2006-02-25 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / gcc / recog.c
blob9d937ed0448010d2ab72408a191bf900092f30bb
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "toplev.h"
39 #include "basic-block.h"
40 #include "output.h"
41 #include "reload.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
45 #ifndef STACK_PUSH_CODE
46 #ifdef STACK_GROWS_DOWNWARD
47 #define STACK_PUSH_CODE PRE_DEC
48 #else
49 #define STACK_PUSH_CODE PRE_INC
50 #endif
51 #endif
53 #ifndef STACK_POP_CODE
54 #ifdef STACK_GROWS_DOWNWARD
55 #define STACK_POP_CODE POST_INC
56 #else
57 #define STACK_POP_CODE POST_DEC
58 #endif
59 #endif
61 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx);
62 static rtx *find_single_use_1 (rtx, rtx *);
63 static void validate_replace_src_1 (rtx *, void *);
64 static rtx split_insn (rtx);
66 /* Nonzero means allow operands to be volatile.
67 This should be 0 if you are generating rtl, such as if you are calling
68 the functions in optabs.c and expmed.c (most of the time).
69 This should be 1 if all valid insns need to be recognized,
70 such as in regclass.c and final.c and reload.c.
72 init_recog and init_recog_no_volatile are responsible for setting this. */
74 int volatile_ok;
76 struct recog_data recog_data;
78 /* Contains a vector of operand_alternative structures for every operand.
79 Set up by preprocess_constraints. */
80 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
82 /* On return from `constrain_operands', indicate which alternative
83 was satisfied. */
85 int which_alternative;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
91 int reload_completed;
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
100 void
101 init_recog_no_volatile (void)
103 volatile_ok = 0;
106 void
107 init_recog (void)
109 volatile_ok = 1;
113 /* Check that X is an insn-body for an `asm' with operands
114 and that the operands mentioned in it are legitimate. */
117 check_asm_operands (rtx x)
119 int noperands;
120 rtx *operands;
121 const char **constraints;
122 int i;
124 /* Post-reload, be more strict with things. */
125 if (reload_completed)
127 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
128 extract_insn (make_insn_raw (x));
129 constrain_operands (1);
130 return which_alternative >= 0;
133 noperands = asm_noperands (x);
134 if (noperands < 0)
135 return 0;
136 if (noperands == 0)
137 return 1;
139 operands = alloca (noperands * sizeof (rtx));
140 constraints = alloca (noperands * sizeof (char *));
142 decode_asm_operands (x, operands, NULL, constraints, NULL);
144 for (i = 0; i < noperands; i++)
146 const char *c = constraints[i];
147 if (c[0] == '%')
148 c++;
149 if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
150 c = constraints[c[0] - '0'];
152 if (! asm_operand_ok (operands[i], c))
153 return 0;
156 return 1;
159 /* Static data for the next two routines. */
161 typedef struct change_t
163 rtx object;
164 int old_code;
165 rtx *loc;
166 rtx old;
167 } change_t;
169 static change_t *changes;
170 static int changes_allocated;
172 static int num_changes = 0;
174 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
175 at which NEW will be placed. If OBJECT is zero, no validation is done,
176 the change is simply made.
178 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
179 will be called with the address and mode as parameters. If OBJECT is
180 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
181 the change in place.
183 IN_GROUP is nonzero if this is part of a group of changes that must be
184 performed as a group. In that case, the changes will be stored. The
185 function `apply_change_group' will validate and apply the changes.
187 If IN_GROUP is zero, this is a single change. Try to recognize the insn
188 or validate the memory reference with the change applied. If the result
189 is not valid for the machine, suppress the change and return zero.
190 Otherwise, perform the change and return 1. */
193 validate_change (rtx object, rtx *loc, rtx new, int in_group)
195 rtx old = *loc;
197 if (old == new || rtx_equal_p (old, new))
198 return 1;
200 gcc_assert (in_group != 0 || num_changes == 0);
202 *loc = new;
204 /* Save the information describing this change. */
205 if (num_changes >= changes_allocated)
207 if (changes_allocated == 0)
208 /* This value allows for repeated substitutions inside complex
209 indexed addresses, or changes in up to 5 insns. */
210 changes_allocated = MAX_RECOG_OPERANDS * 5;
211 else
212 changes_allocated *= 2;
214 changes = xrealloc (changes, sizeof (change_t) * changes_allocated);
217 changes[num_changes].object = object;
218 changes[num_changes].loc = loc;
219 changes[num_changes].old = old;
221 if (object && !MEM_P (object))
223 /* Set INSN_CODE to force rerecognition of insn. Save old code in
224 case invalid. */
225 changes[num_changes].old_code = INSN_CODE (object);
226 INSN_CODE (object) = -1;
229 num_changes++;
231 /* If we are making a group of changes, return 1. Otherwise, validate the
232 change group we made. */
234 if (in_group)
235 return 1;
236 else
237 return apply_change_group ();
241 /* Function to be passed to for_each_rtx to test whether a piece of
242 RTL contains any mem/v. */
243 static int
244 volatile_mem_p (rtx *x, void *data ATTRIBUTE_UNUSED)
246 return (MEM_P (*x) && MEM_VOLATILE_P (*x));
249 /* Same as validate_change, but doesn't support groups, and it accepts
250 volatile mems if they're already present in the original insn. */
253 validate_change_maybe_volatile (rtx object, rtx *loc, rtx new)
255 int result;
257 if (validate_change (object, loc, new, 0))
258 return 1;
260 if (volatile_ok
261 /* If there isn't a volatile MEM, there's nothing we can do. */
262 || !for_each_rtx (&PATTERN (object), volatile_mem_p, 0)
263 /* Make sure we're not adding or removing volatile MEMs. */
264 || for_each_rtx (loc, volatile_mem_p, 0)
265 || for_each_rtx (&new, volatile_mem_p, 0)
266 || !insn_invalid_p (object))
267 return 0;
269 volatile_ok = 1;
271 gcc_assert (!insn_invalid_p (object));
273 result = validate_change (object, loc, new, 0);
275 volatile_ok = 0;
277 return result;
280 /* This subroutine of apply_change_group verifies whether the changes to INSN
281 were valid; i.e. whether INSN can still be recognized. */
284 insn_invalid_p (rtx insn)
286 rtx pat = PATTERN (insn);
287 int num_clobbers = 0;
288 /* If we are before reload and the pattern is a SET, see if we can add
289 clobbers. */
290 int icode = recog (pat, insn,
291 (GET_CODE (pat) == SET
292 && ! reload_completed && ! reload_in_progress)
293 ? &num_clobbers : 0);
294 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
297 /* If this is an asm and the operand aren't legal, then fail. Likewise if
298 this is not an asm and the insn wasn't recognized. */
299 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
300 || (!is_asm && icode < 0))
301 return 1;
303 /* If we have to add CLOBBERs, fail if we have to add ones that reference
304 hard registers since our callers can't know if they are live or not.
305 Otherwise, add them. */
306 if (num_clobbers > 0)
308 rtx newpat;
310 if (added_clobbers_hard_reg_p (icode))
311 return 1;
313 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
314 XVECEXP (newpat, 0, 0) = pat;
315 add_clobbers (newpat, icode);
316 PATTERN (insn) = pat = newpat;
319 /* After reload, verify that all constraints are satisfied. */
320 if (reload_completed)
322 extract_insn (insn);
324 if (! constrain_operands (1))
325 return 1;
328 INSN_CODE (insn) = icode;
329 return 0;
332 /* Return number of changes made and not validated yet. */
334 num_changes_pending (void)
336 return num_changes;
339 /* Tentatively apply the changes numbered NUM and up.
340 Return 1 if all changes are valid, zero otherwise. */
343 verify_changes (int num)
345 int i;
346 rtx last_validated = NULL_RTX;
348 /* The changes have been applied and all INSN_CODEs have been reset to force
349 rerecognition.
351 The changes are valid if we aren't given an object, or if we are
352 given a MEM and it still is a valid address, or if this is in insn
353 and it is recognized. In the latter case, if reload has completed,
354 we also require that the operands meet the constraints for
355 the insn. */
357 for (i = num; i < num_changes; i++)
359 rtx object = changes[i].object;
361 /* If there is no object to test or if it is the same as the one we
362 already tested, ignore it. */
363 if (object == 0 || object == last_validated)
364 continue;
366 if (MEM_P (object))
368 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
369 break;
371 else if (insn_invalid_p (object))
373 rtx pat = PATTERN (object);
375 /* Perhaps we couldn't recognize the insn because there were
376 extra CLOBBERs at the end. If so, try to re-recognize
377 without the last CLOBBER (later iterations will cause each of
378 them to be eliminated, in turn). But don't do this if we
379 have an ASM_OPERAND. */
380 if (GET_CODE (pat) == PARALLEL
381 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
382 && asm_noperands (PATTERN (object)) < 0)
384 rtx newpat;
386 if (XVECLEN (pat, 0) == 2)
387 newpat = XVECEXP (pat, 0, 0);
388 else
390 int j;
392 newpat
393 = gen_rtx_PARALLEL (VOIDmode,
394 rtvec_alloc (XVECLEN (pat, 0) - 1));
395 for (j = 0; j < XVECLEN (newpat, 0); j++)
396 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
399 /* Add a new change to this group to replace the pattern
400 with this new pattern. Then consider this change
401 as having succeeded. The change we added will
402 cause the entire call to fail if things remain invalid.
404 Note that this can lose if a later change than the one
405 we are processing specified &XVECEXP (PATTERN (object), 0, X)
406 but this shouldn't occur. */
408 validate_change (object, &PATTERN (object), newpat, 1);
409 continue;
411 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
412 /* If this insn is a CLOBBER or USE, it is always valid, but is
413 never recognized. */
414 continue;
415 else
416 break;
418 last_validated = object;
421 return (i == num_changes);
424 /* A group of changes has previously been issued with validate_change and
425 verified with verify_changes. Update the BB_DIRTY flags of the affected
426 blocks, and clear num_changes. */
428 void
429 confirm_change_group (void)
431 int i;
432 basic_block bb;
434 for (i = 0; i < num_changes; i++)
435 if (changes[i].object
436 && INSN_P (changes[i].object)
437 && (bb = BLOCK_FOR_INSN (changes[i].object)))
438 bb->flags |= BB_DIRTY;
440 num_changes = 0;
443 /* Apply a group of changes previously issued with `validate_change'.
444 If all changes are valid, call confirm_change_group and return 1,
445 otherwise, call cancel_changes and return 0. */
448 apply_change_group (void)
450 if (verify_changes (0))
452 confirm_change_group ();
453 return 1;
455 else
457 cancel_changes (0);
458 return 0;
463 /* Return the number of changes so far in the current group. */
466 num_validated_changes (void)
468 return num_changes;
471 /* Retract the changes numbered NUM and up. */
473 void
474 cancel_changes (int num)
476 int i;
478 /* Back out all the changes. Do this in the opposite order in which
479 they were made. */
480 for (i = num_changes - 1; i >= num; i--)
482 *changes[i].loc = changes[i].old;
483 if (changes[i].object && !MEM_P (changes[i].object))
484 INSN_CODE (changes[i].object) = changes[i].old_code;
486 num_changes = num;
489 /* Replace every occurrence of FROM in X with TO. Mark each change with
490 validate_change passing OBJECT. */
492 static void
493 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object)
495 int i, j;
496 const char *fmt;
497 rtx x = *loc;
498 enum rtx_code code;
499 enum machine_mode op0_mode = VOIDmode;
500 int prev_changes = num_changes;
501 rtx new;
503 if (!x)
504 return;
506 code = GET_CODE (x);
507 fmt = GET_RTX_FORMAT (code);
508 if (fmt[0] == 'e')
509 op0_mode = GET_MODE (XEXP (x, 0));
511 /* X matches FROM if it is the same rtx or they are both referring to the
512 same register in the same mode. Avoid calling rtx_equal_p unless the
513 operands look similar. */
515 if (x == from
516 || (REG_P (x) && REG_P (from)
517 && GET_MODE (x) == GET_MODE (from)
518 && REGNO (x) == REGNO (from))
519 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
520 && rtx_equal_p (x, from)))
522 validate_change (object, loc, to, 1);
523 return;
526 /* Call ourself recursively to perform the replacements.
527 We must not replace inside already replaced expression, otherwise we
528 get infinite recursion for replacements like (reg X)->(subreg (reg X))
529 done by regmove, so we must special case shared ASM_OPERANDS. */
531 if (GET_CODE (x) == PARALLEL)
533 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
535 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
536 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
538 /* Verify that operands are really shared. */
539 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
540 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
541 (x, 0, j))));
542 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
543 from, to, object);
545 else
546 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object);
549 else
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (fmt[i] == 'e')
553 validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
554 else if (fmt[i] == 'E')
555 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
556 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
559 /* If we didn't substitute, there is nothing more to do. */
560 if (num_changes == prev_changes)
561 return;
563 /* Allow substituted expression to have different mode. This is used by
564 regmove to change mode of pseudo register. */
565 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
566 op0_mode = GET_MODE (XEXP (x, 0));
568 /* Do changes needed to keep rtx consistent. Don't do any other
569 simplifications, as it is not our job. */
571 if (SWAPPABLE_OPERANDS_P (x)
572 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
574 validate_change (object, loc,
575 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
576 : swap_condition (code),
577 GET_MODE (x), XEXP (x, 1),
578 XEXP (x, 0)), 1);
579 x = *loc;
580 code = GET_CODE (x);
583 switch (code)
585 case PLUS:
586 /* If we have a PLUS whose second operand is now a CONST_INT, use
587 simplify_gen_binary to try to simplify it.
588 ??? We may want later to remove this, once simplification is
589 separated from this function. */
590 if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
591 validate_change (object, loc,
592 simplify_gen_binary
593 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
594 break;
595 case MINUS:
596 if (GET_CODE (XEXP (x, 1)) == CONST_INT
597 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
598 validate_change (object, loc,
599 simplify_gen_binary
600 (PLUS, GET_MODE (x), XEXP (x, 0),
601 simplify_gen_unary (NEG,
602 GET_MODE (x), XEXP (x, 1),
603 GET_MODE (x))), 1);
604 break;
605 case ZERO_EXTEND:
606 case SIGN_EXTEND:
607 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
609 new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
610 op0_mode);
611 /* If any of the above failed, substitute in something that
612 we know won't be recognized. */
613 if (!new)
614 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
615 validate_change (object, loc, new, 1);
617 break;
618 case SUBREG:
619 /* All subregs possible to simplify should be simplified. */
620 new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
621 SUBREG_BYTE (x));
623 /* Subregs of VOIDmode operands are incorrect. */
624 if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
625 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
626 if (new)
627 validate_change (object, loc, new, 1);
628 break;
629 case ZERO_EXTRACT:
630 case SIGN_EXTRACT:
631 /* If we are replacing a register with memory, try to change the memory
632 to be the mode required for memory in extract operations (this isn't
633 likely to be an insertion operation; if it was, nothing bad will
634 happen, we might just fail in some cases). */
636 if (MEM_P (XEXP (x, 0))
637 && GET_CODE (XEXP (x, 1)) == CONST_INT
638 && GET_CODE (XEXP (x, 2)) == CONST_INT
639 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
640 && !MEM_VOLATILE_P (XEXP (x, 0)))
642 enum machine_mode wanted_mode = VOIDmode;
643 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
644 int pos = INTVAL (XEXP (x, 2));
646 if (GET_CODE (x) == ZERO_EXTRACT)
648 enum machine_mode new_mode
649 = mode_for_extraction (EP_extzv, 1);
650 if (new_mode != MAX_MACHINE_MODE)
651 wanted_mode = new_mode;
653 else if (GET_CODE (x) == SIGN_EXTRACT)
655 enum machine_mode new_mode
656 = mode_for_extraction (EP_extv, 1);
657 if (new_mode != MAX_MACHINE_MODE)
658 wanted_mode = new_mode;
661 /* If we have a narrower mode, we can do something. */
662 if (wanted_mode != VOIDmode
663 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
665 int offset = pos / BITS_PER_UNIT;
666 rtx newmem;
668 /* If the bytes and bits are counted differently, we
669 must adjust the offset. */
670 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
671 offset =
672 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
673 offset);
675 pos %= GET_MODE_BITSIZE (wanted_mode);
677 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
679 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
680 validate_change (object, &XEXP (x, 0), newmem, 1);
684 break;
686 default:
687 break;
691 /* Try replacing every occurrence of FROM in INSN with TO. After all
692 changes have been made, validate by seeing if INSN is still valid. */
695 validate_replace_rtx (rtx from, rtx to, rtx insn)
697 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
698 return apply_change_group ();
701 /* Try replacing every occurrence of FROM in INSN with TO. */
703 void
704 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
706 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
709 /* Function called by note_uses to replace used subexpressions. */
710 struct validate_replace_src_data
712 rtx from; /* Old RTX */
713 rtx to; /* New RTX */
714 rtx insn; /* Insn in which substitution is occurring. */
717 static void
718 validate_replace_src_1 (rtx *x, void *data)
720 struct validate_replace_src_data *d
721 = (struct validate_replace_src_data *) data;
723 validate_replace_rtx_1 (x, d->from, d->to, d->insn);
726 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
727 SET_DESTs. */
729 void
730 validate_replace_src_group (rtx from, rtx to, rtx insn)
732 struct validate_replace_src_data d;
734 d.from = from;
735 d.to = to;
736 d.insn = insn;
737 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
740 #ifdef HAVE_cc0
741 /* Return 1 if the insn using CC0 set by INSN does not contain
742 any ordered tests applied to the condition codes.
743 EQ and NE tests do not count. */
746 next_insn_tests_no_inequality (rtx insn)
748 rtx next = next_cc0_user (insn);
750 /* If there is no next insn, we have to take the conservative choice. */
751 if (next == 0)
752 return 0;
754 return (INSN_P (next)
755 && ! inequality_comparisons_p (PATTERN (next)));
757 #endif
759 /* This is used by find_single_use to locate an rtx that contains exactly one
760 use of DEST, which is typically either a REG or CC0. It returns a
761 pointer to the innermost rtx expression containing DEST. Appearances of
762 DEST that are being used to totally replace it are not counted. */
764 static rtx *
765 find_single_use_1 (rtx dest, rtx *loc)
767 rtx x = *loc;
768 enum rtx_code code = GET_CODE (x);
769 rtx *result = 0;
770 rtx *this_result;
771 int i;
772 const char *fmt;
774 switch (code)
776 case CONST_INT:
777 case CONST:
778 case LABEL_REF:
779 case SYMBOL_REF:
780 case CONST_DOUBLE:
781 case CONST_VECTOR:
782 case CLOBBER:
783 return 0;
785 case SET:
786 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
787 of a REG that occupies all of the REG, the insn uses DEST if
788 it is mentioned in the destination or the source. Otherwise, we
789 need just check the source. */
790 if (GET_CODE (SET_DEST (x)) != CC0
791 && GET_CODE (SET_DEST (x)) != PC
792 && !REG_P (SET_DEST (x))
793 && ! (GET_CODE (SET_DEST (x)) == SUBREG
794 && REG_P (SUBREG_REG (SET_DEST (x)))
795 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
796 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
797 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
798 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
799 break;
801 return find_single_use_1 (dest, &SET_SRC (x));
803 case MEM:
804 case SUBREG:
805 return find_single_use_1 (dest, &XEXP (x, 0));
807 default:
808 break;
811 /* If it wasn't one of the common cases above, check each expression and
812 vector of this code. Look for a unique usage of DEST. */
814 fmt = GET_RTX_FORMAT (code);
815 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
817 if (fmt[i] == 'e')
819 if (dest == XEXP (x, i)
820 || (REG_P (dest) && REG_P (XEXP (x, i))
821 && REGNO (dest) == REGNO (XEXP (x, i))))
822 this_result = loc;
823 else
824 this_result = find_single_use_1 (dest, &XEXP (x, i));
826 if (result == 0)
827 result = this_result;
828 else if (this_result)
829 /* Duplicate usage. */
830 return 0;
832 else if (fmt[i] == 'E')
834 int j;
836 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
838 if (XVECEXP (x, i, j) == dest
839 || (REG_P (dest)
840 && REG_P (XVECEXP (x, i, j))
841 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
842 this_result = loc;
843 else
844 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
846 if (result == 0)
847 result = this_result;
848 else if (this_result)
849 return 0;
854 return result;
857 /* See if DEST, produced in INSN, is used only a single time in the
858 sequel. If so, return a pointer to the innermost rtx expression in which
859 it is used.
861 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
863 This routine will return usually zero either before flow is called (because
864 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
865 note can't be trusted).
867 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
868 care about REG_DEAD notes or LOG_LINKS.
870 Otherwise, we find the single use by finding an insn that has a
871 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
872 only referenced once in that insn, we know that it must be the first
873 and last insn referencing DEST. */
875 rtx *
876 find_single_use (rtx dest, rtx insn, rtx *ploc)
878 rtx next;
879 rtx *result;
880 rtx link;
882 #ifdef HAVE_cc0
883 if (dest == cc0_rtx)
885 next = NEXT_INSN (insn);
886 if (next == 0
887 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
888 return 0;
890 result = find_single_use_1 (dest, &PATTERN (next));
891 if (result && ploc)
892 *ploc = next;
893 return result;
895 #endif
897 if (reload_completed || reload_in_progress || !REG_P (dest))
898 return 0;
900 for (next = next_nonnote_insn (insn);
901 next != 0 && !LABEL_P (next);
902 next = next_nonnote_insn (next))
903 if (INSN_P (next) && dead_or_set_p (next, dest))
905 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
906 if (XEXP (link, 0) == insn)
907 break;
909 if (link)
911 result = find_single_use_1 (dest, &PATTERN (next));
912 if (ploc)
913 *ploc = next;
914 return result;
918 return 0;
921 /* Return 1 if OP is a valid general operand for machine mode MODE.
922 This is either a register reference, a memory reference,
923 or a constant. In the case of a memory reference, the address
924 is checked for general validity for the target machine.
926 Register and memory references must have mode MODE in order to be valid,
927 but some constants have no machine mode and are valid for any mode.
929 If MODE is VOIDmode, OP is checked for validity for whatever mode
930 it has.
932 The main use of this function is as a predicate in match_operand
933 expressions in the machine description.
935 For an explanation of this function's behavior for registers of
936 class NO_REGS, see the comment for `register_operand'. */
939 general_operand (rtx op, enum machine_mode mode)
941 enum rtx_code code = GET_CODE (op);
943 if (mode == VOIDmode)
944 mode = GET_MODE (op);
946 /* Don't accept CONST_INT or anything similar
947 if the caller wants something floating. */
948 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
949 && GET_MODE_CLASS (mode) != MODE_INT
950 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
951 return 0;
953 if (GET_CODE (op) == CONST_INT
954 && mode != VOIDmode
955 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
956 return 0;
958 if (CONSTANT_P (op))
959 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
960 || mode == VOIDmode)
961 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
962 && LEGITIMATE_CONSTANT_P (op));
964 /* Except for certain constants with VOIDmode, already checked for,
965 OP's mode must match MODE if MODE specifies a mode. */
967 if (GET_MODE (op) != mode)
968 return 0;
970 if (code == SUBREG)
972 rtx sub = SUBREG_REG (op);
974 #ifdef INSN_SCHEDULING
975 /* On machines that have insn scheduling, we want all memory
976 reference to be explicit, so outlaw paradoxical SUBREGs.
977 However, we must allow them after reload so that they can
978 get cleaned up by cleanup_subreg_operands. */
979 if (!reload_completed && MEM_P (sub)
980 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
981 return 0;
982 #endif
983 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
984 may result in incorrect reference. We should simplify all valid
985 subregs of MEM anyway. But allow this after reload because we
986 might be called from cleanup_subreg_operands.
988 ??? This is a kludge. */
989 if (!reload_completed && SUBREG_BYTE (op) != 0
990 && MEM_P (sub))
991 return 0;
993 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
994 create such rtl, and we must reject it. */
995 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
996 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
997 return 0;
999 op = sub;
1000 code = GET_CODE (op);
1003 if (code == REG)
1004 /* A register whose class is NO_REGS is not a general operand. */
1005 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1006 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
1008 if (code == MEM)
1010 rtx y = XEXP (op, 0);
1012 if (! volatile_ok && MEM_VOLATILE_P (op))
1013 return 0;
1015 /* Use the mem's mode, since it will be reloaded thus. */
1016 if (memory_address_p (GET_MODE (op), y))
1017 return 1;
1020 return 0;
1023 /* Return 1 if OP is a valid memory address for a memory reference
1024 of mode MODE.
1026 The main use of this function is as a predicate in match_operand
1027 expressions in the machine description. */
1030 address_operand (rtx op, enum machine_mode mode)
1032 return memory_address_p (mode, op);
1035 /* Return 1 if OP is a register reference of mode MODE.
1036 If MODE is VOIDmode, accept a register in any mode.
1038 The main use of this function is as a predicate in match_operand
1039 expressions in the machine description.
1041 As a special exception, registers whose class is NO_REGS are
1042 not accepted by `register_operand'. The reason for this change
1043 is to allow the representation of special architecture artifacts
1044 (such as a condition code register) without extending the rtl
1045 definitions. Since registers of class NO_REGS cannot be used
1046 as registers in any case where register classes are examined,
1047 it is most consistent to keep this function from accepting them. */
1050 register_operand (rtx op, enum machine_mode mode)
1052 if (GET_MODE (op) != mode && mode != VOIDmode)
1053 return 0;
1055 if (GET_CODE (op) == SUBREG)
1057 rtx sub = SUBREG_REG (op);
1059 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1060 because it is guaranteed to be reloaded into one.
1061 Just make sure the MEM is valid in itself.
1062 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1063 but currently it does result from (SUBREG (REG)...) where the
1064 reg went on the stack.) */
1065 if (! reload_completed && MEM_P (sub))
1066 return general_operand (op, mode);
1068 #ifdef CANNOT_CHANGE_MODE_CLASS
1069 if (REG_P (sub)
1070 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1071 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1072 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1073 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1074 return 0;
1075 #endif
1077 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1078 create such rtl, and we must reject it. */
1079 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1080 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1081 return 0;
1083 op = sub;
1086 /* We don't consider registers whose class is NO_REGS
1087 to be a register operand. */
1088 return (REG_P (op)
1089 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1090 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1093 /* Return 1 for a register in Pmode; ignore the tested mode. */
1096 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1098 return register_operand (op, Pmode);
1101 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1102 or a hard register. */
1105 scratch_operand (rtx op, enum machine_mode mode)
1107 if (GET_MODE (op) != mode && mode != VOIDmode)
1108 return 0;
1110 return (GET_CODE (op) == SCRATCH
1111 || (REG_P (op)
1112 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1115 /* Return 1 if OP is a valid immediate operand for mode MODE.
1117 The main use of this function is as a predicate in match_operand
1118 expressions in the machine description. */
1121 immediate_operand (rtx op, enum machine_mode mode)
1123 /* Don't accept CONST_INT or anything similar
1124 if the caller wants something floating. */
1125 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1126 && GET_MODE_CLASS (mode) != MODE_INT
1127 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1128 return 0;
1130 if (GET_CODE (op) == CONST_INT
1131 && mode != VOIDmode
1132 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1133 return 0;
1135 return (CONSTANT_P (op)
1136 && (GET_MODE (op) == mode || mode == VOIDmode
1137 || GET_MODE (op) == VOIDmode)
1138 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1139 && LEGITIMATE_CONSTANT_P (op));
1142 /* Returns 1 if OP is an operand that is a CONST_INT. */
1145 const_int_operand (rtx op, enum machine_mode mode)
1147 if (GET_CODE (op) != CONST_INT)
1148 return 0;
1150 if (mode != VOIDmode
1151 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1152 return 0;
1154 return 1;
1157 /* Returns 1 if OP is an operand that is a constant integer or constant
1158 floating-point number. */
1161 const_double_operand (rtx op, enum machine_mode mode)
1163 /* Don't accept CONST_INT or anything similar
1164 if the caller wants something floating. */
1165 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1166 && GET_MODE_CLASS (mode) != MODE_INT
1167 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1168 return 0;
1170 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1171 && (mode == VOIDmode || GET_MODE (op) == mode
1172 || GET_MODE (op) == VOIDmode));
1175 /* Return 1 if OP is a general operand that is not an immediate operand. */
1178 nonimmediate_operand (rtx op, enum machine_mode mode)
1180 return (general_operand (op, mode) && ! CONSTANT_P (op));
1183 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1186 nonmemory_operand (rtx op, enum machine_mode mode)
1188 if (CONSTANT_P (op))
1190 /* Don't accept CONST_INT or anything similar
1191 if the caller wants something floating. */
1192 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1193 && GET_MODE_CLASS (mode) != MODE_INT
1194 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1195 return 0;
1197 if (GET_CODE (op) == CONST_INT
1198 && mode != VOIDmode
1199 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1200 return 0;
1202 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1203 || mode == VOIDmode)
1204 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1205 && LEGITIMATE_CONSTANT_P (op));
1208 if (GET_MODE (op) != mode && mode != VOIDmode)
1209 return 0;
1211 if (GET_CODE (op) == SUBREG)
1213 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1214 because it is guaranteed to be reloaded into one.
1215 Just make sure the MEM is valid in itself.
1216 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1217 but currently it does result from (SUBREG (REG)...) where the
1218 reg went on the stack.) */
1219 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1220 return general_operand (op, mode);
1221 op = SUBREG_REG (op);
1224 /* We don't consider registers whose class is NO_REGS
1225 to be a register operand. */
1226 return (REG_P (op)
1227 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1228 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1231 /* Return 1 if OP is a valid operand that stands for pushing a
1232 value of mode MODE onto the stack.
1234 The main use of this function is as a predicate in match_operand
1235 expressions in the machine description. */
1238 push_operand (rtx op, enum machine_mode mode)
1240 unsigned int rounded_size = GET_MODE_SIZE (mode);
1242 #ifdef PUSH_ROUNDING
1243 rounded_size = PUSH_ROUNDING (rounded_size);
1244 #endif
1246 if (!MEM_P (op))
1247 return 0;
1249 if (mode != VOIDmode && GET_MODE (op) != mode)
1250 return 0;
1252 op = XEXP (op, 0);
1254 if (rounded_size == GET_MODE_SIZE (mode))
1256 if (GET_CODE (op) != STACK_PUSH_CODE)
1257 return 0;
1259 else
1261 if (GET_CODE (op) != PRE_MODIFY
1262 || GET_CODE (XEXP (op, 1)) != PLUS
1263 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1264 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1265 #ifdef STACK_GROWS_DOWNWARD
1266 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1267 #else
1268 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1269 #endif
1271 return 0;
1274 return XEXP (op, 0) == stack_pointer_rtx;
1277 /* Return 1 if OP is a valid operand that stands for popping a
1278 value of mode MODE off the stack.
1280 The main use of this function is as a predicate in match_operand
1281 expressions in the machine description. */
1284 pop_operand (rtx op, enum machine_mode mode)
1286 if (!MEM_P (op))
1287 return 0;
1289 if (mode != VOIDmode && GET_MODE (op) != mode)
1290 return 0;
1292 op = XEXP (op, 0);
1294 if (GET_CODE (op) != STACK_POP_CODE)
1295 return 0;
1297 return XEXP (op, 0) == stack_pointer_rtx;
1300 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1303 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
1305 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1306 return 0;
1308 win:
1309 return 1;
1312 /* Return 1 if OP is a valid memory reference with mode MODE,
1313 including a valid address.
1315 The main use of this function is as a predicate in match_operand
1316 expressions in the machine description. */
1319 memory_operand (rtx op, enum machine_mode mode)
1321 rtx inner;
1323 if (! reload_completed)
1324 /* Note that no SUBREG is a memory operand before end of reload pass,
1325 because (SUBREG (MEM...)) forces reloading into a register. */
1326 return MEM_P (op) && general_operand (op, mode);
1328 if (mode != VOIDmode && GET_MODE (op) != mode)
1329 return 0;
1331 inner = op;
1332 if (GET_CODE (inner) == SUBREG)
1333 inner = SUBREG_REG (inner);
1335 return (MEM_P (inner) && general_operand (op, mode));
1338 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1339 that is, a memory reference whose address is a general_operand. */
1342 indirect_operand (rtx op, enum machine_mode mode)
1344 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1345 if (! reload_completed
1346 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1348 int offset = SUBREG_BYTE (op);
1349 rtx inner = SUBREG_REG (op);
1351 if (mode != VOIDmode && GET_MODE (op) != mode)
1352 return 0;
1354 /* The only way that we can have a general_operand as the resulting
1355 address is if OFFSET is zero and the address already is an operand
1356 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1357 operand. */
1359 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1360 || (GET_CODE (XEXP (inner, 0)) == PLUS
1361 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1362 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1363 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1366 return (MEM_P (op)
1367 && memory_operand (op, mode)
1368 && general_operand (XEXP (op, 0), Pmode));
1371 /* Return 1 if this is a comparison operator. This allows the use of
1372 MATCH_OPERATOR to recognize all the branch insns. */
1375 comparison_operator (rtx op, enum machine_mode mode)
1377 return ((mode == VOIDmode || GET_MODE (op) == mode)
1378 && COMPARISON_P (op));
1381 /* If BODY is an insn body that uses ASM_OPERANDS,
1382 return the number of operands (both input and output) in the insn.
1383 Otherwise return -1. */
1386 asm_noperands (rtx body)
1388 switch (GET_CODE (body))
1390 case ASM_OPERANDS:
1391 /* No output operands: return number of input operands. */
1392 return ASM_OPERANDS_INPUT_LENGTH (body);
1393 case SET:
1394 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1395 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1396 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1397 else
1398 return -1;
1399 case PARALLEL:
1400 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1401 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1403 /* Multiple output operands, or 1 output plus some clobbers:
1404 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1405 int i;
1406 int n_sets;
1408 /* Count backwards through CLOBBERs to determine number of SETs. */
1409 for (i = XVECLEN (body, 0); i > 0; i--)
1411 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1412 break;
1413 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1414 return -1;
1417 /* N_SETS is now number of output operands. */
1418 n_sets = i;
1420 /* Verify that all the SETs we have
1421 came from a single original asm_operands insn
1422 (so that invalid combinations are blocked). */
1423 for (i = 0; i < n_sets; i++)
1425 rtx elt = XVECEXP (body, 0, i);
1426 if (GET_CODE (elt) != SET)
1427 return -1;
1428 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1429 return -1;
1430 /* If these ASM_OPERANDS rtx's came from different original insns
1431 then they aren't allowed together. */
1432 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1433 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1434 return -1;
1436 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1437 + n_sets);
1439 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1441 /* 0 outputs, but some clobbers:
1442 body is [(asm_operands ...) (clobber (reg ...))...]. */
1443 int i;
1445 /* Make sure all the other parallel things really are clobbers. */
1446 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1447 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1448 return -1;
1450 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1452 else
1453 return -1;
1454 default:
1455 return -1;
1459 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1460 copy its operands (both input and output) into the vector OPERANDS,
1461 the locations of the operands within the insn into the vector OPERAND_LOCS,
1462 and the constraints for the operands into CONSTRAINTS.
1463 Write the modes of the operands into MODES.
1464 Return the assembler-template.
1466 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1467 we don't store that info. */
1469 const char *
1470 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1471 const char **constraints, enum machine_mode *modes)
1473 int i;
1474 int noperands;
1475 const char *template = 0;
1477 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1479 rtx asmop = SET_SRC (body);
1480 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1482 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1484 for (i = 1; i < noperands; i++)
1486 if (operand_locs)
1487 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1488 if (operands)
1489 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1490 if (constraints)
1491 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1492 if (modes)
1493 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1496 /* The output is in the SET.
1497 Its constraint is in the ASM_OPERANDS itself. */
1498 if (operands)
1499 operands[0] = SET_DEST (body);
1500 if (operand_locs)
1501 operand_locs[0] = &SET_DEST (body);
1502 if (constraints)
1503 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1504 if (modes)
1505 modes[0] = GET_MODE (SET_DEST (body));
1506 template = ASM_OPERANDS_TEMPLATE (asmop);
1508 else if (GET_CODE (body) == ASM_OPERANDS)
1510 rtx asmop = body;
1511 /* No output operands: BODY is (asm_operands ....). */
1513 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1515 /* The input operands are found in the 1st element vector. */
1516 /* Constraints for inputs are in the 2nd element vector. */
1517 for (i = 0; i < noperands; i++)
1519 if (operand_locs)
1520 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1521 if (operands)
1522 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1523 if (constraints)
1524 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1525 if (modes)
1526 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1528 template = ASM_OPERANDS_TEMPLATE (asmop);
1530 else if (GET_CODE (body) == PARALLEL
1531 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1532 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1534 rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
1535 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1536 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1537 int nout = 0; /* Does not include CLOBBERs. */
1539 /* At least one output, plus some CLOBBERs. */
1541 /* The outputs are in the SETs.
1542 Their constraints are in the ASM_OPERANDS itself. */
1543 for (i = 0; i < nparallel; i++)
1545 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1546 break; /* Past last SET */
1548 if (operands)
1549 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1550 if (operand_locs)
1551 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1552 if (constraints)
1553 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1554 if (modes)
1555 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1556 nout++;
1559 for (i = 0; i < nin; i++)
1561 if (operand_locs)
1562 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1563 if (operands)
1564 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1565 if (constraints)
1566 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1567 if (modes)
1568 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1571 template = ASM_OPERANDS_TEMPLATE (asmop);
1573 else if (GET_CODE (body) == PARALLEL
1574 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1576 /* No outputs, but some CLOBBERs. */
1578 rtx asmop = XVECEXP (body, 0, 0);
1579 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1581 for (i = 0; i < nin; i++)
1583 if (operand_locs)
1584 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1585 if (operands)
1586 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1587 if (constraints)
1588 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1589 if (modes)
1590 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1593 template = ASM_OPERANDS_TEMPLATE (asmop);
1596 return template;
1599 /* Check if an asm_operand matches its constraints.
1600 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1603 asm_operand_ok (rtx op, const char *constraint)
1605 int result = 0;
1607 /* Use constrain_operands after reload. */
1608 gcc_assert (!reload_completed);
1610 while (*constraint)
1612 char c = *constraint;
1613 int len;
1614 switch (c)
1616 case ',':
1617 constraint++;
1618 continue;
1619 case '=':
1620 case '+':
1621 case '*':
1622 case '%':
1623 case '!':
1624 case '#':
1625 case '&':
1626 case '?':
1627 break;
1629 case '0': case '1': case '2': case '3': case '4':
1630 case '5': case '6': case '7': case '8': case '9':
1631 /* For best results, our caller should have given us the
1632 proper matching constraint, but we can't actually fail
1633 the check if they didn't. Indicate that results are
1634 inconclusive. */
1636 constraint++;
1637 while (ISDIGIT (*constraint));
1638 if (! result)
1639 result = -1;
1640 continue;
1642 case 'p':
1643 if (address_operand (op, VOIDmode))
1644 result = 1;
1645 break;
1647 case 'm':
1648 case 'V': /* non-offsettable */
1649 if (memory_operand (op, VOIDmode))
1650 result = 1;
1651 break;
1653 case 'o': /* offsettable */
1654 if (offsettable_nonstrict_memref_p (op))
1655 result = 1;
1656 break;
1658 case '<':
1659 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1660 excepting those that expand_call created. Further, on some
1661 machines which do not have generalized auto inc/dec, an inc/dec
1662 is not a memory_operand.
1664 Match any memory and hope things are resolved after reload. */
1666 if (MEM_P (op)
1667 && (1
1668 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1669 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1670 result = 1;
1671 break;
1673 case '>':
1674 if (MEM_P (op)
1675 && (1
1676 || GET_CODE (XEXP (op, 0)) == PRE_INC
1677 || GET_CODE (XEXP (op, 0)) == POST_INC))
1678 result = 1;
1679 break;
1681 case 'E':
1682 case 'F':
1683 if (GET_CODE (op) == CONST_DOUBLE
1684 || (GET_CODE (op) == CONST_VECTOR
1685 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1686 result = 1;
1687 break;
1689 case 'G':
1690 if (GET_CODE (op) == CONST_DOUBLE
1691 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1692 result = 1;
1693 break;
1694 case 'H':
1695 if (GET_CODE (op) == CONST_DOUBLE
1696 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1697 result = 1;
1698 break;
1700 case 's':
1701 if (GET_CODE (op) == CONST_INT
1702 || (GET_CODE (op) == CONST_DOUBLE
1703 && GET_MODE (op) == VOIDmode))
1704 break;
1705 /* Fall through. */
1707 case 'i':
1708 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1709 result = 1;
1710 break;
1712 case 'n':
1713 if (GET_CODE (op) == CONST_INT
1714 || (GET_CODE (op) == CONST_DOUBLE
1715 && GET_MODE (op) == VOIDmode))
1716 result = 1;
1717 break;
1719 case 'I':
1720 if (GET_CODE (op) == CONST_INT
1721 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1722 result = 1;
1723 break;
1724 case 'J':
1725 if (GET_CODE (op) == CONST_INT
1726 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1727 result = 1;
1728 break;
1729 case 'K':
1730 if (GET_CODE (op) == CONST_INT
1731 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1732 result = 1;
1733 break;
1734 case 'L':
1735 if (GET_CODE (op) == CONST_INT
1736 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1737 result = 1;
1738 break;
1739 case 'M':
1740 if (GET_CODE (op) == CONST_INT
1741 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1742 result = 1;
1743 break;
1744 case 'N':
1745 if (GET_CODE (op) == CONST_INT
1746 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1747 result = 1;
1748 break;
1749 case 'O':
1750 if (GET_CODE (op) == CONST_INT
1751 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1752 result = 1;
1753 break;
1754 case 'P':
1755 if (GET_CODE (op) == CONST_INT
1756 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1757 result = 1;
1758 break;
1760 case 'X':
1761 result = 1;
1762 break;
1764 case 'g':
1765 if (general_operand (op, VOIDmode))
1766 result = 1;
1767 break;
1769 default:
1770 /* For all other letters, we first check for a register class,
1771 otherwise it is an EXTRA_CONSTRAINT. */
1772 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1774 case 'r':
1775 if (GET_MODE (op) == BLKmode)
1776 break;
1777 if (register_operand (op, VOIDmode))
1778 result = 1;
1780 #ifdef EXTRA_CONSTRAINT_STR
1781 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1782 result = 1;
1783 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
1784 /* Every memory operand can be reloaded to fit. */
1785 && memory_operand (op, VOIDmode))
1786 result = 1;
1787 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)
1788 /* Every address operand can be reloaded to fit. */
1789 && address_operand (op, VOIDmode))
1790 result = 1;
1791 #endif
1792 break;
1794 len = CONSTRAINT_LEN (c, constraint);
1796 constraint++;
1797 while (--len && *constraint);
1798 if (len)
1799 return 0;
1802 return result;
1805 /* Given an rtx *P, if it is a sum containing an integer constant term,
1806 return the location (type rtx *) of the pointer to that constant term.
1807 Otherwise, return a null pointer. */
1809 rtx *
1810 find_constant_term_loc (rtx *p)
1812 rtx *tem;
1813 enum rtx_code code = GET_CODE (*p);
1815 /* If *P IS such a constant term, P is its location. */
1817 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1818 || code == CONST)
1819 return p;
1821 /* Otherwise, if not a sum, it has no constant term. */
1823 if (GET_CODE (*p) != PLUS)
1824 return 0;
1826 /* If one of the summands is constant, return its location. */
1828 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1829 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1830 return p;
1832 /* Otherwise, check each summand for containing a constant term. */
1834 if (XEXP (*p, 0) != 0)
1836 tem = find_constant_term_loc (&XEXP (*p, 0));
1837 if (tem != 0)
1838 return tem;
1841 if (XEXP (*p, 1) != 0)
1843 tem = find_constant_term_loc (&XEXP (*p, 1));
1844 if (tem != 0)
1845 return tem;
1848 return 0;
1851 /* Return 1 if OP is a memory reference
1852 whose address contains no side effects
1853 and remains valid after the addition
1854 of a positive integer less than the
1855 size of the object being referenced.
1857 We assume that the original address is valid and do not check it.
1859 This uses strict_memory_address_p as a subroutine, so
1860 don't use it before reload. */
1863 offsettable_memref_p (rtx op)
1865 return ((MEM_P (op))
1866 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1869 /* Similar, but don't require a strictly valid mem ref:
1870 consider pseudo-regs valid as index or base regs. */
1873 offsettable_nonstrict_memref_p (rtx op)
1875 return ((MEM_P (op))
1876 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1879 /* Return 1 if Y is a memory address which contains no side effects
1880 and would remain valid after the addition of a positive integer
1881 less than the size of that mode.
1883 We assume that the original address is valid and do not check it.
1884 We do check that it is valid for narrower modes.
1886 If STRICTP is nonzero, we require a strictly valid address,
1887 for the sake of use in reload.c. */
1890 offsettable_address_p (int strictp, enum machine_mode mode, rtx y)
1892 enum rtx_code ycode = GET_CODE (y);
1893 rtx z;
1894 rtx y1 = y;
1895 rtx *y2;
1896 int (*addressp) (enum machine_mode, rtx) =
1897 (strictp ? strict_memory_address_p : memory_address_p);
1898 unsigned int mode_sz = GET_MODE_SIZE (mode);
1900 if (CONSTANT_ADDRESS_P (y))
1901 return 1;
1903 /* Adjusting an offsettable address involves changing to a narrower mode.
1904 Make sure that's OK. */
1906 if (mode_dependent_address_p (y))
1907 return 0;
1909 /* ??? How much offset does an offsettable BLKmode reference need?
1910 Clearly that depends on the situation in which it's being used.
1911 However, the current situation in which we test 0xffffffff is
1912 less than ideal. Caveat user. */
1913 if (mode_sz == 0)
1914 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1916 /* If the expression contains a constant term,
1917 see if it remains valid when max possible offset is added. */
1919 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1921 int good;
1923 y1 = *y2;
1924 *y2 = plus_constant (*y2, mode_sz - 1);
1925 /* Use QImode because an odd displacement may be automatically invalid
1926 for any wider mode. But it should be valid for a single byte. */
1927 good = (*addressp) (QImode, y);
1929 /* In any case, restore old contents of memory. */
1930 *y2 = y1;
1931 return good;
1934 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1935 return 0;
1937 /* The offset added here is chosen as the maximum offset that
1938 any instruction could need to add when operating on something
1939 of the specified mode. We assume that if Y and Y+c are
1940 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1941 go inside a LO_SUM here, so we do so as well. */
1942 if (GET_CODE (y) == LO_SUM
1943 && mode != BLKmode
1944 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1945 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1946 plus_constant (XEXP (y, 1), mode_sz - 1));
1947 else
1948 z = plus_constant (y, mode_sz - 1);
1950 /* Use QImode because an odd displacement may be automatically invalid
1951 for any wider mode. But it should be valid for a single byte. */
1952 return (*addressp) (QImode, z);
1955 /* Return 1 if ADDR is an address-expression whose effect depends
1956 on the mode of the memory reference it is used in.
1958 Autoincrement addressing is a typical example of mode-dependence
1959 because the amount of the increment depends on the mode. */
1962 mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */)
1964 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1965 return 0;
1966 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1967 win: ATTRIBUTE_UNUSED_LABEL
1968 return 1;
1971 /* Like extract_insn, but save insn extracted and don't extract again, when
1972 called again for the same insn expecting that recog_data still contain the
1973 valid information. This is used primary by gen_attr infrastructure that
1974 often does extract insn again and again. */
1975 void
1976 extract_insn_cached (rtx insn)
1978 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
1979 return;
1980 extract_insn (insn);
1981 recog_data.insn = insn;
1984 /* Do cached extract_insn, constrain_operands and complain about failures.
1985 Used by insn_attrtab. */
1986 void
1987 extract_constrain_insn_cached (rtx insn)
1989 extract_insn_cached (insn);
1990 if (which_alternative == -1
1991 && !constrain_operands (reload_completed))
1992 fatal_insn_not_found (insn);
1995 /* Do cached constrain_operands and complain about failures. */
1997 constrain_operands_cached (int strict)
1999 if (which_alternative == -1)
2000 return constrain_operands (strict);
2001 else
2002 return 1;
2005 /* Analyze INSN and fill in recog_data. */
2007 void
2008 extract_insn (rtx insn)
2010 int i;
2011 int icode;
2012 int noperands;
2013 rtx body = PATTERN (insn);
2015 recog_data.insn = NULL;
2016 recog_data.n_operands = 0;
2017 recog_data.n_alternatives = 0;
2018 recog_data.n_dups = 0;
2019 which_alternative = -1;
2021 switch (GET_CODE (body))
2023 case USE:
2024 case CLOBBER:
2025 case ASM_INPUT:
2026 case ADDR_VEC:
2027 case ADDR_DIFF_VEC:
2028 return;
2030 case SET:
2031 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2032 goto asm_insn;
2033 else
2034 goto normal_insn;
2035 case PARALLEL:
2036 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2037 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2038 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2039 goto asm_insn;
2040 else
2041 goto normal_insn;
2042 case ASM_OPERANDS:
2043 asm_insn:
2044 recog_data.n_operands = noperands = asm_noperands (body);
2045 if (noperands >= 0)
2047 /* This insn is an `asm' with operands. */
2049 /* expand_asm_operands makes sure there aren't too many operands. */
2050 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2052 /* Now get the operand values and constraints out of the insn. */
2053 decode_asm_operands (body, recog_data.operand,
2054 recog_data.operand_loc,
2055 recog_data.constraints,
2056 recog_data.operand_mode);
2057 if (noperands > 0)
2059 const char *p = recog_data.constraints[0];
2060 recog_data.n_alternatives = 1;
2061 while (*p)
2062 recog_data.n_alternatives += (*p++ == ',');
2064 break;
2066 fatal_insn_not_found (insn);
2068 default:
2069 normal_insn:
2070 /* Ordinary insn: recognize it, get the operands via insn_extract
2071 and get the constraints. */
2073 icode = recog_memoized (insn);
2074 if (icode < 0)
2075 fatal_insn_not_found (insn);
2077 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2078 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2079 recog_data.n_dups = insn_data[icode].n_dups;
2081 insn_extract (insn);
2083 for (i = 0; i < noperands; i++)
2085 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2086 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2087 /* VOIDmode match_operands gets mode from their real operand. */
2088 if (recog_data.operand_mode[i] == VOIDmode)
2089 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2092 for (i = 0; i < noperands; i++)
2093 recog_data.operand_type[i]
2094 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2095 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2096 : OP_IN);
2098 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2101 /* After calling extract_insn, you can use this function to extract some
2102 information from the constraint strings into a more usable form.
2103 The collected data is stored in recog_op_alt. */
2104 void
2105 preprocess_constraints (void)
2107 int i;
2109 for (i = 0; i < recog_data.n_operands; i++)
2110 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2111 * sizeof (struct operand_alternative)));
2113 for (i = 0; i < recog_data.n_operands; i++)
2115 int j;
2116 struct operand_alternative *op_alt;
2117 const char *p = recog_data.constraints[i];
2119 op_alt = recog_op_alt[i];
2121 for (j = 0; j < recog_data.n_alternatives; j++)
2123 op_alt[j].cl = NO_REGS;
2124 op_alt[j].constraint = p;
2125 op_alt[j].matches = -1;
2126 op_alt[j].matched = -1;
2128 if (*p == '\0' || *p == ',')
2130 op_alt[j].anything_ok = 1;
2131 continue;
2134 for (;;)
2136 char c = *p;
2137 if (c == '#')
2139 c = *++p;
2140 while (c != ',' && c != '\0');
2141 if (c == ',' || c == '\0')
2143 p++;
2144 break;
2147 switch (c)
2149 case '=': case '+': case '*': case '%':
2150 case 'E': case 'F': case 'G': case 'H':
2151 case 's': case 'i': case 'n':
2152 case 'I': case 'J': case 'K': case 'L':
2153 case 'M': case 'N': case 'O': case 'P':
2154 /* These don't say anything we care about. */
2155 break;
2157 case '?':
2158 op_alt[j].reject += 6;
2159 break;
2160 case '!':
2161 op_alt[j].reject += 600;
2162 break;
2163 case '&':
2164 op_alt[j].earlyclobber = 1;
2165 break;
2167 case '0': case '1': case '2': case '3': case '4':
2168 case '5': case '6': case '7': case '8': case '9':
2170 char *end;
2171 op_alt[j].matches = strtoul (p, &end, 10);
2172 recog_op_alt[op_alt[j].matches][j].matched = i;
2173 p = end;
2175 continue;
2177 case 'm':
2178 op_alt[j].memory_ok = 1;
2179 break;
2180 case '<':
2181 op_alt[j].decmem_ok = 1;
2182 break;
2183 case '>':
2184 op_alt[j].incmem_ok = 1;
2185 break;
2186 case 'V':
2187 op_alt[j].nonoffmem_ok = 1;
2188 break;
2189 case 'o':
2190 op_alt[j].offmem_ok = 1;
2191 break;
2192 case 'X':
2193 op_alt[j].anything_ok = 1;
2194 break;
2196 case 'p':
2197 op_alt[j].is_address = 1;
2198 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2199 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2200 break;
2202 case 'g':
2203 case 'r':
2204 op_alt[j].cl =
2205 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2206 break;
2208 default:
2209 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2211 op_alt[j].memory_ok = 1;
2212 break;
2214 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2216 op_alt[j].is_address = 1;
2217 op_alt[j].cl
2218 = (reg_class_subunion
2219 [(int) op_alt[j].cl]
2220 [(int) MODE_BASE_REG_CLASS (VOIDmode)]);
2221 break;
2224 op_alt[j].cl
2225 = (reg_class_subunion
2226 [(int) op_alt[j].cl]
2227 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2228 break;
2230 p += CONSTRAINT_LEN (c, p);
2236 /* Check the operands of an insn against the insn's operand constraints
2237 and return 1 if they are valid.
2238 The information about the insn's operands, constraints, operand modes
2239 etc. is obtained from the global variables set up by extract_insn.
2241 WHICH_ALTERNATIVE is set to a number which indicates which
2242 alternative of constraints was matched: 0 for the first alternative,
2243 1 for the next, etc.
2245 In addition, when two operands are required to match
2246 and it happens that the output operand is (reg) while the
2247 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2248 make the output operand look like the input.
2249 This is because the output operand is the one the template will print.
2251 This is used in final, just before printing the assembler code and by
2252 the routines that determine an insn's attribute.
2254 If STRICT is a positive nonzero value, it means that we have been
2255 called after reload has been completed. In that case, we must
2256 do all checks strictly. If it is zero, it means that we have been called
2257 before reload has completed. In that case, we first try to see if we can
2258 find an alternative that matches strictly. If not, we try again, this
2259 time assuming that reload will fix up the insn. This provides a "best
2260 guess" for the alternative and is used to compute attributes of insns prior
2261 to reload. A negative value of STRICT is used for this internal call. */
2263 struct funny_match
2265 int this, other;
2269 constrain_operands (int strict)
2271 const char *constraints[MAX_RECOG_OPERANDS];
2272 int matching_operands[MAX_RECOG_OPERANDS];
2273 int earlyclobber[MAX_RECOG_OPERANDS];
2274 int c;
2276 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2277 int funny_match_index;
2279 which_alternative = 0;
2280 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2281 return 1;
2283 for (c = 0; c < recog_data.n_operands; c++)
2285 constraints[c] = recog_data.constraints[c];
2286 matching_operands[c] = -1;
2291 int seen_earlyclobber_at = -1;
2292 int opno;
2293 int lose = 0;
2294 funny_match_index = 0;
2296 for (opno = 0; opno < recog_data.n_operands; opno++)
2298 rtx op = recog_data.operand[opno];
2299 enum machine_mode mode = GET_MODE (op);
2300 const char *p = constraints[opno];
2301 int offset = 0;
2302 int win = 0;
2303 int val;
2304 int len;
2306 earlyclobber[opno] = 0;
2308 /* A unary operator may be accepted by the predicate, but it
2309 is irrelevant for matching constraints. */
2310 if (UNARY_P (op))
2311 op = XEXP (op, 0);
2313 if (GET_CODE (op) == SUBREG)
2315 if (REG_P (SUBREG_REG (op))
2316 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2317 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2318 GET_MODE (SUBREG_REG (op)),
2319 SUBREG_BYTE (op),
2320 GET_MODE (op));
2321 op = SUBREG_REG (op);
2324 /* An empty constraint or empty alternative
2325 allows anything which matched the pattern. */
2326 if (*p == 0 || *p == ',')
2327 win = 1;
2330 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2332 case '\0':
2333 len = 0;
2334 break;
2335 case ',':
2336 c = '\0';
2337 break;
2339 case '?': case '!': case '*': case '%':
2340 case '=': case '+':
2341 break;
2343 case '#':
2344 /* Ignore rest of this alternative as far as
2345 constraint checking is concerned. */
2347 p++;
2348 while (*p && *p != ',');
2349 len = 0;
2350 break;
2352 case '&':
2353 earlyclobber[opno] = 1;
2354 if (seen_earlyclobber_at < 0)
2355 seen_earlyclobber_at = opno;
2356 break;
2358 case '0': case '1': case '2': case '3': case '4':
2359 case '5': case '6': case '7': case '8': case '9':
2361 /* This operand must be the same as a previous one.
2362 This kind of constraint is used for instructions such
2363 as add when they take only two operands.
2365 Note that the lower-numbered operand is passed first.
2367 If we are not testing strictly, assume that this
2368 constraint will be satisfied. */
2370 char *end;
2371 int match;
2373 match = strtoul (p, &end, 10);
2374 p = end;
2376 if (strict < 0)
2377 val = 1;
2378 else
2380 rtx op1 = recog_data.operand[match];
2381 rtx op2 = recog_data.operand[opno];
2383 /* A unary operator may be accepted by the predicate,
2384 but it is irrelevant for matching constraints. */
2385 if (UNARY_P (op1))
2386 op1 = XEXP (op1, 0);
2387 if (UNARY_P (op2))
2388 op2 = XEXP (op2, 0);
2390 val = operands_match_p (op1, op2);
2393 matching_operands[opno] = match;
2394 matching_operands[match] = opno;
2396 if (val != 0)
2397 win = 1;
2399 /* If output is *x and input is *--x, arrange later
2400 to change the output to *--x as well, since the
2401 output op is the one that will be printed. */
2402 if (val == 2 && strict > 0)
2404 funny_match[funny_match_index].this = opno;
2405 funny_match[funny_match_index++].other = match;
2408 len = 0;
2409 break;
2411 case 'p':
2412 /* p is used for address_operands. When we are called by
2413 gen_reload, no one will have checked that the address is
2414 strictly valid, i.e., that all pseudos requiring hard regs
2415 have gotten them. */
2416 if (strict <= 0
2417 || (strict_memory_address_p (recog_data.operand_mode[opno],
2418 op)))
2419 win = 1;
2420 break;
2422 /* No need to check general_operand again;
2423 it was done in insn-recog.c. Well, except that reload
2424 doesn't check the validity of its replacements, but
2425 that should only matter when there's a bug. */
2426 case 'g':
2427 /* Anything goes unless it is a REG and really has a hard reg
2428 but the hard reg is not in the class GENERAL_REGS. */
2429 if (REG_P (op))
2431 if (strict < 0
2432 || GENERAL_REGS == ALL_REGS
2433 || (reload_in_progress
2434 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2435 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2436 win = 1;
2438 else if (strict < 0 || general_operand (op, mode))
2439 win = 1;
2440 break;
2442 case 'X':
2443 /* This is used for a MATCH_SCRATCH in the cases when
2444 we don't actually need anything. So anything goes
2445 any time. */
2446 win = 1;
2447 break;
2449 case 'm':
2450 /* Memory operands must be valid, to the extent
2451 required by STRICT. */
2452 if (MEM_P (op))
2454 if (strict > 0
2455 && !strict_memory_address_p (GET_MODE (op),
2456 XEXP (op, 0)))
2457 break;
2458 if (strict == 0
2459 && !memory_address_p (GET_MODE (op), XEXP (op, 0)))
2460 break;
2461 win = 1;
2463 /* Before reload, accept what reload can turn into mem. */
2464 else if (strict < 0 && CONSTANT_P (op))
2465 win = 1;
2466 /* During reload, accept a pseudo */
2467 else if (reload_in_progress && REG_P (op)
2468 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2469 win = 1;
2470 break;
2472 case '<':
2473 if (MEM_P (op)
2474 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2475 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2476 win = 1;
2477 break;
2479 case '>':
2480 if (MEM_P (op)
2481 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2482 || GET_CODE (XEXP (op, 0)) == POST_INC))
2483 win = 1;
2484 break;
2486 case 'E':
2487 case 'F':
2488 if (GET_CODE (op) == CONST_DOUBLE
2489 || (GET_CODE (op) == CONST_VECTOR
2490 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2491 win = 1;
2492 break;
2494 case 'G':
2495 case 'H':
2496 if (GET_CODE (op) == CONST_DOUBLE
2497 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2498 win = 1;
2499 break;
2501 case 's':
2502 if (GET_CODE (op) == CONST_INT
2503 || (GET_CODE (op) == CONST_DOUBLE
2504 && GET_MODE (op) == VOIDmode))
2505 break;
2506 case 'i':
2507 if (CONSTANT_P (op))
2508 win = 1;
2509 break;
2511 case 'n':
2512 if (GET_CODE (op) == CONST_INT
2513 || (GET_CODE (op) == CONST_DOUBLE
2514 && GET_MODE (op) == VOIDmode))
2515 win = 1;
2516 break;
2518 case 'I':
2519 case 'J':
2520 case 'K':
2521 case 'L':
2522 case 'M':
2523 case 'N':
2524 case 'O':
2525 case 'P':
2526 if (GET_CODE (op) == CONST_INT
2527 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2528 win = 1;
2529 break;
2531 case 'V':
2532 if (MEM_P (op)
2533 && ((strict > 0 && ! offsettable_memref_p (op))
2534 || (strict < 0
2535 && !(CONSTANT_P (op) || MEM_P (op)))
2536 || (reload_in_progress
2537 && !(REG_P (op)
2538 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2539 win = 1;
2540 break;
2542 case 'o':
2543 if ((strict > 0 && offsettable_memref_p (op))
2544 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2545 /* Before reload, accept what reload can handle. */
2546 || (strict < 0
2547 && (CONSTANT_P (op) || MEM_P (op)))
2548 /* During reload, accept a pseudo */
2549 || (reload_in_progress && REG_P (op)
2550 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2551 win = 1;
2552 break;
2554 default:
2556 enum reg_class cl;
2558 cl = (c == 'r'
2559 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2560 if (cl != NO_REGS)
2562 if (strict < 0
2563 || (strict == 0
2564 && REG_P (op)
2565 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2566 || (strict == 0 && GET_CODE (op) == SCRATCH)
2567 || (REG_P (op)
2568 && reg_fits_class_p (op, cl, offset, mode)))
2569 win = 1;
2571 #ifdef EXTRA_CONSTRAINT_STR
2572 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2573 win = 1;
2575 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2576 /* Every memory operand can be reloaded to fit. */
2577 && ((strict < 0 && MEM_P (op))
2578 /* Before reload, accept what reload can turn
2579 into mem. */
2580 || (strict < 0 && CONSTANT_P (op))
2581 /* During reload, accept a pseudo */
2582 || (reload_in_progress && REG_P (op)
2583 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2584 win = 1;
2585 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2586 /* Every address operand can be reloaded to fit. */
2587 && strict < 0)
2588 win = 1;
2589 #endif
2590 break;
2593 while (p += len, c);
2595 constraints[opno] = p;
2596 /* If this operand did not win somehow,
2597 this alternative loses. */
2598 if (! win)
2599 lose = 1;
2601 /* This alternative won; the operands are ok.
2602 Change whichever operands this alternative says to change. */
2603 if (! lose)
2605 int opno, eopno;
2607 /* See if any earlyclobber operand conflicts with some other
2608 operand. */
2610 if (strict > 0 && seen_earlyclobber_at >= 0)
2611 for (eopno = seen_earlyclobber_at;
2612 eopno < recog_data.n_operands;
2613 eopno++)
2614 /* Ignore earlyclobber operands now in memory,
2615 because we would often report failure when we have
2616 two memory operands, one of which was formerly a REG. */
2617 if (earlyclobber[eopno]
2618 && REG_P (recog_data.operand[eopno]))
2619 for (opno = 0; opno < recog_data.n_operands; opno++)
2620 if ((MEM_P (recog_data.operand[opno])
2621 || recog_data.operand_type[opno] != OP_OUT)
2622 && opno != eopno
2623 /* Ignore things like match_operator operands. */
2624 && *recog_data.constraints[opno] != 0
2625 && ! (matching_operands[opno] == eopno
2626 && operands_match_p (recog_data.operand[opno],
2627 recog_data.operand[eopno]))
2628 && ! safe_from_earlyclobber (recog_data.operand[opno],
2629 recog_data.operand[eopno]))
2630 lose = 1;
2632 if (! lose)
2634 while (--funny_match_index >= 0)
2636 recog_data.operand[funny_match[funny_match_index].other]
2637 = recog_data.operand[funny_match[funny_match_index].this];
2640 return 1;
2644 which_alternative++;
2646 while (which_alternative < recog_data.n_alternatives);
2648 which_alternative = -1;
2649 /* If we are about to reject this, but we are not to test strictly,
2650 try a very loose test. Only return failure if it fails also. */
2651 if (strict == 0)
2652 return constrain_operands (-1);
2653 else
2654 return 0;
2657 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2658 is a hard reg in class CLASS when its regno is offset by OFFSET
2659 and changed to mode MODE.
2660 If REG occupies multiple hard regs, all of them must be in CLASS. */
2663 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2664 enum machine_mode mode)
2666 int regno = REGNO (operand);
2667 if (regno < FIRST_PSEUDO_REGISTER
2668 && TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
2669 regno + offset))
2671 int sr;
2672 regno += offset;
2673 for (sr = hard_regno_nregs[regno][mode] - 1;
2674 sr > 0; sr--)
2675 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
2676 regno + sr))
2677 break;
2678 return sr == 0;
2681 return 0;
2684 /* Split single instruction. Helper function for split_all_insns and
2685 split_all_insns_noflow. Return last insn in the sequence if successful,
2686 or NULL if unsuccessful. */
2688 static rtx
2689 split_insn (rtx insn)
2691 /* Split insns here to get max fine-grain parallelism. */
2692 rtx first = PREV_INSN (insn);
2693 rtx last = try_split (PATTERN (insn), insn, 1);
2695 if (last == insn)
2696 return NULL_RTX;
2698 /* try_split returns the NOTE that INSN became. */
2699 SET_INSN_DELETED (insn);
2701 /* ??? Coddle to md files that generate subregs in post-reload
2702 splitters instead of computing the proper hard register. */
2703 if (reload_completed && first != last)
2705 first = NEXT_INSN (first);
2706 for (;;)
2708 if (INSN_P (first))
2709 cleanup_subreg_operands (first);
2710 if (first == last)
2711 break;
2712 first = NEXT_INSN (first);
2715 return last;
2718 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2720 void
2721 split_all_insns (int upd_life)
2723 sbitmap blocks;
2724 bool changed;
2725 basic_block bb;
2727 blocks = sbitmap_alloc (last_basic_block);
2728 sbitmap_zero (blocks);
2729 changed = false;
2731 FOR_EACH_BB_REVERSE (bb)
2733 rtx insn, next;
2734 bool finish = false;
2736 for (insn = BB_HEAD (bb); !finish ; insn = next)
2738 /* Can't use `next_real_insn' because that might go across
2739 CODE_LABELS and short-out basic blocks. */
2740 next = NEXT_INSN (insn);
2741 finish = (insn == BB_END (bb));
2742 if (INSN_P (insn))
2744 rtx set = single_set (insn);
2746 /* Don't split no-op move insns. These should silently
2747 disappear later in final. Splitting such insns would
2748 break the code that handles REG_NO_CONFLICT blocks. */
2749 if (set && set_noop_p (set))
2751 /* Nops get in the way while scheduling, so delete them
2752 now if register allocation has already been done. It
2753 is too risky to try to do this before register
2754 allocation, and there are unlikely to be very many
2755 nops then anyways. */
2756 if (reload_completed)
2758 /* If the no-op set has a REG_UNUSED note, we need
2759 to update liveness information. */
2760 if (find_reg_note (insn, REG_UNUSED, NULL_RTX))
2762 SET_BIT (blocks, bb->index);
2763 changed = true;
2765 /* ??? Is life info affected by deleting edges? */
2766 delete_insn_and_edges (insn);
2769 else
2771 rtx last = split_insn (insn);
2772 if (last)
2774 /* The split sequence may include barrier, but the
2775 BB boundary we are interested in will be set to
2776 previous one. */
2778 while (BARRIER_P (last))
2779 last = PREV_INSN (last);
2780 SET_BIT (blocks, bb->index);
2781 changed = true;
2788 if (changed)
2790 int old_last_basic_block = last_basic_block;
2792 find_many_sub_basic_blocks (blocks);
2794 if (old_last_basic_block != last_basic_block && upd_life)
2795 blocks = sbitmap_resize (blocks, last_basic_block, 1);
2798 if (changed && upd_life)
2799 update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
2800 PROP_DEATH_NOTES);
2802 #ifdef ENABLE_CHECKING
2803 verify_flow_info ();
2804 #endif
2806 sbitmap_free (blocks);
2809 /* Same as split_all_insns, but do not expect CFG to be available.
2810 Used by machine dependent reorg passes. */
2812 void
2813 split_all_insns_noflow (void)
2815 rtx next, insn;
2817 for (insn = get_insns (); insn; insn = next)
2819 next = NEXT_INSN (insn);
2820 if (INSN_P (insn))
2822 /* Don't split no-op move insns. These should silently
2823 disappear later in final. Splitting such insns would
2824 break the code that handles REG_NO_CONFLICT blocks. */
2825 rtx set = single_set (insn);
2826 if (set && set_noop_p (set))
2828 /* Nops get in the way while scheduling, so delete them
2829 now if register allocation has already been done. It
2830 is too risky to try to do this before register
2831 allocation, and there are unlikely to be very many
2832 nops then anyways.
2834 ??? Should we use delete_insn when the CFG isn't valid? */
2835 if (reload_completed)
2836 delete_insn_and_edges (insn);
2838 else
2839 split_insn (insn);
2844 #ifdef HAVE_peephole2
2845 struct peep2_insn_data
2847 rtx insn;
2848 regset live_before;
2851 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2852 static int peep2_current;
2853 /* The number of instructions available to match a peep2. */
2854 int peep2_current_count;
2856 /* A non-insn marker indicating the last insn of the block.
2857 The live_before regset for this element is correct, indicating
2858 global_live_at_end for the block. */
2859 #define PEEP2_EOB pc_rtx
2861 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2862 does not exist. Used by the recognizer to find the next insn to match
2863 in a multi-insn pattern. */
2866 peep2_next_insn (int n)
2868 gcc_assert (n <= peep2_current_count);
2870 n += peep2_current;
2871 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2872 n -= MAX_INSNS_PER_PEEP2 + 1;
2874 return peep2_insn_data[n].insn;
2877 /* Return true if REGNO is dead before the Nth non-note insn
2878 after `current'. */
2881 peep2_regno_dead_p (int ofs, int regno)
2883 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2885 ofs += peep2_current;
2886 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2887 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2889 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2891 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2894 /* Similarly for a REG. */
2897 peep2_reg_dead_p (int ofs, rtx reg)
2899 int regno, n;
2901 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2903 ofs += peep2_current;
2904 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2905 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2907 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2909 regno = REGNO (reg);
2910 n = hard_regno_nregs[regno][GET_MODE (reg)];
2911 while (--n >= 0)
2912 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2913 return 0;
2914 return 1;
2917 /* Try to find a hard register of mode MODE, matching the register class in
2918 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2919 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2920 in which case the only condition is that the register must be available
2921 before CURRENT_INSN.
2922 Registers that already have bits set in REG_SET will not be considered.
2924 If an appropriate register is available, it will be returned and the
2925 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2926 returned. */
2929 peep2_find_free_register (int from, int to, const char *class_str,
2930 enum machine_mode mode, HARD_REG_SET *reg_set)
2932 static int search_ofs;
2933 enum reg_class cl;
2934 HARD_REG_SET live;
2935 int i;
2937 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2938 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
2940 from += peep2_current;
2941 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2942 from -= MAX_INSNS_PER_PEEP2 + 1;
2943 to += peep2_current;
2944 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2945 to -= MAX_INSNS_PER_PEEP2 + 1;
2947 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
2948 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
2950 while (from != to)
2952 HARD_REG_SET this_live;
2954 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
2955 from = 0;
2956 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
2957 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
2958 IOR_HARD_REG_SET (live, this_live);
2961 cl = (class_str[0] == 'r' ? GENERAL_REGS
2962 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
2964 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2966 int raw_regno, regno, success, j;
2968 /* Distribute the free registers as much as possible. */
2969 raw_regno = search_ofs + i;
2970 if (raw_regno >= FIRST_PSEUDO_REGISTER)
2971 raw_regno -= FIRST_PSEUDO_REGISTER;
2972 #ifdef REG_ALLOC_ORDER
2973 regno = reg_alloc_order[raw_regno];
2974 #else
2975 regno = raw_regno;
2976 #endif
2978 /* Don't allocate fixed registers. */
2979 if (fixed_regs[regno])
2980 continue;
2981 /* Make sure the register is of the right class. */
2982 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
2983 continue;
2984 /* And can support the mode we need. */
2985 if (! HARD_REGNO_MODE_OK (regno, mode))
2986 continue;
2987 /* And that we don't create an extra save/restore. */
2988 if (! call_used_regs[regno] && ! regs_ever_live[regno])
2989 continue;
2990 /* And we don't clobber traceback for noreturn functions. */
2991 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
2992 && (! reload_completed || frame_pointer_needed))
2993 continue;
2995 success = 1;
2996 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
2998 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
2999 || TEST_HARD_REG_BIT (live, regno + j))
3001 success = 0;
3002 break;
3005 if (success)
3007 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3008 SET_HARD_REG_BIT (*reg_set, regno + j);
3010 /* Start the next search with the next register. */
3011 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3012 raw_regno = 0;
3013 search_ofs = raw_regno;
3015 return gen_rtx_REG (mode, regno);
3019 search_ofs = 0;
3020 return NULL_RTX;
3023 /* Perform the peephole2 optimization pass. */
3025 static void
3026 peephole2_optimize (void)
3028 rtx insn, prev;
3029 regset live;
3030 int i;
3031 basic_block bb;
3032 #ifdef HAVE_conditional_execution
3033 sbitmap blocks;
3034 bool changed;
3035 #endif
3036 bool do_cleanup_cfg = false;
3037 bool do_global_life_update = false;
3038 bool do_rebuild_jump_labels = false;
3040 /* Initialize the regsets we're going to use. */
3041 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3042 peep2_insn_data[i].live_before = ALLOC_REG_SET (&reg_obstack);
3043 live = ALLOC_REG_SET (&reg_obstack);
3045 #ifdef HAVE_conditional_execution
3046 blocks = sbitmap_alloc (last_basic_block);
3047 sbitmap_zero (blocks);
3048 changed = false;
3049 #else
3050 count_or_remove_death_notes (NULL, 1);
3051 #endif
3053 FOR_EACH_BB_REVERSE (bb)
3055 struct propagate_block_info *pbi;
3056 reg_set_iterator rsi;
3057 unsigned int j;
3059 /* Indicate that all slots except the last holds invalid data. */
3060 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3061 peep2_insn_data[i].insn = NULL_RTX;
3062 peep2_current_count = 0;
3064 /* Indicate that the last slot contains live_after data. */
3065 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3066 peep2_current = MAX_INSNS_PER_PEEP2;
3068 /* Start up propagation. */
3069 COPY_REG_SET (live, bb->il.rtl->global_live_at_end);
3070 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3072 #ifdef HAVE_conditional_execution
3073 pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
3074 #else
3075 pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
3076 #endif
3078 for (insn = BB_END (bb); ; insn = prev)
3080 prev = PREV_INSN (insn);
3081 if (INSN_P (insn))
3083 rtx try, before_try, x;
3084 int match_len;
3085 rtx note;
3086 bool was_call = false;
3088 /* Record this insn. */
3089 if (--peep2_current < 0)
3090 peep2_current = MAX_INSNS_PER_PEEP2;
3091 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3092 && peep2_insn_data[peep2_current].insn == NULL_RTX)
3093 peep2_current_count++;
3094 peep2_insn_data[peep2_current].insn = insn;
3095 propagate_one_insn (pbi, insn);
3096 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3098 if (RTX_FRAME_RELATED_P (insn))
3100 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3101 substitution would lose the
3102 REG_FRAME_RELATED_EXPR that is attached. */
3103 peep2_current_count = 0;
3104 try = NULL;
3106 else
3107 /* Match the peephole. */
3108 try = peephole2_insns (PATTERN (insn), insn, &match_len);
3110 if (try != NULL)
3112 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3113 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3114 cfg-related call notes. */
3115 for (i = 0; i <= match_len; ++i)
3117 int j;
3118 rtx old_insn, new_insn, note;
3120 j = i + peep2_current;
3121 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3122 j -= MAX_INSNS_PER_PEEP2 + 1;
3123 old_insn = peep2_insn_data[j].insn;
3124 if (!CALL_P (old_insn))
3125 continue;
3126 was_call = true;
3128 new_insn = try;
3129 while (new_insn != NULL_RTX)
3131 if (CALL_P (new_insn))
3132 break;
3133 new_insn = NEXT_INSN (new_insn);
3136 gcc_assert (new_insn != NULL_RTX);
3138 CALL_INSN_FUNCTION_USAGE (new_insn)
3139 = CALL_INSN_FUNCTION_USAGE (old_insn);
3141 for (note = REG_NOTES (old_insn);
3142 note;
3143 note = XEXP (note, 1))
3144 switch (REG_NOTE_KIND (note))
3146 case REG_NORETURN:
3147 case REG_SETJMP:
3148 REG_NOTES (new_insn)
3149 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3150 XEXP (note, 0),
3151 REG_NOTES (new_insn));
3152 default:
3153 /* Discard all other reg notes. */
3154 break;
3157 /* Croak if there is another call in the sequence. */
3158 while (++i <= match_len)
3160 j = i + peep2_current;
3161 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3162 j -= MAX_INSNS_PER_PEEP2 + 1;
3163 old_insn = peep2_insn_data[j].insn;
3164 gcc_assert (!CALL_P (old_insn));
3166 break;
3169 i = match_len + peep2_current;
3170 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3171 i -= MAX_INSNS_PER_PEEP2 + 1;
3173 note = find_reg_note (peep2_insn_data[i].insn,
3174 REG_EH_REGION, NULL_RTX);
3176 /* Replace the old sequence with the new. */
3177 try = emit_insn_after_setloc (try, peep2_insn_data[i].insn,
3178 INSN_LOCATOR (peep2_insn_data[i].insn));
3179 before_try = PREV_INSN (insn);
3180 delete_insn_chain (insn, peep2_insn_data[i].insn);
3182 /* Re-insert the EH_REGION notes. */
3183 if (note || (was_call && nonlocal_goto_handler_labels))
3185 edge eh_edge;
3186 edge_iterator ei;
3188 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3189 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3190 break;
3192 for (x = try ; x != before_try ; x = PREV_INSN (x))
3193 if (CALL_P (x)
3194 || (flag_non_call_exceptions
3195 && may_trap_p (PATTERN (x))
3196 && !find_reg_note (x, REG_EH_REGION, NULL)))
3198 if (note)
3199 REG_NOTES (x)
3200 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3201 XEXP (note, 0),
3202 REG_NOTES (x));
3204 if (x != BB_END (bb) && eh_edge)
3206 edge nfte, nehe;
3207 int flags;
3209 nfte = split_block (bb, x);
3210 flags = (eh_edge->flags
3211 & (EDGE_EH | EDGE_ABNORMAL));
3212 if (CALL_P (x))
3213 flags |= EDGE_ABNORMAL_CALL;
3214 nehe = make_edge (nfte->src, eh_edge->dest,
3215 flags);
3217 nehe->probability = eh_edge->probability;
3218 nfte->probability
3219 = REG_BR_PROB_BASE - nehe->probability;
3221 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3222 #ifdef HAVE_conditional_execution
3223 SET_BIT (blocks, nfte->dest->index);
3224 changed = true;
3225 #endif
3226 bb = nfte->src;
3227 eh_edge = nehe;
3231 /* Converting possibly trapping insn to non-trapping is
3232 possible. Zap dummy outgoing edges. */
3233 do_cleanup_cfg |= purge_dead_edges (bb);
3236 #ifdef HAVE_conditional_execution
3237 /* With conditional execution, we cannot back up the
3238 live information so easily, since the conditional
3239 death data structures are not so self-contained.
3240 So record that we've made a modification to this
3241 block and update life information at the end. */
3242 SET_BIT (blocks, bb->index);
3243 changed = true;
3245 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3246 peep2_insn_data[i].insn = NULL_RTX;
3247 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3248 peep2_current_count = 0;
3249 #else
3250 /* Back up lifetime information past the end of the
3251 newly created sequence. */
3252 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3253 i = 0;
3254 COPY_REG_SET (live, peep2_insn_data[i].live_before);
3256 /* Update life information for the new sequence. */
3257 x = try;
3260 if (INSN_P (x))
3262 if (--i < 0)
3263 i = MAX_INSNS_PER_PEEP2;
3264 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3265 && peep2_insn_data[i].insn == NULL_RTX)
3266 peep2_current_count++;
3267 peep2_insn_data[i].insn = x;
3268 propagate_one_insn (pbi, x);
3269 COPY_REG_SET (peep2_insn_data[i].live_before, live);
3271 x = PREV_INSN (x);
3273 while (x != prev);
3275 /* ??? Should verify that LIVE now matches what we
3276 had before the new sequence. */
3278 peep2_current = i;
3279 #endif
3281 /* If we generated a jump instruction, it won't have
3282 JUMP_LABEL set. Recompute after we're done. */
3283 for (x = try; x != before_try; x = PREV_INSN (x))
3284 if (JUMP_P (x))
3286 do_rebuild_jump_labels = true;
3287 break;
3292 if (insn == BB_HEAD (bb))
3293 break;
3296 /* Some peepholes can decide the don't need one or more of their
3297 inputs. If this happens, local life update is not enough. */
3298 EXECUTE_IF_AND_COMPL_IN_BITMAP (bb->il.rtl->global_live_at_start, live,
3299 0, j, rsi)
3301 do_global_life_update = true;
3302 break;
3305 free_propagate_block_info (pbi);
3308 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3309 FREE_REG_SET (peep2_insn_data[i].live_before);
3310 FREE_REG_SET (live);
3312 if (do_rebuild_jump_labels)
3313 rebuild_jump_labels (get_insns ());
3315 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3316 we've changed global life since exception handlers are no longer
3317 reachable. */
3318 if (do_cleanup_cfg)
3320 cleanup_cfg (0);
3321 do_global_life_update = true;
3323 if (do_global_life_update)
3324 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
3325 #ifdef HAVE_conditional_execution
3326 else
3328 count_or_remove_death_notes (blocks, 1);
3329 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3331 sbitmap_free (blocks);
3332 #endif
3334 #endif /* HAVE_peephole2 */
3336 /* Common predicates for use with define_bypass. */
3338 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3339 data not the address operand(s) of the store. IN_INSN must be
3340 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3341 SETs inside. */
3344 store_data_bypass_p (rtx out_insn, rtx in_insn)
3346 rtx out_set, in_set;
3348 in_set = single_set (in_insn);
3349 gcc_assert (in_set);
3351 if (!MEM_P (SET_DEST (in_set)))
3352 return false;
3354 out_set = single_set (out_insn);
3355 if (out_set)
3357 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3358 return false;
3360 else
3362 rtx out_pat;
3363 int i;
3365 out_pat = PATTERN (out_insn);
3366 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3368 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3370 rtx exp = XVECEXP (out_pat, 0, i);
3372 if (GET_CODE (exp) == CLOBBER)
3373 continue;
3375 gcc_assert (GET_CODE (exp) == SET);
3377 if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
3378 return false;
3382 return true;
3385 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3386 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3387 or multiple set; IN_INSN should be single_set for truth, but for convenience
3388 of insn categorization may be any JUMP or CALL insn. */
3391 if_test_bypass_p (rtx out_insn, rtx in_insn)
3393 rtx out_set, in_set;
3395 in_set = single_set (in_insn);
3396 if (! in_set)
3398 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3399 return false;
3402 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3403 return false;
3404 in_set = SET_SRC (in_set);
3406 out_set = single_set (out_insn);
3407 if (out_set)
3409 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3410 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3411 return false;
3413 else
3415 rtx out_pat;
3416 int i;
3418 out_pat = PATTERN (out_insn);
3419 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3421 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3423 rtx exp = XVECEXP (out_pat, 0, i);
3425 if (GET_CODE (exp) == CLOBBER)
3426 continue;
3428 gcc_assert (GET_CODE (exp) == SET);
3430 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3431 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3432 return false;
3436 return true;
3439 static bool
3440 gate_handle_peephole2 (void)
3442 return (optimize > 0 && flag_peephole2);
3445 static void
3446 rest_of_handle_peephole2 (void)
3448 #ifdef HAVE_peephole2
3449 peephole2_optimize ();
3450 #endif
3453 struct tree_opt_pass pass_peephole2 =
3455 "peephole2", /* name */
3456 gate_handle_peephole2, /* gate */
3457 rest_of_handle_peephole2, /* execute */
3458 NULL, /* sub */
3459 NULL, /* next */
3460 0, /* static_pass_number */
3461 TV_PEEPHOLE2, /* tv_id */
3462 0, /* properties_required */
3463 0, /* properties_provided */
3464 0, /* properties_destroyed */
3465 0, /* todo_flags_start */
3466 TODO_dump_func, /* todo_flags_finish */
3467 'z' /* letter */
3470 static void
3471 rest_of_handle_split_all_insns (void)
3473 split_all_insns (1);
3476 struct tree_opt_pass pass_split_all_insns =
3478 "split1", /* name */
3479 NULL, /* gate */
3480 rest_of_handle_split_all_insns, /* execute */
3481 NULL, /* sub */
3482 NULL, /* next */
3483 0, /* static_pass_number */
3484 0, /* tv_id */
3485 0, /* properties_required */
3486 0, /* properties_provided */
3487 0, /* properties_destroyed */
3488 0, /* todo_flags_start */
3489 TODO_dump_func, /* todo_flags_finish */
3490 0 /* letter */
3493 /* The placement of the splitting that we do for shorten_branches
3494 depends on whether regstack is used by the target or not. */
3495 static bool
3496 gate_do_final_split (void)
3498 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3499 return 1;
3500 #else
3501 return 0;
3502 #endif
3505 struct tree_opt_pass pass_split_for_shorten_branches =
3507 "split3", /* name */
3508 gate_do_final_split, /* gate */
3509 split_all_insns_noflow, /* execute */
3510 NULL, /* sub */
3511 NULL, /* next */
3512 0, /* static_pass_number */
3513 TV_SHORTEN_BRANCH, /* tv_id */
3514 0, /* properties_required */
3515 0, /* properties_provided */
3516 0, /* properties_destroyed */
3517 0, /* todo_flags_start */
3518 TODO_dump_func, /* todo_flags_finish */
3519 0 /* letter */
3523 static bool
3524 gate_handle_split_before_regstack (void)
3526 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3527 /* If flow2 creates new instructions which need splitting
3528 and scheduling after reload is not done, they might not be
3529 split until final which doesn't allow splitting
3530 if HAVE_ATTR_length. */
3531 # ifdef INSN_SCHEDULING
3532 return (optimize && !flag_schedule_insns_after_reload);
3533 # else
3534 return (optimize);
3535 # endif
3536 #else
3537 return 0;
3538 #endif
3541 struct tree_opt_pass pass_split_before_regstack =
3543 "split2", /* name */
3544 gate_handle_split_before_regstack, /* gate */
3545 rest_of_handle_split_all_insns, /* execute */
3546 NULL, /* sub */
3547 NULL, /* next */
3548 0, /* static_pass_number */
3549 TV_SHORTEN_BRANCH, /* tv_id */
3550 0, /* properties_required */
3551 0, /* properties_provided */
3552 0, /* properties_destroyed */
3553 0, /* todo_flags_start */
3554 TODO_dump_func, /* todo_flags_finish */
3555 0 /* letter */