(thumb_jump): Reduce the backward branch range, and increase the forward branch
[official-gcc.git] / gcc / optabs.c
blob0dfc093a7c14e2fa540f0e4289d809ed01e5d8da
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
55 See expr.h for documentation of these optabs. */
57 optab optab_table[OTI_MAX];
59 rtx libfunc_table[LTI_MAX];
61 /* Tables of patterns for converting one mode to another. */
62 convert_optab convert_optab_table[CTI_MAX];
64 /* Contains the optab used for each rtx code. */
65 optab code_to_optab[NUM_RTX_CODE + 1];
67 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
68 gives the gen_function to make a branch to test that condition. */
70 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
72 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
73 gives the insn code to make a store-condition insn
74 to test that condition. */
76 enum insn_code setcc_gen_code[NUM_RTX_CODE];
78 #ifdef HAVE_conditional_move
79 /* Indexed by the machine mode, gives the insn code to make a conditional
80 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
81 setcc_gen_code to cut down on the number of named patterns. Consider a day
82 when a lot more rtx codes are conditional (eg: for the ARM). */
84 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
85 #endif
87 /* The insn generating function can not take an rtx_code argument.
88 TRAP_RTX is used as an rtx argument. Its code is replaced with
89 the code to be used in the trap insn and all other fields are ignored. */
90 static GTY(()) rtx trap_rtx;
92 static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
93 static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
94 int);
95 static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx,
96 enum machine_mode, int,
97 enum optab_methods, enum mode_class,
98 optab);
99 static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx,
100 enum machine_mode, int, enum optab_methods,
101 enum mode_class, optab);
102 static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
103 enum machine_mode *, int *,
104 enum can_compare_purpose);
105 static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
106 int *);
107 static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
108 static optab new_optab (void);
109 static convert_optab new_convert_optab (void);
110 static inline optab init_optab (enum rtx_code);
111 static inline optab init_optabv (enum rtx_code);
112 static inline convert_optab init_convert_optab (enum rtx_code);
113 static void init_libfuncs (optab, int, int, const char *, int);
114 static void init_integral_libfuncs (optab, const char *, int);
115 static void init_floating_libfuncs (optab, const char *, int);
116 static void init_interclass_conv_libfuncs (convert_optab, const char *,
117 enum mode_class, enum mode_class);
118 static void init_intraclass_conv_libfuncs (convert_optab, const char *,
119 enum mode_class, bool);
120 static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
121 enum rtx_code, int, rtx);
122 static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
123 enum machine_mode *, int *);
124 static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
125 enum optab_methods);
126 static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int);
127 static rtx widen_clz (enum machine_mode, rtx, rtx);
128 static rtx expand_parity (enum machine_mode, rtx, rtx);
130 #ifndef HAVE_conditional_trap
131 #define HAVE_conditional_trap 0
132 #define gen_conditional_trap(a,b) (abort (), NULL_RTX)
133 #endif
135 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
136 the result of operation CODE applied to OP0 (and OP1 if it is a binary
137 operation).
139 If the last insn does not set TARGET, don't do anything, but return 1.
141 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
142 don't add the REG_EQUAL note but return 0. Our caller can then try
143 again, ensuring that TARGET is not one of the operands. */
145 static int
146 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
148 rtx last_insn, insn, set;
149 rtx note;
151 if (! insns
152 || ! INSN_P (insns)
153 || NEXT_INSN (insns) == NULL_RTX)
154 abort ();
156 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
157 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
158 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
159 && GET_RTX_CLASS (code) != RTX_COMPARE
160 && GET_RTX_CLASS (code) != RTX_UNARY)
161 return 1;
163 if (GET_CODE (target) == ZERO_EXTRACT)
164 return 1;
166 for (last_insn = insns;
167 NEXT_INSN (last_insn) != NULL_RTX;
168 last_insn = NEXT_INSN (last_insn))
171 set = single_set (last_insn);
172 if (set == NULL_RTX)
173 return 1;
175 if (! rtx_equal_p (SET_DEST (set), target)
176 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
177 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
178 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
179 return 1;
181 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
182 besides the last insn. */
183 if (reg_overlap_mentioned_p (target, op0)
184 || (op1 && reg_overlap_mentioned_p (target, op1)))
186 insn = PREV_INSN (last_insn);
187 while (insn != NULL_RTX)
189 if (reg_set_p (target, insn))
190 return 0;
192 insn = PREV_INSN (insn);
196 if (GET_RTX_CLASS (code) == RTX_UNARY)
197 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
198 else
199 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
201 set_unique_reg_note (last_insn, REG_EQUAL, note);
203 return 1;
206 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
207 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
208 not actually do a sign-extend or zero-extend, but can leave the
209 higher-order bits of the result rtx undefined, for example, in the case
210 of logical operations, but not right shifts. */
212 static rtx
213 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
214 int unsignedp, int no_extend)
216 rtx result;
218 /* If we don't have to extend and this is a constant, return it. */
219 if (no_extend && GET_MODE (op) == VOIDmode)
220 return op;
222 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
223 extend since it will be more efficient to do so unless the signedness of
224 a promoted object differs from our extension. */
225 if (! no_extend
226 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
227 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
228 return convert_modes (mode, oldmode, op, unsignedp);
230 /* If MODE is no wider than a single word, we return a paradoxical
231 SUBREG. */
232 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
233 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
235 /* Otherwise, get an object of MODE, clobber it, and set the low-order
236 part to OP. */
238 result = gen_reg_rtx (mode);
239 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
240 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
241 return result;
244 /* Generate code to perform a straightforward complex divide. */
246 static int
247 expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1,
248 rtx realr, rtx imagr, enum machine_mode submode,
249 int unsignedp, enum optab_methods methods,
250 enum mode_class class, optab binoptab)
252 rtx divisor;
253 rtx real_t, imag_t;
254 rtx temp1, temp2;
255 rtx res;
256 optab this_add_optab = add_optab;
257 optab this_sub_optab = sub_optab;
258 optab this_neg_optab = neg_optab;
259 optab this_mul_optab = smul_optab;
261 if (binoptab == sdivv_optab)
263 this_add_optab = addv_optab;
264 this_sub_optab = subv_optab;
265 this_neg_optab = negv_optab;
266 this_mul_optab = smulv_optab;
269 /* Don't fetch these from memory more than once. */
270 real0 = force_reg (submode, real0);
271 real1 = force_reg (submode, real1);
273 if (imag0 != 0)
274 imag0 = force_reg (submode, imag0);
276 imag1 = force_reg (submode, imag1);
278 /* Divisor: c*c + d*d. */
279 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
280 NULL_RTX, unsignedp, methods);
282 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
283 NULL_RTX, unsignedp, methods);
285 if (temp1 == 0 || temp2 == 0)
286 return 0;
288 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
289 NULL_RTX, unsignedp, methods);
290 if (divisor == 0)
291 return 0;
293 if (imag0 == 0)
295 /* Mathematically, ((a)(c-id))/divisor. */
296 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
298 /* Calculate the dividend. */
299 real_t = expand_binop (submode, this_mul_optab, real0, real1,
300 NULL_RTX, unsignedp, methods);
302 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
303 NULL_RTX, unsignedp, methods);
305 if (real_t == 0 || imag_t == 0)
306 return 0;
308 imag_t = expand_unop (submode, this_neg_optab, imag_t,
309 NULL_RTX, unsignedp);
311 else
313 /* Mathematically, ((a+ib)(c-id))/divider. */
314 /* Calculate the dividend. */
315 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
316 NULL_RTX, unsignedp, methods);
318 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
319 NULL_RTX, unsignedp, methods);
321 if (temp1 == 0 || temp2 == 0)
322 return 0;
324 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
325 NULL_RTX, unsignedp, methods);
327 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
328 NULL_RTX, unsignedp, methods);
330 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
331 NULL_RTX, unsignedp, methods);
333 if (temp1 == 0 || temp2 == 0)
334 return 0;
336 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
337 NULL_RTX, unsignedp, methods);
339 if (real_t == 0 || imag_t == 0)
340 return 0;
343 if (class == MODE_COMPLEX_FLOAT)
344 res = expand_binop (submode, binoptab, real_t, divisor,
345 realr, unsignedp, methods);
346 else
347 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
348 real_t, divisor, realr, unsignedp);
350 if (res == 0)
351 return 0;
353 if (res != realr)
354 emit_move_insn (realr, res);
356 if (class == MODE_COMPLEX_FLOAT)
357 res = expand_binop (submode, binoptab, imag_t, divisor,
358 imagr, unsignedp, methods);
359 else
360 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
361 imag_t, divisor, imagr, unsignedp);
363 if (res == 0)
364 return 0;
366 if (res != imagr)
367 emit_move_insn (imagr, res);
369 return 1;
372 /* Generate code to perform a wide-input-range-acceptable complex divide. */
374 static int
375 expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr,
376 rtx imagr, enum machine_mode submode, int unsignedp,
377 enum optab_methods methods, enum mode_class class,
378 optab binoptab)
380 rtx ratio, divisor;
381 rtx real_t, imag_t;
382 rtx temp1, temp2, lab1, lab2;
383 enum machine_mode mode;
384 rtx res;
385 optab this_add_optab = add_optab;
386 optab this_sub_optab = sub_optab;
387 optab this_neg_optab = neg_optab;
388 optab this_mul_optab = smul_optab;
390 if (binoptab == sdivv_optab)
392 this_add_optab = addv_optab;
393 this_sub_optab = subv_optab;
394 this_neg_optab = negv_optab;
395 this_mul_optab = smulv_optab;
398 /* Don't fetch these from memory more than once. */
399 real0 = force_reg (submode, real0);
400 real1 = force_reg (submode, real1);
402 if (imag0 != 0)
403 imag0 = force_reg (submode, imag0);
405 imag1 = force_reg (submode, imag1);
407 /* XXX What's an "unsigned" complex number? */
408 if (unsignedp)
410 temp1 = real1;
411 temp2 = imag1;
413 else
415 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
416 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
419 if (temp1 == 0 || temp2 == 0)
420 return 0;
422 mode = GET_MODE (temp1);
423 lab1 = gen_label_rtx ();
424 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
425 mode, unsignedp, lab1);
427 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
429 if (class == MODE_COMPLEX_FLOAT)
430 ratio = expand_binop (submode, binoptab, imag1, real1,
431 NULL_RTX, unsignedp, methods);
432 else
433 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
434 imag1, real1, NULL_RTX, unsignedp);
436 if (ratio == 0)
437 return 0;
439 /* Calculate divisor. */
441 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
442 NULL_RTX, unsignedp, methods);
444 if (temp1 == 0)
445 return 0;
447 divisor = expand_binop (submode, this_add_optab, temp1, real1,
448 NULL_RTX, unsignedp, methods);
450 if (divisor == 0)
451 return 0;
453 /* Calculate dividend. */
455 if (imag0 == 0)
457 real_t = real0;
459 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
461 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
462 NULL_RTX, unsignedp, methods);
464 if (imag_t == 0)
465 return 0;
467 imag_t = expand_unop (submode, this_neg_optab, imag_t,
468 NULL_RTX, unsignedp);
470 if (real_t == 0 || imag_t == 0)
471 return 0;
473 else
475 /* Compute (a+ib)/(c+id) as
476 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
478 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
479 NULL_RTX, unsignedp, methods);
481 if (temp1 == 0)
482 return 0;
484 real_t = expand_binop (submode, this_add_optab, temp1, real0,
485 NULL_RTX, unsignedp, methods);
487 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
488 NULL_RTX, unsignedp, methods);
490 if (temp1 == 0)
491 return 0;
493 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
494 NULL_RTX, unsignedp, methods);
496 if (real_t == 0 || imag_t == 0)
497 return 0;
500 if (class == MODE_COMPLEX_FLOAT)
501 res = expand_binop (submode, binoptab, real_t, divisor,
502 realr, unsignedp, methods);
503 else
504 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
505 real_t, divisor, realr, unsignedp);
507 if (res == 0)
508 return 0;
510 if (res != realr)
511 emit_move_insn (realr, res);
513 if (class == MODE_COMPLEX_FLOAT)
514 res = expand_binop (submode, binoptab, imag_t, divisor,
515 imagr, unsignedp, methods);
516 else
517 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
518 imag_t, divisor, imagr, unsignedp);
520 if (res == 0)
521 return 0;
523 if (res != imagr)
524 emit_move_insn (imagr, res);
526 lab2 = gen_label_rtx ();
527 emit_jump_insn (gen_jump (lab2));
528 emit_barrier ();
530 emit_label (lab1);
532 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
534 if (class == MODE_COMPLEX_FLOAT)
535 ratio = expand_binop (submode, binoptab, real1, imag1,
536 NULL_RTX, unsignedp, methods);
537 else
538 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
539 real1, imag1, NULL_RTX, unsignedp);
541 if (ratio == 0)
542 return 0;
544 /* Calculate divisor. */
546 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
547 NULL_RTX, unsignedp, methods);
549 if (temp1 == 0)
550 return 0;
552 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
553 NULL_RTX, unsignedp, methods);
555 if (divisor == 0)
556 return 0;
558 /* Calculate dividend. */
560 if (imag0 == 0)
562 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
564 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
565 NULL_RTX, unsignedp, methods);
567 imag_t = expand_unop (submode, this_neg_optab, real0,
568 NULL_RTX, unsignedp);
570 if (real_t == 0 || imag_t == 0)
571 return 0;
573 else
575 /* Compute (a+ib)/(c+id) as
576 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
578 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
579 NULL_RTX, unsignedp, methods);
581 if (temp1 == 0)
582 return 0;
584 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
585 NULL_RTX, unsignedp, methods);
587 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
588 NULL_RTX, unsignedp, methods);
590 if (temp1 == 0)
591 return 0;
593 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
594 NULL_RTX, unsignedp, methods);
596 if (real_t == 0 || imag_t == 0)
597 return 0;
600 if (class == MODE_COMPLEX_FLOAT)
601 res = expand_binop (submode, binoptab, real_t, divisor,
602 realr, unsignedp, methods);
603 else
604 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
605 real_t, divisor, realr, unsignedp);
607 if (res == 0)
608 return 0;
610 if (res != realr)
611 emit_move_insn (realr, res);
613 if (class == MODE_COMPLEX_FLOAT)
614 res = expand_binop (submode, binoptab, imag_t, divisor,
615 imagr, unsignedp, methods);
616 else
617 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
618 imag_t, divisor, imagr, unsignedp);
620 if (res == 0)
621 return 0;
623 if (res != imagr)
624 emit_move_insn (imagr, res);
626 emit_label (lab2);
628 return 1;
631 /* Wrapper around expand_binop which takes an rtx code to specify
632 the operation to perform, not an optab pointer. All other
633 arguments are the same. */
635 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
636 rtx op1, rtx target, int unsignedp,
637 enum optab_methods methods)
639 optab binop = code_to_optab[(int) code];
640 if (binop == 0)
641 abort ();
643 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
646 /* Generate code to perform an operation specified by BINOPTAB
647 on operands OP0 and OP1, with result having machine-mode MODE.
649 UNSIGNEDP is for the case where we have to widen the operands
650 to perform the operation. It says to use zero-extension.
652 If TARGET is nonzero, the value
653 is generated there, if it is convenient to do so.
654 In all cases an rtx is returned for the locus of the value;
655 this may or may not be TARGET. */
658 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
659 rtx target, int unsignedp, enum optab_methods methods)
661 enum optab_methods next_methods
662 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
663 ? OPTAB_WIDEN : methods);
664 enum mode_class class;
665 enum machine_mode wider_mode;
666 rtx temp;
667 int commutative_op = 0;
668 int shift_op = (binoptab->code == ASHIFT
669 || binoptab->code == ASHIFTRT
670 || binoptab->code == LSHIFTRT
671 || binoptab->code == ROTATE
672 || binoptab->code == ROTATERT);
673 rtx entry_last = get_last_insn ();
674 rtx last;
676 class = GET_MODE_CLASS (mode);
678 op0 = protect_from_queue (op0, 0);
679 op1 = protect_from_queue (op1, 0);
680 if (target)
681 target = protect_from_queue (target, 1);
683 if (flag_force_mem)
685 /* Load duplicate non-volatile operands once. */
686 if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
688 op0 = force_not_mem (op0);
689 op1 = op0;
691 else
693 op0 = force_not_mem (op0);
694 op1 = force_not_mem (op1);
698 /* If subtracting an integer constant, convert this into an addition of
699 the negated constant. */
701 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
703 op1 = negate_rtx (mode, op1);
704 binoptab = add_optab;
707 /* If we are inside an appropriately-short loop and one operand is an
708 expensive constant, force it into a register. */
709 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
710 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
711 op0 = force_reg (mode, op0);
713 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
714 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
715 op1 = force_reg (mode, op1);
717 /* Record where to delete back to if we backtrack. */
718 last = get_last_insn ();
720 /* If operation is commutative,
721 try to make the first operand a register.
722 Even better, try to make it the same as the target.
723 Also try to make the last operand a constant. */
724 if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
725 || binoptab == smul_widen_optab
726 || binoptab == umul_widen_optab
727 || binoptab == smul_highpart_optab
728 || binoptab == umul_highpart_optab)
730 commutative_op = 1;
732 if (((target == 0 || GET_CODE (target) == REG)
733 ? ((GET_CODE (op1) == REG
734 && GET_CODE (op0) != REG)
735 || target == op1)
736 : rtx_equal_p (op1, target))
737 || GET_CODE (op0) == CONST_INT)
739 temp = op1;
740 op1 = op0;
741 op0 = temp;
745 /* If we can do it with a three-operand insn, do so. */
747 if (methods != OPTAB_MUST_WIDEN
748 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
750 int icode = (int) binoptab->handlers[(int) mode].insn_code;
751 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
752 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
753 rtx pat;
754 rtx xop0 = op0, xop1 = op1;
756 if (target)
757 temp = target;
758 else
759 temp = gen_reg_rtx (mode);
761 /* If it is a commutative operator and the modes would match
762 if we would swap the operands, we can save the conversions. */
763 if (commutative_op)
765 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
766 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
768 rtx tmp;
770 tmp = op0; op0 = op1; op1 = tmp;
771 tmp = xop0; xop0 = xop1; xop1 = tmp;
775 /* In case the insn wants input operands in modes different from
776 those of the actual operands, convert the operands. It would
777 seem that we don't need to convert CONST_INTs, but we do, so
778 that they're properly zero-extended, sign-extended or truncated
779 for their mode. */
781 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
782 xop0 = convert_modes (mode0,
783 GET_MODE (op0) != VOIDmode
784 ? GET_MODE (op0)
785 : mode,
786 xop0, unsignedp);
788 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
789 xop1 = convert_modes (mode1,
790 GET_MODE (op1) != VOIDmode
791 ? GET_MODE (op1)
792 : mode,
793 xop1, unsignedp);
795 /* Now, if insn's predicates don't allow our operands, put them into
796 pseudo regs. */
798 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
799 && mode0 != VOIDmode)
800 xop0 = copy_to_mode_reg (mode0, xop0);
802 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
803 && mode1 != VOIDmode)
804 xop1 = copy_to_mode_reg (mode1, xop1);
806 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
807 temp = gen_reg_rtx (mode);
809 pat = GEN_FCN (icode) (temp, xop0, xop1);
810 if (pat)
812 /* If PAT is composed of more than one insn, try to add an appropriate
813 REG_EQUAL note to it. If we can't because TEMP conflicts with an
814 operand, call ourselves again, this time without a target. */
815 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
816 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
818 delete_insns_since (last);
819 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
820 unsignedp, methods);
823 emit_insn (pat);
824 return temp;
826 else
827 delete_insns_since (last);
830 /* If this is a multiply, see if we can do a widening operation that
831 takes operands of this mode and makes a wider mode. */
833 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
834 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
835 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
836 != CODE_FOR_nothing))
838 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
839 unsignedp ? umul_widen_optab : smul_widen_optab,
840 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
842 if (temp != 0)
844 if (GET_MODE_CLASS (mode) == MODE_INT)
845 return gen_lowpart (mode, temp);
846 else
847 return convert_to_mode (mode, temp, unsignedp);
851 /* Look for a wider mode of the same class for which we think we
852 can open-code the operation. Check for a widening multiply at the
853 wider mode as well. */
855 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
856 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
857 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
858 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
860 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
861 || (binoptab == smul_optab
862 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
863 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
864 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
865 != CODE_FOR_nothing)))
867 rtx xop0 = op0, xop1 = op1;
868 int no_extend = 0;
870 /* For certain integer operations, we need not actually extend
871 the narrow operands, as long as we will truncate
872 the results to the same narrowness. */
874 if ((binoptab == ior_optab || binoptab == and_optab
875 || binoptab == xor_optab
876 || binoptab == add_optab || binoptab == sub_optab
877 || binoptab == smul_optab || binoptab == ashl_optab)
878 && class == MODE_INT)
879 no_extend = 1;
881 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
883 /* The second operand of a shift must always be extended. */
884 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
885 no_extend && binoptab != ashl_optab);
887 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
888 unsignedp, OPTAB_DIRECT);
889 if (temp)
891 if (class != MODE_INT)
893 if (target == 0)
894 target = gen_reg_rtx (mode);
895 convert_move (target, temp, 0);
896 return target;
898 else
899 return gen_lowpart (mode, temp);
901 else
902 delete_insns_since (last);
906 /* These can be done a word at a time. */
907 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
908 && class == MODE_INT
909 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
910 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
912 int i;
913 rtx insns;
914 rtx equiv_value;
916 /* If TARGET is the same as one of the operands, the REG_EQUAL note
917 won't be accurate, so use a new target. */
918 if (target == 0 || target == op0 || target == op1)
919 target = gen_reg_rtx (mode);
921 start_sequence ();
923 /* Do the actual arithmetic. */
924 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
926 rtx target_piece = operand_subword (target, i, 1, mode);
927 rtx x = expand_binop (word_mode, binoptab,
928 operand_subword_force (op0, i, mode),
929 operand_subword_force (op1, i, mode),
930 target_piece, unsignedp, next_methods);
932 if (x == 0)
933 break;
935 if (target_piece != x)
936 emit_move_insn (target_piece, x);
939 insns = get_insns ();
940 end_sequence ();
942 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
944 if (binoptab->code != UNKNOWN)
945 equiv_value
946 = gen_rtx_fmt_ee (binoptab->code, mode,
947 copy_rtx (op0), copy_rtx (op1));
948 else
949 equiv_value = 0;
951 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
952 return target;
956 /* Synthesize double word shifts from single word shifts. */
957 if ((binoptab == lshr_optab || binoptab == ashl_optab
958 || binoptab == ashr_optab)
959 && class == MODE_INT
960 && GET_CODE (op1) == CONST_INT
961 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
962 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
963 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
964 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
966 rtx insns, inter, equiv_value;
967 rtx into_target, outof_target;
968 rtx into_input, outof_input;
969 int shift_count, left_shift, outof_word;
971 /* If TARGET is the same as one of the operands, the REG_EQUAL note
972 won't be accurate, so use a new target. */
973 if (target == 0 || target == op0 || target == op1)
974 target = gen_reg_rtx (mode);
976 start_sequence ();
978 shift_count = INTVAL (op1);
980 /* OUTOF_* is the word we are shifting bits away from, and
981 INTO_* is the word that we are shifting bits towards, thus
982 they differ depending on the direction of the shift and
983 WORDS_BIG_ENDIAN. */
985 left_shift = binoptab == ashl_optab;
986 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
988 outof_target = operand_subword (target, outof_word, 1, mode);
989 into_target = operand_subword (target, 1 - outof_word, 1, mode);
991 outof_input = operand_subword_force (op0, outof_word, mode);
992 into_input = operand_subword_force (op0, 1 - outof_word, mode);
994 if (shift_count >= BITS_PER_WORD)
996 inter = expand_binop (word_mode, binoptab,
997 outof_input,
998 GEN_INT (shift_count - BITS_PER_WORD),
999 into_target, unsignedp, next_methods);
1001 if (inter != 0 && inter != into_target)
1002 emit_move_insn (into_target, inter);
1004 /* For a signed right shift, we must fill the word we are shifting
1005 out of with copies of the sign bit. Otherwise it is zeroed. */
1006 if (inter != 0 && binoptab != ashr_optab)
1007 inter = CONST0_RTX (word_mode);
1008 else if (inter != 0)
1009 inter = expand_binop (word_mode, binoptab,
1010 outof_input,
1011 GEN_INT (BITS_PER_WORD - 1),
1012 outof_target, unsignedp, next_methods);
1014 if (inter != 0 && inter != outof_target)
1015 emit_move_insn (outof_target, inter);
1017 else
1019 rtx carries;
1020 optab reverse_unsigned_shift, unsigned_shift;
1022 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1023 we must do a logical shift in the opposite direction of the
1024 desired shift. */
1026 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1028 /* For a shift of less than BITS_PER_WORD, to compute the word
1029 shifted towards, we need to unsigned shift the orig value of
1030 that word. */
1032 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1034 carries = expand_binop (word_mode, reverse_unsigned_shift,
1035 outof_input,
1036 GEN_INT (BITS_PER_WORD - shift_count),
1037 0, unsignedp, next_methods);
1039 if (carries == 0)
1040 inter = 0;
1041 else
1042 inter = expand_binop (word_mode, unsigned_shift, into_input,
1043 op1, 0, unsignedp, next_methods);
1045 if (inter != 0)
1046 inter = expand_binop (word_mode, ior_optab, carries, inter,
1047 into_target, unsignedp, next_methods);
1049 if (inter != 0 && inter != into_target)
1050 emit_move_insn (into_target, inter);
1052 if (inter != 0)
1053 inter = expand_binop (word_mode, binoptab, outof_input,
1054 op1, outof_target, unsignedp, next_methods);
1056 if (inter != 0 && inter != outof_target)
1057 emit_move_insn (outof_target, inter);
1060 insns = get_insns ();
1061 end_sequence ();
1063 if (inter != 0)
1065 if (binoptab->code != UNKNOWN)
1066 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1067 else
1068 equiv_value = 0;
1070 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1071 return target;
1075 /* Synthesize double word rotates from single word shifts. */
1076 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1077 && class == MODE_INT
1078 && GET_CODE (op1) == CONST_INT
1079 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1080 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1081 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1083 rtx insns, equiv_value;
1084 rtx into_target, outof_target;
1085 rtx into_input, outof_input;
1086 rtx inter;
1087 int shift_count, left_shift, outof_word;
1089 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1090 won't be accurate, so use a new target. Do this also if target is not
1091 a REG, first because having a register instead may open optimization
1092 oportunities, and second because if target and op0 happen to be MEMs
1093 designating the same location, we would risk clobbering it too early
1094 in the code sequence we generate below. */
1095 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1096 target = gen_reg_rtx (mode);
1098 start_sequence ();
1100 shift_count = INTVAL (op1);
1102 /* OUTOF_* is the word we are shifting bits away from, and
1103 INTO_* is the word that we are shifting bits towards, thus
1104 they differ depending on the direction of the shift and
1105 WORDS_BIG_ENDIAN. */
1107 left_shift = (binoptab == rotl_optab);
1108 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1110 outof_target = operand_subword (target, outof_word, 1, mode);
1111 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1113 outof_input = operand_subword_force (op0, outof_word, mode);
1114 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1116 if (shift_count == BITS_PER_WORD)
1118 /* This is just a word swap. */
1119 emit_move_insn (outof_target, into_input);
1120 emit_move_insn (into_target, outof_input);
1121 inter = const0_rtx;
1123 else
1125 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1126 rtx first_shift_count, second_shift_count;
1127 optab reverse_unsigned_shift, unsigned_shift;
1129 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1130 ? lshr_optab : ashl_optab);
1132 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1133 ? ashl_optab : lshr_optab);
1135 if (shift_count > BITS_PER_WORD)
1137 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1138 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1140 else
1142 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1143 second_shift_count = GEN_INT (shift_count);
1146 into_temp1 = expand_binop (word_mode, unsigned_shift,
1147 outof_input, first_shift_count,
1148 NULL_RTX, unsignedp, next_methods);
1149 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1150 into_input, second_shift_count,
1151 NULL_RTX, unsignedp, next_methods);
1153 if (into_temp1 != 0 && into_temp2 != 0)
1154 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1155 into_target, unsignedp, next_methods);
1156 else
1157 inter = 0;
1159 if (inter != 0 && inter != into_target)
1160 emit_move_insn (into_target, inter);
1162 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1163 into_input, first_shift_count,
1164 NULL_RTX, unsignedp, next_methods);
1165 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1166 outof_input, second_shift_count,
1167 NULL_RTX, unsignedp, next_methods);
1169 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1170 inter = expand_binop (word_mode, ior_optab,
1171 outof_temp1, outof_temp2,
1172 outof_target, unsignedp, next_methods);
1174 if (inter != 0 && inter != outof_target)
1175 emit_move_insn (outof_target, inter);
1178 insns = get_insns ();
1179 end_sequence ();
1181 if (inter != 0)
1183 if (binoptab->code != UNKNOWN)
1184 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1185 else
1186 equiv_value = 0;
1188 /* We can't make this a no conflict block if this is a word swap,
1189 because the word swap case fails if the input and output values
1190 are in the same register. */
1191 if (shift_count != BITS_PER_WORD)
1192 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1193 else
1194 emit_insn (insns);
1197 return target;
1201 /* These can be done a word at a time by propagating carries. */
1202 if ((binoptab == add_optab || binoptab == sub_optab)
1203 && class == MODE_INT
1204 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1205 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1207 unsigned int i;
1208 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1209 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1210 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1211 rtx xop0, xop1, xtarget;
1213 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1214 value is one of those, use it. Otherwise, use 1 since it is the
1215 one easiest to get. */
1216 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1217 int normalizep = STORE_FLAG_VALUE;
1218 #else
1219 int normalizep = 1;
1220 #endif
1222 /* Prepare the operands. */
1223 xop0 = force_reg (mode, op0);
1224 xop1 = force_reg (mode, op1);
1226 xtarget = gen_reg_rtx (mode);
1228 if (target == 0 || GET_CODE (target) != REG)
1229 target = xtarget;
1231 /* Indicate for flow that the entire target reg is being set. */
1232 if (GET_CODE (target) == REG)
1233 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1235 /* Do the actual arithmetic. */
1236 for (i = 0; i < nwords; i++)
1238 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1239 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1240 rtx op0_piece = operand_subword_force (xop0, index, mode);
1241 rtx op1_piece = operand_subword_force (xop1, index, mode);
1242 rtx x;
1244 /* Main add/subtract of the input operands. */
1245 x = expand_binop (word_mode, binoptab,
1246 op0_piece, op1_piece,
1247 target_piece, unsignedp, next_methods);
1248 if (x == 0)
1249 break;
1251 if (i + 1 < nwords)
1253 /* Store carry from main add/subtract. */
1254 carry_out = gen_reg_rtx (word_mode);
1255 carry_out = emit_store_flag_force (carry_out,
1256 (binoptab == add_optab
1257 ? LT : GT),
1258 x, op0_piece,
1259 word_mode, 1, normalizep);
1262 if (i > 0)
1264 rtx newx;
1266 /* Add/subtract previous carry to main result. */
1267 newx = expand_binop (word_mode,
1268 normalizep == 1 ? binoptab : otheroptab,
1269 x, carry_in,
1270 NULL_RTX, 1, next_methods);
1272 if (i + 1 < nwords)
1274 /* Get out carry from adding/subtracting carry in. */
1275 rtx carry_tmp = gen_reg_rtx (word_mode);
1276 carry_tmp = emit_store_flag_force (carry_tmp,
1277 (binoptab == add_optab
1278 ? LT : GT),
1279 newx, x,
1280 word_mode, 1, normalizep);
1282 /* Logical-ior the two poss. carry together. */
1283 carry_out = expand_binop (word_mode, ior_optab,
1284 carry_out, carry_tmp,
1285 carry_out, 0, next_methods);
1286 if (carry_out == 0)
1287 break;
1289 emit_move_insn (target_piece, newx);
1292 carry_in = carry_out;
1295 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1297 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1298 || ! rtx_equal_p (target, xtarget))
1300 rtx temp = emit_move_insn (target, xtarget);
1302 set_unique_reg_note (temp,
1303 REG_EQUAL,
1304 gen_rtx_fmt_ee (binoptab->code, mode,
1305 copy_rtx (xop0),
1306 copy_rtx (xop1)));
1308 else
1309 target = xtarget;
1311 return target;
1314 else
1315 delete_insns_since (last);
1318 /* If we want to multiply two two-word values and have normal and widening
1319 multiplies of single-word values, we can do this with three smaller
1320 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1321 because we are not operating on one word at a time.
1323 The multiplication proceeds as follows:
1324 _______________________
1325 [__op0_high_|__op0_low__]
1326 _______________________
1327 * [__op1_high_|__op1_low__]
1328 _______________________________________________
1329 _______________________
1330 (1) [__op0_low__*__op1_low__]
1331 _______________________
1332 (2a) [__op0_low__*__op1_high_]
1333 _______________________
1334 (2b) [__op0_high_*__op1_low__]
1335 _______________________
1336 (3) [__op0_high_*__op1_high_]
1339 This gives a 4-word result. Since we are only interested in the
1340 lower 2 words, partial result (3) and the upper words of (2a) and
1341 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1342 calculated using non-widening multiplication.
1344 (1), however, needs to be calculated with an unsigned widening
1345 multiplication. If this operation is not directly supported we
1346 try using a signed widening multiplication and adjust the result.
1347 This adjustment works as follows:
1349 If both operands are positive then no adjustment is needed.
1351 If the operands have different signs, for example op0_low < 0 and
1352 op1_low >= 0, the instruction treats the most significant bit of
1353 op0_low as a sign bit instead of a bit with significance
1354 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1355 with 2**BITS_PER_WORD - op0_low, and two's complements the
1356 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1357 the result.
1359 Similarly, if both operands are negative, we need to add
1360 (op0_low + op1_low) * 2**BITS_PER_WORD.
1362 We use a trick to adjust quickly. We logically shift op0_low right
1363 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1364 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1365 logical shift exists, we do an arithmetic right shift and subtract
1366 the 0 or -1. */
1368 if (binoptab == smul_optab
1369 && class == MODE_INT
1370 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1371 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1372 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1373 && ((umul_widen_optab->handlers[(int) mode].insn_code
1374 != CODE_FOR_nothing)
1375 || (smul_widen_optab->handlers[(int) mode].insn_code
1376 != CODE_FOR_nothing)))
1378 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1379 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1380 rtx op0_high = operand_subword_force (op0, high, mode);
1381 rtx op0_low = operand_subword_force (op0, low, mode);
1382 rtx op1_high = operand_subword_force (op1, high, mode);
1383 rtx op1_low = operand_subword_force (op1, low, mode);
1384 rtx product = 0;
1385 rtx op0_xhigh = NULL_RTX;
1386 rtx op1_xhigh = NULL_RTX;
1388 /* If the target is the same as one of the inputs, don't use it. This
1389 prevents problems with the REG_EQUAL note. */
1390 if (target == op0 || target == op1
1391 || (target != 0 && GET_CODE (target) != REG))
1392 target = 0;
1394 /* Multiply the two lower words to get a double-word product.
1395 If unsigned widening multiplication is available, use that;
1396 otherwise use the signed form and compensate. */
1398 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1400 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1401 target, 1, OPTAB_DIRECT);
1403 /* If we didn't succeed, delete everything we did so far. */
1404 if (product == 0)
1405 delete_insns_since (last);
1406 else
1407 op0_xhigh = op0_high, op1_xhigh = op1_high;
1410 if (product == 0
1411 && smul_widen_optab->handlers[(int) mode].insn_code
1412 != CODE_FOR_nothing)
1414 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1415 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1416 target, 1, OPTAB_DIRECT);
1417 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1418 NULL_RTX, 1, next_methods);
1419 if (op0_xhigh)
1420 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1421 op0_xhigh, op0_xhigh, 0, next_methods);
1422 else
1424 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1425 NULL_RTX, 0, next_methods);
1426 if (op0_xhigh)
1427 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1428 op0_xhigh, op0_xhigh, 0,
1429 next_methods);
1432 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1433 NULL_RTX, 1, next_methods);
1434 if (op1_xhigh)
1435 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1436 op1_xhigh, op1_xhigh, 0, next_methods);
1437 else
1439 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1440 NULL_RTX, 0, next_methods);
1441 if (op1_xhigh)
1442 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1443 op1_xhigh, op1_xhigh, 0,
1444 next_methods);
1448 /* If we have been able to directly compute the product of the
1449 low-order words of the operands and perform any required adjustments
1450 of the operands, we proceed by trying two more multiplications
1451 and then computing the appropriate sum.
1453 We have checked above that the required addition is provided.
1454 Full-word addition will normally always succeed, especially if
1455 it is provided at all, so we don't worry about its failure. The
1456 multiplication may well fail, however, so we do handle that. */
1458 if (product && op0_xhigh && op1_xhigh)
1460 rtx product_high = operand_subword (product, high, 1, mode);
1461 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1462 NULL_RTX, 0, OPTAB_DIRECT);
1464 if (!REG_P (product_high))
1465 product_high = force_reg (word_mode, product_high);
1467 if (temp != 0)
1468 temp = expand_binop (word_mode, add_optab, temp, product_high,
1469 product_high, 0, next_methods);
1471 if (temp != 0 && temp != product_high)
1472 emit_move_insn (product_high, temp);
1474 if (temp != 0)
1475 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1476 NULL_RTX, 0, OPTAB_DIRECT);
1478 if (temp != 0)
1479 temp = expand_binop (word_mode, add_optab, temp,
1480 product_high, product_high,
1481 0, next_methods);
1483 if (temp != 0 && temp != product_high)
1484 emit_move_insn (product_high, temp);
1486 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1488 if (temp != 0)
1490 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1492 temp = emit_move_insn (product, product);
1493 set_unique_reg_note (temp,
1494 REG_EQUAL,
1495 gen_rtx_fmt_ee (MULT, mode,
1496 copy_rtx (op0),
1497 copy_rtx (op1)));
1500 return product;
1504 /* If we get here, we couldn't do it for some reason even though we
1505 originally thought we could. Delete anything we've emitted in
1506 trying to do it. */
1508 delete_insns_since (last);
1511 /* Open-code the vector operations if we have no hardware support
1512 for them. */
1513 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1514 return expand_vector_binop (mode, binoptab, op0, op1, target,
1515 unsignedp, methods);
1517 /* We need to open-code the complex type operations: '+, -, * and /' */
1519 /* At this point we allow operations between two similar complex
1520 numbers, and also if one of the operands is not a complex number
1521 but rather of MODE_FLOAT or MODE_INT. However, the caller
1522 must make sure that the MODE of the non-complex operand matches
1523 the SUBMODE of the complex operand. */
1525 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1527 rtx real0 = 0, imag0 = 0;
1528 rtx real1 = 0, imag1 = 0;
1529 rtx realr, imagr, res;
1530 rtx seq, result;
1531 int ok = 0;
1533 /* Find the correct mode for the real and imaginary parts. */
1534 enum machine_mode submode = GET_MODE_INNER (mode);
1536 if (submode == BLKmode)
1537 abort ();
1539 start_sequence ();
1541 if (GET_MODE (op0) == mode)
1543 real0 = gen_realpart (submode, op0);
1544 imag0 = gen_imagpart (submode, op0);
1546 else
1547 real0 = op0;
1549 if (GET_MODE (op1) == mode)
1551 real1 = gen_realpart (submode, op1);
1552 imag1 = gen_imagpart (submode, op1);
1554 else
1555 real1 = op1;
1557 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1558 abort ();
1560 result = gen_reg_rtx (mode);
1561 realr = gen_realpart (submode, result);
1562 imagr = gen_imagpart (submode, result);
1564 switch (binoptab->code)
1566 case PLUS:
1567 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1568 case MINUS:
1569 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1570 res = expand_binop (submode, binoptab, real0, real1,
1571 realr, unsignedp, methods);
1573 if (res == 0)
1574 break;
1575 else if (res != realr)
1576 emit_move_insn (realr, res);
1578 if (imag0 != 0 && imag1 != 0)
1579 res = expand_binop (submode, binoptab, imag0, imag1,
1580 imagr, unsignedp, methods);
1581 else if (imag0 != 0)
1582 res = imag0;
1583 else if (binoptab->code == MINUS)
1584 res = expand_unop (submode,
1585 binoptab == subv_optab ? negv_optab : neg_optab,
1586 imag1, imagr, unsignedp);
1587 else
1588 res = imag1;
1590 if (res == 0)
1591 break;
1592 else if (res != imagr)
1593 emit_move_insn (imagr, res);
1595 ok = 1;
1596 break;
1598 case MULT:
1599 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1601 if (imag0 != 0 && imag1 != 0)
1603 rtx temp1, temp2;
1605 /* Don't fetch these from memory more than once. */
1606 real0 = force_reg (submode, real0);
1607 real1 = force_reg (submode, real1);
1608 imag0 = force_reg (submode, imag0);
1609 imag1 = force_reg (submode, imag1);
1611 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1612 unsignedp, methods);
1614 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1615 unsignedp, methods);
1617 if (temp1 == 0 || temp2 == 0)
1618 break;
1620 res = (expand_binop
1621 (submode,
1622 binoptab == smulv_optab ? subv_optab : sub_optab,
1623 temp1, temp2, realr, unsignedp, methods));
1625 if (res == 0)
1626 break;
1627 else if (res != realr)
1628 emit_move_insn (realr, res);
1630 temp1 = expand_binop (submode, binoptab, real0, imag1,
1631 NULL_RTX, unsignedp, methods);
1633 /* Avoid expanding redundant multiplication for the common
1634 case of squaring a complex number. */
1635 if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1))
1636 temp2 = temp1;
1637 else
1638 temp2 = expand_binop (submode, binoptab, real1, imag0,
1639 NULL_RTX, unsignedp, methods);
1641 if (temp1 == 0 || temp2 == 0)
1642 break;
1644 res = (expand_binop
1645 (submode,
1646 binoptab == smulv_optab ? addv_optab : add_optab,
1647 temp1, temp2, imagr, unsignedp, methods));
1649 if (res == 0)
1650 break;
1651 else if (res != imagr)
1652 emit_move_insn (imagr, res);
1654 ok = 1;
1656 else
1658 /* Don't fetch these from memory more than once. */
1659 real0 = force_reg (submode, real0);
1660 real1 = force_reg (submode, real1);
1662 res = expand_binop (submode, binoptab, real0, real1,
1663 realr, unsignedp, methods);
1664 if (res == 0)
1665 break;
1666 else if (res != realr)
1667 emit_move_insn (realr, res);
1669 if (imag0 != 0)
1670 res = expand_binop (submode, binoptab,
1671 real1, imag0, imagr, unsignedp, methods);
1672 else
1673 res = expand_binop (submode, binoptab,
1674 real0, imag1, imagr, unsignedp, methods);
1676 if (res == 0)
1677 break;
1678 else if (res != imagr)
1679 emit_move_insn (imagr, res);
1681 ok = 1;
1683 break;
1685 case DIV:
1686 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1688 if (imag1 == 0)
1690 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1692 /* Don't fetch these from memory more than once. */
1693 real1 = force_reg (submode, real1);
1695 /* Simply divide the real and imaginary parts by `c' */
1696 if (class == MODE_COMPLEX_FLOAT)
1697 res = expand_binop (submode, binoptab, real0, real1,
1698 realr, unsignedp, methods);
1699 else
1700 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1701 real0, real1, realr, unsignedp);
1703 if (res == 0)
1704 break;
1705 else if (res != realr)
1706 emit_move_insn (realr, res);
1708 if (class == MODE_COMPLEX_FLOAT)
1709 res = expand_binop (submode, binoptab, imag0, real1,
1710 imagr, unsignedp, methods);
1711 else
1712 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1713 imag0, real1, imagr, unsignedp);
1715 if (res == 0)
1716 break;
1717 else if (res != imagr)
1718 emit_move_insn (imagr, res);
1720 ok = 1;
1722 else
1724 switch (flag_complex_divide_method)
1726 case 0:
1727 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1728 realr, imagr, submode,
1729 unsignedp, methods,
1730 class, binoptab);
1731 break;
1733 case 1:
1734 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1735 realr, imagr, submode,
1736 unsignedp, methods,
1737 class, binoptab);
1738 break;
1740 default:
1741 abort ();
1744 break;
1746 default:
1747 abort ();
1750 seq = get_insns ();
1751 end_sequence ();
1753 if (ok)
1755 rtx equiv = gen_rtx_fmt_ee (binoptab->code, mode,
1756 copy_rtx (op0), copy_rtx (op1));
1757 emit_no_conflict_block (seq, result, op0, op1, equiv);
1758 return result;
1762 /* It can't be open-coded in this mode.
1763 Use a library call if one is available and caller says that's ok. */
1765 if (binoptab->handlers[(int) mode].libfunc
1766 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1768 rtx insns;
1769 rtx op1x = op1;
1770 enum machine_mode op1_mode = mode;
1771 rtx value;
1773 start_sequence ();
1775 if (shift_op)
1777 op1_mode = word_mode;
1778 /* Specify unsigned here,
1779 since negative shift counts are meaningless. */
1780 op1x = convert_to_mode (word_mode, op1, 1);
1783 if (GET_MODE (op0) != VOIDmode
1784 && GET_MODE (op0) != mode)
1785 op0 = convert_to_mode (mode, op0, unsignedp);
1787 /* Pass 1 for NO_QUEUE so we don't lose any increments
1788 if the libcall is cse'd or moved. */
1789 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1790 NULL_RTX, LCT_CONST, mode, 2,
1791 op0, mode, op1x, op1_mode);
1793 insns = get_insns ();
1794 end_sequence ();
1796 target = gen_reg_rtx (mode);
1797 emit_libcall_block (insns, target, value,
1798 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1800 return target;
1803 delete_insns_since (last);
1805 /* It can't be done in this mode. Can we do it in a wider mode? */
1807 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1808 || methods == OPTAB_MUST_WIDEN))
1810 /* Caller says, don't even try. */
1811 delete_insns_since (entry_last);
1812 return 0;
1815 /* Compute the value of METHODS to pass to recursive calls.
1816 Don't allow widening to be tried recursively. */
1818 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1820 /* Look for a wider mode of the same class for which it appears we can do
1821 the operation. */
1823 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1825 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1826 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1828 if ((binoptab->handlers[(int) wider_mode].insn_code
1829 != CODE_FOR_nothing)
1830 || (methods == OPTAB_LIB
1831 && binoptab->handlers[(int) wider_mode].libfunc))
1833 rtx xop0 = op0, xop1 = op1;
1834 int no_extend = 0;
1836 /* For certain integer operations, we need not actually extend
1837 the narrow operands, as long as we will truncate
1838 the results to the same narrowness. */
1840 if ((binoptab == ior_optab || binoptab == and_optab
1841 || binoptab == xor_optab
1842 || binoptab == add_optab || binoptab == sub_optab
1843 || binoptab == smul_optab || binoptab == ashl_optab)
1844 && class == MODE_INT)
1845 no_extend = 1;
1847 xop0 = widen_operand (xop0, wider_mode, mode,
1848 unsignedp, no_extend);
1850 /* The second operand of a shift must always be extended. */
1851 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1852 no_extend && binoptab != ashl_optab);
1854 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1855 unsignedp, methods);
1856 if (temp)
1858 if (class != MODE_INT)
1860 if (target == 0)
1861 target = gen_reg_rtx (mode);
1862 convert_move (target, temp, 0);
1863 return target;
1865 else
1866 return gen_lowpart (mode, temp);
1868 else
1869 delete_insns_since (last);
1874 delete_insns_since (entry_last);
1875 return 0;
1878 /* Like expand_binop, but for open-coding vectors binops. */
1880 static rtx
1881 expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0,
1882 rtx op1, rtx target, int unsignedp,
1883 enum optab_methods methods)
1885 enum machine_mode submode, tmode;
1886 int size, elts, subsize, subbitsize, i;
1887 rtx t, a, b, res, seq;
1888 enum mode_class class;
1890 class = GET_MODE_CLASS (mode);
1892 size = GET_MODE_SIZE (mode);
1893 submode = GET_MODE_INNER (mode);
1895 /* Search for the widest vector mode with the same inner mode that is
1896 still narrower than MODE and that allows to open-code this operator.
1897 Note, if we find such a mode and the handler later decides it can't
1898 do the expansion, we'll be called recursively with the narrower mode. */
1899 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1900 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1901 tmode = GET_MODE_WIDER_MODE (tmode))
1903 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1904 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1905 submode = tmode;
1908 switch (binoptab->code)
1910 case AND:
1911 case IOR:
1912 case XOR:
1913 tmode = int_mode_for_mode (mode);
1914 if (tmode != BLKmode)
1915 submode = tmode;
1916 case PLUS:
1917 case MINUS:
1918 case MULT:
1919 case DIV:
1920 subsize = GET_MODE_SIZE (submode);
1921 subbitsize = GET_MODE_BITSIZE (submode);
1922 elts = size / subsize;
1924 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1925 but that we operate on more than one element at a time. */
1926 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1927 return 0;
1929 start_sequence ();
1931 /* Errors can leave us with a const0_rtx as operand. */
1932 if (GET_MODE (op0) != mode)
1933 op0 = copy_to_mode_reg (mode, op0);
1934 if (GET_MODE (op1) != mode)
1935 op1 = copy_to_mode_reg (mode, op1);
1937 if (!target)
1938 target = gen_reg_rtx (mode);
1940 for (i = 0; i < elts; ++i)
1942 /* If this is part of a register, and not the first item in the
1943 word, we can't store using a SUBREG - that would clobber
1944 previous results.
1945 And storing with a SUBREG is only possible for the least
1946 significant part, hence we can't do it for big endian
1947 (unless we want to permute the evaluation order. */
1948 if (GET_CODE (target) == REG
1949 && (BYTES_BIG_ENDIAN
1950 ? subsize < UNITS_PER_WORD
1951 : ((i * subsize) % UNITS_PER_WORD) != 0))
1952 t = NULL_RTX;
1953 else
1954 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1955 if (CONSTANT_P (op0))
1956 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1957 else
1958 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1959 NULL_RTX, submode, submode, size);
1960 if (CONSTANT_P (op1))
1961 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1962 else
1963 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1964 NULL_RTX, submode, submode, size);
1966 if (binoptab->code == DIV)
1968 if (class == MODE_VECTOR_FLOAT)
1969 res = expand_binop (submode, binoptab, a, b, t,
1970 unsignedp, methods);
1971 else
1972 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1973 a, b, t, unsignedp);
1975 else
1976 res = expand_binop (submode, binoptab, a, b, t,
1977 unsignedp, methods);
1979 if (res == 0)
1980 break;
1982 if (t)
1983 emit_move_insn (t, res);
1984 else
1985 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
1986 size);
1988 break;
1990 default:
1991 abort ();
1994 seq = get_insns ();
1995 end_sequence ();
1996 emit_insn (seq);
1998 return target;
2001 /* Like expand_unop but for open-coding vector unops. */
2003 static rtx
2004 expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0,
2005 rtx target, int unsignedp)
2007 enum machine_mode submode, tmode;
2008 int size, elts, subsize, subbitsize, i;
2009 rtx t, a, res, seq;
2011 size = GET_MODE_SIZE (mode);
2012 submode = GET_MODE_INNER (mode);
2014 /* Search for the widest vector mode with the same inner mode that is
2015 still narrower than MODE and that allows to open-code this operator.
2016 Note, if we find such a mode and the handler later decides it can't
2017 do the expansion, we'll be called recursively with the narrower mode. */
2018 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2019 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2020 tmode = GET_MODE_WIDER_MODE (tmode))
2022 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2023 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2024 submode = tmode;
2026 /* If there is no negate operation, try doing a subtract from zero. */
2027 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2028 /* Avoid infinite recursion when an
2029 error has left us with the wrong mode. */
2030 && GET_MODE (op0) == mode)
2032 rtx temp;
2033 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2034 target, unsignedp, OPTAB_DIRECT);
2035 if (temp)
2036 return temp;
2039 if (unoptab == one_cmpl_optab)
2041 tmode = int_mode_for_mode (mode);
2042 if (tmode != BLKmode)
2043 submode = tmode;
2046 subsize = GET_MODE_SIZE (submode);
2047 subbitsize = GET_MODE_BITSIZE (submode);
2048 elts = size / subsize;
2050 /* Errors can leave us with a const0_rtx as operand. */
2051 if (GET_MODE (op0) != mode)
2052 op0 = copy_to_mode_reg (mode, op0);
2054 if (!target)
2055 target = gen_reg_rtx (mode);
2057 start_sequence ();
2059 for (i = 0; i < elts; ++i)
2061 /* If this is part of a register, and not the first item in the
2062 word, we can't store using a SUBREG - that would clobber
2063 previous results.
2064 And storing with a SUBREG is only possible for the least
2065 significant part, hence we can't do it for big endian
2066 (unless we want to permute the evaluation order. */
2067 if (GET_CODE (target) == REG
2068 && (BYTES_BIG_ENDIAN
2069 ? subsize < UNITS_PER_WORD
2070 : ((i * subsize) % UNITS_PER_WORD) != 0))
2071 t = NULL_RTX;
2072 else
2073 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2074 if (CONSTANT_P (op0))
2075 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2076 else
2077 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2078 t, submode, submode, size);
2080 res = expand_unop (submode, unoptab, a, t, unsignedp);
2082 if (t)
2083 emit_move_insn (t, res);
2084 else
2085 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2086 size);
2089 seq = get_insns ();
2090 end_sequence ();
2091 emit_insn (seq);
2093 return target;
2096 /* Expand a binary operator which has both signed and unsigned forms.
2097 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2098 signed operations.
2100 If we widen unsigned operands, we may use a signed wider operation instead
2101 of an unsigned wider operation, since the result would be the same. */
2104 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2105 rtx op0, rtx op1, rtx target, int unsignedp,
2106 enum optab_methods methods)
2108 rtx temp;
2109 optab direct_optab = unsignedp ? uoptab : soptab;
2110 struct optab wide_soptab;
2112 /* Do it without widening, if possible. */
2113 temp = expand_binop (mode, direct_optab, op0, op1, target,
2114 unsignedp, OPTAB_DIRECT);
2115 if (temp || methods == OPTAB_DIRECT)
2116 return temp;
2118 /* Try widening to a signed int. Make a fake signed optab that
2119 hides any signed insn for direct use. */
2120 wide_soptab = *soptab;
2121 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2122 wide_soptab.handlers[(int) mode].libfunc = 0;
2124 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2125 unsignedp, OPTAB_WIDEN);
2127 /* For unsigned operands, try widening to an unsigned int. */
2128 if (temp == 0 && unsignedp)
2129 temp = expand_binop (mode, uoptab, op0, op1, target,
2130 unsignedp, OPTAB_WIDEN);
2131 if (temp || methods == OPTAB_WIDEN)
2132 return temp;
2134 /* Use the right width lib call if that exists. */
2135 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2136 if (temp || methods == OPTAB_LIB)
2137 return temp;
2139 /* Must widen and use a lib call, use either signed or unsigned. */
2140 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2141 unsignedp, methods);
2142 if (temp != 0)
2143 return temp;
2144 if (unsignedp)
2145 return expand_binop (mode, uoptab, op0, op1, target,
2146 unsignedp, methods);
2147 return 0;
2150 /* Generate code to perform an operation specified by BINOPTAB
2151 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2152 We assume that the order of the operands for the instruction
2153 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2154 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2156 Either TARG0 or TARG1 may be zero, but what that means is that
2157 the result is not actually wanted. We will generate it into
2158 a dummy pseudo-reg and discard it. They may not both be zero.
2160 Returns 1 if this operation can be performed; 0 if not. */
2163 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2164 int unsignedp)
2166 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2167 enum mode_class class;
2168 enum machine_mode wider_mode;
2169 rtx entry_last = get_last_insn ();
2170 rtx last;
2172 class = GET_MODE_CLASS (mode);
2174 op0 = protect_from_queue (op0, 0);
2175 op1 = protect_from_queue (op1, 0);
2177 if (flag_force_mem)
2179 op0 = force_not_mem (op0);
2180 op1 = force_not_mem (op1);
2183 /* If we are inside an appropriately-short loop and one operand is an
2184 expensive constant, force it into a register. */
2185 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2186 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2187 op0 = force_reg (mode, op0);
2189 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2190 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2191 op1 = force_reg (mode, op1);
2193 if (targ0)
2194 targ0 = protect_from_queue (targ0, 1);
2195 else
2196 targ0 = gen_reg_rtx (mode);
2197 if (targ1)
2198 targ1 = protect_from_queue (targ1, 1);
2199 else
2200 targ1 = gen_reg_rtx (mode);
2202 /* Record where to go back to if we fail. */
2203 last = get_last_insn ();
2205 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2207 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2208 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2209 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2210 rtx pat;
2211 rtx xop0 = op0, xop1 = op1;
2213 /* In case the insn wants input operands in modes different from
2214 those of the actual operands, convert the operands. It would
2215 seem that we don't need to convert CONST_INTs, but we do, so
2216 that they're properly zero-extended, sign-extended or truncated
2217 for their mode. */
2219 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2220 xop0 = convert_modes (mode0,
2221 GET_MODE (op0) != VOIDmode
2222 ? GET_MODE (op0)
2223 : mode,
2224 xop0, unsignedp);
2226 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2227 xop1 = convert_modes (mode1,
2228 GET_MODE (op1) != VOIDmode
2229 ? GET_MODE (op1)
2230 : mode,
2231 xop1, unsignedp);
2233 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2234 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2235 xop0 = copy_to_mode_reg (mode0, xop0);
2237 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2238 xop1 = copy_to_mode_reg (mode1, xop1);
2240 /* We could handle this, but we should always be called with a pseudo
2241 for our targets and all insns should take them as outputs. */
2242 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2243 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2244 abort ();
2246 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2247 if (pat)
2249 emit_insn (pat);
2250 return 1;
2252 else
2253 delete_insns_since (last);
2256 /* It can't be done in this mode. Can we do it in a wider mode? */
2258 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2260 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2261 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2263 if (binoptab->handlers[(int) wider_mode].insn_code
2264 != CODE_FOR_nothing)
2266 rtx t0 = gen_reg_rtx (wider_mode);
2267 rtx t1 = gen_reg_rtx (wider_mode);
2268 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2269 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2271 if (expand_twoval_binop (binoptab, cop0, cop1,
2272 t0, t1, unsignedp))
2274 convert_move (targ0, t0, unsignedp);
2275 convert_move (targ1, t1, unsignedp);
2276 return 1;
2278 else
2279 delete_insns_since (last);
2284 delete_insns_since (entry_last);
2285 return 0;
2288 /* Wrapper around expand_unop which takes an rtx code to specify
2289 the operation to perform, not an optab pointer. All other
2290 arguments are the same. */
2292 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2293 rtx target, int unsignedp)
2295 optab unop = code_to_optab[(int) code];
2296 if (unop == 0)
2297 abort ();
2299 return expand_unop (mode, unop, op0, target, unsignedp);
2302 /* Try calculating
2303 (clz:narrow x)
2305 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2306 static rtx
2307 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2309 enum mode_class class = GET_MODE_CLASS (mode);
2310 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2312 enum machine_mode wider_mode;
2313 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2314 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2316 if (clz_optab->handlers[(int) wider_mode].insn_code
2317 != CODE_FOR_nothing)
2319 rtx xop0, temp, last;
2321 last = get_last_insn ();
2323 if (target == 0)
2324 target = gen_reg_rtx (mode);
2325 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2326 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2327 if (temp != 0)
2328 temp = expand_binop (wider_mode, sub_optab, temp,
2329 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2330 - GET_MODE_BITSIZE (mode)),
2331 target, true, OPTAB_DIRECT);
2332 if (temp == 0)
2333 delete_insns_since (last);
2335 return temp;
2339 return 0;
2342 /* Try calculating (parity x) as (and (popcount x) 1), where
2343 popcount can also be done in a wider mode. */
2344 static rtx
2345 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2347 enum mode_class class = GET_MODE_CLASS (mode);
2348 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2350 enum machine_mode wider_mode;
2351 for (wider_mode = mode; wider_mode != VOIDmode;
2352 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2354 if (popcount_optab->handlers[(int) wider_mode].insn_code
2355 != CODE_FOR_nothing)
2357 rtx xop0, temp, last;
2359 last = get_last_insn ();
2361 if (target == 0)
2362 target = gen_reg_rtx (mode);
2363 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2364 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2365 true);
2366 if (temp != 0)
2367 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2368 target, true, OPTAB_DIRECT);
2369 if (temp == 0)
2370 delete_insns_since (last);
2372 return temp;
2376 return 0;
2379 /* Generate code to perform an operation specified by UNOPTAB
2380 on operand OP0, with result having machine-mode MODE.
2382 UNSIGNEDP is for the case where we have to widen the operands
2383 to perform the operation. It says to use zero-extension.
2385 If TARGET is nonzero, the value
2386 is generated there, if it is convenient to do so.
2387 In all cases an rtx is returned for the locus of the value;
2388 this may or may not be TARGET. */
2391 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2392 int unsignedp)
2394 enum mode_class class;
2395 enum machine_mode wider_mode;
2396 rtx temp;
2397 rtx last = get_last_insn ();
2398 rtx pat;
2400 class = GET_MODE_CLASS (mode);
2402 op0 = protect_from_queue (op0, 0);
2404 if (flag_force_mem)
2406 op0 = force_not_mem (op0);
2409 if (target)
2410 target = protect_from_queue (target, 1);
2412 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2414 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2415 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2416 rtx xop0 = op0;
2418 if (target)
2419 temp = target;
2420 else
2421 temp = gen_reg_rtx (mode);
2423 if (GET_MODE (xop0) != VOIDmode
2424 && GET_MODE (xop0) != mode0)
2425 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2427 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2429 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2430 xop0 = copy_to_mode_reg (mode0, xop0);
2432 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2433 temp = gen_reg_rtx (mode);
2435 pat = GEN_FCN (icode) (temp, xop0);
2436 if (pat)
2438 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2439 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2441 delete_insns_since (last);
2442 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2445 emit_insn (pat);
2447 return temp;
2449 else
2450 delete_insns_since (last);
2453 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2455 /* Widening clz needs special treatment. */
2456 if (unoptab == clz_optab)
2458 temp = widen_clz (mode, op0, target);
2459 if (temp)
2460 return temp;
2461 else
2462 goto try_libcall;
2465 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2466 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2467 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2469 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2471 rtx xop0 = op0;
2473 /* For certain operations, we need not actually extend
2474 the narrow operand, as long as we will truncate the
2475 results to the same narrowness. */
2477 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2478 (unoptab == neg_optab
2479 || unoptab == one_cmpl_optab)
2480 && class == MODE_INT);
2482 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2483 unsignedp);
2485 if (temp)
2487 if (class != MODE_INT)
2489 if (target == 0)
2490 target = gen_reg_rtx (mode);
2491 convert_move (target, temp, 0);
2492 return target;
2494 else
2495 return gen_lowpart (mode, temp);
2497 else
2498 delete_insns_since (last);
2502 /* These can be done a word at a time. */
2503 if (unoptab == one_cmpl_optab
2504 && class == MODE_INT
2505 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2506 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2508 int i;
2509 rtx insns;
2511 if (target == 0 || target == op0)
2512 target = gen_reg_rtx (mode);
2514 start_sequence ();
2516 /* Do the actual arithmetic. */
2517 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2519 rtx target_piece = operand_subword (target, i, 1, mode);
2520 rtx x = expand_unop (word_mode, unoptab,
2521 operand_subword_force (op0, i, mode),
2522 target_piece, unsignedp);
2524 if (target_piece != x)
2525 emit_move_insn (target_piece, x);
2528 insns = get_insns ();
2529 end_sequence ();
2531 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2532 gen_rtx_fmt_e (unoptab->code, mode,
2533 copy_rtx (op0)));
2534 return target;
2537 /* Open-code the complex negation operation. */
2538 else if (unoptab->code == NEG
2539 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2541 rtx target_piece;
2542 rtx x;
2543 rtx seq;
2545 /* Find the correct mode for the real and imaginary parts. */
2546 enum machine_mode submode = GET_MODE_INNER (mode);
2548 if (submode == BLKmode)
2549 abort ();
2551 if (target == 0)
2552 target = gen_reg_rtx (mode);
2554 start_sequence ();
2556 target_piece = gen_imagpart (submode, target);
2557 x = expand_unop (submode, unoptab,
2558 gen_imagpart (submode, op0),
2559 target_piece, unsignedp);
2560 if (target_piece != x)
2561 emit_move_insn (target_piece, x);
2563 target_piece = gen_realpart (submode, target);
2564 x = expand_unop (submode, unoptab,
2565 gen_realpart (submode, op0),
2566 target_piece, unsignedp);
2567 if (target_piece != x)
2568 emit_move_insn (target_piece, x);
2570 seq = get_insns ();
2571 end_sequence ();
2573 emit_no_conflict_block (seq, target, op0, 0,
2574 gen_rtx_fmt_e (unoptab->code, mode,
2575 copy_rtx (op0)));
2576 return target;
2579 /* Try negating floating point values by flipping the sign bit. */
2580 if (unoptab->code == NEG && class == MODE_FLOAT
2581 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2583 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2584 enum machine_mode imode = int_mode_for_mode (mode);
2585 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2587 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2589 HOST_WIDE_INT hi, lo;
2590 rtx last = get_last_insn ();
2592 /* Handle targets with different FP word orders. */
2593 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2595 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2596 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2597 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2600 if (bitpos < HOST_BITS_PER_WIDE_INT)
2602 hi = 0;
2603 lo = (HOST_WIDE_INT) 1 << bitpos;
2605 else
2607 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2608 lo = 0;
2610 temp = expand_binop (imode, xor_optab,
2611 gen_lowpart (imode, op0),
2612 immed_double_const (lo, hi, imode),
2613 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2614 if (temp != 0)
2616 rtx insn;
2617 if (target == 0)
2618 target = gen_reg_rtx (mode);
2619 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2620 set_unique_reg_note (insn, REG_EQUAL,
2621 gen_rtx_fmt_e (NEG, mode,
2622 copy_rtx (op0)));
2623 return target;
2625 delete_insns_since (last);
2629 /* Try calculating parity (x) as popcount (x) % 2. */
2630 if (unoptab == parity_optab)
2632 temp = expand_parity (mode, op0, target);
2633 if (temp)
2634 return temp;
2637 try_libcall:
2638 /* Now try a library call in this mode. */
2639 if (unoptab->handlers[(int) mode].libfunc)
2641 rtx insns;
2642 rtx value;
2643 enum machine_mode outmode = mode;
2645 /* All of these functions return small values. Thus we choose to
2646 have them return something that isn't a double-word. */
2647 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2648 || unoptab == popcount_optab || unoptab == parity_optab)
2649 outmode
2650 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
2652 start_sequence ();
2654 /* Pass 1 for NO_QUEUE so we don't lose any increments
2655 if the libcall is cse'd or moved. */
2656 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2657 NULL_RTX, LCT_CONST, outmode,
2658 1, op0, mode);
2659 insns = get_insns ();
2660 end_sequence ();
2662 target = gen_reg_rtx (outmode);
2663 emit_libcall_block (insns, target, value,
2664 gen_rtx_fmt_e (unoptab->code, mode, op0));
2666 return target;
2669 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2670 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2672 /* It can't be done in this mode. Can we do it in a wider mode? */
2674 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2676 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2677 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2679 if ((unoptab->handlers[(int) wider_mode].insn_code
2680 != CODE_FOR_nothing)
2681 || unoptab->handlers[(int) wider_mode].libfunc)
2683 rtx xop0 = op0;
2685 /* For certain operations, we need not actually extend
2686 the narrow operand, as long as we will truncate the
2687 results to the same narrowness. */
2689 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2690 (unoptab == neg_optab
2691 || unoptab == one_cmpl_optab)
2692 && class == MODE_INT);
2694 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2695 unsignedp);
2697 /* If we are generating clz using wider mode, adjust the
2698 result. */
2699 if (unoptab == clz_optab && temp != 0)
2700 temp = expand_binop (wider_mode, sub_optab, temp,
2701 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2702 - GET_MODE_BITSIZE (mode)),
2703 target, true, OPTAB_DIRECT);
2705 if (temp)
2707 if (class != MODE_INT)
2709 if (target == 0)
2710 target = gen_reg_rtx (mode);
2711 convert_move (target, temp, 0);
2712 return target;
2714 else
2715 return gen_lowpart (mode, temp);
2717 else
2718 delete_insns_since (last);
2723 /* If there is no negate operation, try doing a subtract from zero.
2724 The US Software GOFAST library needs this. */
2725 if (unoptab->code == NEG)
2727 rtx temp;
2728 temp = expand_binop (mode,
2729 unoptab == negv_optab ? subv_optab : sub_optab,
2730 CONST0_RTX (mode), op0,
2731 target, unsignedp, OPTAB_LIB_WIDEN);
2732 if (temp)
2733 return temp;
2736 return 0;
2739 /* Emit code to compute the absolute value of OP0, with result to
2740 TARGET if convenient. (TARGET may be 0.) The return value says
2741 where the result actually is to be found.
2743 MODE is the mode of the operand; the mode of the result is
2744 different but can be deduced from MODE.
2749 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
2750 int result_unsignedp)
2752 rtx temp;
2754 if (! flag_trapv)
2755 result_unsignedp = 1;
2757 /* First try to do it with a special abs instruction. */
2758 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2759 op0, target, 0);
2760 if (temp != 0)
2761 return temp;
2763 /* For floating point modes, try clearing the sign bit. */
2764 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2765 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2767 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2768 enum machine_mode imode = int_mode_for_mode (mode);
2769 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2771 if (imode != BLKmode && bitpos >= 0)
2773 HOST_WIDE_INT hi, lo;
2774 rtx last = get_last_insn ();
2776 /* Handle targets with different FP word orders. */
2777 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2779 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2780 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2781 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2784 if (bitpos < HOST_BITS_PER_WIDE_INT)
2786 hi = 0;
2787 lo = (HOST_WIDE_INT) 1 << bitpos;
2789 else
2791 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2792 lo = 0;
2794 temp = expand_binop (imode, and_optab,
2795 gen_lowpart (imode, op0),
2796 immed_double_const (~lo, ~hi, imode),
2797 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2798 if (temp != 0)
2800 rtx insn;
2801 if (target == 0)
2802 target = gen_reg_rtx (mode);
2803 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2804 set_unique_reg_note (insn, REG_EQUAL,
2805 gen_rtx_fmt_e (ABS, mode,
2806 copy_rtx (op0)));
2807 return target;
2809 delete_insns_since (last);
2813 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2814 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2816 rtx last = get_last_insn ();
2818 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2819 if (temp != 0)
2820 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2821 OPTAB_WIDEN);
2823 if (temp != 0)
2824 return temp;
2826 delete_insns_since (last);
2829 /* If this machine has expensive jumps, we can do integer absolute
2830 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2831 where W is the width of MODE. */
2833 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2835 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2836 size_int (GET_MODE_BITSIZE (mode) - 1),
2837 NULL_RTX, 0);
2839 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2840 OPTAB_LIB_WIDEN);
2841 if (temp != 0)
2842 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2843 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2845 if (temp != 0)
2846 return temp;
2849 return NULL_RTX;
2853 expand_abs (enum machine_mode mode, rtx op0, rtx target,
2854 int result_unsignedp, int safe)
2856 rtx temp, op1;
2858 if (! flag_trapv)
2859 result_unsignedp = 1;
2861 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
2862 if (temp != 0)
2863 return temp;
2865 /* If that does not win, use conditional jump and negate. */
2867 /* It is safe to use the target if it is the same
2868 as the source if this is also a pseudo register */
2869 if (op0 == target && GET_CODE (op0) == REG
2870 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2871 safe = 1;
2873 op1 = gen_label_rtx ();
2874 if (target == 0 || ! safe
2875 || GET_MODE (target) != mode
2876 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2877 || (GET_CODE (target) == REG
2878 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2879 target = gen_reg_rtx (mode);
2881 emit_move_insn (target, op0);
2882 NO_DEFER_POP;
2884 /* If this mode is an integer too wide to compare properly,
2885 compare word by word. Rely on CSE to optimize constant cases. */
2886 if (GET_MODE_CLASS (mode) == MODE_INT
2887 && ! can_compare_p (GE, mode, ccp_jump))
2888 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2889 NULL_RTX, op1);
2890 else
2891 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2892 NULL_RTX, NULL_RTX, op1);
2894 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2895 target, target, 0);
2896 if (op0 != target)
2897 emit_move_insn (target, op0);
2898 emit_label (op1);
2899 OK_DEFER_POP;
2900 return target;
2903 /* Emit code to compute the absolute value of OP0, with result to
2904 TARGET if convenient. (TARGET may be 0.) The return value says
2905 where the result actually is to be found.
2907 MODE is the mode of the operand; the mode of the result is
2908 different but can be deduced from MODE.
2910 UNSIGNEDP is relevant for complex integer modes. */
2913 expand_complex_abs (enum machine_mode mode, rtx op0, rtx target,
2914 int unsignedp)
2916 enum mode_class class = GET_MODE_CLASS (mode);
2917 enum machine_mode wider_mode;
2918 rtx temp;
2919 rtx entry_last = get_last_insn ();
2920 rtx last;
2921 rtx pat;
2922 optab this_abs_optab;
2924 /* Find the correct mode for the real and imaginary parts. */
2925 enum machine_mode submode = GET_MODE_INNER (mode);
2927 if (submode == BLKmode)
2928 abort ();
2930 op0 = protect_from_queue (op0, 0);
2932 if (flag_force_mem)
2934 op0 = force_not_mem (op0);
2937 last = get_last_insn ();
2939 if (target)
2940 target = protect_from_queue (target, 1);
2942 this_abs_optab = ! unsignedp && flag_trapv
2943 && (GET_MODE_CLASS(mode) == MODE_INT)
2944 ? absv_optab : abs_optab;
2946 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2948 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2949 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2950 rtx xop0 = op0;
2952 if (target)
2953 temp = target;
2954 else
2955 temp = gen_reg_rtx (submode);
2957 if (GET_MODE (xop0) != VOIDmode
2958 && GET_MODE (xop0) != mode0)
2959 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2961 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2963 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2964 xop0 = copy_to_mode_reg (mode0, xop0);
2966 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2967 temp = gen_reg_rtx (submode);
2969 pat = GEN_FCN (icode) (temp, xop0);
2970 if (pat)
2972 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2973 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2974 NULL_RTX))
2976 delete_insns_since (last);
2977 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2978 unsignedp);
2981 emit_insn (pat);
2983 return temp;
2985 else
2986 delete_insns_since (last);
2989 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2991 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2992 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2994 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2995 != CODE_FOR_nothing)
2997 rtx xop0 = op0;
2999 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3000 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3002 if (temp)
3004 if (class != MODE_COMPLEX_INT)
3006 if (target == 0)
3007 target = gen_reg_rtx (submode);
3008 convert_move (target, temp, 0);
3009 return target;
3011 else
3012 return gen_lowpart (submode, temp);
3014 else
3015 delete_insns_since (last);
3019 /* Open-code the complex absolute-value operation
3020 if we can open-code sqrt. Otherwise it's not worth while. */
3021 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3022 && ! flag_trapv)
3024 rtx real, imag, total;
3026 real = gen_realpart (submode, op0);
3027 imag = gen_imagpart (submode, op0);
3029 /* Square both parts. */
3030 real = expand_mult (submode, real, real, NULL_RTX, 0);
3031 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3033 /* Sum the parts. */
3034 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
3035 0, OPTAB_LIB_WIDEN);
3037 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3038 target = expand_unop (submode, sqrt_optab, total, target, 0);
3039 if (target == 0)
3040 delete_insns_since (last);
3041 else
3042 return target;
3045 /* Now try a library call in this mode. */
3046 if (this_abs_optab->handlers[(int) mode].libfunc)
3048 rtx insns;
3049 rtx value;
3051 start_sequence ();
3053 /* Pass 1 for NO_QUEUE so we don't lose any increments
3054 if the libcall is cse'd or moved. */
3055 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
3056 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
3057 insns = get_insns ();
3058 end_sequence ();
3060 target = gen_reg_rtx (submode);
3061 emit_libcall_block (insns, target, value,
3062 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
3064 return target;
3067 /* It can't be done in this mode. Can we do it in a wider mode? */
3069 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3070 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3072 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
3073 != CODE_FOR_nothing)
3074 || this_abs_optab->handlers[(int) wider_mode].libfunc)
3076 rtx xop0 = op0;
3078 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3080 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3082 if (temp)
3084 if (class != MODE_COMPLEX_INT)
3086 if (target == 0)
3087 target = gen_reg_rtx (submode);
3088 convert_move (target, temp, 0);
3089 return target;
3091 else
3092 return gen_lowpart (submode, temp);
3094 else
3095 delete_insns_since (last);
3099 delete_insns_since (entry_last);
3100 return 0;
3103 /* Generate an instruction whose insn-code is INSN_CODE,
3104 with two operands: an output TARGET and an input OP0.
3105 TARGET *must* be nonzero, and the output is always stored there.
3106 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3107 the value that is stored into TARGET. */
3109 void
3110 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3112 rtx temp;
3113 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3114 rtx pat;
3116 temp = target = protect_from_queue (target, 1);
3118 op0 = protect_from_queue (op0, 0);
3120 /* Sign and zero extension from memory is often done specially on
3121 RISC machines, so forcing into a register here can pessimize
3122 code. */
3123 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
3124 op0 = force_not_mem (op0);
3126 /* Now, if insn does not accept our operands, put them into pseudos. */
3128 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
3129 op0 = copy_to_mode_reg (mode0, op0);
3131 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
3132 || (flag_force_mem && GET_CODE (temp) == MEM))
3133 temp = gen_reg_rtx (GET_MODE (temp));
3135 pat = GEN_FCN (icode) (temp, op0);
3137 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3138 add_equal_note (pat, temp, code, op0, NULL_RTX);
3140 emit_insn (pat);
3142 if (temp != target)
3143 emit_move_insn (target, temp);
3146 /* Emit code to perform a series of operations on a multi-word quantity, one
3147 word at a time.
3149 Such a block is preceded by a CLOBBER of the output, consists of multiple
3150 insns, each setting one word of the output, and followed by a SET copying
3151 the output to itself.
3153 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3154 note indicating that it doesn't conflict with the (also multi-word)
3155 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3156 notes.
3158 INSNS is a block of code generated to perform the operation, not including
3159 the CLOBBER and final copy. All insns that compute intermediate values
3160 are first emitted, followed by the block as described above.
3162 TARGET, OP0, and OP1 are the output and inputs of the operations,
3163 respectively. OP1 may be zero for a unary operation.
3165 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
3166 on the last insn.
3168 If TARGET is not a register, INSNS is simply emitted with no special
3169 processing. Likewise if anything in INSNS is not an INSN or if
3170 there is a libcall block inside INSNS.
3172 The final insn emitted is returned. */
3175 emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
3177 rtx prev, next, first, last, insn;
3179 if (GET_CODE (target) != REG || reload_in_progress)
3180 return emit_insn (insns);
3181 else
3182 for (insn = insns; insn; insn = NEXT_INSN (insn))
3183 if (GET_CODE (insn) != INSN
3184 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3185 return emit_insn (insns);
3187 /* First emit all insns that do not store into words of the output and remove
3188 these from the list. */
3189 for (insn = insns; insn; insn = next)
3191 rtx set = 0, note;
3192 int i;
3194 next = NEXT_INSN (insn);
3196 /* Some ports (cris) create a libcall regions at their own. We must
3197 avoid any potential nesting of LIBCALLs. */
3198 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3199 remove_note (insn, note);
3200 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3201 remove_note (insn, note);
3203 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3204 || GET_CODE (PATTERN (insn)) == CLOBBER)
3205 set = PATTERN (insn);
3206 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3208 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3209 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3211 set = XVECEXP (PATTERN (insn), 0, i);
3212 break;
3216 if (set == 0)
3217 abort ();
3219 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3221 if (PREV_INSN (insn))
3222 NEXT_INSN (PREV_INSN (insn)) = next;
3223 else
3224 insns = next;
3226 if (next)
3227 PREV_INSN (next) = PREV_INSN (insn);
3229 add_insn (insn);
3233 prev = get_last_insn ();
3235 /* Now write the CLOBBER of the output, followed by the setting of each
3236 of the words, followed by the final copy. */
3237 if (target != op0 && target != op1)
3238 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3240 for (insn = insns; insn; insn = next)
3242 next = NEXT_INSN (insn);
3243 add_insn (insn);
3245 if (op1 && GET_CODE (op1) == REG)
3246 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3247 REG_NOTES (insn));
3249 if (op0 && GET_CODE (op0) == REG)
3250 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3251 REG_NOTES (insn));
3254 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3255 != CODE_FOR_nothing)
3257 last = emit_move_insn (target, target);
3258 if (equiv)
3259 set_unique_reg_note (last, REG_EQUAL, equiv);
3261 else
3263 last = get_last_insn ();
3265 /* Remove any existing REG_EQUAL note from "last", or else it will
3266 be mistaken for a note referring to the full contents of the
3267 alleged libcall value when found together with the REG_RETVAL
3268 note added below. An existing note can come from an insn
3269 expansion at "last". */
3270 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3273 if (prev == 0)
3274 first = get_insns ();
3275 else
3276 first = NEXT_INSN (prev);
3278 /* Encapsulate the block so it gets manipulated as a unit. */
3279 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3280 REG_NOTES (first));
3281 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3283 return last;
3286 /* Emit code to make a call to a constant function or a library call.
3288 INSNS is a list containing all insns emitted in the call.
3289 These insns leave the result in RESULT. Our block is to copy RESULT
3290 to TARGET, which is logically equivalent to EQUIV.
3292 We first emit any insns that set a pseudo on the assumption that these are
3293 loading constants into registers; doing so allows them to be safely cse'ed
3294 between blocks. Then we emit all the other insns in the block, followed by
3295 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3296 note with an operand of EQUIV.
3298 Moving assignments to pseudos outside of the block is done to improve
3299 the generated code, but is not required to generate correct code,
3300 hence being unable to move an assignment is not grounds for not making
3301 a libcall block. There are two reasons why it is safe to leave these
3302 insns inside the block: First, we know that these pseudos cannot be
3303 used in generated RTL outside the block since they are created for
3304 temporary purposes within the block. Second, CSE will not record the
3305 values of anything set inside a libcall block, so we know they must
3306 be dead at the end of the block.
3308 Except for the first group of insns (the ones setting pseudos), the
3309 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3311 void
3312 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3314 rtx final_dest = target;
3315 rtx prev, next, first, last, insn;
3317 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3318 into a MEM later. Protect the libcall block from this change. */
3319 if (! REG_P (target) || REG_USERVAR_P (target))
3320 target = gen_reg_rtx (GET_MODE (target));
3322 /* If we're using non-call exceptions, a libcall corresponding to an
3323 operation that may trap may also trap. */
3324 if (flag_non_call_exceptions && may_trap_p (equiv))
3326 for (insn = insns; insn; insn = NEXT_INSN (insn))
3327 if (GET_CODE (insn) == CALL_INSN)
3329 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3331 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3332 remove_note (insn, note);
3335 else
3336 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3337 reg note to indicate that this call cannot throw or execute a nonlocal
3338 goto (unless there is already a REG_EH_REGION note, in which case
3339 we update it). */
3340 for (insn = insns; insn; insn = NEXT_INSN (insn))
3341 if (GET_CODE (insn) == CALL_INSN)
3343 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3345 if (note != 0)
3346 XEXP (note, 0) = constm1_rtx;
3347 else
3348 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
3349 REG_NOTES (insn));
3352 /* First emit all insns that set pseudos. Remove them from the list as
3353 we go. Avoid insns that set pseudos which were referenced in previous
3354 insns. These can be generated by move_by_pieces, for example,
3355 to update an address. Similarly, avoid insns that reference things
3356 set in previous insns. */
3358 for (insn = insns; insn; insn = next)
3360 rtx set = single_set (insn);
3361 rtx note;
3363 /* Some ports (cris) create a libcall regions at their own. We must
3364 avoid any potential nesting of LIBCALLs. */
3365 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3366 remove_note (insn, note);
3367 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3368 remove_note (insn, note);
3370 next = NEXT_INSN (insn);
3372 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
3373 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3374 && (insn == insns
3375 || ((! INSN_P(insns)
3376 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3377 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3378 && ! modified_in_p (SET_SRC (set), insns)
3379 && ! modified_between_p (SET_SRC (set), insns, insn))))
3381 if (PREV_INSN (insn))
3382 NEXT_INSN (PREV_INSN (insn)) = next;
3383 else
3384 insns = next;
3386 if (next)
3387 PREV_INSN (next) = PREV_INSN (insn);
3389 add_insn (insn);
3392 /* Some ports use a loop to copy large arguments onto the stack.
3393 Don't move anything outside such a loop. */
3394 if (GET_CODE (insn) == CODE_LABEL)
3395 break;
3398 prev = get_last_insn ();
3400 /* Write the remaining insns followed by the final copy. */
3402 for (insn = insns; insn; insn = next)
3404 next = NEXT_INSN (insn);
3406 add_insn (insn);
3409 last = emit_move_insn (target, result);
3410 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3411 != CODE_FOR_nothing)
3412 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3413 else
3415 /* Remove any existing REG_EQUAL note from "last", or else it will
3416 be mistaken for a note referring to the full contents of the
3417 libcall value when found together with the REG_RETVAL note added
3418 below. An existing note can come from an insn expansion at
3419 "last". */
3420 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3423 if (final_dest != target)
3424 emit_move_insn (final_dest, target);
3426 if (prev == 0)
3427 first = get_insns ();
3428 else
3429 first = NEXT_INSN (prev);
3431 /* Encapsulate the block so it gets manipulated as a unit. */
3432 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3434 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3435 when the encapsulated region would not be in one basic block,
3436 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3438 bool attach_libcall_retval_notes = true;
3439 next = NEXT_INSN (last);
3440 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3441 if (control_flow_insn_p (insn))
3443 attach_libcall_retval_notes = false;
3444 break;
3447 if (attach_libcall_retval_notes)
3449 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3450 REG_NOTES (first));
3451 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3452 REG_NOTES (last));
3457 /* Generate code to store zero in X. */
3459 void
3460 emit_clr_insn (rtx x)
3462 emit_move_insn (x, const0_rtx);
3465 /* Generate code to store 1 in X
3466 assuming it contains zero beforehand. */
3468 void
3469 emit_0_to_1_insn (rtx x)
3471 emit_move_insn (x, const1_rtx);
3474 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3475 PURPOSE describes how this comparison will be used. CODE is the rtx
3476 comparison code we will be using.
3478 ??? Actually, CODE is slightly weaker than that. A target is still
3479 required to implement all of the normal bcc operations, but not
3480 required to implement all (or any) of the unordered bcc operations. */
3483 can_compare_p (enum rtx_code code, enum machine_mode mode,
3484 enum can_compare_purpose purpose)
3488 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3490 if (purpose == ccp_jump)
3491 return bcc_gen_fctn[(int) code] != NULL;
3492 else if (purpose == ccp_store_flag)
3493 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3494 else
3495 /* There's only one cmov entry point, and it's allowed to fail. */
3496 return 1;
3498 if (purpose == ccp_jump
3499 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3500 return 1;
3501 if (purpose == ccp_cmov
3502 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3503 return 1;
3504 if (purpose == ccp_store_flag
3505 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3506 return 1;
3508 mode = GET_MODE_WIDER_MODE (mode);
3510 while (mode != VOIDmode);
3512 return 0;
3515 /* This function is called when we are going to emit a compare instruction that
3516 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3518 *PMODE is the mode of the inputs (in case they are const_int).
3519 *PUNSIGNEDP nonzero says that the operands are unsigned;
3520 this matters if they need to be widened.
3522 If they have mode BLKmode, then SIZE specifies the size of both operands.
3524 This function performs all the setup necessary so that the caller only has
3525 to emit a single comparison insn. This setup can involve doing a BLKmode
3526 comparison or emitting a library call to perform the comparison if no insn
3527 is available to handle it.
3528 The values which are passed in through pointers can be modified; the caller
3529 should perform the comparison on the modified values. */
3531 static void
3532 prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
3533 enum machine_mode *pmode, int *punsignedp,
3534 enum can_compare_purpose purpose)
3536 enum machine_mode mode = *pmode;
3537 rtx x = *px, y = *py;
3538 int unsignedp = *punsignedp;
3539 enum mode_class class;
3541 class = GET_MODE_CLASS (mode);
3543 /* They could both be VOIDmode if both args are immediate constants,
3544 but we should fold that at an earlier stage.
3545 With no special code here, this will call abort,
3546 reminding the programmer to implement such folding. */
3548 if (mode != BLKmode && flag_force_mem)
3550 /* Load duplicate non-volatile operands once. */
3551 if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
3553 x = force_not_mem (x);
3554 y = x;
3556 else
3558 x = force_not_mem (x);
3559 y = force_not_mem (y);
3563 /* If we are inside an appropriately-short loop and one operand is an
3564 expensive constant, force it into a register. */
3565 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3566 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3567 x = force_reg (mode, x);
3569 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3570 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3571 y = force_reg (mode, y);
3573 #ifdef HAVE_cc0
3574 /* Abort if we have a non-canonical comparison. The RTL documentation
3575 states that canonical comparisons are required only for targets which
3576 have cc0. */
3577 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3578 abort ();
3579 #endif
3581 /* Don't let both operands fail to indicate the mode. */
3582 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3583 x = force_reg (mode, x);
3585 /* Handle all BLKmode compares. */
3587 if (mode == BLKmode)
3589 enum machine_mode cmp_mode, result_mode;
3590 enum insn_code cmp_code;
3591 tree length_type;
3592 rtx libfunc;
3593 rtx result;
3594 rtx opalign
3595 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3597 if (size == 0)
3598 abort ();
3600 emit_queue ();
3601 x = protect_from_queue (x, 0);
3602 y = protect_from_queue (y, 0);
3603 size = protect_from_queue (size, 0);
3605 /* Try to use a memory block compare insn - either cmpstr
3606 or cmpmem will do. */
3607 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3608 cmp_mode != VOIDmode;
3609 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3611 cmp_code = cmpmem_optab[cmp_mode];
3612 if (cmp_code == CODE_FOR_nothing)
3613 cmp_code = cmpstr_optab[cmp_mode];
3614 if (cmp_code == CODE_FOR_nothing)
3615 continue;
3617 /* Must make sure the size fits the insn's mode. */
3618 if ((GET_CODE (size) == CONST_INT
3619 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3620 || (GET_MODE_BITSIZE (GET_MODE (size))
3621 > GET_MODE_BITSIZE (cmp_mode)))
3622 continue;
3624 result_mode = insn_data[cmp_code].operand[0].mode;
3625 result = gen_reg_rtx (result_mode);
3626 size = convert_to_mode (cmp_mode, size, 1);
3627 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3629 *px = result;
3630 *py = const0_rtx;
3631 *pmode = result_mode;
3632 return;
3635 /* Otherwise call a library function, memcmp if we've got it,
3636 bcmp otherwise. */
3637 #ifdef TARGET_MEM_FUNCTIONS
3638 libfunc = memcmp_libfunc;
3639 length_type = sizetype;
3640 #else
3641 libfunc = bcmp_libfunc;
3642 length_type = integer_type_node;
3643 #endif
3644 result_mode = TYPE_MODE (integer_type_node);
3645 cmp_mode = TYPE_MODE (length_type);
3646 size = convert_to_mode (TYPE_MODE (length_type), size,
3647 TREE_UNSIGNED (length_type));
3649 result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
3650 result_mode, 3,
3651 XEXP (x, 0), Pmode,
3652 XEXP (y, 0), Pmode,
3653 size, cmp_mode);
3654 *px = result;
3655 *py = const0_rtx;
3656 *pmode = result_mode;
3657 return;
3660 /* Don't allow operands to the compare to trap, as that can put the
3661 compare and branch in different basic blocks. */
3662 if (flag_non_call_exceptions)
3664 if (may_trap_p (x))
3665 x = force_reg (mode, x);
3666 if (may_trap_p (y))
3667 y = force_reg (mode, y);
3670 *px = x;
3671 *py = y;
3672 if (can_compare_p (*pcomparison, mode, purpose))
3673 return;
3675 /* Handle a lib call just for the mode we are using. */
3677 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3679 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3680 rtx result;
3682 /* If we want unsigned, and this mode has a distinct unsigned
3683 comparison routine, use that. */
3684 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3685 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3687 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3688 word_mode, 2, x, mode, y, mode);
3690 /* Integer comparison returns a result that must be compared against 1,
3691 so that even if we do an unsigned compare afterward,
3692 there is still a value that can represent the result "less than". */
3693 *px = result;
3694 *py = const1_rtx;
3695 *pmode = word_mode;
3696 return;
3699 if (class == MODE_FLOAT)
3700 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3702 else
3703 abort ();
3706 /* Before emitting an insn with code ICODE, make sure that X, which is going
3707 to be used for operand OPNUM of the insn, is converted from mode MODE to
3708 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3709 that it is accepted by the operand predicate. Return the new value. */
3712 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
3713 enum machine_mode wider_mode, int unsignedp)
3715 x = protect_from_queue (x, 0);
3717 if (mode != wider_mode)
3718 x = convert_modes (wider_mode, mode, x, unsignedp);
3720 if (! (*insn_data[icode].operand[opnum].predicate)
3721 (x, insn_data[icode].operand[opnum].mode))
3723 if (no_new_pseudos)
3724 return NULL_RTX;
3725 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3728 return x;
3731 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3732 we can do the comparison.
3733 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3734 be NULL_RTX which indicates that only a comparison is to be generated. */
3736 static void
3737 emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
3738 enum rtx_code comparison, int unsignedp, rtx label)
3740 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3741 enum mode_class class = GET_MODE_CLASS (mode);
3742 enum machine_mode wider_mode = mode;
3744 /* Try combined insns first. */
3747 enum insn_code icode;
3748 PUT_MODE (test, wider_mode);
3750 if (label)
3752 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3754 if (icode != CODE_FOR_nothing
3755 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3757 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3758 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3759 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3760 return;
3764 /* Handle some compares against zero. */
3765 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3766 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3768 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3769 emit_insn (GEN_FCN (icode) (x));
3770 if (label)
3771 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3772 return;
3775 /* Handle compares for which there is a directly suitable insn. */
3777 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3778 if (icode != CODE_FOR_nothing)
3780 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3781 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3782 emit_insn (GEN_FCN (icode) (x, y));
3783 if (label)
3784 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3785 return;
3788 if (class != MODE_INT && class != MODE_FLOAT
3789 && class != MODE_COMPLEX_FLOAT)
3790 break;
3792 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3794 while (wider_mode != VOIDmode);
3796 abort ();
3799 /* Generate code to compare X with Y so that the condition codes are
3800 set and to jump to LABEL if the condition is true. If X is a
3801 constant and Y is not a constant, then the comparison is swapped to
3802 ensure that the comparison RTL has the canonical form.
3804 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3805 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3806 the proper branch condition code.
3808 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3810 MODE is the mode of the inputs (in case they are const_int).
3812 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3813 be passed unchanged to emit_cmp_insn, then potentially converted into an
3814 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3816 void
3817 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
3818 enum machine_mode mode, int unsignedp, rtx label)
3820 rtx op0 = x, op1 = y;
3822 /* Swap operands and condition to ensure canonical RTL. */
3823 if (swap_commutative_operands_p (x, y))
3825 /* If we're not emitting a branch, this means some caller
3826 is out of sync. */
3827 if (! label)
3828 abort ();
3830 op0 = y, op1 = x;
3831 comparison = swap_condition (comparison);
3834 #ifdef HAVE_cc0
3835 /* If OP0 is still a constant, then both X and Y must be constants. Force
3836 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3837 RTL. */
3838 if (CONSTANT_P (op0))
3839 op0 = force_reg (mode, op0);
3840 #endif
3842 emit_queue ();
3843 if (unsignedp)
3844 comparison = unsigned_condition (comparison);
3846 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3847 ccp_jump);
3848 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3851 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3853 void
3854 emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3855 enum machine_mode mode, int unsignedp)
3857 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3860 /* Emit a library call comparison between floating point X and Y.
3861 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3863 static void
3864 prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
3865 enum machine_mode *pmode, int *punsignedp)
3867 enum rtx_code comparison = *pcomparison;
3868 enum rtx_code swapped = swap_condition (comparison);
3869 rtx x = protect_from_queue (*px, 0);
3870 rtx y = protect_from_queue (*py, 0);
3871 enum machine_mode orig_mode = GET_MODE (x);
3872 enum machine_mode mode;
3873 rtx value, target, insns, equiv;
3874 rtx libfunc = 0;
3876 for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
3878 if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
3879 break;
3881 if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
3883 rtx tmp;
3884 tmp = x; x = y; y = tmp;
3885 comparison = swapped;
3886 break;
3890 if (mode == VOIDmode)
3891 abort ();
3893 if (mode != orig_mode)
3895 x = convert_to_mode (mode, x, 0);
3896 y = convert_to_mode (mode, y, 0);
3899 /* Attach a REG_EQUAL note describing the semantics of the libcall to
3900 the RTL. The allows the RTL optimizers to delete the libcall if the
3901 condition can be determined at compile-time. */
3902 if (comparison == UNORDERED)
3904 rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
3905 equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
3906 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
3907 temp, const_true_rtx, equiv);
3909 else
3911 equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
3912 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3914 rtx true_rtx, false_rtx;
3916 switch (comparison)
3918 case EQ:
3919 true_rtx = const0_rtx;
3920 false_rtx = const_true_rtx;
3921 break;
3923 case NE:
3924 true_rtx = const_true_rtx;
3925 false_rtx = const0_rtx;
3926 break;
3928 case GT:
3929 true_rtx = const1_rtx;
3930 false_rtx = const0_rtx;
3931 break;
3933 case GE:
3934 true_rtx = const0_rtx;
3935 false_rtx = constm1_rtx;
3936 break;
3938 case LT:
3939 true_rtx = constm1_rtx;
3940 false_rtx = const0_rtx;
3941 break;
3943 case LE:
3944 true_rtx = const0_rtx;
3945 false_rtx = const1_rtx;
3946 break;
3948 default:
3949 abort ();
3951 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
3952 equiv, true_rtx, false_rtx);
3956 start_sequence ();
3957 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
3958 word_mode, 2, x, mode, y, mode);
3959 insns = get_insns ();
3960 end_sequence ();
3962 target = gen_reg_rtx (word_mode);
3963 emit_libcall_block (insns, target, value, equiv);
3966 if (comparison == UNORDERED
3967 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3968 comparison = NE;
3970 *px = target;
3971 *py = const0_rtx;
3972 *pmode = word_mode;
3973 *pcomparison = comparison;
3974 *punsignedp = 0;
3977 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3979 void
3980 emit_indirect_jump (rtx loc)
3982 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
3983 (loc, Pmode)))
3984 loc = copy_to_mode_reg (Pmode, loc);
3986 emit_jump_insn (gen_indirect_jump (loc));
3987 emit_barrier ();
3990 #ifdef HAVE_conditional_move
3992 /* Emit a conditional move instruction if the machine supports one for that
3993 condition and machine mode.
3995 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3996 the mode to use should they be constants. If it is VOIDmode, they cannot
3997 both be constants.
3999 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4000 should be stored there. MODE is the mode to use should they be constants.
4001 If it is VOIDmode, they cannot both be constants.
4003 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4004 is not supported. */
4007 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4008 enum machine_mode cmode, rtx op2, rtx op3,
4009 enum machine_mode mode, int unsignedp)
4011 rtx tem, subtarget, comparison, insn;
4012 enum insn_code icode;
4013 enum rtx_code reversed;
4015 /* If one operand is constant, make it the second one. Only do this
4016 if the other operand is not constant as well. */
4018 if (swap_commutative_operands_p (op0, op1))
4020 tem = op0;
4021 op0 = op1;
4022 op1 = tem;
4023 code = swap_condition (code);
4026 /* get_condition will prefer to generate LT and GT even if the old
4027 comparison was against zero, so undo that canonicalization here since
4028 comparisons against zero are cheaper. */
4029 if (code == LT && op1 == const1_rtx)
4030 code = LE, op1 = const0_rtx;
4031 else if (code == GT && op1 == constm1_rtx)
4032 code = GE, op1 = const0_rtx;
4034 if (cmode == VOIDmode)
4035 cmode = GET_MODE (op0);
4037 if (swap_commutative_operands_p (op2, op3)
4038 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4039 != UNKNOWN))
4041 tem = op2;
4042 op2 = op3;
4043 op3 = tem;
4044 code = reversed;
4047 if (mode == VOIDmode)
4048 mode = GET_MODE (op2);
4050 icode = movcc_gen_code[mode];
4052 if (icode == CODE_FOR_nothing)
4053 return 0;
4055 if (flag_force_mem)
4057 op2 = force_not_mem (op2);
4058 op3 = force_not_mem (op3);
4061 if (target)
4062 target = protect_from_queue (target, 1);
4063 else
4064 target = gen_reg_rtx (mode);
4066 subtarget = target;
4068 emit_queue ();
4070 op2 = protect_from_queue (op2, 0);
4071 op3 = protect_from_queue (op3, 0);
4073 /* If the insn doesn't accept these operands, put them in pseudos. */
4075 if (! (*insn_data[icode].operand[0].predicate)
4076 (subtarget, insn_data[icode].operand[0].mode))
4077 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4079 if (! (*insn_data[icode].operand[2].predicate)
4080 (op2, insn_data[icode].operand[2].mode))
4081 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4083 if (! (*insn_data[icode].operand[3].predicate)
4084 (op3, insn_data[icode].operand[3].mode))
4085 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4087 /* Everything should now be in the suitable form, so emit the compare insn
4088 and then the conditional move. */
4090 comparison
4091 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4093 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4094 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4095 return NULL and let the caller figure out how best to deal with this
4096 situation. */
4097 if (GET_CODE (comparison) != code)
4098 return NULL_RTX;
4100 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4102 /* If that failed, then give up. */
4103 if (insn == 0)
4104 return 0;
4106 emit_insn (insn);
4108 if (subtarget != target)
4109 convert_move (target, subtarget, 0);
4111 return target;
4114 /* Return nonzero if a conditional move of mode MODE is supported.
4116 This function is for combine so it can tell whether an insn that looks
4117 like a conditional move is actually supported by the hardware. If we
4118 guess wrong we lose a bit on optimization, but that's it. */
4119 /* ??? sparc64 supports conditionally moving integers values based on fp
4120 comparisons, and vice versa. How do we handle them? */
4123 can_conditionally_move_p (enum machine_mode mode)
4125 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4126 return 1;
4128 return 0;
4131 #endif /* HAVE_conditional_move */
4133 /* Emit a conditional addition instruction if the machine supports one for that
4134 condition and machine mode.
4136 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4137 the mode to use should they be constants. If it is VOIDmode, they cannot
4138 both be constants.
4140 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4141 should be stored there. MODE is the mode to use should they be constants.
4142 If it is VOIDmode, they cannot both be constants.
4144 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4145 is not supported. */
4148 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4149 enum machine_mode cmode, rtx op2, rtx op3,
4150 enum machine_mode mode, int unsignedp)
4152 rtx tem, subtarget, comparison, insn;
4153 enum insn_code icode;
4154 enum rtx_code reversed;
4156 /* If one operand is constant, make it the second one. Only do this
4157 if the other operand is not constant as well. */
4159 if (swap_commutative_operands_p (op0, op1))
4161 tem = op0;
4162 op0 = op1;
4163 op1 = tem;
4164 code = swap_condition (code);
4167 /* get_condition will prefer to generate LT and GT even if the old
4168 comparison was against zero, so undo that canonicalization here since
4169 comparisons against zero are cheaper. */
4170 if (code == LT && op1 == const1_rtx)
4171 code = LE, op1 = const0_rtx;
4172 else if (code == GT && op1 == constm1_rtx)
4173 code = GE, op1 = const0_rtx;
4175 if (cmode == VOIDmode)
4176 cmode = GET_MODE (op0);
4178 if (swap_commutative_operands_p (op2, op3)
4179 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4180 != UNKNOWN))
4182 tem = op2;
4183 op2 = op3;
4184 op3 = tem;
4185 code = reversed;
4188 if (mode == VOIDmode)
4189 mode = GET_MODE (op2);
4191 icode = addcc_optab->handlers[(int) mode].insn_code;
4193 if (icode == CODE_FOR_nothing)
4194 return 0;
4196 if (flag_force_mem)
4198 op2 = force_not_mem (op2);
4199 op3 = force_not_mem (op3);
4202 if (target)
4203 target = protect_from_queue (target, 1);
4204 else
4205 target = gen_reg_rtx (mode);
4207 subtarget = target;
4209 emit_queue ();
4211 op2 = protect_from_queue (op2, 0);
4212 op3 = protect_from_queue (op3, 0);
4214 /* If the insn doesn't accept these operands, put them in pseudos. */
4216 if (! (*insn_data[icode].operand[0].predicate)
4217 (subtarget, insn_data[icode].operand[0].mode))
4218 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4220 if (! (*insn_data[icode].operand[2].predicate)
4221 (op2, insn_data[icode].operand[2].mode))
4222 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4224 if (! (*insn_data[icode].operand[3].predicate)
4225 (op3, insn_data[icode].operand[3].mode))
4226 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4228 /* Everything should now be in the suitable form, so emit the compare insn
4229 and then the conditional move. */
4231 comparison
4232 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4234 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4235 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4236 return NULL and let the caller figure out how best to deal with this
4237 situation. */
4238 if (GET_CODE (comparison) != code)
4239 return NULL_RTX;
4241 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4243 /* If that failed, then give up. */
4244 if (insn == 0)
4245 return 0;
4247 emit_insn (insn);
4249 if (subtarget != target)
4250 convert_move (target, subtarget, 0);
4252 return target;
4255 /* These functions attempt to generate an insn body, rather than
4256 emitting the insn, but if the gen function already emits them, we
4257 make no attempt to turn them back into naked patterns.
4259 They do not protect from queued increments,
4260 because they may be used 1) in protect_from_queue itself
4261 and 2) in other passes where there is no queue. */
4263 /* Generate and return an insn body to add Y to X. */
4266 gen_add2_insn (rtx x, rtx y)
4268 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4270 if (! ((*insn_data[icode].operand[0].predicate)
4271 (x, insn_data[icode].operand[0].mode))
4272 || ! ((*insn_data[icode].operand[1].predicate)
4273 (x, insn_data[icode].operand[1].mode))
4274 || ! ((*insn_data[icode].operand[2].predicate)
4275 (y, insn_data[icode].operand[2].mode)))
4276 abort ();
4278 return (GEN_FCN (icode) (x, x, y));
4281 /* Generate and return an insn body to add r1 and c,
4282 storing the result in r0. */
4284 gen_add3_insn (rtx r0, rtx r1, rtx c)
4286 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4288 if (icode == CODE_FOR_nothing
4289 || ! ((*insn_data[icode].operand[0].predicate)
4290 (r0, insn_data[icode].operand[0].mode))
4291 || ! ((*insn_data[icode].operand[1].predicate)
4292 (r1, insn_data[icode].operand[1].mode))
4293 || ! ((*insn_data[icode].operand[2].predicate)
4294 (c, insn_data[icode].operand[2].mode)))
4295 return NULL_RTX;
4297 return (GEN_FCN (icode) (r0, r1, c));
4301 have_add2_insn (rtx x, rtx y)
4303 int icode;
4305 if (GET_MODE (x) == VOIDmode)
4306 abort ();
4308 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4310 if (icode == CODE_FOR_nothing)
4311 return 0;
4313 if (! ((*insn_data[icode].operand[0].predicate)
4314 (x, insn_data[icode].operand[0].mode))
4315 || ! ((*insn_data[icode].operand[1].predicate)
4316 (x, insn_data[icode].operand[1].mode))
4317 || ! ((*insn_data[icode].operand[2].predicate)
4318 (y, insn_data[icode].operand[2].mode)))
4319 return 0;
4321 return 1;
4324 /* Generate and return an insn body to subtract Y from X. */
4327 gen_sub2_insn (rtx x, rtx y)
4329 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4331 if (! ((*insn_data[icode].operand[0].predicate)
4332 (x, insn_data[icode].operand[0].mode))
4333 || ! ((*insn_data[icode].operand[1].predicate)
4334 (x, insn_data[icode].operand[1].mode))
4335 || ! ((*insn_data[icode].operand[2].predicate)
4336 (y, insn_data[icode].operand[2].mode)))
4337 abort ();
4339 return (GEN_FCN (icode) (x, x, y));
4342 /* Generate and return an insn body to subtract r1 and c,
4343 storing the result in r0. */
4345 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4347 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4349 if (icode == CODE_FOR_nothing
4350 || ! ((*insn_data[icode].operand[0].predicate)
4351 (r0, insn_data[icode].operand[0].mode))
4352 || ! ((*insn_data[icode].operand[1].predicate)
4353 (r1, insn_data[icode].operand[1].mode))
4354 || ! ((*insn_data[icode].operand[2].predicate)
4355 (c, insn_data[icode].operand[2].mode)))
4356 return NULL_RTX;
4358 return (GEN_FCN (icode) (r0, r1, c));
4362 have_sub2_insn (rtx x, rtx y)
4364 int icode;
4366 if (GET_MODE (x) == VOIDmode)
4367 abort ();
4369 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4371 if (icode == CODE_FOR_nothing)
4372 return 0;
4374 if (! ((*insn_data[icode].operand[0].predicate)
4375 (x, insn_data[icode].operand[0].mode))
4376 || ! ((*insn_data[icode].operand[1].predicate)
4377 (x, insn_data[icode].operand[1].mode))
4378 || ! ((*insn_data[icode].operand[2].predicate)
4379 (y, insn_data[icode].operand[2].mode)))
4380 return 0;
4382 return 1;
4385 /* Generate the body of an instruction to copy Y into X.
4386 It may be a list of insns, if one insn isn't enough. */
4389 gen_move_insn (rtx x, rtx y)
4391 rtx seq;
4393 start_sequence ();
4394 emit_move_insn_1 (x, y);
4395 seq = get_insns ();
4396 end_sequence ();
4397 return seq;
4400 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4401 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4402 no such operation exists, CODE_FOR_nothing will be returned. */
4404 enum insn_code
4405 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4406 int unsignedp)
4408 convert_optab tab;
4409 #ifdef HAVE_ptr_extend
4410 if (unsignedp < 0)
4411 return CODE_FOR_ptr_extend;
4412 #endif
4414 tab = unsignedp ? zext_optab : sext_optab;
4415 return tab->handlers[to_mode][from_mode].insn_code;
4418 /* Generate the body of an insn to extend Y (with mode MFROM)
4419 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4422 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4423 enum machine_mode mfrom, int unsignedp)
4425 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4426 return GEN_FCN (icode) (x, y);
4429 /* can_fix_p and can_float_p say whether the target machine
4430 can directly convert a given fixed point type to
4431 a given floating point type, or vice versa.
4432 The returned value is the CODE_FOR_... value to use,
4433 or CODE_FOR_nothing if these modes cannot be directly converted.
4435 *TRUNCP_PTR is set to 1 if it is necessary to output
4436 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4438 static enum insn_code
4439 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4440 int unsignedp, int *truncp_ptr)
4442 convert_optab tab;
4443 enum insn_code icode;
4445 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4446 icode = tab->handlers[fixmode][fltmode].insn_code;
4447 if (icode != CODE_FOR_nothing)
4449 *truncp_ptr = 0;
4450 return icode;
4453 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4454 for this to work. We need to rework the fix* and ftrunc* patterns
4455 and documentation. */
4456 tab = unsignedp ? ufix_optab : sfix_optab;
4457 icode = tab->handlers[fixmode][fltmode].insn_code;
4458 if (icode != CODE_FOR_nothing
4459 && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
4461 *truncp_ptr = 1;
4462 return icode;
4465 *truncp_ptr = 0;
4466 return CODE_FOR_nothing;
4469 static enum insn_code
4470 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4471 int unsignedp)
4473 convert_optab tab;
4475 tab = unsignedp ? ufloat_optab : sfloat_optab;
4476 return tab->handlers[fltmode][fixmode].insn_code;
4479 /* Generate code to convert FROM to floating point
4480 and store in TO. FROM must be fixed point and not VOIDmode.
4481 UNSIGNEDP nonzero means regard FROM as unsigned.
4482 Normally this is done by correcting the final value
4483 if it is negative. */
4485 void
4486 expand_float (rtx to, rtx from, int unsignedp)
4488 enum insn_code icode;
4489 rtx target = to;
4490 enum machine_mode fmode, imode;
4492 /* Crash now, because we won't be able to decide which mode to use. */
4493 if (GET_MODE (from) == VOIDmode)
4494 abort ();
4496 /* Look for an insn to do the conversion. Do it in the specified
4497 modes if possible; otherwise convert either input, output or both to
4498 wider mode. If the integer mode is wider than the mode of FROM,
4499 we can do the conversion signed even if the input is unsigned. */
4501 for (fmode = GET_MODE (to); fmode != VOIDmode;
4502 fmode = GET_MODE_WIDER_MODE (fmode))
4503 for (imode = GET_MODE (from); imode != VOIDmode;
4504 imode = GET_MODE_WIDER_MODE (imode))
4506 int doing_unsigned = unsignedp;
4508 if (fmode != GET_MODE (to)
4509 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4510 continue;
4512 icode = can_float_p (fmode, imode, unsignedp);
4513 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4514 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4516 if (icode != CODE_FOR_nothing)
4518 to = protect_from_queue (to, 1);
4519 from = protect_from_queue (from, 0);
4521 if (imode != GET_MODE (from))
4522 from = convert_to_mode (imode, from, unsignedp);
4524 if (fmode != GET_MODE (to))
4525 target = gen_reg_rtx (fmode);
4527 emit_unop_insn (icode, target, from,
4528 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4530 if (target != to)
4531 convert_move (to, target, 0);
4532 return;
4536 /* Unsigned integer, and no way to convert directly.
4537 Convert as signed, then conditionally adjust the result. */
4538 if (unsignedp)
4540 rtx label = gen_label_rtx ();
4541 rtx temp;
4542 REAL_VALUE_TYPE offset;
4544 emit_queue ();
4546 to = protect_from_queue (to, 1);
4547 from = protect_from_queue (from, 0);
4549 if (flag_force_mem)
4550 from = force_not_mem (from);
4552 /* Look for a usable floating mode FMODE wider than the source and at
4553 least as wide as the target. Using FMODE will avoid rounding woes
4554 with unsigned values greater than the signed maximum value. */
4556 for (fmode = GET_MODE (to); fmode != VOIDmode;
4557 fmode = GET_MODE_WIDER_MODE (fmode))
4558 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4559 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4560 break;
4562 if (fmode == VOIDmode)
4564 /* There is no such mode. Pretend the target is wide enough. */
4565 fmode = GET_MODE (to);
4567 /* Avoid double-rounding when TO is narrower than FROM. */
4568 if ((significand_size (fmode) + 1)
4569 < GET_MODE_BITSIZE (GET_MODE (from)))
4571 rtx temp1;
4572 rtx neglabel = gen_label_rtx ();
4574 /* Don't use TARGET if it isn't a register, is a hard register,
4575 or is the wrong mode. */
4576 if (GET_CODE (target) != REG
4577 || REGNO (target) < FIRST_PSEUDO_REGISTER
4578 || GET_MODE (target) != fmode)
4579 target = gen_reg_rtx (fmode);
4581 imode = GET_MODE (from);
4582 do_pending_stack_adjust ();
4584 /* Test whether the sign bit is set. */
4585 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4586 0, neglabel);
4588 /* The sign bit is not set. Convert as signed. */
4589 expand_float (target, from, 0);
4590 emit_jump_insn (gen_jump (label));
4591 emit_barrier ();
4593 /* The sign bit is set.
4594 Convert to a usable (positive signed) value by shifting right
4595 one bit, while remembering if a nonzero bit was shifted
4596 out; i.e., compute (from & 1) | (from >> 1). */
4598 emit_label (neglabel);
4599 temp = expand_binop (imode, and_optab, from, const1_rtx,
4600 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4601 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4602 NULL_RTX, 1);
4603 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4604 OPTAB_LIB_WIDEN);
4605 expand_float (target, temp, 0);
4607 /* Multiply by 2 to undo the shift above. */
4608 temp = expand_binop (fmode, add_optab, target, target,
4609 target, 0, OPTAB_LIB_WIDEN);
4610 if (temp != target)
4611 emit_move_insn (target, temp);
4613 do_pending_stack_adjust ();
4614 emit_label (label);
4615 goto done;
4619 /* If we are about to do some arithmetic to correct for an
4620 unsigned operand, do it in a pseudo-register. */
4622 if (GET_MODE (to) != fmode
4623 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4624 target = gen_reg_rtx (fmode);
4626 /* Convert as signed integer to floating. */
4627 expand_float (target, from, 0);
4629 /* If FROM is negative (and therefore TO is negative),
4630 correct its value by 2**bitwidth. */
4632 do_pending_stack_adjust ();
4633 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4634 0, label);
4637 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4638 temp = expand_binop (fmode, add_optab, target,
4639 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4640 target, 0, OPTAB_LIB_WIDEN);
4641 if (temp != target)
4642 emit_move_insn (target, temp);
4644 do_pending_stack_adjust ();
4645 emit_label (label);
4646 goto done;
4649 /* No hardware instruction available; call a library routine. */
4651 rtx libfunc;
4652 rtx insns;
4653 rtx value;
4654 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4656 to = protect_from_queue (to, 1);
4657 from = protect_from_queue (from, 0);
4659 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4660 from = convert_to_mode (SImode, from, unsignedp);
4662 if (flag_force_mem)
4663 from = force_not_mem (from);
4665 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4666 if (!libfunc)
4667 abort ();
4669 start_sequence ();
4671 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4672 GET_MODE (to), 1, from,
4673 GET_MODE (from));
4674 insns = get_insns ();
4675 end_sequence ();
4677 emit_libcall_block (insns, target, value,
4678 gen_rtx_FLOAT (GET_MODE (to), from));
4681 done:
4683 /* Copy result to requested destination
4684 if we have been computing in a temp location. */
4686 if (target != to)
4688 if (GET_MODE (target) == GET_MODE (to))
4689 emit_move_insn (to, target);
4690 else
4691 convert_move (to, target, 0);
4695 /* Generate code to convert FROM to fixed point and store in TO. FROM
4696 must be floating point. */
4698 void
4699 expand_fix (rtx to, rtx from, int unsignedp)
4701 enum insn_code icode;
4702 rtx target = to;
4703 enum machine_mode fmode, imode;
4704 int must_trunc = 0;
4706 /* We first try to find a pair of modes, one real and one integer, at
4707 least as wide as FROM and TO, respectively, in which we can open-code
4708 this conversion. If the integer mode is wider than the mode of TO,
4709 we can do the conversion either signed or unsigned. */
4711 for (fmode = GET_MODE (from); fmode != VOIDmode;
4712 fmode = GET_MODE_WIDER_MODE (fmode))
4713 for (imode = GET_MODE (to); imode != VOIDmode;
4714 imode = GET_MODE_WIDER_MODE (imode))
4716 int doing_unsigned = unsignedp;
4718 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4719 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4720 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4722 if (icode != CODE_FOR_nothing)
4724 to = protect_from_queue (to, 1);
4725 from = protect_from_queue (from, 0);
4727 if (fmode != GET_MODE (from))
4728 from = convert_to_mode (fmode, from, 0);
4730 if (must_trunc)
4732 rtx temp = gen_reg_rtx (GET_MODE (from));
4733 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4734 temp, 0);
4737 if (imode != GET_MODE (to))
4738 target = gen_reg_rtx (imode);
4740 emit_unop_insn (icode, target, from,
4741 doing_unsigned ? UNSIGNED_FIX : FIX);
4742 if (target != to)
4743 convert_move (to, target, unsignedp);
4744 return;
4748 /* For an unsigned conversion, there is one more way to do it.
4749 If we have a signed conversion, we generate code that compares
4750 the real value to the largest representable positive number. If if
4751 is smaller, the conversion is done normally. Otherwise, subtract
4752 one plus the highest signed number, convert, and add it back.
4754 We only need to check all real modes, since we know we didn't find
4755 anything with a wider integer mode.
4757 This code used to extend FP value into mode wider than the destination.
4758 This is not needed. Consider, for instance conversion from SFmode
4759 into DImode.
4761 The hot path trought the code is dealing with inputs smaller than 2^63
4762 and doing just the conversion, so there is no bits to lose.
4764 In the other path we know the value is positive in the range 2^63..2^64-1
4765 inclusive. (as for other imput overflow happens and result is undefined)
4766 So we know that the most important bit set in mantissa corresponds to
4767 2^63. The subtraction of 2^63 should not generate any rounding as it
4768 simply clears out that bit. The rest is trivial. */
4770 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4771 for (fmode = GET_MODE (from); fmode != VOIDmode;
4772 fmode = GET_MODE_WIDER_MODE (fmode))
4773 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4774 &must_trunc))
4776 int bitsize;
4777 REAL_VALUE_TYPE offset;
4778 rtx limit, lab1, lab2, insn;
4780 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4781 real_2expN (&offset, bitsize - 1);
4782 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4783 lab1 = gen_label_rtx ();
4784 lab2 = gen_label_rtx ();
4786 emit_queue ();
4787 to = protect_from_queue (to, 1);
4788 from = protect_from_queue (from, 0);
4790 if (flag_force_mem)
4791 from = force_not_mem (from);
4793 if (fmode != GET_MODE (from))
4794 from = convert_to_mode (fmode, from, 0);
4796 /* See if we need to do the subtraction. */
4797 do_pending_stack_adjust ();
4798 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4799 0, lab1);
4801 /* If not, do the signed "fix" and branch around fixup code. */
4802 expand_fix (to, from, 0);
4803 emit_jump_insn (gen_jump (lab2));
4804 emit_barrier ();
4806 /* Otherwise, subtract 2**(N-1), convert to signed number,
4807 then add 2**(N-1). Do the addition using XOR since this
4808 will often generate better code. */
4809 emit_label (lab1);
4810 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4811 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4812 expand_fix (to, target, 0);
4813 target = expand_binop (GET_MODE (to), xor_optab, to,
4814 gen_int_mode
4815 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4816 GET_MODE (to)),
4817 to, 1, OPTAB_LIB_WIDEN);
4819 if (target != to)
4820 emit_move_insn (to, target);
4822 emit_label (lab2);
4824 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4825 != CODE_FOR_nothing)
4827 /* Make a place for a REG_NOTE and add it. */
4828 insn = emit_move_insn (to, to);
4829 set_unique_reg_note (insn,
4830 REG_EQUAL,
4831 gen_rtx_fmt_e (UNSIGNED_FIX,
4832 GET_MODE (to),
4833 copy_rtx (from)));
4836 return;
4839 /* We can't do it with an insn, so use a library call. But first ensure
4840 that the mode of TO is at least as wide as SImode, since those are the
4841 only library calls we know about. */
4843 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4845 target = gen_reg_rtx (SImode);
4847 expand_fix (target, from, unsignedp);
4849 else
4851 rtx insns;
4852 rtx value;
4853 rtx libfunc;
4855 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4856 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4857 if (!libfunc)
4858 abort ();
4860 to = protect_from_queue (to, 1);
4861 from = protect_from_queue (from, 0);
4863 if (flag_force_mem)
4864 from = force_not_mem (from);
4866 start_sequence ();
4868 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4869 GET_MODE (to), 1, from,
4870 GET_MODE (from));
4871 insns = get_insns ();
4872 end_sequence ();
4874 emit_libcall_block (insns, target, value,
4875 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4876 GET_MODE (to), from));
4879 if (target != to)
4881 if (GET_MODE (to) == GET_MODE (target))
4882 emit_move_insn (to, target);
4883 else
4884 convert_move (to, target, 0);
4888 /* Report whether we have an instruction to perform the operation
4889 specified by CODE on operands of mode MODE. */
4891 have_insn_for (enum rtx_code code, enum machine_mode mode)
4893 return (code_to_optab[(int) code] != 0
4894 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4895 != CODE_FOR_nothing));
4898 /* Create a blank optab. */
4899 static optab
4900 new_optab (void)
4902 int i;
4903 optab op = ggc_alloc (sizeof (struct optab));
4904 for (i = 0; i < NUM_MACHINE_MODES; i++)
4906 op->handlers[i].insn_code = CODE_FOR_nothing;
4907 op->handlers[i].libfunc = 0;
4910 return op;
4913 static convert_optab
4914 new_convert_optab (void)
4916 int i, j;
4917 convert_optab op = ggc_alloc (sizeof (struct convert_optab));
4918 for (i = 0; i < NUM_MACHINE_MODES; i++)
4919 for (j = 0; j < NUM_MACHINE_MODES; j++)
4921 op->handlers[i][j].insn_code = CODE_FOR_nothing;
4922 op->handlers[i][j].libfunc = 0;
4924 return op;
4927 /* Same, but fill in its code as CODE, and write it into the
4928 code_to_optab table. */
4929 static inline optab
4930 init_optab (enum rtx_code code)
4932 optab op = new_optab ();
4933 op->code = code;
4934 code_to_optab[(int) code] = op;
4935 return op;
4938 /* Same, but fill in its code as CODE, and do _not_ write it into
4939 the code_to_optab table. */
4940 static inline optab
4941 init_optabv (enum rtx_code code)
4943 optab op = new_optab ();
4944 op->code = code;
4945 return op;
4948 /* Conversion optabs never go in the code_to_optab table. */
4949 static inline convert_optab
4950 init_convert_optab (enum rtx_code code)
4952 convert_optab op = new_convert_optab ();
4953 op->code = code;
4954 return op;
4957 /* Initialize the libfunc fields of an entire group of entries in some
4958 optab. Each entry is set equal to a string consisting of a leading
4959 pair of underscores followed by a generic operation name followed by
4960 a mode name (downshifted to lowercase) followed by a single character
4961 representing the number of operands for the given operation (which is
4962 usually one of the characters '2', '3', or '4').
4964 OPTABLE is the table in which libfunc fields are to be initialized.
4965 FIRST_MODE is the first machine mode index in the given optab to
4966 initialize.
4967 LAST_MODE is the last machine mode index in the given optab to
4968 initialize.
4969 OPNAME is the generic (string) name of the operation.
4970 SUFFIX is the character which specifies the number of operands for
4971 the given generic operation.
4974 static void
4975 init_libfuncs (optab optable, int first_mode, int last_mode,
4976 const char *opname, int suffix)
4978 int mode;
4979 unsigned opname_len = strlen (opname);
4981 for (mode = first_mode; (int) mode <= (int) last_mode;
4982 mode = (enum machine_mode) ((int) mode + 1))
4984 const char *mname = GET_MODE_NAME (mode);
4985 unsigned mname_len = strlen (mname);
4986 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
4987 char *p;
4988 const char *q;
4990 p = libfunc_name;
4991 *p++ = '_';
4992 *p++ = '_';
4993 for (q = opname; *q; )
4994 *p++ = *q++;
4995 for (q = mname; *q; q++)
4996 *p++ = TOLOWER (*q);
4997 *p++ = suffix;
4998 *p = '\0';
5000 optable->handlers[(int) mode].libfunc
5001 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
5005 /* Initialize the libfunc fields of an entire group of entries in some
5006 optab which correspond to all integer mode operations. The parameters
5007 have the same meaning as similarly named ones for the `init_libfuncs'
5008 routine. (See above). */
5010 static void
5011 init_integral_libfuncs (optab optable, const char *opname, int suffix)
5013 int maxsize = 2*BITS_PER_WORD;
5014 if (maxsize < LONG_LONG_TYPE_SIZE)
5015 maxsize = LONG_LONG_TYPE_SIZE;
5016 init_libfuncs (optable, word_mode,
5017 mode_for_size (maxsize, MODE_INT, 0),
5018 opname, suffix);
5021 /* Initialize the libfunc fields of an entire group of entries in some
5022 optab which correspond to all real mode operations. The parameters
5023 have the same meaning as similarly named ones for the `init_libfuncs'
5024 routine. (See above). */
5026 static void
5027 init_floating_libfuncs (optab optable, const char *opname, int suffix)
5029 init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
5032 /* Initialize the libfunc fields of an entire group of entries of an
5033 inter-mode-class conversion optab. The string formation rules are
5034 similar to the ones for init_libfuncs, above, but instead of having
5035 a mode name and an operand count these functions have two mode names
5036 and no operand count. */
5037 static void
5038 init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
5039 enum mode_class from_class,
5040 enum mode_class to_class)
5042 enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
5043 enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
5044 size_t opname_len = strlen (opname);
5045 size_t max_mname_len = 0;
5047 enum machine_mode fmode, tmode;
5048 const char *fname, *tname;
5049 const char *q;
5050 char *libfunc_name, *suffix;
5051 char *p;
5053 for (fmode = first_from_mode;
5054 fmode != VOIDmode;
5055 fmode = GET_MODE_WIDER_MODE (fmode))
5056 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
5058 for (tmode = first_to_mode;
5059 tmode != VOIDmode;
5060 tmode = GET_MODE_WIDER_MODE (tmode))
5061 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
5063 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5064 libfunc_name[0] = '_';
5065 libfunc_name[1] = '_';
5066 memcpy (&libfunc_name[2], opname, opname_len);
5067 suffix = libfunc_name + opname_len + 2;
5069 for (fmode = first_from_mode; fmode != VOIDmode;
5070 fmode = GET_MODE_WIDER_MODE (fmode))
5071 for (tmode = first_to_mode; tmode != VOIDmode;
5072 tmode = GET_MODE_WIDER_MODE (tmode))
5074 fname = GET_MODE_NAME (fmode);
5075 tname = GET_MODE_NAME (tmode);
5077 p = suffix;
5078 for (q = fname; *q; p++, q++)
5079 *p = TOLOWER (*q);
5080 for (q = tname; *q; p++, q++)
5081 *p = TOLOWER (*q);
5083 *p = '\0';
5085 tab->handlers[tmode][fmode].libfunc
5086 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5087 p - libfunc_name));
5091 /* Initialize the libfunc fields of an entire group of entries of an
5092 intra-mode-class conversion optab. The string formation rules are
5093 similar to the ones for init_libfunc, above. WIDENING says whether
5094 the optab goes from narrow to wide modes or vice versa. These functions
5095 have two mode names _and_ an operand count. */
5096 static void
5097 init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
5098 enum mode_class class, bool widening)
5100 enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
5101 size_t opname_len = strlen (opname);
5102 size_t max_mname_len = 0;
5104 enum machine_mode nmode, wmode;
5105 const char *nname, *wname;
5106 const char *q;
5107 char *libfunc_name, *suffix;
5108 char *p;
5110 for (nmode = first_mode; nmode != VOIDmode;
5111 nmode = GET_MODE_WIDER_MODE (nmode))
5112 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
5114 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5115 libfunc_name[0] = '_';
5116 libfunc_name[1] = '_';
5117 memcpy (&libfunc_name[2], opname, opname_len);
5118 suffix = libfunc_name + opname_len + 2;
5120 for (nmode = first_mode; nmode != VOIDmode;
5121 nmode = GET_MODE_WIDER_MODE (nmode))
5122 for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
5123 wmode = GET_MODE_WIDER_MODE (wmode))
5125 nname = GET_MODE_NAME (nmode);
5126 wname = GET_MODE_NAME (wmode);
5128 p = suffix;
5129 for (q = widening ? nname : wname; *q; p++, q++)
5130 *p = TOLOWER (*q);
5131 for (q = widening ? wname : nname; *q; p++, q++)
5132 *p = TOLOWER (*q);
5134 *p++ = '2';
5135 *p = '\0';
5137 tab->handlers[widening ? wmode : nmode]
5138 [widening ? nmode : wmode].libfunc
5139 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5140 p - libfunc_name));
5146 init_one_libfunc (const char *name)
5148 rtx symbol;
5150 /* Create a FUNCTION_DECL that can be passed to
5151 targetm.encode_section_info. */
5152 /* ??? We don't have any type information except for this is
5153 a function. Pretend this is "int foo()". */
5154 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5155 build_function_type (integer_type_node, NULL_TREE));
5156 DECL_ARTIFICIAL (decl) = 1;
5157 DECL_EXTERNAL (decl) = 1;
5158 TREE_PUBLIC (decl) = 1;
5160 symbol = XEXP (DECL_RTL (decl), 0);
5162 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5163 are the flags assigned by targetm.encode_section_info. */
5164 SYMBOL_REF_DECL (symbol) = 0;
5166 return symbol;
5169 /* Call this to reset the function entry for one optab (OPTABLE) in mode
5170 MODE to NAME, which should be either 0 or a string constant. */
5171 void
5172 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
5174 if (name)
5175 optable->handlers[mode].libfunc = init_one_libfunc (name);
5176 else
5177 optable->handlers[mode].libfunc = 0;
5180 /* Call this to reset the function entry for one conversion optab
5181 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5182 either 0 or a string constant. */
5183 void
5184 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
5185 enum machine_mode fmode, const char *name)
5187 if (name)
5188 optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
5189 else
5190 optable->handlers[tmode][fmode].libfunc = 0;
5193 /* Call this once to initialize the contents of the optabs
5194 appropriately for the current target machine. */
5196 void
5197 init_optabs (void)
5199 unsigned int i;
5201 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5203 for (i = 0; i < NUM_RTX_CODE; i++)
5204 setcc_gen_code[i] = CODE_FOR_nothing;
5206 #ifdef HAVE_conditional_move
5207 for (i = 0; i < NUM_MACHINE_MODES; i++)
5208 movcc_gen_code[i] = CODE_FOR_nothing;
5209 #endif
5211 add_optab = init_optab (PLUS);
5212 addv_optab = init_optabv (PLUS);
5213 sub_optab = init_optab (MINUS);
5214 subv_optab = init_optabv (MINUS);
5215 smul_optab = init_optab (MULT);
5216 smulv_optab = init_optabv (MULT);
5217 smul_highpart_optab = init_optab (UNKNOWN);
5218 umul_highpart_optab = init_optab (UNKNOWN);
5219 smul_widen_optab = init_optab (UNKNOWN);
5220 umul_widen_optab = init_optab (UNKNOWN);
5221 sdiv_optab = init_optab (DIV);
5222 sdivv_optab = init_optabv (DIV);
5223 sdivmod_optab = init_optab (UNKNOWN);
5224 udiv_optab = init_optab (UDIV);
5225 udivmod_optab = init_optab (UNKNOWN);
5226 smod_optab = init_optab (MOD);
5227 umod_optab = init_optab (UMOD);
5228 ftrunc_optab = init_optab (UNKNOWN);
5229 and_optab = init_optab (AND);
5230 ior_optab = init_optab (IOR);
5231 xor_optab = init_optab (XOR);
5232 ashl_optab = init_optab (ASHIFT);
5233 ashr_optab = init_optab (ASHIFTRT);
5234 lshr_optab = init_optab (LSHIFTRT);
5235 rotl_optab = init_optab (ROTATE);
5236 rotr_optab = init_optab (ROTATERT);
5237 smin_optab = init_optab (SMIN);
5238 smax_optab = init_optab (SMAX);
5239 umin_optab = init_optab (UMIN);
5240 umax_optab = init_optab (UMAX);
5241 pow_optab = init_optab (UNKNOWN);
5242 atan2_optab = init_optab (UNKNOWN);
5244 /* These three have codes assigned exclusively for the sake of
5245 have_insn_for. */
5246 mov_optab = init_optab (SET);
5247 movstrict_optab = init_optab (STRICT_LOW_PART);
5248 cmp_optab = init_optab (COMPARE);
5250 ucmp_optab = init_optab (UNKNOWN);
5251 tst_optab = init_optab (UNKNOWN);
5253 eq_optab = init_optab (EQ);
5254 ne_optab = init_optab (NE);
5255 gt_optab = init_optab (GT);
5256 ge_optab = init_optab (GE);
5257 lt_optab = init_optab (LT);
5258 le_optab = init_optab (LE);
5259 unord_optab = init_optab (UNORDERED);
5261 neg_optab = init_optab (NEG);
5262 negv_optab = init_optabv (NEG);
5263 abs_optab = init_optab (ABS);
5264 absv_optab = init_optabv (ABS);
5265 addcc_optab = init_optab (UNKNOWN);
5266 one_cmpl_optab = init_optab (NOT);
5267 ffs_optab = init_optab (FFS);
5268 clz_optab = init_optab (CLZ);
5269 ctz_optab = init_optab (CTZ);
5270 popcount_optab = init_optab (POPCOUNT);
5271 parity_optab = init_optab (PARITY);
5272 sqrt_optab = init_optab (SQRT);
5273 floor_optab = init_optab (UNKNOWN);
5274 ceil_optab = init_optab (UNKNOWN);
5275 round_optab = init_optab (UNKNOWN);
5276 btrunc_optab = init_optab (UNKNOWN);
5277 nearbyint_optab = init_optab (UNKNOWN);
5278 sin_optab = init_optab (UNKNOWN);
5279 cos_optab = init_optab (UNKNOWN);
5280 exp_optab = init_optab (UNKNOWN);
5281 exp10_optab = init_optab (UNKNOWN);
5282 exp2_optab = init_optab (UNKNOWN);
5283 log_optab = init_optab (UNKNOWN);
5284 log10_optab = init_optab (UNKNOWN);
5285 log2_optab = init_optab (UNKNOWN);
5286 tan_optab = init_optab (UNKNOWN);
5287 atan_optab = init_optab (UNKNOWN);
5288 strlen_optab = init_optab (UNKNOWN);
5289 cbranch_optab = init_optab (UNKNOWN);
5290 cmov_optab = init_optab (UNKNOWN);
5291 cstore_optab = init_optab (UNKNOWN);
5292 push_optab = init_optab (UNKNOWN);
5294 vec_extract_optab = init_optab (UNKNOWN);
5295 vec_set_optab = init_optab (UNKNOWN);
5296 vec_init_optab = init_optab (UNKNOWN);
5297 /* Conversions. */
5298 sext_optab = init_convert_optab (SIGN_EXTEND);
5299 zext_optab = init_convert_optab (ZERO_EXTEND);
5300 trunc_optab = init_convert_optab (TRUNCATE);
5301 sfix_optab = init_convert_optab (FIX);
5302 ufix_optab = init_convert_optab (UNSIGNED_FIX);
5303 sfixtrunc_optab = init_convert_optab (UNKNOWN);
5304 ufixtrunc_optab = init_convert_optab (UNKNOWN);
5305 sfloat_optab = init_convert_optab (FLOAT);
5306 ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
5308 for (i = 0; i < NUM_MACHINE_MODES; i++)
5310 movstr_optab[i] = CODE_FOR_nothing;
5311 clrstr_optab[i] = CODE_FOR_nothing;
5312 cmpstr_optab[i] = CODE_FOR_nothing;
5313 cmpmem_optab[i] = CODE_FOR_nothing;
5315 #ifdef HAVE_SECONDARY_RELOADS
5316 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5317 #endif
5320 /* Fill in the optabs with the insns we support. */
5321 init_all_optabs ();
5323 /* Initialize the optabs with the names of the library functions. */
5324 init_integral_libfuncs (add_optab, "add", '3');
5325 init_floating_libfuncs (add_optab, "add", '3');
5326 init_integral_libfuncs (addv_optab, "addv", '3');
5327 init_floating_libfuncs (addv_optab, "add", '3');
5328 init_integral_libfuncs (sub_optab, "sub", '3');
5329 init_floating_libfuncs (sub_optab, "sub", '3');
5330 init_integral_libfuncs (subv_optab, "subv", '3');
5331 init_floating_libfuncs (subv_optab, "sub", '3');
5332 init_integral_libfuncs (smul_optab, "mul", '3');
5333 init_floating_libfuncs (smul_optab, "mul", '3');
5334 init_integral_libfuncs (smulv_optab, "mulv", '3');
5335 init_floating_libfuncs (smulv_optab, "mul", '3');
5336 init_integral_libfuncs (sdiv_optab, "div", '3');
5337 init_floating_libfuncs (sdiv_optab, "div", '3');
5338 init_integral_libfuncs (sdivv_optab, "divv", '3');
5339 init_integral_libfuncs (udiv_optab, "udiv", '3');
5340 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5341 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5342 init_integral_libfuncs (smod_optab, "mod", '3');
5343 init_integral_libfuncs (umod_optab, "umod", '3');
5344 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5345 init_integral_libfuncs (and_optab, "and", '3');
5346 init_integral_libfuncs (ior_optab, "ior", '3');
5347 init_integral_libfuncs (xor_optab, "xor", '3');
5348 init_integral_libfuncs (ashl_optab, "ashl", '3');
5349 init_integral_libfuncs (ashr_optab, "ashr", '3');
5350 init_integral_libfuncs (lshr_optab, "lshr", '3');
5351 init_integral_libfuncs (smin_optab, "min", '3');
5352 init_floating_libfuncs (smin_optab, "min", '3');
5353 init_integral_libfuncs (smax_optab, "max", '3');
5354 init_floating_libfuncs (smax_optab, "max", '3');
5355 init_integral_libfuncs (umin_optab, "umin", '3');
5356 init_integral_libfuncs (umax_optab, "umax", '3');
5357 init_integral_libfuncs (neg_optab, "neg", '2');
5358 init_floating_libfuncs (neg_optab, "neg", '2');
5359 init_integral_libfuncs (negv_optab, "negv", '2');
5360 init_floating_libfuncs (negv_optab, "neg", '2');
5361 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5362 init_integral_libfuncs (ffs_optab, "ffs", '2');
5363 init_integral_libfuncs (clz_optab, "clz", '2');
5364 init_integral_libfuncs (ctz_optab, "ctz", '2');
5365 init_integral_libfuncs (popcount_optab, "popcount", '2');
5366 init_integral_libfuncs (parity_optab, "parity", '2');
5368 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5369 init_integral_libfuncs (cmp_optab, "cmp", '2');
5370 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5371 init_floating_libfuncs (cmp_optab, "cmp", '2');
5373 /* EQ etc are floating point only. */
5374 init_floating_libfuncs (eq_optab, "eq", '2');
5375 init_floating_libfuncs (ne_optab, "ne", '2');
5376 init_floating_libfuncs (gt_optab, "gt", '2');
5377 init_floating_libfuncs (ge_optab, "ge", '2');
5378 init_floating_libfuncs (lt_optab, "lt", '2');
5379 init_floating_libfuncs (le_optab, "le", '2');
5380 init_floating_libfuncs (unord_optab, "unord", '2');
5382 /* Conversions. */
5383 init_interclass_conv_libfuncs (sfloat_optab, "float", MODE_INT, MODE_FLOAT);
5384 init_interclass_conv_libfuncs (sfix_optab, "fix", MODE_FLOAT, MODE_INT);
5385 init_interclass_conv_libfuncs (ufix_optab, "fixuns", MODE_FLOAT, MODE_INT);
5387 /* sext_optab is also used for FLOAT_EXTEND. */
5388 init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
5389 init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
5391 /* Use cabs for double complex abs, since systems generally have cabs.
5392 Don't define any libcall for float complex, so that cabs will be used. */
5393 if (complex_double_type_node)
5394 abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
5395 = init_one_libfunc ("cabs");
5397 /* The ffs function operates on `int'. */
5398 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5399 = init_one_libfunc ("ffs");
5401 abort_libfunc = init_one_libfunc ("abort");
5402 memcpy_libfunc = init_one_libfunc ("memcpy");
5403 memmove_libfunc = init_one_libfunc ("memmove");
5404 bcopy_libfunc = init_one_libfunc ("bcopy");
5405 memcmp_libfunc = init_one_libfunc ("memcmp");
5406 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5407 memset_libfunc = init_one_libfunc ("memset");
5408 bzero_libfunc = init_one_libfunc ("bzero");
5409 setbits_libfunc = init_one_libfunc ("__setbits");
5411 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5412 ? "_Unwind_SjLj_Resume"
5413 : "_Unwind_Resume");
5414 #ifndef DONT_USE_BUILTIN_SETJMP
5415 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5416 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5417 #else
5418 setjmp_libfunc = init_one_libfunc ("setjmp");
5419 longjmp_libfunc = init_one_libfunc ("longjmp");
5420 #endif
5421 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5422 unwind_sjlj_unregister_libfunc
5423 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5425 /* For function entry/exit instrumentation. */
5426 profile_function_entry_libfunc
5427 = init_one_libfunc ("__cyg_profile_func_enter");
5428 profile_function_exit_libfunc
5429 = init_one_libfunc ("__cyg_profile_func_exit");
5431 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5432 gcov_init_libfunc = init_one_libfunc ("__gcov_init");
5434 if (HAVE_conditional_trap)
5435 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5437 /* Allow the target to add more libcalls or rename some, etc. */
5438 targetm.init_libfuncs ();
5441 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5442 CODE. Return 0 on failure. */
5445 gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
5446 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
5448 enum machine_mode mode = GET_MODE (op1);
5449 enum insn_code icode;
5450 rtx insn;
5452 if (!HAVE_conditional_trap)
5453 return 0;
5455 if (mode == VOIDmode)
5456 return 0;
5458 icode = cmp_optab->handlers[(int) mode].insn_code;
5459 if (icode == CODE_FOR_nothing)
5460 return 0;
5462 start_sequence ();
5463 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
5464 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
5465 if (!op1 || !op2)
5467 end_sequence ();
5468 return 0;
5470 emit_insn (GEN_FCN (icode) (op1, op2));
5472 PUT_CODE (trap_rtx, code);
5473 insn = gen_conditional_trap (trap_rtx, tcode);
5474 if (insn)
5476 emit_insn (insn);
5477 insn = get_insns ();
5479 end_sequence ();
5481 return insn;
5484 #include "gt-optabs.h"