(thumb_jump): Reduce the backward branch range, and increase the forward branch
[official-gcc.git] / gcc / rtlanal.c
blob3f3a4289d6364e766d6d47979a5d995f5f84dc5c
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "real.h"
38 #include "regs.h"
40 /* Forward declarations */
41 static int global_reg_mentioned_p_1 (rtx *, void *);
42 static void set_of_1 (rtx, rtx, void *);
43 static void insn_dependent_p_1 (rtx, rtx, void *);
44 static int rtx_referenced_p_1 (rtx *, void *);
45 static int computed_jump_p_1 (rtx);
46 static void parms_set (rtx, rtx, void *);
47 static bool hoist_test_store (rtx, rtx, regset);
48 static void hoist_update_store (rtx, rtx *, rtx, rtx);
50 /* Bit flags that specify the machine subtype we are compiling for.
51 Bits are tested using macros TARGET_... defined in the tm.h file
52 and set by `-m...' switches. Must be defined in rtlanal.c. */
54 int target_flags;
56 /* Return 1 if the value of X is unstable
57 (would be different at a different point in the program).
58 The frame pointer, arg pointer, etc. are considered stable
59 (within one function) and so is anything marked `unchanging'. */
61 int
62 rtx_unstable_p (rtx x)
64 RTX_CODE code = GET_CODE (x);
65 int i;
66 const char *fmt;
68 switch (code)
70 case MEM:
71 return ! RTX_UNCHANGING_P (x) || rtx_unstable_p (XEXP (x, 0));
73 case QUEUED:
74 return 1;
76 case ADDRESSOF:
77 case CONST:
78 case CONST_INT:
79 case CONST_DOUBLE:
80 case CONST_VECTOR:
81 case SYMBOL_REF:
82 case LABEL_REF:
83 return 0;
85 case REG:
86 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
87 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
88 /* The arg pointer varies if it is not a fixed register. */
89 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
90 || RTX_UNCHANGING_P (x))
91 return 0;
92 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
93 /* ??? When call-clobbered, the value is stable modulo the restore
94 that must happen after a call. This currently screws up local-alloc
95 into believing that the restore is not needed. */
96 if (x == pic_offset_table_rtx)
97 return 0;
98 #endif
99 return 1;
101 case ASM_OPERANDS:
102 if (MEM_VOLATILE_P (x))
103 return 1;
105 /* Fall through. */
107 default:
108 break;
111 fmt = GET_RTX_FORMAT (code);
112 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
113 if (fmt[i] == 'e')
115 if (rtx_unstable_p (XEXP (x, i)))
116 return 1;
118 else if (fmt[i] == 'E')
120 int j;
121 for (j = 0; j < XVECLEN (x, i); j++)
122 if (rtx_unstable_p (XVECEXP (x, i, j)))
123 return 1;
126 return 0;
129 /* Return 1 if X has a value that can vary even between two
130 executions of the program. 0 means X can be compared reliably
131 against certain constants or near-constants.
132 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
133 zero, we are slightly more conservative.
134 The frame pointer and the arg pointer are considered constant. */
137 rtx_varies_p (rtx x, int for_alias)
139 RTX_CODE code;
140 int i;
141 const char *fmt;
143 if (!x)
144 return 0;
146 code = GET_CODE (x);
147 switch (code)
149 case MEM:
150 return ! RTX_UNCHANGING_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
152 case QUEUED:
153 return 1;
155 case CONST:
156 case CONST_INT:
157 case CONST_DOUBLE:
158 case CONST_VECTOR:
159 case SYMBOL_REF:
160 case LABEL_REF:
161 return 0;
163 case ADDRESSOF:
164 /* This will resolve to some offset from the frame pointer. */
165 return 0;
167 case REG:
168 /* Note that we have to test for the actual rtx used for the frame
169 and arg pointers and not just the register number in case we have
170 eliminated the frame and/or arg pointer and are using it
171 for pseudos. */
172 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
173 /* The arg pointer varies if it is not a fixed register. */
174 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
175 return 0;
176 if (x == pic_offset_table_rtx
177 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
178 /* ??? When call-clobbered, the value is stable modulo the restore
179 that must happen after a call. This currently screws up
180 local-alloc into believing that the restore is not needed, so we
181 must return 0 only if we are called from alias analysis. */
182 && for_alias
183 #endif
185 return 0;
186 return 1;
188 case LO_SUM:
189 /* The operand 0 of a LO_SUM is considered constant
190 (in fact it is related specifically to operand 1)
191 during alias analysis. */
192 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
193 || rtx_varies_p (XEXP (x, 1), for_alias);
195 case ASM_OPERANDS:
196 if (MEM_VOLATILE_P (x))
197 return 1;
199 /* Fall through. */
201 default:
202 break;
205 fmt = GET_RTX_FORMAT (code);
206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
207 if (fmt[i] == 'e')
209 if (rtx_varies_p (XEXP (x, i), for_alias))
210 return 1;
212 else if (fmt[i] == 'E')
214 int j;
215 for (j = 0; j < XVECLEN (x, i); j++)
216 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
217 return 1;
220 return 0;
223 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
226 rtx_addr_can_trap_p (rtx x)
228 enum rtx_code code = GET_CODE (x);
230 switch (code)
232 case SYMBOL_REF:
233 return SYMBOL_REF_WEAK (x);
235 case LABEL_REF:
236 return 0;
238 case ADDRESSOF:
239 /* This will resolve to some offset from the frame pointer. */
240 return 0;
242 case REG:
243 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
244 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
245 || x == stack_pointer_rtx
246 /* The arg pointer varies if it is not a fixed register. */
247 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
248 return 0;
249 /* All of the virtual frame registers are stack references. */
250 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
251 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
252 return 0;
253 return 1;
255 case CONST:
256 return rtx_addr_can_trap_p (XEXP (x, 0));
258 case PLUS:
259 /* An address is assumed not to trap if it is an address that can't
260 trap plus a constant integer or it is the pic register plus a
261 constant. */
262 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
263 && GET_CODE (XEXP (x, 1)) == CONST_INT)
264 || (XEXP (x, 0) == pic_offset_table_rtx
265 && CONSTANT_P (XEXP (x, 1))));
267 case LO_SUM:
268 case PRE_MODIFY:
269 return rtx_addr_can_trap_p (XEXP (x, 1));
271 case PRE_DEC:
272 case PRE_INC:
273 case POST_DEC:
274 case POST_INC:
275 case POST_MODIFY:
276 return rtx_addr_can_trap_p (XEXP (x, 0));
278 default:
279 break;
282 /* If it isn't one of the case above, it can cause a trap. */
283 return 1;
286 /* Return true if X is an address that is known to not be zero. */
288 bool
289 nonzero_address_p (rtx x)
291 enum rtx_code code = GET_CODE (x);
293 switch (code)
295 case SYMBOL_REF:
296 return !SYMBOL_REF_WEAK (x);
298 case LABEL_REF:
299 return true;
301 case ADDRESSOF:
302 /* This will resolve to some offset from the frame pointer. */
303 return true;
305 case REG:
306 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
307 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
308 || x == stack_pointer_rtx
309 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
310 return true;
311 /* All of the virtual frame registers are stack references. */
312 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
313 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
314 return true;
315 return false;
317 case CONST:
318 return nonzero_address_p (XEXP (x, 0));
320 case PLUS:
321 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
323 /* Pointers aren't allowed to wrap. If we've got a register
324 that is known to be a pointer, and a positive offset, then
325 the composite can't be zero. */
326 if (INTVAL (XEXP (x, 1)) > 0
327 && REG_P (XEXP (x, 0))
328 && REG_POINTER (XEXP (x, 0)))
329 return true;
331 return nonzero_address_p (XEXP (x, 0));
333 /* Handle PIC references. */
334 else if (XEXP (x, 0) == pic_offset_table_rtx
335 && CONSTANT_P (XEXP (x, 1)))
336 return true;
337 return false;
339 case PRE_MODIFY:
340 /* Similar to the above; allow positive offsets. Further, since
341 auto-inc is only allowed in memories, the register must be a
342 pointer. */
343 if (GET_CODE (XEXP (x, 1)) == CONST_INT
344 && INTVAL (XEXP (x, 1)) > 0)
345 return true;
346 return nonzero_address_p (XEXP (x, 0));
348 case PRE_INC:
349 /* Similarly. Further, the offset is always positive. */
350 return true;
352 case PRE_DEC:
353 case POST_DEC:
354 case POST_INC:
355 case POST_MODIFY:
356 return nonzero_address_p (XEXP (x, 0));
358 case LO_SUM:
359 return nonzero_address_p (XEXP (x, 1));
361 default:
362 break;
365 /* If it isn't one of the case above, might be zero. */
366 return false;
369 /* Return 1 if X refers to a memory location whose address
370 cannot be compared reliably with constant addresses,
371 or if X refers to a BLKmode memory object.
372 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
373 zero, we are slightly more conservative. */
376 rtx_addr_varies_p (rtx x, int for_alias)
378 enum rtx_code code;
379 int i;
380 const char *fmt;
382 if (x == 0)
383 return 0;
385 code = GET_CODE (x);
386 if (code == MEM)
387 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
389 fmt = GET_RTX_FORMAT (code);
390 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
391 if (fmt[i] == 'e')
393 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
394 return 1;
396 else if (fmt[i] == 'E')
398 int j;
399 for (j = 0; j < XVECLEN (x, i); j++)
400 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
401 return 1;
403 return 0;
406 /* Return the value of the integer term in X, if one is apparent;
407 otherwise return 0.
408 Only obvious integer terms are detected.
409 This is used in cse.c with the `related_value' field. */
411 HOST_WIDE_INT
412 get_integer_term (rtx x)
414 if (GET_CODE (x) == CONST)
415 x = XEXP (x, 0);
417 if (GET_CODE (x) == MINUS
418 && GET_CODE (XEXP (x, 1)) == CONST_INT)
419 return - INTVAL (XEXP (x, 1));
420 if (GET_CODE (x) == PLUS
421 && GET_CODE (XEXP (x, 1)) == CONST_INT)
422 return INTVAL (XEXP (x, 1));
423 return 0;
426 /* If X is a constant, return the value sans apparent integer term;
427 otherwise return 0.
428 Only obvious integer terms are detected. */
431 get_related_value (rtx x)
433 if (GET_CODE (x) != CONST)
434 return 0;
435 x = XEXP (x, 0);
436 if (GET_CODE (x) == PLUS
437 && GET_CODE (XEXP (x, 1)) == CONST_INT)
438 return XEXP (x, 0);
439 else if (GET_CODE (x) == MINUS
440 && GET_CODE (XEXP (x, 1)) == CONST_INT)
441 return XEXP (x, 0);
442 return 0;
445 /* Given a tablejump insn INSN, return the RTL expression for the offset
446 into the jump table. If the offset cannot be determined, then return
447 NULL_RTX.
449 If EARLIEST is nonzero, it is a pointer to a place where the earliest
450 insn used in locating the offset was found. */
453 get_jump_table_offset (rtx insn, rtx *earliest)
455 rtx label;
456 rtx table;
457 rtx set;
458 rtx old_insn;
459 rtx x;
460 rtx old_x;
461 rtx y;
462 rtx old_y;
463 int i;
465 if (!tablejump_p (insn, &label, &table) || !(set = single_set (insn)))
466 return NULL_RTX;
468 x = SET_SRC (set);
470 /* Some targets (eg, ARM) emit a tablejump that also
471 contains the out-of-range target. */
472 if (GET_CODE (x) == IF_THEN_ELSE
473 && GET_CODE (XEXP (x, 2)) == LABEL_REF)
474 x = XEXP (x, 1);
476 /* Search backwards and locate the expression stored in X. */
477 for (old_x = NULL_RTX; GET_CODE (x) == REG && x != old_x;
478 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
481 /* If X is an expression using a relative address then strip
482 off the addition / subtraction of PC, PIC_OFFSET_TABLE_REGNUM,
483 or the jump table label. */
484 if (GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC
485 && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS))
487 for (i = 0; i < 2; i++)
489 old_insn = insn;
490 y = XEXP (x, i);
492 if (y == pc_rtx || y == pic_offset_table_rtx)
493 break;
495 for (old_y = NULL_RTX; GET_CODE (y) == REG && y != old_y;
496 old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
499 if ((GET_CODE (y) == LABEL_REF && XEXP (y, 0) == label))
500 break;
503 if (i >= 2)
504 return NULL_RTX;
506 x = XEXP (x, 1 - i);
508 for (old_x = NULL_RTX; GET_CODE (x) == REG && x != old_x;
509 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
513 /* Strip off any sign or zero extension. */
514 if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND)
516 x = XEXP (x, 0);
518 for (old_x = NULL_RTX; GET_CODE (x) == REG && x != old_x;
519 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
523 /* If X isn't a MEM then this isn't a tablejump we understand. */
524 if (GET_CODE (x) != MEM)
525 return NULL_RTX;
527 /* Strip off the MEM. */
528 x = XEXP (x, 0);
530 for (old_x = NULL_RTX; GET_CODE (x) == REG && x != old_x;
531 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
534 /* If X isn't a PLUS than this isn't a tablejump we understand. */
535 if (GET_CODE (x) != PLUS)
536 return NULL_RTX;
538 /* At this point we should have an expression representing the jump table
539 plus an offset. Examine each operand in order to determine which one
540 represents the jump table. Knowing that tells us that the other operand
541 must represent the offset. */
542 for (i = 0; i < 2; i++)
544 old_insn = insn;
545 y = XEXP (x, i);
547 for (old_y = NULL_RTX; GET_CODE (y) == REG && y != old_y;
548 old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
551 if ((GET_CODE (y) == CONST || GET_CODE (y) == LABEL_REF)
552 && reg_mentioned_p (label, y))
553 break;
556 if (i >= 2)
557 return NULL_RTX;
559 x = XEXP (x, 1 - i);
561 /* Strip off the addition / subtraction of PIC_OFFSET_TABLE_REGNUM. */
562 if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
563 for (i = 0; i < 2; i++)
564 if (XEXP (x, i) == pic_offset_table_rtx)
566 x = XEXP (x, 1 - i);
567 break;
570 if (earliest)
571 *earliest = insn;
573 /* Return the RTL expression representing the offset. */
574 return x;
577 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
578 a global register. */
580 static int
581 global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
583 int regno;
584 rtx x = *loc;
586 if (! x)
587 return 0;
589 switch (GET_CODE (x))
591 case SUBREG:
592 if (GET_CODE (SUBREG_REG (x)) == REG)
594 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
595 && global_regs[subreg_regno (x)])
596 return 1;
597 return 0;
599 break;
601 case REG:
602 regno = REGNO (x);
603 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
604 return 1;
605 return 0;
607 case SCRATCH:
608 case PC:
609 case CC0:
610 case CONST_INT:
611 case CONST_DOUBLE:
612 case CONST:
613 case LABEL_REF:
614 return 0;
616 case CALL:
617 /* A non-constant call might use a global register. */
618 return 1;
620 default:
621 break;
624 return 0;
627 /* Returns nonzero if X mentions a global register. */
630 global_reg_mentioned_p (rtx x)
632 if (INSN_P (x))
634 if (GET_CODE (x) == CALL_INSN)
636 if (! CONST_OR_PURE_CALL_P (x))
637 return 1;
638 x = CALL_INSN_FUNCTION_USAGE (x);
639 if (x == 0)
640 return 0;
642 else
643 x = PATTERN (x);
646 return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
649 /* Return the number of places FIND appears within X. If COUNT_DEST is
650 zero, we do not count occurrences inside the destination of a SET. */
653 count_occurrences (rtx x, rtx find, int count_dest)
655 int i, j;
656 enum rtx_code code;
657 const char *format_ptr;
658 int count;
660 if (x == find)
661 return 1;
663 code = GET_CODE (x);
665 switch (code)
667 case REG:
668 case CONST_INT:
669 case CONST_DOUBLE:
670 case CONST_VECTOR:
671 case SYMBOL_REF:
672 case CODE_LABEL:
673 case PC:
674 case CC0:
675 return 0;
677 case MEM:
678 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
679 return 1;
680 break;
682 case SET:
683 if (SET_DEST (x) == find && ! count_dest)
684 return count_occurrences (SET_SRC (x), find, count_dest);
685 break;
687 default:
688 break;
691 format_ptr = GET_RTX_FORMAT (code);
692 count = 0;
694 for (i = 0; i < GET_RTX_LENGTH (code); i++)
696 switch (*format_ptr++)
698 case 'e':
699 count += count_occurrences (XEXP (x, i), find, count_dest);
700 break;
702 case 'E':
703 for (j = 0; j < XVECLEN (x, i); j++)
704 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
705 break;
708 return count;
711 /* Nonzero if register REG appears somewhere within IN.
712 Also works if REG is not a register; in this case it checks
713 for a subexpression of IN that is Lisp "equal" to REG. */
716 reg_mentioned_p (rtx reg, rtx in)
718 const char *fmt;
719 int i;
720 enum rtx_code code;
722 if (in == 0)
723 return 0;
725 if (reg == in)
726 return 1;
728 if (GET_CODE (in) == LABEL_REF)
729 return reg == XEXP (in, 0);
731 code = GET_CODE (in);
733 switch (code)
735 /* Compare registers by number. */
736 case REG:
737 return GET_CODE (reg) == REG && REGNO (in) == REGNO (reg);
739 /* These codes have no constituent expressions
740 and are unique. */
741 case SCRATCH:
742 case CC0:
743 case PC:
744 return 0;
746 case CONST_INT:
747 case CONST_VECTOR:
748 case CONST_DOUBLE:
749 /* These are kept unique for a given value. */
750 return 0;
752 default:
753 break;
756 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
757 return 1;
759 fmt = GET_RTX_FORMAT (code);
761 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
763 if (fmt[i] == 'E')
765 int j;
766 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
767 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
768 return 1;
770 else if (fmt[i] == 'e'
771 && reg_mentioned_p (reg, XEXP (in, i)))
772 return 1;
774 return 0;
777 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
778 no CODE_LABEL insn. */
781 no_labels_between_p (rtx beg, rtx end)
783 rtx p;
784 if (beg == end)
785 return 0;
786 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
787 if (GET_CODE (p) == CODE_LABEL)
788 return 0;
789 return 1;
792 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
793 no JUMP_INSN insn. */
796 no_jumps_between_p (rtx beg, rtx end)
798 rtx p;
799 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
800 if (GET_CODE (p) == JUMP_INSN)
801 return 0;
802 return 1;
805 /* Nonzero if register REG is used in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
809 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
811 rtx insn;
813 if (from_insn == to_insn)
814 return 0;
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn)
818 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
819 || (GET_CODE (insn) == CALL_INSN
820 && (find_reg_fusage (insn, USE, reg)
821 || find_reg_fusage (insn, CLOBBER, reg)))))
822 return 1;
823 return 0;
826 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
827 is entirely replaced by a new value and the only use is as a SET_DEST,
828 we do not consider it a reference. */
831 reg_referenced_p (rtx x, rtx body)
833 int i;
835 switch (GET_CODE (body))
837 case SET:
838 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
839 return 1;
841 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
842 of a REG that occupies all of the REG, the insn references X if
843 it is mentioned in the destination. */
844 if (GET_CODE (SET_DEST (body)) != CC0
845 && GET_CODE (SET_DEST (body)) != PC
846 && GET_CODE (SET_DEST (body)) != REG
847 && ! (GET_CODE (SET_DEST (body)) == SUBREG
848 && GET_CODE (SUBREG_REG (SET_DEST (body))) == REG
849 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
850 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
851 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
852 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
853 && reg_overlap_mentioned_p (x, SET_DEST (body)))
854 return 1;
855 return 0;
857 case ASM_OPERANDS:
858 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
859 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
860 return 1;
861 return 0;
863 case CALL:
864 case USE:
865 case IF_THEN_ELSE:
866 return reg_overlap_mentioned_p (x, body);
868 case TRAP_IF:
869 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
871 case PREFETCH:
872 return reg_overlap_mentioned_p (x, XEXP (body, 0));
874 case UNSPEC:
875 case UNSPEC_VOLATILE:
876 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
877 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
878 return 1;
879 return 0;
881 case PARALLEL:
882 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
883 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
884 return 1;
885 return 0;
887 case CLOBBER:
888 if (GET_CODE (XEXP (body, 0)) == MEM)
889 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
890 return 1;
891 return 0;
893 case COND_EXEC:
894 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
895 return 1;
896 return reg_referenced_p (x, COND_EXEC_CODE (body));
898 default:
899 return 0;
903 /* Nonzero if register REG is referenced in an insn between
904 FROM_INSN and TO_INSN (exclusive of those two). Sets of REG do
905 not count. */
908 reg_referenced_between_p (rtx reg, rtx from_insn, rtx to_insn)
910 rtx insn;
912 if (from_insn == to_insn)
913 return 0;
915 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
916 if (INSN_P (insn)
917 && (reg_referenced_p (reg, PATTERN (insn))
918 || (GET_CODE (insn) == CALL_INSN
919 && find_reg_fusage (insn, USE, reg))))
920 return 1;
921 return 0;
924 /* Nonzero if register REG is set or clobbered in an insn between
925 FROM_INSN and TO_INSN (exclusive of those two). */
928 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
930 rtx insn;
932 if (from_insn == to_insn)
933 return 0;
935 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
936 if (INSN_P (insn) && reg_set_p (reg, insn))
937 return 1;
938 return 0;
941 /* Internals of reg_set_between_p. */
943 reg_set_p (rtx reg, rtx insn)
945 /* We can be passed an insn or part of one. If we are passed an insn,
946 check if a side-effect of the insn clobbers REG. */
947 if (INSN_P (insn)
948 && (FIND_REG_INC_NOTE (insn, reg)
949 || (GET_CODE (insn) == CALL_INSN
950 /* We'd like to test call_used_regs here, but rtlanal.c can't
951 reference that variable due to its use in genattrtab. So
952 we'll just be more conservative.
954 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
955 information holds all clobbered registers. */
956 && ((GET_CODE (reg) == REG
957 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
958 || GET_CODE (reg) == MEM
959 || find_reg_fusage (insn, CLOBBER, reg)))))
960 return 1;
962 return set_of (reg, insn) != NULL_RTX;
965 /* Similar to reg_set_between_p, but check all registers in X. Return 0
966 only if none of them are modified between START and END. Do not
967 consider non-registers one way or the other. */
970 regs_set_between_p (rtx x, rtx start, rtx end)
972 enum rtx_code code = GET_CODE (x);
973 const char *fmt;
974 int i, j;
976 switch (code)
978 case CONST_INT:
979 case CONST_DOUBLE:
980 case CONST_VECTOR:
981 case CONST:
982 case SYMBOL_REF:
983 case LABEL_REF:
984 case PC:
985 case CC0:
986 return 0;
988 case REG:
989 return reg_set_between_p (x, start, end);
991 default:
992 break;
995 fmt = GET_RTX_FORMAT (code);
996 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
998 if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
999 return 1;
1001 else if (fmt[i] == 'E')
1002 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1003 if (regs_set_between_p (XVECEXP (x, i, j), start, end))
1004 return 1;
1007 return 0;
1010 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1011 only if none of them are modified between START and END. Return 1 if
1012 X contains a MEM; this routine does usememory aliasing. */
1015 modified_between_p (rtx x, rtx start, rtx end)
1017 enum rtx_code code = GET_CODE (x);
1018 const char *fmt;
1019 int i, j;
1020 rtx insn;
1022 if (start == end)
1023 return 0;
1025 switch (code)
1027 case CONST_INT:
1028 case CONST_DOUBLE:
1029 case CONST_VECTOR:
1030 case CONST:
1031 case SYMBOL_REF:
1032 case LABEL_REF:
1033 return 0;
1035 case PC:
1036 case CC0:
1037 return 1;
1039 case MEM:
1040 if (RTX_UNCHANGING_P (x))
1041 return 0;
1042 if (modified_between_p (XEXP (x, 0), start, end))
1043 return 1;
1044 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1045 if (memory_modified_in_insn_p (x, insn))
1046 return 1;
1047 return 0;
1048 break;
1050 case REG:
1051 return reg_set_between_p (x, start, end);
1053 default:
1054 break;
1057 fmt = GET_RTX_FORMAT (code);
1058 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1060 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1061 return 1;
1063 else if (fmt[i] == 'E')
1064 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1065 if (modified_between_p (XVECEXP (x, i, j), start, end))
1066 return 1;
1069 return 0;
1072 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1073 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1074 does use memory aliasing. */
1077 modified_in_p (rtx x, rtx insn)
1079 enum rtx_code code = GET_CODE (x);
1080 const char *fmt;
1081 int i, j;
1083 switch (code)
1085 case CONST_INT:
1086 case CONST_DOUBLE:
1087 case CONST_VECTOR:
1088 case CONST:
1089 case SYMBOL_REF:
1090 case LABEL_REF:
1091 return 0;
1093 case PC:
1094 case CC0:
1095 return 1;
1097 case MEM:
1098 if (RTX_UNCHANGING_P (x))
1099 return 0;
1100 if (modified_in_p (XEXP (x, 0), insn))
1101 return 1;
1102 if (memory_modified_in_insn_p (x, insn))
1103 return 1;
1104 return 0;
1105 break;
1107 case REG:
1108 return reg_set_p (x, insn);
1110 default:
1111 break;
1114 fmt = GET_RTX_FORMAT (code);
1115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1117 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1118 return 1;
1120 else if (fmt[i] == 'E')
1121 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1122 if (modified_in_p (XVECEXP (x, i, j), insn))
1123 return 1;
1126 return 0;
1129 /* Return true if anything in insn X is (anti,output,true) dependent on
1130 anything in insn Y. */
1133 insn_dependent_p (rtx x, rtx y)
1135 rtx tmp;
1137 if (! INSN_P (x) || ! INSN_P (y))
1138 abort ();
1140 tmp = PATTERN (y);
1141 note_stores (PATTERN (x), insn_dependent_p_1, &tmp);
1142 if (tmp == NULL_RTX)
1143 return 1;
1145 tmp = PATTERN (x);
1146 note_stores (PATTERN (y), insn_dependent_p_1, &tmp);
1147 if (tmp == NULL_RTX)
1148 return 1;
1150 return 0;
1153 /* A helper routine for insn_dependent_p called through note_stores. */
1155 static void
1156 insn_dependent_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
1158 rtx * pinsn = (rtx *) data;
1160 if (*pinsn && reg_mentioned_p (x, *pinsn))
1161 *pinsn = NULL_RTX;
1164 /* Helper function for set_of. */
1165 struct set_of_data
1167 rtx found;
1168 rtx pat;
1171 static void
1172 set_of_1 (rtx x, rtx pat, void *data1)
1174 struct set_of_data *data = (struct set_of_data *) (data1);
1175 if (rtx_equal_p (x, data->pat)
1176 || (GET_CODE (x) != MEM && reg_overlap_mentioned_p (data->pat, x)))
1177 data->found = pat;
1180 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1181 (either directly or via STRICT_LOW_PART and similar modifiers). */
1183 set_of (rtx pat, rtx insn)
1185 struct set_of_data data;
1186 data.found = NULL_RTX;
1187 data.pat = pat;
1188 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1189 return data.found;
1192 /* Given an INSN, return a SET expression if this insn has only a single SET.
1193 It may also have CLOBBERs, USEs, or SET whose output
1194 will not be used, which we ignore. */
1197 single_set_2 (rtx insn, rtx pat)
1199 rtx set = NULL;
1200 int set_verified = 1;
1201 int i;
1203 if (GET_CODE (pat) == PARALLEL)
1205 for (i = 0; i < XVECLEN (pat, 0); i++)
1207 rtx sub = XVECEXP (pat, 0, i);
1208 switch (GET_CODE (sub))
1210 case USE:
1211 case CLOBBER:
1212 break;
1214 case SET:
1215 /* We can consider insns having multiple sets, where all
1216 but one are dead as single set insns. In common case
1217 only single set is present in the pattern so we want
1218 to avoid checking for REG_UNUSED notes unless necessary.
1220 When we reach set first time, we just expect this is
1221 the single set we are looking for and only when more
1222 sets are found in the insn, we check them. */
1223 if (!set_verified)
1225 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1226 && !side_effects_p (set))
1227 set = NULL;
1228 else
1229 set_verified = 1;
1231 if (!set)
1232 set = sub, set_verified = 0;
1233 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1234 || side_effects_p (sub))
1235 return NULL_RTX;
1236 break;
1238 default:
1239 return NULL_RTX;
1243 return set;
1246 /* Given an INSN, return nonzero if it has more than one SET, else return
1247 zero. */
1250 multiple_sets (rtx insn)
1252 int found;
1253 int i;
1255 /* INSN must be an insn. */
1256 if (! INSN_P (insn))
1257 return 0;
1259 /* Only a PARALLEL can have multiple SETs. */
1260 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1262 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1263 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1265 /* If we have already found a SET, then return now. */
1266 if (found)
1267 return 1;
1268 else
1269 found = 1;
1273 /* Either zero or one SET. */
1274 return 0;
1277 /* Return nonzero if the destination of SET equals the source
1278 and there are no side effects. */
1281 set_noop_p (rtx set)
1283 rtx src = SET_SRC (set);
1284 rtx dst = SET_DEST (set);
1286 if (dst == pc_rtx && src == pc_rtx)
1287 return 1;
1289 if (GET_CODE (dst) == MEM && GET_CODE (src) == MEM)
1290 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1292 if (GET_CODE (dst) == SIGN_EXTRACT
1293 || GET_CODE (dst) == ZERO_EXTRACT)
1294 return rtx_equal_p (XEXP (dst, 0), src)
1295 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1296 && !side_effects_p (src);
1298 if (GET_CODE (dst) == STRICT_LOW_PART)
1299 dst = XEXP (dst, 0);
1301 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1303 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1304 return 0;
1305 src = SUBREG_REG (src);
1306 dst = SUBREG_REG (dst);
1309 return (GET_CODE (src) == REG && GET_CODE (dst) == REG
1310 && REGNO (src) == REGNO (dst));
1313 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1314 value to itself. */
1317 noop_move_p (rtx insn)
1319 rtx pat = PATTERN (insn);
1321 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1322 return 1;
1324 /* Insns carrying these notes are useful later on. */
1325 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1326 return 0;
1328 /* For now treat an insn with a REG_RETVAL note as a
1329 a special insn which should not be considered a no-op. */
1330 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1331 return 0;
1333 if (GET_CODE (pat) == SET && set_noop_p (pat))
1334 return 1;
1336 if (GET_CODE (pat) == PARALLEL)
1338 int i;
1339 /* If nothing but SETs of registers to themselves,
1340 this insn can also be deleted. */
1341 for (i = 0; i < XVECLEN (pat, 0); i++)
1343 rtx tem = XVECEXP (pat, 0, i);
1345 if (GET_CODE (tem) == USE
1346 || GET_CODE (tem) == CLOBBER)
1347 continue;
1349 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1350 return 0;
1353 return 1;
1355 return 0;
1359 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1360 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1361 If the object was modified, if we hit a partial assignment to X, or hit a
1362 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1363 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1364 be the src. */
1367 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1369 rtx p;
1371 for (p = PREV_INSN (*pinsn); p && GET_CODE (p) != CODE_LABEL;
1372 p = PREV_INSN (p))
1373 if (INSN_P (p))
1375 rtx set = single_set (p);
1376 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1378 if (set && rtx_equal_p (x, SET_DEST (set)))
1380 rtx src = SET_SRC (set);
1382 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1383 src = XEXP (note, 0);
1385 if ((valid_to == NULL_RTX
1386 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1387 /* Reject hard registers because we don't usually want
1388 to use them; we'd rather use a pseudo. */
1389 && (! (GET_CODE (src) == REG
1390 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1392 *pinsn = p;
1393 return src;
1397 /* If set in non-simple way, we don't have a value. */
1398 if (reg_set_p (x, p))
1399 break;
1402 return x;
1405 /* Return nonzero if register in range [REGNO, ENDREGNO)
1406 appears either explicitly or implicitly in X
1407 other than being stored into.
1409 References contained within the substructure at LOC do not count.
1410 LOC may be zero, meaning don't ignore anything. */
1413 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1414 rtx *loc)
1416 int i;
1417 unsigned int x_regno;
1418 RTX_CODE code;
1419 const char *fmt;
1421 repeat:
1422 /* The contents of a REG_NONNEG note is always zero, so we must come here
1423 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1424 if (x == 0)
1425 return 0;
1427 code = GET_CODE (x);
1429 switch (code)
1431 case REG:
1432 x_regno = REGNO (x);
1434 /* If we modifying the stack, frame, or argument pointer, it will
1435 clobber a virtual register. In fact, we could be more precise,
1436 but it isn't worth it. */
1437 if ((x_regno == STACK_POINTER_REGNUM
1438 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1439 || x_regno == ARG_POINTER_REGNUM
1440 #endif
1441 || x_regno == FRAME_POINTER_REGNUM)
1442 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1443 return 1;
1445 return (endregno > x_regno
1446 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1447 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1448 : 1));
1450 case SUBREG:
1451 /* If this is a SUBREG of a hard reg, we can see exactly which
1452 registers are being modified. Otherwise, handle normally. */
1453 if (GET_CODE (SUBREG_REG (x)) == REG
1454 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1456 unsigned int inner_regno = subreg_regno (x);
1457 unsigned int inner_endregno
1458 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1459 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1461 return endregno > inner_regno && regno < inner_endregno;
1463 break;
1465 case CLOBBER:
1466 case SET:
1467 if (&SET_DEST (x) != loc
1468 /* Note setting a SUBREG counts as referring to the REG it is in for
1469 a pseudo but not for hard registers since we can
1470 treat each word individually. */
1471 && ((GET_CODE (SET_DEST (x)) == SUBREG
1472 && loc != &SUBREG_REG (SET_DEST (x))
1473 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
1474 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1475 && refers_to_regno_p (regno, endregno,
1476 SUBREG_REG (SET_DEST (x)), loc))
1477 || (GET_CODE (SET_DEST (x)) != REG
1478 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1479 return 1;
1481 if (code == CLOBBER || loc == &SET_SRC (x))
1482 return 0;
1483 x = SET_SRC (x);
1484 goto repeat;
1486 default:
1487 break;
1490 /* X does not match, so try its subexpressions. */
1492 fmt = GET_RTX_FORMAT (code);
1493 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1495 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1497 if (i == 0)
1499 x = XEXP (x, 0);
1500 goto repeat;
1502 else
1503 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1504 return 1;
1506 else if (fmt[i] == 'E')
1508 int j;
1509 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1510 if (loc != &XVECEXP (x, i, j)
1511 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1512 return 1;
1515 return 0;
1518 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1519 we check if any register number in X conflicts with the relevant register
1520 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1521 contains a MEM (we don't bother checking for memory addresses that can't
1522 conflict because we expect this to be a rare case. */
1525 reg_overlap_mentioned_p (rtx x, rtx in)
1527 unsigned int regno, endregno;
1529 /* If either argument is a constant, then modifying X can not
1530 affect IN. Here we look at IN, we can profitably combine
1531 CONSTANT_P (x) with the switch statement below. */
1532 if (CONSTANT_P (in))
1533 return 0;
1535 recurse:
1536 switch (GET_CODE (x))
1538 case STRICT_LOW_PART:
1539 case ZERO_EXTRACT:
1540 case SIGN_EXTRACT:
1541 /* Overly conservative. */
1542 x = XEXP (x, 0);
1543 goto recurse;
1545 case SUBREG:
1546 regno = REGNO (SUBREG_REG (x));
1547 if (regno < FIRST_PSEUDO_REGISTER)
1548 regno = subreg_regno (x);
1549 goto do_reg;
1551 case REG:
1552 regno = REGNO (x);
1553 do_reg:
1554 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1555 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1556 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1558 case MEM:
1560 const char *fmt;
1561 int i;
1563 if (GET_CODE (in) == MEM)
1564 return 1;
1566 fmt = GET_RTX_FORMAT (GET_CODE (in));
1567 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1568 if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
1569 return 1;
1571 return 0;
1574 case SCRATCH:
1575 case PC:
1576 case CC0:
1577 return reg_mentioned_p (x, in);
1579 case PARALLEL:
1581 int i;
1583 /* If any register in here refers to it we return true. */
1584 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1585 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1586 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1587 return 1;
1588 return 0;
1591 default:
1592 #ifdef ENABLE_CHECKING
1593 if (!CONSTANT_P (x))
1594 abort ();
1595 #endif
1597 return 0;
1601 /* Return the last value to which REG was set prior to INSN. If we can't
1602 find it easily, return 0.
1604 We only return a REG, SUBREG, or constant because it is too hard to
1605 check if a MEM remains unchanged. */
1608 reg_set_last (rtx x, rtx insn)
1610 rtx orig_insn = insn;
1612 /* Scan backwards until reg_set_last_1 changed one of the above flags.
1613 Stop when we reach a label or X is a hard reg and we reach a
1614 CALL_INSN (if reg_set_last_last_regno is a hard reg).
1616 If we find a set of X, ensure that its SET_SRC remains unchanged. */
1618 /* We compare with <= here, because reg_set_last_last_regno
1619 is actually the number of the first reg *not* in X. */
1620 for (;
1621 insn && GET_CODE (insn) != CODE_LABEL
1622 && ! (GET_CODE (insn) == CALL_INSN
1623 && REGNO (x) <= FIRST_PSEUDO_REGISTER);
1624 insn = PREV_INSN (insn))
1625 if (INSN_P (insn))
1627 rtx set = set_of (x, insn);
1628 /* OK, this function modify our register. See if we understand it. */
1629 if (set)
1631 rtx last_value;
1632 if (GET_CODE (set) != SET || SET_DEST (set) != x)
1633 return 0;
1634 last_value = SET_SRC (x);
1635 if (CONSTANT_P (last_value)
1636 || ((GET_CODE (last_value) == REG
1637 || GET_CODE (last_value) == SUBREG)
1638 && ! reg_set_between_p (last_value,
1639 insn, orig_insn)))
1640 return last_value;
1641 else
1642 return 0;
1646 return 0;
1649 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1650 (X would be the pattern of an insn).
1651 FUN receives two arguments:
1652 the REG, MEM, CC0 or PC being stored in or clobbered,
1653 the SET or CLOBBER rtx that does the store.
1655 If the item being stored in or clobbered is a SUBREG of a hard register,
1656 the SUBREG will be passed. */
1658 void
1659 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1661 int i;
1663 if (GET_CODE (x) == COND_EXEC)
1664 x = COND_EXEC_CODE (x);
1666 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1668 rtx dest = SET_DEST (x);
1670 while ((GET_CODE (dest) == SUBREG
1671 && (GET_CODE (SUBREG_REG (dest)) != REG
1672 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1673 || GET_CODE (dest) == ZERO_EXTRACT
1674 || GET_CODE (dest) == SIGN_EXTRACT
1675 || GET_CODE (dest) == STRICT_LOW_PART)
1676 dest = XEXP (dest, 0);
1678 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1679 each of whose first operand is a register. */
1680 if (GET_CODE (dest) == PARALLEL)
1682 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1683 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1684 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1686 else
1687 (*fun) (dest, x, data);
1690 else if (GET_CODE (x) == PARALLEL)
1691 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1692 note_stores (XVECEXP (x, 0, i), fun, data);
1695 /* Like notes_stores, but call FUN for each expression that is being
1696 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1697 FUN for each expression, not any interior subexpressions. FUN receives a
1698 pointer to the expression and the DATA passed to this function.
1700 Note that this is not quite the same test as that done in reg_referenced_p
1701 since that considers something as being referenced if it is being
1702 partially set, while we do not. */
1704 void
1705 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1707 rtx body = *pbody;
1708 int i;
1710 switch (GET_CODE (body))
1712 case COND_EXEC:
1713 (*fun) (&COND_EXEC_TEST (body), data);
1714 note_uses (&COND_EXEC_CODE (body), fun, data);
1715 return;
1717 case PARALLEL:
1718 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1719 note_uses (&XVECEXP (body, 0, i), fun, data);
1720 return;
1722 case USE:
1723 (*fun) (&XEXP (body, 0), data);
1724 return;
1726 case ASM_OPERANDS:
1727 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1728 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1729 return;
1731 case TRAP_IF:
1732 (*fun) (&TRAP_CONDITION (body), data);
1733 return;
1735 case PREFETCH:
1736 (*fun) (&XEXP (body, 0), data);
1737 return;
1739 case UNSPEC:
1740 case UNSPEC_VOLATILE:
1741 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1742 (*fun) (&XVECEXP (body, 0, i), data);
1743 return;
1745 case CLOBBER:
1746 if (GET_CODE (XEXP (body, 0)) == MEM)
1747 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1748 return;
1750 case SET:
1752 rtx dest = SET_DEST (body);
1754 /* For sets we replace everything in source plus registers in memory
1755 expression in store and operands of a ZERO_EXTRACT. */
1756 (*fun) (&SET_SRC (body), data);
1758 if (GET_CODE (dest) == ZERO_EXTRACT)
1760 (*fun) (&XEXP (dest, 1), data);
1761 (*fun) (&XEXP (dest, 2), data);
1764 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1765 dest = XEXP (dest, 0);
1767 if (GET_CODE (dest) == MEM)
1768 (*fun) (&XEXP (dest, 0), data);
1770 return;
1772 default:
1773 /* All the other possibilities never store. */
1774 (*fun) (pbody, data);
1775 return;
1779 /* Return nonzero if X's old contents don't survive after INSN.
1780 This will be true if X is (cc0) or if X is a register and
1781 X dies in INSN or because INSN entirely sets X.
1783 "Entirely set" means set directly and not through a SUBREG,
1784 ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
1785 Likewise, REG_INC does not count.
1787 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1788 but for this use that makes no difference, since regs don't overlap
1789 during their lifetimes. Therefore, this function may be used
1790 at any time after deaths have been computed (in flow.c).
1792 If REG is a hard reg that occupies multiple machine registers, this
1793 function will only return 1 if each of those registers will be replaced
1794 by INSN. */
1797 dead_or_set_p (rtx insn, rtx x)
1799 unsigned int regno, last_regno;
1800 unsigned int i;
1802 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1803 if (GET_CODE (x) == CC0)
1804 return 1;
1806 if (GET_CODE (x) != REG)
1807 abort ();
1809 regno = REGNO (x);
1810 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1811 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1813 for (i = regno; i <= last_regno; i++)
1814 if (! dead_or_set_regno_p (insn, i))
1815 return 0;
1817 return 1;
1820 /* Utility function for dead_or_set_p to check an individual register. Also
1821 called from flow.c. */
1824 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1826 unsigned int regno, endregno;
1827 rtx pattern;
1829 /* See if there is a death note for something that includes TEST_REGNO. */
1830 if (find_regno_note (insn, REG_DEAD, test_regno))
1831 return 1;
1833 if (GET_CODE (insn) == CALL_INSN
1834 && find_regno_fusage (insn, CLOBBER, test_regno))
1835 return 1;
1837 pattern = PATTERN (insn);
1839 if (GET_CODE (pattern) == COND_EXEC)
1840 pattern = COND_EXEC_CODE (pattern);
1842 if (GET_CODE (pattern) == SET)
1844 rtx dest = SET_DEST (pattern);
1846 /* A value is totally replaced if it is the destination or the
1847 destination is a SUBREG of REGNO that does not change the number of
1848 words in it. */
1849 if (GET_CODE (dest) == SUBREG
1850 && (((GET_MODE_SIZE (GET_MODE (dest))
1851 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1852 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1853 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1854 dest = SUBREG_REG (dest);
1856 if (GET_CODE (dest) != REG)
1857 return 0;
1859 regno = REGNO (dest);
1860 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1861 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1863 return (test_regno >= regno && test_regno < endregno);
1865 else if (GET_CODE (pattern) == PARALLEL)
1867 int i;
1869 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1871 rtx body = XVECEXP (pattern, 0, i);
1873 if (GET_CODE (body) == COND_EXEC)
1874 body = COND_EXEC_CODE (body);
1876 if (GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1878 rtx dest = SET_DEST (body);
1880 if (GET_CODE (dest) == SUBREG
1881 && (((GET_MODE_SIZE (GET_MODE (dest))
1882 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1883 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1884 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1885 dest = SUBREG_REG (dest);
1887 if (GET_CODE (dest) != REG)
1888 continue;
1890 regno = REGNO (dest);
1891 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1892 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1894 if (test_regno >= regno && test_regno < endregno)
1895 return 1;
1900 return 0;
1903 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1904 If DATUM is nonzero, look for one whose datum is DATUM. */
1907 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1909 rtx link;
1911 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1912 if (! INSN_P (insn))
1913 return 0;
1915 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1916 if (REG_NOTE_KIND (link) == kind
1917 && (datum == 0 || datum == XEXP (link, 0)))
1918 return link;
1919 return 0;
1922 /* Return the reg-note of kind KIND in insn INSN which applies to register
1923 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1924 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1925 it might be the case that the note overlaps REGNO. */
1928 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1930 rtx link;
1932 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1933 if (! INSN_P (insn))
1934 return 0;
1936 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1937 if (REG_NOTE_KIND (link) == kind
1938 /* Verify that it is a register, so that scratch and MEM won't cause a
1939 problem here. */
1940 && GET_CODE (XEXP (link, 0)) == REG
1941 && REGNO (XEXP (link, 0)) <= regno
1942 && ((REGNO (XEXP (link, 0))
1943 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1944 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1945 [GET_MODE (XEXP (link, 0))]))
1946 > regno))
1947 return link;
1948 return 0;
1951 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1952 has such a note. */
1955 find_reg_equal_equiv_note (rtx insn)
1957 rtx link;
1959 if (!INSN_P (insn))
1960 return 0;
1961 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1962 if (REG_NOTE_KIND (link) == REG_EQUAL
1963 || REG_NOTE_KIND (link) == REG_EQUIV)
1965 if (single_set (insn) == 0)
1966 return 0;
1967 return link;
1969 return NULL;
1972 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1973 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1976 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1978 /* If it's not a CALL_INSN, it can't possibly have a
1979 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1980 if (GET_CODE (insn) != CALL_INSN)
1981 return 0;
1983 if (! datum)
1984 abort ();
1986 if (GET_CODE (datum) != REG)
1988 rtx link;
1990 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1991 link;
1992 link = XEXP (link, 1))
1993 if (GET_CODE (XEXP (link, 0)) == code
1994 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1995 return 1;
1997 else
1999 unsigned int regno = REGNO (datum);
2001 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2002 to pseudo registers, so don't bother checking. */
2004 if (regno < FIRST_PSEUDO_REGISTER)
2006 unsigned int end_regno
2007 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
2008 unsigned int i;
2010 for (i = regno; i < end_regno; i++)
2011 if (find_regno_fusage (insn, code, i))
2012 return 1;
2016 return 0;
2019 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2020 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2023 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
2025 rtx link;
2027 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2028 to pseudo registers, so don't bother checking. */
2030 if (regno >= FIRST_PSEUDO_REGISTER
2031 || GET_CODE (insn) != CALL_INSN )
2032 return 0;
2034 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2036 unsigned int regnote;
2037 rtx op, reg;
2039 if (GET_CODE (op = XEXP (link, 0)) == code
2040 && GET_CODE (reg = XEXP (op, 0)) == REG
2041 && (regnote = REGNO (reg)) <= regno
2042 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
2043 return 1;
2046 return 0;
2049 /* Return true if INSN is a call to a pure function. */
2052 pure_call_p (rtx insn)
2054 rtx link;
2056 if (GET_CODE (insn) != CALL_INSN || ! CONST_OR_PURE_CALL_P (insn))
2057 return 0;
2059 /* Look for the note that differentiates const and pure functions. */
2060 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2062 rtx u, m;
2064 if (GET_CODE (u = XEXP (link, 0)) == USE
2065 && GET_CODE (m = XEXP (u, 0)) == MEM && GET_MODE (m) == BLKmode
2066 && GET_CODE (XEXP (m, 0)) == SCRATCH)
2067 return 1;
2070 return 0;
2073 /* Remove register note NOTE from the REG_NOTES of INSN. */
2075 void
2076 remove_note (rtx insn, rtx note)
2078 rtx link;
2080 if (note == NULL_RTX)
2081 return;
2083 if (REG_NOTES (insn) == note)
2085 REG_NOTES (insn) = XEXP (note, 1);
2086 return;
2089 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2090 if (XEXP (link, 1) == note)
2092 XEXP (link, 1) = XEXP (note, 1);
2093 return;
2096 abort ();
2099 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2100 return 1 if it is found. A simple equality test is used to determine if
2101 NODE matches. */
2104 in_expr_list_p (rtx listp, rtx node)
2106 rtx x;
2108 for (x = listp; x; x = XEXP (x, 1))
2109 if (node == XEXP (x, 0))
2110 return 1;
2112 return 0;
2115 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2116 remove that entry from the list if it is found.
2118 A simple equality test is used to determine if NODE matches. */
2120 void
2121 remove_node_from_expr_list (rtx node, rtx *listp)
2123 rtx temp = *listp;
2124 rtx prev = NULL_RTX;
2126 while (temp)
2128 if (node == XEXP (temp, 0))
2130 /* Splice the node out of the list. */
2131 if (prev)
2132 XEXP (prev, 1) = XEXP (temp, 1);
2133 else
2134 *listp = XEXP (temp, 1);
2136 return;
2139 prev = temp;
2140 temp = XEXP (temp, 1);
2144 /* Nonzero if X contains any volatile instructions. These are instructions
2145 which may cause unpredictable machine state instructions, and thus no
2146 instructions should be moved or combined across them. This includes
2147 only volatile asms and UNSPEC_VOLATILE instructions. */
2150 volatile_insn_p (rtx x)
2152 RTX_CODE code;
2154 code = GET_CODE (x);
2155 switch (code)
2157 case LABEL_REF:
2158 case SYMBOL_REF:
2159 case CONST_INT:
2160 case CONST:
2161 case CONST_DOUBLE:
2162 case CONST_VECTOR:
2163 case CC0:
2164 case PC:
2165 case REG:
2166 case SCRATCH:
2167 case CLOBBER:
2168 case ADDR_VEC:
2169 case ADDR_DIFF_VEC:
2170 case CALL:
2171 case MEM:
2172 return 0;
2174 case UNSPEC_VOLATILE:
2175 /* case TRAP_IF: This isn't clear yet. */
2176 return 1;
2178 case ASM_INPUT:
2179 case ASM_OPERANDS:
2180 if (MEM_VOLATILE_P (x))
2181 return 1;
2183 default:
2184 break;
2187 /* Recursively scan the operands of this expression. */
2190 const char *fmt = GET_RTX_FORMAT (code);
2191 int i;
2193 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2195 if (fmt[i] == 'e')
2197 if (volatile_insn_p (XEXP (x, i)))
2198 return 1;
2200 else if (fmt[i] == 'E')
2202 int j;
2203 for (j = 0; j < XVECLEN (x, i); j++)
2204 if (volatile_insn_p (XVECEXP (x, i, j)))
2205 return 1;
2209 return 0;
2212 /* Nonzero if X contains any volatile memory references
2213 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2216 volatile_refs_p (rtx x)
2218 RTX_CODE code;
2220 code = GET_CODE (x);
2221 switch (code)
2223 case LABEL_REF:
2224 case SYMBOL_REF:
2225 case CONST_INT:
2226 case CONST:
2227 case CONST_DOUBLE:
2228 case CONST_VECTOR:
2229 case CC0:
2230 case PC:
2231 case REG:
2232 case SCRATCH:
2233 case CLOBBER:
2234 case ADDR_VEC:
2235 case ADDR_DIFF_VEC:
2236 return 0;
2238 case UNSPEC_VOLATILE:
2239 return 1;
2241 case MEM:
2242 case ASM_INPUT:
2243 case ASM_OPERANDS:
2244 if (MEM_VOLATILE_P (x))
2245 return 1;
2247 default:
2248 break;
2251 /* Recursively scan the operands of this expression. */
2254 const char *fmt = GET_RTX_FORMAT (code);
2255 int i;
2257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2259 if (fmt[i] == 'e')
2261 if (volatile_refs_p (XEXP (x, i)))
2262 return 1;
2264 else if (fmt[i] == 'E')
2266 int j;
2267 for (j = 0; j < XVECLEN (x, i); j++)
2268 if (volatile_refs_p (XVECEXP (x, i, j)))
2269 return 1;
2273 return 0;
2276 /* Similar to above, except that it also rejects register pre- and post-
2277 incrementing. */
2280 side_effects_p (rtx x)
2282 RTX_CODE code;
2284 code = GET_CODE (x);
2285 switch (code)
2287 case LABEL_REF:
2288 case SYMBOL_REF:
2289 case CONST_INT:
2290 case CONST:
2291 case CONST_DOUBLE:
2292 case CONST_VECTOR:
2293 case CC0:
2294 case PC:
2295 case REG:
2296 case SCRATCH:
2297 case ADDR_VEC:
2298 case ADDR_DIFF_VEC:
2299 return 0;
2301 case CLOBBER:
2302 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2303 when some combination can't be done. If we see one, don't think
2304 that we can simplify the expression. */
2305 return (GET_MODE (x) != VOIDmode);
2307 case PRE_INC:
2308 case PRE_DEC:
2309 case POST_INC:
2310 case POST_DEC:
2311 case PRE_MODIFY:
2312 case POST_MODIFY:
2313 case CALL:
2314 case UNSPEC_VOLATILE:
2315 /* case TRAP_IF: This isn't clear yet. */
2316 return 1;
2318 case MEM:
2319 case ASM_INPUT:
2320 case ASM_OPERANDS:
2321 if (MEM_VOLATILE_P (x))
2322 return 1;
2324 default:
2325 break;
2328 /* Recursively scan the operands of this expression. */
2331 const char *fmt = GET_RTX_FORMAT (code);
2332 int i;
2334 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2336 if (fmt[i] == 'e')
2338 if (side_effects_p (XEXP (x, i)))
2339 return 1;
2341 else if (fmt[i] == 'E')
2343 int j;
2344 for (j = 0; j < XVECLEN (x, i); j++)
2345 if (side_effects_p (XVECEXP (x, i, j)))
2346 return 1;
2350 return 0;
2353 /* Return nonzero if evaluating rtx X might cause a trap. */
2356 may_trap_p (rtx x)
2358 int i;
2359 enum rtx_code code;
2360 const char *fmt;
2362 if (x == 0)
2363 return 0;
2364 code = GET_CODE (x);
2365 switch (code)
2367 /* Handle these cases quickly. */
2368 case CONST_INT:
2369 case CONST_DOUBLE:
2370 case CONST_VECTOR:
2371 case SYMBOL_REF:
2372 case LABEL_REF:
2373 case CONST:
2374 case PC:
2375 case CC0:
2376 case REG:
2377 case SCRATCH:
2378 return 0;
2380 case ASM_INPUT:
2381 case UNSPEC_VOLATILE:
2382 case TRAP_IF:
2383 return 1;
2385 case ASM_OPERANDS:
2386 return MEM_VOLATILE_P (x);
2388 /* Memory ref can trap unless it's a static var or a stack slot. */
2389 case MEM:
2390 if (MEM_NOTRAP_P (x))
2391 return 0;
2392 return rtx_addr_can_trap_p (XEXP (x, 0));
2394 /* Division by a non-constant might trap. */
2395 case DIV:
2396 case MOD:
2397 case UDIV:
2398 case UMOD:
2399 if (HONOR_SNANS (GET_MODE (x)))
2400 return 1;
2401 if (! CONSTANT_P (XEXP (x, 1))
2402 || (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2403 && flag_trapping_math))
2404 return 1;
2405 if (XEXP (x, 1) == const0_rtx)
2406 return 1;
2407 break;
2409 case EXPR_LIST:
2410 /* An EXPR_LIST is used to represent a function call. This
2411 certainly may trap. */
2412 return 1;
2414 case GE:
2415 case GT:
2416 case LE:
2417 case LT:
2418 case COMPARE:
2419 /* Some floating point comparisons may trap. */
2420 if (!flag_trapping_math)
2421 break;
2422 /* ??? There is no machine independent way to check for tests that trap
2423 when COMPARE is used, though many targets do make this distinction.
2424 For instance, sparc uses CCFPE for compares which generate exceptions
2425 and CCFP for compares which do not generate exceptions. */
2426 if (HONOR_NANS (GET_MODE (x)))
2427 return 1;
2428 /* But often the compare has some CC mode, so check operand
2429 modes as well. */
2430 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2431 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2432 return 1;
2433 break;
2435 case EQ:
2436 case NE:
2437 if (HONOR_SNANS (GET_MODE (x)))
2438 return 1;
2439 /* Often comparison is CC mode, so check operand modes. */
2440 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2441 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2442 return 1;
2443 break;
2445 case FIX:
2446 /* Conversion of floating point might trap. */
2447 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2448 return 1;
2449 break;
2451 case NEG:
2452 case ABS:
2453 /* These operations don't trap even with floating point. */
2454 break;
2456 default:
2457 /* Any floating arithmetic may trap. */
2458 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2459 && flag_trapping_math)
2460 return 1;
2463 fmt = GET_RTX_FORMAT (code);
2464 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2466 if (fmt[i] == 'e')
2468 if (may_trap_p (XEXP (x, i)))
2469 return 1;
2471 else if (fmt[i] == 'E')
2473 int j;
2474 for (j = 0; j < XVECLEN (x, i); j++)
2475 if (may_trap_p (XVECEXP (x, i, j)))
2476 return 1;
2479 return 0;
2482 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2483 i.e., an inequality. */
2486 inequality_comparisons_p (rtx x)
2488 const char *fmt;
2489 int len, i;
2490 enum rtx_code code = GET_CODE (x);
2492 switch (code)
2494 case REG:
2495 case SCRATCH:
2496 case PC:
2497 case CC0:
2498 case CONST_INT:
2499 case CONST_DOUBLE:
2500 case CONST_VECTOR:
2501 case CONST:
2502 case LABEL_REF:
2503 case SYMBOL_REF:
2504 return 0;
2506 case LT:
2507 case LTU:
2508 case GT:
2509 case GTU:
2510 case LE:
2511 case LEU:
2512 case GE:
2513 case GEU:
2514 return 1;
2516 default:
2517 break;
2520 len = GET_RTX_LENGTH (code);
2521 fmt = GET_RTX_FORMAT (code);
2523 for (i = 0; i < len; i++)
2525 if (fmt[i] == 'e')
2527 if (inequality_comparisons_p (XEXP (x, i)))
2528 return 1;
2530 else if (fmt[i] == 'E')
2532 int j;
2533 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2534 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2535 return 1;
2539 return 0;
2542 /* Replace any occurrence of FROM in X with TO. The function does
2543 not enter into CONST_DOUBLE for the replace.
2545 Note that copying is not done so X must not be shared unless all copies
2546 are to be modified. */
2549 replace_rtx (rtx x, rtx from, rtx to)
2551 int i, j;
2552 const char *fmt;
2554 /* The following prevents loops occurrence when we change MEM in
2555 CONST_DOUBLE onto the same CONST_DOUBLE. */
2556 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2557 return x;
2559 if (x == from)
2560 return to;
2562 /* Allow this function to make replacements in EXPR_LISTs. */
2563 if (x == 0)
2564 return 0;
2566 if (GET_CODE (x) == SUBREG)
2568 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2570 if (GET_CODE (new) == CONST_INT)
2572 x = simplify_subreg (GET_MODE (x), new,
2573 GET_MODE (SUBREG_REG (x)),
2574 SUBREG_BYTE (x));
2575 if (! x)
2576 abort ();
2578 else
2579 SUBREG_REG (x) = new;
2581 return x;
2583 else if (GET_CODE (x) == ZERO_EXTEND)
2585 rtx new = replace_rtx (XEXP (x, 0), from, to);
2587 if (GET_CODE (new) == CONST_INT)
2589 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2590 new, GET_MODE (XEXP (x, 0)));
2591 if (! x)
2592 abort ();
2594 else
2595 XEXP (x, 0) = new;
2597 return x;
2600 fmt = GET_RTX_FORMAT (GET_CODE (x));
2601 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2603 if (fmt[i] == 'e')
2604 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2605 else if (fmt[i] == 'E')
2606 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2607 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2610 return x;
2613 /* Throughout the rtx X, replace many registers according to REG_MAP.
2614 Return the replacement for X (which may be X with altered contents).
2615 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2616 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2618 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2619 should not be mapped to pseudos or vice versa since validate_change
2620 is not called.
2622 If REPLACE_DEST is 1, replacements are also done in destinations;
2623 otherwise, only sources are replaced. */
2626 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2628 enum rtx_code code;
2629 int i;
2630 const char *fmt;
2632 if (x == 0)
2633 return x;
2635 code = GET_CODE (x);
2636 switch (code)
2638 case SCRATCH:
2639 case PC:
2640 case CC0:
2641 case CONST_INT:
2642 case CONST_DOUBLE:
2643 case CONST_VECTOR:
2644 case CONST:
2645 case SYMBOL_REF:
2646 case LABEL_REF:
2647 return x;
2649 case REG:
2650 /* Verify that the register has an entry before trying to access it. */
2651 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2653 /* SUBREGs can't be shared. Always return a copy to ensure that if
2654 this replacement occurs more than once then each instance will
2655 get distinct rtx. */
2656 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2657 return copy_rtx (reg_map[REGNO (x)]);
2658 return reg_map[REGNO (x)];
2660 return x;
2662 case SUBREG:
2663 /* Prevent making nested SUBREGs. */
2664 if (GET_CODE (SUBREG_REG (x)) == REG && REGNO (SUBREG_REG (x)) < nregs
2665 && reg_map[REGNO (SUBREG_REG (x))] != 0
2666 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2668 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2669 return simplify_gen_subreg (GET_MODE (x), map_val,
2670 GET_MODE (SUBREG_REG (x)),
2671 SUBREG_BYTE (x));
2673 break;
2675 case SET:
2676 if (replace_dest)
2677 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2679 else if (GET_CODE (SET_DEST (x)) == MEM
2680 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2681 /* Even if we are not to replace destinations, replace register if it
2682 is CONTAINED in destination (destination is memory or
2683 STRICT_LOW_PART). */
2684 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2685 reg_map, nregs, 0);
2686 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2687 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2688 break;
2690 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2691 return x;
2693 default:
2694 break;
2697 fmt = GET_RTX_FORMAT (code);
2698 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2700 if (fmt[i] == 'e')
2701 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2702 else if (fmt[i] == 'E')
2704 int j;
2705 for (j = 0; j < XVECLEN (x, i); j++)
2706 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2707 nregs, replace_dest);
2710 return x;
2713 /* Replace occurrences of the old label in *X with the new one.
2714 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2717 replace_label (rtx *x, void *data)
2719 rtx l = *x;
2720 rtx old_label = ((replace_label_data *) data)->r1;
2721 rtx new_label = ((replace_label_data *) data)->r2;
2722 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2724 if (l == NULL_RTX)
2725 return 0;
2727 if (GET_CODE (l) == SYMBOL_REF
2728 && CONSTANT_POOL_ADDRESS_P (l))
2730 rtx c = get_pool_constant (l);
2731 if (rtx_referenced_p (old_label, c))
2733 rtx new_c, new_l;
2734 replace_label_data *d = (replace_label_data *) data;
2736 /* Create a copy of constant C; replace the label inside
2737 but do not update LABEL_NUSES because uses in constant pool
2738 are not counted. */
2739 new_c = copy_rtx (c);
2740 d->update_label_nuses = false;
2741 for_each_rtx (&new_c, replace_label, data);
2742 d->update_label_nuses = update_label_nuses;
2744 /* Add the new constant NEW_C to constant pool and replace
2745 the old reference to constant by new reference. */
2746 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2747 *x = replace_rtx (l, l, new_l);
2749 return 0;
2752 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2753 field. This is not handled by for_each_rtx because it doesn't
2754 handle unprinted ('0') fields. */
2755 if (GET_CODE (l) == JUMP_INSN && JUMP_LABEL (l) == old_label)
2756 JUMP_LABEL (l) = new_label;
2758 if ((GET_CODE (l) == LABEL_REF
2759 || GET_CODE (l) == INSN_LIST)
2760 && XEXP (l, 0) == old_label)
2762 XEXP (l, 0) = new_label;
2763 if (update_label_nuses)
2765 ++LABEL_NUSES (new_label);
2766 --LABEL_NUSES (old_label);
2768 return 0;
2771 return 0;
2774 /* When *BODY is equal to X or X is directly referenced by *BODY
2775 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2776 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2778 static int
2779 rtx_referenced_p_1 (rtx *body, void *x)
2781 rtx y = (rtx) x;
2783 if (*body == NULL_RTX)
2784 return y == NULL_RTX;
2786 /* Return true if a label_ref *BODY refers to label Y. */
2787 if (GET_CODE (*body) == LABEL_REF && GET_CODE (y) == CODE_LABEL)
2788 return XEXP (*body, 0) == y;
2790 /* If *BODY is a reference to pool constant traverse the constant. */
2791 if (GET_CODE (*body) == SYMBOL_REF
2792 && CONSTANT_POOL_ADDRESS_P (*body))
2793 return rtx_referenced_p (y, get_pool_constant (*body));
2795 /* By default, compare the RTL expressions. */
2796 return rtx_equal_p (*body, y);
2799 /* Return true if X is referenced in BODY. */
2802 rtx_referenced_p (rtx x, rtx body)
2804 return for_each_rtx (&body, rtx_referenced_p_1, x);
2807 /* If INSN is a tablejump return true and store the label (before jump table) to
2808 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2810 bool
2811 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2813 rtx label, table;
2815 if (GET_CODE (insn) == JUMP_INSN
2816 && (label = JUMP_LABEL (insn)) != NULL_RTX
2817 && (table = next_active_insn (label)) != NULL_RTX
2818 && GET_CODE (table) == JUMP_INSN
2819 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2820 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2822 if (labelp)
2823 *labelp = label;
2824 if (tablep)
2825 *tablep = table;
2826 return true;
2828 return false;
2831 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2832 constant that is not in the constant pool and not in the condition
2833 of an IF_THEN_ELSE. */
2835 static int
2836 computed_jump_p_1 (rtx x)
2838 enum rtx_code code = GET_CODE (x);
2839 int i, j;
2840 const char *fmt;
2842 switch (code)
2844 case LABEL_REF:
2845 case PC:
2846 return 0;
2848 case CONST:
2849 case CONST_INT:
2850 case CONST_DOUBLE:
2851 case CONST_VECTOR:
2852 case SYMBOL_REF:
2853 case REG:
2854 return 1;
2856 case MEM:
2857 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2858 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2860 case IF_THEN_ELSE:
2861 return (computed_jump_p_1 (XEXP (x, 1))
2862 || computed_jump_p_1 (XEXP (x, 2)));
2864 default:
2865 break;
2868 fmt = GET_RTX_FORMAT (code);
2869 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2871 if (fmt[i] == 'e'
2872 && computed_jump_p_1 (XEXP (x, i)))
2873 return 1;
2875 else if (fmt[i] == 'E')
2876 for (j = 0; j < XVECLEN (x, i); j++)
2877 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2878 return 1;
2881 return 0;
2884 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2886 Tablejumps and casesi insns are not considered indirect jumps;
2887 we can recognize them by a (use (label_ref)). */
2890 computed_jump_p (rtx insn)
2892 int i;
2893 if (GET_CODE (insn) == JUMP_INSN)
2895 rtx pat = PATTERN (insn);
2897 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2898 return 0;
2899 else if (GET_CODE (pat) == PARALLEL)
2901 int len = XVECLEN (pat, 0);
2902 int has_use_labelref = 0;
2904 for (i = len - 1; i >= 0; i--)
2905 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2906 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2907 == LABEL_REF))
2908 has_use_labelref = 1;
2910 if (! has_use_labelref)
2911 for (i = len - 1; i >= 0; i--)
2912 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2913 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2914 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2915 return 1;
2917 else if (GET_CODE (pat) == SET
2918 && SET_DEST (pat) == pc_rtx
2919 && computed_jump_p_1 (SET_SRC (pat)))
2920 return 1;
2922 return 0;
2925 /* Traverse X via depth-first search, calling F for each
2926 sub-expression (including X itself). F is also passed the DATA.
2927 If F returns -1, do not traverse sub-expressions, but continue
2928 traversing the rest of the tree. If F ever returns any other
2929 nonzero value, stop the traversal, and return the value returned
2930 by F. Otherwise, return 0. This function does not traverse inside
2931 tree structure that contains RTX_EXPRs, or into sub-expressions
2932 whose format code is `0' since it is not known whether or not those
2933 codes are actually RTL.
2935 This routine is very general, and could (should?) be used to
2936 implement many of the other routines in this file. */
2939 for_each_rtx (rtx *x, rtx_function f, void *data)
2941 int result;
2942 int length;
2943 const char *format;
2944 int i;
2946 /* Call F on X. */
2947 result = (*f) (x, data);
2948 if (result == -1)
2949 /* Do not traverse sub-expressions. */
2950 return 0;
2951 else if (result != 0)
2952 /* Stop the traversal. */
2953 return result;
2955 if (*x == NULL_RTX)
2956 /* There are no sub-expressions. */
2957 return 0;
2959 length = GET_RTX_LENGTH (GET_CODE (*x));
2960 format = GET_RTX_FORMAT (GET_CODE (*x));
2962 for (i = 0; i < length; ++i)
2964 switch (format[i])
2966 case 'e':
2967 result = for_each_rtx (&XEXP (*x, i), f, data);
2968 if (result != 0)
2969 return result;
2970 break;
2972 case 'V':
2973 case 'E':
2974 if (XVEC (*x, i) != 0)
2976 int j;
2977 for (j = 0; j < XVECLEN (*x, i); ++j)
2979 result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
2980 if (result != 0)
2981 return result;
2984 break;
2986 default:
2987 /* Nothing to do. */
2988 break;
2993 return 0;
2996 /* Searches X for any reference to REGNO, returning the rtx of the
2997 reference found if any. Otherwise, returns NULL_RTX. */
3000 regno_use_in (unsigned int regno, rtx x)
3002 const char *fmt;
3003 int i, j;
3004 rtx tem;
3006 if (GET_CODE (x) == REG && REGNO (x) == regno)
3007 return x;
3009 fmt = GET_RTX_FORMAT (GET_CODE (x));
3010 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3012 if (fmt[i] == 'e')
3014 if ((tem = regno_use_in (regno, XEXP (x, i))))
3015 return tem;
3017 else if (fmt[i] == 'E')
3018 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3019 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3020 return tem;
3023 return NULL_RTX;
3026 /* Return a value indicating whether OP, an operand of a commutative
3027 operation, is preferred as the first or second operand. The higher
3028 the value, the stronger the preference for being the first operand.
3029 We use negative values to indicate a preference for the first operand
3030 and positive values for the second operand. */
3033 commutative_operand_precedence (rtx op)
3035 enum rtx_code code = GET_CODE (op);
3037 /* Constants always come the second operand. Prefer "nice" constants. */
3038 if (code == CONST_INT)
3039 return -7;
3040 if (code == CONST_DOUBLE)
3041 return -6;
3042 op = avoid_constant_pool_reference (op);
3044 switch (GET_RTX_CLASS (code))
3046 case RTX_CONST_OBJ:
3047 if (code == CONST_INT)
3048 return -5;
3049 if (code == CONST_DOUBLE)
3050 return -4;
3051 return -3;
3053 case RTX_EXTRA:
3054 /* SUBREGs of objects should come second. */
3055 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3056 return -2;
3058 if (!CONSTANT_P (op))
3059 return 0;
3060 else
3061 /* As for RTX_CONST_OBJ. */
3062 return -3;
3064 case RTX_OBJ:
3065 /* Complex expressions should be the first, so decrease priority
3066 of objects. */
3067 return -1;
3069 case RTX_COMM_ARITH:
3070 /* Prefer operands that are themselves commutative to be first.
3071 This helps to make things linear. In particular,
3072 (and (and (reg) (reg)) (not (reg))) is canonical. */
3073 return 4;
3075 case RTX_BIN_ARITH:
3076 /* If only one operand is a binary expression, it will be the first
3077 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3078 is canonical, although it will usually be further simplified. */
3079 return 2;
3081 case RTX_UNARY:
3082 /* Then prefer NEG and NOT. */
3083 if (code == NEG || code == NOT)
3084 return 1;
3086 default:
3087 return 0;
3091 /* Return 1 iff it is necessary to swap operands of commutative operation
3092 in order to canonicalize expression. */
3095 swap_commutative_operands_p (rtx x, rtx y)
3097 return (commutative_operand_precedence (x)
3098 < commutative_operand_precedence (y));
3101 /* Return 1 if X is an autoincrement side effect and the register is
3102 not the stack pointer. */
3104 auto_inc_p (rtx x)
3106 switch (GET_CODE (x))
3108 case PRE_INC:
3109 case POST_INC:
3110 case PRE_DEC:
3111 case POST_DEC:
3112 case PRE_MODIFY:
3113 case POST_MODIFY:
3114 /* There are no REG_INC notes for SP. */
3115 if (XEXP (x, 0) != stack_pointer_rtx)
3116 return 1;
3117 default:
3118 break;
3120 return 0;
3123 /* Return 1 if the sequence of instructions beginning with FROM and up
3124 to and including TO is safe to move. If NEW_TO is non-NULL, and
3125 the sequence is not already safe to move, but can be easily
3126 extended to a sequence which is safe, then NEW_TO will point to the
3127 end of the extended sequence.
3129 For now, this function only checks that the region contains whole
3130 exception regions, but it could be extended to check additional
3131 conditions as well. */
3134 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
3136 int eh_region_count = 0;
3137 int past_to_p = 0;
3138 rtx r = from;
3140 /* By default, assume the end of the region will be what was
3141 suggested. */
3142 if (new_to)
3143 *new_to = to;
3145 while (r)
3147 if (GET_CODE (r) == NOTE)
3149 switch (NOTE_LINE_NUMBER (r))
3151 case NOTE_INSN_EH_REGION_BEG:
3152 ++eh_region_count;
3153 break;
3155 case NOTE_INSN_EH_REGION_END:
3156 if (eh_region_count == 0)
3157 /* This sequence of instructions contains the end of
3158 an exception region, but not he beginning. Moving
3159 it will cause chaos. */
3160 return 0;
3162 --eh_region_count;
3163 break;
3165 default:
3166 break;
3169 else if (past_to_p)
3170 /* If we've passed TO, and we see a non-note instruction, we
3171 can't extend the sequence to a movable sequence. */
3172 return 0;
3174 if (r == to)
3176 if (!new_to)
3177 /* It's OK to move the sequence if there were matched sets of
3178 exception region notes. */
3179 return eh_region_count == 0;
3181 past_to_p = 1;
3184 /* It's OK to move the sequence if there were matched sets of
3185 exception region notes. */
3186 if (past_to_p && eh_region_count == 0)
3188 *new_to = r;
3189 return 1;
3192 /* Go to the next instruction. */
3193 r = NEXT_INSN (r);
3196 return 0;
3199 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3201 loc_mentioned_in_p (rtx *loc, rtx in)
3203 enum rtx_code code = GET_CODE (in);
3204 const char *fmt = GET_RTX_FORMAT (code);
3205 int i, j;
3207 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3209 if (loc == &in->u.fld[i].rtx)
3210 return 1;
3211 if (fmt[i] == 'e')
3213 if (loc_mentioned_in_p (loc, XEXP (in, i)))
3214 return 1;
3216 else if (fmt[i] == 'E')
3217 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3218 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3219 return 1;
3221 return 0;
3224 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3225 and SUBREG_BYTE, return the bit offset where the subreg begins
3226 (counting from the least significant bit of the operand). */
3228 unsigned int
3229 subreg_lsb_1 (enum machine_mode outer_mode,
3230 enum machine_mode inner_mode,
3231 unsigned int subreg_byte)
3233 unsigned int bitpos;
3234 unsigned int byte;
3235 unsigned int word;
3237 /* A paradoxical subreg begins at bit position 0. */
3238 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3239 return 0;
3241 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3242 /* If the subreg crosses a word boundary ensure that
3243 it also begins and ends on a word boundary. */
3244 if ((subreg_byte % UNITS_PER_WORD
3245 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3246 && (subreg_byte % UNITS_PER_WORD
3247 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD))
3248 abort ();
3250 if (WORDS_BIG_ENDIAN)
3251 word = (GET_MODE_SIZE (inner_mode)
3252 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3253 else
3254 word = subreg_byte / UNITS_PER_WORD;
3255 bitpos = word * BITS_PER_WORD;
3257 if (BYTES_BIG_ENDIAN)
3258 byte = (GET_MODE_SIZE (inner_mode)
3259 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3260 else
3261 byte = subreg_byte % UNITS_PER_WORD;
3262 bitpos += byte * BITS_PER_UNIT;
3264 return bitpos;
3267 /* Given a subreg X, return the bit offset where the subreg begins
3268 (counting from the least significant bit of the reg). */
3270 unsigned int
3271 subreg_lsb (rtx x)
3273 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3274 SUBREG_BYTE (x));
3277 /* This function returns the regno offset of a subreg expression.
3278 xregno - A regno of an inner hard subreg_reg (or what will become one).
3279 xmode - The mode of xregno.
3280 offset - The byte offset.
3281 ymode - The mode of a top level SUBREG (or what may become one).
3282 RETURN - The regno offset which would be used. */
3283 unsigned int
3284 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3285 unsigned int offset, enum machine_mode ymode)
3287 int nregs_xmode, nregs_ymode;
3288 int mode_multiple, nregs_multiple;
3289 int y_offset;
3291 if (xregno >= FIRST_PSEUDO_REGISTER)
3292 abort ();
3294 nregs_xmode = hard_regno_nregs[xregno][xmode];
3295 nregs_ymode = hard_regno_nregs[xregno][ymode];
3297 /* If this is a big endian paradoxical subreg, which uses more actual
3298 hard registers than the original register, we must return a negative
3299 offset so that we find the proper highpart of the register. */
3300 if (offset == 0
3301 && nregs_ymode > nregs_xmode
3302 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3303 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3304 return nregs_xmode - nregs_ymode;
3306 if (offset == 0 || nregs_xmode == nregs_ymode)
3307 return 0;
3309 /* size of ymode must not be greater than the size of xmode. */
3310 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3311 if (mode_multiple == 0)
3312 abort ();
3314 y_offset = offset / GET_MODE_SIZE (ymode);
3315 nregs_multiple = nregs_xmode / nregs_ymode;
3316 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3319 /* This function returns true when the offset is representable via
3320 subreg_offset in the given regno.
3321 xregno - A regno of an inner hard subreg_reg (or what will become one).
3322 xmode - The mode of xregno.
3323 offset - The byte offset.
3324 ymode - The mode of a top level SUBREG (or what may become one).
3325 RETURN - The regno offset which would be used. */
3326 bool
3327 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3328 unsigned int offset, enum machine_mode ymode)
3330 int nregs_xmode, nregs_ymode;
3331 int mode_multiple, nregs_multiple;
3332 int y_offset;
3334 if (xregno >= FIRST_PSEUDO_REGISTER)
3335 abort ();
3337 nregs_xmode = hard_regno_nregs[xregno][xmode];
3338 nregs_ymode = hard_regno_nregs[xregno][ymode];
3340 /* Paradoxical subregs are always valid. */
3341 if (offset == 0
3342 && nregs_ymode > nregs_xmode
3343 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3344 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3345 return true;
3347 /* Lowpart subregs are always valid. */
3348 if (offset == subreg_lowpart_offset (ymode, xmode))
3349 return true;
3351 #ifdef ENABLE_CHECKING
3352 /* This should always pass, otherwise we don't know how to verify the
3353 constraint. These conditions may be relaxed but subreg_offset would
3354 need to be redesigned. */
3355 if (GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)
3356 || GET_MODE_SIZE (ymode) % nregs_ymode
3357 || nregs_xmode % nregs_ymode)
3358 abort ();
3359 #endif
3361 /* The XMODE value can be seen as a vector of NREGS_XMODE
3362 values. The subreg must represent a lowpart of given field.
3363 Compute what field it is. */
3364 offset -= subreg_lowpart_offset (ymode,
3365 mode_for_size (GET_MODE_BITSIZE (xmode)
3366 / nregs_xmode,
3367 MODE_INT, 0));
3369 /* size of ymode must not be greater than the size of xmode. */
3370 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3371 if (mode_multiple == 0)
3372 abort ();
3374 y_offset = offset / GET_MODE_SIZE (ymode);
3375 nregs_multiple = nregs_xmode / nregs_ymode;
3376 #ifdef ENABLE_CHECKING
3377 if (offset % GET_MODE_SIZE (ymode)
3378 || mode_multiple % nregs_multiple)
3379 abort ();
3380 #endif
3381 return (!(y_offset % (mode_multiple / nregs_multiple)));
3384 /* Return the final regno that a subreg expression refers to. */
3385 unsigned int
3386 subreg_regno (rtx x)
3388 unsigned int ret;
3389 rtx subreg = SUBREG_REG (x);
3390 int regno = REGNO (subreg);
3392 ret = regno + subreg_regno_offset (regno,
3393 GET_MODE (subreg),
3394 SUBREG_BYTE (x),
3395 GET_MODE (x));
3396 return ret;
3399 struct parms_set_data
3401 int nregs;
3402 HARD_REG_SET regs;
3405 /* Helper function for noticing stores to parameter registers. */
3406 static void
3407 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3409 struct parms_set_data *d = data;
3410 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3411 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3413 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3414 d->nregs--;
3418 /* Look backward for first parameter to be loaded.
3419 Do not skip BOUNDARY. */
3421 find_first_parameter_load (rtx call_insn, rtx boundary)
3423 struct parms_set_data parm;
3424 rtx p, before;
3426 /* Since different machines initialize their parameter registers
3427 in different orders, assume nothing. Collect the set of all
3428 parameter registers. */
3429 CLEAR_HARD_REG_SET (parm.regs);
3430 parm.nregs = 0;
3431 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3432 if (GET_CODE (XEXP (p, 0)) == USE
3433 && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
3435 if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
3436 abort ();
3438 /* We only care about registers which can hold function
3439 arguments. */
3440 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3441 continue;
3443 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3444 parm.nregs++;
3446 before = call_insn;
3448 /* Search backward for the first set of a register in this set. */
3449 while (parm.nregs && before != boundary)
3451 before = PREV_INSN (before);
3453 /* It is possible that some loads got CSEed from one call to
3454 another. Stop in that case. */
3455 if (GET_CODE (before) == CALL_INSN)
3456 break;
3458 /* Our caller needs either ensure that we will find all sets
3459 (in case code has not been optimized yet), or take care
3460 for possible labels in a way by setting boundary to preceding
3461 CODE_LABEL. */
3462 if (GET_CODE (before) == CODE_LABEL)
3464 if (before != boundary)
3465 abort ();
3466 break;
3469 if (INSN_P (before))
3470 note_stores (PATTERN (before), parms_set, &parm);
3472 return before;
3475 /* Return true if we should avoid inserting code between INSN and preceding
3476 call instruction. */
3478 bool
3479 keep_with_call_p (rtx insn)
3481 rtx set;
3483 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3485 if (GET_CODE (SET_DEST (set)) == REG
3486 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3487 && fixed_regs[REGNO (SET_DEST (set))]
3488 && general_operand (SET_SRC (set), VOIDmode))
3489 return true;
3490 if (GET_CODE (SET_SRC (set)) == REG
3491 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3492 && GET_CODE (SET_DEST (set)) == REG
3493 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3494 return true;
3495 /* There may be a stack pop just after the call and before the store
3496 of the return register. Search for the actual store when deciding
3497 if we can break or not. */
3498 if (SET_DEST (set) == stack_pointer_rtx)
3500 rtx i2 = next_nonnote_insn (insn);
3501 if (i2 && keep_with_call_p (i2))
3502 return true;
3505 return false;
3508 /* Return true when store to register X can be hoisted to the place
3509 with LIVE registers (can be NULL). Value VAL contains destination
3510 whose value will be used. */
3512 static bool
3513 hoist_test_store (rtx x, rtx val, regset live)
3515 if (GET_CODE (x) == SCRATCH)
3516 return true;
3518 if (rtx_equal_p (x, val))
3519 return true;
3521 /* Allow subreg of X in case it is not writing just part of multireg pseudo.
3522 Then we would need to update all users to care hoisting the store too.
3523 Caller may represent that by specifying whole subreg as val. */
3525 if (GET_CODE (x) == SUBREG && rtx_equal_p (SUBREG_REG (x), val))
3527 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
3528 && GET_MODE_BITSIZE (GET_MODE (x)) <
3529 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
3530 return false;
3531 return true;
3533 if (GET_CODE (x) == SUBREG)
3534 x = SUBREG_REG (x);
3536 /* Anything except register store is not hoistable. This includes the
3537 partial stores to registers. */
3539 if (!REG_P (x))
3540 return false;
3542 /* Pseudo registers can be always replaced by another pseudo to avoid
3543 the side effect, for hard register we must ensure that they are dead.
3544 Eventually we may want to add code to try turn pseudos to hards, but it
3545 is unlikely useful. */
3547 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3549 int regno = REGNO (x);
3550 int n = hard_regno_nregs[regno][GET_MODE (x)];
3552 if (!live)
3553 return false;
3554 if (REGNO_REG_SET_P (live, regno))
3555 return false;
3556 while (--n > 0)
3557 if (REGNO_REG_SET_P (live, regno + n))
3558 return false;
3560 return true;
3564 /* Return true if INSN can be hoisted to place with LIVE hard registers
3565 (LIVE can be NULL when unknown). VAL is expected to be stored by the insn
3566 and used by the hoisting pass. */
3568 bool
3569 can_hoist_insn_p (rtx insn, rtx val, regset live)
3571 rtx pat = PATTERN (insn);
3572 int i;
3574 /* It probably does not worth the complexity to handle multiple
3575 set stores. */
3576 if (!single_set (insn))
3577 return false;
3578 /* We can move CALL_INSN, but we need to check that all caller clobbered
3579 regs are dead. */
3580 if (GET_CODE (insn) == CALL_INSN)
3581 return false;
3582 /* In future we will handle hoisting of libcall sequences, but
3583 give up for now. */
3584 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
3585 return false;
3586 switch (GET_CODE (pat))
3588 case SET:
3589 if (!hoist_test_store (SET_DEST (pat), val, live))
3590 return false;
3591 break;
3592 case USE:
3593 /* USES do have sick semantics, so do not move them. */
3594 return false;
3595 break;
3596 case CLOBBER:
3597 if (!hoist_test_store (XEXP (pat, 0), val, live))
3598 return false;
3599 break;
3600 case PARALLEL:
3601 for (i = 0; i < XVECLEN (pat, 0); i++)
3603 rtx x = XVECEXP (pat, 0, i);
3604 switch (GET_CODE (x))
3606 case SET:
3607 if (!hoist_test_store (SET_DEST (x), val, live))
3608 return false;
3609 break;
3610 case USE:
3611 /* We need to fix callers to really ensure availability
3612 of all values insn uses, but for now it is safe to prohibit
3613 hoisting of any insn having such a hidden uses. */
3614 return false;
3615 break;
3616 case CLOBBER:
3617 if (!hoist_test_store (SET_DEST (x), val, live))
3618 return false;
3619 break;
3620 default:
3621 break;
3624 break;
3625 default:
3626 abort ();
3628 return true;
3631 /* Update store after hoisting - replace all stores to pseudo registers
3632 by new ones to avoid clobbering of values except for store to VAL that will
3633 be updated to NEW. */
3635 static void
3636 hoist_update_store (rtx insn, rtx *xp, rtx val, rtx new)
3638 rtx x = *xp;
3640 if (GET_CODE (x) == SCRATCH)
3641 return;
3643 if (GET_CODE (x) == SUBREG && SUBREG_REG (x) == val)
3644 validate_change (insn, xp,
3645 simplify_gen_subreg (GET_MODE (x), new, GET_MODE (new),
3646 SUBREG_BYTE (x)), 1);
3647 if (rtx_equal_p (x, val))
3649 validate_change (insn, xp, new, 1);
3650 return;
3652 if (GET_CODE (x) == SUBREG)
3654 xp = &SUBREG_REG (x);
3655 x = *xp;
3658 if (!REG_P (x))
3659 abort ();
3661 /* We've verified that hard registers are dead, so we may keep the side
3662 effect. Otherwise replace it by new pseudo. */
3663 if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
3664 validate_change (insn, xp, gen_reg_rtx (GET_MODE (x)), 1);
3665 REG_NOTES (insn)
3666 = alloc_EXPR_LIST (REG_UNUSED, *xp, REG_NOTES (insn));
3669 /* Create a copy of INSN after AFTER replacing store of VAL to NEW
3670 and each other side effect to pseudo register by new pseudo register. */
3673 hoist_insn_after (rtx insn, rtx after, rtx val, rtx new)
3675 rtx pat;
3676 int i;
3677 rtx note;
3679 insn = emit_copy_of_insn_after (insn, after);
3680 pat = PATTERN (insn);
3682 /* Remove REG_UNUSED notes as we will re-emit them. */
3683 while ((note = find_reg_note (insn, REG_UNUSED, NULL_RTX)))
3684 remove_note (insn, note);
3686 /* To get this working callers must ensure to move everything referenced
3687 by REG_EQUAL/REG_EQUIV notes too. Lets remove them, it is probably
3688 easier. */
3689 while ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX)))
3690 remove_note (insn, note);
3691 while ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)))
3692 remove_note (insn, note);
3694 /* Remove REG_DEAD notes as they might not be valid anymore in case
3695 we create redundancy. */
3696 while ((note = find_reg_note (insn, REG_DEAD, NULL_RTX)))
3697 remove_note (insn, note);
3698 switch (GET_CODE (pat))
3700 case SET:
3701 hoist_update_store (insn, &SET_DEST (pat), val, new);
3702 break;
3703 case USE:
3704 break;
3705 case CLOBBER:
3706 hoist_update_store (insn, &XEXP (pat, 0), val, new);
3707 break;
3708 case PARALLEL:
3709 for (i = 0; i < XVECLEN (pat, 0); i++)
3711 rtx x = XVECEXP (pat, 0, i);
3712 switch (GET_CODE (x))
3714 case SET:
3715 hoist_update_store (insn, &SET_DEST (x), val, new);
3716 break;
3717 case USE:
3718 break;
3719 case CLOBBER:
3720 hoist_update_store (insn, &SET_DEST (x), val, new);
3721 break;
3722 default:
3723 break;
3726 break;
3727 default:
3728 abort ();
3730 if (!apply_change_group ())
3731 abort ();
3733 return insn;
3737 hoist_insn_to_edge (rtx insn, edge e, rtx val, rtx new)
3739 rtx new_insn;
3741 /* We cannot insert instructions on an abnormal critical edge.
3742 It will be easier to find the culprit if we die now. */
3743 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
3744 abort ();
3746 /* Do not use emit_insn_on_edge as we want to preserve notes and similar
3747 stuff. We also emit CALL_INSNS and friends. */
3748 if (e->insns == NULL_RTX)
3750 start_sequence ();
3751 emit_note (NOTE_INSN_DELETED);
3753 else
3754 push_to_sequence (e->insns);
3756 new_insn = hoist_insn_after (insn, get_last_insn (), val, new);
3758 e->insns = get_insns ();
3759 end_sequence ();
3760 return new_insn;
3763 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3764 to non-complex jumps. That is, direct unconditional, conditional,
3765 and tablejumps, but not computed jumps or returns. It also does
3766 not apply to the fallthru case of a conditional jump. */
3768 bool
3769 label_is_jump_target_p (rtx label, rtx jump_insn)
3771 rtx tmp = JUMP_LABEL (jump_insn);
3773 if (label == tmp)
3774 return true;
3776 if (tablejump_p (jump_insn, NULL, &tmp))
3778 rtvec vec = XVEC (PATTERN (tmp),
3779 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3780 int i, veclen = GET_NUM_ELEM (vec);
3782 for (i = 0; i < veclen; ++i)
3783 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3784 return true;
3787 return false;
3791 /* Return an estimate of the cost of computing rtx X.
3792 One use is in cse, to decide which expression to keep in the hash table.
3793 Another is in rtl generation, to pick the cheapest way to multiply.
3794 Other uses like the latter are expected in the future. */
3797 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3799 int i, j;
3800 enum rtx_code code;
3801 const char *fmt;
3802 int total;
3804 if (x == 0)
3805 return 0;
3807 /* Compute the default costs of certain things.
3808 Note that targetm.rtx_costs can override the defaults. */
3810 code = GET_CODE (x);
3811 switch (code)
3813 case MULT:
3814 total = COSTS_N_INSNS (5);
3815 break;
3816 case DIV:
3817 case UDIV:
3818 case MOD:
3819 case UMOD:
3820 total = COSTS_N_INSNS (7);
3821 break;
3822 case USE:
3823 /* Used in loop.c and combine.c as a marker. */
3824 total = 0;
3825 break;
3826 default:
3827 total = COSTS_N_INSNS (1);
3830 switch (code)
3832 case REG:
3833 return 0;
3835 case SUBREG:
3836 /* If we can't tie these modes, make this expensive. The larger
3837 the mode, the more expensive it is. */
3838 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3839 return COSTS_N_INSNS (2
3840 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3841 break;
3843 default:
3844 if (targetm.rtx_costs (x, code, outer_code, &total))
3845 return total;
3846 break;
3849 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3850 which is already in total. */
3852 fmt = GET_RTX_FORMAT (code);
3853 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3854 if (fmt[i] == 'e')
3855 total += rtx_cost (XEXP (x, i), code);
3856 else if (fmt[i] == 'E')
3857 for (j = 0; j < XVECLEN (x, i); j++)
3858 total += rtx_cost (XVECEXP (x, i, j), code);
3860 return total;
3863 /* Return cost of address expression X.
3864 Expect that X is properly formed address reference. */
3867 address_cost (rtx x, enum machine_mode mode)
3869 /* The address_cost target hook does not deal with ADDRESSOF nodes. But,
3870 during CSE, such nodes are present. Using an ADDRESSOF node which
3871 refers to the address of a REG is a good thing because we can then
3872 turn (MEM (ADDRESSOF (REG))) into just plain REG. */
3874 if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
3875 return -1;
3877 /* We may be asked for cost of various unusual addresses, such as operands
3878 of push instruction. It is not worthwhile to complicate writing
3879 of the target hook by such cases. */
3881 if (!memory_address_p (mode, x))
3882 return 1000;
3884 return targetm.address_cost (x);
3887 /* If the target doesn't override, compute the cost as with arithmetic. */
3890 default_address_cost (rtx x)
3892 return rtx_cost (x, MEM);