to the stack.
1498 ALIGN is maximum stack alignment we can assume.
1500 Optionally, the caller can pass a constfn and associated data in A1_CFN
1501 and A1_CFN_DATA. describing that the second operand being compared is a
1502 known constant and how to obtain its data. */
1504 static rtx
1505 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1506 rtx target, unsigned int align,
1507 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1509 rtx_code_label *fail_label = gen_label_rtx ();
1510 rtx_code_label *end_label = gen_label_rtx ();
1512 if (target == NULL_RTX
1513 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1514 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1516 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1517 fail_label);
1519 data.run ();
1521 emit_move_insn (target, const0_rtx);
1522 emit_jump (end_label);
1523 emit_barrier ();
1524 emit_label (fail_label);
1525 emit_move_insn (target, const1_rtx);
1526 emit_label (end_label);
1528 return target;
1531 /* Emit code to move a block Y to a block X. This may be done with
1532 string-move instructions, with multiple scalar move instructions,
1533 or with a library call.
1535 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1536 SIZE is an rtx that says how long they are.
1537 ALIGN is the maximum alignment we can assume they have.
1538 METHOD describes what kind of copy this is, and what mechanisms may be used.
1539 MIN_SIZE is the minimal size of block to move
1540 MAX_SIZE is the maximal size of block to move, if it can not be represented
1541 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1543 Return the address of the new block, if memcpy is called and returns it,
1544 0 otherwise. */
1547 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1548 unsigned int expected_align, HOST_WIDE_INT expected_size,
1549 unsigned HOST_WIDE_INT min_size,
1550 unsigned HOST_WIDE_INT max_size,
1551 unsigned HOST_WIDE_INT probable_max_size)
1553 bool may_use_call;
1554 rtx retval = 0;
1555 unsigned int align;
1557 gcc_assert (size);
1558 if (CONST_INT_P (size) && INTVAL (size) == 0)
1559 return 0;
1561 switch (method)
1563 case BLOCK_OP_NORMAL:
1564 case BLOCK_OP_TAILCALL:
1565 may_use_call = true;
1566 break;
1568 case BLOCK_OP_CALL_PARM:
1569 may_use_call = block_move_libcall_safe_for_call_parm ();
1571 /* Make inhibit_defer_pop nonzero around the library call
1572 to force it to pop the arguments right away. */
1573 NO_DEFER_POP;
1574 break;
1576 case BLOCK_OP_NO_LIBCALL:
1577 may_use_call = false;
1578 break;
1580 default:
1581 gcc_unreachable ();
1584 gcc_assert (MEM_P (x) && MEM_P (y));
1585 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1586 gcc_assert (align >= BITS_PER_UNIT);
1588 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1589 block copy is more efficient for other large modes, e.g. DCmode. */
1590 x = adjust_address (x, BLKmode, 0);
1591 y = adjust_address (y, BLKmode, 0);
1593 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1594 can be incorrect is coming from __builtin_memcpy. */
1595 if (CONST_INT_P (size))
1597 x = shallow_copy_rtx (x);
1598 y = shallow_copy_rtx (y);
1599 set_mem_size (x, INTVAL (size));
1600 set_mem_size (y, INTVAL (size));
1603 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1604 move_by_pieces (x, y, INTVAL (size), align, 0);
1605 else if (emit_block_move_via_movmem (x, y, size, align,
1606 expected_align, expected_size,
1607 min_size, max_size, probable_max_size))
1609 else if (may_use_call
1610 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1611 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1613 /* Since x and y are passed to a libcall, mark the corresponding
1614 tree EXPR as addressable. */
1615 tree y_expr = MEM_EXPR (y);
1616 tree x_expr = MEM_EXPR (x);
1617 if (y_expr)
1618 mark_addressable (y_expr);
1619 if (x_expr)
1620 mark_addressable (x_expr);
1621 retval = emit_block_copy_via_libcall (x, y, size,
1622 method == BLOCK_OP_TAILCALL);
1625 else
1626 emit_block_move_via_loop (x, y, size, align);
1628 if (method == BLOCK_OP_CALL_PARM)
1629 OK_DEFER_POP;
1631 return retval;
1635 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1637 unsigned HOST_WIDE_INT max, min = 0;
1638 if (GET_CODE (size) == CONST_INT)
1639 min = max = UINTVAL (size);
1640 else
1641 max = GET_MODE_MASK (GET_MODE (size));
1642 return emit_block_move_hints (x, y, size, method, 0, -1,
1643 min, max, max);
1646 /* A subroutine of emit_block_move. Returns true if calling the
1647 block move libcall will not clobber any parameters which may have
1648 already been placed on the stack. */
1650 static bool
1651 block_move_libcall_safe_for_call_parm (void)
1653 #if defined (REG_PARM_STACK_SPACE)
1654 tree fn;
1655 #endif
1657 /* If arguments are pushed on the stack, then they're safe. */
1658 if (PUSH_ARGS)
1659 return true;
1661 /* If registers go on the stack anyway, any argument is sure to clobber
1662 an outgoing argument. */
1663 #if defined (REG_PARM_STACK_SPACE)
1664 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1665 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1666 depend on its argument. */
1667 (void) fn;
1668 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1669 && REG_PARM_STACK_SPACE (fn) != 0)
1670 return false;
1671 #endif
1673 /* If any argument goes in memory, then it might clobber an outgoing
1674 argument. */
1676 CUMULATIVE_ARGS args_so_far_v;
1677 cumulative_args_t args_so_far;
1678 tree fn, arg;
1680 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1681 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1682 args_so_far = pack_cumulative_args (&args_so_far_v);
1684 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1685 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1687 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1688 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1689 NULL_TREE, true);
1690 if (!tmp || !REG_P (tmp))
1691 return false;
1692 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1693 return false;
1694 targetm.calls.function_arg_advance (args_so_far, mode,
1695 NULL_TREE, true);
1698 return true;
1701 /* A subroutine of emit_block_move. Expand a movmem pattern;
1702 return true if successful. */
1704 static bool
1705 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1706 unsigned int expected_align, HOST_WIDE_INT expected_size,
1707 unsigned HOST_WIDE_INT min_size,
1708 unsigned HOST_WIDE_INT max_size,
1709 unsigned HOST_WIDE_INT probable_max_size)
1711 int save_volatile_ok = volatile_ok;
1712 machine_mode mode;
1714 if (expected_align < align)
1715 expected_align = align;
1716 if (expected_size != -1)
1718 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1719 expected_size = probable_max_size;
1720 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1721 expected_size = min_size;
1724 /* Since this is a move insn, we don't care about volatility. */
1725 volatile_ok = 1;
1727 /* Try the most limited insn first, because there's no point
1728 including more than one in the machine description unless
1729 the more limited one has some advantage. */
1731 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1732 mode = GET_MODE_WIDER_MODE (mode))
1734 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1736 if (code != CODE_FOR_nothing
1737 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1738 here because if SIZE is less than the mode mask, as it is
1739 returned by the macro, it will definitely be less than the
1740 actual mode mask. Since SIZE is within the Pmode address
1741 space, we limit MODE to Pmode. */
1742 && ((CONST_INT_P (size)
1743 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1744 <= (GET_MODE_MASK (mode) >> 1)))
1745 || max_size <= (GET_MODE_MASK (mode) >> 1)
1746 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1748 struct expand_operand ops[9];
1749 unsigned int nops;
1751 /* ??? When called via emit_block_move_for_call, it'd be
1752 nice if there were some way to inform the backend, so
1753 that it doesn't fail the expansion because it thinks
1754 emitting the libcall would be more efficient. */
1755 nops = insn_data[(int) code].n_generator_args;
1756 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1758 create_fixed_operand (&ops[0], x);
1759 create_fixed_operand (&ops[1], y);
1760 /* The check above guarantees that this size conversion is valid. */
1761 create_convert_operand_to (&ops[2], size, mode, true);
1762 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1763 if (nops >= 6)
1765 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1766 create_integer_operand (&ops[5], expected_size);
1768 if (nops >= 8)
1770 create_integer_operand (&ops[6], min_size);
1771 /* If we can not represent the maximal size,
1772 make parameter NULL. */
1773 if ((HOST_WIDE_INT) max_size != -1)
1774 create_integer_operand (&ops[7], max_size);
1775 else
1776 create_fixed_operand (&ops[7], NULL);
1778 if (nops == 9)
1780 /* If we can not represent the maximal size,
1781 make parameter NULL. */
1782 if ((HOST_WIDE_INT) probable_max_size != -1)
1783 create_integer_operand (&ops[8], probable_max_size);
1784 else
1785 create_fixed_operand (&ops[8], NULL);
1787 if (maybe_expand_insn (code, nops, ops))
1789 volatile_ok = save_volatile_ok;
1790 return true;
1795 volatile_ok = save_volatile_ok;
1796 return false;
1799 /* A subroutine of emit_block_move. Copy the data via an explicit
1800 loop. This is used only when libcalls are forbidden. */
1801 /* ??? It'd be nice to copy in hunks larger than QImode. */
1803 static void
1804 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1805 unsigned int align ATTRIBUTE_UNUSED)
1807 rtx_code_label *cmp_label, *top_label;
1808 rtx iter, x_addr, y_addr, tmp;
1809 machine_mode x_addr_mode = get_address_mode (x);
1810 machine_mode y_addr_mode = get_address_mode (y);
1811 machine_mode iter_mode;
1813 iter_mode = GET_MODE (size);
1814 if (iter_mode == VOIDmode)
1815 iter_mode = word_mode;
1817 top_label = gen_label_rtx ();
1818 cmp_label = gen_label_rtx ();
1819 iter = gen_reg_rtx (iter_mode);
1821 emit_move_insn (iter, const0_rtx);
1823 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1824 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1825 do_pending_stack_adjust ();
1827 emit_jump (cmp_label);
1828 emit_label (top_label);
1830 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1831 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1833 if (x_addr_mode != y_addr_mode)
1834 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1835 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1837 x = change_address (x, QImode, x_addr);
1838 y = change_address (y, QImode, y_addr);
1840 emit_move_insn (x, y);
1842 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1843 true, OPTAB_LIB_WIDEN);
1844 if (tmp != iter)
1845 emit_move_insn (iter, tmp);
1847 emit_label (cmp_label);
1849 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1850 true, top_label,
1851 profile_probability::guessed_always ()
1852 .apply_scale (9, 10));
1855 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1856 TAILCALL is true if this is a tail call. */
1859 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1860 rtx size, bool tailcall)
1862 rtx dst_addr, src_addr;
1863 tree call_expr, dst_tree, src_tree, size_tree;
1864 machine_mode size_mode;
1866 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1867 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1868 dst_tree = make_tree (ptr_type_node, dst_addr);
1870 src_addr = copy_addr_to_reg (XEXP (src, 0));
1871 src_addr = convert_memory_address (ptr_mode, src_addr);
1872 src_tree = make_tree (ptr_type_node, src_addr);
1874 size_mode = TYPE_MODE (sizetype);
1875 size = convert_to_mode (size_mode, size, 1);
1876 size = copy_to_mode_reg (size_mode, size);
1877 size_tree = make_tree (sizetype, size);
1879 /* It is incorrect to use the libcall calling conventions for calls to
1880 memcpy/memmove/memcmp because they can be provided by the user. */
1881 tree fn = builtin_decl_implicit (fncode);
1882 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1883 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1885 return expand_call (call_expr, NULL_RTX, false);
1888 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1889 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1890 otherwise return null. */
1893 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1894 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1895 HOST_WIDE_INT align)
1897 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1899 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1900 target = NULL_RTX;
1902 struct expand_operand ops[5];
1903 create_output_operand (&ops[0], target, insn_mode);
1904 create_fixed_operand (&ops[1], arg1_rtx);
1905 create_fixed_operand (&ops[2], arg2_rtx);
1906 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1907 TYPE_UNSIGNED (arg3_type));
1908 create_integer_operand (&ops[4], align);
1909 if (maybe_expand_insn (icode, 5, ops))
1910 return ops[0].value;
1911 return NULL_RTX;
1914 /* Expand a block compare between X and Y with length LEN using the
1915 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1916 of the expression that was used to calculate the length. ALIGN
1917 gives the known minimum common alignment. */
1919 static rtx
1920 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1921 unsigned align)
1923 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1924 implementing memcmp because it will stop if it encounters two
1925 zero bytes. */
1926 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1928 if (icode == CODE_FOR_nothing)
1929 return NULL_RTX;
1931 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1934 /* Emit code to compare a block Y to a block X. This may be done with
1935 string-compare instructions, with multiple scalar instructions,
1936 or with a library call.
1938 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1939 they are. LEN_TYPE is the type of the expression that was used to
1940 calculate it.
1942 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1943 value of a normal memcmp call, instead we can just compare for equality.
1944 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1945 returning NULL_RTX.
1947 Optionally, the caller can pass a constfn and associated data in Y_CFN
1948 and Y_CFN_DATA. describing that the second operand being compared is a
1949 known constant and how to obtain its data.
1950 Return the result of the comparison, or NULL_RTX if we failed to
1951 perform the operation. */
1954 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1955 bool equality_only, by_pieces_constfn y_cfn,
1956 void *y_cfndata)
1958 rtx result = 0;
1960 if (CONST_INT_P (len) && INTVAL (len) == 0)
1961 return const0_rtx;
1963 gcc_assert (MEM_P (x) && MEM_P (y));
1964 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1965 gcc_assert (align >= BITS_PER_UNIT);
1967 x = adjust_address (x, BLKmode, 0);
1968 y = adjust_address (y, BLKmode, 0);
1970 if (equality_only
1971 && CONST_INT_P (len)
1972 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1973 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1974 y_cfn, y_cfndata);
1975 else
1976 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
1978 return result;
1981 /* Copy all or part of a value X into registers starting at REGNO.
1982 The number of registers to be filled is NREGS. */
1984 void
1985 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
1987 if (nregs == 0)
1988 return;
1990 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1991 x = validize_mem (force_const_mem (mode, x));
1993 /* See if the machine can do this with a load multiple insn. */
1994 if (targetm.have_load_multiple ())
1996 rtx_insn *last = get_last_insn ();
1997 rtx first = gen_rtx_REG (word_mode, regno);
1998 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
1999 GEN_INT (nregs)))
2001 emit_insn (pat);
2002 return;
2004 else
2005 delete_insns_since (last);
2008 for (int i = 0; i < nregs; i++)
2009 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2010 operand_subword_force (x, i, mode));
2013 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2014 The number of registers to be filled is NREGS. */
2016 void
2017 move_block_from_reg (int regno, rtx x, int nregs)
2019 if (nregs == 0)
2020 return;
2022 /* See if the machine can do this with a store multiple insn. */
2023 if (targetm.have_store_multiple ())
2025 rtx_insn *last = get_last_insn ();
2026 rtx first = gen_rtx_REG (word_mode, regno);
2027 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2028 GEN_INT (nregs)))
2030 emit_insn (pat);
2031 return;
2033 else
2034 delete_insns_since (last);
2037 for (int i = 0; i < nregs; i++)
2039 rtx tem = operand_subword (x, i, 1, BLKmode);
2041 gcc_assert (tem);
2043 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2047 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2048 ORIG, where ORIG is a non-consecutive group of registers represented by
2049 a PARALLEL. The clone is identical to the original except in that the
2050 original set of registers is replaced by a new set of pseudo registers.
2051 The new set has the same modes as the original set. */
2054 gen_group_rtx (rtx orig)
2056 int i, length;
2057 rtx *tmps;
2059 gcc_assert (GET_CODE (orig) == PARALLEL);
2061 length = XVECLEN (orig, 0);
2062 tmps = XALLOCAVEC (rtx, length);
2064 /* Skip a NULL entry in first slot. */
2065 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2067 if (i)
2068 tmps[0] = 0;
2070 for (; i < length; i++)
2072 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2073 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2075 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2078 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2081 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2082 except that values are placed in TMPS[i], and must later be moved
2083 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2085 static void
2086 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
2088 rtx src;
2089 int start, i;
2090 machine_mode m = GET_MODE (orig_src);
2092 gcc_assert (GET_CODE (dst) == PARALLEL);
2094 if (m != VOIDmode
2095 && !SCALAR_INT_MODE_P (m)
2096 && !MEM_P (orig_src)
2097 && GET_CODE (orig_src) != CONCAT)
2099 machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
2100 if (imode == BLKmode)
2101 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2102 else
2103 src = gen_reg_rtx (imode);
2104 if (imode != BLKmode)
2105 src = gen_lowpart (GET_MODE (orig_src), src);
2106 emit_move_insn (src, orig_src);
2107 /* ...and back again. */
2108 if (imode != BLKmode)
2109 src = gen_lowpart (imode, src);
2110 emit_group_load_1 (tmps, dst, src, type, ssize);
2111 return;
2114 /* Check for a NULL entry, used to indicate that the parameter goes
2115 both on the stack and in registers. */
2116 if (XEXP (XVECEXP (dst, 0, 0), 0))
2117 start = 0;
2118 else
2119 start = 1;
2121 /* Process the pieces. */
2122 for (i = start; i < XVECLEN (dst, 0); i++)
2124 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2125 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
2126 unsigned int bytelen = GET_MODE_SIZE (mode);
2127 int shift = 0;
2129 /* Handle trailing fragments that run over the size of the struct. */
2130 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2132 /* Arrange to shift the fragment to where it belongs.
2133 extract_bit_field loads to the lsb of the reg. */
2134 if (
2135 #ifdef BLOCK_REG_PADDING
2136 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2137 == (BYTES_BIG_ENDIAN ? upward : downward)
2138 #else
2139 BYTES_BIG_ENDIAN
2140 #endif
2142 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2143 bytelen = ssize - bytepos;
2144 gcc_assert (bytelen > 0);
2147 /* If we won't be loading directly from memory, protect the real source
2148 from strange tricks we might play; but make sure that the source can
2149 be loaded directly into the destination. */
2150 src = orig_src;
2151 if (!MEM_P (orig_src)
2152 && (!CONSTANT_P (orig_src)
2153 || (GET_MODE (orig_src) != mode
2154 && GET_MODE (orig_src) != VOIDmode)))
2156 if (GET_MODE (orig_src) == VOIDmode)
2157 src = gen_reg_rtx (mode);
2158 else
2159 src = gen_reg_rtx (GET_MODE (orig_src));
2161 emit_move_insn (src, orig_src);
2164 /* Optimize the access just a bit. */
2165 if (MEM_P (src)
2166 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
2167 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2168 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2169 && bytelen == GET_MODE_SIZE (mode))
2171 tmps[i] = gen_reg_rtx (mode);
2172 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2174 else if (COMPLEX_MODE_P (mode)
2175 && GET_MODE (src) == mode
2176 && bytelen == GET_MODE_SIZE (mode))
2177 /* Let emit_move_complex do the bulk of the work. */
2178 tmps[i] = src;
2179 else if (GET_CODE (src) == CONCAT)
2181 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
2182 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2183 unsigned int elt = bytepos / slen0;
2184 unsigned int subpos = bytepos % slen0;
2186 if (subpos + bytelen <= slen0)
2188 /* The following assumes that the concatenated objects all
2189 have the same size. In this case, a simple calculation
2190 can be used to determine the object and the bit field
2191 to be extracted. */
2192 tmps[i] = XEXP (src, elt);
2193 if (subpos != 0
2194 || subpos + bytelen != slen0
2195 || (!CONSTANT_P (tmps[i])
2196 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2197 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2198 subpos * BITS_PER_UNIT,
2199 1, NULL_RTX, mode, mode, false,
2200 NULL);
2202 else
2204 rtx mem;
2206 gcc_assert (!bytepos);
2207 mem = assign_stack_temp (GET_MODE (src), slen);
2208 emit_move_insn (mem, src);
2209 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2210 0, 1, NULL_RTX, mode, mode, false,
2211 NULL);
2214 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2215 SIMD register, which is currently broken. While we get GCC
2216 to emit proper RTL for these cases, let's dump to memory. */
2217 else if (VECTOR_MODE_P (GET_MODE (dst))
2218 && REG_P (src))
2220 int slen = GET_MODE_SIZE (GET_MODE (src));
2221 rtx mem;
2223 mem = assign_stack_temp (GET_MODE (src), slen);
2224 emit_move_insn (mem, src);
2225 tmps[i] = adjust_address (mem, mode, (int) bytepos);
2227 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2228 && XVECLEN (dst, 0) > 1)
2229 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2230 else if (CONSTANT_P (src))
2232 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
2234 if (len == ssize)
2235 tmps[i] = src;
2236 else
2238 rtx first, second;
2240 /* TODO: const_wide_int can have sizes other than this... */
2241 gcc_assert (2 * len == ssize);
2242 split_double (src, &first, &second);
2243 if (i)
2244 tmps[i] = second;
2245 else
2246 tmps[i] = first;
2249 else if (REG_P (src) && GET_MODE (src) == mode)
2250 tmps[i] = src;
2251 else
2252 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2253 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2254 mode, mode, false, NULL);
2256 if (shift)
2257 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2258 shift, tmps[i], 0);
2262 /* Emit code to move a block SRC of type TYPE to a block DST,
2263 where DST is non-consecutive registers represented by a PARALLEL.
2264 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2265 if not known. */
2267 void
2268 emit_group_load (rtx dst, rtx src, tree type, int ssize)
2270 rtx *tmps;
2271 int i;
2273 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2274 emit_group_load_1 (tmps, dst, src, type, ssize);
2276 /* Copy the extracted pieces into the proper (probable) hard regs. */
2277 for (i = 0; i < XVECLEN (dst, 0); i++)
2279 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2280 if (d == NULL)
2281 continue;
2282 emit_move_insn (d, tmps[i]);
2286 /* Similar, but load SRC into new pseudos in a format that looks like
2287 PARALLEL. This can later be fed to emit_group_move to get things
2288 in the right place. */
2291 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
2293 rtvec vec;
2294 int i;
2296 vec = rtvec_alloc (XVECLEN (parallel, 0));
2297 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2299 /* Convert the vector to look just like the original PARALLEL, except
2300 with the computed values. */
2301 for (i = 0; i < XVECLEN (parallel, 0); i++)
2303 rtx e = XVECEXP (parallel, 0, i);
2304 rtx d = XEXP (e, 0);
2306 if (d)
2308 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2309 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2311 RTVEC_ELT (vec, i) = e;
2314 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2317 /* Emit code to move a block SRC to block DST, where SRC and DST are
2318 non-consecutive groups of registers, each represented by a PARALLEL. */
2320 void
2321 emit_group_move (rtx dst, rtx src)
2323 int i;
2325 gcc_assert (GET_CODE (src) == PARALLEL
2326 && GET_CODE (dst) == PARALLEL
2327 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2329 /* Skip first entry if NULL. */
2330 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2331 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2332 XEXP (XVECEXP (src, 0, i), 0));
2335 /* Move a group of registers represented by a PARALLEL into pseudos. */
2338 emit_group_move_into_temps (rtx src)
2340 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2341 int i;
2343 for (i = 0; i < XVECLEN (src, 0); i++)
2345 rtx e = XVECEXP (src, 0, i);
2346 rtx d = XEXP (e, 0);
2348 if (d)
2349 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2350 RTVEC_ELT (vec, i) = e;
2353 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2356 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2357 where SRC is non-consecutive registers represented by a PARALLEL.
2358 SSIZE represents the total size of block ORIG_DST, or -1 if not
2359 known. */
2361 void
2362 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
2364 rtx *tmps, dst;
2365 int start, finish, i;
2366 machine_mode m = GET_MODE (orig_dst);
2368 gcc_assert (GET_CODE (src) == PARALLEL);
2370 if (!SCALAR_INT_MODE_P (m)
2371 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2373 machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
2374 if (imode == BLKmode)
2375 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2376 else
2377 dst = gen_reg_rtx (imode);
2378 emit_group_store (dst, src, type, ssize);
2379 if (imode != BLKmode)
2380 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2381 emit_move_insn (orig_dst, dst);
2382 return;
2385 /* Check for a NULL entry, used to indicate that the parameter goes
2386 both on the stack and in registers. */
2387 if (XEXP (XVECEXP (src, 0, 0), 0))
2388 start = 0;
2389 else
2390 start = 1;
2391 finish = XVECLEN (src, 0);
2393 tmps = XALLOCAVEC (rtx, finish);
2395 /* Copy the (probable) hard regs into pseudos. */
2396 for (i = start; i < finish; i++)
2398 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2399 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2401 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2402 emit_move_insn (tmps[i], reg);
2404 else
2405 tmps[i] = reg;
2408 /* If we won't be storing directly into memory, protect the real destination
2409 from strange tricks we might play. */
2410 dst = orig_dst;
2411 if (GET_CODE (dst) == PARALLEL)
2413 rtx temp;
2415 /* We can get a PARALLEL dst if there is a conditional expression in
2416 a return statement. In that case, the dst and src are the same,
2417 so no action is necessary. */
2418 if (rtx_equal_p (dst, src))
2419 return;
2421 /* It is unclear if we can ever reach here, but we may as well handle
2422 it. Allocate a temporary, and split this into a store/load to/from
2423 the temporary. */
2424 temp = assign_stack_temp (GET_MODE (dst), ssize);
2425 emit_group_store (temp, src, type, ssize);
2426 emit_group_load (dst, temp, type, ssize);
2427 return;
2429 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2431 machine_mode outer = GET_MODE (dst);
2432 machine_mode inner;
2433 HOST_WIDE_INT bytepos;
2434 bool done = false;
2435 rtx temp;
2437 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2438 dst = gen_reg_rtx (outer);
2440 /* Make life a bit easier for combine. */
2441 /* If the first element of the vector is the low part
2442 of the destination mode, use a paradoxical subreg to
2443 initialize the destination. */
2444 if (start < finish)
2446 inner = GET_MODE (tmps[start]);
2447 bytepos = subreg_lowpart_offset (inner, outer);
2448 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2450 temp = simplify_gen_subreg (outer, tmps[start],
2451 inner, 0);
2452 if (temp)
2454 emit_move_insn (dst, temp);
2455 done = true;
2456 start++;
2461 /* If the first element wasn't the low part, try the last. */
2462 if (!done
2463 && start < finish - 1)
2465 inner = GET_MODE (tmps[finish - 1]);
2466 bytepos = subreg_lowpart_offset (inner, outer);
2467 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2469 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2470 inner, 0);
2471 if (temp)
2473 emit_move_insn (dst, temp);
2474 done = true;
2475 finish--;
2480 /* Otherwise, simply initialize the result to zero. */
2481 if (!done)
2482 emit_move_insn (dst, CONST0_RTX (outer));
2485 /* Process the pieces. */
2486 for (i = start; i < finish; i++)
2488 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2489 machine_mode mode = GET_MODE (tmps[i]);
2490 unsigned int bytelen = GET_MODE_SIZE (mode);
2491 unsigned int adj_bytelen;
2492 rtx dest = dst;
2494 /* Handle trailing fragments that run over the size of the struct. */
2495 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2496 adj_bytelen = ssize - bytepos;
2497 else
2498 adj_bytelen = bytelen;
2500 if (GET_CODE (dst) == CONCAT)
2502 if (bytepos + adj_bytelen
2503 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2504 dest = XEXP (dst, 0);
2505 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2507 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2508 dest = XEXP (dst, 1);
2510 else
2512 machine_mode dest_mode = GET_MODE (dest);
2513 machine_mode tmp_mode = GET_MODE (tmps[i]);
2515 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2517 if (GET_MODE_ALIGNMENT (dest_mode)
2518 >= GET_MODE_ALIGNMENT (tmp_mode))
2520 dest = assign_stack_temp (dest_mode,
2521 GET_MODE_SIZE (dest_mode));
2522 emit_move_insn (adjust_address (dest,
2523 tmp_mode,
2524 bytepos),
2525 tmps[i]);
2526 dst = dest;
2528 else
2530 dest = assign_stack_temp (tmp_mode,
2531 GET_MODE_SIZE (tmp_mode));
2532 emit_move_insn (dest, tmps[i]);
2533 dst = adjust_address (dest, dest_mode, bytepos);
2535 break;
2539 /* Handle trailing fragments that run over the size of the struct. */
2540 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2542 /* store_bit_field always takes its value from the lsb.
2543 Move the fragment to the lsb if it's not already there. */
2544 if (
2545 #ifdef BLOCK_REG_PADDING
2546 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2547 == (BYTES_BIG_ENDIAN ? upward : downward)
2548 #else
2549 BYTES_BIG_ENDIAN
2550 #endif
2553 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2554 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2555 shift, tmps[i], 0);
2558 /* Make sure not to write past the end of the struct. */
2559 store_bit_field (dest,
2560 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2561 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2562 VOIDmode, tmps[i], false);
2565 /* Optimize the access just a bit. */
2566 else if (MEM_P (dest)
2567 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2568 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2569 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2570 && bytelen == GET_MODE_SIZE (mode))
2571 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2573 else
2574 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2575 0, 0, mode, tmps[i], false);
2578 /* Copy from the pseudo into the (probable) hard reg. */
2579 if (orig_dst != dst)
2580 emit_move_insn (orig_dst, dst);
2583 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2584 of the value stored in X. */
2587 maybe_emit_group_store (rtx x, tree type)
2589 machine_mode mode = TYPE_MODE (type);
2590 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2591 if (GET_CODE (x) == PARALLEL)
2593 rtx result = gen_reg_rtx (mode);
2594 emit_group_store (result, x, type, int_size_in_bytes (type));
2595 return result;
2597 return x;
2600 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2602 This is used on targets that return BLKmode values in registers. */
2604 static void
2605 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2607 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2608 rtx src = NULL, dst = NULL;
2609 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2610 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2611 machine_mode mode = GET_MODE (srcreg);
2612 machine_mode tmode = GET_MODE (target);
2613 machine_mode copy_mode;
2615 /* BLKmode registers created in the back-end shouldn't have survived. */
2616 gcc_assert (mode != BLKmode);
2618 /* If the structure doesn't take up a whole number of words, see whether
2619 SRCREG is padded on the left or on the right. If it's on the left,
2620 set PADDING_CORRECTION to the number of bits to skip.
2622 In most ABIs, the structure will be returned at the least end of
2623 the register, which translates to right padding on little-endian
2624 targets and left padding on big-endian targets. The opposite
2625 holds if the structure is returned at the most significant
2626 end of the register. */
2627 if (bytes % UNITS_PER_WORD != 0
2628 && (targetm.calls.return_in_msb (type)
2629 ? !BYTES_BIG_ENDIAN
2630 : BYTES_BIG_ENDIAN))
2631 padding_correction
2632 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2634 /* We can use a single move if we have an exact mode for the size. */
2635 else if (MEM_P (target)
2636 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2637 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2638 && bytes == GET_MODE_SIZE (mode))
2640 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2641 return;
2644 /* And if we additionally have the same mode for a register. */
2645 else if (REG_P (target)
2646 && GET_MODE (target) == mode
2647 && bytes == GET_MODE_SIZE (mode))
2649 emit_move_insn (target, srcreg);
2650 return;
2653 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2654 into a new pseudo which is a full word. */
2655 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2657 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2658 mode = word_mode;
2661 /* Copy the structure BITSIZE bits at a time. If the target lives in
2662 memory, take care of not reading/writing past its end by selecting
2663 a copy mode suited to BITSIZE. This should always be possible given
2664 how it is computed.
2666 If the target lives in register, make sure not to select a copy mode
2667 larger than the mode of the register.
2669 We could probably emit more efficient code for machines which do not use
2670 strict alignment, but it doesn't seem worth the effort at the current
2671 time. */
2673 copy_mode = word_mode;
2674 if (MEM_P (target))
2676 machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2677 if (mem_mode != BLKmode)
2678 copy_mode = mem_mode;
2680 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2681 copy_mode = tmode;
2683 for (bitpos = 0, xbitpos = padding_correction;
2684 bitpos < bytes * BITS_PER_UNIT;
2685 bitpos += bitsize, xbitpos += bitsize)
2687 /* We need a new source operand each time xbitpos is on a
2688 word boundary and when xbitpos == padding_correction
2689 (the first time through). */
2690 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2691 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2693 /* We need a new destination operand each time bitpos is on
2694 a word boundary. */
2695 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2696 dst = target;
2697 else if (bitpos % BITS_PER_WORD == 0)
2698 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2700 /* Use xbitpos for the source extraction (right justified) and
2701 bitpos for the destination store (left justified). */
2702 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2703 extract_bit_field (src, bitsize,
2704 xbitpos % BITS_PER_WORD, 1,
2705 NULL_RTX, copy_mode, copy_mode,
2706 false, NULL),
2707 false);
2711 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2712 register if it contains any data, otherwise return null.
2714 This is used on targets that return BLKmode values in registers. */
2717 copy_blkmode_to_reg (machine_mode mode, tree src)
2719 int i, n_regs;
2720 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2721 unsigned int bitsize;
2722 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2723 machine_mode dst_mode;
2725 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2727 x = expand_normal (src);
2729 bytes = int_size_in_bytes (TREE_TYPE (src));
2730 if (bytes == 0)
2731 return NULL_RTX;
2733 /* If the structure doesn't take up a whole number of words, see
2734 whether the register value should be padded on the left or on
2735 the right. Set PADDING_CORRECTION to the number of padding
2736 bits needed on the left side.
2738 In most ABIs, the structure will be returned at the least end of
2739 the register, which translates to right padding on little-endian
2740 targets and left padding on big-endian targets. The opposite
2741 holds if the structure is returned at the most significant
2742 end of the register. */
2743 if (bytes % UNITS_PER_WORD != 0
2744 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2745 ? !BYTES_BIG_ENDIAN
2746 : BYTES_BIG_ENDIAN))
2747 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2748 * BITS_PER_UNIT));
2750 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2751 dst_words = XALLOCAVEC (rtx, n_regs);
2752 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2754 /* Copy the structure BITSIZE bits at a time. */
2755 for (bitpos = 0, xbitpos = padding_correction;
2756 bitpos < bytes * BITS_PER_UNIT;
2757 bitpos += bitsize, xbitpos += bitsize)
2759 /* We need a new destination pseudo each time xbitpos is
2760 on a word boundary and when xbitpos == padding_correction
2761 (the first time through). */
2762 if (xbitpos % BITS_PER_WORD == 0
2763 || xbitpos == padding_correction)
2765 /* Generate an appropriate register. */
2766 dst_word = gen_reg_rtx (word_mode);
2767 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2769 /* Clear the destination before we move anything into it. */
2770 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2773 /* We need a new source operand each time bitpos is on a word
2774 boundary. */
2775 if (bitpos % BITS_PER_WORD == 0)
2776 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2778 /* Use bitpos for the source extraction (left justified) and
2779 xbitpos for the destination store (right justified). */
2780 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2781 0, 0, word_mode,
2782 extract_bit_field (src_word, bitsize,
2783 bitpos % BITS_PER_WORD, 1,
2784 NULL_RTX, word_mode, word_mode,
2785 false, NULL),
2786 false);
2789 if (mode == BLKmode)
2791 /* Find the smallest integer mode large enough to hold the
2792 entire structure. */
2793 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2794 mode != VOIDmode;
2795 mode = GET_MODE_WIDER_MODE (mode))
2796 /* Have we found a large enough mode? */
2797 if (GET_MODE_SIZE (mode) >= bytes)
2798 break;
2800 /* A suitable mode should have been found. */
2801 gcc_assert (mode != VOIDmode);
2804 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2805 dst_mode = word_mode;
2806 else
2807 dst_mode = mode;
2808 dst = gen_reg_rtx (dst_mode);
2810 for (i = 0; i < n_regs; i++)
2811 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2813 if (mode != dst_mode)
2814 dst = gen_lowpart (mode, dst);
2816 return dst;
2819 /* Add a USE expression for REG to the (possibly empty) list pointed
2820 to by CALL_FUSAGE. REG must denote a hard register. */
2822 void
2823 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2825 gcc_assert (REG_P (reg));
2827 if (!HARD_REGISTER_P (reg))
2828 return;
2830 *call_fusage
2831 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2834 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2835 to by CALL_FUSAGE. REG must denote a hard register. */
2837 void
2838 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2840 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2842 *call_fusage
2843 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2846 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2847 starting at REGNO. All of these registers must be hard registers. */
2849 void
2850 use_regs (rtx *call_fusage, int regno, int nregs)
2852 int i;
2854 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2856 for (i = 0; i < nregs; i++)
2857 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2860 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2861 PARALLEL REGS. This is for calls that pass values in multiple
2862 non-contiguous locations. The Irix 6 ABI has examples of this. */
2864 void
2865 use_group_regs (rtx *call_fusage, rtx regs)
2867 int i;
2869 for (i = 0; i < XVECLEN (regs, 0); i++)
2871 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2873 /* A NULL entry means the parameter goes both on the stack and in
2874 registers. This can also be a MEM for targets that pass values
2875 partially on the stack and partially in registers. */
2876 if (reg != 0 && REG_P (reg))
2877 use_reg (call_fusage, reg);
2881 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2882 assigment and the code of the expresion on the RHS is CODE. Return
2883 NULL otherwise. */
2885 static gimple *
2886 get_def_for_expr (tree name, enum tree_code code)
2888 gimple *def_stmt;
2890 if (TREE_CODE (name) != SSA_NAME)
2891 return NULL;
2893 def_stmt = get_gimple_for_ssa_name (name);
2894 if (!def_stmt
2895 || gimple_assign_rhs_code (def_stmt) != code)
2896 return NULL;
2898 return def_stmt;
2901 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2902 assigment and the class of the expresion on the RHS is CLASS. Return
2903 NULL otherwise. */
2905 static gimple *
2906 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2908 gimple *def_stmt;
2910 if (TREE_CODE (name) != SSA_NAME)
2911 return NULL;
2913 def_stmt = get_gimple_for_ssa_name (name);
2914 if (!def_stmt
2915 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2916 return NULL;
2918 return def_stmt;
2921 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2922 its length in bytes. */
2925 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2926 unsigned int expected_align, HOST_WIDE_INT expected_size,
2927 unsigned HOST_WIDE_INT min_size,
2928 unsigned HOST_WIDE_INT max_size,
2929 unsigned HOST_WIDE_INT probable_max_size)
2931 machine_mode mode = GET_MODE (object);
2932 unsigned int align;
2934 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2936 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2937 just move a zero. Otherwise, do this a piece at a time. */
2938 if (mode != BLKmode
2939 && CONST_INT_P (size)
2940 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2942 rtx zero = CONST0_RTX (mode);
2943 if (zero != NULL)
2945 emit_move_insn (object, zero);
2946 return NULL;
2949 if (COMPLEX_MODE_P (mode))
2951 zero = CONST0_RTX (GET_MODE_INNER (mode));
2952 if (zero != NULL)
2954 write_complex_part (object, zero, 0);
2955 write_complex_part (object, zero, 1);
2956 return NULL;
2961 if (size == const0_rtx)
2962 return NULL;
2964 align = MEM_ALIGN (object);
2966 if (CONST_INT_P (size)
2967 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2968 CLEAR_BY_PIECES,
2969 optimize_insn_for_speed_p ()))
2970 clear_by_pieces (object, INTVAL (size), align);
2971 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2972 expected_align, expected_size,
2973 min_size, max_size, probable_max_size))
2975 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2976 return set_storage_via_libcall (object, size, const0_rtx,
2977 method == BLOCK_OP_TAILCALL);
2978 else
2979 gcc_unreachable ();
2981 return NULL;
2985 clear_storage (rtx object, rtx size, enum block_op_methods method)
2987 unsigned HOST_WIDE_INT max, min = 0;
2988 if (GET_CODE (size) == CONST_INT)
2989 min = max = UINTVAL (size);
2990 else
2991 max = GET_MODE_MASK (GET_MODE (size));
2992 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2996 /* A subroutine of clear_storage. Expand a call to memset.
2997 Return the return value of memset, 0 otherwise. */
3000 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3002 tree call_expr, fn, object_tree, size_tree, val_tree;
3003 machine_mode size_mode;
3005 object = copy_addr_to_reg (XEXP (object, 0));
3006 object_tree = make_tree (ptr_type_node, object);
3008 if (!CONST_INT_P (val))
3009 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3010 val_tree = make_tree (integer_type_node, val);
3012 size_mode = TYPE_MODE (sizetype);
3013 size = convert_to_mode (size_mode, size, 1);
3014 size = copy_to_mode_reg (size_mode, size);
3015 size_tree = make_tree (sizetype, size);
3017 /* It is incorrect to use the libcall calling conventions for calls to
3018 memset because it can be provided by the user. */
3019 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3020 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3021 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3023 return expand_call (call_expr, NULL_RTX, false);
3026 /* Expand a setmem pattern; return true if successful. */
3028 bool
3029 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3030 unsigned int expected_align, HOST_WIDE_INT expected_size,
3031 unsigned HOST_WIDE_INT min_size,
3032 unsigned HOST_WIDE_INT max_size,
3033 unsigned HOST_WIDE_INT probable_max_size)
3035 /* Try the most limited insn first, because there's no point
3036 including more than one in the machine description unless
3037 the more limited one has some advantage. */
3039 machine_mode mode;
3041 if (expected_align < align)
3042 expected_align = align;
3043 if (expected_size != -1)
3045 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3046 expected_size = max_size;
3047 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3048 expected_size = min_size;
3051 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
3052 mode = GET_MODE_WIDER_MODE (mode))
3054 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3056 if (code != CODE_FOR_nothing
3057 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3058 here because if SIZE is less than the mode mask, as it is
3059 returned by the macro, it will definitely be less than the
3060 actual mode mask. Since SIZE is within the Pmode address
3061 space, we limit MODE to Pmode. */
3062 && ((CONST_INT_P (size)
3063 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3064 <= (GET_MODE_MASK (mode) >> 1)))
3065 || max_size <= (GET_MODE_MASK (mode) >> 1)
3066 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3068 struct expand_operand ops[9];
3069 unsigned int nops;
3071 nops = insn_data[(int) code].n_generator_args;
3072 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3074 create_fixed_operand (&ops[0], object);
3075 /* The check above guarantees that this size conversion is valid. */
3076 create_convert_operand_to (&ops[1], size, mode, true);
3077 create_convert_operand_from (&ops[2], val, byte_mode, true);
3078 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3079 if (nops >= 6)
3081 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3082 create_integer_operand (&ops[5], expected_size);
3084 if (nops >= 8)
3086 create_integer_operand (&ops[6], min_size);
3087 /* If we can not represent the maximal size,
3088 make parameter NULL. */
3089 if ((HOST_WIDE_INT) max_size != -1)
3090 create_integer_operand (&ops[7], max_size);
3091 else
3092 create_fixed_operand (&ops[7], NULL);
3094 if (nops == 9)
3096 /* If we can not represent the maximal size,
3097 make parameter NULL. */
3098 if ((HOST_WIDE_INT) probable_max_size != -1)
3099 create_integer_operand (&ops[8], probable_max_size);
3100 else
3101 create_fixed_operand (&ops[8], NULL);
3103 if (maybe_expand_insn (code, nops, ops))
3104 return true;
3108 return false;
3112 /* Write to one of the components of the complex value CPLX. Write VAL to
3113 the real part if IMAG_P is false, and the imaginary part if its true. */
3115 void
3116 write_complex_part (rtx cplx, rtx val, bool imag_p)
3118 machine_mode cmode;
3119 machine_mode imode;
3120 unsigned ibitsize;
3122 if (GET_CODE (cplx) == CONCAT)
3124 emit_move_insn (XEXP (cplx, imag_p), val);
3125 return;
3128 cmode = GET_MODE (cplx);
3129 imode = GET_MODE_INNER (cmode);
3130 ibitsize = GET_MODE_BITSIZE (imode);
3132 /* For MEMs simplify_gen_subreg may generate an invalid new address
3133 because, e.g., the original address is considered mode-dependent
3134 by the target, which restricts simplify_subreg from invoking
3135 adjust_address_nv. Instead of preparing fallback support for an
3136 invalid address, we call adjust_address_nv directly. */
3137 if (MEM_P (cplx))
3139 emit_move_insn (adjust_address_nv (cplx, imode,
3140 imag_p ? GET_MODE_SIZE (imode) : 0),
3141 val);
3142 return;
3145 /* If the sub-object is at least word sized, then we know that subregging
3146 will work. This special case is important, since store_bit_field
3147 wants to operate on integer modes, and there's rarely an OImode to
3148 correspond to TCmode. */
3149 if (ibitsize >= BITS_PER_WORD
3150 /* For hard regs we have exact predicates. Assume we can split
3151 the original object if it spans an even number of hard regs.
3152 This special case is important for SCmode on 64-bit platforms
3153 where the natural size of floating-point regs is 32-bit. */
3154 || (REG_P (cplx)
3155 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3156 && REG_NREGS (cplx) % 2 == 0))
3158 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3159 imag_p ? GET_MODE_SIZE (imode) : 0);
3160 if (part)
3162 emit_move_insn (part, val);
3163 return;
3165 else
3166 /* simplify_gen_subreg may fail for sub-word MEMs. */
3167 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3170 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3171 false);
3174 /* Extract one of the components of the complex value CPLX. Extract the
3175 real part if IMAG_P is false, and the imaginary part if it's true. */
3178 read_complex_part (rtx cplx, bool imag_p)
3180 machine_mode cmode, imode;
3181 unsigned ibitsize;
3183 if (GET_CODE (cplx) == CONCAT)
3184 return XEXP (cplx, imag_p);
3186 cmode = GET_MODE (cplx);
3187 imode = GET_MODE_INNER (cmode);
3188 ibitsize = GET_MODE_BITSIZE (imode);
3190 /* Special case reads from complex constants that got spilled to memory. */
3191 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3193 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3194 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3196 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3197 if (CONSTANT_CLASS_P (part))
3198 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3202 /* For MEMs simplify_gen_subreg may generate an invalid new address
3203 because, e.g., the original address is considered mode-dependent
3204 by the target, which restricts simplify_subreg from invoking
3205 adjust_address_nv. Instead of preparing fallback support for an
3206 invalid address, we call adjust_address_nv directly. */
3207 if (MEM_P (cplx))
3208 return adjust_address_nv (cplx, imode,
3209 imag_p ? GET_MODE_SIZE (imode) : 0);
3211 /* If the sub-object is at least word sized, then we know that subregging
3212 will work. This special case is important, since extract_bit_field
3213 wants to operate on integer modes, and there's rarely an OImode to
3214 correspond to TCmode. */
3215 if (ibitsize >= BITS_PER_WORD
3216 /* For hard regs we have exact predicates. Assume we can split
3217 the original object if it spans an even number of hard regs.
3218 This special case is important for SCmode on 64-bit platforms
3219 where the natural size of floating-point regs is 32-bit. */
3220 || (REG_P (cplx)
3221 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3222 && REG_NREGS (cplx) % 2 == 0))
3224 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3225 imag_p ? GET_MODE_SIZE (imode) : 0);
3226 if (ret)
3227 return ret;
3228 else
3229 /* simplify_gen_subreg may fail for sub-word MEMs. */
3230 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3233 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3234 true, NULL_RTX, imode, imode, false, NULL);
3237 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3238 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3239 represented in NEW_MODE. If FORCE is true, this will never happen, as
3240 we'll force-create a SUBREG if needed. */
3242 static rtx
3243 emit_move_change_mode (machine_mode new_mode,
3244 machine_mode old_mode, rtx x, bool force)
3246 rtx ret;
3248 if (push_operand (x, GET_MODE (x)))
3250 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3251 MEM_COPY_ATTRIBUTES (ret, x);
3253 else if (MEM_P (x))
3255 /* We don't have to worry about changing the address since the
3256 size in bytes is supposed to be the same. */
3257 if (reload_in_progress)
3259 /* Copy the MEM to change the mode and move any
3260 substitutions from the old MEM to the new one. */
3261 ret = adjust_address_nv (x, new_mode, 0);
3262 copy_replacements (x, ret);
3264 else
3265 ret = adjust_address (x, new_mode, 0);
3267 else
3269 /* Note that we do want simplify_subreg's behavior of validating
3270 that the new mode is ok for a hard register. If we were to use
3271 simplify_gen_subreg, we would create the subreg, but would
3272 probably run into the target not being able to implement it. */
3273 /* Except, of course, when FORCE is true, when this is exactly what
3274 we want. Which is needed for CCmodes on some targets. */
3275 if (force)
3276 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3277 else
3278 ret = simplify_subreg (new_mode, x, old_mode, 0);
3281 return ret;
3284 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3285 an integer mode of the same size as MODE. Returns the instruction
3286 emitted, or NULL if such a move could not be generated. */
3288 static rtx_insn *
3289 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3291 machine_mode imode;
3292 enum insn_code code;
3294 /* There must exist a mode of the exact size we require. */
3295 imode = int_mode_for_mode (mode);
3296 if (imode == BLKmode)
3297 return NULL;
3299 /* The target must support moves in this mode. */
3300 code = optab_handler (mov_optab, imode);
3301 if (code == CODE_FOR_nothing)
3302 return NULL;
3304 x = emit_move_change_mode (imode, mode, x, force);
3305 if (x == NULL_RTX)
3306 return NULL;
3307 y = emit_move_change_mode (imode, mode, y, force);
3308 if (y == NULL_RTX)
3309 return NULL;
3310 return emit_insn (GEN_FCN (code) (x, y));
3313 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3314 Return an equivalent MEM that does not use an auto-increment. */
3317 emit_move_resolve_push (machine_mode mode, rtx x)
3319 enum rtx_code code = GET_CODE (XEXP (x, 0));
3320 HOST_WIDE_INT adjust;
3321 rtx temp;
3323 adjust = GET_MODE_SIZE (mode);
3324 #ifdef PUSH_ROUNDING
3325 adjust = PUSH_ROUNDING (adjust);
3326 #endif
3327 if (code == PRE_DEC || code == POST_DEC)
3328 adjust = -adjust;
3329 else if (code == PRE_MODIFY || code == POST_MODIFY)
3331 rtx expr = XEXP (XEXP (x, 0), 1);
3332 HOST_WIDE_INT val;
3334 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3335 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3336 val = INTVAL (XEXP (expr, 1));
3337 if (GET_CODE (expr) == MINUS)
3338 val = -val;
3339 gcc_assert (adjust == val || adjust == -val);
3340 adjust = val;
3343 /* Do not use anti_adjust_stack, since we don't want to update
3344 stack_pointer_delta. */
3345 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3346 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3347 0, OPTAB_LIB_WIDEN);
3348 if (temp != stack_pointer_rtx)
3349 emit_move_insn (stack_pointer_rtx, temp);
3351 switch (code)
3353 case PRE_INC:
3354 case PRE_DEC:
3355 case PRE_MODIFY:
3356 temp = stack_pointer_rtx;
3357 break;
3358 case POST_INC:
3359 case POST_DEC:
3360 case POST_MODIFY:
3361 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3362 break;
3363 default:
3364 gcc_unreachable ();
3367 return replace_equiv_address (x, temp);
3370 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3371 X is known to satisfy push_operand, and MODE is known to be complex.
3372 Returns the last instruction emitted. */
3374 rtx_insn *
3375 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3377 machine_mode submode = GET_MODE_INNER (mode);
3378 bool imag_first;
3380 #ifdef PUSH_ROUNDING
3381 unsigned int submodesize = GET_MODE_SIZE (submode);
3383 /* In case we output to the stack, but the size is smaller than the
3384 machine can push exactly, we need to use move instructions. */
3385 if (PUSH_ROUNDING (submodesize) != submodesize)
3387 x = emit_move_resolve_push (mode, x);
3388 return emit_move_insn (x, y);
3390 #endif
3392 /* Note that the real part always precedes the imag part in memory
3393 regardless of machine's endianness. */
3394 switch (GET_CODE (XEXP (x, 0)))
3396 case PRE_DEC:
3397 case POST_DEC:
3398 imag_first = true;
3399 break;
3400 case PRE_INC:
3401 case POST_INC:
3402 imag_first = false;
3403 break;
3404 default:
3405 gcc_unreachable ();
3408 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3409 read_complex_part (y, imag_first));
3410 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3411 read_complex_part (y, !imag_first));
3414 /* A subroutine of emit_move_complex. Perform the move from Y to X
3415 via two moves of the parts. Returns the last instruction emitted. */
3417 rtx_insn *
3418 emit_move_complex_parts (rtx x, rtx y)
3420 /* Show the output dies here. This is necessary for SUBREGs
3421 of pseudos since we cannot track their lifetimes correctly;
3422 hard regs shouldn't appear here except as return values. */
3423 if (!reload_completed && !reload_in_progress
3424 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3425 emit_clobber (x);
3427 write_complex_part (x, read_complex_part (y, false), false);
3428 write_complex_part (x, read_complex_part (y, true), true);
3430 return get_last_insn ();
3433 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3434 MODE is known to be complex. Returns the last instruction emitted. */
3436 static rtx_insn *
3437 emit_move_complex (machine_mode mode, rtx x, rtx y)
3439 bool try_int;
3441 /* Need to take special care for pushes, to maintain proper ordering
3442 of the data, and possibly extra padding. */
3443 if (push_operand (x, mode))
3444 return emit_move_complex_push (mode, x, y);
3446 /* See if we can coerce the target into moving both values at once, except
3447 for floating point where we favor moving as parts if this is easy. */
3448 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3449 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3450 && !(REG_P (x)
3451 && HARD_REGISTER_P (x)
3452 && REG_NREGS (x) == 1)
3453 && !(REG_P (y)
3454 && HARD_REGISTER_P (y)
3455 && REG_NREGS (y) == 1))
3456 try_int = false;
3457 /* Not possible if the values are inherently not adjacent. */
3458 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3459 try_int = false;
3460 /* Is possible if both are registers (or subregs of registers). */
3461 else if (register_operand (x, mode) && register_operand (y, mode))
3462 try_int = true;
3463 /* If one of the operands is a memory, and alignment constraints
3464 are friendly enough, we may be able to do combined memory operations.
3465 We do not attempt this if Y is a constant because that combination is
3466 usually better with the by-parts thing below. */
3467 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3468 && (!STRICT_ALIGNMENT
3469 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3470 try_int = true;
3471 else
3472 try_int = false;
3474 if (try_int)
3476 rtx_insn *ret;
3478 /* For memory to memory moves, optimal behavior can be had with the
3479 existing block move logic. */
3480 if (MEM_P (x) && MEM_P (y))
3482 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3483 BLOCK_OP_NO_LIBCALL);
3484 return get_last_insn ();
3487 ret = emit_move_via_integer (mode, x, y, true);
3488 if (ret)
3489 return ret;
3492 return emit_move_complex_parts (x, y);
3495 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3496 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3498 static rtx_insn *
3499 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3501 rtx_insn *ret;
3503 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3504 if (mode != CCmode)
3506 enum insn_code code = optab_handler (mov_optab, CCmode);
3507 if (code != CODE_FOR_nothing)
3509 x = emit_move_change_mode (CCmode, mode, x, true);
3510 y = emit_move_change_mode (CCmode, mode, y, true);
3511 return emit_insn (GEN_FCN (code) (x, y));
3515 /* Otherwise, find the MODE_INT mode of the same width. */
3516 ret = emit_move_via_integer (mode, x, y, false);
3517 gcc_assert (ret != NULL);
3518 return ret;
3521 /* Return true if word I of OP lies entirely in the
3522 undefined bits of a paradoxical subreg. */
3524 static bool
3525 undefined_operand_subword_p (const_rtx op, int i)
3527 machine_mode innermode, innermostmode;
3528 int offset;
3529 if (GET_CODE (op) != SUBREG)
3530 return false;
3531 innermode = GET_MODE (op);
3532 innermostmode = GET_MODE (SUBREG_REG (op));
3533 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3534 /* The SUBREG_BYTE represents offset, as if the value were stored in
3535 memory, except for a paradoxical subreg where we define
3536 SUBREG_BYTE to be 0; undo this exception as in
3537 simplify_subreg. */
3538 if (SUBREG_BYTE (op) == 0
3539 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3541 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3542 if (WORDS_BIG_ENDIAN)
3543 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3544 if (BYTES_BIG_ENDIAN)
3545 offset += difference % UNITS_PER_WORD;
3547 if (offset >= GET_MODE_SIZE (innermostmode)
3548 || offset <= -GET_MODE_SIZE (word_mode))
3549 return true;
3550 return false;
3553 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3554 MODE is any multi-word or full-word mode that lacks a move_insn
3555 pattern. Note that you will get better code if you define such
3556 patterns, even if they must turn into multiple assembler instructions. */
3558 static rtx_insn *
3559 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3561 rtx_insn *last_insn = 0;
3562 rtx_insn *seq;
3563 rtx inner;
3564 bool need_clobber;
3565 int i;
3567 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3569 /* If X is a push on the stack, do the push now and replace
3570 X with a reference to the stack pointer. */
3571 if (push_operand (x, mode))
3572 x = emit_move_resolve_push (mode, x);
3574 /* If we are in reload, see if either operand is a MEM whose address
3575 is scheduled for replacement. */
3576 if (reload_in_progress && MEM_P (x)
3577 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3578 x = replace_equiv_address_nv (x, inner);
3579 if (reload_in_progress && MEM_P (y)
3580 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3581 y = replace_equiv_address_nv (y, inner);
3583 start_sequence ();
3585 need_clobber = false;
3586 for (i = 0;
3587 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3588 i++)
3590 rtx xpart = operand_subword (x, i, 1, mode);
3591 rtx ypart;
3593 /* Do not generate code for a move if it would come entirely
3594 from the undefined bits of a paradoxical subreg. */
3595 if (undefined_operand_subword_p (y, i))
3596 continue;
3598 ypart = operand_subword (y, i, 1, mode);
3600 /* If we can't get a part of Y, put Y into memory if it is a
3601 constant. Otherwise, force it into a register. Then we must
3602 be able to get a part of Y. */
3603 if (ypart == 0 && CONSTANT_P (y))
3605 y = use_anchored_address (force_const_mem (mode, y));
3606 ypart = operand_subword (y, i, 1, mode);
3608 else if (ypart == 0)
3609 ypart = operand_subword_force (y, i, mode);
3611 gcc_assert (xpart && ypart);
3613 need_clobber |= (GET_CODE (xpart) == SUBREG);
3615 last_insn = emit_move_insn (xpart, ypart);
3618 seq = get_insns ();
3619 end_sequence ();
3621 /* Show the output dies here. This is necessary for SUBREGs
3622 of pseudos since we cannot track their lifetimes correctly;
3623 hard regs shouldn't appear here except as return values.
3624 We never want to emit such a clobber after reload. */
3625 if (x != y
3626 && ! (reload_in_progress || reload_completed)
3627 && need_clobber != 0)
3628 emit_clobber (x);
3630 emit_insn (seq);
3632 return last_insn;
3635 /* Low level part of emit_move_insn.
3636 Called just like emit_move_insn, but assumes X and Y
3637 are basically valid. */
3639 rtx_insn *
3640 emit_move_insn_1 (rtx x, rtx y)
3642 machine_mode mode = GET_MODE (x);
3643 enum insn_code code;
3645 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3647 code = optab_handler (mov_optab, mode);
3648 if (code != CODE_FOR_nothing)
3649 return emit_insn (GEN_FCN (code) (x, y));
3651 /* Expand complex moves by moving real part and imag part. */
3652 if (COMPLEX_MODE_P (mode))
3653 return emit_move_complex (mode, x, y);
3655 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3656 || ALL_FIXED_POINT_MODE_P (mode))
3658 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3660 /* If we can't find an integer mode, use multi words. */
3661 if (result)
3662 return result;
3663 else
3664 return emit_move_multi_word (mode, x, y);
3667 if (GET_MODE_CLASS (mode) == MODE_CC)
3668 return emit_move_ccmode (mode, x, y);
3670 /* Try using a move pattern for the corresponding integer mode. This is
3671 only safe when simplify_subreg can convert MODE constants into integer
3672 constants. At present, it can only do this reliably if the value
3673 fits within a HOST_WIDE_INT. */
3674 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3676 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3678 if (ret)
3680 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3681 return ret;
3685 return emit_move_multi_word (mode, x, y);
3688 /* Generate code to copy Y into X.
3689 Both Y and X must have the same mode, except that
3690 Y can be a constant with VOIDmode.
3691 This mode cannot be BLKmode; use emit_block_move for that.
3693 Return the last instruction emitted. */
3695 rtx_insn *
3696 emit_move_insn (rtx x, rtx y)
3698 machine_mode mode = GET_MODE (x);
3699 rtx y_cst = NULL_RTX;
3700 rtx_insn *last_insn;
3701 rtx set;
3703 gcc_assert (mode != BLKmode
3704 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3706 if (CONSTANT_P (y))
3708 if (optimize
3709 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3710 && (last_insn = compress_float_constant (x, y)))
3711 return last_insn;
3713 y_cst = y;
3715 if (!targetm.legitimate_constant_p (mode, y))
3717 y = force_const_mem (mode, y);
3719 /* If the target's cannot_force_const_mem prevented the spill,
3720 assume that the target's move expanders will also take care
3721 of the non-legitimate constant. */
3722 if (!y)
3723 y = y_cst;
3724 else
3725 y = use_anchored_address (y);
3729 /* If X or Y are memory references, verify that their addresses are valid
3730 for the machine. */
3731 if (MEM_P (x)
3732 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3733 MEM_ADDR_SPACE (x))
3734 && ! push_operand (x, GET_MODE (x))))
3735 x = validize_mem (x);
3737 if (MEM_P (y)
3738 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3739 MEM_ADDR_SPACE (y)))
3740 y = validize_mem (y);
3742 gcc_assert (mode != BLKmode);
3744 last_insn = emit_move_insn_1 (x, y);
3746 if (y_cst && REG_P (x)
3747 && (set = single_set (last_insn)) != NULL_RTX
3748 && SET_DEST (set) == x
3749 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3750 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3752 return last_insn;
3755 /* Generate the body of an instruction to copy Y into X.
3756 It may be a list of insns, if one insn isn't enough. */
3758 rtx_insn *
3759 gen_move_insn (rtx x, rtx y)
3761 rtx_insn *seq;
3763 start_sequence ();
3764 emit_move_insn_1 (x, y);
3765 seq = get_insns ();
3766 end_sequence ();
3767 return seq;
3770 /* If Y is representable exactly in a narrower mode, and the target can
3771 perform the extension directly from constant or memory, then emit the
3772 move as an extension. */
3774 static rtx_insn *
3775 compress_float_constant (rtx x, rtx y)
3777 machine_mode dstmode = GET_MODE (x);
3778 machine_mode orig_srcmode = GET_MODE (y);
3779 machine_mode srcmode;
3780 const REAL_VALUE_TYPE *r;
3781 int oldcost, newcost;
3782 bool speed = optimize_insn_for_speed_p ();
3784 r = CONST_DOUBLE_REAL_VALUE (y);
3786 if (targetm.legitimate_constant_p (dstmode, y))
3787 oldcost = set_src_cost (y, orig_srcmode, speed);
3788 else
3789 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3791 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3792 srcmode != orig_srcmode;
3793 srcmode = GET_MODE_WIDER_MODE (srcmode))
3795 enum insn_code ic;
3796 rtx trunc_y;
3797 rtx_insn *last_insn;
3799 /* Skip if the target can't extend this way. */
3800 ic = can_extend_p (dstmode, srcmode, 0);
3801 if (ic == CODE_FOR_nothing)
3802 continue;
3804 /* Skip if the narrowed value isn't exact. */
3805 if (! exact_real_truncate (srcmode, r))
3806 continue;
3808 trunc_y = const_double_from_real_value (*r, srcmode);
3810 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3812 /* Skip if the target needs extra instructions to perform
3813 the extension. */
3814 if (!insn_operand_matches (ic, 1, trunc_y))
3815 continue;
3816 /* This is valid, but may not be cheaper than the original. */
3817 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3818 dstmode, speed);
3819 if (oldcost < newcost)
3820 continue;
3822 else if (float_extend_from_mem[dstmode][srcmode])
3824 trunc_y = force_const_mem (srcmode, trunc_y);
3825 /* This is valid, but may not be cheaper than the original. */
3826 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3827 dstmode, speed);
3828 if (oldcost < newcost)
3829 continue;
3830 trunc_y = validize_mem (trunc_y);
3832 else
3833 continue;
3835 /* For CSE's benefit, force the compressed constant pool entry
3836 into a new pseudo. This constant may be used in different modes,
3837 and if not, combine will put things back together for us. */
3838 trunc_y = force_reg (srcmode, trunc_y);
3840 /* If x is a hard register, perform the extension into a pseudo,
3841 so that e.g. stack realignment code is aware of it. */
3842 rtx target = x;
3843 if (REG_P (x) && HARD_REGISTER_P (x))
3844 target = gen_reg_rtx (dstmode);
3846 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3847 last_insn = get_last_insn ();
3849 if (REG_P (target))
3850 set_unique_reg_note (last_insn, REG_EQUAL, y);
3852 if (target != x)
3853 return emit_move_insn (x, target);
3854 return last_insn;
3857 return NULL;
3860 /* Pushing data onto the stack. */
3862 /* Push a block of length SIZE (perhaps variable)
3863 and return an rtx to address the beginning of the block.
3864 The value may be virtual_outgoing_args_rtx.
3866 EXTRA is the number of bytes of padding to push in addition to SIZE.
3867 BELOW nonzero means this padding comes at low addresses;
3868 otherwise, the padding comes at high addresses. */
3871 push_block (rtx size, int extra, int below)
3873 rtx temp;
3875 size = convert_modes (Pmode, ptr_mode, size, 1);
3876 if (CONSTANT_P (size))
3877 anti_adjust_stack (plus_constant (Pmode, size, extra));
3878 else if (REG_P (size) && extra == 0)
3879 anti_adjust_stack (size);
3880 else
3882 temp = copy_to_mode_reg (Pmode, size);
3883 if (extra != 0)
3884 temp = expand_binop (Pmode, add_optab, temp,
3885 gen_int_mode (extra, Pmode),
3886 temp, 0, OPTAB_LIB_WIDEN);
3887 anti_adjust_stack (temp);
3890 if (STACK_GROWS_DOWNWARD)
3892 temp = virtual_outgoing_args_rtx;
3893 if (extra != 0 && below)
3894 temp = plus_constant (Pmode, temp, extra);
3896 else
3898 if (CONST_INT_P (size))
3899 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3900 -INTVAL (size) - (below ? 0 : extra));
3901 else if (extra != 0 && !below)
3902 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3903 negate_rtx (Pmode, plus_constant (Pmode, size,
3904 extra)));
3905 else
3906 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3907 negate_rtx (Pmode, size));
3910 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3913 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3915 static rtx
3916 mem_autoinc_base (rtx mem)
3918 if (MEM_P (mem))
3920 rtx addr = XEXP (mem, 0);
3921 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3922 return XEXP (addr, 0);
3924 return NULL;
3927 /* A utility routine used here, in reload, and in try_split. The insns
3928 after PREV up to and including LAST are known to adjust the stack,
3929 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3930 placing notes as appropriate. PREV may be NULL, indicating the
3931 entire insn sequence prior to LAST should be scanned.
3933 The set of allowed stack pointer modifications is small:
3934 (1) One or more auto-inc style memory references (aka pushes),
3935 (2) One or more addition/subtraction with the SP as destination,
3936 (3) A single move insn with the SP as destination,
3937 (4) A call_pop insn,
3938 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3940 Insns in the sequence that do not modify the SP are ignored,
3941 except for noreturn calls.
3943 The return value is the amount of adjustment that can be trivially
3944 verified, via immediate operand or auto-inc. If the adjustment
3945 cannot be trivially extracted, the return value is INT_MIN. */
3947 HOST_WIDE_INT
3948 find_args_size_adjust (rtx_insn *insn)
3950 rtx dest, set, pat;
3951 int i;
3953 pat = PATTERN (insn);
3954 set = NULL;
3956 /* Look for a call_pop pattern. */
3957 if (CALL_P (insn))
3959 /* We have to allow non-call_pop patterns for the case
3960 of emit_single_push_insn of a TLS address. */
3961 if (GET_CODE (pat) != PARALLEL)
3962 return 0;
3964 /* All call_pop have a stack pointer adjust in the parallel.
3965 The call itself is always first, and the stack adjust is
3966 usually last, so search from the end. */
3967 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3969 set = XVECEXP (pat, 0, i);
3970 if (GET_CODE (set) != SET)
3971 continue;
3972 dest = SET_DEST (set);
3973 if (dest == stack_pointer_rtx)
3974 break;
3976 /* We'd better have found the stack pointer adjust. */
3977 if (i == 0)
3978 return 0;
3979 /* Fall through to process the extracted SET and DEST
3980 as if it was a standalone insn. */
3982 else if (GET_CODE (pat) == SET)
3983 set = pat;
3984 else if ((set = single_set (insn)) != NULL)
3986 else if (GET_CODE (pat) == PARALLEL)
3988 /* ??? Some older ports use a parallel with a stack adjust
3989 and a store for a PUSH_ROUNDING pattern, rather than a
3990 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3991 /* ??? See h8300 and m68k, pushqi1. */
3992 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3994 set = XVECEXP (pat, 0, i);
3995 if (GET_CODE (set) != SET)
3996 continue;
3997 dest = SET_DEST (set);
3998 if (dest == stack_pointer_rtx)
3999 break;
4001 /* We do not expect an auto-inc of the sp in the parallel. */
4002 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4003 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4004 != stack_pointer_rtx);
4006 if (i < 0)
4007 return 0;
4009 else
4010 return 0;
4012 dest = SET_DEST (set);
4014 /* Look for direct modifications of the stack pointer. */
4015 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4017 /* Look for a trivial adjustment, otherwise assume nothing. */
4018 /* Note that the SPU restore_stack_block pattern refers to
4019 the stack pointer in V4SImode. Consider that non-trivial. */
4020 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4021 && GET_CODE (SET_SRC (set)) == PLUS
4022 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
4023 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
4024 return INTVAL (XEXP (SET_SRC (set), 1));
4025 /* ??? Reload can generate no-op moves, which will be cleaned
4026 up later. Recognize it and continue searching. */
4027 else if (rtx_equal_p (dest, SET_SRC (set)))
4028 return 0;
4029 else
4030 return HOST_WIDE_INT_MIN;
4032 else
4034 rtx mem, addr;
4036 /* Otherwise only think about autoinc patterns. */
4037 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4039 mem = dest;
4040 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4041 != stack_pointer_rtx);
4043 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4044 mem = SET_SRC (set);
4045 else
4046 return 0;
4048 addr = XEXP (mem, 0);
4049 switch (GET_CODE (addr))
4051 case PRE_INC:
4052 case POST_INC:
4053 return GET_MODE_SIZE (GET_MODE (mem));
4054 case PRE_DEC:
4055 case POST_DEC:
4056 return -GET_MODE_SIZE (GET_MODE (mem));
4057 case PRE_MODIFY:
4058 case POST_MODIFY:
4059 addr = XEXP (addr, 1);
4060 gcc_assert (GET_CODE (addr) == PLUS);
4061 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4062 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
4063 return INTVAL (XEXP (addr, 1));
4064 default:
4065 gcc_unreachable ();
4071 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
4073 int args_size = end_args_size;
4074 bool saw_unknown = false;
4075 rtx_insn *insn;
4077 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4079 HOST_WIDE_INT this_delta;
4081 if (!NONDEBUG_INSN_P (insn))
4082 continue;
4084 this_delta = find_args_size_adjust (insn);
4085 if (this_delta == 0)
4087 if (!CALL_P (insn)
4088 || ACCUMULATE_OUTGOING_ARGS
4089 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4090 continue;
4093 gcc_assert (!saw_unknown);
4094 if (this_delta == HOST_WIDE_INT_MIN)
4095 saw_unknown = true;
4097 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
4098 if (STACK_GROWS_DOWNWARD)
4099 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
4101 args_size -= this_delta;
4104 return saw_unknown ? INT_MIN : args_size;
4107 #ifdef PUSH_ROUNDING
4108 /* Emit single push insn. */
4110 static void
4111 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4113 rtx dest_addr;
4114 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4115 rtx dest;
4116 enum insn_code icode;
4118 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4119 /* If there is push pattern, use it. Otherwise try old way of throwing
4120 MEM representing push operation to move expander. */
4121 icode = optab_handler (push_optab, mode);
4122 if (icode != CODE_FOR_nothing)
4124 struct expand_operand ops[1];
4126 create_input_operand (&ops[0], x, mode);
4127 if (maybe_expand_insn (icode, 1, ops))
4128 return;
4130 if (GET_MODE_SIZE (mode) == rounded_size)
4131 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4132 /* If we are to pad downward, adjust the stack pointer first and
4133 then store X into the stack location using an offset. This is
4134 because emit_move_insn does not know how to pad; it does not have
4135 access to type. */
4136 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
4138 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4139 HOST_WIDE_INT offset;
4141 emit_move_insn (stack_pointer_rtx,
4142 expand_binop (Pmode,
4143 STACK_GROWS_DOWNWARD ? sub_optab
4144 : add_optab,
4145 stack_pointer_rtx,
4146 gen_int_mode (rounded_size, Pmode),
4147 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4149 offset = (HOST_WIDE_INT) padding_size;
4150 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4151 /* We have already decremented the stack pointer, so get the
4152 previous value. */
4153 offset += (HOST_WIDE_INT) rounded_size;
4155 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4156 /* We have already incremented the stack pointer, so get the
4157 previous value. */
4158 offset -= (HOST_WIDE_INT) rounded_size;
4160 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4161 gen_int_mode (offset, Pmode));
4163 else
4165 if (STACK_GROWS_DOWNWARD)
4166 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4167 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4168 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4169 Pmode));
4170 else
4171 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4172 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4173 gen_int_mode (rounded_size, Pmode));
4175 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4178 dest = gen_rtx_MEM (mode, dest_addr);
4180 if (type != 0)
4182 set_mem_attributes (dest, type, 1);
4184 if (cfun->tail_call_marked)
4185 /* Function incoming arguments may overlap with sibling call
4186 outgoing arguments and we cannot allow reordering of reads
4187 from function arguments with stores to outgoing arguments
4188 of sibling calls. */
4189 set_mem_alias_set (dest, 0);
4191 emit_move_insn (dest, x);
4194 /* Emit and annotate a single push insn. */
4196 static void
4197 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4199 int delta, old_delta = stack_pointer_delta;
4200 rtx_insn *prev = get_last_insn ();
4201 rtx_insn *last;
4203 emit_single_push_insn_1 (mode, x, type);
4205 last = get_last_insn ();
4207 /* Notice the common case where we emitted exactly one insn. */
4208 if (PREV_INSN (last) == prev)
4210 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4211 return;
4214 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4215 gcc_assert (delta == INT_MIN || delta == old_delta);
4217 #endif
4219 /* If reading SIZE bytes from X will end up reading from
4220 Y return the number of bytes that overlap. Return -1
4221 if there is no overlap or -2 if we can't determine
4222 (for example when X and Y have different base registers). */
4224 static int
4225 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4227 rtx tmp = plus_constant (Pmode, x, size);
4228 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4230 if (!CONST_INT_P (sub))
4231 return -2;
4233 HOST_WIDE_INT val = INTVAL (sub);
4235 return IN_RANGE (val, 1, size) ? val : -1;
4238 /* Generate code to push X onto the stack, assuming it has mode MODE and
4239 type TYPE.
4240 MODE is redundant except when X is a CONST_INT (since they don't
4241 carry mode info).
4242 SIZE is an rtx for the size of data to be copied (in bytes),
4243 needed only if X is BLKmode.
4244 Return true if successful. May return false if asked to push a
4245 partial argument during a sibcall optimization (as specified by
4246 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4247 to not overlap.
4249 ALIGN (in bits) is maximum alignment we can assume.
4251 If PARTIAL and REG are both nonzero, then copy that many of the first
4252 bytes of X into registers starting with REG, and push the rest of X.
4253 The amount of space pushed is decreased by PARTIAL bytes.
4254 REG must be a hard register in this case.
4255 If REG is zero but PARTIAL is not, take any all others actions for an
4256 argument partially in registers, but do not actually load any
4257 registers.
4259 EXTRA is the amount in bytes of extra space to leave next to this arg.
4260 This is ignored if an argument block has already been allocated.
4262 On a machine that lacks real push insns, ARGS_ADDR is the address of
4263 the bottom of the argument block for this call. We use indexing off there
4264 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4265 argument block has not been preallocated.
4267 ARGS_SO_FAR is the size of args previously pushed for this call.
4269 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4270 for arguments passed in registers. If nonzero, it will be the number
4271 of bytes required. */
4273 bool
4274 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4275 unsigned int align, int partial, rtx reg, int extra,
4276 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4277 rtx alignment_pad, bool sibcall_p)
4279 rtx xinner;
4280 enum direction stack_direction = STACK_GROWS_DOWNWARD ? downward : upward;
4282 /* Decide where to pad the argument: `downward' for below,
4283 `upward' for above, or `none' for don't pad it.
4284 Default is below for small data on big-endian machines; else above. */
4285 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4287 /* Invert direction if stack is post-decrement.
4288 FIXME: why? */
4289 if (STACK_PUSH_CODE == POST_DEC)
4290 if (where_pad != none)
4291 where_pad = (where_pad == downward ? upward : downward);
4293 xinner = x;
4295 int nregs = partial / UNITS_PER_WORD;
4296 rtx *tmp_regs = NULL;
4297 int overlapping = 0;
4299 if (mode == BLKmode
4300 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4302 /* Copy a block into the stack, entirely or partially. */
4304 rtx temp;
4305 int used;
4306 int offset;
4307 int skip;
4309 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4310 used = partial - offset;
4312 if (mode != BLKmode)
4314 /* A value is to be stored in an insufficiently aligned
4315 stack slot; copy via a suitably aligned slot if
4316 necessary. */
4317 size = GEN_INT (GET_MODE_SIZE (mode));
4318 if (!MEM_P (xinner))
4320 temp = assign_temp (type, 1, 1);
4321 emit_move_insn (temp, xinner);
4322 xinner = temp;
4326 gcc_assert (size);
4328 /* USED is now the # of bytes we need not copy to the stack
4329 because registers will take care of them. */
4331 if (partial != 0)
4332 xinner = adjust_address (xinner, BLKmode, used);
4334 /* If the partial register-part of the arg counts in its stack size,
4335 skip the part of stack space corresponding to the registers.
4336 Otherwise, start copying to the beginning of the stack space,
4337 by setting SKIP to 0. */
4338 skip = (reg_parm_stack_space == 0) ? 0 : used;
4340 #ifdef PUSH_ROUNDING
4341 /* Do it with several push insns if that doesn't take lots of insns
4342 and if there is no difficulty with push insns that skip bytes
4343 on the stack for alignment purposes. */
4344 if (args_addr == 0
4345 && PUSH_ARGS
4346 && CONST_INT_P (size)
4347 && skip == 0
4348 && MEM_ALIGN (xinner) >= align
4349 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4350 /* Here we avoid the case of a structure whose weak alignment
4351 forces many pushes of a small amount of data,
4352 and such small pushes do rounding that causes trouble. */
4353 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4354 || align >= BIGGEST_ALIGNMENT
4355 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4356 == (align / BITS_PER_UNIT)))
4357 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4359 /* Push padding now if padding above and stack grows down,
4360 or if padding below and stack grows up.
4361 But if space already allocated, this has already been done. */
4362 if (extra && args_addr == 0
4363 && where_pad != none && where_pad != stack_direction)
4364 anti_adjust_stack (GEN_INT (extra));
4366 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4368 else
4369 #endif /* PUSH_ROUNDING */
4371 rtx target;
4373 /* Otherwise make space on the stack and copy the data
4374 to the address of that space. */
4376 /* Deduct words put into registers from the size we must copy. */
4377 if (partial != 0)
4379 if (CONST_INT_P (size))
4380 size = GEN_INT (INTVAL (size) - used);
4381 else
4382 size = expand_binop (GET_MODE (size), sub_optab, size,
4383 gen_int_mode (used, GET_MODE (size)),
4384 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4387 /* Get the address of the stack space.
4388 In this case, we do not deal with EXTRA separately.
4389 A single stack adjust will do. */
4390 if (! args_addr)
4392 temp = push_block (size, extra, where_pad == downward);
4393 extra = 0;
4395 else if (CONST_INT_P (args_so_far))
4396 temp = memory_address (BLKmode,
4397 plus_constant (Pmode, args_addr,
4398 skip + INTVAL (args_so_far)));
4399 else
4400 temp = memory_address (BLKmode,
4401 plus_constant (Pmode,
4402 gen_rtx_PLUS (Pmode,
4403 args_addr,
4404 args_so_far),
4405 skip));
4407 if (!ACCUMULATE_OUTGOING_ARGS)
4409 /* If the source is referenced relative to the stack pointer,
4410 copy it to another register to stabilize it. We do not need
4411 to do this if we know that we won't be changing sp. */
4413 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4414 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4415 temp = copy_to_reg (temp);
4418 target = gen_rtx_MEM (BLKmode, temp);
4420 /* We do *not* set_mem_attributes here, because incoming arguments
4421 may overlap with sibling call outgoing arguments and we cannot
4422 allow reordering of reads from function arguments with stores
4423 to outgoing arguments of sibling calls. We do, however, want
4424 to record the alignment of the stack slot. */
4425 /* ALIGN may well be better aligned than TYPE, e.g. due to
4426 PARM_BOUNDARY. Assume the caller isn't lying. */
4427 set_mem_align (target, align);
4429 /* If part should go in registers and pushing to that part would
4430 overwrite some of the values that need to go into regs, load the
4431 overlapping values into temporary pseudos to be moved into the hard
4432 regs at the end after the stack pushing has completed.
4433 We cannot load them directly into the hard regs here because
4434 they can be clobbered by the block move expansions.
4435 See PR 65358. */
4437 if (partial > 0 && reg != 0 && mode == BLKmode
4438 && GET_CODE (reg) != PARALLEL)
4440 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4441 if (overlapping > 0)
4443 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4444 overlapping /= UNITS_PER_WORD;
4446 tmp_regs = XALLOCAVEC (rtx, overlapping);
4448 for (int i = 0; i < overlapping; i++)
4449 tmp_regs[i] = gen_reg_rtx (word_mode);
4451 for (int i = 0; i < overlapping; i++)
4452 emit_move_insn (tmp_regs[i],
4453 operand_subword_force (target, i, mode));
4455 else if (overlapping == -1)
4456 overlapping = 0;
4457 /* Could not determine whether there is overlap.
4458 Fail the sibcall. */
4459 else
4461 overlapping = 0;
4462 if (sibcall_p)
4463 return false;
4466 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4469 else if (partial > 0)
4471 /* Scalar partly in registers. */
4473 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4474 int i;
4475 int not_stack;
4476 /* # bytes of start of argument
4477 that we must make space for but need not store. */
4478 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4479 int args_offset = INTVAL (args_so_far);
4480 int skip;
4482 /* Push padding now if padding above and stack grows down,
4483 or if padding below and stack grows up.
4484 But if space already allocated, this has already been done. */
4485 if (extra && args_addr == 0
4486 && where_pad != none && where_pad != stack_direction)
4487 anti_adjust_stack (GEN_INT (extra));
4489 /* If we make space by pushing it, we might as well push
4490 the real data. Otherwise, we can leave OFFSET nonzero
4491 and leave the space uninitialized. */
4492 if (args_addr == 0)
4493 offset = 0;
4495 /* Now NOT_STACK gets the number of words that we don't need to
4496 allocate on the stack. Convert OFFSET to words too. */
4497 not_stack = (partial - offset) / UNITS_PER_WORD;
4498 offset /= UNITS_PER_WORD;
4500 /* If the partial register-part of the arg counts in its stack size,
4501 skip the part of stack space corresponding to the registers.
4502 Otherwise, start copying to the beginning of the stack space,
4503 by setting SKIP to 0. */
4504 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4506 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4507 x = validize_mem (force_const_mem (mode, x));
4509 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4510 SUBREGs of such registers are not allowed. */
4511 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4512 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4513 x = copy_to_reg (x);
4515 /* Loop over all the words allocated on the stack for this arg. */
4516 /* We can do it by words, because any scalar bigger than a word
4517 has a size a multiple of a word. */
4518 for (i = size - 1; i >= not_stack; i--)
4519 if (i >= not_stack + offset)
4520 if (!emit_push_insn (operand_subword_force (x, i, mode),
4521 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4522 0, args_addr,
4523 GEN_INT (args_offset + ((i - not_stack + skip)
4524 * UNITS_PER_WORD)),
4525 reg_parm_stack_space, alignment_pad, sibcall_p))
4526 return false;
4528 else
4530 rtx addr;
4531 rtx dest;
4533 /* Push padding now if padding above and stack grows down,
4534 or if padding below and stack grows up.
4535 But if space already allocated, this has already been done. */
4536 if (extra && args_addr == 0
4537 && where_pad != none && where_pad != stack_direction)
4538 anti_adjust_stack (GEN_INT (extra));
4540 #ifdef PUSH_ROUNDING
4541 if (args_addr == 0 && PUSH_ARGS)
4542 emit_single_push_insn (mode, x, type);
4543 else
4544 #endif
4546 if (CONST_INT_P (args_so_far))
4547 addr
4548 = memory_address (mode,
4549 plus_constant (Pmode, args_addr,
4550 INTVAL (args_so_far)));
4551 else
4552 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4553 args_so_far));
4554 dest = gen_rtx_MEM (mode, addr);
4556 /* We do *not* set_mem_attributes here, because incoming arguments
4557 may overlap with sibling call outgoing arguments and we cannot
4558 allow reordering of reads from function arguments with stores
4559 to outgoing arguments of sibling calls. We do, however, want
4560 to record the alignment of the stack slot. */
4561 /* ALIGN may well be better aligned than TYPE, e.g. due to
4562 PARM_BOUNDARY. Assume the caller isn't lying. */
4563 set_mem_align (dest, align);
4565 emit_move_insn (dest, x);
4569 /* Move the partial arguments into the registers and any overlapping
4570 values that we moved into the pseudos in tmp_regs. */
4571 if (partial > 0 && reg != 0)
4573 /* Handle calls that pass values in multiple non-contiguous locations.
4574 The Irix 6 ABI has examples of this. */
4575 if (GET_CODE (reg) == PARALLEL)
4576 emit_group_load (reg, x, type, -1);
4577 else
4579 gcc_assert (partial % UNITS_PER_WORD == 0);
4580 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4582 for (int i = 0; i < overlapping; i++)
4583 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4584 + nregs - overlapping + i),
4585 tmp_regs[i]);
4590 if (extra && args_addr == 0 && where_pad == stack_direction)
4591 anti_adjust_stack (GEN_INT (extra));
4593 if (alignment_pad && args_addr == 0)
4594 anti_adjust_stack (alignment_pad);
4596 return true;
4599 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4600 operations. */
4602 static rtx
4603 get_subtarget (rtx x)
4605 return (optimize
4606 || x == 0
4607 /* Only registers can be subtargets. */
4608 || !REG_P (x)
4609 /* Don't use hard regs to avoid extending their life. */
4610 || REGNO (x) < FIRST_PSEUDO_REGISTER
4611 ? 0 : x);
4614 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4615 FIELD is a bitfield. Returns true if the optimization was successful,
4616 and there's nothing else to do. */
4618 static bool
4619 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4620 unsigned HOST_WIDE_INT bitpos,
4621 unsigned HOST_WIDE_INT bitregion_start,
4622 unsigned HOST_WIDE_INT bitregion_end,
4623 machine_mode mode1, rtx str_rtx,
4624 tree to, tree src, bool reverse)
4626 machine_mode str_mode = GET_MODE (str_rtx);
4627 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4628 tree op0, op1;
4629 rtx value, result;
4630 optab binop;
4631 gimple *srcstmt;
4632 enum tree_code code;
4634 if (mode1 != VOIDmode
4635 || bitsize >= BITS_PER_WORD
4636 || str_bitsize > BITS_PER_WORD
4637 || TREE_SIDE_EFFECTS (to)
4638 || TREE_THIS_VOLATILE (to))
4639 return false;
4641 STRIP_NOPS (src);
4642 if (TREE_CODE (src) != SSA_NAME)
4643 return false;
4644 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4645 return false;
4647 srcstmt = get_gimple_for_ssa_name (src);
4648 if (!srcstmt
4649 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4650 return false;
4652 code = gimple_assign_rhs_code (srcstmt);
4654 op0 = gimple_assign_rhs1 (srcstmt);
4656 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4657 to find its initialization. Hopefully the initialization will
4658 be from a bitfield load. */
4659 if (TREE_CODE (op0) == SSA_NAME)
4661 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4663 /* We want to eventually have OP0 be the same as TO, which
4664 should be a bitfield. */
4665 if (!op0stmt
4666 || !is_gimple_assign (op0stmt)
4667 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4668 return false;
4669 op0 = gimple_assign_rhs1 (op0stmt);
4672 op1 = gimple_assign_rhs2 (srcstmt);
4674 if (!operand_equal_p (to, op0, 0))
4675 return false;
4677 if (MEM_P (str_rtx))
4679 unsigned HOST_WIDE_INT offset1;
4681 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4682 str_mode = word_mode;
4683 str_mode = get_best_mode (bitsize, bitpos,
4684 bitregion_start, bitregion_end,
4685 MEM_ALIGN (str_rtx), str_mode, 0);
4686 if (str_mode == VOIDmode)
4687 return false;
4688 str_bitsize = GET_MODE_BITSIZE (str_mode);
4690 offset1 = bitpos;
4691 bitpos %= str_bitsize;
4692 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4693 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4695 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4696 return false;
4697 else
4698 gcc_assert (!reverse);
4700 /* If the bit field covers the whole REG/MEM, store_field
4701 will likely generate better code. */
4702 if (bitsize >= str_bitsize)
4703 return false;
4705 /* We can't handle fields split across multiple entities. */
4706 if (bitpos + bitsize > str_bitsize)
4707 return false;
4709 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4710 bitpos = str_bitsize - bitpos - bitsize;
4712 switch (code)
4714 case PLUS_EXPR:
4715 case MINUS_EXPR:
4716 /* For now, just optimize the case of the topmost bitfield
4717 where we don't need to do any masking and also
4718 1 bit bitfields where xor can be used.
4719 We might win by one instruction for the other bitfields
4720 too if insv/extv instructions aren't used, so that
4721 can be added later. */
4722 if ((reverse || bitpos + bitsize != str_bitsize)
4723 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4724 break;
4726 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4727 value = convert_modes (str_mode,
4728 TYPE_MODE (TREE_TYPE (op1)), value,
4729 TYPE_UNSIGNED (TREE_TYPE (op1)));
4731 /* We may be accessing data outside the field, which means
4732 we can alias adjacent data. */
4733 if (MEM_P (str_rtx))
4735 str_rtx = shallow_copy_rtx (str_rtx);
4736 set_mem_alias_set (str_rtx, 0);
4737 set_mem_expr (str_rtx, 0);
4740 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4742 value = expand_and (str_mode, value, const1_rtx, NULL);
4743 binop = xor_optab;
4745 else
4746 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4748 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4749 if (reverse)
4750 value = flip_storage_order (str_mode, value);
4751 result = expand_binop (str_mode, binop, str_rtx,
4752 value, str_rtx, 1, OPTAB_WIDEN);
4753 if (result != str_rtx)
4754 emit_move_insn (str_rtx, result);
4755 return true;
4757 case BIT_IOR_EXPR:
4758 case BIT_XOR_EXPR:
4759 if (TREE_CODE (op1) != INTEGER_CST)
4760 break;
4761 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4762 value = convert_modes (str_mode,
4763 TYPE_MODE (TREE_TYPE (op1)), value,
4764 TYPE_UNSIGNED (TREE_TYPE (op1)));
4766 /* We may be accessing data outside the field, which means
4767 we can alias adjacent data. */
4768 if (MEM_P (str_rtx))
4770 str_rtx = shallow_copy_rtx (str_rtx);
4771 set_mem_alias_set (str_rtx, 0);
4772 set_mem_expr (str_rtx, 0);
4775 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4776 if (bitpos + bitsize != str_bitsize)
4778 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4779 str_mode);
4780 value = expand_and (str_mode, value, mask, NULL_RTX);
4782 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4783 if (reverse)
4784 value = flip_storage_order (str_mode, value);
4785 result = expand_binop (str_mode, binop, str_rtx,
4786 value, str_rtx, 1, OPTAB_WIDEN);
4787 if (result != str_rtx)
4788 emit_move_insn (str_rtx, result);
4789 return true;
4791 default:
4792 break;
4795 return false;
4798 /* In the C++ memory model, consecutive bit fields in a structure are
4799 considered one memory location.
4801 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4802 returns the bit range of consecutive bits in which this COMPONENT_REF
4803 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4804 and *OFFSET may be adjusted in the process.
4806 If the access does not need to be restricted, 0 is returned in both
4807 *BITSTART and *BITEND. */
4809 void
4810 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4811 unsigned HOST_WIDE_INT *bitend,
4812 tree exp,
4813 HOST_WIDE_INT *bitpos,
4814 tree *offset)
4816 HOST_WIDE_INT bitoffset;
4817 tree field, repr;
4819 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4821 field = TREE_OPERAND (exp, 1);
4822 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4823 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4824 need to limit the range we can access. */
4825 if (!repr)
4827 *bitstart = *bitend = 0;
4828 return;
4831 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4832 part of a larger bit field, then the representative does not serve any
4833 useful purpose. This can occur in Ada. */
4834 if (handled_component_p (TREE_OPERAND (exp, 0)))
4836 machine_mode rmode;
4837 HOST_WIDE_INT rbitsize, rbitpos;
4838 tree roffset;
4839 int unsignedp, reversep, volatilep = 0;
4840 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4841 &roffset, &rmode, &unsignedp, &reversep,
4842 &volatilep);
4843 if ((rbitpos % BITS_PER_UNIT) != 0)
4845 *bitstart = *bitend = 0;
4846 return;
4850 /* Compute the adjustment to bitpos from the offset of the field
4851 relative to the representative. DECL_FIELD_OFFSET of field and
4852 repr are the same by construction if they are not constants,
4853 see finish_bitfield_layout. */
4854 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4855 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4856 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4857 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4858 else
4859 bitoffset = 0;
4860 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4861 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4863 /* If the adjustment is larger than bitpos, we would have a negative bit
4864 position for the lower bound and this may wreak havoc later. Adjust
4865 offset and bitpos to make the lower bound non-negative in that case. */
4866 if (bitoffset > *bitpos)
4868 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4869 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4871 *bitpos += adjust;
4872 if (*offset == NULL_TREE)
4873 *offset = size_int (-adjust / BITS_PER_UNIT);
4874 else
4875 *offset
4876 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4877 *bitstart = 0;
4879 else
4880 *bitstart = *bitpos - bitoffset;
4882 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4885 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4886 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4887 DECL_RTL was not set yet, return NORTL. */
4889 static inline bool
4890 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4892 if (TREE_CODE (addr) != ADDR_EXPR)
4893 return false;
4895 tree base = TREE_OPERAND (addr, 0);
4897 if (!DECL_P (base)
4898 || TREE_ADDRESSABLE (base)
4899 || DECL_MODE (base) == BLKmode)
4900 return false;
4902 if (!DECL_RTL_SET_P (base))
4903 return nortl;
4905 return (!MEM_P (DECL_RTL (base)));
4908 /* Returns true if the MEM_REF REF refers to an object that does not
4909 reside in memory and has non-BLKmode. */
4911 static inline bool
4912 mem_ref_refers_to_non_mem_p (tree ref)
4914 tree base = TREE_OPERAND (ref, 0);
4915 return addr_expr_of_non_mem_decl_p_1 (base, false);
4918 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4919 is true, try generating a nontemporal store. */
4921 void
4922 expand_assignment (tree to, tree from, bool nontemporal)
4924 rtx to_rtx = 0;
4925 rtx result;
4926 machine_mode mode;
4927 unsigned int align;
4928 enum insn_code icode;
4930 /* Don't crash if the lhs of the assignment was erroneous. */
4931 if (TREE_CODE (to) == ERROR_MARK)
4933 expand_normal (from);
4934 return;
4937 /* Optimize away no-op moves without side-effects. */
4938 if (operand_equal_p (to, from, 0))
4939 return;
4941 /* Handle misaligned stores. */
4942 mode = TYPE_MODE (TREE_TYPE (to));
4943 if ((TREE_CODE (to) == MEM_REF
4944 || TREE_CODE (to) == TARGET_MEM_REF)
4945 && mode != BLKmode
4946 && !mem_ref_refers_to_non_mem_p (to)
4947 && ((align = get_object_alignment (to))
4948 < GET_MODE_ALIGNMENT (mode))
4949 && (((icode = optab_handler (movmisalign_optab, mode))
4950 != CODE_FOR_nothing)
4951 || SLOW_UNALIGNED_ACCESS (mode, align)))
4953 rtx reg, mem;
4955 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4956 reg = force_not_mem (reg);
4957 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4958 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
4959 reg = flip_storage_order (mode, reg);
4961 if (icode != CODE_FOR_nothing)
4963 struct expand_operand ops[2];
4965 create_fixed_operand (&ops[0], mem);
4966 create_input_operand (&ops[1], reg, mode);
4967 /* The movmisalign<mode> pattern cannot fail, else the assignment
4968 would silently be omitted. */
4969 expand_insn (icode, 2, ops);
4971 else
4972 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
4973 false);
4974 return;
4977 /* Assignment of a structure component needs special treatment
4978 if the structure component's rtx is not simply a MEM.
4979 Assignment of an array element at a constant index, and assignment of
4980 an array element in an unaligned packed structure field, has the same
4981 problem. Same for (partially) storing into a non-memory object. */
4982 if (handled_component_p (to)
4983 || (TREE_CODE (to) == MEM_REF
4984 && (REF_REVERSE_STORAGE_ORDER (to)
4985 || mem_ref_refers_to_non_mem_p (to)))
4986 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4988 machine_mode mode1;
4989 HOST_WIDE_INT bitsize, bitpos;
4990 unsigned HOST_WIDE_INT bitregion_start = 0;
4991 unsigned HOST_WIDE_INT bitregion_end = 0;
4992 tree offset;
4993 int unsignedp, reversep, volatilep = 0;
4994 tree tem;
4996 push_temp_slots ();
4997 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4998 &unsignedp, &reversep, &volatilep);
5000 /* Make sure bitpos is not negative, it can wreak havoc later. */
5001 if (bitpos < 0)
5003 gcc_assert (offset == NULL_TREE);
5004 offset = size_int (bitpos >> LOG2_BITS_PER_UNIT);
5005 bitpos &= BITS_PER_UNIT - 1;
5008 if (TREE_CODE (to) == COMPONENT_REF
5009 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5010 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5011 /* The C++ memory model naturally applies to byte-aligned fields.
5012 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5013 BITSIZE are not byte-aligned, there is no need to limit the range
5014 we can access. This can occur with packed structures in Ada. */
5015 else if (bitsize > 0
5016 && bitsize % BITS_PER_UNIT == 0
5017 && bitpos % BITS_PER_UNIT == 0)
5019 bitregion_start = bitpos;
5020 bitregion_end = bitpos + bitsize - 1;
5023 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5025 /* If the field has a mode, we want to access it in the
5026 field's mode, not the computed mode.
5027 If a MEM has VOIDmode (external with incomplete type),
5028 use BLKmode for it instead. */
5029 if (MEM_P (to_rtx))
5031 if (mode1 != VOIDmode)
5032 to_rtx = adjust_address (to_rtx, mode1, 0);
5033 else if (GET_MODE (to_rtx) == VOIDmode)
5034 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5037 if (offset != 0)
5039 machine_mode address_mode;
5040 rtx offset_rtx;
5042 if (!MEM_P (to_rtx))
5044 /* We can get constant negative offsets into arrays with broken
5045 user code. Translate this to a trap instead of ICEing. */
5046 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5047 expand_builtin_trap ();
5048 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5051 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5052 address_mode = get_address_mode (to_rtx);
5053 if (GET_MODE (offset_rtx) != address_mode)
5055 /* We cannot be sure that the RTL in offset_rtx is valid outside
5056 of a memory address context, so force it into a register
5057 before attempting to convert it to the desired mode. */
5058 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5059 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5062 /* If we have an expression in OFFSET_RTX and a non-zero
5063 byte offset in BITPOS, adding the byte offset before the
5064 OFFSET_RTX results in better intermediate code, which makes
5065 later rtl optimization passes perform better.
5067 We prefer intermediate code like this:
5069 r124:DI=r123:DI+0x18
5070 [r124:DI]=r121:DI
5072 ... instead of ...
5074 r124:DI=r123:DI+0x10
5075 [r124:DI+0x8]=r121:DI
5077 This is only done for aligned data values, as these can
5078 be expected to result in single move instructions. */
5079 if (mode1 != VOIDmode
5080 && bitpos != 0
5081 && bitsize > 0
5082 && (bitpos % bitsize) == 0
5083 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
5084 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5086 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
5087 bitregion_start = 0;
5088 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
5089 bitregion_end -= bitpos;
5090 bitpos = 0;
5093 to_rtx = offset_address (to_rtx, offset_rtx,
5094 highest_pow2_factor_for_target (to,
5095 offset));
5098 /* No action is needed if the target is not a memory and the field
5099 lies completely outside that target. This can occur if the source
5100 code contains an out-of-bounds access to a small array. */
5101 if (!MEM_P (to_rtx)
5102 && GET_MODE (to_rtx) != BLKmode
5103 && (unsigned HOST_WIDE_INT) bitpos
5104 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
5106 expand_normal (from);
5107 result = NULL;
5109 /* Handle expand_expr of a complex value returning a CONCAT. */
5110 else if (GET_CODE (to_rtx) == CONCAT)
5112 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
5113 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
5114 && bitpos == 0
5115 && bitsize == mode_bitsize)
5116 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5117 else if (bitsize == mode_bitsize / 2
5118 && (bitpos == 0 || bitpos == mode_bitsize / 2))
5119 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
5120 nontemporal, reversep);
5121 else if (bitpos + bitsize <= mode_bitsize / 2)
5122 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5123 bitregion_start, bitregion_end,
5124 mode1, from, get_alias_set (to),
5125 nontemporal, reversep);
5126 else if (bitpos >= mode_bitsize / 2)
5127 result = store_field (XEXP (to_rtx, 1), bitsize,
5128 bitpos - mode_bitsize / 2,
5129 bitregion_start, bitregion_end,
5130 mode1, from, get_alias_set (to),
5131 nontemporal, reversep);
5132 else if (bitpos == 0 && bitsize == mode_bitsize)
5134 rtx from_rtx;
5135 result = expand_normal (from);
5136 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
5137 TYPE_MODE (TREE_TYPE (from)), 0);
5138 emit_move_insn (XEXP (to_rtx, 0),
5139 read_complex_part (from_rtx, false));
5140 emit_move_insn (XEXP (to_rtx, 1),
5141 read_complex_part (from_rtx, true));
5143 else
5145 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5146 GET_MODE_SIZE (GET_MODE (to_rtx)));
5147 write_complex_part (temp, XEXP (to_rtx, 0), false);
5148 write_complex_part (temp, XEXP (to_rtx, 1), true);
5149 result = store_field (temp, bitsize, bitpos,
5150 bitregion_start, bitregion_end,
5151 mode1, from, get_alias_set (to),
5152 nontemporal, reversep);
5153 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5154 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5157 else
5159 if (MEM_P (to_rtx))
5161 /* If the field is at offset zero, we could have been given the
5162 DECL_RTX of the parent struct. Don't munge it. */
5163 to_rtx = shallow_copy_rtx (to_rtx);
5164 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5165 if (volatilep)
5166 MEM_VOLATILE_P (to_rtx) = 1;
5169 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5170 bitregion_start, bitregion_end,
5171 mode1, to_rtx, to, from,
5172 reversep))
5173 result = NULL;
5174 else
5175 result = store_field (to_rtx, bitsize, bitpos,
5176 bitregion_start, bitregion_end,
5177 mode1, from, get_alias_set (to),
5178 nontemporal, reversep);
5181 if (result)
5182 preserve_temp_slots (result);
5183 pop_temp_slots ();
5184 return;
5187 /* If the rhs is a function call and its value is not an aggregate,
5188 call the function before we start to compute the lhs.
5189 This is needed for correct code for cases such as
5190 val = setjmp (buf) on machines where reference to val
5191 requires loading up part of an address in a separate insn.
5193 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5194 since it might be a promoted variable where the zero- or sign- extension
5195 needs to be done. Handling this in the normal way is safe because no
5196 computation is done before the call. The same is true for SSA names. */
5197 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5198 && COMPLETE_TYPE_P (TREE_TYPE (from))
5199 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5200 && ! (((VAR_P (to)
5201 || TREE_CODE (to) == PARM_DECL
5202 || TREE_CODE (to) == RESULT_DECL)
5203 && REG_P (DECL_RTL (to)))
5204 || TREE_CODE (to) == SSA_NAME))
5206 rtx value;
5207 rtx bounds;
5209 push_temp_slots ();
5210 value = expand_normal (from);
5212 /* Split value and bounds to store them separately. */
5213 chkp_split_slot (value, &value, &bounds);
5215 if (to_rtx == 0)
5216 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5218 /* Handle calls that return values in multiple non-contiguous locations.
5219 The Irix 6 ABI has examples of this. */
5220 if (GET_CODE (to_rtx) == PARALLEL)
5222 if (GET_CODE (value) == PARALLEL)
5223 emit_group_move (to_rtx, value);
5224 else
5225 emit_group_load (to_rtx, value, TREE_TYPE (from),
5226 int_size_in_bytes (TREE_TYPE (from)));
5228 else if (GET_CODE (value) == PARALLEL)
5229 emit_group_store (to_rtx, value, TREE_TYPE (from),
5230 int_size_in_bytes (TREE_TYPE (from)));
5231 else if (GET_MODE (to_rtx) == BLKmode)
5233 /* Handle calls that return BLKmode values in registers. */
5234 if (REG_P (value))
5235 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5236 else
5237 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5239 else
5241 if (POINTER_TYPE_P (TREE_TYPE (to)))
5242 value = convert_memory_address_addr_space
5243 (GET_MODE (to_rtx), value,
5244 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5246 emit_move_insn (to_rtx, value);
5249 /* Store bounds if required. */
5250 if (bounds
5251 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5253 gcc_assert (MEM_P (to_rtx));
5254 chkp_emit_bounds_store (bounds, value, to_rtx);
5257 preserve_temp_slots (to_rtx);
5258 pop_temp_slots ();
5259 return;
5262 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5263 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5265 /* Don't move directly into a return register. */
5266 if (TREE_CODE (to) == RESULT_DECL
5267 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5269 rtx temp;
5271 push_temp_slots ();
5273 /* If the source is itself a return value, it still is in a pseudo at
5274 this point so we can move it back to the return register directly. */
5275 if (REG_P (to_rtx)
5276 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5277 && TREE_CODE (from) != CALL_EXPR)
5278 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5279 else
5280 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5282 /* Handle calls that return values in multiple non-contiguous locations.
5283 The Irix 6 ABI has examples of this. */
5284 if (GET_CODE (to_rtx) == PARALLEL)
5286 if (GET_CODE (temp) == PARALLEL)
5287 emit_group_move (to_rtx, temp);
5288 else
5289 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5290 int_size_in_bytes (TREE_TYPE (from)));
5292 else if (temp)
5293 emit_move_insn (to_rtx, temp);
5295 preserve_temp_slots (to_rtx);
5296 pop_temp_slots ();
5297 return;
5300 /* In case we are returning the contents of an object which overlaps
5301 the place the value is being stored, use a safe function when copying
5302 a value through a pointer into a structure value return block. */
5303 if (TREE_CODE (to) == RESULT_DECL
5304 && TREE_CODE (from) == INDIRECT_REF
5305 && ADDR_SPACE_GENERIC_P
5306 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5307 && refs_may_alias_p (to, from)
5308 && cfun->returns_struct
5309 && !cfun->returns_pcc_struct)
5311 rtx from_rtx, size;
5313 push_temp_slots ();
5314 size = expr_size (from);
5315 from_rtx = expand_normal (from);
5317 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5319 preserve_temp_slots (to_rtx);
5320 pop_temp_slots ();
5321 return;
5324 /* Compute FROM and store the value in the rtx we got. */
5326 push_temp_slots ();
5327 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
5328 preserve_temp_slots (result);
5329 pop_temp_slots ();
5330 return;
5333 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5334 succeeded, false otherwise. */
5336 bool
5337 emit_storent_insn (rtx to, rtx from)
5339 struct expand_operand ops[2];
5340 machine_mode mode = GET_MODE (to);
5341 enum insn_code code = optab_handler (storent_optab, mode);
5343 if (code == CODE_FOR_nothing)
5344 return false;
5346 create_fixed_operand (&ops[0], to);
5347 create_input_operand (&ops[1], from, mode);
5348 return maybe_expand_insn (code, 2, ops);
5351 /* Generate code for computing expression EXP,
5352 and storing the value into TARGET.
5354 If the mode is BLKmode then we may return TARGET itself.
5355 It turns out that in BLKmode it doesn't cause a problem.
5356 because C has no operators that could combine two different
5357 assignments into the same BLKmode object with different values
5358 with no sequence point. Will other languages need this to
5359 be more thorough?
5361 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5362 stack, and block moves may need to be treated specially.
5364 If NONTEMPORAL is true, try using a nontemporal store instruction.
5366 If REVERSE is true, the store is to be done in reverse order.
5368 If BTARGET is not NULL then computed bounds of EXP are
5369 associated with BTARGET. */
5372 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5373 bool nontemporal, bool reverse, tree btarget)
5375 rtx temp;
5376 rtx alt_rtl = NULL_RTX;
5377 location_t loc = curr_insn_location ();
5379 if (VOID_TYPE_P (TREE_TYPE (exp)))
5381 /* C++ can generate ?: expressions with a throw expression in one
5382 branch and an rvalue in the other. Here, we resolve attempts to
5383 store the throw expression's nonexistent result. */
5384 gcc_assert (!call_param_p);
5385 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5386 return NULL_RTX;
5388 if (TREE_CODE (exp) == COMPOUND_EXPR)
5390 /* Perform first part of compound expression, then assign from second
5391 part. */
5392 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5393 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5394 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5395 call_param_p, nontemporal, reverse,
5396 btarget);
5398 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5400 /* For conditional expression, get safe form of the target. Then
5401 test the condition, doing the appropriate assignment on either
5402 side. This avoids the creation of unnecessary temporaries.
5403 For non-BLKmode, it is more efficient not to do this. */
5405 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5407 do_pending_stack_adjust ();
5408 NO_DEFER_POP;
5409 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5410 profile_probability::uninitialized ());
5411 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5412 nontemporal, reverse, btarget);
5413 emit_jump_insn (targetm.gen_jump (lab2));
5414 emit_barrier ();
5415 emit_label (lab1);
5416 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5417 nontemporal, reverse, btarget);
5418 emit_label (lab2);
5419 OK_DEFER_POP;
5421 return NULL_RTX;
5423 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5424 /* If this is a scalar in a register that is stored in a wider mode
5425 than the declared mode, compute the result into its declared mode
5426 and then convert to the wider mode. Our value is the computed
5427 expression. */
5429 rtx inner_target = 0;
5431 /* We can do the conversion inside EXP, which will often result
5432 in some optimizations. Do the conversion in two steps: first
5433 change the signedness, if needed, then the extend. But don't
5434 do this if the type of EXP is a subtype of something else
5435 since then the conversion might involve more than just
5436 converting modes. */
5437 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5438 && TREE_TYPE (TREE_TYPE (exp)) == 0
5439 && GET_MODE_PRECISION (GET_MODE (target))
5440 == TYPE_PRECISION (TREE_TYPE (exp)))
5442 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5443 TYPE_UNSIGNED (TREE_TYPE (exp))))
5445 /* Some types, e.g. Fortran's logical*4, won't have a signed
5446 version, so use the mode instead. */
5447 tree ntype
5448 = (signed_or_unsigned_type_for
5449 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5450 if (ntype == NULL)
5451 ntype = lang_hooks.types.type_for_mode
5452 (TYPE_MODE (TREE_TYPE (exp)),
5453 SUBREG_PROMOTED_SIGN (target));
5455 exp = fold_convert_loc (loc, ntype, exp);
5458 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5459 (GET_MODE (SUBREG_REG (target)),
5460 SUBREG_PROMOTED_SIGN (target)),
5461 exp);
5463 inner_target = SUBREG_REG (target);
5466 temp = expand_expr (exp, inner_target, VOIDmode,
5467 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5469 /* Handle bounds returned by call. */
5470 if (TREE_CODE (exp) == CALL_EXPR)
5472 rtx bounds;
5473 chkp_split_slot (temp, &temp, &bounds);
5474 if (bounds && btarget)
5476 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5477 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5478 chkp_set_rtl_bounds (btarget, tmp);
5482 /* If TEMP is a VOIDmode constant, use convert_modes to make
5483 sure that we properly convert it. */
5484 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5486 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5487 temp, SUBREG_PROMOTED_SIGN (target));
5488 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5489 GET_MODE (target), temp,
5490 SUBREG_PROMOTED_SIGN (target));
5493 convert_move (SUBREG_REG (target), temp,
5494 SUBREG_PROMOTED_SIGN (target));
5496 return NULL_RTX;
5498 else if ((TREE_CODE (exp) == STRING_CST
5499 || (TREE_CODE (exp) == MEM_REF
5500 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5501 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5502 == STRING_CST
5503 && integer_zerop (TREE_OPERAND (exp, 1))))
5504 && !nontemporal && !call_param_p
5505 && MEM_P (target))
5507 /* Optimize initialization of an array with a STRING_CST. */
5508 HOST_WIDE_INT exp_len, str_copy_len;
5509 rtx dest_mem;
5510 tree str = TREE_CODE (exp) == STRING_CST
5511 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5513 exp_len = int_expr_size (exp);
5514 if (exp_len <= 0)
5515 goto normal_expr;
5517 if (TREE_STRING_LENGTH (str) <= 0)
5518 goto normal_expr;
5520 str_copy_len = strlen (TREE_STRING_POINTER (str));
5521 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5522 goto normal_expr;
5524 str_copy_len = TREE_STRING_LENGTH (str);
5525 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5526 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5528 str_copy_len += STORE_MAX_PIECES - 1;
5529 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5531 str_copy_len = MIN (str_copy_len, exp_len);
5532 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5533 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5534 MEM_ALIGN (target), false))
5535 goto normal_expr;
5537 dest_mem = target;
5539 dest_mem = store_by_pieces (dest_mem,
5540 str_copy_len, builtin_strncpy_read_str,
5541 CONST_CAST (char *,
5542 TREE_STRING_POINTER (str)),
5543 MEM_ALIGN (target), false,
5544 exp_len > str_copy_len ? 1 : 0);
5545 if (exp_len > str_copy_len)
5546 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5547 GEN_INT (exp_len - str_copy_len),
5548 BLOCK_OP_NORMAL);
5549 return NULL_RTX;
5551 else
5553 rtx tmp_target;
5555 normal_expr:
5556 /* If we want to use a nontemporal or a reverse order store, force the
5557 value into a register first. */
5558 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5559 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5560 (call_param_p
5561 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5562 &alt_rtl, false);
5564 /* Handle bounds returned by call. */
5565 if (TREE_CODE (exp) == CALL_EXPR)
5567 rtx bounds;
5568 chkp_split_slot (temp, &temp, &bounds);
5569 if (bounds && btarget)
5571 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5572 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5573 chkp_set_rtl_bounds (btarget, tmp);
5578 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5579 the same as that of TARGET, adjust the constant. This is needed, for
5580 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5581 only a word-sized value. */
5582 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5583 && TREE_CODE (exp) != ERROR_MARK
5584 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5585 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5586 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5588 /* If value was not generated in the target, store it there.
5589 Convert the value to TARGET's type first if necessary and emit the
5590 pending incrementations that have been queued when expanding EXP.
5591 Note that we cannot emit the whole queue blindly because this will
5592 effectively disable the POST_INC optimization later.
5594 If TEMP and TARGET compare equal according to rtx_equal_p, but
5595 one or both of them are volatile memory refs, we have to distinguish
5596 two cases:
5597 - expand_expr has used TARGET. In this case, we must not generate
5598 another copy. This can be detected by TARGET being equal according
5599 to == .
5600 - expand_expr has not used TARGET - that means that the source just
5601 happens to have the same RTX form. Since temp will have been created
5602 by expand_expr, it will compare unequal according to == .
5603 We must generate a copy in this case, to reach the correct number
5604 of volatile memory references. */
5606 if ((! rtx_equal_p (temp, target)
5607 || (temp != target && (side_effects_p (temp)
5608 || side_effects_p (target))))
5609 && TREE_CODE (exp) != ERROR_MARK
5610 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5611 but TARGET is not valid memory reference, TEMP will differ
5612 from TARGET although it is really the same location. */
5613 && !(alt_rtl
5614 && rtx_equal_p (alt_rtl, target)
5615 && !side_effects_p (alt_rtl)
5616 && !side_effects_p (target))
5617 /* If there's nothing to copy, don't bother. Don't call
5618 expr_size unless necessary, because some front-ends (C++)
5619 expr_size-hook must not be given objects that are not
5620 supposed to be bit-copied or bit-initialized. */
5621 && expr_size (exp) != const0_rtx)
5623 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5625 if (GET_MODE (target) == BLKmode)
5627 /* Handle calls that return BLKmode values in registers. */
5628 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5629 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5630 else
5631 store_bit_field (target,
5632 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5633 0, 0, 0, GET_MODE (temp), temp, reverse);
5635 else
5636 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5639 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5641 /* Handle copying a string constant into an array. The string
5642 constant may be shorter than the array. So copy just the string's
5643 actual length, and clear the rest. First get the size of the data
5644 type of the string, which is actually the size of the target. */
5645 rtx size = expr_size (exp);
5647 if (CONST_INT_P (size)
5648 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5649 emit_block_move (target, temp, size,
5650 (call_param_p
5651 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5652 else
5654 machine_mode pointer_mode
5655 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5656 machine_mode address_mode = get_address_mode (target);
5658 /* Compute the size of the data to copy from the string. */
5659 tree copy_size
5660 = size_binop_loc (loc, MIN_EXPR,
5661 make_tree (sizetype, size),
5662 size_int (TREE_STRING_LENGTH (exp)));
5663 rtx copy_size_rtx
5664 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5665 (call_param_p
5666 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5667 rtx_code_label *label = 0;
5669 /* Copy that much. */
5670 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5671 TYPE_UNSIGNED (sizetype));
5672 emit_block_move (target, temp, copy_size_rtx,
5673 (call_param_p
5674 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5676 /* Figure out how much is left in TARGET that we have to clear.
5677 Do all calculations in pointer_mode. */
5678 if (CONST_INT_P (copy_size_rtx))
5680 size = plus_constant (address_mode, size,
5681 -INTVAL (copy_size_rtx));
5682 target = adjust_address (target, BLKmode,
5683 INTVAL (copy_size_rtx));
5685 else
5687 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5688 copy_size_rtx, NULL_RTX, 0,
5689 OPTAB_LIB_WIDEN);
5691 if (GET_MODE (copy_size_rtx) != address_mode)
5692 copy_size_rtx = convert_to_mode (address_mode,
5693 copy_size_rtx,
5694 TYPE_UNSIGNED (sizetype));
5696 target = offset_address (target, copy_size_rtx,
5697 highest_pow2_factor (copy_size));
5698 label = gen_label_rtx ();
5699 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5700 GET_MODE (size), 0, label);
5703 if (size != const0_rtx)
5704 clear_storage (target, size, BLOCK_OP_NORMAL);
5706 if (label)
5707 emit_label (label);
5710 /* Handle calls that return values in multiple non-contiguous locations.
5711 The Irix 6 ABI has examples of this. */
5712 else if (GET_CODE (target) == PARALLEL)
5714 if (GET_CODE (temp) == PARALLEL)
5715 emit_group_move (target, temp);
5716 else
5717 emit_group_load (target, temp, TREE_TYPE (exp),
5718 int_size_in_bytes (TREE_TYPE (exp)));
5720 else if (GET_CODE (temp) == PARALLEL)
5721 emit_group_store (target, temp, TREE_TYPE (exp),
5722 int_size_in_bytes (TREE_TYPE (exp)));
5723 else if (GET_MODE (temp) == BLKmode)
5724 emit_block_move (target, temp, expr_size (exp),
5725 (call_param_p
5726 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5727 /* If we emit a nontemporal store, there is nothing else to do. */
5728 else if (nontemporal && emit_storent_insn (target, temp))
5730 else
5732 if (reverse)
5733 temp = flip_storage_order (GET_MODE (target), temp);
5734 temp = force_operand (temp, target);
5735 if (temp != target)
5736 emit_move_insn (target, temp);
5740 return NULL_RTX;
5743 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5745 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
5746 bool reverse)
5748 return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
5749 reverse, NULL);
5752 /* Return true if field F of structure TYPE is a flexible array. */
5754 static bool
5755 flexible_array_member_p (const_tree f, const_tree type)
5757 const_tree tf;
5759 tf = TREE_TYPE (f);
5760 return (DECL_CHAIN (f) == NULL
5761 && TREE_CODE (tf) == ARRAY_TYPE
5762 && TYPE_DOMAIN (tf)
5763 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5764 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5765 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5766 && int_size_in_bytes (type) >= 0);
5769 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5770 must have in order for it to completely initialize a value of type TYPE.
5771 Return -1 if the number isn't known.
5773 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5775 static HOST_WIDE_INT
5776 count_type_elements (const_tree type, bool for_ctor_p)
5778 switch (TREE_CODE (type))
5780 case ARRAY_TYPE:
5782 tree nelts;
5784 nelts = array_type_nelts (type);
5785 if (nelts && tree_fits_uhwi_p (nelts))
5787 unsigned HOST_WIDE_INT n;
5789 n = tree_to_uhwi (nelts) + 1;
5790 if (n == 0 || for_ctor_p)
5791 return n;
5792 else
5793 return n * count_type_elements (TREE_TYPE (type), false);
5795 return for_ctor_p ? -1 : 1;
5798 case RECORD_TYPE:
5800 unsigned HOST_WIDE_INT n;
5801 tree f;
5803 n = 0;
5804 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5805 if (TREE_CODE (f) == FIELD_DECL)
5807 if (!for_ctor_p)
5808 n += count_type_elements (TREE_TYPE (f), false);
5809 else if (!flexible_array_member_p (f, type))
5810 /* Don't count flexible arrays, which are not supposed
5811 to be initialized. */
5812 n += 1;
5815 return n;
5818 case UNION_TYPE:
5819 case QUAL_UNION_TYPE:
5821 tree f;
5822 HOST_WIDE_INT n, m;
5824 gcc_assert (!for_ctor_p);
5825 /* Estimate the number of scalars in each field and pick the
5826 maximum. Other estimates would do instead; the idea is simply
5827 to make sure that the estimate is not sensitive to the ordering
5828 of the fields. */
5829 n = 1;
5830 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5831 if (TREE_CODE (f) == FIELD_DECL)
5833 m = count_type_elements (TREE_TYPE (f), false);
5834 /* If the field doesn't span the whole union, add an extra
5835 scalar for the rest. */
5836 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5837 TYPE_SIZE (type)) != 1)
5838 m++;
5839 if (n < m)
5840 n = m;
5842 return n;
5845 case COMPLEX_TYPE:
5846 return 2;
5848 case VECTOR_TYPE:
5849 return TYPE_VECTOR_SUBPARTS (type);
5851 case INTEGER_TYPE:
5852 case REAL_TYPE:
5853 case FIXED_POINT_TYPE:
5854 case ENUMERAL_TYPE:
5855 case BOOLEAN_TYPE:
5856 case POINTER_TYPE:
5857 case OFFSET_TYPE:
5858 case REFERENCE_TYPE:
5859 case NULLPTR_TYPE:
5860 return 1;
5862 case ERROR_MARK:
5863 return 0;
5865 case VOID_TYPE:
5866 case METHOD_TYPE:
5867 case FUNCTION_TYPE:
5868 case LANG_TYPE:
5869 default:
5870 gcc_unreachable ();
5874 /* Helper for categorize_ctor_elements. Identical interface. */
5876 static bool
5877 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5878 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5880 unsigned HOST_WIDE_INT idx;
5881 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5882 tree value, purpose, elt_type;
5884 /* Whether CTOR is a valid constant initializer, in accordance with what
5885 initializer_constant_valid_p does. If inferred from the constructor
5886 elements, true until proven otherwise. */
5887 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5888 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5890 nz_elts = 0;
5891 init_elts = 0;
5892 num_fields = 0;
5893 elt_type = NULL_TREE;
5895 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5897 HOST_WIDE_INT mult = 1;
5899 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5901 tree lo_index = TREE_OPERAND (purpose, 0);
5902 tree hi_index = TREE_OPERAND (purpose, 1);
5904 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5905 mult = (tree_to_uhwi (hi_index)
5906 - tree_to_uhwi (lo_index) + 1);
5908 num_fields += mult;
5909 elt_type = TREE_TYPE (value);
5911 switch (TREE_CODE (value))
5913 case CONSTRUCTOR:
5915 HOST_WIDE_INT nz = 0, ic = 0;
5917 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5918 p_complete);
5920 nz_elts += mult * nz;
5921 init_elts += mult * ic;
5923 if (const_from_elts_p && const_p)
5924 const_p = const_elt_p;
5926 break;
5928 case INTEGER_CST:
5929 case REAL_CST:
5930 case FIXED_CST:
5931 if (!initializer_zerop (value))
5932 nz_elts += mult;
5933 init_elts += mult;
5934 break;
5936 case STRING_CST:
5937 nz_elts += mult * TREE_STRING_LENGTH (value);
5938 init_elts += mult * TREE_STRING_LENGTH (value);
5939 break;
5941 case COMPLEX_CST:
5942 if (!initializer_zerop (TREE_REALPART (value)))
5943 nz_elts += mult;
5944 if (!initializer_zerop (TREE_IMAGPART (value)))
5945 nz_elts += mult;
5946 init_elts += mult;
5947 break;
5949 case VECTOR_CST:
5951 unsigned i;
5952 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5954 tree v = VECTOR_CST_ELT (value, i);
5955 if (!initializer_zerop (v))
5956 nz_elts += mult;
5957 init_elts += mult;
5960 break;
5962 default:
5964 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5965 nz_elts += mult * tc;
5966 init_elts += mult * tc;
5968 if (const_from_elts_p && const_p)
5969 const_p
5970 = initializer_constant_valid_p (value,
5971 elt_type,
5972 TYPE_REVERSE_STORAGE_ORDER
5973 (TREE_TYPE (ctor)))
5974 != NULL_TREE;
5976 break;
5980 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5981 num_fields, elt_type))
5982 *p_complete = false;
5984 *p_nz_elts += nz_elts;
5985 *p_init_elts += init_elts;
5987 return const_p;
5990 /* Examine CTOR to discover:
5991 * how many scalar fields are set to nonzero values,
5992 and place it in *P_NZ_ELTS;
5993 * how many scalar fields in total are in CTOR,
5994 and place it in *P_ELT_COUNT.
5995 * whether the constructor is complete -- in the sense that every
5996 meaningful byte is explicitly given a value --
5997 and place it in *P_COMPLETE.
5999 Return whether or not CTOR is a valid static constant initializer, the same
6000 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6002 bool
6003 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6004 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6006 *p_nz_elts = 0;
6007 *p_init_elts = 0;
6008 *p_complete = true;
6010 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
6013 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6014 of which had type LAST_TYPE. Each element was itself a complete
6015 initializer, in the sense that every meaningful byte was explicitly
6016 given a value. Return true if the same is true for the constructor
6017 as a whole. */
6019 bool
6020 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6021 const_tree last_type)
6023 if (TREE_CODE (type) == UNION_TYPE
6024 || TREE_CODE (type) == QUAL_UNION_TYPE)
6026 if (num_elts == 0)
6027 return false;
6029 gcc_assert (num_elts == 1 && last_type);
6031 /* ??? We could look at each element of the union, and find the
6032 largest element. Which would avoid comparing the size of the
6033 initialized element against any tail padding in the union.
6034 Doesn't seem worth the effort... */
6035 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6038 return count_type_elements (type, true) == num_elts;
6041 /* Return 1 if EXP contains mostly (3/4) zeros. */
6043 static int
6044 mostly_zeros_p (const_tree exp)
6046 if (TREE_CODE (exp) == CONSTRUCTOR)
6048 HOST_WIDE_INT nz_elts, init_elts;
6049 bool complete_p;
6051 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6052 return !complete_p || nz_elts < init_elts / 4;
6055 return initializer_zerop (exp);
6058 /* Return 1 if EXP contains all zeros. */
6060 static int
6061 all_zeros_p (const_tree exp)
6063 if (TREE_CODE (exp) == CONSTRUCTOR)
6065 HOST_WIDE_INT nz_elts, init_elts;
6066 bool complete_p;
6068 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6069 return nz_elts == 0;
6072 return initializer_zerop (exp);
6075 /* Helper function for store_constructor.
6076 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6077 CLEARED is as for store_constructor.
6078 ALIAS_SET is the alias set to use for any stores.
6079 If REVERSE is true, the store is to be done in reverse order.
6081 This provides a recursive shortcut back to store_constructor when it isn't
6082 necessary to go through store_field. This is so that we can pass through
6083 the cleared field to let store_constructor know that we may not have to
6084 clear a substructure if the outer structure has already been cleared. */
6086 static void
6087 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
6088 HOST_WIDE_INT bitpos,
6089 unsigned HOST_WIDE_INT bitregion_start,
6090 unsigned HOST_WIDE_INT bitregion_end,
6091 machine_mode mode,
6092 tree exp, int cleared,
6093 alias_set_type alias_set, bool reverse)
6095 if (TREE_CODE (exp) == CONSTRUCTOR
6096 /* We can only call store_constructor recursively if the size and
6097 bit position are on a byte boundary. */
6098 && bitpos % BITS_PER_UNIT == 0
6099 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
6100 /* If we have a nonzero bitpos for a register target, then we just
6101 let store_field do the bitfield handling. This is unlikely to
6102 generate unnecessary clear instructions anyways. */
6103 && (bitpos == 0 || MEM_P (target)))
6105 if (MEM_P (target))
6106 target
6107 = adjust_address (target,
6108 GET_MODE (target) == BLKmode
6109 || 0 != (bitpos
6110 % GET_MODE_ALIGNMENT (GET_MODE (target)))
6111 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
6114 /* Update the alias set, if required. */
6115 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6116 && MEM_ALIAS_SET (target) != 0)
6118 target = copy_rtx (target);
6119 set_mem_alias_set (target, alias_set);
6122 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT,
6123 reverse);
6125 else
6126 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6127 exp, alias_set, false, reverse);
6131 /* Returns the number of FIELD_DECLs in TYPE. */
6133 static int
6134 fields_length (const_tree type)
6136 tree t = TYPE_FIELDS (type);
6137 int count = 0;
6139 for (; t; t = DECL_CHAIN (t))
6140 if (TREE_CODE (t) == FIELD_DECL)
6141 ++count;
6143 return count;
6147 /* Store the value of constructor EXP into the rtx TARGET.
6148 TARGET is either a REG or a MEM; we know it cannot conflict, since
6149 safe_from_p has been called.
6150 CLEARED is true if TARGET is known to have been zero'd.
6151 SIZE is the number of bytes of TARGET we are allowed to modify: this
6152 may not be the same as the size of EXP if we are assigning to a field
6153 which has been packed to exclude padding bits.
6154 If REVERSE is true, the store is to be done in reverse order. */
6156 static void
6157 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size,
6158 bool reverse)
6160 tree type = TREE_TYPE (exp);
6161 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6162 HOST_WIDE_INT bitregion_end = size > 0 ? size * BITS_PER_UNIT - 1 : 0;
6164 switch (TREE_CODE (type))
6166 case RECORD_TYPE:
6167 case UNION_TYPE:
6168 case QUAL_UNION_TYPE:
6170 unsigned HOST_WIDE_INT idx;
6171 tree field, value;
6173 /* The storage order is specified for every aggregate type. */
6174 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6176 /* If size is zero or the target is already cleared, do nothing. */
6177 if (size == 0 || cleared)
6178 cleared = 1;
6179 /* We either clear the aggregate or indicate the value is dead. */
6180 else if ((TREE_CODE (type) == UNION_TYPE
6181 || TREE_CODE (type) == QUAL_UNION_TYPE)
6182 && ! CONSTRUCTOR_ELTS (exp))
6183 /* If the constructor is empty, clear the union. */
6185 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6186 cleared = 1;
6189 /* If we are building a static constructor into a register,
6190 set the initial value as zero so we can fold the value into
6191 a constant. But if more than one register is involved,
6192 this probably loses. */
6193 else if (REG_P (target) && TREE_STATIC (exp)
6194 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
6196 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6197 cleared = 1;
6200 /* If the constructor has fewer fields than the structure or
6201 if we are initializing the structure to mostly zeros, clear
6202 the whole structure first. Don't do this if TARGET is a
6203 register whose mode size isn't equal to SIZE since
6204 clear_storage can't handle this case. */
6205 else if (size > 0
6206 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6207 || mostly_zeros_p (exp))
6208 && (!REG_P (target)
6209 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6210 == size)))
6212 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6213 cleared = 1;
6216 if (REG_P (target) && !cleared)
6217 emit_clobber (target);
6219 /* Store each element of the constructor into the
6220 corresponding field of TARGET. */
6221 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6223 machine_mode mode;
6224 HOST_WIDE_INT bitsize;
6225 HOST_WIDE_INT bitpos = 0;
6226 tree offset;
6227 rtx to_rtx = target;
6229 /* Just ignore missing fields. We cleared the whole
6230 structure, above, if any fields are missing. */
6231 if (field == 0)
6232 continue;
6234 if (cleared && initializer_zerop (value))
6235 continue;
6237 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6238 bitsize = tree_to_uhwi (DECL_SIZE (field));
6239 else
6240 gcc_unreachable ();
6242 mode = DECL_MODE (field);
6243 if (DECL_BIT_FIELD (field))
6244 mode = VOIDmode;
6246 offset = DECL_FIELD_OFFSET (field);
6247 if (tree_fits_shwi_p (offset)
6248 && tree_fits_shwi_p (bit_position (field)))
6250 bitpos = int_bit_position (field);
6251 offset = NULL_TREE;
6253 else
6254 gcc_unreachable ();
6256 /* If this initializes a field that is smaller than a
6257 word, at the start of a word, try to widen it to a full
6258 word. This special case allows us to output C++ member
6259 function initializations in a form that the optimizers
6260 can understand. */
6261 if (WORD_REGISTER_OPERATIONS
6262 && REG_P (target)
6263 && bitsize < BITS_PER_WORD
6264 && bitpos % BITS_PER_WORD == 0
6265 && GET_MODE_CLASS (mode) == MODE_INT
6266 && TREE_CODE (value) == INTEGER_CST
6267 && exp_size >= 0
6268 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6270 tree type = TREE_TYPE (value);
6272 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6274 type = lang_hooks.types.type_for_mode
6275 (word_mode, TYPE_UNSIGNED (type));
6276 value = fold_convert (type, value);
6277 /* Make sure the bits beyond the original bitsize are zero
6278 so that we can correctly avoid extra zeroing stores in
6279 later constructor elements. */
6280 tree bitsize_mask
6281 = wide_int_to_tree (type, wi::mask (bitsize, false,
6282 BITS_PER_WORD));
6283 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6286 if (BYTES_BIG_ENDIAN)
6287 value
6288 = fold_build2 (LSHIFT_EXPR, type, value,
6289 build_int_cst (type,
6290 BITS_PER_WORD - bitsize));
6291 bitsize = BITS_PER_WORD;
6292 mode = word_mode;
6295 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6296 && DECL_NONADDRESSABLE_P (field))
6298 to_rtx = copy_rtx (to_rtx);
6299 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6302 store_constructor_field (to_rtx, bitsize, bitpos,
6303 0, bitregion_end, mode,
6304 value, cleared,
6305 get_alias_set (TREE_TYPE (field)),
6306 reverse);
6308 break;
6310 case ARRAY_TYPE:
6312 tree value, index;
6313 unsigned HOST_WIDE_INT i;
6314 int need_to_clear;
6315 tree domain;
6316 tree elttype = TREE_TYPE (type);
6317 int const_bounds_p;
6318 HOST_WIDE_INT minelt = 0;
6319 HOST_WIDE_INT maxelt = 0;
6321 /* The storage order is specified for every aggregate type. */
6322 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6324 domain = TYPE_DOMAIN (type);
6325 const_bounds_p = (TYPE_MIN_VALUE (domain)
6326 && TYPE_MAX_VALUE (domain)
6327 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6328 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6330 /* If we have constant bounds for the range of the type, get them. */
6331 if (const_bounds_p)
6333 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6334 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6337 /* If the constructor has fewer elements than the array, clear
6338 the whole array first. Similarly if this is static
6339 constructor of a non-BLKmode object. */
6340 if (cleared)
6341 need_to_clear = 0;
6342 else if (REG_P (target) && TREE_STATIC (exp))
6343 need_to_clear = 1;
6344 else
6346 unsigned HOST_WIDE_INT idx;
6347 tree index, value;
6348 HOST_WIDE_INT count = 0, zero_count = 0;
6349 need_to_clear = ! const_bounds_p;
6351 /* This loop is a more accurate version of the loop in
6352 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6353 is also needed to check for missing elements. */
6354 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6356 HOST_WIDE_INT this_node_count;
6358 if (need_to_clear)
6359 break;
6361 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6363 tree lo_index = TREE_OPERAND (index, 0);
6364 tree hi_index = TREE_OPERAND (index, 1);
6366 if (! tree_fits_uhwi_p (lo_index)
6367 || ! tree_fits_uhwi_p (hi_index))
6369 need_to_clear = 1;
6370 break;
6373 this_node_count = (tree_to_uhwi (hi_index)
6374 - tree_to_uhwi (lo_index) + 1);
6376 else
6377 this_node_count = 1;
6379 count += this_node_count;
6380 if (mostly_zeros_p (value))
6381 zero_count += this_node_count;
6384 /* Clear the entire array first if there are any missing
6385 elements, or if the incidence of zero elements is >=
6386 75%. */
6387 if (! need_to_clear
6388 && (count < maxelt - minelt + 1
6389 || 4 * zero_count >= 3 * count))
6390 need_to_clear = 1;
6393 if (need_to_clear && size > 0)
6395 if (REG_P (target))
6396 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6397 else
6398 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6399 cleared = 1;
6402 if (!cleared && REG_P (target))
6403 /* Inform later passes that the old value is dead. */
6404 emit_clobber (target);
6406 /* Store each element of the constructor into the
6407 corresponding element of TARGET, determined by counting the
6408 elements. */
6409 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6411 machine_mode mode;
6412 HOST_WIDE_INT bitsize;
6413 HOST_WIDE_INT bitpos;
6414 rtx xtarget = target;
6416 if (cleared && initializer_zerop (value))
6417 continue;
6419 mode = TYPE_MODE (elttype);
6420 if (mode == BLKmode)
6421 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6422 ? tree_to_uhwi (TYPE_SIZE (elttype))
6423 : -1);
6424 else
6425 bitsize = GET_MODE_BITSIZE (mode);
6427 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6429 tree lo_index = TREE_OPERAND (index, 0);
6430 tree hi_index = TREE_OPERAND (index, 1);
6431 rtx index_r, pos_rtx;
6432 HOST_WIDE_INT lo, hi, count;
6433 tree position;
6435 /* If the range is constant and "small", unroll the loop. */
6436 if (const_bounds_p
6437 && tree_fits_shwi_p (lo_index)
6438 && tree_fits_shwi_p (hi_index)
6439 && (lo = tree_to_shwi (lo_index),
6440 hi = tree_to_shwi (hi_index),
6441 count = hi - lo + 1,
6442 (!MEM_P (target)
6443 || count <= 2
6444 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6445 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6446 <= 40 * 8)))))
6448 lo -= minelt; hi -= minelt;
6449 for (; lo <= hi; lo++)
6451 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6453 if (MEM_P (target)
6454 && !MEM_KEEP_ALIAS_SET_P (target)
6455 && TREE_CODE (type) == ARRAY_TYPE
6456 && TYPE_NONALIASED_COMPONENT (type))
6458 target = copy_rtx (target);
6459 MEM_KEEP_ALIAS_SET_P (target) = 1;
6462 store_constructor_field
6463 (target, bitsize, bitpos, 0, bitregion_end,
6464 mode, value, cleared,
6465 get_alias_set (elttype), reverse);
6468 else
6470 rtx_code_label *loop_start = gen_label_rtx ();
6471 rtx_code_label *loop_end = gen_label_rtx ();
6472 tree exit_cond;
6474 expand_normal (hi_index);
6476 index = build_decl (EXPR_LOCATION (exp),
6477 VAR_DECL, NULL_TREE, domain);
6478 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6479 SET_DECL_RTL (index, index_r);
6480 store_expr (lo_index, index_r, 0, false, reverse);
6482 /* Build the head of the loop. */
6483 do_pending_stack_adjust ();
6484 emit_label (loop_start);
6486 /* Assign value to element index. */
6487 position =
6488 fold_convert (ssizetype,
6489 fold_build2 (MINUS_EXPR,
6490 TREE_TYPE (index),
6491 index,
6492 TYPE_MIN_VALUE (domain)));
6494 position =
6495 size_binop (MULT_EXPR, position,
6496 fold_convert (ssizetype,
6497 TYPE_SIZE_UNIT (elttype)));
6499 pos_rtx = expand_normal (position);
6500 xtarget = offset_address (target, pos_rtx,
6501 highest_pow2_factor (position));
6502 xtarget = adjust_address (xtarget, mode, 0);
6503 if (TREE_CODE (value) == CONSTRUCTOR)
6504 store_constructor (value, xtarget, cleared,
6505 bitsize / BITS_PER_UNIT, reverse);
6506 else
6507 store_expr (value, xtarget, 0, false, reverse);
6509 /* Generate a conditional jump to exit the loop. */
6510 exit_cond = build2 (LT_EXPR, integer_type_node,
6511 index, hi_index);
6512 jumpif (exit_cond, loop_end,
6513 profile_probability::uninitialized ());
6515 /* Update the loop counter, and jump to the head of
6516 the loop. */
6517 expand_assignment (index,
6518 build2 (PLUS_EXPR, TREE_TYPE (index),
6519 index, integer_one_node),
6520 false);
6522 emit_jump (loop_start);
6524 /* Build the end of the loop. */
6525 emit_label (loop_end);
6528 else if ((index != 0 && ! tree_fits_shwi_p (index))
6529 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6531 tree position;
6533 if (index == 0)
6534 index = ssize_int (1);
6536 if (minelt)
6537 index = fold_convert (ssizetype,
6538 fold_build2 (MINUS_EXPR,
6539 TREE_TYPE (index),
6540 index,
6541 TYPE_MIN_VALUE (domain)));
6543 position =
6544 size_binop (MULT_EXPR, index,
6545 fold_convert (ssizetype,
6546 TYPE_SIZE_UNIT (elttype)));
6547 xtarget = offset_address (target,
6548 expand_normal (position),
6549 highest_pow2_factor (position));
6550 xtarget = adjust_address (xtarget, mode, 0);
6551 store_expr (value, xtarget, 0, false, reverse);
6553 else
6555 if (index != 0)
6556 bitpos = ((tree_to_shwi (index) - minelt)
6557 * tree_to_uhwi (TYPE_SIZE (elttype)));
6558 else
6559 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6561 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6562 && TREE_CODE (type) == ARRAY_TYPE
6563 && TYPE_NONALIASED_COMPONENT (type))
6565 target = copy_rtx (target);
6566 MEM_KEEP_ALIAS_SET_P (target) = 1;
6568 store_constructor_field (target, bitsize, bitpos, 0,
6569 bitregion_end, mode, value,
6570 cleared, get_alias_set (elttype),
6571 reverse);
6574 break;
6577 case VECTOR_TYPE:
6579 unsigned HOST_WIDE_INT idx;
6580 constructor_elt *ce;
6581 int i;
6582 int need_to_clear;
6583 int icode = CODE_FOR_nothing;
6584 tree elttype = TREE_TYPE (type);
6585 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6586 machine_mode eltmode = TYPE_MODE (elttype);
6587 HOST_WIDE_INT bitsize;
6588 HOST_WIDE_INT bitpos;
6589 rtvec vector = NULL;
6590 unsigned n_elts;
6591 alias_set_type alias;
6592 bool vec_vec_init_p = false;
6594 gcc_assert (eltmode != BLKmode);
6596 n_elts = TYPE_VECTOR_SUBPARTS (type);
6597 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6599 machine_mode mode = GET_MODE (target);
6600 machine_mode emode = eltmode;
6602 if (CONSTRUCTOR_NELTS (exp)
6603 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6604 == VECTOR_TYPE))
6606 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6607 gcc_assert (CONSTRUCTOR_NELTS (exp) * TYPE_VECTOR_SUBPARTS (etype)
6608 == n_elts);
6609 emode = TYPE_MODE (etype);
6611 icode = (int) convert_optab_handler (vec_init_optab, mode, emode);
6612 if (icode != CODE_FOR_nothing)
6614 unsigned int i, n = n_elts;
6616 if (emode != eltmode)
6618 n = CONSTRUCTOR_NELTS (exp);
6619 vec_vec_init_p = true;
6621 vector = rtvec_alloc (n);
6622 for (i = 0; i < n; i++)
6623 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6627 /* If the constructor has fewer elements than the vector,
6628 clear the whole array first. Similarly if this is static
6629 constructor of a non-BLKmode object. */
6630 if (cleared)
6631 need_to_clear = 0;
6632 else if (REG_P (target) && TREE_STATIC (exp))
6633 need_to_clear = 1;
6634 else
6636 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6637 tree value;
6639 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6641 tree sz = TYPE_SIZE (TREE_TYPE (value));
6642 int n_elts_here
6643 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6644 TYPE_SIZE (elttype)));
6646 count += n_elts_here;
6647 if (mostly_zeros_p (value))
6648 zero_count += n_elts_here;
6651 /* Clear the entire vector first if there are any missing elements,
6652 or if the incidence of zero elements is >= 75%. */
6653 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6656 if (need_to_clear && size > 0 && !vector)
6658 if (REG_P (target))
6659 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6660 else
6661 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6662 cleared = 1;
6665 /* Inform later passes that the old value is dead. */
6666 if (!cleared && !vector && REG_P (target))
6667 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6669 if (MEM_P (target))
6670 alias = MEM_ALIAS_SET (target);
6671 else
6672 alias = get_alias_set (elttype);
6674 /* Store each element of the constructor into the corresponding
6675 element of TARGET, determined by counting the elements. */
6676 for (idx = 0, i = 0;
6677 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6678 idx++, i += bitsize / elt_size)
6680 HOST_WIDE_INT eltpos;
6681 tree value = ce->value;
6683 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6684 if (cleared && initializer_zerop (value))
6685 continue;
6687 if (ce->index)
6688 eltpos = tree_to_uhwi (ce->index);
6689 else
6690 eltpos = i;
6692 if (vector)
6694 if (vec_vec_init_p)
6696 gcc_assert (ce->index == NULL_TREE);
6697 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6698 eltpos = idx;
6700 else
6701 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6702 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6704 else
6706 machine_mode value_mode
6707 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6708 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6709 bitpos = eltpos * elt_size;
6710 store_constructor_field (target, bitsize, bitpos, 0,
6711 bitregion_end, value_mode,
6712 value, cleared, alias, reverse);
6716 if (vector)
6717 emit_insn (GEN_FCN (icode) (target,
6718 gen_rtx_PARALLEL (GET_MODE (target),
6719 vector)));
6720 break;
6723 default:
6724 gcc_unreachable ();
6728 /* Store the value of EXP (an expression tree)
6729 into a subfield of TARGET which has mode MODE and occupies
6730 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6731 If MODE is VOIDmode, it means that we are storing into a bit-field.
6733 BITREGION_START is bitpos of the first bitfield in this region.
6734 BITREGION_END is the bitpos of the ending bitfield in this region.
6735 These two fields are 0, if the C++ memory model does not apply,
6736 or we are not interested in keeping track of bitfield regions.
6738 Always return const0_rtx unless we have something particular to
6739 return.
6741 ALIAS_SET is the alias set for the destination. This value will
6742 (in general) be different from that for TARGET, since TARGET is a
6743 reference to the containing structure.
6745 If NONTEMPORAL is true, try generating a nontemporal store.
6747 If REVERSE is true, the store is to be done in reverse order. */
6749 static rtx
6750 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6751 unsigned HOST_WIDE_INT bitregion_start,
6752 unsigned HOST_WIDE_INT bitregion_end,
6753 machine_mode mode, tree exp,
6754 alias_set_type alias_set, bool nontemporal, bool reverse)
6756 if (TREE_CODE (exp) == ERROR_MARK)
6757 return const0_rtx;
6759 /* If we have nothing to store, do nothing unless the expression has
6760 side-effects. */
6761 if (bitsize == 0)
6762 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6764 if (GET_CODE (target) == CONCAT)
6766 /* We're storing into a struct containing a single __complex. */
6768 gcc_assert (!bitpos);
6769 return store_expr (exp, target, 0, nontemporal, reverse);
6772 /* If the structure is in a register or if the component
6773 is a bit field, we cannot use addressing to access it.
6774 Use bit-field techniques or SUBREG to store in it. */
6776 if (mode == VOIDmode
6777 || (mode != BLKmode && ! direct_store[(int) mode]
6778 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6779 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6780 || REG_P (target)
6781 || GET_CODE (target) == SUBREG
6782 /* If the field isn't aligned enough to store as an ordinary memref,
6783 store it as a bit field. */
6784 || (mode != BLKmode
6785 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6786 || bitpos % GET_MODE_ALIGNMENT (mode))
6787 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6788 || (bitpos % BITS_PER_UNIT != 0)))
6789 || (bitsize >= 0 && mode != BLKmode
6790 && GET_MODE_BITSIZE (mode) > bitsize)
6791 /* If the RHS and field are a constant size and the size of the
6792 RHS isn't the same size as the bitfield, we must use bitfield
6793 operations. */
6794 || (bitsize >= 0
6795 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6796 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0
6797 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6798 we will handle specially below. */
6799 && !(TREE_CODE (exp) == CONSTRUCTOR
6800 && bitsize % BITS_PER_UNIT == 0)
6801 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6802 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6803 includes some extra padding. store_expr / expand_expr will in
6804 that case call get_inner_reference that will have the bitsize
6805 we check here and thus the block move will not clobber the
6806 padding that shouldn't be clobbered. In the future we could
6807 replace the TREE_ADDRESSABLE check with a check that
6808 get_base_address needs to live in memory. */
6809 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6810 || TREE_CODE (exp) != COMPONENT_REF
6811 || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST
6812 || (bitsize % BITS_PER_UNIT != 0)
6813 || (bitpos % BITS_PER_UNIT != 0)
6814 || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize)
6815 != 0)))
6816 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6817 decl we must use bitfield operations. */
6818 || (bitsize >= 0
6819 && TREE_CODE (exp) == MEM_REF
6820 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6821 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6822 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6823 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6825 rtx temp;
6826 gimple *nop_def;
6828 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6829 implies a mask operation. If the precision is the same size as
6830 the field we're storing into, that mask is redundant. This is
6831 particularly common with bit field assignments generated by the
6832 C front end. */
6833 nop_def = get_def_for_expr (exp, NOP_EXPR);
6834 if (nop_def)
6836 tree type = TREE_TYPE (exp);
6837 if (INTEGRAL_TYPE_P (type)
6838 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6839 && bitsize == TYPE_PRECISION (type))
6841 tree op = gimple_assign_rhs1 (nop_def);
6842 type = TREE_TYPE (op);
6843 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6844 exp = op;
6848 temp = expand_normal (exp);
6850 /* Handle calls that return values in multiple non-contiguous locations.
6851 The Irix 6 ABI has examples of this. */
6852 if (GET_CODE (temp) == PARALLEL)
6854 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6855 machine_mode temp_mode
6856 = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6857 rtx temp_target = gen_reg_rtx (temp_mode);
6858 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6859 temp = temp_target;
6862 /* Handle calls that return BLKmode values in registers. */
6863 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6865 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6866 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6867 temp = temp_target;
6870 /* If the value has aggregate type and an integral mode then, if BITSIZE
6871 is narrower than this mode and this is for big-endian data, we first
6872 need to put the value into the low-order bits for store_bit_field,
6873 except when MODE is BLKmode and BITSIZE larger than the word size
6874 (see the handling of fields larger than a word in store_bit_field).
6875 Moreover, the field may be not aligned on a byte boundary; in this
6876 case, if it has reverse storage order, it needs to be accessed as a
6877 scalar field with reverse storage order and we must first put the
6878 value into target order. */
6879 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
6880 && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT)
6882 HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (temp));
6884 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
6886 if (reverse)
6887 temp = flip_storage_order (GET_MODE (temp), temp);
6889 if (bitsize < size
6890 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
6891 && !(mode == BLKmode && bitsize > BITS_PER_WORD))
6892 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6893 size - bitsize, NULL_RTX, 1);
6896 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6897 if (mode != VOIDmode && mode != BLKmode
6898 && mode != TYPE_MODE (TREE_TYPE (exp)))
6899 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6901 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
6902 and BITPOS must be aligned on a byte boundary. If so, we simply do
6903 a block copy. Likewise for a BLKmode-like TARGET. */
6904 if (GET_MODE (temp) == BLKmode
6905 && (GET_MODE (target) == BLKmode
6906 || (MEM_P (target)
6907 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6908 && (bitpos % BITS_PER_UNIT) == 0
6909 && (bitsize % BITS_PER_UNIT) == 0)))
6911 gcc_assert (MEM_P (target) && MEM_P (temp)
6912 && (bitpos % BITS_PER_UNIT) == 0);
6914 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6915 emit_block_move (target, temp,
6916 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6917 / BITS_PER_UNIT),
6918 BLOCK_OP_NORMAL);
6920 return const0_rtx;
6923 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
6924 word size, we need to load the value (see again store_bit_field). */
6925 if (GET_MODE (temp) == BLKmode && bitsize <= BITS_PER_WORD)
6927 machine_mode temp_mode = smallest_mode_for_size (bitsize, MODE_INT);
6928 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
6929 temp_mode, false, NULL);
6932 /* Store the value in the bitfield. */
6933 store_bit_field (target, bitsize, bitpos,
6934 bitregion_start, bitregion_end,
6935 mode, temp, reverse);
6937 return const0_rtx;
6939 else
6941 /* Now build a reference to just the desired component. */
6942 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6944 if (to_rtx == target)
6945 to_rtx = copy_rtx (to_rtx);
6947 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6948 set_mem_alias_set (to_rtx, alias_set);
6950 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
6951 into a target smaller than its type; handle that case now. */
6952 if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0)
6954 gcc_assert (bitsize % BITS_PER_UNIT == 0);
6955 store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse);
6956 return to_rtx;
6959 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
6963 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6964 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6965 codes and find the ultimate containing object, which we return.
6967 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6968 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
6969 storage order of the field.
6970 If the position of the field is variable, we store a tree
6971 giving the variable offset (in units) in *POFFSET.
6972 This offset is in addition to the bit position.
6973 If the position is not variable, we store 0 in *POFFSET.
6975 If any of the extraction expressions is volatile,
6976 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6978 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6979 Otherwise, it is a mode that can be used to access the field.
6981 If the field describes a variable-sized object, *PMODE is set to
6982 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6983 this case, but the address of the object can be found. */
6985 tree
6986 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6987 HOST_WIDE_INT *pbitpos, tree *poffset,
6988 machine_mode *pmode, int *punsignedp,
6989 int *preversep, int *pvolatilep)
6991 tree size_tree = 0;
6992 machine_mode mode = VOIDmode;
6993 bool blkmode_bitfield = false;
6994 tree offset = size_zero_node;
6995 offset_int bit_offset = 0;
6997 /* First get the mode, signedness, storage order and size. We do this from
6998 just the outermost expression. */
6999 *pbitsize = -1;
7000 if (TREE_CODE (exp) == COMPONENT_REF)
7002 tree field = TREE_OPERAND (exp, 1);
7003 size_tree = DECL_SIZE (field);
7004 if (flag_strict_volatile_bitfields > 0
7005 && TREE_THIS_VOLATILE (exp)
7006 && DECL_BIT_FIELD_TYPE (field)
7007 && DECL_MODE (field) != BLKmode)
7008 /* Volatile bitfields should be accessed in the mode of the
7009 field's type, not the mode computed based on the bit
7010 size. */
7011 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7012 else if (!DECL_BIT_FIELD (field))
7013 mode = DECL_MODE (field);
7014 else if (DECL_MODE (field) == BLKmode)
7015 blkmode_bitfield = true;
7017 *punsignedp = DECL_UNSIGNED (field);
7019 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7021 size_tree = TREE_OPERAND (exp, 1);
7022 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7023 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7025 /* For vector types, with the correct size of access, use the mode of
7026 inner type. */
7027 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7028 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7029 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7030 mode = TYPE_MODE (TREE_TYPE (exp));
7032 else
7034 mode = TYPE_MODE (TREE_TYPE (exp));
7035 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7037 if (mode == BLKmode)
7038 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7039 else
7040 *pbitsize = GET_MODE_BITSIZE (mode);
7043 if (size_tree != 0)
7045 if (! tree_fits_uhwi_p (size_tree))
7046 mode = BLKmode, *pbitsize = -1;
7047 else
7048 *pbitsize = tree_to_uhwi (size_tree);
7051 *preversep = reverse_storage_order_for_component_p (exp);
7053 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7054 and find the ultimate containing object. */
7055 while (1)
7057 switch (TREE_CODE (exp))
7059 case BIT_FIELD_REF:
7060 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
7061 break;
7063 case COMPONENT_REF:
7065 tree field = TREE_OPERAND (exp, 1);
7066 tree this_offset = component_ref_field_offset (exp);
7068 /* If this field hasn't been filled in yet, don't go past it.
7069 This should only happen when folding expressions made during
7070 type construction. */
7071 if (this_offset == 0)
7072 break;
7074 offset = size_binop (PLUS_EXPR, offset, this_offset);
7075 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
7077 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7079 break;
7081 case ARRAY_REF:
7082 case ARRAY_RANGE_REF:
7084 tree index = TREE_OPERAND (exp, 1);
7085 tree low_bound = array_ref_low_bound (exp);
7086 tree unit_size = array_ref_element_size (exp);
7088 /* We assume all arrays have sizes that are a multiple of a byte.
7089 First subtract the lower bound, if any, in the type of the
7090 index, then convert to sizetype and multiply by the size of
7091 the array element. */
7092 if (! integer_zerop (low_bound))
7093 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7094 index, low_bound);
7096 offset = size_binop (PLUS_EXPR, offset,
7097 size_binop (MULT_EXPR,
7098 fold_convert (sizetype, index),
7099 unit_size));
7101 break;
7103 case REALPART_EXPR:
7104 break;
7106 case IMAGPART_EXPR:
7107 bit_offset += *pbitsize;
7108 break;
7110 case VIEW_CONVERT_EXPR:
7111 break;
7113 case MEM_REF:
7114 /* Hand back the decl for MEM[&decl, off]. */
7115 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7117 tree off = TREE_OPERAND (exp, 1);
7118 if (!integer_zerop (off))
7120 offset_int boff, coff = mem_ref_offset (exp);
7121 boff = coff << LOG2_BITS_PER_UNIT;
7122 bit_offset += boff;
7124 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7126 goto done;
7128 default:
7129 goto done;
7132 /* If any reference in the chain is volatile, the effect is volatile. */
7133 if (TREE_THIS_VOLATILE (exp))
7134 *pvolatilep = 1;
7136 exp = TREE_OPERAND (exp, 0);
7138 done:
7140 /* If OFFSET is constant, see if we can return the whole thing as a
7141 constant bit position. Make sure to handle overflow during
7142 this conversion. */
7143 if (TREE_CODE (offset) == INTEGER_CST)
7145 offset_int tem = wi::sext (wi::to_offset (offset),
7146 TYPE_PRECISION (sizetype));
7147 tem <<= LOG2_BITS_PER_UNIT;
7148 tem += bit_offset;
7149 if (wi::fits_shwi_p (tem))
7151 *pbitpos = tem.to_shwi ();
7152 *poffset = offset = NULL_TREE;
7156 /* Otherwise, split it up. */
7157 if (offset)
7159 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7160 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
7162 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
7163 offset_int tem = bit_offset.and_not (mask);
7164 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
7165 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
7166 bit_offset -= tem;
7167 tem >>= LOG2_BITS_PER_UNIT;
7168 offset = size_binop (PLUS_EXPR, offset,
7169 wide_int_to_tree (sizetype, tem));
7172 *pbitpos = bit_offset.to_shwi ();
7173 *poffset = offset;
7176 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7177 if (mode == VOIDmode
7178 && blkmode_bitfield
7179 && (*pbitpos % BITS_PER_UNIT) == 0
7180 && (*pbitsize % BITS_PER_UNIT) == 0)
7181 *pmode = BLKmode;
7182 else
7183 *pmode = mode;
7185 return exp;
7188 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7190 static unsigned HOST_WIDE_INT
7191 target_align (const_tree target)
7193 /* We might have a chain of nested references with intermediate misaligning
7194 bitfields components, so need to recurse to find out. */
7196 unsigned HOST_WIDE_INT this_align, outer_align;
7198 switch (TREE_CODE (target))
7200 case BIT_FIELD_REF:
7201 return 1;
7203 case COMPONENT_REF:
7204 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7205 outer_align = target_align (TREE_OPERAND (target, 0));
7206 return MIN (this_align, outer_align);
7208 case ARRAY_REF:
7209 case ARRAY_RANGE_REF:
7210 this_align = TYPE_ALIGN (TREE_TYPE (target));
7211 outer_align = target_align (TREE_OPERAND (target, 0));
7212 return MIN (this_align, outer_align);
7214 CASE_CONVERT:
7215 case NON_LVALUE_EXPR:
7216 case VIEW_CONVERT_EXPR:
7217 this_align = TYPE_ALIGN (TREE_TYPE (target));
7218 outer_align = target_align (TREE_OPERAND (target, 0));
7219 return MAX (this_align, outer_align);
7221 default:
7222 return TYPE_ALIGN (TREE_TYPE (target));
7227 /* Given an rtx VALUE that may contain additions and multiplications, return
7228 an equivalent value that just refers to a register, memory, or constant.
7229 This is done by generating instructions to perform the arithmetic and
7230 returning a pseudo-register containing the value.
7232 The returned value may be a REG, SUBREG, MEM or constant. */
7235 force_operand (rtx value, rtx target)
7237 rtx op1, op2;
7238 /* Use subtarget as the target for operand 0 of a binary operation. */
7239 rtx subtarget = get_subtarget (target);
7240 enum rtx_code code = GET_CODE (value);
7242 /* Check for subreg applied to an expression produced by loop optimizer. */
7243 if (code == SUBREG
7244 && !REG_P (SUBREG_REG (value))
7245 && !MEM_P (SUBREG_REG (value)))
7247 value
7248 = simplify_gen_subreg (GET_MODE (value),
7249 force_reg (GET_MODE (SUBREG_REG (value)),
7250 force_operand (SUBREG_REG (value),
7251 NULL_RTX)),
7252 GET_MODE (SUBREG_REG (value)),
7253 SUBREG_BYTE (value));
7254 code = GET_CODE (value);
7257 /* Check for a PIC address load. */
7258 if ((code == PLUS || code == MINUS)
7259 && XEXP (value, 0) == pic_offset_table_rtx
7260 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7261 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7262 || GET_CODE (XEXP (value, 1)) == CONST))
7264 if (!subtarget)
7265 subtarget = gen_reg_rtx (GET_MODE (value));
7266 emit_move_insn (subtarget, value);
7267 return subtarget;
7270 if (ARITHMETIC_P (value))
7272 op2 = XEXP (value, 1);
7273 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7274 subtarget = 0;
7275 if (code == MINUS && CONST_INT_P (op2))
7277 code = PLUS;
7278 op2 = negate_rtx (GET_MODE (value), op2);
7281 /* Check for an addition with OP2 a constant integer and our first
7282 operand a PLUS of a virtual register and something else. In that
7283 case, we want to emit the sum of the virtual register and the
7284 constant first and then add the other value. This allows virtual
7285 register instantiation to simply modify the constant rather than
7286 creating another one around this addition. */
7287 if (code == PLUS && CONST_INT_P (op2)
7288 && GET_CODE (XEXP (value, 0)) == PLUS
7289 && REG_P (XEXP (XEXP (value, 0), 0))
7290 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7291 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7293 rtx temp = expand_simple_binop (GET_MODE (value), code,
7294 XEXP (XEXP (value, 0), 0), op2,
7295 subtarget, 0, OPTAB_LIB_WIDEN);
7296 return expand_simple_binop (GET_MODE (value), code, temp,
7297 force_operand (XEXP (XEXP (value,
7298 0), 1), 0),
7299 target, 0, OPTAB_LIB_WIDEN);
7302 op1 = force_operand (XEXP (value, 0), subtarget);
7303 op2 = force_operand (op2, NULL_RTX);
7304 switch (code)
7306 case MULT:
7307 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7308 case DIV:
7309 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7310 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7311 target, 1, OPTAB_LIB_WIDEN);
7312 else
7313 return expand_divmod (0,
7314 FLOAT_MODE_P (GET_MODE (value))
7315 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7316 GET_MODE (value), op1, op2, target, 0);
7317 case MOD:
7318 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7319 target, 0);
7320 case UDIV:
7321 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7322 target, 1);
7323 case UMOD:
7324 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7325 target, 1);
7326 case ASHIFTRT:
7327 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7328 target, 0, OPTAB_LIB_WIDEN);
7329 default:
7330 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7331 target, 1, OPTAB_LIB_WIDEN);
7334 if (UNARY_P (value))
7336 if (!target)
7337 target = gen_reg_rtx (GET_MODE (value));
7338 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7339 switch (code)
7341 case ZERO_EXTEND:
7342 case SIGN_EXTEND:
7343 case TRUNCATE:
7344 case FLOAT_EXTEND:
7345 case FLOAT_TRUNCATE:
7346 convert_move (target, op1, code == ZERO_EXTEND);
7347 return target;
7349 case FIX:
7350 case UNSIGNED_FIX:
7351 expand_fix (target, op1, code == UNSIGNED_FIX);
7352 return target;
7354 case FLOAT:
7355 case UNSIGNED_FLOAT:
7356 expand_float (target, op1, code == UNSIGNED_FLOAT);
7357 return target;
7359 default:
7360 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7364 #ifdef INSN_SCHEDULING
7365 /* On machines that have insn scheduling, we want all memory reference to be
7366 explicit, so we need to deal with such paradoxical SUBREGs. */
7367 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7368 value
7369 = simplify_gen_subreg (GET_MODE (value),
7370 force_reg (GET_MODE (SUBREG_REG (value)),
7371 force_operand (SUBREG_REG (value),
7372 NULL_RTX)),
7373 GET_MODE (SUBREG_REG (value)),
7374 SUBREG_BYTE (value));
7375 #endif
7377 return value;
7380 /* Subroutine of expand_expr: return nonzero iff there is no way that
7381 EXP can reference X, which is being modified. TOP_P is nonzero if this
7382 call is going to be used to determine whether we need a temporary
7383 for EXP, as opposed to a recursive call to this function.
7385 It is always safe for this routine to return zero since it merely
7386 searches for optimization opportunities. */
7389 safe_from_p (const_rtx x, tree exp, int top_p)
7391 rtx exp_rtl = 0;
7392 int i, nops;
7394 if (x == 0
7395 /* If EXP has varying size, we MUST use a target since we currently
7396 have no way of allocating temporaries of variable size
7397 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7398 So we assume here that something at a higher level has prevented a
7399 clash. This is somewhat bogus, but the best we can do. Only
7400 do this when X is BLKmode and when we are at the top level. */
7401 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7402 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7403 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7404 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7405 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7406 != INTEGER_CST)
7407 && GET_MODE (x) == BLKmode)
7408 /* If X is in the outgoing argument area, it is always safe. */
7409 || (MEM_P (x)
7410 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7411 || (GET_CODE (XEXP (x, 0)) == PLUS
7412 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7413 return 1;
7415 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7416 find the underlying pseudo. */
7417 if (GET_CODE (x) == SUBREG)
7419 x = SUBREG_REG (x);
7420 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7421 return 0;
7424 /* Now look at our tree code and possibly recurse. */
7425 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7427 case tcc_declaration:
7428 exp_rtl = DECL_RTL_IF_SET (exp);
7429 break;
7431 case tcc_constant:
7432 return 1;
7434 case tcc_exceptional:
7435 if (TREE_CODE (exp) == TREE_LIST)
7437 while (1)
7439 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7440 return 0;
7441 exp = TREE_CHAIN (exp);
7442 if (!exp)
7443 return 1;
7444 if (TREE_CODE (exp) != TREE_LIST)
7445 return safe_from_p (x, exp, 0);
7448 else if (TREE_CODE (exp) == CONSTRUCTOR)
7450 constructor_elt *ce;
7451 unsigned HOST_WIDE_INT idx;
7453 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7454 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7455 || !safe_from_p (x, ce->value, 0))
7456 return 0;
7457 return 1;
7459 else if (TREE_CODE (exp) == ERROR_MARK)
7460 return 1; /* An already-visited SAVE_EXPR? */
7461 else
7462 return 0;
7464 case tcc_statement:
7465 /* The only case we look at here is the DECL_INITIAL inside a
7466 DECL_EXPR. */
7467 return (TREE_CODE (exp) != DECL_EXPR
7468 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7469 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7470 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7472 case tcc_binary:
7473 case tcc_comparison:
7474 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7475 return 0;
7476 /* Fall through. */
7478 case tcc_unary:
7479 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7481 case tcc_expression:
7482 case tcc_reference:
7483 case tcc_vl_exp:
7484 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7485 the expression. If it is set, we conflict iff we are that rtx or
7486 both are in memory. Otherwise, we check all operands of the
7487 expression recursively. */
7489 switch (TREE_CODE (exp))
7491 case ADDR_EXPR:
7492 /* If the operand is static or we are static, we can't conflict.
7493 Likewise if we don't conflict with the operand at all. */
7494 if (staticp (TREE_OPERAND (exp, 0))
7495 || TREE_STATIC (exp)
7496 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7497 return 1;
7499 /* Otherwise, the only way this can conflict is if we are taking
7500 the address of a DECL a that address if part of X, which is
7501 very rare. */
7502 exp = TREE_OPERAND (exp, 0);
7503 if (DECL_P (exp))
7505 if (!DECL_RTL_SET_P (exp)
7506 || !MEM_P (DECL_RTL (exp)))
7507 return 0;
7508 else
7509 exp_rtl = XEXP (DECL_RTL (exp), 0);
7511 break;
7513 case MEM_REF:
7514 if (MEM_P (x)
7515 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7516 get_alias_set (exp)))
7517 return 0;
7518 break;
7520 case CALL_EXPR:
7521 /* Assume that the call will clobber all hard registers and
7522 all of memory. */
7523 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7524 || MEM_P (x))
7525 return 0;
7526 break;
7528 case WITH_CLEANUP_EXPR:
7529 case CLEANUP_POINT_EXPR:
7530 /* Lowered by gimplify.c. */
7531 gcc_unreachable ();
7533 case SAVE_EXPR:
7534 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7536 default:
7537 break;
7540 /* If we have an rtx, we do not need to scan our operands. */
7541 if (exp_rtl)
7542 break;
7544 nops = TREE_OPERAND_LENGTH (exp);
7545 for (i = 0; i < nops; i++)
7546 if (TREE_OPERAND (exp, i) != 0
7547 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7548 return 0;
7550 break;
7552 case tcc_type:
7553 /* Should never get a type here. */
7554 gcc_unreachable ();
7557 /* If we have an rtl, find any enclosed object. Then see if we conflict
7558 with it. */
7559 if (exp_rtl)
7561 if (GET_CODE (exp_rtl) == SUBREG)
7563 exp_rtl = SUBREG_REG (exp_rtl);
7564 if (REG_P (exp_rtl)
7565 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7566 return 0;
7569 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7570 are memory and they conflict. */
7571 return ! (rtx_equal_p (x, exp_rtl)
7572 || (MEM_P (x) && MEM_P (exp_rtl)
7573 && true_dependence (exp_rtl, VOIDmode, x)));
7576 /* If we reach here, it is safe. */
7577 return 1;
7581 /* Return the highest power of two that EXP is known to be a multiple of.
7582 This is used in updating alignment of MEMs in array references. */
7584 unsigned HOST_WIDE_INT
7585 highest_pow2_factor (const_tree exp)
7587 unsigned HOST_WIDE_INT ret;
7588 int trailing_zeros = tree_ctz (exp);
7589 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7590 return BIGGEST_ALIGNMENT;
7591 ret = HOST_WIDE_INT_1U << trailing_zeros;
7592 if (ret > BIGGEST_ALIGNMENT)
7593 return BIGGEST_ALIGNMENT;
7594 return ret;
7597 /* Similar, except that the alignment requirements of TARGET are
7598 taken into account. Assume it is at least as aligned as its
7599 type, unless it is a COMPONENT_REF in which case the layout of
7600 the structure gives the alignment. */
7602 static unsigned HOST_WIDE_INT
7603 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7605 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7606 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7608 return MAX (factor, talign);
7611 /* Convert the tree comparison code TCODE to the rtl one where the
7612 signedness is UNSIGNEDP. */
7614 static enum rtx_code
7615 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7617 enum rtx_code code;
7618 switch (tcode)
7620 case EQ_EXPR:
7621 code = EQ;
7622 break;
7623 case NE_EXPR:
7624 code = NE;
7625 break;
7626 case LT_EXPR:
7627 code = unsignedp ? LTU : LT;
7628 break;
7629 case LE_EXPR:
7630 code = unsignedp ? LEU : LE;
7631 break;
7632 case GT_EXPR:
7633 code = unsignedp ? GTU : GT;
7634 break;
7635 case GE_EXPR:
7636 code = unsignedp ? GEU : GE;
7637 break;
7638 case UNORDERED_EXPR:
7639 code = UNORDERED;
7640 break;
7641 case ORDERED_EXPR:
7642 code = ORDERED;
7643 break;
7644 case UNLT_EXPR:
7645 code = UNLT;
7646 break;
7647 case UNLE_EXPR:
7648 code = UNLE;
7649 break;
7650 case UNGT_EXPR:
7651 code = UNGT;
7652 break;
7653 case UNGE_EXPR:
7654 code = UNGE;
7655 break;
7656 case UNEQ_EXPR:
7657 code = UNEQ;
7658 break;
7659 case LTGT_EXPR:
7660 code = LTGT;
7661 break;
7663 default:
7664 gcc_unreachable ();
7666 return code;
7669 /* Subroutine of expand_expr. Expand the two operands of a binary
7670 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7671 The value may be stored in TARGET if TARGET is nonzero. The
7672 MODIFIER argument is as documented by expand_expr. */
7674 void
7675 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7676 enum expand_modifier modifier)
7678 if (! safe_from_p (target, exp1, 1))
7679 target = 0;
7680 if (operand_equal_p (exp0, exp1, 0))
7682 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7683 *op1 = copy_rtx (*op0);
7685 else
7687 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7688 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7693 /* Return a MEM that contains constant EXP. DEFER is as for
7694 output_constant_def and MODIFIER is as for expand_expr. */
7696 static rtx
7697 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7699 rtx mem;
7701 mem = output_constant_def (exp, defer);
7702 if (modifier != EXPAND_INITIALIZER)
7703 mem = use_anchored_address (mem);
7704 return mem;
7707 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7708 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7710 static rtx
7711 expand_expr_addr_expr_1 (tree exp, rtx target, machine_mode tmode,
7712 enum expand_modifier modifier, addr_space_t as)
7714 rtx result, subtarget;
7715 tree inner, offset;
7716 HOST_WIDE_INT bitsize, bitpos;
7717 int unsignedp, reversep, volatilep = 0;
7718 machine_mode mode1;
7720 /* If we are taking the address of a constant and are at the top level,
7721 we have to use output_constant_def since we can't call force_const_mem
7722 at top level. */
7723 /* ??? This should be considered a front-end bug. We should not be
7724 generating ADDR_EXPR of something that isn't an LVALUE. The only
7725 exception here is STRING_CST. */
7726 if (CONSTANT_CLASS_P (exp))
7728 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7729 if (modifier < EXPAND_SUM)
7730 result = force_operand (result, target);
7731 return result;
7734 /* Everything must be something allowed by is_gimple_addressable. */
7735 switch (TREE_CODE (exp))
7737 case INDIRECT_REF:
7738 /* This case will happen via recursion for &a->b. */
7739 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7741 case MEM_REF:
7743 tree tem = TREE_OPERAND (exp, 0);
7744 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7745 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7746 return expand_expr (tem, target, tmode, modifier);
7749 case CONST_DECL:
7750 /* Expand the initializer like constants above. */
7751 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7752 0, modifier), 0);
7753 if (modifier < EXPAND_SUM)
7754 result = force_operand (result, target);
7755 return result;
7757 case REALPART_EXPR:
7758 /* The real part of the complex number is always first, therefore
7759 the address is the same as the address of the parent object. */
7760 offset = 0;
7761 bitpos = 0;
7762 inner = TREE_OPERAND (exp, 0);
7763 break;
7765 case IMAGPART_EXPR:
7766 /* The imaginary part of the complex number is always second.
7767 The expression is therefore always offset by the size of the
7768 scalar type. */
7769 offset = 0;
7770 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7771 inner = TREE_OPERAND (exp, 0);
7772 break;
7774 case COMPOUND_LITERAL_EXPR:
7775 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7776 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7777 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7778 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7779 the initializers aren't gimplified. */
7780 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7781 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7782 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7783 target, tmode, modifier, as);
7784 /* FALLTHRU */
7785 default:
7786 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7787 expand_expr, as that can have various side effects; LABEL_DECLs for
7788 example, may not have their DECL_RTL set yet. Expand the rtl of
7789 CONSTRUCTORs too, which should yield a memory reference for the
7790 constructor's contents. Assume language specific tree nodes can
7791 be expanded in some interesting way. */
7792 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7793 if (DECL_P (exp)
7794 || TREE_CODE (exp) == CONSTRUCTOR
7795 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7797 result = expand_expr (exp, target, tmode,
7798 modifier == EXPAND_INITIALIZER
7799 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7801 /* If the DECL isn't in memory, then the DECL wasn't properly
7802 marked TREE_ADDRESSABLE, which will be either a front-end
7803 or a tree optimizer bug. */
7805 gcc_assert (MEM_P (result));
7806 result = XEXP (result, 0);
7808 /* ??? Is this needed anymore? */
7809 if (DECL_P (exp))
7810 TREE_USED (exp) = 1;
7812 if (modifier != EXPAND_INITIALIZER
7813 && modifier != EXPAND_CONST_ADDRESS
7814 && modifier != EXPAND_SUM)
7815 result = force_operand (result, target);
7816 return result;
7819 /* Pass FALSE as the last argument to get_inner_reference although
7820 we are expanding to RTL. The rationale is that we know how to
7821 handle "aligning nodes" here: we can just bypass them because
7822 they won't change the final object whose address will be returned
7823 (they actually exist only for that purpose). */
7824 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
7825 &unsignedp, &reversep, &volatilep);
7826 break;
7829 /* We must have made progress. */
7830 gcc_assert (inner != exp);
7832 subtarget = offset || bitpos ? NULL_RTX : target;
7833 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7834 inner alignment, force the inner to be sufficiently aligned. */
7835 if (CONSTANT_CLASS_P (inner)
7836 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7838 inner = copy_node (inner);
7839 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7840 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
7841 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7843 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7845 if (offset)
7847 rtx tmp;
7849 if (modifier != EXPAND_NORMAL)
7850 result = force_operand (result, NULL);
7851 tmp = expand_expr (offset, NULL_RTX, tmode,
7852 modifier == EXPAND_INITIALIZER
7853 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7855 /* expand_expr is allowed to return an object in a mode other
7856 than TMODE. If it did, we need to convert. */
7857 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7858 tmp = convert_modes (tmode, GET_MODE (tmp),
7859 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7860 result = convert_memory_address_addr_space (tmode, result, as);
7861 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7863 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7864 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7865 else
7867 subtarget = bitpos ? NULL_RTX : target;
7868 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7869 1, OPTAB_LIB_WIDEN);
7873 if (bitpos)
7875 /* Someone beforehand should have rejected taking the address
7876 of such an object. */
7877 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7879 result = convert_memory_address_addr_space (tmode, result, as);
7880 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7881 if (modifier < EXPAND_SUM)
7882 result = force_operand (result, target);
7885 return result;
7888 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7889 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7891 static rtx
7892 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7893 enum expand_modifier modifier)
7895 addr_space_t as = ADDR_SPACE_GENERIC;
7896 machine_mode address_mode = Pmode;
7897 machine_mode pointer_mode = ptr_mode;
7898 machine_mode rmode;
7899 rtx result;
7901 /* Target mode of VOIDmode says "whatever's natural". */
7902 if (tmode == VOIDmode)
7903 tmode = TYPE_MODE (TREE_TYPE (exp));
7905 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7907 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7908 address_mode = targetm.addr_space.address_mode (as);
7909 pointer_mode = targetm.addr_space.pointer_mode (as);
7912 /* We can get called with some Weird Things if the user does silliness
7913 like "(short) &a". In that case, convert_memory_address won't do
7914 the right thing, so ignore the given target mode. */
7915 if (tmode != address_mode && tmode != pointer_mode)
7916 tmode = address_mode;
7918 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7919 tmode, modifier, as);
7921 /* Despite expand_expr claims concerning ignoring TMODE when not
7922 strictly convenient, stuff breaks if we don't honor it. Note
7923 that combined with the above, we only do this for pointer modes. */
7924 rmode = GET_MODE (result);
7925 if (rmode == VOIDmode)
7926 rmode = tmode;
7927 if (rmode != tmode)
7928 result = convert_memory_address_addr_space (tmode, result, as);
7930 return result;
7933 /* Generate code for computing CONSTRUCTOR EXP.
7934 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7935 is TRUE, instead of creating a temporary variable in memory
7936 NULL is returned and the caller needs to handle it differently. */
7938 static rtx
7939 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7940 bool avoid_temp_mem)
7942 tree type = TREE_TYPE (exp);
7943 machine_mode mode = TYPE_MODE (type);
7945 /* Try to avoid creating a temporary at all. This is possible
7946 if all of the initializer is zero.
7947 FIXME: try to handle all [0..255] initializers we can handle
7948 with memset. */
7949 if (TREE_STATIC (exp)
7950 && !TREE_ADDRESSABLE (exp)
7951 && target != 0 && mode == BLKmode
7952 && all_zeros_p (exp))
7954 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7955 return target;
7958 /* All elts simple constants => refer to a constant in memory. But
7959 if this is a non-BLKmode mode, let it store a field at a time
7960 since that should make a CONST_INT, CONST_WIDE_INT or
7961 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7962 use, it is best to store directly into the target unless the type
7963 is large enough that memcpy will be used. If we are making an
7964 initializer and all operands are constant, put it in memory as
7965 well.
7967 FIXME: Avoid trying to fill vector constructors piece-meal.
7968 Output them with output_constant_def below unless we're sure
7969 they're zeros. This should go away when vector initializers
7970 are treated like VECTOR_CST instead of arrays. */
7971 if ((TREE_STATIC (exp)
7972 && ((mode == BLKmode
7973 && ! (target != 0 && safe_from_p (target, exp, 1)))
7974 || TREE_ADDRESSABLE (exp)
7975 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7976 && (! can_move_by_pieces
7977 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7978 TYPE_ALIGN (type)))
7979 && ! mostly_zeros_p (exp))))
7980 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7981 && TREE_CONSTANT (exp)))
7983 rtx constructor;
7985 if (avoid_temp_mem)
7986 return NULL_RTX;
7988 constructor = expand_expr_constant (exp, 1, modifier);
7990 if (modifier != EXPAND_CONST_ADDRESS
7991 && modifier != EXPAND_INITIALIZER
7992 && modifier != EXPAND_SUM)
7993 constructor = validize_mem (constructor);
7995 return constructor;
7998 /* Handle calls that pass values in multiple non-contiguous
7999 locations. The Irix 6 ABI has examples of this. */
8000 if (target == 0 || ! safe_from_p (target, exp, 1)
8001 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8003 if (avoid_temp_mem)
8004 return NULL_RTX;
8006 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8009 store_constructor (exp, target, 0, int_expr_size (exp), false);
8010 return target;
8014 /* expand_expr: generate code for computing expression EXP.
8015 An rtx for the computed value is returned. The value is never null.
8016 In the case of a void EXP, const0_rtx is returned.
8018 The value may be stored in TARGET if TARGET is nonzero.
8019 TARGET is just a suggestion; callers must assume that
8020 the rtx returned may not be the same as TARGET.
8022 If TARGET is CONST0_RTX, it means that the value will be ignored.
8024 If TMODE is not VOIDmode, it suggests generating the
8025 result in mode TMODE. But this is done only when convenient.
8026 Otherwise, TMODE is ignored and the value generated in its natural mode.
8027 TMODE is just a suggestion; callers must assume that
8028 the rtx returned may not have mode TMODE.
8030 Note that TARGET may have neither TMODE nor MODE. In that case, it
8031 probably will not be used.
8033 If MODIFIER is EXPAND_SUM then when EXP is an addition
8034 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8035 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8036 products as above, or REG or MEM, or constant.
8037 Ordinarily in such cases we would output mul or add instructions
8038 and then return a pseudo reg containing the sum.
8040 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8041 it also marks a label as absolutely required (it can't be dead).
8042 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8043 This is used for outputting expressions used in initializers.
8045 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8046 with a constant address even if that address is not normally legitimate.
8047 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8049 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8050 a call parameter. Such targets require special care as we haven't yet
8051 marked TARGET so that it's safe from being trashed by libcalls. We
8052 don't want to use TARGET for anything but the final result;
8053 Intermediate values must go elsewhere. Additionally, calls to
8054 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8056 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8057 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8058 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8059 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8060 recursively.
8062 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8063 In this case, we don't adjust a returned MEM rtx that wouldn't be
8064 sufficiently aligned for its mode; instead, it's up to the caller
8065 to deal with it afterwards. This is used to make sure that unaligned
8066 base objects for which out-of-bounds accesses are supported, for
8067 example record types with trailing arrays, aren't realigned behind
8068 the back of the caller.
8069 The normal operating mode is to pass FALSE for this parameter. */
8072 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8073 enum expand_modifier modifier, rtx *alt_rtl,
8074 bool inner_reference_p)
8076 rtx ret;
8078 /* Handle ERROR_MARK before anybody tries to access its type. */
8079 if (TREE_CODE (exp) == ERROR_MARK
8080 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8082 ret = CONST0_RTX (tmode);
8083 return ret ? ret : const0_rtx;
8086 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8087 inner_reference_p);
8088 return ret;
8091 /* Try to expand the conditional expression which is represented by
8092 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8093 return the rtl reg which represents the result. Otherwise return
8094 NULL_RTX. */
8096 static rtx
8097 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8098 tree treeop1 ATTRIBUTE_UNUSED,
8099 tree treeop2 ATTRIBUTE_UNUSED)
8101 rtx insn;
8102 rtx op00, op01, op1, op2;
8103 enum rtx_code comparison_code;
8104 machine_mode comparison_mode;
8105 gimple *srcstmt;
8106 rtx temp;
8107 tree type = TREE_TYPE (treeop1);
8108 int unsignedp = TYPE_UNSIGNED (type);
8109 machine_mode mode = TYPE_MODE (type);
8110 machine_mode orig_mode = mode;
8111 static bool expanding_cond_expr_using_cmove = false;
8113 /* Conditional move expansion can end up TERing two operands which,
8114 when recursively hitting conditional expressions can result in
8115 exponential behavior if the cmove expansion ultimatively fails.
8116 It's hardly profitable to TER a cmove into a cmove so avoid doing
8117 that by failing early if we end up recursing. */
8118 if (expanding_cond_expr_using_cmove)
8119 return NULL_RTX;
8121 /* If we cannot do a conditional move on the mode, try doing it
8122 with the promoted mode. */
8123 if (!can_conditionally_move_p (mode))
8125 mode = promote_mode (type, mode, &unsignedp);
8126 if (!can_conditionally_move_p (mode))
8127 return NULL_RTX;
8128 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8130 else
8131 temp = assign_temp (type, 0, 1);
8133 expanding_cond_expr_using_cmove = true;
8134 start_sequence ();
8135 expand_operands (treeop1, treeop2,
8136 temp, &op1, &op2, EXPAND_NORMAL);
8138 if (TREE_CODE (treeop0) == SSA_NAME
8139 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8141 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8142 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8143 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8144 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8145 comparison_mode = TYPE_MODE (type);
8146 unsignedp = TYPE_UNSIGNED (type);
8147 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8149 else if (COMPARISON_CLASS_P (treeop0))
8151 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8152 enum tree_code cmpcode = TREE_CODE (treeop0);
8153 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8154 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8155 unsignedp = TYPE_UNSIGNED (type);
8156 comparison_mode = TYPE_MODE (type);
8157 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8159 else
8161 op00 = expand_normal (treeop0);
8162 op01 = const0_rtx;
8163 comparison_code = NE;
8164 comparison_mode = GET_MODE (op00);
8165 if (comparison_mode == VOIDmode)
8166 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8168 expanding_cond_expr_using_cmove = false;
8170 if (GET_MODE (op1) != mode)
8171 op1 = gen_lowpart (mode, op1);
8173 if (GET_MODE (op2) != mode)
8174 op2 = gen_lowpart (mode, op2);
8176 /* Try to emit the conditional move. */
8177 insn = emit_conditional_move (temp, comparison_code,
8178 op00, op01, comparison_mode,
8179 op1, op2, mode,
8180 unsignedp);
8182 /* If we could do the conditional move, emit the sequence,
8183 and return. */
8184 if (insn)
8186 rtx_insn *seq = get_insns ();
8187 end_sequence ();
8188 emit_insn (seq);
8189 return convert_modes (orig_mode, mode, temp, 0);
8192 /* Otherwise discard the sequence and fall back to code with
8193 branches. */
8194 end_sequence ();
8195 return NULL_RTX;
8199 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8200 enum expand_modifier modifier)
8202 rtx op0, op1, op2, temp;
8203 rtx_code_label *lab;
8204 tree type;
8205 int unsignedp;
8206 machine_mode mode;
8207 enum tree_code code = ops->code;
8208 optab this_optab;
8209 rtx subtarget, original_target;
8210 int ignore;
8211 bool reduce_bit_field;
8212 location_t loc = ops->location;
8213 tree treeop0, treeop1, treeop2;
8214 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8215 ? reduce_to_bit_field_precision ((expr), \
8216 target, \
8217 type) \
8218 : (expr))
8220 type = ops->type;
8221 mode = TYPE_MODE (type);
8222 unsignedp = TYPE_UNSIGNED (type);
8224 treeop0 = ops->op0;
8225 treeop1 = ops->op1;
8226 treeop2 = ops->op2;
8228 /* We should be called only on simple (binary or unary) expressions,
8229 exactly those that are valid in gimple expressions that aren't
8230 GIMPLE_SINGLE_RHS (or invalid). */
8231 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8232 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8233 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8235 ignore = (target == const0_rtx
8236 || ((CONVERT_EXPR_CODE_P (code)
8237 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8238 && TREE_CODE (type) == VOID_TYPE));
8240 /* We should be called only if we need the result. */
8241 gcc_assert (!ignore);
8243 /* An operation in what may be a bit-field type needs the
8244 result to be reduced to the precision of the bit-field type,
8245 which is narrower than that of the type's mode. */
8246 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8247 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8249 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8250 target = 0;
8252 /* Use subtarget as the target for operand 0 of a binary operation. */
8253 subtarget = get_subtarget (target);
8254 original_target = target;
8256 switch (code)
8258 case NON_LVALUE_EXPR:
8259 case PAREN_EXPR:
8260 CASE_CONVERT:
8261 if (treeop0 == error_mark_node)
8262 return const0_rtx;
8264 if (TREE_CODE (type) == UNION_TYPE)
8266 tree valtype = TREE_TYPE (treeop0);
8268 /* If both input and output are BLKmode, this conversion isn't doing
8269 anything except possibly changing memory attribute. */
8270 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8272 rtx result = expand_expr (treeop0, target, tmode,
8273 modifier);
8275 result = copy_rtx (result);
8276 set_mem_attributes (result, type, 0);
8277 return result;
8280 if (target == 0)
8282 if (TYPE_MODE (type) != BLKmode)
8283 target = gen_reg_rtx (TYPE_MODE (type));
8284 else
8285 target = assign_temp (type, 1, 1);
8288 if (MEM_P (target))
8289 /* Store data into beginning of memory target. */
8290 store_expr (treeop0,
8291 adjust_address (target, TYPE_MODE (valtype), 0),
8292 modifier == EXPAND_STACK_PARM,
8293 false, TYPE_REVERSE_STORAGE_ORDER (type));
8295 else
8297 gcc_assert (REG_P (target)
8298 && !TYPE_REVERSE_STORAGE_ORDER (type));
8300 /* Store this field into a union of the proper type. */
8301 store_field (target,
8302 MIN ((int_size_in_bytes (TREE_TYPE
8303 (treeop0))
8304 * BITS_PER_UNIT),
8305 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8306 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8307 false, false);
8310 /* Return the entire union. */
8311 return target;
8314 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8316 op0 = expand_expr (treeop0, target, VOIDmode,
8317 modifier);
8319 /* If the signedness of the conversion differs and OP0 is
8320 a promoted SUBREG, clear that indication since we now
8321 have to do the proper extension. */
8322 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8323 && GET_CODE (op0) == SUBREG)
8324 SUBREG_PROMOTED_VAR_P (op0) = 0;
8326 return REDUCE_BIT_FIELD (op0);
8329 op0 = expand_expr (treeop0, NULL_RTX, mode,
8330 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8331 if (GET_MODE (op0) == mode)
8334 /* If OP0 is a constant, just convert it into the proper mode. */
8335 else if (CONSTANT_P (op0))
8337 tree inner_type = TREE_TYPE (treeop0);
8338 machine_mode inner_mode = GET_MODE (op0);
8340 if (inner_mode == VOIDmode)
8341 inner_mode = TYPE_MODE (inner_type);
8343 if (modifier == EXPAND_INITIALIZER)
8344 op0 = lowpart_subreg (mode, op0, inner_mode);
8345 else
8346 op0= convert_modes (mode, inner_mode, op0,
8347 TYPE_UNSIGNED (inner_type));
8350 else if (modifier == EXPAND_INITIALIZER)
8351 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8352 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8354 else if (target == 0)
8355 op0 = convert_to_mode (mode, op0,
8356 TYPE_UNSIGNED (TREE_TYPE
8357 (treeop0)));
8358 else
8360 convert_move (target, op0,
8361 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8362 op0 = target;
8365 return REDUCE_BIT_FIELD (op0);
8367 case ADDR_SPACE_CONVERT_EXPR:
8369 tree treeop0_type = TREE_TYPE (treeop0);
8371 gcc_assert (POINTER_TYPE_P (type));
8372 gcc_assert (POINTER_TYPE_P (treeop0_type));
8374 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8375 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8377 /* Conversions between pointers to the same address space should
8378 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8379 gcc_assert (as_to != as_from);
8381 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8383 /* Ask target code to handle conversion between pointers
8384 to overlapping address spaces. */
8385 if (targetm.addr_space.subset_p (as_to, as_from)
8386 || targetm.addr_space.subset_p (as_from, as_to))
8388 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8390 else
8392 /* For disjoint address spaces, converting anything but a null
8393 pointer invokes undefined behavior. We truncate or extend the
8394 value as if we'd converted via integers, which handles 0 as
8395 required, and all others as the programmer likely expects. */
8396 #ifndef POINTERS_EXTEND_UNSIGNED
8397 const int POINTERS_EXTEND_UNSIGNED = 1;
8398 #endif
8399 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8400 op0, POINTERS_EXTEND_UNSIGNED);
8402 gcc_assert (op0);
8403 return op0;
8406 case POINTER_PLUS_EXPR:
8407 /* Even though the sizetype mode and the pointer's mode can be different
8408 expand is able to handle this correctly and get the correct result out
8409 of the PLUS_EXPR code. */
8410 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8411 if sizetype precision is smaller than pointer precision. */
8412 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8413 treeop1 = fold_convert_loc (loc, type,
8414 fold_convert_loc (loc, ssizetype,
8415 treeop1));
8416 /* If sizetype precision is larger than pointer precision, truncate the
8417 offset to have matching modes. */
8418 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8419 treeop1 = fold_convert_loc (loc, type, treeop1);
8420 /* FALLTHRU */
8422 case PLUS_EXPR:
8423 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8424 something else, make sure we add the register to the constant and
8425 then to the other thing. This case can occur during strength
8426 reduction and doing it this way will produce better code if the
8427 frame pointer or argument pointer is eliminated.
8429 fold-const.c will ensure that the constant is always in the inner
8430 PLUS_EXPR, so the only case we need to do anything about is if
8431 sp, ap, or fp is our second argument, in which case we must swap
8432 the innermost first argument and our second argument. */
8434 if (TREE_CODE (treeop0) == PLUS_EXPR
8435 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8436 && VAR_P (treeop1)
8437 && (DECL_RTL (treeop1) == frame_pointer_rtx
8438 || DECL_RTL (treeop1) == stack_pointer_rtx
8439 || DECL_RTL (treeop1) == arg_pointer_rtx))
8441 gcc_unreachable ();
8444 /* If the result is to be ptr_mode and we are adding an integer to
8445 something, we might be forming a constant. So try to use
8446 plus_constant. If it produces a sum and we can't accept it,
8447 use force_operand. This allows P = &ARR[const] to generate
8448 efficient code on machines where a SYMBOL_REF is not a valid
8449 address.
8451 If this is an EXPAND_SUM call, always return the sum. */
8452 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8453 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8455 if (modifier == EXPAND_STACK_PARM)
8456 target = 0;
8457 if (TREE_CODE (treeop0) == INTEGER_CST
8458 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8459 && TREE_CONSTANT (treeop1))
8461 rtx constant_part;
8462 HOST_WIDE_INT wc;
8463 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8465 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8466 EXPAND_SUM);
8467 /* Use wi::shwi to ensure that the constant is
8468 truncated according to the mode of OP1, then sign extended
8469 to a HOST_WIDE_INT. Using the constant directly can result
8470 in non-canonical RTL in a 64x32 cross compile. */
8471 wc = TREE_INT_CST_LOW (treeop0);
8472 constant_part =
8473 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8474 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8475 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8476 op1 = force_operand (op1, target);
8477 return REDUCE_BIT_FIELD (op1);
8480 else if (TREE_CODE (treeop1) == INTEGER_CST
8481 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8482 && TREE_CONSTANT (treeop0))
8484 rtx constant_part;
8485 HOST_WIDE_INT wc;
8486 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8488 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8489 (modifier == EXPAND_INITIALIZER
8490 ? EXPAND_INITIALIZER : EXPAND_SUM));
8491 if (! CONSTANT_P (op0))
8493 op1 = expand_expr (treeop1, NULL_RTX,
8494 VOIDmode, modifier);
8495 /* Return a PLUS if modifier says it's OK. */
8496 if (modifier == EXPAND_SUM
8497 || modifier == EXPAND_INITIALIZER)
8498 return simplify_gen_binary (PLUS, mode, op0, op1);
8499 goto binop2;
8501 /* Use wi::shwi to ensure that the constant is
8502 truncated according to the mode of OP1, then sign extended
8503 to a HOST_WIDE_INT. Using the constant directly can result
8504 in non-canonical RTL in a 64x32 cross compile. */
8505 wc = TREE_INT_CST_LOW (treeop1);
8506 constant_part
8507 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8508 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8509 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8510 op0 = force_operand (op0, target);
8511 return REDUCE_BIT_FIELD (op0);
8515 /* Use TER to expand pointer addition of a negated value
8516 as pointer subtraction. */
8517 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8518 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8519 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8520 && TREE_CODE (treeop1) == SSA_NAME
8521 && TYPE_MODE (TREE_TYPE (treeop0))
8522 == TYPE_MODE (TREE_TYPE (treeop1)))
8524 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8525 if (def)
8527 treeop1 = gimple_assign_rhs1 (def);
8528 code = MINUS_EXPR;
8529 goto do_minus;
8533 /* No sense saving up arithmetic to be done
8534 if it's all in the wrong mode to form part of an address.
8535 And force_operand won't know whether to sign-extend or
8536 zero-extend. */
8537 if (modifier != EXPAND_INITIALIZER
8538 && (modifier != EXPAND_SUM || mode != ptr_mode))
8540 expand_operands (treeop0, treeop1,
8541 subtarget, &op0, &op1, modifier);
8542 if (op0 == const0_rtx)
8543 return op1;
8544 if (op1 == const0_rtx)
8545 return op0;
8546 goto binop2;
8549 expand_operands (treeop0, treeop1,
8550 subtarget, &op0, &op1, modifier);
8551 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8553 case MINUS_EXPR:
8554 do_minus:
8555 /* For initializers, we are allowed to return a MINUS of two
8556 symbolic constants. Here we handle all cases when both operands
8557 are constant. */
8558 /* Handle difference of two symbolic constants,
8559 for the sake of an initializer. */
8560 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8561 && really_constant_p (treeop0)
8562 && really_constant_p (treeop1))
8564 expand_operands (treeop0, treeop1,
8565 NULL_RTX, &op0, &op1, modifier);
8567 /* If the last operand is a CONST_INT, use plus_constant of
8568 the negated constant. Else make the MINUS. */
8569 if (CONST_INT_P (op1))
8570 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8571 -INTVAL (op1)));
8572 else
8573 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8576 /* No sense saving up arithmetic to be done
8577 if it's all in the wrong mode to form part of an address.
8578 And force_operand won't know whether to sign-extend or
8579 zero-extend. */
8580 if (modifier != EXPAND_INITIALIZER
8581 && (modifier != EXPAND_SUM || mode != ptr_mode))
8582 goto binop;
8584 expand_operands (treeop0, treeop1,
8585 subtarget, &op0, &op1, modifier);
8587 /* Convert A - const to A + (-const). */
8588 if (CONST_INT_P (op1))
8590 op1 = negate_rtx (mode, op1);
8591 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8594 goto binop2;
8596 case WIDEN_MULT_PLUS_EXPR:
8597 case WIDEN_MULT_MINUS_EXPR:
8598 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8599 op2 = expand_normal (treeop2);
8600 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8601 target, unsignedp);
8602 return target;
8604 case WIDEN_MULT_EXPR:
8605 /* If first operand is constant, swap them.
8606 Thus the following special case checks need only
8607 check the second operand. */
8608 if (TREE_CODE (treeop0) == INTEGER_CST)
8609 std::swap (treeop0, treeop1);
8611 /* First, check if we have a multiplication of one signed and one
8612 unsigned operand. */
8613 if (TREE_CODE (treeop1) != INTEGER_CST
8614 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8615 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8617 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8618 this_optab = usmul_widen_optab;
8619 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8620 != CODE_FOR_nothing)
8622 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8623 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8624 EXPAND_NORMAL);
8625 else
8626 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8627 EXPAND_NORMAL);
8628 /* op0 and op1 might still be constant, despite the above
8629 != INTEGER_CST check. Handle it. */
8630 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8632 op0 = convert_modes (innermode, mode, op0, true);
8633 op1 = convert_modes (innermode, mode, op1, false);
8634 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8635 target, unsignedp));
8637 goto binop3;
8640 /* Check for a multiplication with matching signedness. */
8641 else if ((TREE_CODE (treeop1) == INTEGER_CST
8642 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8643 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8644 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8646 tree op0type = TREE_TYPE (treeop0);
8647 machine_mode innermode = TYPE_MODE (op0type);
8648 bool zextend_p = TYPE_UNSIGNED (op0type);
8649 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8650 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8652 if (TREE_CODE (treeop0) != INTEGER_CST)
8654 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8655 != CODE_FOR_nothing)
8657 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8658 EXPAND_NORMAL);
8659 /* op0 and op1 might still be constant, despite the above
8660 != INTEGER_CST check. Handle it. */
8661 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8663 widen_mult_const:
8664 op0 = convert_modes (innermode, mode, op0, zextend_p);
8666 = convert_modes (innermode, mode, op1,
8667 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8668 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8669 target,
8670 unsignedp));
8672 temp = expand_widening_mult (mode, op0, op1, target,
8673 unsignedp, this_optab);
8674 return REDUCE_BIT_FIELD (temp);
8676 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8677 != CODE_FOR_nothing
8678 && innermode == word_mode)
8680 rtx htem, hipart;
8681 op0 = expand_normal (treeop0);
8682 if (TREE_CODE (treeop1) == INTEGER_CST)
8683 op1 = convert_modes (innermode, mode,
8684 expand_normal (treeop1),
8685 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8686 else
8687 op1 = expand_normal (treeop1);
8688 /* op0 and op1 might still be constant, despite the above
8689 != INTEGER_CST check. Handle it. */
8690 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8691 goto widen_mult_const;
8692 temp = expand_binop (mode, other_optab, op0, op1, target,
8693 unsignedp, OPTAB_LIB_WIDEN);
8694 hipart = gen_highpart (innermode, temp);
8695 htem = expand_mult_highpart_adjust (innermode, hipart,
8696 op0, op1, hipart,
8697 zextend_p);
8698 if (htem != hipart)
8699 emit_move_insn (hipart, htem);
8700 return REDUCE_BIT_FIELD (temp);
8704 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8705 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8706 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8707 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8709 case FMA_EXPR:
8711 optab opt = fma_optab;
8712 gimple *def0, *def2;
8714 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8715 call. */
8716 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8718 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8719 tree call_expr;
8721 gcc_assert (fn != NULL_TREE);
8722 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8723 return expand_builtin (call_expr, target, subtarget, mode, false);
8726 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8727 /* The multiplication is commutative - look at its 2nd operand
8728 if the first isn't fed by a negate. */
8729 if (!def0)
8731 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8732 /* Swap operands if the 2nd operand is fed by a negate. */
8733 if (def0)
8734 std::swap (treeop0, treeop1);
8736 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8738 op0 = op2 = NULL;
8740 if (def0 && def2
8741 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8743 opt = fnms_optab;
8744 op0 = expand_normal (gimple_assign_rhs1 (def0));
8745 op2 = expand_normal (gimple_assign_rhs1 (def2));
8747 else if (def0
8748 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8750 opt = fnma_optab;
8751 op0 = expand_normal (gimple_assign_rhs1 (def0));
8753 else if (def2
8754 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8756 opt = fms_optab;
8757 op2 = expand_normal (gimple_assign_rhs1 (def2));
8760 if (op0 == NULL)
8761 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8762 if (op2 == NULL)
8763 op2 = expand_normal (treeop2);
8764 op1 = expand_normal (treeop1);
8766 return expand_ternary_op (TYPE_MODE (type), opt,
8767 op0, op1, op2, target, 0);
8770 case MULT_EXPR:
8771 /* If this is a fixed-point operation, then we cannot use the code
8772 below because "expand_mult" doesn't support sat/no-sat fixed-point
8773 multiplications. */
8774 if (ALL_FIXED_POINT_MODE_P (mode))
8775 goto binop;
8777 /* If first operand is constant, swap them.
8778 Thus the following special case checks need only
8779 check the second operand. */
8780 if (TREE_CODE (treeop0) == INTEGER_CST)
8781 std::swap (treeop0, treeop1);
8783 /* Attempt to return something suitable for generating an
8784 indexed address, for machines that support that. */
8786 if (modifier == EXPAND_SUM && mode == ptr_mode
8787 && tree_fits_shwi_p (treeop1))
8789 tree exp1 = treeop1;
8791 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8792 EXPAND_SUM);
8794 if (!REG_P (op0))
8795 op0 = force_operand (op0, NULL_RTX);
8796 if (!REG_P (op0))
8797 op0 = copy_to_mode_reg (mode, op0);
8799 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8800 gen_int_mode (tree_to_shwi (exp1),
8801 TYPE_MODE (TREE_TYPE (exp1)))));
8804 if (modifier == EXPAND_STACK_PARM)
8805 target = 0;
8807 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8808 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8810 case TRUNC_MOD_EXPR:
8811 case FLOOR_MOD_EXPR:
8812 case CEIL_MOD_EXPR:
8813 case ROUND_MOD_EXPR:
8815 case TRUNC_DIV_EXPR:
8816 case FLOOR_DIV_EXPR:
8817 case CEIL_DIV_EXPR:
8818 case ROUND_DIV_EXPR:
8819 case EXACT_DIV_EXPR:
8821 /* If this is a fixed-point operation, then we cannot use the code
8822 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8823 divisions. */
8824 if (ALL_FIXED_POINT_MODE_P (mode))
8825 goto binop;
8827 if (modifier == EXPAND_STACK_PARM)
8828 target = 0;
8829 /* Possible optimization: compute the dividend with EXPAND_SUM
8830 then if the divisor is constant can optimize the case
8831 where some terms of the dividend have coeffs divisible by it. */
8832 expand_operands (treeop0, treeop1,
8833 subtarget, &op0, &op1, EXPAND_NORMAL);
8834 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8835 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8836 if (SCALAR_INT_MODE_P (mode)
8837 && optimize >= 2
8838 && get_range_pos_neg (treeop0) == 1
8839 && get_range_pos_neg (treeop1) == 1)
8841 /* If both arguments are known to be positive when interpreted
8842 as signed, we can expand it as both signed and unsigned
8843 division or modulo. Choose the cheaper sequence in that case. */
8844 bool speed_p = optimize_insn_for_speed_p ();
8845 do_pending_stack_adjust ();
8846 start_sequence ();
8847 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8848 rtx_insn *uns_insns = get_insns ();
8849 end_sequence ();
8850 start_sequence ();
8851 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8852 rtx_insn *sgn_insns = get_insns ();
8853 end_sequence ();
8854 unsigned uns_cost = seq_cost (uns_insns, speed_p);
8855 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
8857 /* If costs are the same then use as tie breaker the other
8858 other factor. */
8859 if (uns_cost == sgn_cost)
8861 uns_cost = seq_cost (uns_insns, !speed_p);
8862 sgn_cost = seq_cost (sgn_insns, !speed_p);
8865 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
8867 emit_insn (uns_insns);
8868 return uns_ret;
8870 emit_insn (sgn_insns);
8871 return sgn_ret;
8873 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
8875 case RDIV_EXPR:
8876 goto binop;
8878 case MULT_HIGHPART_EXPR:
8879 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8880 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8881 gcc_assert (temp);
8882 return temp;
8884 case FIXED_CONVERT_EXPR:
8885 op0 = expand_normal (treeop0);
8886 if (target == 0 || modifier == EXPAND_STACK_PARM)
8887 target = gen_reg_rtx (mode);
8889 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8890 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8891 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8892 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8893 else
8894 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8895 return target;
8897 case FIX_TRUNC_EXPR:
8898 op0 = expand_normal (treeop0);
8899 if (target == 0 || modifier == EXPAND_STACK_PARM)
8900 target = gen_reg_rtx (mode);
8901 expand_fix (target, op0, unsignedp);
8902 return target;
8904 case FLOAT_EXPR:
8905 op0 = expand_normal (treeop0);
8906 if (target == 0 || modifier == EXPAND_STACK_PARM)
8907 target = gen_reg_rtx (mode);
8908 /* expand_float can't figure out what to do if FROM has VOIDmode.
8909 So give it the correct mode. With -O, cse will optimize this. */
8910 if (GET_MODE (op0) == VOIDmode)
8911 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8912 op0);
8913 expand_float (target, op0,
8914 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8915 return target;
8917 case NEGATE_EXPR:
8918 op0 = expand_expr (treeop0, subtarget,
8919 VOIDmode, EXPAND_NORMAL);
8920 if (modifier == EXPAND_STACK_PARM)
8921 target = 0;
8922 temp = expand_unop (mode,
8923 optab_for_tree_code (NEGATE_EXPR, type,
8924 optab_default),
8925 op0, target, 0);
8926 gcc_assert (temp);
8927 return REDUCE_BIT_FIELD (temp);
8929 case ABS_EXPR:
8930 op0 = expand_expr (treeop0, subtarget,
8931 VOIDmode, EXPAND_NORMAL);
8932 if (modifier == EXPAND_STACK_PARM)
8933 target = 0;
8935 /* ABS_EXPR is not valid for complex arguments. */
8936 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8937 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8939 /* Unsigned abs is simply the operand. Testing here means we don't
8940 risk generating incorrect code below. */
8941 if (TYPE_UNSIGNED (type))
8942 return op0;
8944 return expand_abs (mode, op0, target, unsignedp,
8945 safe_from_p (target, treeop0, 1));
8947 case MAX_EXPR:
8948 case MIN_EXPR:
8949 target = original_target;
8950 if (target == 0
8951 || modifier == EXPAND_STACK_PARM
8952 || (MEM_P (target) && MEM_VOLATILE_P (target))
8953 || GET_MODE (target) != mode
8954 || (REG_P (target)
8955 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8956 target = gen_reg_rtx (mode);
8957 expand_operands (treeop0, treeop1,
8958 target, &op0, &op1, EXPAND_NORMAL);
8960 /* First try to do it with a special MIN or MAX instruction.
8961 If that does not win, use a conditional jump to select the proper
8962 value. */
8963 this_optab = optab_for_tree_code (code, type, optab_default);
8964 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8965 OPTAB_WIDEN);
8966 if (temp != 0)
8967 return temp;
8969 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
8970 and similarly for MAX <x, y>. */
8971 if (VECTOR_TYPE_P (type))
8973 tree t0 = make_tree (type, op0);
8974 tree t1 = make_tree (type, op1);
8975 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
8976 type, t0, t1);
8977 return expand_vec_cond_expr (type, comparison, t0, t1,
8978 original_target);
8981 /* At this point, a MEM target is no longer useful; we will get better
8982 code without it. */
8984 if (! REG_P (target))
8985 target = gen_reg_rtx (mode);
8987 /* If op1 was placed in target, swap op0 and op1. */
8988 if (target != op0 && target == op1)
8989 std::swap (op0, op1);
8991 /* We generate better code and avoid problems with op1 mentioning
8992 target by forcing op1 into a pseudo if it isn't a constant. */
8993 if (! CONSTANT_P (op1))
8994 op1 = force_reg (mode, op1);
8997 enum rtx_code comparison_code;
8998 rtx cmpop1 = op1;
9000 if (code == MAX_EXPR)
9001 comparison_code = unsignedp ? GEU : GE;
9002 else
9003 comparison_code = unsignedp ? LEU : LE;
9005 /* Canonicalize to comparisons against 0. */
9006 if (op1 == const1_rtx)
9008 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9009 or (a != 0 ? a : 1) for unsigned.
9010 For MIN we are safe converting (a <= 1 ? a : 1)
9011 into (a <= 0 ? a : 1) */
9012 cmpop1 = const0_rtx;
9013 if (code == MAX_EXPR)
9014 comparison_code = unsignedp ? NE : GT;
9016 if (op1 == constm1_rtx && !unsignedp)
9018 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9019 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9020 cmpop1 = const0_rtx;
9021 if (code == MIN_EXPR)
9022 comparison_code = LT;
9025 /* Use a conditional move if possible. */
9026 if (can_conditionally_move_p (mode))
9028 rtx insn;
9030 start_sequence ();
9032 /* Try to emit the conditional move. */
9033 insn = emit_conditional_move (target, comparison_code,
9034 op0, cmpop1, mode,
9035 op0, op1, mode,
9036 unsignedp);
9038 /* If we could do the conditional move, emit the sequence,
9039 and return. */
9040 if (insn)
9042 rtx_insn *seq = get_insns ();
9043 end_sequence ();
9044 emit_insn (seq);
9045 return target;
9048 /* Otherwise discard the sequence and fall back to code with
9049 branches. */
9050 end_sequence ();
9053 if (target != op0)
9054 emit_move_insn (target, op0);
9056 lab = gen_label_rtx ();
9057 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9058 unsignedp, mode, NULL_RTX, NULL, lab,
9059 profile_probability::uninitialized ());
9061 emit_move_insn (target, op1);
9062 emit_label (lab);
9063 return target;
9065 case BIT_NOT_EXPR:
9066 op0 = expand_expr (treeop0, subtarget,
9067 VOIDmode, EXPAND_NORMAL);
9068 if (modifier == EXPAND_STACK_PARM)
9069 target = 0;
9070 /* In case we have to reduce the result to bitfield precision
9071 for unsigned bitfield expand this as XOR with a proper constant
9072 instead. */
9073 if (reduce_bit_field && TYPE_UNSIGNED (type))
9075 wide_int mask = wi::mask (TYPE_PRECISION (type),
9076 false, GET_MODE_PRECISION (mode));
9078 temp = expand_binop (mode, xor_optab, op0,
9079 immed_wide_int_const (mask, mode),
9080 target, 1, OPTAB_LIB_WIDEN);
9082 else
9083 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9084 gcc_assert (temp);
9085 return temp;
9087 /* ??? Can optimize bitwise operations with one arg constant.
9088 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9089 and (a bitwise1 b) bitwise2 b (etc)
9090 but that is probably not worth while. */
9092 case BIT_AND_EXPR:
9093 case BIT_IOR_EXPR:
9094 case BIT_XOR_EXPR:
9095 goto binop;
9097 case LROTATE_EXPR:
9098 case RROTATE_EXPR:
9099 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9100 || (GET_MODE_PRECISION (TYPE_MODE (type))
9101 == TYPE_PRECISION (type)));
9102 /* fall through */
9104 case LSHIFT_EXPR:
9105 case RSHIFT_EXPR:
9107 /* If this is a fixed-point operation, then we cannot use the code
9108 below because "expand_shift" doesn't support sat/no-sat fixed-point
9109 shifts. */
9110 if (ALL_FIXED_POINT_MODE_P (mode))
9111 goto binop;
9113 if (! safe_from_p (subtarget, treeop1, 1))
9114 subtarget = 0;
9115 if (modifier == EXPAND_STACK_PARM)
9116 target = 0;
9117 op0 = expand_expr (treeop0, subtarget,
9118 VOIDmode, EXPAND_NORMAL);
9120 /* Left shift optimization when shifting across word_size boundary.
9122 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9123 there isn't native instruction to support this wide mode
9124 left shift. Given below scenario:
9126 Type A = (Type) B << C
9128 |< T >|
9129 | dest_high | dest_low |
9131 | word_size |
9133 If the shift amount C caused we shift B to across the word
9134 size boundary, i.e part of B shifted into high half of
9135 destination register, and part of B remains in the low
9136 half, then GCC will use the following left shift expand
9137 logic:
9139 1. Initialize dest_low to B.
9140 2. Initialize every bit of dest_high to the sign bit of B.
9141 3. Logic left shift dest_low by C bit to finalize dest_low.
9142 The value of dest_low before this shift is kept in a temp D.
9143 4. Logic left shift dest_high by C.
9144 5. Logic right shift D by (word_size - C).
9145 6. Or the result of 4 and 5 to finalize dest_high.
9147 While, by checking gimple statements, if operand B is
9148 coming from signed extension, then we can simplify above
9149 expand logic into:
9151 1. dest_high = src_low >> (word_size - C).
9152 2. dest_low = src_low << C.
9154 We can use one arithmetic right shift to finish all the
9155 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9156 needed from 6 into 2.
9158 The case is similar for zero extension, except that we
9159 initialize dest_high to zero rather than copies of the sign
9160 bit from B. Furthermore, we need to use a logical right shift
9161 in this case.
9163 The choice of sign-extension versus zero-extension is
9164 determined entirely by whether or not B is signed and is
9165 independent of the current setting of unsignedp. */
9167 temp = NULL_RTX;
9168 if (code == LSHIFT_EXPR
9169 && target
9170 && REG_P (target)
9171 && mode == GET_MODE_WIDER_MODE (word_mode)
9172 && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode)
9173 && TREE_CONSTANT (treeop1)
9174 && TREE_CODE (treeop0) == SSA_NAME)
9176 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9177 if (is_gimple_assign (def)
9178 && gimple_assign_rhs_code (def) == NOP_EXPR)
9180 machine_mode rmode = TYPE_MODE
9181 (TREE_TYPE (gimple_assign_rhs1 (def)));
9183 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (mode)
9184 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9185 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9186 >= GET_MODE_BITSIZE (word_mode)))
9188 rtx_insn *seq, *seq_old;
9189 unsigned int high_off = subreg_highpart_offset (word_mode,
9190 mode);
9191 bool extend_unsigned
9192 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9193 rtx low = lowpart_subreg (word_mode, op0, mode);
9194 rtx dest_low = lowpart_subreg (word_mode, target, mode);
9195 rtx dest_high = simplify_gen_subreg (word_mode, target,
9196 mode, high_off);
9197 HOST_WIDE_INT ramount = (BITS_PER_WORD
9198 - TREE_INT_CST_LOW (treeop1));
9199 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9201 start_sequence ();
9202 /* dest_high = src_low >> (word_size - C). */
9203 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9204 rshift, dest_high,
9205 extend_unsigned);
9206 if (temp != dest_high)
9207 emit_move_insn (dest_high, temp);
9209 /* dest_low = src_low << C. */
9210 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9211 treeop1, dest_low, unsignedp);
9212 if (temp != dest_low)
9213 emit_move_insn (dest_low, temp);
9215 seq = get_insns ();
9216 end_sequence ();
9217 temp = target ;
9219 if (have_insn_for (ASHIFT, mode))
9221 bool speed_p = optimize_insn_for_speed_p ();
9222 start_sequence ();
9223 rtx ret_old = expand_variable_shift (code, mode, op0,
9224 treeop1, target,
9225 unsignedp);
9227 seq_old = get_insns ();
9228 end_sequence ();
9229 if (seq_cost (seq, speed_p)
9230 >= seq_cost (seq_old, speed_p))
9232 seq = seq_old;
9233 temp = ret_old;
9236 emit_insn (seq);
9241 if (temp == NULL_RTX)
9242 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9243 unsignedp);
9244 if (code == LSHIFT_EXPR)
9245 temp = REDUCE_BIT_FIELD (temp);
9246 return temp;
9249 /* Could determine the answer when only additive constants differ. Also,
9250 the addition of one can be handled by changing the condition. */
9251 case LT_EXPR:
9252 case LE_EXPR:
9253 case GT_EXPR:
9254 case GE_EXPR:
9255 case EQ_EXPR:
9256 case NE_EXPR:
9257 case UNORDERED_EXPR:
9258 case ORDERED_EXPR:
9259 case UNLT_EXPR:
9260 case UNLE_EXPR:
9261 case UNGT_EXPR:
9262 case UNGE_EXPR:
9263 case UNEQ_EXPR:
9264 case LTGT_EXPR:
9266 temp = do_store_flag (ops,
9267 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9268 tmode != VOIDmode ? tmode : mode);
9269 if (temp)
9270 return temp;
9272 /* Use a compare and a jump for BLKmode comparisons, or for function
9273 type comparisons is have_canonicalize_funcptr_for_compare. */
9275 if ((target == 0
9276 || modifier == EXPAND_STACK_PARM
9277 || ! safe_from_p (target, treeop0, 1)
9278 || ! safe_from_p (target, treeop1, 1)
9279 /* Make sure we don't have a hard reg (such as function's return
9280 value) live across basic blocks, if not optimizing. */
9281 || (!optimize && REG_P (target)
9282 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9283 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9285 emit_move_insn (target, const0_rtx);
9287 rtx_code_label *lab1 = gen_label_rtx ();
9288 jumpifnot_1 (code, treeop0, treeop1, lab1,
9289 profile_probability::uninitialized ());
9291 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9292 emit_move_insn (target, constm1_rtx);
9293 else
9294 emit_move_insn (target, const1_rtx);
9296 emit_label (lab1);
9297 return target;
9299 case COMPLEX_EXPR:
9300 /* Get the rtx code of the operands. */
9301 op0 = expand_normal (treeop0);
9302 op1 = expand_normal (treeop1);
9304 if (!target)
9305 target = gen_reg_rtx (TYPE_MODE (type));
9306 else
9307 /* If target overlaps with op1, then either we need to force
9308 op1 into a pseudo (if target also overlaps with op0),
9309 or write the complex parts in reverse order. */
9310 switch (GET_CODE (target))
9312 case CONCAT:
9313 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9315 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9317 complex_expr_force_op1:
9318 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9319 emit_move_insn (temp, op1);
9320 op1 = temp;
9321 break;
9323 complex_expr_swap_order:
9324 /* Move the imaginary (op1) and real (op0) parts to their
9325 location. */
9326 write_complex_part (target, op1, true);
9327 write_complex_part (target, op0, false);
9329 return target;
9331 break;
9332 case MEM:
9333 temp = adjust_address_nv (target,
9334 GET_MODE_INNER (GET_MODE (target)), 0);
9335 if (reg_overlap_mentioned_p (temp, op1))
9337 machine_mode imode = GET_MODE_INNER (GET_MODE (target));
9338 temp = adjust_address_nv (target, imode,
9339 GET_MODE_SIZE (imode));
9340 if (reg_overlap_mentioned_p (temp, op0))
9341 goto complex_expr_force_op1;
9342 goto complex_expr_swap_order;
9344 break;
9345 default:
9346 if (reg_overlap_mentioned_p (target, op1))
9348 if (reg_overlap_mentioned_p (target, op0))
9349 goto complex_expr_force_op1;
9350 goto complex_expr_swap_order;
9352 break;
9355 /* Move the real (op0) and imaginary (op1) parts to their location. */
9356 write_complex_part (target, op0, false);
9357 write_complex_part (target, op1, true);
9359 return target;
9361 case WIDEN_SUM_EXPR:
9363 tree oprnd0 = treeop0;
9364 tree oprnd1 = treeop1;
9366 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9367 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9368 target, unsignedp);
9369 return target;
9372 case REDUC_MAX_EXPR:
9373 case REDUC_MIN_EXPR:
9374 case REDUC_PLUS_EXPR:
9376 op0 = expand_normal (treeop0);
9377 this_optab = optab_for_tree_code (code, type, optab_default);
9378 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9380 struct expand_operand ops[2];
9381 enum insn_code icode = optab_handler (this_optab, vec_mode);
9383 create_output_operand (&ops[0], target, mode);
9384 create_input_operand (&ops[1], op0, vec_mode);
9385 expand_insn (icode, 2, ops);
9386 target = ops[0].value;
9387 if (GET_MODE (target) != mode)
9388 return gen_lowpart (tmode, target);
9389 return target;
9392 case VEC_UNPACK_HI_EXPR:
9393 case VEC_UNPACK_LO_EXPR:
9395 op0 = expand_normal (treeop0);
9396 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9397 target, unsignedp);
9398 gcc_assert (temp);
9399 return temp;
9402 case VEC_UNPACK_FLOAT_HI_EXPR:
9403 case VEC_UNPACK_FLOAT_LO_EXPR:
9405 op0 = expand_normal (treeop0);
9406 /* The signedness is determined from input operand. */
9407 temp = expand_widen_pattern_expr
9408 (ops, op0, NULL_RTX, NULL_RTX,
9409 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9411 gcc_assert (temp);
9412 return temp;
9415 case VEC_WIDEN_MULT_HI_EXPR:
9416 case VEC_WIDEN_MULT_LO_EXPR:
9417 case VEC_WIDEN_MULT_EVEN_EXPR:
9418 case VEC_WIDEN_MULT_ODD_EXPR:
9419 case VEC_WIDEN_LSHIFT_HI_EXPR:
9420 case VEC_WIDEN_LSHIFT_LO_EXPR:
9421 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9422 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9423 target, unsignedp);
9424 gcc_assert (target);
9425 return target;
9427 case VEC_PACK_TRUNC_EXPR:
9428 case VEC_PACK_SAT_EXPR:
9429 case VEC_PACK_FIX_TRUNC_EXPR:
9430 mode = TYPE_MODE (TREE_TYPE (treeop0));
9431 goto binop;
9433 case VEC_PERM_EXPR:
9434 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9435 op2 = expand_normal (treeop2);
9437 /* Careful here: if the target doesn't support integral vector modes,
9438 a constant selection vector could wind up smooshed into a normal
9439 integral constant. */
9440 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9442 tree sel_type = TREE_TYPE (treeop2);
9443 machine_mode vmode
9444 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9445 TYPE_VECTOR_SUBPARTS (sel_type));
9446 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9447 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9448 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9450 else
9451 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9453 temp = expand_vec_perm (mode, op0, op1, op2, target);
9454 gcc_assert (temp);
9455 return temp;
9457 case DOT_PROD_EXPR:
9459 tree oprnd0 = treeop0;
9460 tree oprnd1 = treeop1;
9461 tree oprnd2 = treeop2;
9462 rtx op2;
9464 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9465 op2 = expand_normal (oprnd2);
9466 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9467 target, unsignedp);
9468 return target;
9471 case SAD_EXPR:
9473 tree oprnd0 = treeop0;
9474 tree oprnd1 = treeop1;
9475 tree oprnd2 = treeop2;
9476 rtx op2;
9478 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9479 op2 = expand_normal (oprnd2);
9480 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9481 target, unsignedp);
9482 return target;
9485 case REALIGN_LOAD_EXPR:
9487 tree oprnd0 = treeop0;
9488 tree oprnd1 = treeop1;
9489 tree oprnd2 = treeop2;
9490 rtx op2;
9492 this_optab = optab_for_tree_code (code, type, optab_default);
9493 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9494 op2 = expand_normal (oprnd2);
9495 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9496 target, unsignedp);
9497 gcc_assert (temp);
9498 return temp;
9501 case COND_EXPR:
9503 /* A COND_EXPR with its type being VOID_TYPE represents a
9504 conditional jump and is handled in
9505 expand_gimple_cond_expr. */
9506 gcc_assert (!VOID_TYPE_P (type));
9508 /* Note that COND_EXPRs whose type is a structure or union
9509 are required to be constructed to contain assignments of
9510 a temporary variable, so that we can evaluate them here
9511 for side effect only. If type is void, we must do likewise. */
9513 gcc_assert (!TREE_ADDRESSABLE (type)
9514 && !ignore
9515 && TREE_TYPE (treeop1) != void_type_node
9516 && TREE_TYPE (treeop2) != void_type_node);
9518 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9519 if (temp)
9520 return temp;
9522 /* If we are not to produce a result, we have no target. Otherwise,
9523 if a target was specified use it; it will not be used as an
9524 intermediate target unless it is safe. If no target, use a
9525 temporary. */
9527 if (modifier != EXPAND_STACK_PARM
9528 && original_target
9529 && safe_from_p (original_target, treeop0, 1)
9530 && GET_MODE (original_target) == mode
9531 && !MEM_P (original_target))
9532 temp = original_target;
9533 else
9534 temp = assign_temp (type, 0, 1);
9536 do_pending_stack_adjust ();
9537 NO_DEFER_POP;
9538 rtx_code_label *lab0 = gen_label_rtx ();
9539 rtx_code_label *lab1 = gen_label_rtx ();
9540 jumpifnot (treeop0, lab0,
9541 profile_probability::uninitialized ());
9542 store_expr (treeop1, temp,
9543 modifier == EXPAND_STACK_PARM,
9544 false, false);
9546 emit_jump_insn (targetm.gen_jump (lab1));
9547 emit_barrier ();
9548 emit_label (lab0);
9549 store_expr (treeop2, temp,
9550 modifier == EXPAND_STACK_PARM,
9551 false, false);
9553 emit_label (lab1);
9554 OK_DEFER_POP;
9555 return temp;
9558 case VEC_COND_EXPR:
9559 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9560 return target;
9562 case BIT_INSERT_EXPR:
9564 unsigned bitpos = tree_to_uhwi (treeop2);
9565 unsigned bitsize;
9566 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9567 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9568 else
9569 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9570 rtx op0 = expand_normal (treeop0);
9571 rtx op1 = expand_normal (treeop1);
9572 rtx dst = gen_reg_rtx (mode);
9573 emit_move_insn (dst, op0);
9574 store_bit_field (dst, bitsize, bitpos, 0, 0,
9575 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9576 return dst;
9579 default:
9580 gcc_unreachable ();
9583 /* Here to do an ordinary binary operator. */
9584 binop:
9585 expand_operands (treeop0, treeop1,
9586 subtarget, &op0, &op1, EXPAND_NORMAL);
9587 binop2:
9588 this_optab = optab_for_tree_code (code, type, optab_default);
9589 binop3:
9590 if (modifier == EXPAND_STACK_PARM)
9591 target = 0;
9592 temp = expand_binop (mode, this_optab, op0, op1, target,
9593 unsignedp, OPTAB_LIB_WIDEN);
9594 gcc_assert (temp);
9595 /* Bitwise operations do not need bitfield reduction as we expect their
9596 operands being properly truncated. */
9597 if (code == BIT_XOR_EXPR
9598 || code == BIT_AND_EXPR
9599 || code == BIT_IOR_EXPR)
9600 return temp;
9601 return REDUCE_BIT_FIELD (temp);
9603 #undef REDUCE_BIT_FIELD
9606 /* Return TRUE if expression STMT is suitable for replacement.
9607 Never consider memory loads as replaceable, because those don't ever lead
9608 into constant expressions. */
9610 static bool
9611 stmt_is_replaceable_p (gimple *stmt)
9613 if (ssa_is_replaceable_p (stmt))
9615 /* Don't move around loads. */
9616 if (!gimple_assign_single_p (stmt)
9617 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9618 return true;
9620 return false;
9624 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9625 enum expand_modifier modifier, rtx *alt_rtl,
9626 bool inner_reference_p)
9628 rtx op0, op1, temp, decl_rtl;
9629 tree type;
9630 int unsignedp;
9631 machine_mode mode, dmode;
9632 enum tree_code code = TREE_CODE (exp);
9633 rtx subtarget, original_target;
9634 int ignore;
9635 tree context;
9636 bool reduce_bit_field;
9637 location_t loc = EXPR_LOCATION (exp);
9638 struct separate_ops ops;
9639 tree treeop0, treeop1, treeop2;
9640 tree ssa_name = NULL_TREE;
9641 gimple *g;
9643 type = TREE_TYPE (exp);
9644 mode = TYPE_MODE (type);
9645 unsignedp = TYPE_UNSIGNED (type);
9647 treeop0 = treeop1 = treeop2 = NULL_TREE;
9648 if (!VL_EXP_CLASS_P (exp))
9649 switch (TREE_CODE_LENGTH (code))
9651 default:
9652 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9653 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9654 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9655 case 0: break;
9657 ops.code = code;
9658 ops.type = type;
9659 ops.op0 = treeop0;
9660 ops.op1 = treeop1;
9661 ops.op2 = treeop2;
9662 ops.location = loc;
9664 ignore = (target == const0_rtx
9665 || ((CONVERT_EXPR_CODE_P (code)
9666 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9667 && TREE_CODE (type) == VOID_TYPE));
9669 /* An operation in what may be a bit-field type needs the
9670 result to be reduced to the precision of the bit-field type,
9671 which is narrower than that of the type's mode. */
9672 reduce_bit_field = (!ignore
9673 && INTEGRAL_TYPE_P (type)
9674 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9676 /* If we are going to ignore this result, we need only do something
9677 if there is a side-effect somewhere in the expression. If there
9678 is, short-circuit the most common cases here. Note that we must
9679 not call expand_expr with anything but const0_rtx in case this
9680 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9682 if (ignore)
9684 if (! TREE_SIDE_EFFECTS (exp))
9685 return const0_rtx;
9687 /* Ensure we reference a volatile object even if value is ignored, but
9688 don't do this if all we are doing is taking its address. */
9689 if (TREE_THIS_VOLATILE (exp)
9690 && TREE_CODE (exp) != FUNCTION_DECL
9691 && mode != VOIDmode && mode != BLKmode
9692 && modifier != EXPAND_CONST_ADDRESS)
9694 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9695 if (MEM_P (temp))
9696 copy_to_reg (temp);
9697 return const0_rtx;
9700 if (TREE_CODE_CLASS (code) == tcc_unary
9701 || code == BIT_FIELD_REF
9702 || code == COMPONENT_REF
9703 || code == INDIRECT_REF)
9704 return expand_expr (treeop0, const0_rtx, VOIDmode,
9705 modifier);
9707 else if (TREE_CODE_CLASS (code) == tcc_binary
9708 || TREE_CODE_CLASS (code) == tcc_comparison
9709 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9711 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9712 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9713 return const0_rtx;
9716 target = 0;
9719 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9720 target = 0;
9722 /* Use subtarget as the target for operand 0 of a binary operation. */
9723 subtarget = get_subtarget (target);
9724 original_target = target;
9726 switch (code)
9728 case LABEL_DECL:
9730 tree function = decl_function_context (exp);
9732 temp = label_rtx (exp);
9733 temp = gen_rtx_LABEL_REF (Pmode, temp);
9735 if (function != current_function_decl
9736 && function != 0)
9737 LABEL_REF_NONLOCAL_P (temp) = 1;
9739 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9740 return temp;
9743 case SSA_NAME:
9744 /* ??? ivopts calls expander, without any preparation from
9745 out-of-ssa. So fake instructions as if this was an access to the
9746 base variable. This unnecessarily allocates a pseudo, see how we can
9747 reuse it, if partition base vars have it set already. */
9748 if (!currently_expanding_to_rtl)
9750 tree var = SSA_NAME_VAR (exp);
9751 if (var && DECL_RTL_SET_P (var))
9752 return DECL_RTL (var);
9753 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9754 LAST_VIRTUAL_REGISTER + 1);
9757 g = get_gimple_for_ssa_name (exp);
9758 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9759 if (g == NULL
9760 && modifier == EXPAND_INITIALIZER
9761 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9762 && (optimize || !SSA_NAME_VAR (exp)
9763 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9764 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9765 g = SSA_NAME_DEF_STMT (exp);
9766 if (g)
9768 rtx r;
9769 location_t saved_loc = curr_insn_location ();
9770 location_t loc = gimple_location (g);
9771 if (loc != UNKNOWN_LOCATION)
9772 set_curr_insn_location (loc);
9773 ops.code = gimple_assign_rhs_code (g);
9774 switch (get_gimple_rhs_class (ops.code))
9776 case GIMPLE_TERNARY_RHS:
9777 ops.op2 = gimple_assign_rhs3 (g);
9778 /* Fallthru */
9779 case GIMPLE_BINARY_RHS:
9780 ops.op1 = gimple_assign_rhs2 (g);
9782 /* Try to expand conditonal compare. */
9783 if (targetm.gen_ccmp_first)
9785 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9786 r = expand_ccmp_expr (g, mode);
9787 if (r)
9788 break;
9790 /* Fallthru */
9791 case GIMPLE_UNARY_RHS:
9792 ops.op0 = gimple_assign_rhs1 (g);
9793 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9794 ops.location = loc;
9795 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9796 break;
9797 case GIMPLE_SINGLE_RHS:
9799 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9800 tmode, modifier, alt_rtl,
9801 inner_reference_p);
9802 break;
9804 default:
9805 gcc_unreachable ();
9807 set_curr_insn_location (saved_loc);
9808 if (REG_P (r) && !REG_EXPR (r))
9809 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9810 return r;
9813 ssa_name = exp;
9814 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9815 exp = SSA_NAME_VAR (ssa_name);
9816 goto expand_decl_rtl;
9818 case PARM_DECL:
9819 case VAR_DECL:
9820 /* If a static var's type was incomplete when the decl was written,
9821 but the type is complete now, lay out the decl now. */
9822 if (DECL_SIZE (exp) == 0
9823 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9824 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9825 layout_decl (exp, 0);
9827 /* fall through */
9829 case FUNCTION_DECL:
9830 case RESULT_DECL:
9831 decl_rtl = DECL_RTL (exp);
9832 expand_decl_rtl:
9833 gcc_assert (decl_rtl);
9835 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9836 settings for VECTOR_TYPE_P that might switch for the function. */
9837 if (currently_expanding_to_rtl
9838 && code == VAR_DECL && MEM_P (decl_rtl)
9839 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9840 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9841 else
9842 decl_rtl = copy_rtx (decl_rtl);
9844 /* Record writes to register variables. */
9845 if (modifier == EXPAND_WRITE
9846 && REG_P (decl_rtl)
9847 && HARD_REGISTER_P (decl_rtl))
9848 add_to_hard_reg_set (&crtl->asm_clobbers,
9849 GET_MODE (decl_rtl), REGNO (decl_rtl));
9851 /* Ensure variable marked as used even if it doesn't go through
9852 a parser. If it hasn't be used yet, write out an external
9853 definition. */
9854 if (exp)
9855 TREE_USED (exp) = 1;
9857 /* Show we haven't gotten RTL for this yet. */
9858 temp = 0;
9860 /* Variables inherited from containing functions should have
9861 been lowered by this point. */
9862 if (exp)
9863 context = decl_function_context (exp);
9864 gcc_assert (!exp
9865 || SCOPE_FILE_SCOPE_P (context)
9866 || context == current_function_decl
9867 || TREE_STATIC (exp)
9868 || DECL_EXTERNAL (exp)
9869 /* ??? C++ creates functions that are not TREE_STATIC. */
9870 || TREE_CODE (exp) == FUNCTION_DECL);
9872 /* This is the case of an array whose size is to be determined
9873 from its initializer, while the initializer is still being parsed.
9874 ??? We aren't parsing while expanding anymore. */
9876 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9877 temp = validize_mem (decl_rtl);
9879 /* If DECL_RTL is memory, we are in the normal case and the
9880 address is not valid, get the address into a register. */
9882 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9884 if (alt_rtl)
9885 *alt_rtl = decl_rtl;
9886 decl_rtl = use_anchored_address (decl_rtl);
9887 if (modifier != EXPAND_CONST_ADDRESS
9888 && modifier != EXPAND_SUM
9889 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
9890 : GET_MODE (decl_rtl),
9891 XEXP (decl_rtl, 0),
9892 MEM_ADDR_SPACE (decl_rtl)))
9893 temp = replace_equiv_address (decl_rtl,
9894 copy_rtx (XEXP (decl_rtl, 0)));
9897 /* If we got something, return it. But first, set the alignment
9898 if the address is a register. */
9899 if (temp != 0)
9901 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
9902 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9904 return temp;
9907 if (exp)
9908 dmode = DECL_MODE (exp);
9909 else
9910 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
9912 /* If the mode of DECL_RTL does not match that of the decl,
9913 there are two cases: we are dealing with a BLKmode value
9914 that is returned in a register, or we are dealing with
9915 a promoted value. In the latter case, return a SUBREG
9916 of the wanted mode, but mark it so that we know that it
9917 was already extended. */
9918 if (REG_P (decl_rtl)
9919 && dmode != BLKmode
9920 && GET_MODE (decl_rtl) != dmode)
9922 machine_mode pmode;
9924 /* Get the signedness to be used for this variable. Ensure we get
9925 the same mode we got when the variable was declared. */
9926 if (code != SSA_NAME)
9927 pmode = promote_decl_mode (exp, &unsignedp);
9928 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
9929 && gimple_code (g) == GIMPLE_CALL
9930 && !gimple_call_internal_p (g))
9931 pmode = promote_function_mode (type, mode, &unsignedp,
9932 gimple_call_fntype (g),
9934 else
9935 pmode = promote_ssa_mode (ssa_name, &unsignedp);
9936 gcc_assert (GET_MODE (decl_rtl) == pmode);
9938 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9939 SUBREG_PROMOTED_VAR_P (temp) = 1;
9940 SUBREG_PROMOTED_SET (temp, unsignedp);
9941 return temp;
9944 return decl_rtl;
9946 case INTEGER_CST:
9947 /* Given that TYPE_PRECISION (type) is not always equal to
9948 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9949 the former to the latter according to the signedness of the
9950 type. */
9951 temp = immed_wide_int_const (wi::to_wide
9952 (exp,
9953 GET_MODE_PRECISION (TYPE_MODE (type))),
9954 TYPE_MODE (type));
9955 return temp;
9957 case VECTOR_CST:
9959 tree tmp = NULL_TREE;
9960 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9961 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9962 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9963 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9964 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9965 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9966 return const_vector_from_tree (exp);
9967 if (GET_MODE_CLASS (mode) == MODE_INT)
9969 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
9970 return const_scalar_mask_from_tree (exp);
9971 else
9973 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9974 if (type_for_mode)
9975 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
9976 type_for_mode, exp);
9979 if (!tmp)
9981 vec<constructor_elt, va_gc> *v;
9982 unsigned i;
9983 vec_alloc (v, VECTOR_CST_NELTS (exp));
9984 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9985 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9986 tmp = build_constructor (type, v);
9988 return expand_expr (tmp, ignore ? const0_rtx : target,
9989 tmode, modifier);
9992 case CONST_DECL:
9993 if (modifier == EXPAND_WRITE)
9995 /* Writing into CONST_DECL is always invalid, but handle it
9996 gracefully. */
9997 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
9998 machine_mode address_mode = targetm.addr_space.address_mode (as);
9999 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10000 EXPAND_NORMAL, as);
10001 op0 = memory_address_addr_space (mode, op0, as);
10002 temp = gen_rtx_MEM (mode, op0);
10003 set_mem_addr_space (temp, as);
10004 return temp;
10006 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10008 case REAL_CST:
10009 /* If optimized, generate immediate CONST_DOUBLE
10010 which will be turned into memory by reload if necessary.
10012 We used to force a register so that loop.c could see it. But
10013 this does not allow gen_* patterns to perform optimizations with
10014 the constants. It also produces two insns in cases like "x = 1.0;".
10015 On most machines, floating-point constants are not permitted in
10016 many insns, so we'd end up copying it to a register in any case.
10018 Now, we do the copying in expand_binop, if appropriate. */
10019 return const_double_from_real_value (TREE_REAL_CST (exp),
10020 TYPE_MODE (TREE_TYPE (exp)));
10022 case FIXED_CST:
10023 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10024 TYPE_MODE (TREE_TYPE (exp)));
10026 case COMPLEX_CST:
10027 /* Handle evaluating a complex constant in a CONCAT target. */
10028 if (original_target && GET_CODE (original_target) == CONCAT)
10030 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10031 rtx rtarg, itarg;
10033 rtarg = XEXP (original_target, 0);
10034 itarg = XEXP (original_target, 1);
10036 /* Move the real and imaginary parts separately. */
10037 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10038 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10040 if (op0 != rtarg)
10041 emit_move_insn (rtarg, op0);
10042 if (op1 != itarg)
10043 emit_move_insn (itarg, op1);
10045 return original_target;
10048 /* fall through */
10050 case STRING_CST:
10051 temp = expand_expr_constant (exp, 1, modifier);
10053 /* temp contains a constant address.
10054 On RISC machines where a constant address isn't valid,
10055 make some insns to get that address into a register. */
10056 if (modifier != EXPAND_CONST_ADDRESS
10057 && modifier != EXPAND_INITIALIZER
10058 && modifier != EXPAND_SUM
10059 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10060 MEM_ADDR_SPACE (temp)))
10061 return replace_equiv_address (temp,
10062 copy_rtx (XEXP (temp, 0)));
10063 return temp;
10065 case SAVE_EXPR:
10067 tree val = treeop0;
10068 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10069 inner_reference_p);
10071 if (!SAVE_EXPR_RESOLVED_P (exp))
10073 /* We can indeed still hit this case, typically via builtin
10074 expanders calling save_expr immediately before expanding
10075 something. Assume this means that we only have to deal
10076 with non-BLKmode values. */
10077 gcc_assert (GET_MODE (ret) != BLKmode);
10079 val = build_decl (curr_insn_location (),
10080 VAR_DECL, NULL, TREE_TYPE (exp));
10081 DECL_ARTIFICIAL (val) = 1;
10082 DECL_IGNORED_P (val) = 1;
10083 treeop0 = val;
10084 TREE_OPERAND (exp, 0) = treeop0;
10085 SAVE_EXPR_RESOLVED_P (exp) = 1;
10087 if (!CONSTANT_P (ret))
10088 ret = copy_to_reg (ret);
10089 SET_DECL_RTL (val, ret);
10092 return ret;
10096 case CONSTRUCTOR:
10097 /* If we don't need the result, just ensure we evaluate any
10098 subexpressions. */
10099 if (ignore)
10101 unsigned HOST_WIDE_INT idx;
10102 tree value;
10104 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10105 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10107 return const0_rtx;
10110 return expand_constructor (exp, target, modifier, false);
10112 case TARGET_MEM_REF:
10114 addr_space_t as
10115 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10116 enum insn_code icode;
10117 unsigned int align;
10119 op0 = addr_for_mem_ref (exp, as, true);
10120 op0 = memory_address_addr_space (mode, op0, as);
10121 temp = gen_rtx_MEM (mode, op0);
10122 set_mem_attributes (temp, exp, 0);
10123 set_mem_addr_space (temp, as);
10124 align = get_object_alignment (exp);
10125 if (modifier != EXPAND_WRITE
10126 && modifier != EXPAND_MEMORY
10127 && mode != BLKmode
10128 && align < GET_MODE_ALIGNMENT (mode)
10129 /* If the target does not have special handling for unaligned
10130 loads of mode then it can use regular moves for them. */
10131 && ((icode = optab_handler (movmisalign_optab, mode))
10132 != CODE_FOR_nothing))
10134 struct expand_operand ops[2];
10136 /* We've already validated the memory, and we're creating a
10137 new pseudo destination. The predicates really can't fail,
10138 nor can the generator. */
10139 create_output_operand (&ops[0], NULL_RTX, mode);
10140 create_fixed_operand (&ops[1], temp);
10141 expand_insn (icode, 2, ops);
10142 temp = ops[0].value;
10144 return temp;
10147 case MEM_REF:
10149 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10150 addr_space_t as
10151 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10152 machine_mode address_mode;
10153 tree base = TREE_OPERAND (exp, 0);
10154 gimple *def_stmt;
10155 enum insn_code icode;
10156 unsigned align;
10157 /* Handle expansion of non-aliased memory with non-BLKmode. That
10158 might end up in a register. */
10159 if (mem_ref_refers_to_non_mem_p (exp))
10161 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
10162 base = TREE_OPERAND (base, 0);
10163 if (offset == 0
10164 && !reverse
10165 && tree_fits_uhwi_p (TYPE_SIZE (type))
10166 && (GET_MODE_BITSIZE (DECL_MODE (base))
10167 == tree_to_uhwi (TYPE_SIZE (type))))
10168 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10169 target, tmode, modifier);
10170 if (TYPE_MODE (type) == BLKmode)
10172 temp = assign_stack_temp (DECL_MODE (base),
10173 GET_MODE_SIZE (DECL_MODE (base)));
10174 store_expr (base, temp, 0, false, false);
10175 temp = adjust_address (temp, BLKmode, offset);
10176 set_mem_size (temp, int_size_in_bytes (type));
10177 return temp;
10179 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10180 bitsize_int (offset * BITS_PER_UNIT));
10181 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10182 return expand_expr (exp, target, tmode, modifier);
10184 address_mode = targetm.addr_space.address_mode (as);
10185 base = TREE_OPERAND (exp, 0);
10186 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10188 tree mask = gimple_assign_rhs2 (def_stmt);
10189 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10190 gimple_assign_rhs1 (def_stmt), mask);
10191 TREE_OPERAND (exp, 0) = base;
10193 align = get_object_alignment (exp);
10194 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10195 op0 = memory_address_addr_space (mode, op0, as);
10196 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10198 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10199 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10200 op0 = memory_address_addr_space (mode, op0, as);
10202 temp = gen_rtx_MEM (mode, op0);
10203 set_mem_attributes (temp, exp, 0);
10204 set_mem_addr_space (temp, as);
10205 if (TREE_THIS_VOLATILE (exp))
10206 MEM_VOLATILE_P (temp) = 1;
10207 if (modifier != EXPAND_WRITE
10208 && modifier != EXPAND_MEMORY
10209 && !inner_reference_p
10210 && mode != BLKmode
10211 && align < GET_MODE_ALIGNMENT (mode))
10213 if ((icode = optab_handler (movmisalign_optab, mode))
10214 != CODE_FOR_nothing)
10216 struct expand_operand ops[2];
10218 /* We've already validated the memory, and we're creating a
10219 new pseudo destination. The predicates really can't fail,
10220 nor can the generator. */
10221 create_output_operand (&ops[0], NULL_RTX, mode);
10222 create_fixed_operand (&ops[1], temp);
10223 expand_insn (icode, 2, ops);
10224 temp = ops[0].value;
10226 else if (SLOW_UNALIGNED_ACCESS (mode, align))
10227 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10228 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10229 (modifier == EXPAND_STACK_PARM
10230 ? NULL_RTX : target),
10231 mode, mode, false, alt_rtl);
10233 if (reverse
10234 && modifier != EXPAND_MEMORY
10235 && modifier != EXPAND_WRITE)
10236 temp = flip_storage_order (mode, temp);
10237 return temp;
10240 case ARRAY_REF:
10243 tree array = treeop0;
10244 tree index = treeop1;
10245 tree init;
10247 /* Fold an expression like: "foo"[2].
10248 This is not done in fold so it won't happen inside &.
10249 Don't fold if this is for wide characters since it's too
10250 difficult to do correctly and this is a very rare case. */
10252 if (modifier != EXPAND_CONST_ADDRESS
10253 && modifier != EXPAND_INITIALIZER
10254 && modifier != EXPAND_MEMORY)
10256 tree t = fold_read_from_constant_string (exp);
10258 if (t)
10259 return expand_expr (t, target, tmode, modifier);
10262 /* If this is a constant index into a constant array,
10263 just get the value from the array. Handle both the cases when
10264 we have an explicit constructor and when our operand is a variable
10265 that was declared const. */
10267 if (modifier != EXPAND_CONST_ADDRESS
10268 && modifier != EXPAND_INITIALIZER
10269 && modifier != EXPAND_MEMORY
10270 && TREE_CODE (array) == CONSTRUCTOR
10271 && ! TREE_SIDE_EFFECTS (array)
10272 && TREE_CODE (index) == INTEGER_CST)
10274 unsigned HOST_WIDE_INT ix;
10275 tree field, value;
10277 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10278 field, value)
10279 if (tree_int_cst_equal (field, index))
10281 if (!TREE_SIDE_EFFECTS (value))
10282 return expand_expr (fold (value), target, tmode, modifier);
10283 break;
10287 else if (optimize >= 1
10288 && modifier != EXPAND_CONST_ADDRESS
10289 && modifier != EXPAND_INITIALIZER
10290 && modifier != EXPAND_MEMORY
10291 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10292 && TREE_CODE (index) == INTEGER_CST
10293 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10294 && (init = ctor_for_folding (array)) != error_mark_node)
10296 if (init == NULL_TREE)
10298 tree value = build_zero_cst (type);
10299 if (TREE_CODE (value) == CONSTRUCTOR)
10301 /* If VALUE is a CONSTRUCTOR, this optimization is only
10302 useful if this doesn't store the CONSTRUCTOR into
10303 memory. If it does, it is more efficient to just
10304 load the data from the array directly. */
10305 rtx ret = expand_constructor (value, target,
10306 modifier, true);
10307 if (ret == NULL_RTX)
10308 value = NULL_TREE;
10311 if (value)
10312 return expand_expr (value, target, tmode, modifier);
10314 else if (TREE_CODE (init) == CONSTRUCTOR)
10316 unsigned HOST_WIDE_INT ix;
10317 tree field, value;
10319 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10320 field, value)
10321 if (tree_int_cst_equal (field, index))
10323 if (TREE_SIDE_EFFECTS (value))
10324 break;
10326 if (TREE_CODE (value) == CONSTRUCTOR)
10328 /* If VALUE is a CONSTRUCTOR, this
10329 optimization is only useful if
10330 this doesn't store the CONSTRUCTOR
10331 into memory. If it does, it is more
10332 efficient to just load the data from
10333 the array directly. */
10334 rtx ret = expand_constructor (value, target,
10335 modifier, true);
10336 if (ret == NULL_RTX)
10337 break;
10340 return
10341 expand_expr (fold (value), target, tmode, modifier);
10344 else if (TREE_CODE (init) == STRING_CST)
10346 tree low_bound = array_ref_low_bound (exp);
10347 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10349 /* Optimize the special case of a zero lower bound.
10351 We convert the lower bound to sizetype to avoid problems
10352 with constant folding. E.g. suppose the lower bound is
10353 1 and its mode is QI. Without the conversion
10354 (ARRAY + (INDEX - (unsigned char)1))
10355 becomes
10356 (ARRAY + (-(unsigned char)1) + INDEX)
10357 which becomes
10358 (ARRAY + 255 + INDEX). Oops! */
10359 if (!integer_zerop (low_bound))
10360 index1 = size_diffop_loc (loc, index1,
10361 fold_convert_loc (loc, sizetype,
10362 low_bound));
10364 if (tree_fits_uhwi_p (index1)
10365 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10367 tree type = TREE_TYPE (TREE_TYPE (init));
10368 machine_mode mode = TYPE_MODE (type);
10370 if (GET_MODE_CLASS (mode) == MODE_INT
10371 && GET_MODE_SIZE (mode) == 1)
10372 return gen_int_mode (TREE_STRING_POINTER (init)
10373 [TREE_INT_CST_LOW (index1)],
10374 mode);
10379 goto normal_inner_ref;
10381 case COMPONENT_REF:
10382 /* If the operand is a CONSTRUCTOR, we can just extract the
10383 appropriate field if it is present. */
10384 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10386 unsigned HOST_WIDE_INT idx;
10387 tree field, value;
10389 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10390 idx, field, value)
10391 if (field == treeop1
10392 /* We can normally use the value of the field in the
10393 CONSTRUCTOR. However, if this is a bitfield in
10394 an integral mode that we can fit in a HOST_WIDE_INT,
10395 we must mask only the number of bits in the bitfield,
10396 since this is done implicitly by the constructor. If
10397 the bitfield does not meet either of those conditions,
10398 we can't do this optimization. */
10399 && (! DECL_BIT_FIELD (field)
10400 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
10401 && (GET_MODE_PRECISION (DECL_MODE (field))
10402 <= HOST_BITS_PER_WIDE_INT))))
10404 if (DECL_BIT_FIELD (field)
10405 && modifier == EXPAND_STACK_PARM)
10406 target = 0;
10407 op0 = expand_expr (value, target, tmode, modifier);
10408 if (DECL_BIT_FIELD (field))
10410 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10411 machine_mode imode = TYPE_MODE (TREE_TYPE (field));
10413 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10415 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10416 imode);
10417 op0 = expand_and (imode, op0, op1, target);
10419 else
10421 int count = GET_MODE_PRECISION (imode) - bitsize;
10423 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10424 target, 0);
10425 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10426 target, 0);
10430 return op0;
10433 goto normal_inner_ref;
10435 case BIT_FIELD_REF:
10436 case ARRAY_RANGE_REF:
10437 normal_inner_ref:
10439 machine_mode mode1, mode2;
10440 HOST_WIDE_INT bitsize, bitpos;
10441 tree offset;
10442 int reversep, volatilep = 0, must_force_mem;
10443 tree tem
10444 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10445 &unsignedp, &reversep, &volatilep);
10446 rtx orig_op0, memloc;
10447 bool clear_mem_expr = false;
10449 /* If we got back the original object, something is wrong. Perhaps
10450 we are evaluating an expression too early. In any event, don't
10451 infinitely recurse. */
10452 gcc_assert (tem != exp);
10454 /* If TEM's type is a union of variable size, pass TARGET to the inner
10455 computation, since it will need a temporary and TARGET is known
10456 to have to do. This occurs in unchecked conversion in Ada. */
10457 orig_op0 = op0
10458 = expand_expr_real (tem,
10459 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10460 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10461 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10462 != INTEGER_CST)
10463 && modifier != EXPAND_STACK_PARM
10464 ? target : NULL_RTX),
10465 VOIDmode,
10466 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10467 NULL, true);
10469 /* If the field has a mode, we want to access it in the
10470 field's mode, not the computed mode.
10471 If a MEM has VOIDmode (external with incomplete type),
10472 use BLKmode for it instead. */
10473 if (MEM_P (op0))
10475 if (mode1 != VOIDmode)
10476 op0 = adjust_address (op0, mode1, 0);
10477 else if (GET_MODE (op0) == VOIDmode)
10478 op0 = adjust_address (op0, BLKmode, 0);
10481 mode2
10482 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10484 /* If we have either an offset, a BLKmode result, or a reference
10485 outside the underlying object, we must force it to memory.
10486 Such a case can occur in Ada if we have unchecked conversion
10487 of an expression from a scalar type to an aggregate type or
10488 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10489 passed a partially uninitialized object or a view-conversion
10490 to a larger size. */
10491 must_force_mem = (offset
10492 || mode1 == BLKmode
10493 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10495 /* Handle CONCAT first. */
10496 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10498 if (bitpos == 0
10499 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0))
10500 && COMPLEX_MODE_P (mode1)
10501 && COMPLEX_MODE_P (GET_MODE (op0))
10502 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10503 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10505 if (reversep)
10506 op0 = flip_storage_order (GET_MODE (op0), op0);
10507 if (mode1 != GET_MODE (op0))
10509 rtx parts[2];
10510 for (int i = 0; i < 2; i++)
10512 rtx op = read_complex_part (op0, i != 0);
10513 if (GET_CODE (op) == SUBREG)
10514 op = force_reg (GET_MODE (op), op);
10515 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10516 op);
10517 if (temp)
10518 op = temp;
10519 else
10521 if (!REG_P (op) && !MEM_P (op))
10522 op = force_reg (GET_MODE (op), op);
10523 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10525 parts[i] = op;
10527 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10529 return op0;
10531 if (bitpos == 0
10532 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10533 && bitsize)
10535 op0 = XEXP (op0, 0);
10536 mode2 = GET_MODE (op0);
10538 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10539 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10540 && bitpos
10541 && bitsize)
10543 op0 = XEXP (op0, 1);
10544 bitpos = 0;
10545 mode2 = GET_MODE (op0);
10547 else
10548 /* Otherwise force into memory. */
10549 must_force_mem = 1;
10552 /* If this is a constant, put it in a register if it is a legitimate
10553 constant and we don't need a memory reference. */
10554 if (CONSTANT_P (op0)
10555 && mode2 != BLKmode
10556 && targetm.legitimate_constant_p (mode2, op0)
10557 && !must_force_mem)
10558 op0 = force_reg (mode2, op0);
10560 /* Otherwise, if this is a constant, try to force it to the constant
10561 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10562 is a legitimate constant. */
10563 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10564 op0 = validize_mem (memloc);
10566 /* Otherwise, if this is a constant or the object is not in memory
10567 and need be, put it there. */
10568 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10570 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10571 emit_move_insn (memloc, op0);
10572 op0 = memloc;
10573 clear_mem_expr = true;
10576 if (offset)
10578 machine_mode address_mode;
10579 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10580 EXPAND_SUM);
10582 gcc_assert (MEM_P (op0));
10584 address_mode = get_address_mode (op0);
10585 if (GET_MODE (offset_rtx) != address_mode)
10587 /* We cannot be sure that the RTL in offset_rtx is valid outside
10588 of a memory address context, so force it into a register
10589 before attempting to convert it to the desired mode. */
10590 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10591 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10594 /* See the comment in expand_assignment for the rationale. */
10595 if (mode1 != VOIDmode
10596 && bitpos != 0
10597 && bitsize > 0
10598 && (bitpos % bitsize) == 0
10599 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10600 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10602 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10603 bitpos = 0;
10606 op0 = offset_address (op0, offset_rtx,
10607 highest_pow2_factor (offset));
10610 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10611 record its alignment as BIGGEST_ALIGNMENT. */
10612 if (MEM_P (op0) && bitpos == 0 && offset != 0
10613 && is_aligning_offset (offset, tem))
10614 set_mem_align (op0, BIGGEST_ALIGNMENT);
10616 /* Don't forget about volatility even if this is a bitfield. */
10617 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10619 if (op0 == orig_op0)
10620 op0 = copy_rtx (op0);
10622 MEM_VOLATILE_P (op0) = 1;
10625 /* In cases where an aligned union has an unaligned object
10626 as a field, we might be extracting a BLKmode value from
10627 an integer-mode (e.g., SImode) object. Handle this case
10628 by doing the extract into an object as wide as the field
10629 (which we know to be the width of a basic mode), then
10630 storing into memory, and changing the mode to BLKmode. */
10631 if (mode1 == VOIDmode
10632 || REG_P (op0) || GET_CODE (op0) == SUBREG
10633 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10634 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10635 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10636 && modifier != EXPAND_CONST_ADDRESS
10637 && modifier != EXPAND_INITIALIZER
10638 && modifier != EXPAND_MEMORY)
10639 /* If the bitfield is volatile and the bitsize
10640 is narrower than the access size of the bitfield,
10641 we need to extract bitfields from the access. */
10642 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10643 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10644 && mode1 != BLKmode
10645 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10646 /* If the field isn't aligned enough to fetch as a memref,
10647 fetch it as a bit field. */
10648 || (mode1 != BLKmode
10649 && (((MEM_P (op0)
10650 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10651 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0)
10652 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10653 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
10654 && modifier != EXPAND_MEMORY
10655 && ((modifier == EXPAND_CONST_ADDRESS
10656 || modifier == EXPAND_INITIALIZER)
10657 ? STRICT_ALIGNMENT
10658 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10659 || (bitpos % BITS_PER_UNIT != 0)))
10660 /* If the type and the field are a constant size and the
10661 size of the type isn't the same size as the bitfield,
10662 we must use bitfield operations. */
10663 || (bitsize >= 0
10664 && TYPE_SIZE (TREE_TYPE (exp))
10665 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10666 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10667 bitsize)))
10669 machine_mode ext_mode = mode;
10671 if (ext_mode == BLKmode
10672 && ! (target != 0 && MEM_P (op0)
10673 && MEM_P (target)
10674 && bitpos % BITS_PER_UNIT == 0))
10675 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10677 if (ext_mode == BLKmode)
10679 if (target == 0)
10680 target = assign_temp (type, 1, 1);
10682 /* ??? Unlike the similar test a few lines below, this one is
10683 very likely obsolete. */
10684 if (bitsize == 0)
10685 return target;
10687 /* In this case, BITPOS must start at a byte boundary and
10688 TARGET, if specified, must be a MEM. */
10689 gcc_assert (MEM_P (op0)
10690 && (!target || MEM_P (target))
10691 && !(bitpos % BITS_PER_UNIT));
10693 emit_block_move (target,
10694 adjust_address (op0, VOIDmode,
10695 bitpos / BITS_PER_UNIT),
10696 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10697 / BITS_PER_UNIT),
10698 (modifier == EXPAND_STACK_PARM
10699 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10701 return target;
10704 /* If we have nothing to extract, the result will be 0 for targets
10705 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10706 return 0 for the sake of consistency, as reading a zero-sized
10707 bitfield is valid in Ada and the value is fully specified. */
10708 if (bitsize == 0)
10709 return const0_rtx;
10711 op0 = validize_mem (op0);
10713 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10714 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10716 /* If the result has a record type and the extraction is done in
10717 an integral mode, then the field may be not aligned on a byte
10718 boundary; in this case, if it has reverse storage order, it
10719 needs to be extracted as a scalar field with reverse storage
10720 order and put back into memory order afterwards. */
10721 if (TREE_CODE (type) == RECORD_TYPE
10722 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10723 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10725 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10726 (modifier == EXPAND_STACK_PARM
10727 ? NULL_RTX : target),
10728 ext_mode, ext_mode, reversep, alt_rtl);
10730 /* If the result has a record type and the mode of OP0 is an
10731 integral mode then, if BITSIZE is narrower than this mode
10732 and this is for big-endian data, we must put the field
10733 into the high-order bits. And we must also put it back
10734 into memory order if it has been previously reversed. */
10735 if (TREE_CODE (type) == RECORD_TYPE
10736 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
10738 HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (op0));
10740 if (bitsize < size
10741 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10742 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10743 size - bitsize, op0, 1);
10745 if (reversep)
10746 op0 = flip_storage_order (GET_MODE (op0), op0);
10749 /* If the result type is BLKmode, store the data into a temporary
10750 of the appropriate type, but with the mode corresponding to the
10751 mode for the data we have (op0's mode). */
10752 if (mode == BLKmode)
10754 rtx new_rtx
10755 = assign_stack_temp_for_type (ext_mode,
10756 GET_MODE_BITSIZE (ext_mode),
10757 type);
10758 emit_move_insn (new_rtx, op0);
10759 op0 = copy_rtx (new_rtx);
10760 PUT_MODE (op0, BLKmode);
10763 return op0;
10766 /* If the result is BLKmode, use that to access the object
10767 now as well. */
10768 if (mode == BLKmode)
10769 mode1 = BLKmode;
10771 /* Get a reference to just this component. */
10772 if (modifier == EXPAND_CONST_ADDRESS
10773 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10774 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10775 else
10776 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10778 if (op0 == orig_op0)
10779 op0 = copy_rtx (op0);
10781 /* Don't set memory attributes if the base expression is
10782 SSA_NAME that got expanded as a MEM. In that case, we should
10783 just honor its original memory attributes. */
10784 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10785 set_mem_attributes (op0, exp, 0);
10787 if (REG_P (XEXP (op0, 0)))
10788 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10790 /* If op0 is a temporary because the original expressions was forced
10791 to memory, clear MEM_EXPR so that the original expression cannot
10792 be marked as addressable through MEM_EXPR of the temporary. */
10793 if (clear_mem_expr)
10794 set_mem_expr (op0, NULL_TREE);
10796 MEM_VOLATILE_P (op0) |= volatilep;
10798 if (reversep
10799 && modifier != EXPAND_MEMORY
10800 && modifier != EXPAND_WRITE)
10801 op0 = flip_storage_order (mode1, op0);
10803 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10804 || modifier == EXPAND_CONST_ADDRESS
10805 || modifier == EXPAND_INITIALIZER)
10806 return op0;
10808 if (target == 0)
10809 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10811 convert_move (target, op0, unsignedp);
10812 return target;
10815 case OBJ_TYPE_REF:
10816 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10818 case CALL_EXPR:
10819 /* All valid uses of __builtin_va_arg_pack () are removed during
10820 inlining. */
10821 if (CALL_EXPR_VA_ARG_PACK (exp))
10822 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10824 tree fndecl = get_callee_fndecl (exp), attr;
10826 if (fndecl
10827 && (attr = lookup_attribute ("error",
10828 DECL_ATTRIBUTES (fndecl))) != NULL)
10829 error ("%Kcall to %qs declared with attribute error: %s",
10830 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10831 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10832 if (fndecl
10833 && (attr = lookup_attribute ("warning",
10834 DECL_ATTRIBUTES (fndecl))) != NULL)
10835 warning_at (tree_nonartificial_location (exp),
10836 0, "%Kcall to %qs declared with attribute warning: %s",
10837 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10838 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10840 /* Check for a built-in function. */
10841 if (fndecl && DECL_BUILT_IN (fndecl))
10843 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10844 if (CALL_WITH_BOUNDS_P (exp))
10845 return expand_builtin_with_bounds (exp, target, subtarget,
10846 tmode, ignore);
10847 else
10848 return expand_builtin (exp, target, subtarget, tmode, ignore);
10851 return expand_call (exp, target, ignore);
10853 case VIEW_CONVERT_EXPR:
10854 op0 = NULL_RTX;
10856 /* If we are converting to BLKmode, try to avoid an intermediate
10857 temporary by fetching an inner memory reference. */
10858 if (mode == BLKmode
10859 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10860 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10861 && handled_component_p (treeop0))
10863 machine_mode mode1;
10864 HOST_WIDE_INT bitsize, bitpos;
10865 tree offset;
10866 int unsignedp, reversep, volatilep = 0;
10867 tree tem
10868 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
10869 &unsignedp, &reversep, &volatilep);
10870 rtx orig_op0;
10872 /* ??? We should work harder and deal with non-zero offsets. */
10873 if (!offset
10874 && (bitpos % BITS_PER_UNIT) == 0
10875 && !reversep
10876 && bitsize >= 0
10877 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10879 /* See the normal_inner_ref case for the rationale. */
10880 orig_op0
10881 = expand_expr_real (tem,
10882 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10883 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10884 != INTEGER_CST)
10885 && modifier != EXPAND_STACK_PARM
10886 ? target : NULL_RTX),
10887 VOIDmode,
10888 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10889 NULL, true);
10891 if (MEM_P (orig_op0))
10893 op0 = orig_op0;
10895 /* Get a reference to just this component. */
10896 if (modifier == EXPAND_CONST_ADDRESS
10897 || modifier == EXPAND_SUM
10898 || modifier == EXPAND_INITIALIZER)
10899 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10900 else
10901 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10903 if (op0 == orig_op0)
10904 op0 = copy_rtx (op0);
10906 set_mem_attributes (op0, treeop0, 0);
10907 if (REG_P (XEXP (op0, 0)))
10908 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10910 MEM_VOLATILE_P (op0) |= volatilep;
10915 if (!op0)
10916 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10917 NULL, inner_reference_p);
10919 /* If the input and output modes are both the same, we are done. */
10920 if (mode == GET_MODE (op0))
10922 /* If neither mode is BLKmode, and both modes are the same size
10923 then we can use gen_lowpart. */
10924 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10925 && (GET_MODE_PRECISION (mode)
10926 == GET_MODE_PRECISION (GET_MODE (op0)))
10927 && !COMPLEX_MODE_P (GET_MODE (op0)))
10929 if (GET_CODE (op0) == SUBREG)
10930 op0 = force_reg (GET_MODE (op0), op0);
10931 temp = gen_lowpart_common (mode, op0);
10932 if (temp)
10933 op0 = temp;
10934 else
10936 if (!REG_P (op0) && !MEM_P (op0))
10937 op0 = force_reg (GET_MODE (op0), op0);
10938 op0 = gen_lowpart (mode, op0);
10941 /* If both types are integral, convert from one mode to the other. */
10942 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10943 op0 = convert_modes (mode, GET_MODE (op0), op0,
10944 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10945 /* If the output type is a bit-field type, do an extraction. */
10946 else if (reduce_bit_field)
10947 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10948 TYPE_UNSIGNED (type), NULL_RTX,
10949 mode, mode, false, NULL);
10950 /* As a last resort, spill op0 to memory, and reload it in a
10951 different mode. */
10952 else if (!MEM_P (op0))
10954 /* If the operand is not a MEM, force it into memory. Since we
10955 are going to be changing the mode of the MEM, don't call
10956 force_const_mem for constants because we don't allow pool
10957 constants to change mode. */
10958 tree inner_type = TREE_TYPE (treeop0);
10960 gcc_assert (!TREE_ADDRESSABLE (exp));
10962 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10963 target
10964 = assign_stack_temp_for_type
10965 (TYPE_MODE (inner_type),
10966 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10968 emit_move_insn (target, op0);
10969 op0 = target;
10972 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10973 output type is such that the operand is known to be aligned, indicate
10974 that it is. Otherwise, we need only be concerned about alignment for
10975 non-BLKmode results. */
10976 if (MEM_P (op0))
10978 enum insn_code icode;
10980 if (modifier != EXPAND_WRITE
10981 && modifier != EXPAND_MEMORY
10982 && !inner_reference_p
10983 && mode != BLKmode
10984 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10986 /* If the target does have special handling for unaligned
10987 loads of mode then use them. */
10988 if ((icode = optab_handler (movmisalign_optab, mode))
10989 != CODE_FOR_nothing)
10991 rtx reg;
10993 op0 = adjust_address (op0, mode, 0);
10994 /* We've already validated the memory, and we're creating a
10995 new pseudo destination. The predicates really can't
10996 fail. */
10997 reg = gen_reg_rtx (mode);
10999 /* Nor can the insn generator. */
11000 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11001 emit_insn (insn);
11002 return reg;
11004 else if (STRICT_ALIGNMENT)
11006 tree inner_type = TREE_TYPE (treeop0);
11007 HOST_WIDE_INT temp_size
11008 = MAX (int_size_in_bytes (inner_type),
11009 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
11010 rtx new_rtx
11011 = assign_stack_temp_for_type (mode, temp_size, type);
11012 rtx new_with_op0_mode
11013 = adjust_address (new_rtx, GET_MODE (op0), 0);
11015 gcc_assert (!TREE_ADDRESSABLE (exp));
11017 if (GET_MODE (op0) == BLKmode)
11018 emit_block_move (new_with_op0_mode, op0,
11019 GEN_INT (GET_MODE_SIZE (mode)),
11020 (modifier == EXPAND_STACK_PARM
11021 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11022 else
11023 emit_move_insn (new_with_op0_mode, op0);
11025 op0 = new_rtx;
11029 op0 = adjust_address (op0, mode, 0);
11032 return op0;
11034 case MODIFY_EXPR:
11036 tree lhs = treeop0;
11037 tree rhs = treeop1;
11038 gcc_assert (ignore);
11040 /* Check for |= or &= of a bitfield of size one into another bitfield
11041 of size 1. In this case, (unless we need the result of the
11042 assignment) we can do this more efficiently with a
11043 test followed by an assignment, if necessary.
11045 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11046 things change so we do, this code should be enhanced to
11047 support it. */
11048 if (TREE_CODE (lhs) == COMPONENT_REF
11049 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11050 || TREE_CODE (rhs) == BIT_AND_EXPR)
11051 && TREE_OPERAND (rhs, 0) == lhs
11052 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11053 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11054 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11056 rtx_code_label *label = gen_label_rtx ();
11057 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11058 do_jump (TREE_OPERAND (rhs, 1),
11059 value ? label : 0,
11060 value ? 0 : label,
11061 profile_probability::uninitialized ());
11062 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11063 false);
11064 do_pending_stack_adjust ();
11065 emit_label (label);
11066 return const0_rtx;
11069 expand_assignment (lhs, rhs, false);
11070 return const0_rtx;
11073 case ADDR_EXPR:
11074 return expand_expr_addr_expr (exp, target, tmode, modifier);
11076 case REALPART_EXPR:
11077 op0 = expand_normal (treeop0);
11078 return read_complex_part (op0, false);
11080 case IMAGPART_EXPR:
11081 op0 = expand_normal (treeop0);
11082 return read_complex_part (op0, true);
11084 case RETURN_EXPR:
11085 case LABEL_EXPR:
11086 case GOTO_EXPR:
11087 case SWITCH_EXPR:
11088 case ASM_EXPR:
11089 /* Expanded in cfgexpand.c. */
11090 gcc_unreachable ();
11092 case TRY_CATCH_EXPR:
11093 case CATCH_EXPR:
11094 case EH_FILTER_EXPR:
11095 case TRY_FINALLY_EXPR:
11096 /* Lowered by tree-eh.c. */
11097 gcc_unreachable ();
11099 case WITH_CLEANUP_EXPR:
11100 case CLEANUP_POINT_EXPR:
11101 case TARGET_EXPR:
11102 case CASE_LABEL_EXPR:
11103 case VA_ARG_EXPR:
11104 case BIND_EXPR:
11105 case INIT_EXPR:
11106 case CONJ_EXPR:
11107 case COMPOUND_EXPR:
11108 case PREINCREMENT_EXPR:
11109 case PREDECREMENT_EXPR:
11110 case POSTINCREMENT_EXPR:
11111 case POSTDECREMENT_EXPR:
11112 case LOOP_EXPR:
11113 case EXIT_EXPR:
11114 case COMPOUND_LITERAL_EXPR:
11115 /* Lowered by gimplify.c. */
11116 gcc_unreachable ();
11118 case FDESC_EXPR:
11119 /* Function descriptors are not valid except for as
11120 initialization constants, and should not be expanded. */
11121 gcc_unreachable ();
11123 case WITH_SIZE_EXPR:
11124 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11125 have pulled out the size to use in whatever context it needed. */
11126 return expand_expr_real (treeop0, original_target, tmode,
11127 modifier, alt_rtl, inner_reference_p);
11129 default:
11130 return expand_expr_real_2 (&ops, target, tmode, modifier);
11134 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11135 signedness of TYPE), possibly returning the result in TARGET. */
11136 static rtx
11137 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11139 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11140 if (target && GET_MODE (target) != GET_MODE (exp))
11141 target = 0;
11142 /* For constant values, reduce using build_int_cst_type. */
11143 if (CONST_INT_P (exp))
11145 HOST_WIDE_INT value = INTVAL (exp);
11146 tree t = build_int_cst_type (type, value);
11147 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11149 else if (TYPE_UNSIGNED (type))
11151 machine_mode mode = GET_MODE (exp);
11152 rtx mask = immed_wide_int_const
11153 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11154 return expand_and (mode, exp, mask, target);
11156 else
11158 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
11159 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
11160 exp, count, target, 0);
11161 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
11162 exp, count, target, 0);
11166 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11167 when applied to the address of EXP produces an address known to be
11168 aligned more than BIGGEST_ALIGNMENT. */
11170 static int
11171 is_aligning_offset (const_tree offset, const_tree exp)
11173 /* Strip off any conversions. */
11174 while (CONVERT_EXPR_P (offset))
11175 offset = TREE_OPERAND (offset, 0);
11177 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11178 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11179 if (TREE_CODE (offset) != BIT_AND_EXPR
11180 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11181 || compare_tree_int (TREE_OPERAND (offset, 1),
11182 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11183 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11184 return 0;
11186 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11187 It must be NEGATE_EXPR. Then strip any more conversions. */
11188 offset = TREE_OPERAND (offset, 0);
11189 while (CONVERT_EXPR_P (offset))
11190 offset = TREE_OPERAND (offset, 0);
11192 if (TREE_CODE (offset) != NEGATE_EXPR)
11193 return 0;
11195 offset = TREE_OPERAND (offset, 0);
11196 while (CONVERT_EXPR_P (offset))
11197 offset = TREE_OPERAND (offset, 0);
11199 /* This must now be the address of EXP. */
11200 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11203 /* Return the tree node if an ARG corresponds to a string constant or zero
11204 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
11205 in bytes within the string that ARG is accessing. The type of the
11206 offset will be `sizetype'. */
11208 tree
11209 string_constant (tree arg, tree *ptr_offset)
11211 tree array, offset, lower_bound;
11212 STRIP_NOPS (arg);
11214 if (TREE_CODE (arg) == ADDR_EXPR)
11216 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
11218 *ptr_offset = size_zero_node;
11219 return TREE_OPERAND (arg, 0);
11221 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
11223 array = TREE_OPERAND (arg, 0);
11224 offset = size_zero_node;
11226 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
11228 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11229 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11230 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11231 return 0;
11233 /* Check if the array has a nonzero lower bound. */
11234 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
11235 if (!integer_zerop (lower_bound))
11237 /* If the offset and base aren't both constants, return 0. */
11238 if (TREE_CODE (lower_bound) != INTEGER_CST)
11239 return 0;
11240 if (TREE_CODE (offset) != INTEGER_CST)
11241 return 0;
11242 /* Adjust offset by the lower bound. */
11243 offset = size_diffop (fold_convert (sizetype, offset),
11244 fold_convert (sizetype, lower_bound));
11247 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
11249 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11250 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11251 if (TREE_CODE (array) != ADDR_EXPR)
11252 return 0;
11253 array = TREE_OPERAND (array, 0);
11254 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11255 return 0;
11257 else
11258 return 0;
11260 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11262 tree arg0 = TREE_OPERAND (arg, 0);
11263 tree arg1 = TREE_OPERAND (arg, 1);
11265 STRIP_NOPS (arg0);
11266 STRIP_NOPS (arg1);
11268 if (TREE_CODE (arg0) == ADDR_EXPR
11269 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
11270 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
11272 array = TREE_OPERAND (arg0, 0);
11273 offset = arg1;
11275 else if (TREE_CODE (arg1) == ADDR_EXPR
11276 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
11277 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
11279 array = TREE_OPERAND (arg1, 0);
11280 offset = arg0;
11282 else
11283 return 0;
11285 else
11286 return 0;
11288 if (TREE_CODE (array) == STRING_CST)
11290 *ptr_offset = fold_convert (sizetype, offset);
11291 return array;
11293 else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11295 int length;
11296 tree init = ctor_for_folding (array);
11298 /* Variables initialized to string literals can be handled too. */
11299 if (init == error_mark_node
11300 || !init
11301 || TREE_CODE (init) != STRING_CST)
11302 return 0;
11304 /* Avoid const char foo[4] = "abcde"; */
11305 if (DECL_SIZE_UNIT (array) == NULL_TREE
11306 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
11307 || (length = TREE_STRING_LENGTH (init)) <= 0
11308 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
11309 return 0;
11311 /* If variable is bigger than the string literal, OFFSET must be constant
11312 and inside of the bounds of the string literal. */
11313 offset = fold_convert (sizetype, offset);
11314 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
11315 && (! tree_fits_uhwi_p (offset)
11316 || compare_tree_int (offset, length) >= 0))
11317 return 0;
11319 *ptr_offset = offset;
11320 return init;
11323 return 0;
11326 /* Generate code to calculate OPS, and exploded expression
11327 using a store-flag instruction and return an rtx for the result.
11328 OPS reflects a comparison.
11330 If TARGET is nonzero, store the result there if convenient.
11332 Return zero if there is no suitable set-flag instruction
11333 available on this machine.
11335 Once expand_expr has been called on the arguments of the comparison,
11336 we are committed to doing the store flag, since it is not safe to
11337 re-evaluate the expression. We emit the store-flag insn by calling
11338 emit_store_flag, but only expand the arguments if we have a reason
11339 to believe that emit_store_flag will be successful. If we think that
11340 it will, but it isn't, we have to simulate the store-flag with a
11341 set/jump/set sequence. */
11343 static rtx
11344 do_store_flag (sepops ops, rtx target, machine_mode mode)
11346 enum rtx_code code;
11347 tree arg0, arg1, type;
11348 machine_mode operand_mode;
11349 int unsignedp;
11350 rtx op0, op1;
11351 rtx subtarget = target;
11352 location_t loc = ops->location;
11354 arg0 = ops->op0;
11355 arg1 = ops->op1;
11357 /* Don't crash if the comparison was erroneous. */
11358 if (arg0 == error_mark_node || arg1 == error_mark_node)
11359 return const0_rtx;
11361 type = TREE_TYPE (arg0);
11362 operand_mode = TYPE_MODE (type);
11363 unsignedp = TYPE_UNSIGNED (type);
11365 /* We won't bother with BLKmode store-flag operations because it would mean
11366 passing a lot of information to emit_store_flag. */
11367 if (operand_mode == BLKmode)
11368 return 0;
11370 /* We won't bother with store-flag operations involving function pointers
11371 when function pointers must be canonicalized before comparisons. */
11372 if (targetm.have_canonicalize_funcptr_for_compare ()
11373 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11374 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11375 == FUNCTION_TYPE))
11376 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11377 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11378 == FUNCTION_TYPE))))
11379 return 0;
11381 STRIP_NOPS (arg0);
11382 STRIP_NOPS (arg1);
11384 /* For vector typed comparisons emit code to generate the desired
11385 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11386 expander for this. */
11387 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11389 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11390 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
11391 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
11392 return expand_vec_cmp_expr (ops->type, ifexp, target);
11393 else
11395 tree if_true = constant_boolean_node (true, ops->type);
11396 tree if_false = constant_boolean_node (false, ops->type);
11397 return expand_vec_cond_expr (ops->type, ifexp, if_true,
11398 if_false, target);
11402 /* Get the rtx comparison code to use. We know that EXP is a comparison
11403 operation of some type. Some comparisons against 1 and -1 can be
11404 converted to comparisons with zero. Do so here so that the tests
11405 below will be aware that we have a comparison with zero. These
11406 tests will not catch constants in the first operand, but constants
11407 are rarely passed as the first operand. */
11409 switch (ops->code)
11411 case EQ_EXPR:
11412 code = EQ;
11413 break;
11414 case NE_EXPR:
11415 code = NE;
11416 break;
11417 case LT_EXPR:
11418 if (integer_onep (arg1))
11419 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11420 else
11421 code = unsignedp ? LTU : LT;
11422 break;
11423 case LE_EXPR:
11424 if (! unsignedp && integer_all_onesp (arg1))
11425 arg1 = integer_zero_node, code = LT;
11426 else
11427 code = unsignedp ? LEU : LE;
11428 break;
11429 case GT_EXPR:
11430 if (! unsignedp && integer_all_onesp (arg1))
11431 arg1 = integer_zero_node, code = GE;
11432 else
11433 code = unsignedp ? GTU : GT;
11434 break;
11435 case GE_EXPR:
11436 if (integer_onep (arg1))
11437 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11438 else
11439 code = unsignedp ? GEU : GE;
11440 break;
11442 case UNORDERED_EXPR:
11443 code = UNORDERED;
11444 break;
11445 case ORDERED_EXPR:
11446 code = ORDERED;
11447 break;
11448 case UNLT_EXPR:
11449 code = UNLT;
11450 break;
11451 case UNLE_EXPR:
11452 code = UNLE;
11453 break;
11454 case UNGT_EXPR:
11455 code = UNGT;
11456 break;
11457 case UNGE_EXPR:
11458 code = UNGE;
11459 break;
11460 case UNEQ_EXPR:
11461 code = UNEQ;
11462 break;
11463 case LTGT_EXPR:
11464 code = LTGT;
11465 break;
11467 default:
11468 gcc_unreachable ();
11471 /* Put a constant second. */
11472 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11473 || TREE_CODE (arg0) == FIXED_CST)
11475 std::swap (arg0, arg1);
11476 code = swap_condition (code);
11479 /* If this is an equality or inequality test of a single bit, we can
11480 do this by shifting the bit being tested to the low-order bit and
11481 masking the result with the constant 1. If the condition was EQ,
11482 we xor it with 1. This does not require an scc insn and is faster
11483 than an scc insn even if we have it.
11485 The code to make this transformation was moved into fold_single_bit_test,
11486 so we just call into the folder and expand its result. */
11488 if ((code == NE || code == EQ)
11489 && integer_zerop (arg1)
11490 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11492 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11493 if (srcstmt
11494 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11496 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11497 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11498 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11499 gimple_assign_rhs1 (srcstmt),
11500 gimple_assign_rhs2 (srcstmt));
11501 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11502 if (temp)
11503 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11507 if (! get_subtarget (target)
11508 || GET_MODE (subtarget) != operand_mode)
11509 subtarget = 0;
11511 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11513 if (target == 0)
11514 target = gen_reg_rtx (mode);
11516 /* Try a cstore if possible. */
11517 return emit_store_flag_force (target, code, op0, op1,
11518 operand_mode, unsignedp,
11519 (TYPE_PRECISION (ops->type) == 1
11520 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11523 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11524 0 otherwise (i.e. if there is no casesi instruction).
11526 DEFAULT_PROBABILITY is the probability of jumping to the default
11527 label. */
11529 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11530 rtx table_label, rtx default_label, rtx fallback_label,
11531 profile_probability default_probability)
11533 struct expand_operand ops[5];
11534 machine_mode index_mode = SImode;
11535 rtx op1, op2, index;
11537 if (! targetm.have_casesi ())
11538 return 0;
11540 /* Convert the index to SImode. */
11541 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
11543 machine_mode omode = TYPE_MODE (index_type);
11544 rtx rangertx = expand_normal (range);
11546 /* We must handle the endpoints in the original mode. */
11547 index_expr = build2 (MINUS_EXPR, index_type,
11548 index_expr, minval);
11549 minval = integer_zero_node;
11550 index = expand_normal (index_expr);
11551 if (default_label)
11552 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11553 omode, 1, default_label,
11554 default_probability);
11555 /* Now we can safely truncate. */
11556 index = convert_to_mode (index_mode, index, 0);
11558 else
11560 if (TYPE_MODE (index_type) != index_mode)
11562 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11563 index_expr = fold_convert (index_type, index_expr);
11566 index = expand_normal (index_expr);
11569 do_pending_stack_adjust ();
11571 op1 = expand_normal (minval);
11572 op2 = expand_normal (range);
11574 create_input_operand (&ops[0], index, index_mode);
11575 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11576 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11577 create_fixed_operand (&ops[3], table_label);
11578 create_fixed_operand (&ops[4], (default_label
11579 ? default_label
11580 : fallback_label));
11581 expand_jump_insn (targetm.code_for_casesi, 5, ops);
11582 return 1;
11585 /* Attempt to generate a tablejump instruction; same concept. */
11586 /* Subroutine of the next function.
11588 INDEX is the value being switched on, with the lowest value
11589 in the table already subtracted.
11590 MODE is its expected mode (needed if INDEX is constant).
11591 RANGE is the length of the jump table.
11592 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11594 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11595 index value is out of range.
11596 DEFAULT_PROBABILITY is the probability of jumping to
11597 the default label. */
11599 static void
11600 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11601 rtx default_label, profile_probability default_probability)
11603 rtx temp, vector;
11605 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11606 cfun->cfg->max_jumptable_ents = INTVAL (range);
11608 /* Do an unsigned comparison (in the proper mode) between the index
11609 expression and the value which represents the length of the range.
11610 Since we just finished subtracting the lower bound of the range
11611 from the index expression, this comparison allows us to simultaneously
11612 check that the original index expression value is both greater than
11613 or equal to the minimum value of the range and less than or equal to
11614 the maximum value of the range. */
11616 if (default_label)
11617 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11618 default_label, default_probability);
11621 /* If index is in range, it must fit in Pmode.
11622 Convert to Pmode so we can index with it. */
11623 if (mode != Pmode)
11624 index = convert_to_mode (Pmode, index, 1);
11626 /* Don't let a MEM slip through, because then INDEX that comes
11627 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11628 and break_out_memory_refs will go to work on it and mess it up. */
11629 #ifdef PIC_CASE_VECTOR_ADDRESS
11630 if (flag_pic && !REG_P (index))
11631 index = copy_to_mode_reg (Pmode, index);
11632 #endif
11634 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11635 GET_MODE_SIZE, because this indicates how large insns are. The other
11636 uses should all be Pmode, because they are addresses. This code
11637 could fail if addresses and insns are not the same size. */
11638 index = simplify_gen_binary (MULT, Pmode, index,
11639 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11640 Pmode));
11641 index = simplify_gen_binary (PLUS, Pmode, index,
11642 gen_rtx_LABEL_REF (Pmode, table_label));
11644 #ifdef PIC_CASE_VECTOR_ADDRESS
11645 if (flag_pic)
11646 index = PIC_CASE_VECTOR_ADDRESS (index);
11647 else
11648 #endif
11649 index = memory_address (CASE_VECTOR_MODE, index);
11650 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11651 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11652 convert_move (temp, vector, 0);
11654 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
11656 /* If we are generating PIC code or if the table is PC-relative, the
11657 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11658 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11659 emit_barrier ();
11663 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11664 rtx table_label, rtx default_label,
11665 profile_probability default_probability)
11667 rtx index;
11669 if (! targetm.have_tablejump ())
11670 return 0;
11672 index_expr = fold_build2 (MINUS_EXPR, index_type,
11673 fold_convert (index_type, index_expr),
11674 fold_convert (index_type, minval));
11675 index = expand_normal (index_expr);
11676 do_pending_stack_adjust ();
11678 do_tablejump (index, TYPE_MODE (index_type),
11679 convert_modes (TYPE_MODE (index_type),
11680 TYPE_MODE (TREE_TYPE (range)),
11681 expand_normal (range),
11682 TYPE_UNSIGNED (TREE_TYPE (range))),
11683 table_label, default_label, default_probability);
11684 return 1;
11687 /* Return a CONST_VECTOR rtx representing vector mask for
11688 a VECTOR_CST of booleans. */
11689 static rtx
11690 const_vector_mask_from_tree (tree exp)
11692 rtvec v;
11693 unsigned i;
11694 int units;
11695 tree elt;
11696 machine_mode inner, mode;
11698 mode = TYPE_MODE (TREE_TYPE (exp));
11699 units = GET_MODE_NUNITS (mode);
11700 inner = GET_MODE_INNER (mode);
11702 v = rtvec_alloc (units);
11704 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11706 elt = VECTOR_CST_ELT (exp, i);
11708 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11709 if (integer_zerop (elt))
11710 RTVEC_ELT (v, i) = CONST0_RTX (inner);
11711 else if (integer_onep (elt)
11712 || integer_minus_onep (elt))
11713 RTVEC_ELT (v, i) = CONSTM1_RTX (inner);
11714 else
11715 gcc_unreachable ();
11718 return gen_rtx_CONST_VECTOR (mode, v);
11721 /* Return a CONST_INT rtx representing vector mask for
11722 a VECTOR_CST of booleans. */
11723 static rtx
11724 const_scalar_mask_from_tree (tree exp)
11726 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
11727 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
11728 tree elt;
11729 unsigned i;
11731 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11733 elt = VECTOR_CST_ELT (exp, i);
11734 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11735 if (integer_all_onesp (elt))
11736 res = wi::set_bit (res, i);
11737 else
11738 gcc_assert (integer_zerop (elt));
11741 return immed_wide_int_const (res, mode);
11744 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11745 static rtx
11746 const_vector_from_tree (tree exp)
11748 rtvec v;
11749 unsigned i;
11750 int units;
11751 tree elt;
11752 machine_mode inner, mode;
11754 mode = TYPE_MODE (TREE_TYPE (exp));
11756 if (initializer_zerop (exp))
11757 return CONST0_RTX (mode);
11759 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
11760 return const_vector_mask_from_tree (exp);
11762 units = GET_MODE_NUNITS (mode);
11763 inner = GET_MODE_INNER (mode);
11765 v = rtvec_alloc (units);
11767 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11769 elt = VECTOR_CST_ELT (exp, i);
11771 if (TREE_CODE (elt) == REAL_CST)
11772 RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
11773 inner);
11774 else if (TREE_CODE (elt) == FIXED_CST)
11775 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11776 inner);
11777 else
11778 RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
11781 return gen_rtx_CONST_VECTOR (mode, v);
11784 /* Build a decl for a personality function given a language prefix. */
11786 tree
11787 build_personality_function (const char *lang)
11789 const char *unwind_and_version;
11790 tree decl, type;
11791 char *name;
11793 switch (targetm_common.except_unwind_info (&global_options))
11795 case UI_NONE:
11796 return NULL;
11797 case UI_SJLJ:
11798 unwind_and_version = "_sj0";
11799 break;
11800 case UI_DWARF2:
11801 case UI_TARGET:
11802 unwind_and_version = "_v0";
11803 break;
11804 case UI_SEH:
11805 unwind_and_version = "_seh0";
11806 break;
11807 default:
11808 gcc_unreachable ();
11811 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11813 type = build_function_type_list (integer_type_node, integer_type_node,
11814 long_long_unsigned_type_node,
11815 ptr_type_node, ptr_type_node, NULL_TREE);
11816 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11817 get_identifier (name), type);
11818 DECL_ARTIFICIAL (decl) = 1;
11819 DECL_EXTERNAL (decl) = 1;
11820 TREE_PUBLIC (decl) = 1;
11822 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11823 are the flags assigned by targetm.encode_section_info. */
11824 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11826 return decl;
11829 /* Extracts the personality function of DECL and returns the corresponding
11830 libfunc. */
11833 get_personality_function (tree decl)
11835 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11836 enum eh_personality_kind pk;
11838 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11839 if (pk == eh_personality_none)
11840 return NULL;
11842 if (!personality
11843 && pk == eh_personality_any)
11844 personality = lang_hooks.eh_personality ();
11846 if (pk == eh_personality_lang)
11847 gcc_assert (personality != NULL_TREE);
11849 return XEXP (DECL_RTL (personality), 0);
11852 /* Returns a tree for the size of EXP in bytes. */
11854 static tree
11855 tree_expr_size (const_tree exp)
11857 if (DECL_P (exp)
11858 && DECL_SIZE_UNIT (exp) != 0)
11859 return DECL_SIZE_UNIT (exp);
11860 else
11861 return size_in_bytes (TREE_TYPE (exp));
11864 /* Return an rtx for the size in bytes of the value of EXP. */
11867 expr_size (tree exp)
11869 tree size;
11871 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11872 size = TREE_OPERAND (exp, 1);
11873 else
11875 size = tree_expr_size (exp);
11876 gcc_assert (size);
11877 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11880 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11883 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11884 if the size can vary or is larger than an integer. */
11886 static HOST_WIDE_INT
11887 int_expr_size (tree exp)
11889 tree size;
11891 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11892 size = TREE_OPERAND (exp, 1);
11893 else
11895 size = tree_expr_size (exp);
11896 gcc_assert (size);
11899 if (size == 0 || !tree_fits_shwi_p (size))
11900 return -1;
11902 return tree_to_shwi (size);