(thumb_jump): Reduce the backward branch range, and increase the forward branch
[official-gcc.git] / gcc / convert.c
blob397c54228db751534b5010502870f23ecd991383
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (integer_zerop (expr))
46 expr = build_int_2 (0, 0);
47 TREE_TYPE (expr) = type;
48 return expr;
51 switch (TREE_CODE (TREE_TYPE (expr)))
53 case POINTER_TYPE:
54 case REFERENCE_TYPE:
55 return build1 (NOP_EXPR, type, expr);
57 case INTEGER_TYPE:
58 case ENUMERAL_TYPE:
59 case BOOLEAN_TYPE:
60 case CHAR_TYPE:
61 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
62 return build1 (CONVERT_EXPR, type, expr);
64 return
65 convert_to_pointer (type,
66 convert (lang_hooks.types.type_for_size
67 (POINTER_SIZE, 0), expr));
69 default:
70 error ("cannot convert to a pointer type");
71 return convert_to_pointer (type, integer_zero_node);
75 /* Avoid any floating point extensions from EXP. */
76 tree
77 strip_float_extensions (tree exp)
79 tree sub, expt, subt;
81 /* For floating point constant look up the narrowest type that can hold
82 it properly and handle it like (type)(narrowest_type)constant.
83 This way we can optimize for instance a=a*2.0 where "a" is float
84 but 2.0 is double constant. */
85 if (TREE_CODE (exp) == REAL_CST)
87 REAL_VALUE_TYPE orig;
88 tree type = NULL;
90 orig = TREE_REAL_CST (exp);
91 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
92 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
93 type = float_type_node;
94 else if (TYPE_PRECISION (TREE_TYPE (exp))
95 > TYPE_PRECISION (double_type_node)
96 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
97 type = double_type_node;
98 if (type)
99 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
102 if (TREE_CODE (exp) != NOP_EXPR)
103 return exp;
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
115 return strip_float_extensions (sub);
119 /* Convert EXPR to some floating-point type TYPE.
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
124 tree
125 convert_to_real (tree type, tree expr)
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
137 switch (fcode)
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
194 if (fn)
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
203 default:
204 break;
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
224 tree fn = mathfn_built_in (type, fcode);
226 if (fn)
228 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
229 1)));
230 tree arglist = build_tree_list (NULL_TREE,
231 fold (convert_to_real (type, arg0)));
233 return build_function_call_expr (fn, arglist);
237 /* Propagate the cast into the operation. */
238 if (itype != type && FLOAT_TYPE_P (type))
239 switch (TREE_CODE (expr))
241 /* Convert (float)-x into -(float)x. This is always safe. */
242 case ABS_EXPR:
243 case NEGATE_EXPR:
244 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
245 return build1 (TREE_CODE (expr), type,
246 fold (convert_to_real (type,
247 TREE_OPERAND (expr, 0))));
248 break;
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
252 case PLUS_EXPR:
253 case MINUS_EXPR:
254 case MULT_EXPR:
255 case RDIV_EXPR:
257 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
258 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
263 tree newtype = type;
264 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
265 newtype = TREE_TYPE (arg0);
266 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg1);
268 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
270 expr = build (TREE_CODE (expr), newtype,
271 fold (convert_to_real (newtype, arg0)),
272 fold (convert_to_real (newtype, arg1)));
273 if (newtype == type)
274 return expr;
278 break;
279 default:
280 break;
283 switch (TREE_CODE (TREE_TYPE (expr)))
285 case REAL_TYPE:
286 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
287 type, expr);
289 case INTEGER_TYPE:
290 case ENUMERAL_TYPE:
291 case BOOLEAN_TYPE:
292 case CHAR_TYPE:
293 return build1 (FLOAT_EXPR, type, expr);
295 case COMPLEX_TYPE:
296 return convert (type,
297 fold (build1 (REALPART_EXPR,
298 TREE_TYPE (TREE_TYPE (expr)), expr)));
300 case POINTER_TYPE:
301 case REFERENCE_TYPE:
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type, integer_zero_node);
305 default:
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type, integer_zero_node);
311 /* Convert EXPR to some integer (or enum) type TYPE.
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
319 tree
320 convert_to_integer (tree type, tree expr)
322 enum tree_code ex_form = TREE_CODE (expr);
323 tree intype = TREE_TYPE (expr);
324 unsigned int inprec = TYPE_PRECISION (intype);
325 unsigned int outprec = TYPE_PRECISION (type);
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type))
331 error ("conversion to incomplete type");
332 return error_mark_node;
335 switch (TREE_CODE (intype))
337 case POINTER_TYPE:
338 case REFERENCE_TYPE:
339 if (integer_zerop (expr))
340 expr = integer_zero_node;
341 else
342 expr = fold (build1 (CONVERT_EXPR,
343 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
344 expr));
346 return convert_to_integer (type, expr);
348 case INTEGER_TYPE:
349 case ENUMERAL_TYPE:
350 case BOOLEAN_TYPE:
351 case CHAR_TYPE:
352 /* If this is a logical operation, which just returns 0 or 1, we can
353 change the type of the expression. For some logical operations,
354 we must also change the types of the operands to maintain type
355 correctness. */
357 if (TREE_CODE_CLASS (ex_form) == '<')
359 expr = copy_node (expr);
360 TREE_TYPE (expr) = type;
361 return expr;
364 else if (ex_form == TRUTH_AND_EXPR || ex_form == TRUTH_ANDIF_EXPR
365 || ex_form == TRUTH_OR_EXPR || ex_form == TRUTH_ORIF_EXPR
366 || ex_form == TRUTH_XOR_EXPR)
368 expr = copy_node (expr);
369 TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
370 TREE_OPERAND (expr, 1) = convert (type, TREE_OPERAND (expr, 1));
371 TREE_TYPE (expr) = type;
372 return expr;
375 else if (ex_form == TRUTH_NOT_EXPR)
377 expr = copy_node (expr);
378 TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
379 TREE_TYPE (expr) = type;
380 return expr;
383 /* If we are widening the type, put in an explicit conversion.
384 Similarly if we are not changing the width. After this, we know
385 we are truncating EXPR. */
387 else if (outprec >= inprec)
389 enum tree_code code;
391 /* If the precision of the EXPR's type is K bits and the
392 destination mode has more bits, and the sign is changing,
393 it is not safe to use a NOP_EXPR. For example, suppose
394 that EXPR's type is a 3-bit unsigned integer type, the
395 TYPE is a 3-bit signed integer type, and the machine mode
396 for the types is 8-bit QImode. In that case, the
397 conversion necessitates an explicit sign-extension. In
398 the signed-to-unsigned case the high-order bits have to
399 be cleared. */
400 if (TREE_UNSIGNED (type) != TREE_UNSIGNED (TREE_TYPE (expr))
401 && (TYPE_PRECISION (TREE_TYPE (expr))
402 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
403 code = CONVERT_EXPR;
404 else
405 code = NOP_EXPR;
407 return build1 (code, type, expr);
410 /* If TYPE is an enumeral type or a type with a precision less
411 than the number of bits in its mode, do the conversion to the
412 type corresponding to its mode, then do a nop conversion
413 to TYPE. */
414 else if (TREE_CODE (type) == ENUMERAL_TYPE
415 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
416 return build1 (NOP_EXPR, type,
417 convert (lang_hooks.types.type_for_mode
418 (TYPE_MODE (type), TREE_UNSIGNED (type)),
419 expr));
421 /* Here detect when we can distribute the truncation down past some
422 arithmetic. For example, if adding two longs and converting to an
423 int, we can equally well convert both to ints and then add.
424 For the operations handled here, such truncation distribution
425 is always safe.
426 It is desirable in these cases:
427 1) when truncating down to full-word from a larger size
428 2) when truncating takes no work.
429 3) when at least one operand of the arithmetic has been extended
430 (as by C's default conversions). In this case we need two conversions
431 if we do the arithmetic as already requested, so we might as well
432 truncate both and then combine. Perhaps that way we need only one.
434 Note that in general we cannot do the arithmetic in a type
435 shorter than the desired result of conversion, even if the operands
436 are both extended from a shorter type, because they might overflow
437 if combined in that type. The exceptions to this--the times when
438 two narrow values can be combined in their narrow type even to
439 make a wider result--are handled by "shorten" in build_binary_op. */
441 switch (ex_form)
443 case RSHIFT_EXPR:
444 /* We can pass truncation down through right shifting
445 when the shift count is a nonpositive constant. */
446 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
447 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
448 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
449 integer_one_node)))
450 goto trunc1;
451 break;
453 case LSHIFT_EXPR:
454 /* We can pass truncation down through left shifting
455 when the shift count is a nonnegative constant and
456 the target type is unsigned. */
457 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
458 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
459 && TREE_UNSIGNED (type)
460 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
462 /* If shift count is less than the width of the truncated type,
463 really shift. */
464 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
465 /* In this case, shifting is like multiplication. */
466 goto trunc1;
467 else
469 /* If it is >= that width, result is zero.
470 Handling this with trunc1 would give the wrong result:
471 (int) ((long long) a << 32) is well defined (as 0)
472 but (int) a << 32 is undefined and would get a
473 warning. */
475 tree t = convert_to_integer (type, integer_zero_node);
477 /* If the original expression had side-effects, we must
478 preserve it. */
479 if (TREE_SIDE_EFFECTS (expr))
480 return build (COMPOUND_EXPR, type, expr, t);
481 else
482 return t;
485 break;
487 case MAX_EXPR:
488 case MIN_EXPR:
489 case MULT_EXPR:
491 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
492 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
494 /* Don't distribute unless the output precision is at least as big
495 as the actual inputs. Otherwise, the comparison of the
496 truncated values will be wrong. */
497 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
498 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
499 /* If signedness of arg0 and arg1 don't match,
500 we can't necessarily find a type to compare them in. */
501 && (TREE_UNSIGNED (TREE_TYPE (arg0))
502 == TREE_UNSIGNED (TREE_TYPE (arg1))))
503 goto trunc1;
504 break;
507 case PLUS_EXPR:
508 case MINUS_EXPR:
509 case BIT_AND_EXPR:
510 case BIT_IOR_EXPR:
511 case BIT_XOR_EXPR:
512 trunc1:
514 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
515 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
517 if (outprec >= BITS_PER_WORD
518 || TRULY_NOOP_TRUNCATION (outprec, inprec)
519 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
520 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
522 /* Do the arithmetic in type TYPEX,
523 then convert result to TYPE. */
524 tree typex = type;
526 /* Can't do arithmetic in enumeral types
527 so use an integer type that will hold the values. */
528 if (TREE_CODE (typex) == ENUMERAL_TYPE)
529 typex = lang_hooks.types.type_for_size
530 (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
532 /* But now perhaps TYPEX is as wide as INPREC.
533 In that case, do nothing special here.
534 (Otherwise would recurse infinitely in convert. */
535 if (TYPE_PRECISION (typex) != inprec)
537 /* Don't do unsigned arithmetic where signed was wanted,
538 or vice versa.
539 Exception: if both of the original operands were
540 unsigned then we can safely do the work as unsigned.
541 Exception: shift operations take their type solely
542 from the first argument.
543 Exception: the LSHIFT_EXPR case above requires that
544 we perform this operation unsigned lest we produce
545 signed-overflow undefinedness.
546 And we may need to do it as unsigned
547 if we truncate to the original size. */
548 if (TREE_UNSIGNED (TREE_TYPE (expr))
549 || (TREE_UNSIGNED (TREE_TYPE (arg0))
550 && (TREE_UNSIGNED (TREE_TYPE (arg1))
551 || ex_form == LSHIFT_EXPR
552 || ex_form == RSHIFT_EXPR
553 || ex_form == LROTATE_EXPR
554 || ex_form == RROTATE_EXPR))
555 || ex_form == LSHIFT_EXPR)
556 typex = lang_hooks.types.unsigned_type (typex);
557 else
558 typex = lang_hooks.types.signed_type (typex);
559 return convert (type,
560 fold (build (ex_form, typex,
561 convert (typex, arg0),
562 convert (typex, arg1))));
566 break;
568 case NEGATE_EXPR:
569 case BIT_NOT_EXPR:
570 /* This is not correct for ABS_EXPR,
571 since we must test the sign before truncation. */
573 tree typex = type;
575 /* Can't do arithmetic in enumeral types
576 so use an integer type that will hold the values. */
577 if (TREE_CODE (typex) == ENUMERAL_TYPE)
578 typex = lang_hooks.types.type_for_size
579 (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
581 /* But now perhaps TYPEX is as wide as INPREC.
582 In that case, do nothing special here.
583 (Otherwise would recurse infinitely in convert. */
584 if (TYPE_PRECISION (typex) != inprec)
586 /* Don't do unsigned arithmetic where signed was wanted,
587 or vice versa. */
588 if (TREE_UNSIGNED (TREE_TYPE (expr)))
589 typex = lang_hooks.types.unsigned_type (typex);
590 else
591 typex = lang_hooks.types.signed_type (typex);
592 return convert (type,
593 fold (build1 (ex_form, typex,
594 convert (typex,
595 TREE_OPERAND (expr, 0)))));
599 case NOP_EXPR:
600 /* Don't introduce a
601 "can't convert between vector values of different size" error. */
602 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
603 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
604 != GET_MODE_SIZE (TYPE_MODE (type))))
605 break;
606 /* If truncating after truncating, might as well do all at once.
607 If truncating after extending, we may get rid of wasted work. */
608 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
610 case COND_EXPR:
611 /* It is sometimes worthwhile to push the narrowing down through
612 the conditional and never loses. */
613 return fold (build (COND_EXPR, type, TREE_OPERAND (expr, 0),
614 convert (type, TREE_OPERAND (expr, 1)),
615 convert (type, TREE_OPERAND (expr, 2))));
617 default:
618 break;
621 return build1 (NOP_EXPR, type, expr);
623 case REAL_TYPE:
624 return build1 (FIX_TRUNC_EXPR, type, expr);
626 case COMPLEX_TYPE:
627 return convert (type,
628 fold (build1 (REALPART_EXPR,
629 TREE_TYPE (TREE_TYPE (expr)), expr)));
631 case VECTOR_TYPE:
632 if (GET_MODE_SIZE (TYPE_MODE (type))
633 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
635 error ("can't convert between vector values of different size");
636 return error_mark_node;
638 return build1 (NOP_EXPR, type, expr);
640 default:
641 error ("aggregate value used where an integer was expected");
642 return convert (type, integer_zero_node);
646 /* Convert EXPR to the complex type TYPE in the usual ways. */
648 tree
649 convert_to_complex (tree type, tree expr)
651 tree subtype = TREE_TYPE (type);
653 switch (TREE_CODE (TREE_TYPE (expr)))
655 case REAL_TYPE:
656 case INTEGER_TYPE:
657 case ENUMERAL_TYPE:
658 case BOOLEAN_TYPE:
659 case CHAR_TYPE:
660 return build (COMPLEX_EXPR, type, convert (subtype, expr),
661 convert (subtype, integer_zero_node));
663 case COMPLEX_TYPE:
665 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
667 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
668 return expr;
669 else if (TREE_CODE (expr) == COMPLEX_EXPR)
670 return fold (build (COMPLEX_EXPR,
671 type,
672 convert (subtype, TREE_OPERAND (expr, 0)),
673 convert (subtype, TREE_OPERAND (expr, 1))));
674 else
676 expr = save_expr (expr);
677 return
678 fold (build (COMPLEX_EXPR,
679 type, convert (subtype,
680 fold (build1 (REALPART_EXPR,
681 TREE_TYPE (TREE_TYPE (expr)),
682 expr))),
683 convert (subtype,
684 fold (build1 (IMAGPART_EXPR,
685 TREE_TYPE (TREE_TYPE (expr)),
686 expr)))));
690 case POINTER_TYPE:
691 case REFERENCE_TYPE:
692 error ("pointer value used where a complex was expected");
693 return convert_to_complex (type, integer_zero_node);
695 default:
696 error ("aggregate value used where a complex was expected");
697 return convert_to_complex (type, integer_zero_node);
701 /* Convert EXPR to the vector type TYPE in the usual ways. */
703 tree
704 convert_to_vector (tree type, tree expr)
706 switch (TREE_CODE (TREE_TYPE (expr)))
708 case INTEGER_TYPE:
709 case VECTOR_TYPE:
710 if (GET_MODE_SIZE (TYPE_MODE (type))
711 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
713 error ("can't convert between vector values of different size");
714 return error_mark_node;
716 return build1 (NOP_EXPR, type, expr);
718 default:
719 error ("can't convert value to a vector");
720 return convert_to_vector (type, integer_zero_node);