1 /* Induction variable optimizations.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 2) Candidates for the induction variables are found. This includes
35 -- old induction variables
36 -- the variables defined by expressions derived from the "interesting
39 3) The optimal (w.r. to a cost function) set of variables is chosen. The
40 cost function assigns a cost to sets of induction variables and consists
43 -- The use costs. Each of the interesting uses chooses the best induction
44 variable in the set and adds its cost to the sum. The cost reflects
45 the time spent on modifying the induction variables value to be usable
46 for the given purpose (adding base and offset for arrays, etc.).
47 -- The variable costs. Each of the variables has a cost assigned that
48 reflects the costs associated with incrementing the value of the
49 variable. The original variables are somewhat preferred.
50 -- The set cost. Depending on the size of the set, extra cost may be
51 added to reflect register pressure.
53 All the costs are defined in a machine-specific way, using the target
54 hooks and machine descriptions to determine them.
56 4) The trees are transformed to use the new variables, the dead code is
59 All of this is done loop by loop. Doing it globally is theoretically
60 possible, it might give a better performance and it might enable us
61 to decide costs more precisely, but getting all the interactions right
62 would be complicated. */
66 #include "coretypes.h"
69 #include "stor-layout.h"
71 #include "basic-block.h"
72 #include "gimple-pretty-print.h"
73 #include "pointer-set.h"
74 #include "hash-table.h"
75 #include "tree-ssa-alias.h"
76 #include "internal-fn.h"
78 #include "gimple-expr.h"
82 #include "gimple-iterator.h"
83 #include "gimplify-me.h"
84 #include "gimple-ssa.h"
87 #include "tree-phinodes.h"
88 #include "ssa-iterators.h"
89 #include "stringpool.h"
90 #include "tree-ssanames.h"
91 #include "tree-ssa-loop-ivopts.h"
92 #include "tree-ssa-loop-manip.h"
93 #include "tree-ssa-loop-niter.h"
94 #include "tree-ssa-loop.h"
99 #include "tree-pass.h"
100 #include "insn-config.h"
101 #include "tree-chrec.h"
102 #include "tree-scalar-evolution.h"
105 #include "langhooks.h"
106 #include "tree-affine.h"
108 #include "tree-inline.h"
109 #include "tree-ssa-propagate.h"
111 #include "tree-ssa-address.h"
113 /* FIXME: Expressions are expanded to RTL in this pass to determine the
114 cost of different addressing modes. This should be moved to a TBD
115 interface between the GIMPLE and RTL worlds. */
119 /* The infinite cost. */
120 #define INFTY 10000000
122 #define AVG_LOOP_NITER(LOOP) 5
124 /* Returns the expected number of loop iterations for LOOP.
125 The average trip count is computed from profile data if it
128 static inline HOST_WIDE_INT
129 avg_loop_niter (struct loop
*loop
)
131 HOST_WIDE_INT niter
= estimated_stmt_executions_int (loop
);
133 return AVG_LOOP_NITER (loop
);
138 /* Representation of the induction variable. */
141 tree base
; /* Initial value of the iv. */
142 tree base_object
; /* A memory object to that the induction variable points. */
143 tree step
; /* Step of the iv (constant only). */
144 tree ssa_name
; /* The ssa name with the value. */
145 bool biv_p
; /* Is it a biv? */
146 bool have_use_for
; /* Do we already have a use for it? */
147 unsigned use_id
; /* The identifier in the use if it is the case. */
150 /* Per-ssa version information (induction variable descriptions, etc.). */
153 tree name
; /* The ssa name. */
154 struct iv
*iv
; /* Induction variable description. */
155 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
156 an expression that is not an induction variable. */
157 bool preserve_biv
; /* For the original biv, whether to preserve it. */
158 unsigned inv_id
; /* Id of an invariant. */
164 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
165 USE_ADDRESS
, /* Use in an address. */
166 USE_COMPARE
/* Use is a compare. */
169 /* Cost of a computation. */
172 int cost
; /* The runtime cost. */
173 unsigned complexity
; /* The estimate of the complexity of the code for
174 the computation (in no concrete units --
175 complexity field should be larger for more
176 complex expressions and addressing modes). */
179 static const comp_cost no_cost
= {0, 0};
180 static const comp_cost infinite_cost
= {INFTY
, INFTY
};
182 /* The candidate - cost pair. */
185 struct iv_cand
*cand
; /* The candidate. */
186 comp_cost cost
; /* The cost. */
187 bitmap depends_on
; /* The list of invariants that have to be
189 tree value
; /* For final value elimination, the expression for
190 the final value of the iv. For iv elimination,
191 the new bound to compare with. */
192 enum tree_code comp
; /* For iv elimination, the comparison. */
193 int inv_expr_id
; /* Loop invariant expression id. */
199 unsigned id
; /* The id of the use. */
200 enum use_type type
; /* Type of the use. */
201 struct iv
*iv
; /* The induction variable it is based on. */
202 gimple stmt
; /* Statement in that it occurs. */
203 tree
*op_p
; /* The place where it occurs. */
204 bitmap related_cands
; /* The set of "related" iv candidates, plus the common
207 unsigned n_map_members
; /* Number of candidates in the cost_map list. */
208 struct cost_pair
*cost_map
;
209 /* The costs wrto the iv candidates. */
211 struct iv_cand
*selected
;
212 /* The selected candidate. */
215 /* The position where the iv is computed. */
218 IP_NORMAL
, /* At the end, just before the exit condition. */
219 IP_END
, /* At the end of the latch block. */
220 IP_BEFORE_USE
, /* Immediately before a specific use. */
221 IP_AFTER_USE
, /* Immediately after a specific use. */
222 IP_ORIGINAL
/* The original biv. */
225 /* The induction variable candidate. */
228 unsigned id
; /* The number of the candidate. */
229 bool important
; /* Whether this is an "important" candidate, i.e. such
230 that it should be considered by all uses. */
231 ENUM_BITFIELD(iv_position
) pos
: 8; /* Where it is computed. */
232 gimple incremented_at
;/* For original biv, the statement where it is
234 tree var_before
; /* The variable used for it before increment. */
235 tree var_after
; /* The variable used for it after increment. */
236 struct iv
*iv
; /* The value of the candidate. NULL for
237 "pseudocandidate" used to indicate the possibility
238 to replace the final value of an iv by direct
239 computation of the value. */
240 unsigned cost
; /* Cost of the candidate. */
241 unsigned cost_step
; /* Cost of the candidate's increment operation. */
242 struct iv_use
*ainc_use
; /* For IP_{BEFORE,AFTER}_USE candidates, the place
243 where it is incremented. */
244 bitmap depends_on
; /* The list of invariants that are used in step of the
248 /* Loop invariant expression hashtable entry. */
249 struct iv_inv_expr_ent
256 /* The data used by the induction variable optimizations. */
258 typedef struct iv_use
*iv_use_p
;
260 typedef struct iv_cand
*iv_cand_p
;
262 /* Hashtable helpers. */
264 struct iv_inv_expr_hasher
: typed_free_remove
<iv_inv_expr_ent
>
266 typedef iv_inv_expr_ent value_type
;
267 typedef iv_inv_expr_ent compare_type
;
268 static inline hashval_t
hash (const value_type
*);
269 static inline bool equal (const value_type
*, const compare_type
*);
272 /* Hash function for loop invariant expressions. */
275 iv_inv_expr_hasher::hash (const value_type
*expr
)
280 /* Hash table equality function for expressions. */
283 iv_inv_expr_hasher::equal (const value_type
*expr1
, const compare_type
*expr2
)
285 return expr1
->hash
== expr2
->hash
286 && operand_equal_p (expr1
->expr
, expr2
->expr
, 0);
291 /* The currently optimized loop. */
292 struct loop
*current_loop
;
294 /* Numbers of iterations for all exits of the current loop. */
295 struct pointer_map_t
*niters
;
297 /* Number of registers used in it. */
300 /* The size of version_info array allocated. */
301 unsigned version_info_size
;
303 /* The array of information for the ssa names. */
304 struct version_info
*version_info
;
306 /* The hashtable of loop invariant expressions created
308 hash_table
<iv_inv_expr_hasher
> inv_expr_tab
;
310 /* Loop invariant expression id. */
313 /* The bitmap of indices in version_info whose value was changed. */
316 /* The uses of induction variables. */
317 vec
<iv_use_p
> iv_uses
;
319 /* The candidates. */
320 vec
<iv_cand_p
> iv_candidates
;
322 /* A bitmap of important candidates. */
323 bitmap important_candidates
;
325 /* The maximum invariant id. */
328 /* Whether to consider just related and important candidates when replacing a
330 bool consider_all_candidates
;
332 /* Are we optimizing for speed? */
335 /* Whether the loop body includes any function calls. */
336 bool body_includes_call
;
338 /* Whether the loop body can only be exited via single exit. */
339 bool loop_single_exit_p
;
342 /* An assignment of iv candidates to uses. */
346 /* The number of uses covered by the assignment. */
349 /* Number of uses that cannot be expressed by the candidates in the set. */
352 /* Candidate assigned to a use, together with the related costs. */
353 struct cost_pair
**cand_for_use
;
355 /* Number of times each candidate is used. */
356 unsigned *n_cand_uses
;
358 /* The candidates used. */
361 /* The number of candidates in the set. */
364 /* Total number of registers needed. */
367 /* Total cost of expressing uses. */
368 comp_cost cand_use_cost
;
370 /* Total cost of candidates. */
373 /* Number of times each invariant is used. */
374 unsigned *n_invariant_uses
;
376 /* The array holding the number of uses of each loop
377 invariant expressions created by ivopt. */
378 unsigned *used_inv_expr
;
380 /* The number of created loop invariants. */
381 unsigned num_used_inv_expr
;
383 /* Total cost of the assignment. */
387 /* Difference of two iv candidate assignments. */
394 /* An old assignment (for rollback purposes). */
395 struct cost_pair
*old_cp
;
397 /* A new assignment. */
398 struct cost_pair
*new_cp
;
400 /* Next change in the list. */
401 struct iv_ca_delta
*next_change
;
404 /* Bound on number of candidates below that all candidates are considered. */
406 #define CONSIDER_ALL_CANDIDATES_BOUND \
407 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
409 /* If there are more iv occurrences, we just give up (it is quite unlikely that
410 optimizing such a loop would help, and it would take ages). */
412 #define MAX_CONSIDERED_USES \
413 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
415 /* If there are at most this number of ivs in the set, try removing unnecessary
416 ivs from the set always. */
418 #define ALWAYS_PRUNE_CAND_SET_BOUND \
419 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
421 /* The list of trees for that the decl_rtl field must be reset is stored
424 static vec
<tree
> decl_rtl_to_reset
;
426 static comp_cost
force_expr_to_var_cost (tree
, bool);
428 /* Number of uses recorded in DATA. */
430 static inline unsigned
431 n_iv_uses (struct ivopts_data
*data
)
433 return data
->iv_uses
.length ();
436 /* Ith use recorded in DATA. */
438 static inline struct iv_use
*
439 iv_use (struct ivopts_data
*data
, unsigned i
)
441 return data
->iv_uses
[i
];
444 /* Number of candidates recorded in DATA. */
446 static inline unsigned
447 n_iv_cands (struct ivopts_data
*data
)
449 return data
->iv_candidates
.length ();
452 /* Ith candidate recorded in DATA. */
454 static inline struct iv_cand
*
455 iv_cand (struct ivopts_data
*data
, unsigned i
)
457 return data
->iv_candidates
[i
];
460 /* The single loop exit if it dominates the latch, NULL otherwise. */
463 single_dom_exit (struct loop
*loop
)
465 edge exit
= single_exit (loop
);
470 if (!just_once_each_iteration_p (loop
, exit
->src
))
476 /* Dumps information about the induction variable IV to FILE. */
479 dump_iv (FILE *file
, struct iv
*iv
)
483 fprintf (file
, "ssa name ");
484 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
485 fprintf (file
, "\n");
488 fprintf (file
, " type ");
489 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
490 fprintf (file
, "\n");
494 fprintf (file
, " base ");
495 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
496 fprintf (file
, "\n");
498 fprintf (file
, " step ");
499 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
500 fprintf (file
, "\n");
504 fprintf (file
, " invariant ");
505 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
506 fprintf (file
, "\n");
511 fprintf (file
, " base object ");
512 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
513 fprintf (file
, "\n");
517 fprintf (file
, " is a biv\n");
520 /* Dumps information about the USE to FILE. */
523 dump_use (FILE *file
, struct iv_use
*use
)
525 fprintf (file
, "use %d\n", use
->id
);
529 case USE_NONLINEAR_EXPR
:
530 fprintf (file
, " generic\n");
534 fprintf (file
, " address\n");
538 fprintf (file
, " compare\n");
545 fprintf (file
, " in statement ");
546 print_gimple_stmt (file
, use
->stmt
, 0, 0);
547 fprintf (file
, "\n");
549 fprintf (file
, " at position ");
551 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
552 fprintf (file
, "\n");
554 dump_iv (file
, use
->iv
);
556 if (use
->related_cands
)
558 fprintf (file
, " related candidates ");
559 dump_bitmap (file
, use
->related_cands
);
563 /* Dumps information about the uses to FILE. */
566 dump_uses (FILE *file
, struct ivopts_data
*data
)
571 for (i
= 0; i
< n_iv_uses (data
); i
++)
573 use
= iv_use (data
, i
);
575 dump_use (file
, use
);
576 fprintf (file
, "\n");
580 /* Dumps information about induction variable candidate CAND to FILE. */
583 dump_cand (FILE *file
, struct iv_cand
*cand
)
585 struct iv
*iv
= cand
->iv
;
587 fprintf (file
, "candidate %d%s\n",
588 cand
->id
, cand
->important
? " (important)" : "");
590 if (cand
->depends_on
)
592 fprintf (file
, " depends on ");
593 dump_bitmap (file
, cand
->depends_on
);
598 fprintf (file
, " final value replacement\n");
602 if (cand
->var_before
)
604 fprintf (file
, " var_before ");
605 print_generic_expr (file
, cand
->var_before
, TDF_SLIM
);
606 fprintf (file
, "\n");
610 fprintf (file
, " var_after ");
611 print_generic_expr (file
, cand
->var_after
, TDF_SLIM
);
612 fprintf (file
, "\n");
618 fprintf (file
, " incremented before exit test\n");
622 fprintf (file
, " incremented before use %d\n", cand
->ainc_use
->id
);
626 fprintf (file
, " incremented after use %d\n", cand
->ainc_use
->id
);
630 fprintf (file
, " incremented at end\n");
634 fprintf (file
, " original biv\n");
641 /* Returns the info for ssa version VER. */
643 static inline struct version_info
*
644 ver_info (struct ivopts_data
*data
, unsigned ver
)
646 return data
->version_info
+ ver
;
649 /* Returns the info for ssa name NAME. */
651 static inline struct version_info
*
652 name_info (struct ivopts_data
*data
, tree name
)
654 return ver_info (data
, SSA_NAME_VERSION (name
));
657 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
661 stmt_after_ip_normal_pos (struct loop
*loop
, gimple stmt
)
663 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
667 if (sbb
== loop
->latch
)
673 return stmt
== last_stmt (bb
);
676 /* Returns true if STMT if after the place where the original induction
677 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
678 if the positions are identical. */
681 stmt_after_inc_pos (struct iv_cand
*cand
, gimple stmt
, bool true_if_equal
)
683 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
684 basic_block stmt_bb
= gimple_bb (stmt
);
686 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
689 if (stmt_bb
!= cand_bb
)
693 && gimple_uid (stmt
) == gimple_uid (cand
->incremented_at
))
695 return gimple_uid (stmt
) > gimple_uid (cand
->incremented_at
);
698 /* Returns true if STMT if after the place where the induction variable
699 CAND is incremented in LOOP. */
702 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
710 return stmt_after_ip_normal_pos (loop
, stmt
);
714 return stmt_after_inc_pos (cand
, stmt
, false);
717 return stmt_after_inc_pos (cand
, stmt
, true);
724 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
727 abnormal_ssa_name_p (tree exp
)
732 if (TREE_CODE (exp
) != SSA_NAME
)
735 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
738 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
739 abnormal phi node. Callback for for_each_index. */
742 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
743 void *data ATTRIBUTE_UNUSED
)
745 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
747 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
749 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
753 return !abnormal_ssa_name_p (*index
);
756 /* Returns true if EXPR contains a ssa name that occurs in an
757 abnormal phi node. */
760 contains_abnormal_ssa_name_p (tree expr
)
763 enum tree_code_class codeclass
;
768 code
= TREE_CODE (expr
);
769 codeclass
= TREE_CODE_CLASS (code
);
771 if (code
== SSA_NAME
)
772 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
774 if (code
== INTEGER_CST
775 || is_gimple_min_invariant (expr
))
778 if (code
== ADDR_EXPR
)
779 return !for_each_index (&TREE_OPERAND (expr
, 0),
780 idx_contains_abnormal_ssa_name_p
,
783 if (code
== COND_EXPR
)
784 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0))
785 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1))
786 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 2));
792 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
797 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
809 /* Returns the structure describing number of iterations determined from
810 EXIT of DATA->current_loop, or NULL if something goes wrong. */
812 static struct tree_niter_desc
*
813 niter_for_exit (struct ivopts_data
*data
, edge exit
)
815 struct tree_niter_desc
*desc
;
820 data
->niters
= pointer_map_create ();
824 slot
= pointer_map_contains (data
->niters
, exit
);
828 /* Try to determine number of iterations. We cannot safely work with ssa
829 names that appear in phi nodes on abnormal edges, so that we do not
830 create overlapping life ranges for them (PR 27283). */
831 desc
= XNEW (struct tree_niter_desc
);
832 if (!number_of_iterations_exit (data
->current_loop
,
834 || contains_abnormal_ssa_name_p (desc
->niter
))
839 slot
= pointer_map_insert (data
->niters
, exit
);
843 desc
= (struct tree_niter_desc
*) *slot
;
848 /* Returns the structure describing number of iterations determined from
849 single dominating exit of DATA->current_loop, or NULL if something
852 static struct tree_niter_desc
*
853 niter_for_single_dom_exit (struct ivopts_data
*data
)
855 edge exit
= single_dom_exit (data
->current_loop
);
860 return niter_for_exit (data
, exit
);
863 /* Initializes data structures used by the iv optimization pass, stored
867 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
869 data
->version_info_size
= 2 * num_ssa_names
;
870 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
871 data
->relevant
= BITMAP_ALLOC (NULL
);
872 data
->important_candidates
= BITMAP_ALLOC (NULL
);
873 data
->max_inv_id
= 0;
875 data
->iv_uses
.create (20);
876 data
->iv_candidates
.create (20);
877 data
->inv_expr_tab
.create (10);
878 data
->inv_expr_id
= 0;
879 decl_rtl_to_reset
.create (20);
882 /* Returns a memory object to that EXPR points. In case we are able to
883 determine that it does not point to any such object, NULL is returned. */
886 determine_base_object (tree expr
)
888 enum tree_code code
= TREE_CODE (expr
);
891 /* If this is a pointer casted to any type, we need to determine
892 the base object for the pointer; so handle conversions before
893 throwing away non-pointer expressions. */
894 if (CONVERT_EXPR_P (expr
))
895 return determine_base_object (TREE_OPERAND (expr
, 0));
897 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
906 obj
= TREE_OPERAND (expr
, 0);
907 base
= get_base_address (obj
);
912 if (TREE_CODE (base
) == MEM_REF
)
913 return determine_base_object (TREE_OPERAND (base
, 0));
915 return fold_convert (ptr_type_node
,
916 build_fold_addr_expr (base
));
918 case POINTER_PLUS_EXPR
:
919 return determine_base_object (TREE_OPERAND (expr
, 0));
923 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
927 return fold_convert (ptr_type_node
, expr
);
931 /* Allocates an induction variable with given initial value BASE and step STEP
935 alloc_iv (tree base
, tree step
)
937 tree base_object
= base
;
938 struct iv
*iv
= XCNEW (struct iv
);
939 gcc_assert (step
!= NULL_TREE
);
941 /* Lower all address expressions except ones with DECL_P as operand.
943 1) More accurate cost can be computed for address expressions;
944 2) Duplicate candidates won't be created for bases in different
945 forms, like &a[0] and &a. */
946 STRIP_NOPS (base_object
);
947 if (TREE_CODE (base_object
) == ADDR_EXPR
948 && !DECL_P (TREE_OPERAND (base_object
, 0)))
952 base_object
= get_inner_reference_aff (TREE_OPERAND (base_object
, 0),
954 gcc_assert (base_object
!= NULL_TREE
);
955 base_object
= build_fold_addr_expr (base_object
);
956 base
= fold_convert (TREE_TYPE (base
), aff_combination_to_tree (&comb
));
960 iv
->base_object
= determine_base_object (base_object
);
963 iv
->have_use_for
= false;
965 iv
->ssa_name
= NULL_TREE
;
970 /* Sets STEP and BASE for induction variable IV. */
973 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
)
975 struct version_info
*info
= name_info (data
, iv
);
977 gcc_assert (!info
->iv
);
979 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
980 info
->iv
= alloc_iv (base
, step
);
981 info
->iv
->ssa_name
= iv
;
984 /* Finds induction variable declaration for VAR. */
987 get_iv (struct ivopts_data
*data
, tree var
)
990 tree type
= TREE_TYPE (var
);
992 if (!POINTER_TYPE_P (type
)
993 && !INTEGRAL_TYPE_P (type
))
996 if (!name_info (data
, var
)->iv
)
998 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1001 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
1002 set_iv (data
, var
, var
, build_int_cst (type
, 0));
1005 return name_info (data
, var
)->iv
;
1008 /* Determines the step of a biv defined in PHI. Returns NULL if PHI does
1009 not define a simple affine biv with nonzero step. */
1012 determine_biv_step (gimple phi
)
1014 struct loop
*loop
= gimple_bb (phi
)->loop_father
;
1015 tree name
= PHI_RESULT (phi
);
1018 if (virtual_operand_p (name
))
1021 if (!simple_iv (loop
, loop
, name
, &iv
, true))
1024 return integer_zerop (iv
.step
) ? NULL_TREE
: iv
.step
;
1027 /* Finds basic ivs. */
1030 find_bivs (struct ivopts_data
*data
)
1033 tree step
, type
, base
;
1035 struct loop
*loop
= data
->current_loop
;
1036 gimple_stmt_iterator psi
;
1038 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1040 phi
= gsi_stmt (psi
);
1042 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1045 step
= determine_biv_step (phi
);
1049 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1050 base
= expand_simple_operations (base
);
1051 if (contains_abnormal_ssa_name_p (base
)
1052 || contains_abnormal_ssa_name_p (step
))
1055 type
= TREE_TYPE (PHI_RESULT (phi
));
1056 base
= fold_convert (type
, base
);
1059 if (POINTER_TYPE_P (type
))
1060 step
= convert_to_ptrofftype (step
);
1062 step
= fold_convert (type
, step
);
1065 set_iv (data
, PHI_RESULT (phi
), base
, step
);
1072 /* Marks basic ivs. */
1075 mark_bivs (struct ivopts_data
*data
)
1079 struct iv
*iv
, *incr_iv
;
1080 struct loop
*loop
= data
->current_loop
;
1081 basic_block incr_bb
;
1082 gimple_stmt_iterator psi
;
1084 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1086 phi
= gsi_stmt (psi
);
1088 iv
= get_iv (data
, PHI_RESULT (phi
));
1092 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1093 def
= SSA_NAME_DEF_STMT (var
);
1094 /* Don't mark iv peeled from other one as biv. */
1096 && gimple_code (def
) == GIMPLE_PHI
1097 && gimple_bb (def
) == loop
->header
)
1100 incr_iv
= get_iv (data
, var
);
1104 /* If the increment is in the subloop, ignore it. */
1105 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1106 if (incr_bb
->loop_father
!= data
->current_loop
1107 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
1111 incr_iv
->biv_p
= true;
1115 /* Checks whether STMT defines a linear induction variable and stores its
1116 parameters to IV. */
1119 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple stmt
, affine_iv
*iv
)
1122 struct loop
*loop
= data
->current_loop
;
1124 iv
->base
= NULL_TREE
;
1125 iv
->step
= NULL_TREE
;
1127 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1130 lhs
= gimple_assign_lhs (stmt
);
1131 if (TREE_CODE (lhs
) != SSA_NAME
)
1134 if (!simple_iv (loop
, loop_containing_stmt (stmt
), lhs
, iv
, true))
1136 iv
->base
= expand_simple_operations (iv
->base
);
1138 if (contains_abnormal_ssa_name_p (iv
->base
)
1139 || contains_abnormal_ssa_name_p (iv
->step
))
1142 /* If STMT could throw, then do not consider STMT as defining a GIV.
1143 While this will suppress optimizations, we can not safely delete this
1144 GIV and associated statements, even if it appears it is not used. */
1145 if (stmt_could_throw_p (stmt
))
1151 /* Finds general ivs in statement STMT. */
1154 find_givs_in_stmt (struct ivopts_data
*data
, gimple stmt
)
1158 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1161 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
);
1164 /* Finds general ivs in basic block BB. */
1167 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1169 gimple_stmt_iterator bsi
;
1171 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1172 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1175 /* Finds general ivs. */
1178 find_givs (struct ivopts_data
*data
)
1180 struct loop
*loop
= data
->current_loop
;
1181 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1184 for (i
= 0; i
< loop
->num_nodes
; i
++)
1185 find_givs_in_bb (data
, body
[i
]);
1189 /* For each ssa name defined in LOOP determines whether it is an induction
1190 variable and if so, its initial value and step. */
1193 find_induction_variables (struct ivopts_data
*data
)
1198 if (!find_bivs (data
))
1204 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1206 struct tree_niter_desc
*niter
= niter_for_single_dom_exit (data
);
1210 fprintf (dump_file
, " number of iterations ");
1211 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1212 if (!integer_zerop (niter
->may_be_zero
))
1214 fprintf (dump_file
, "; zero if ");
1215 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1217 fprintf (dump_file
, "\n\n");
1220 fprintf (dump_file
, "Induction variables:\n\n");
1222 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1224 if (ver_info (data
, i
)->iv
)
1225 dump_iv (dump_file
, ver_info (data
, i
)->iv
);
1232 /* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
1234 static struct iv_use
*
1235 record_use (struct ivopts_data
*data
, tree
*use_p
, struct iv
*iv
,
1236 gimple stmt
, enum use_type use_type
)
1238 struct iv_use
*use
= XCNEW (struct iv_use
);
1240 use
->id
= n_iv_uses (data
);
1241 use
->type
= use_type
;
1245 use
->related_cands
= BITMAP_ALLOC (NULL
);
1247 /* To avoid showing ssa name in the dumps, if it was not reset by the
1249 iv
->ssa_name
= NULL_TREE
;
1251 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1252 dump_use (dump_file
, use
);
1254 data
->iv_uses
.safe_push (use
);
1259 /* Checks whether OP is a loop-level invariant and if so, records it.
1260 NONLINEAR_USE is true if the invariant is used in a way we do not
1261 handle specially. */
1264 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1267 struct version_info
*info
;
1269 if (TREE_CODE (op
) != SSA_NAME
1270 || virtual_operand_p (op
))
1273 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1275 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1278 info
= name_info (data
, op
);
1280 info
->has_nonlin_use
|= nonlinear_use
;
1282 info
->inv_id
= ++data
->max_inv_id
;
1283 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1286 /* Checks whether the use OP is interesting and if so, records it. */
1288 static struct iv_use
*
1289 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1296 if (TREE_CODE (op
) != SSA_NAME
)
1299 iv
= get_iv (data
, op
);
1303 if (iv
->have_use_for
)
1305 use
= iv_use (data
, iv
->use_id
);
1307 gcc_assert (use
->type
== USE_NONLINEAR_EXPR
);
1311 if (integer_zerop (iv
->step
))
1313 record_invariant (data
, op
, true);
1316 iv
->have_use_for
= true;
1318 civ
= XNEW (struct iv
);
1321 stmt
= SSA_NAME_DEF_STMT (op
);
1322 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
1323 || is_gimple_assign (stmt
));
1325 use
= record_use (data
, NULL
, civ
, stmt
, USE_NONLINEAR_EXPR
);
1326 iv
->use_id
= use
->id
;
1331 /* Given a condition in statement STMT, checks whether it is a compare
1332 of an induction variable and an invariant. If this is the case,
1333 CONTROL_VAR is set to location of the iv, BOUND to the location of
1334 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1335 induction variable descriptions, and true is returned. If this is not
1336 the case, CONTROL_VAR and BOUND are set to the arguments of the
1337 condition and false is returned. */
1340 extract_cond_operands (struct ivopts_data
*data
, gimple stmt
,
1341 tree
**control_var
, tree
**bound
,
1342 struct iv
**iv_var
, struct iv
**iv_bound
)
1344 /* The objects returned when COND has constant operands. */
1345 static struct iv const_iv
;
1347 tree
*op0
= &zero
, *op1
= &zero
, *tmp_op
;
1348 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
, *tmp_iv
;
1351 if (gimple_code (stmt
) == GIMPLE_COND
)
1353 op0
= gimple_cond_lhs_ptr (stmt
);
1354 op1
= gimple_cond_rhs_ptr (stmt
);
1358 op0
= gimple_assign_rhs1_ptr (stmt
);
1359 op1
= gimple_assign_rhs2_ptr (stmt
);
1362 zero
= integer_zero_node
;
1363 const_iv
.step
= integer_zero_node
;
1365 if (TREE_CODE (*op0
) == SSA_NAME
)
1366 iv0
= get_iv (data
, *op0
);
1367 if (TREE_CODE (*op1
) == SSA_NAME
)
1368 iv1
= get_iv (data
, *op1
);
1370 /* Exactly one of the compared values must be an iv, and the other one must
1375 if (integer_zerop (iv0
->step
))
1377 /* Control variable may be on the other side. */
1378 tmp_op
= op0
; op0
= op1
; op1
= tmp_op
;
1379 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
1381 ret
= !integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
);
1385 *control_var
= op0
;;
1396 /* Checks whether the condition in STMT is interesting and if so,
1400 find_interesting_uses_cond (struct ivopts_data
*data
, gimple stmt
)
1402 tree
*var_p
, *bound_p
;
1403 struct iv
*var_iv
, *civ
;
1405 if (!extract_cond_operands (data
, stmt
, &var_p
, &bound_p
, &var_iv
, NULL
))
1407 find_interesting_uses_op (data
, *var_p
);
1408 find_interesting_uses_op (data
, *bound_p
);
1412 civ
= XNEW (struct iv
);
1414 record_use (data
, NULL
, civ
, stmt
, USE_COMPARE
);
1417 /* Returns the outermost loop EXPR is obviously invariant in
1418 relative to the loop LOOP, i.e. if all its operands are defined
1419 outside of the returned loop. Returns NULL if EXPR is not
1420 even obviously invariant in LOOP. */
1423 outermost_invariant_loop_for_expr (struct loop
*loop
, tree expr
)
1428 if (is_gimple_min_invariant (expr
))
1429 return current_loops
->tree_root
;
1431 if (TREE_CODE (expr
) == SSA_NAME
)
1433 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1436 if (flow_bb_inside_loop_p (loop
, def_bb
))
1438 return superloop_at_depth (loop
,
1439 loop_depth (def_bb
->loop_father
) + 1);
1442 return current_loops
->tree_root
;
1448 unsigned maxdepth
= 0;
1449 len
= TREE_OPERAND_LENGTH (expr
);
1450 for (i
= 0; i
< len
; i
++)
1452 struct loop
*ivloop
;
1453 if (!TREE_OPERAND (expr
, i
))
1456 ivloop
= outermost_invariant_loop_for_expr (loop
, TREE_OPERAND (expr
, i
));
1459 maxdepth
= MAX (maxdepth
, loop_depth (ivloop
));
1462 return superloop_at_depth (loop
, maxdepth
);
1465 /* Returns true if expression EXPR is obviously invariant in LOOP,
1466 i.e. if all its operands are defined outside of the LOOP. LOOP
1467 should not be the function body. */
1470 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1475 gcc_assert (loop_depth (loop
) > 0);
1477 if (is_gimple_min_invariant (expr
))
1480 if (TREE_CODE (expr
) == SSA_NAME
)
1482 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1484 && flow_bb_inside_loop_p (loop
, def_bb
))
1493 len
= TREE_OPERAND_LENGTH (expr
);
1494 for (i
= 0; i
< len
; i
++)
1495 if (TREE_OPERAND (expr
, i
)
1496 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1502 /* Cumulates the steps of indices into DATA and replaces their values with the
1503 initial ones. Returns false when the value of the index cannot be determined.
1504 Callback for for_each_index. */
1506 struct ifs_ivopts_data
1508 struct ivopts_data
*ivopts_data
;
1514 idx_find_step (tree base
, tree
*idx
, void *data
)
1516 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
1518 tree step
, iv_base
, iv_step
, lbound
, off
;
1519 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
1521 /* If base is a component ref, require that the offset of the reference
1523 if (TREE_CODE (base
) == COMPONENT_REF
)
1525 off
= component_ref_field_offset (base
);
1526 return expr_invariant_in_loop_p (loop
, off
);
1529 /* If base is array, first check whether we will be able to move the
1530 reference out of the loop (in order to take its address in strength
1531 reduction). In order for this to work we need both lower bound
1532 and step to be loop invariants. */
1533 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1535 /* Moreover, for a range, the size needs to be invariant as well. */
1536 if (TREE_CODE (base
) == ARRAY_RANGE_REF
1537 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
1540 step
= array_ref_element_size (base
);
1541 lbound
= array_ref_low_bound (base
);
1543 if (!expr_invariant_in_loop_p (loop
, step
)
1544 || !expr_invariant_in_loop_p (loop
, lbound
))
1548 if (TREE_CODE (*idx
) != SSA_NAME
)
1551 iv
= get_iv (dta
->ivopts_data
, *idx
);
1555 /* XXX We produce for a base of *D42 with iv->base being &x[0]
1556 *&x[0], which is not folded and does not trigger the
1557 ARRAY_REF path below. */
1560 if (integer_zerop (iv
->step
))
1563 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1565 step
= array_ref_element_size (base
);
1567 /* We only handle addresses whose step is an integer constant. */
1568 if (TREE_CODE (step
) != INTEGER_CST
)
1572 /* The step for pointer arithmetics already is 1 byte. */
1573 step
= size_one_node
;
1577 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
1578 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
1581 /* The index might wrap. */
1585 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
1586 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
1591 /* Records use in index IDX. Callback for for_each_index. Ivopts data
1592 object is passed to it in DATA. */
1595 idx_record_use (tree base
, tree
*idx
,
1598 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
1599 find_interesting_uses_op (data
, *idx
);
1600 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1602 find_interesting_uses_op (data
, array_ref_element_size (base
));
1603 find_interesting_uses_op (data
, array_ref_low_bound (base
));
1608 /* If we can prove that TOP = cst * BOT for some constant cst,
1609 store cst to MUL and return true. Otherwise return false.
1610 The returned value is always sign-extended, regardless of the
1611 signedness of TOP and BOT. */
1614 constant_multiple_of (tree top
, tree bot
, double_int
*mul
)
1617 enum tree_code code
;
1618 double_int res
, p0
, p1
;
1619 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
1624 if (operand_equal_p (top
, bot
, 0))
1626 *mul
= double_int_one
;
1630 code
= TREE_CODE (top
);
1634 mby
= TREE_OPERAND (top
, 1);
1635 if (TREE_CODE (mby
) != INTEGER_CST
)
1638 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
1641 *mul
= (res
* tree_to_double_int (mby
)).sext (precision
);
1646 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
1647 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
1650 if (code
== MINUS_EXPR
)
1652 *mul
= (p0
+ p1
).sext (precision
);
1656 if (TREE_CODE (bot
) != INTEGER_CST
)
1659 p0
= tree_to_double_int (top
).sext (precision
);
1660 p1
= tree_to_double_int (bot
).sext (precision
);
1663 *mul
= p0
.sdivmod (p1
, FLOOR_DIV_EXPR
, &res
).sext (precision
);
1664 return res
.is_zero ();
1671 /* Return true if memory reference REF with step STEP may be unaligned. */
1674 may_be_unaligned_p (tree ref
, tree step
)
1676 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
1677 thus they are not misaligned. */
1678 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
1681 unsigned int align
= TYPE_ALIGN (TREE_TYPE (ref
));
1683 unsigned HOST_WIDE_INT bitpos
;
1684 unsigned int ref_align
;
1685 get_object_alignment_1 (ref
, &ref_align
, &bitpos
);
1686 if (ref_align
< align
1687 || (bitpos
% align
) != 0
1688 || (bitpos
% BITS_PER_UNIT
) != 0)
1691 unsigned int trailing_zeros
= tree_ctz (step
);
1692 if (trailing_zeros
< HOST_BITS_PER_INT
1693 && (1U << trailing_zeros
) * BITS_PER_UNIT
< align
)
1699 /* Return true if EXPR may be non-addressable. */
1702 may_be_nonaddressable_p (tree expr
)
1704 switch (TREE_CODE (expr
))
1706 case TARGET_MEM_REF
:
1707 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
1708 target, thus they are always addressable. */
1712 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
1713 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1715 case VIEW_CONVERT_EXPR
:
1716 /* This kind of view-conversions may wrap non-addressable objects
1717 and make them look addressable. After some processing the
1718 non-addressability may be uncovered again, causing ADDR_EXPRs
1719 of inappropriate objects to be built. */
1720 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
1721 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
1724 /* ... fall through ... */
1727 case ARRAY_RANGE_REF
:
1728 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1740 /* Finds addresses in *OP_P inside STMT. */
1743 find_interesting_uses_address (struct ivopts_data
*data
, gimple stmt
, tree
*op_p
)
1745 tree base
= *op_p
, step
= size_zero_node
;
1747 struct ifs_ivopts_data ifs_ivopts_data
;
1749 /* Do not play with volatile memory references. A bit too conservative,
1750 perhaps, but safe. */
1751 if (gimple_has_volatile_ops (stmt
))
1754 /* Ignore bitfields for now. Not really something terribly complicated
1756 if (TREE_CODE (base
) == BIT_FIELD_REF
)
1759 base
= unshare_expr (base
);
1761 if (TREE_CODE (base
) == TARGET_MEM_REF
)
1763 tree type
= build_pointer_type (TREE_TYPE (base
));
1767 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
1769 civ
= get_iv (data
, TMR_BASE (base
));
1773 TMR_BASE (base
) = civ
->base
;
1776 if (TMR_INDEX2 (base
)
1777 && TREE_CODE (TMR_INDEX2 (base
)) == SSA_NAME
)
1779 civ
= get_iv (data
, TMR_INDEX2 (base
));
1783 TMR_INDEX2 (base
) = civ
->base
;
1786 if (TMR_INDEX (base
)
1787 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
1789 civ
= get_iv (data
, TMR_INDEX (base
));
1793 TMR_INDEX (base
) = civ
->base
;
1798 if (TMR_STEP (base
))
1799 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
1801 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
1805 if (integer_zerop (step
))
1807 base
= tree_mem_ref_addr (type
, base
);
1811 ifs_ivopts_data
.ivopts_data
= data
;
1812 ifs_ivopts_data
.stmt
= stmt
;
1813 ifs_ivopts_data
.step
= size_zero_node
;
1814 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
1815 || integer_zerop (ifs_ivopts_data
.step
))
1817 step
= ifs_ivopts_data
.step
;
1819 /* Check that the base expression is addressable. This needs
1820 to be done after substituting bases of IVs into it. */
1821 if (may_be_nonaddressable_p (base
))
1824 /* Moreover, on strict alignment platforms, check that it is
1825 sufficiently aligned. */
1826 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
1829 base
= build_fold_addr_expr (base
);
1831 /* Substituting bases of IVs into the base expression might
1832 have caused folding opportunities. */
1833 if (TREE_CODE (base
) == ADDR_EXPR
)
1835 tree
*ref
= &TREE_OPERAND (base
, 0);
1836 while (handled_component_p (*ref
))
1837 ref
= &TREE_OPERAND (*ref
, 0);
1838 if (TREE_CODE (*ref
) == MEM_REF
)
1840 tree tem
= fold_binary (MEM_REF
, TREE_TYPE (*ref
),
1841 TREE_OPERAND (*ref
, 0),
1842 TREE_OPERAND (*ref
, 1));
1849 civ
= alloc_iv (base
, step
);
1850 record_use (data
, op_p
, civ
, stmt
, USE_ADDRESS
);
1854 for_each_index (op_p
, idx_record_use
, data
);
1857 /* Finds and records invariants used in STMT. */
1860 find_invariants_stmt (struct ivopts_data
*data
, gimple stmt
)
1863 use_operand_p use_p
;
1866 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
1868 op
= USE_FROM_PTR (use_p
);
1869 record_invariant (data
, op
, false);
1873 /* Finds interesting uses of induction variables in the statement STMT. */
1876 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple stmt
)
1879 tree op
, *lhs
, *rhs
;
1881 use_operand_p use_p
;
1882 enum tree_code code
;
1884 find_invariants_stmt (data
, stmt
);
1886 if (gimple_code (stmt
) == GIMPLE_COND
)
1888 find_interesting_uses_cond (data
, stmt
);
1892 if (is_gimple_assign (stmt
))
1894 lhs
= gimple_assign_lhs_ptr (stmt
);
1895 rhs
= gimple_assign_rhs1_ptr (stmt
);
1897 if (TREE_CODE (*lhs
) == SSA_NAME
)
1899 /* If the statement defines an induction variable, the uses are not
1900 interesting by themselves. */
1902 iv
= get_iv (data
, *lhs
);
1904 if (iv
&& !integer_zerop (iv
->step
))
1908 code
= gimple_assign_rhs_code (stmt
);
1909 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
1910 && (REFERENCE_CLASS_P (*rhs
)
1911 || is_gimple_val (*rhs
)))
1913 if (REFERENCE_CLASS_P (*rhs
))
1914 find_interesting_uses_address (data
, stmt
, rhs
);
1916 find_interesting_uses_op (data
, *rhs
);
1918 if (REFERENCE_CLASS_P (*lhs
))
1919 find_interesting_uses_address (data
, stmt
, lhs
);
1922 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1924 find_interesting_uses_cond (data
, stmt
);
1928 /* TODO -- we should also handle address uses of type
1930 memory = call (whatever);
1937 if (gimple_code (stmt
) == GIMPLE_PHI
1938 && gimple_bb (stmt
) == data
->current_loop
->header
)
1940 iv
= get_iv (data
, PHI_RESULT (stmt
));
1942 if (iv
&& !integer_zerop (iv
->step
))
1946 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
1948 op
= USE_FROM_PTR (use_p
);
1950 if (TREE_CODE (op
) != SSA_NAME
)
1953 iv
= get_iv (data
, op
);
1957 find_interesting_uses_op (data
, op
);
1961 /* Finds interesting uses of induction variables outside of loops
1962 on loop exit edge EXIT. */
1965 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
1968 gimple_stmt_iterator psi
;
1971 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
1973 phi
= gsi_stmt (psi
);
1974 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
1975 if (!virtual_operand_p (def
))
1976 find_interesting_uses_op (data
, def
);
1980 /* Finds uses of the induction variables that are interesting. */
1983 find_interesting_uses (struct ivopts_data
*data
)
1986 gimple_stmt_iterator bsi
;
1987 basic_block
*body
= get_loop_body (data
->current_loop
);
1989 struct version_info
*info
;
1992 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1993 fprintf (dump_file
, "Uses:\n\n");
1995 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
2000 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2001 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2002 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
2003 find_interesting_uses_outside (data
, e
);
2005 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2006 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2007 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2008 if (!is_gimple_debug (gsi_stmt (bsi
)))
2009 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2012 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2016 fprintf (dump_file
, "\n");
2018 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2020 info
= ver_info (data
, i
);
2023 fprintf (dump_file
, " ");
2024 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
2025 fprintf (dump_file
, " is invariant (%d)%s\n",
2026 info
->inv_id
, info
->has_nonlin_use
? "" : ", eliminable");
2030 fprintf (dump_file
, "\n");
2036 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2037 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2038 we are at the top-level of the processed address. */
2041 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
2042 HOST_WIDE_INT
*offset
)
2044 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
2045 enum tree_code code
;
2046 tree type
, orig_type
= TREE_TYPE (expr
);
2047 HOST_WIDE_INT off0
, off1
, st
;
2048 tree orig_expr
= expr
;
2052 type
= TREE_TYPE (expr
);
2053 code
= TREE_CODE (expr
);
2059 if (!cst_and_fits_in_hwi (expr
)
2060 || integer_zerop (expr
))
2063 *offset
= int_cst_value (expr
);
2064 return build_int_cst (orig_type
, 0);
2066 case POINTER_PLUS_EXPR
:
2069 op0
= TREE_OPERAND (expr
, 0);
2070 op1
= TREE_OPERAND (expr
, 1);
2072 op0
= strip_offset_1 (op0
, false, false, &off0
);
2073 op1
= strip_offset_1 (op1
, false, false, &off1
);
2075 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
2076 if (op0
== TREE_OPERAND (expr
, 0)
2077 && op1
== TREE_OPERAND (expr
, 1))
2080 if (integer_zerop (op1
))
2082 else if (integer_zerop (op0
))
2084 if (code
== MINUS_EXPR
)
2085 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
2090 expr
= fold_build2 (code
, type
, op0
, op1
);
2092 return fold_convert (orig_type
, expr
);
2095 op1
= TREE_OPERAND (expr
, 1);
2096 if (!cst_and_fits_in_hwi (op1
))
2099 op0
= TREE_OPERAND (expr
, 0);
2100 op0
= strip_offset_1 (op0
, false, false, &off0
);
2101 if (op0
== TREE_OPERAND (expr
, 0))
2104 *offset
= off0
* int_cst_value (op1
);
2105 if (integer_zerop (op0
))
2108 expr
= fold_build2 (MULT_EXPR
, type
, op0
, op1
);
2110 return fold_convert (orig_type
, expr
);
2113 case ARRAY_RANGE_REF
:
2117 step
= array_ref_element_size (expr
);
2118 if (!cst_and_fits_in_hwi (step
))
2121 st
= int_cst_value (step
);
2122 op1
= TREE_OPERAND (expr
, 1);
2123 op1
= strip_offset_1 (op1
, false, false, &off1
);
2124 *offset
= off1
* st
;
2127 && integer_zerop (op1
))
2129 /* Strip the component reference completely. */
2130 op0
= TREE_OPERAND (expr
, 0);
2131 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2144 tmp
= component_ref_field_offset (expr
);
2145 field
= TREE_OPERAND (expr
, 1);
2147 && cst_and_fits_in_hwi (tmp
)
2148 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field
)))
2150 HOST_WIDE_INT boffset
, abs_off
;
2152 /* Strip the component reference completely. */
2153 op0
= TREE_OPERAND (expr
, 0);
2154 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2155 boffset
= int_cst_value (DECL_FIELD_BIT_OFFSET (field
));
2156 abs_off
= abs_hwi (boffset
) / BITS_PER_UNIT
;
2160 *offset
= off0
+ int_cst_value (tmp
) + abs_off
;
2167 op0
= TREE_OPERAND (expr
, 0);
2168 op0
= strip_offset_1 (op0
, true, true, &off0
);
2171 if (op0
== TREE_OPERAND (expr
, 0))
2174 expr
= build_fold_addr_expr (op0
);
2175 return fold_convert (orig_type
, expr
);
2178 /* ??? Offset operand? */
2179 inside_addr
= false;
2186 /* Default handling of expressions for that we want to recurse into
2187 the first operand. */
2188 op0
= TREE_OPERAND (expr
, 0);
2189 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
2192 if (op0
== TREE_OPERAND (expr
, 0)
2193 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
2196 expr
= copy_node (expr
);
2197 TREE_OPERAND (expr
, 0) = op0
;
2199 TREE_OPERAND (expr
, 1) = op1
;
2201 /* Inside address, we might strip the top level component references,
2202 thus changing type of the expression. Handling of ADDR_EXPR
2204 expr
= fold_convert (orig_type
, expr
);
2209 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2212 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
)
2215 tree core
= strip_offset_1 (expr
, false, false, &off
);
2220 /* Returns variant of TYPE that can be used as base for different uses.
2221 We return unsigned type with the same precision, which avoids problems
2225 generic_type_for (tree type
)
2227 if (POINTER_TYPE_P (type
))
2228 return unsigned_type_for (type
);
2230 if (TYPE_UNSIGNED (type
))
2233 return unsigned_type_for (type
);
2236 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2237 the bitmap to that we should store it. */
2239 static struct ivopts_data
*fd_ivopts_data
;
2241 find_depends (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2243 bitmap
*depends_on
= (bitmap
*) data
;
2244 struct version_info
*info
;
2246 if (TREE_CODE (*expr_p
) != SSA_NAME
)
2248 info
= name_info (fd_ivopts_data
, *expr_p
);
2250 if (!info
->inv_id
|| info
->has_nonlin_use
)
2254 *depends_on
= BITMAP_ALLOC (NULL
);
2255 bitmap_set_bit (*depends_on
, info
->inv_id
);
2260 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2261 position to POS. If USE is not NULL, the candidate is set as related to
2262 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2263 replacement of the final value of the iv by a direct computation. */
2265 static struct iv_cand
*
2266 add_candidate_1 (struct ivopts_data
*data
,
2267 tree base
, tree step
, bool important
, enum iv_position pos
,
2268 struct iv_use
*use
, gimple incremented_at
)
2271 struct iv_cand
*cand
= NULL
;
2272 tree type
, orig_type
;
2274 /* For non-original variables, make sure their values are computed in a type
2275 that does not invoke undefined behavior on overflows (since in general,
2276 we cannot prove that these induction variables are non-wrapping). */
2277 if (pos
!= IP_ORIGINAL
)
2279 orig_type
= TREE_TYPE (base
);
2280 type
= generic_type_for (orig_type
);
2281 if (type
!= orig_type
)
2283 base
= fold_convert (type
, base
);
2284 step
= fold_convert (type
, step
);
2288 for (i
= 0; i
< n_iv_cands (data
); i
++)
2290 cand
= iv_cand (data
, i
);
2292 if (cand
->pos
!= pos
)
2295 if (cand
->incremented_at
!= incremented_at
2296 || ((pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2297 && cand
->ainc_use
!= use
))
2311 if (operand_equal_p (base
, cand
->iv
->base
, 0)
2312 && operand_equal_p (step
, cand
->iv
->step
, 0)
2313 && (TYPE_PRECISION (TREE_TYPE (base
))
2314 == TYPE_PRECISION (TREE_TYPE (cand
->iv
->base
))))
2318 if (i
== n_iv_cands (data
))
2320 cand
= XCNEW (struct iv_cand
);
2326 cand
->iv
= alloc_iv (base
, step
);
2329 if (pos
!= IP_ORIGINAL
&& cand
->iv
)
2331 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
2332 cand
->var_after
= cand
->var_before
;
2334 cand
->important
= important
;
2335 cand
->incremented_at
= incremented_at
;
2336 data
->iv_candidates
.safe_push (cand
);
2339 && TREE_CODE (step
) != INTEGER_CST
)
2341 fd_ivopts_data
= data
;
2342 walk_tree (&step
, find_depends
, &cand
->depends_on
, NULL
);
2345 if (pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2346 cand
->ainc_use
= use
;
2348 cand
->ainc_use
= NULL
;
2350 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2351 dump_cand (dump_file
, cand
);
2354 if (important
&& !cand
->important
)
2356 cand
->important
= true;
2357 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2358 fprintf (dump_file
, "Candidate %d is important\n", cand
->id
);
2363 bitmap_set_bit (use
->related_cands
, i
);
2364 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2365 fprintf (dump_file
, "Candidate %d is related to use %d\n",
2372 /* Returns true if incrementing the induction variable at the end of the LOOP
2375 The purpose is to avoid splitting latch edge with a biv increment, thus
2376 creating a jump, possibly confusing other optimization passes and leaving
2377 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
2378 is not available (so we do not have a better alternative), or if the latch
2379 edge is already nonempty. */
2382 allow_ip_end_pos_p (struct loop
*loop
)
2384 if (!ip_normal_pos (loop
))
2387 if (!empty_block_p (ip_end_pos (loop
)))
2393 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
2394 Important field is set to IMPORTANT. */
2397 add_autoinc_candidates (struct ivopts_data
*data
, tree base
, tree step
,
2398 bool important
, struct iv_use
*use
)
2400 basic_block use_bb
= gimple_bb (use
->stmt
);
2401 enum machine_mode mem_mode
;
2402 unsigned HOST_WIDE_INT cstepi
;
2404 /* If we insert the increment in any position other than the standard
2405 ones, we must ensure that it is incremented once per iteration.
2406 It must not be in an inner nested loop, or one side of an if
2408 if (use_bb
->loop_father
!= data
->current_loop
2409 || !dominated_by_p (CDI_DOMINATORS
, data
->current_loop
->latch
, use_bb
)
2410 || stmt_could_throw_p (use
->stmt
)
2411 || !cst_and_fits_in_hwi (step
))
2414 cstepi
= int_cst_value (step
);
2416 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2417 if (((USE_LOAD_PRE_INCREMENT (mem_mode
)
2418 || USE_STORE_PRE_INCREMENT (mem_mode
))
2419 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2420 || ((USE_LOAD_PRE_DECREMENT (mem_mode
)
2421 || USE_STORE_PRE_DECREMENT (mem_mode
))
2422 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2424 enum tree_code code
= MINUS_EXPR
;
2426 tree new_step
= step
;
2428 if (POINTER_TYPE_P (TREE_TYPE (base
)))
2430 new_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (step
), step
);
2431 code
= POINTER_PLUS_EXPR
;
2434 new_step
= fold_convert (TREE_TYPE (base
), new_step
);
2435 new_base
= fold_build2 (code
, TREE_TYPE (base
), base
, new_step
);
2436 add_candidate_1 (data
, new_base
, step
, important
, IP_BEFORE_USE
, use
,
2439 if (((USE_LOAD_POST_INCREMENT (mem_mode
)
2440 || USE_STORE_POST_INCREMENT (mem_mode
))
2441 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2442 || ((USE_LOAD_POST_DECREMENT (mem_mode
)
2443 || USE_STORE_POST_DECREMENT (mem_mode
))
2444 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2446 add_candidate_1 (data
, base
, step
, important
, IP_AFTER_USE
, use
,
2451 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2452 position to POS. If USE is not NULL, the candidate is set as related to
2453 it. The candidate computation is scheduled on all available positions. */
2456 add_candidate (struct ivopts_data
*data
,
2457 tree base
, tree step
, bool important
, struct iv_use
*use
)
2459 if (ip_normal_pos (data
->current_loop
))
2460 add_candidate_1 (data
, base
, step
, important
, IP_NORMAL
, use
, NULL
);
2461 if (ip_end_pos (data
->current_loop
)
2462 && allow_ip_end_pos_p (data
->current_loop
))
2463 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
);
2465 if (use
!= NULL
&& use
->type
== USE_ADDRESS
)
2466 add_autoinc_candidates (data
, base
, step
, important
, use
);
2469 /* Adds standard iv candidates. */
2472 add_standard_iv_candidates (struct ivopts_data
*data
)
2474 add_candidate (data
, integer_zero_node
, integer_one_node
, true, NULL
);
2476 /* The same for a double-integer type if it is still fast enough. */
2478 (long_integer_type_node
) > TYPE_PRECISION (integer_type_node
)
2479 && TYPE_PRECISION (long_integer_type_node
) <= BITS_PER_WORD
)
2480 add_candidate (data
, build_int_cst (long_integer_type_node
, 0),
2481 build_int_cst (long_integer_type_node
, 1), true, NULL
);
2483 /* The same for a double-integer type if it is still fast enough. */
2485 (long_long_integer_type_node
) > TYPE_PRECISION (long_integer_type_node
)
2486 && TYPE_PRECISION (long_long_integer_type_node
) <= BITS_PER_WORD
)
2487 add_candidate (data
, build_int_cst (long_long_integer_type_node
, 0),
2488 build_int_cst (long_long_integer_type_node
, 1), true, NULL
);
2492 /* Adds candidates bases on the old induction variable IV. */
2495 add_old_iv_candidates (struct ivopts_data
*data
, struct iv
*iv
)
2499 struct iv_cand
*cand
;
2501 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
2503 /* The same, but with initial value zero. */
2504 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
2505 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
2507 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
2508 iv
->step
, true, NULL
);
2510 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
2511 if (gimple_code (phi
) == GIMPLE_PHI
)
2513 /* Additionally record the possibility of leaving the original iv
2515 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
2516 /* Don't add candidate if it's from another PHI node because
2517 it's an affine iv appearing in the form of PEELED_CHREC. */
2518 phi
= SSA_NAME_DEF_STMT (def
);
2519 if (gimple_code (phi
) != GIMPLE_PHI
)
2521 cand
= add_candidate_1 (data
,
2522 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
2523 SSA_NAME_DEF_STMT (def
));
2524 cand
->var_before
= iv
->ssa_name
;
2525 cand
->var_after
= def
;
2528 gcc_assert (gimple_bb (phi
) == data
->current_loop
->header
);
2532 /* Adds candidates based on the old induction variables. */
2535 add_old_ivs_candidates (struct ivopts_data
*data
)
2541 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2543 iv
= ver_info (data
, i
)->iv
;
2544 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
2545 add_old_iv_candidates (data
, iv
);
2549 /* Adds candidates based on the value of the induction variable IV and USE. */
2552 add_iv_value_candidates (struct ivopts_data
*data
,
2553 struct iv
*iv
, struct iv_use
*use
)
2555 unsigned HOST_WIDE_INT offset
;
2559 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
2561 /* The same, but with initial value zero. Make such variable important,
2562 since it is generic enough so that possibly many uses may be based
2564 basetype
= TREE_TYPE (iv
->base
);
2565 if (POINTER_TYPE_P (basetype
))
2566 basetype
= sizetype
;
2567 add_candidate (data
, build_int_cst (basetype
, 0),
2568 iv
->step
, true, use
);
2570 /* Third, try removing the constant offset. Make sure to even
2571 add a candidate for &a[0] vs. (T *)&a. */
2572 base
= strip_offset (iv
->base
, &offset
);
2574 || base
!= iv
->base
)
2575 add_candidate (data
, base
, iv
->step
, false, use
);
2578 /* Adds candidates based on the uses. */
2581 add_derived_ivs_candidates (struct ivopts_data
*data
)
2585 for (i
= 0; i
< n_iv_uses (data
); i
++)
2587 struct iv_use
*use
= iv_use (data
, i
);
2594 case USE_NONLINEAR_EXPR
:
2597 /* Just add the ivs based on the value of the iv used here. */
2598 add_iv_value_candidates (data
, use
->iv
, use
);
2607 /* Record important candidates and add them to related_cands bitmaps
2611 record_important_candidates (struct ivopts_data
*data
)
2616 for (i
= 0; i
< n_iv_cands (data
); i
++)
2618 struct iv_cand
*cand
= iv_cand (data
, i
);
2620 if (cand
->important
)
2621 bitmap_set_bit (data
->important_candidates
, i
);
2624 data
->consider_all_candidates
= (n_iv_cands (data
)
2625 <= CONSIDER_ALL_CANDIDATES_BOUND
);
2627 if (data
->consider_all_candidates
)
2629 /* We will not need "related_cands" bitmaps in this case,
2630 so release them to decrease peak memory consumption. */
2631 for (i
= 0; i
< n_iv_uses (data
); i
++)
2633 use
= iv_use (data
, i
);
2634 BITMAP_FREE (use
->related_cands
);
2639 /* Add important candidates to the related_cands bitmaps. */
2640 for (i
= 0; i
< n_iv_uses (data
); i
++)
2641 bitmap_ior_into (iv_use (data
, i
)->related_cands
,
2642 data
->important_candidates
);
2646 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
2647 If consider_all_candidates is true, we use a two-dimensional array, otherwise
2648 we allocate a simple list to every use. */
2651 alloc_use_cost_map (struct ivopts_data
*data
)
2653 unsigned i
, size
, s
;
2655 for (i
= 0; i
< n_iv_uses (data
); i
++)
2657 struct iv_use
*use
= iv_use (data
, i
);
2659 if (data
->consider_all_candidates
)
2660 size
= n_iv_cands (data
);
2663 s
= bitmap_count_bits (use
->related_cands
);
2665 /* Round up to the power of two, so that moduling by it is fast. */
2666 size
= s
? (1 << ceil_log2 (s
)) : 1;
2669 use
->n_map_members
= size
;
2670 use
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
2674 /* Returns description of computation cost of expression whose runtime
2675 cost is RUNTIME and complexity corresponds to COMPLEXITY. */
2678 new_cost (unsigned runtime
, unsigned complexity
)
2682 cost
.cost
= runtime
;
2683 cost
.complexity
= complexity
;
2688 /* Adds costs COST1 and COST2. */
2691 add_costs (comp_cost cost1
, comp_cost cost2
)
2693 cost1
.cost
+= cost2
.cost
;
2694 cost1
.complexity
+= cost2
.complexity
;
2698 /* Subtracts costs COST1 and COST2. */
2701 sub_costs (comp_cost cost1
, comp_cost cost2
)
2703 cost1
.cost
-= cost2
.cost
;
2704 cost1
.complexity
-= cost2
.complexity
;
2709 /* Returns a negative number if COST1 < COST2, a positive number if
2710 COST1 > COST2, and 0 if COST1 = COST2. */
2713 compare_costs (comp_cost cost1
, comp_cost cost2
)
2715 if (cost1
.cost
== cost2
.cost
)
2716 return cost1
.complexity
- cost2
.complexity
;
2718 return cost1
.cost
- cost2
.cost
;
2721 /* Returns true if COST is infinite. */
2724 infinite_cost_p (comp_cost cost
)
2726 return cost
.cost
== INFTY
;
2729 /* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
2730 on invariants DEPENDS_ON and that the value used in expressing it
2731 is VALUE, and in case of iv elimination the comparison operator is COMP. */
2734 set_use_iv_cost (struct ivopts_data
*data
,
2735 struct iv_use
*use
, struct iv_cand
*cand
,
2736 comp_cost cost
, bitmap depends_on
, tree value
,
2737 enum tree_code comp
, int inv_expr_id
)
2741 if (infinite_cost_p (cost
))
2743 BITMAP_FREE (depends_on
);
2747 if (data
->consider_all_candidates
)
2749 use
->cost_map
[cand
->id
].cand
= cand
;
2750 use
->cost_map
[cand
->id
].cost
= cost
;
2751 use
->cost_map
[cand
->id
].depends_on
= depends_on
;
2752 use
->cost_map
[cand
->id
].value
= value
;
2753 use
->cost_map
[cand
->id
].comp
= comp
;
2754 use
->cost_map
[cand
->id
].inv_expr_id
= inv_expr_id
;
2758 /* n_map_members is a power of two, so this computes modulo. */
2759 s
= cand
->id
& (use
->n_map_members
- 1);
2760 for (i
= s
; i
< use
->n_map_members
; i
++)
2761 if (!use
->cost_map
[i
].cand
)
2763 for (i
= 0; i
< s
; i
++)
2764 if (!use
->cost_map
[i
].cand
)
2770 use
->cost_map
[i
].cand
= cand
;
2771 use
->cost_map
[i
].cost
= cost
;
2772 use
->cost_map
[i
].depends_on
= depends_on
;
2773 use
->cost_map
[i
].value
= value
;
2774 use
->cost_map
[i
].comp
= comp
;
2775 use
->cost_map
[i
].inv_expr_id
= inv_expr_id
;
2778 /* Gets cost of (USE, CANDIDATE) pair. */
2780 static struct cost_pair
*
2781 get_use_iv_cost (struct ivopts_data
*data
, struct iv_use
*use
,
2782 struct iv_cand
*cand
)
2785 struct cost_pair
*ret
;
2790 if (data
->consider_all_candidates
)
2792 ret
= use
->cost_map
+ cand
->id
;
2799 /* n_map_members is a power of two, so this computes modulo. */
2800 s
= cand
->id
& (use
->n_map_members
- 1);
2801 for (i
= s
; i
< use
->n_map_members
; i
++)
2802 if (use
->cost_map
[i
].cand
== cand
)
2803 return use
->cost_map
+ i
;
2804 else if (use
->cost_map
[i
].cand
== NULL
)
2806 for (i
= 0; i
< s
; i
++)
2807 if (use
->cost_map
[i
].cand
== cand
)
2808 return use
->cost_map
+ i
;
2809 else if (use
->cost_map
[i
].cand
== NULL
)
2815 /* Returns estimate on cost of computing SEQ. */
2818 seq_cost (rtx seq
, bool speed
)
2823 for (; seq
; seq
= NEXT_INSN (seq
))
2825 set
= single_set (seq
);
2827 cost
+= set_src_cost (SET_SRC (set
), speed
);
2835 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
2837 produce_memory_decl_rtl (tree obj
, int *regno
)
2839 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (obj
));
2840 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2844 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
2846 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
2847 x
= gen_rtx_SYMBOL_REF (address_mode
, name
);
2848 SET_SYMBOL_REF_DECL (x
, obj
);
2849 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
2850 set_mem_addr_space (x
, as
);
2851 targetm
.encode_section_info (obj
, x
, true);
2855 x
= gen_raw_REG (address_mode
, (*regno
)++);
2856 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
2857 set_mem_addr_space (x
, as
);
2863 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
2864 walk_tree. DATA contains the actual fake register number. */
2867 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
2869 tree obj
= NULL_TREE
;
2871 int *regno
= (int *) data
;
2873 switch (TREE_CODE (*expr_p
))
2876 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
2877 handled_component_p (*expr_p
);
2878 expr_p
= &TREE_OPERAND (*expr_p
, 0))
2881 if (DECL_P (obj
) && HAS_RTL_P (obj
) && !DECL_RTL_SET_P (obj
))
2882 x
= produce_memory_decl_rtl (obj
, regno
);
2887 obj
= SSA_NAME_VAR (*expr_p
);
2888 /* Defer handling of anonymous SSA_NAMEs to the expander. */
2891 if (!DECL_RTL_SET_P (obj
))
2892 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
2901 if (DECL_RTL_SET_P (obj
))
2904 if (DECL_MODE (obj
) == BLKmode
)
2905 x
= produce_memory_decl_rtl (obj
, regno
);
2907 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
2917 decl_rtl_to_reset
.safe_push (obj
);
2918 SET_DECL_RTL (obj
, x
);
2924 /* Determines cost of the computation of EXPR. */
2927 computation_cost (tree expr
, bool speed
)
2930 tree type
= TREE_TYPE (expr
);
2932 /* Avoid using hard regs in ways which may be unsupported. */
2933 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
2934 struct cgraph_node
*node
= cgraph_get_node (current_function_decl
);
2935 enum node_frequency real_frequency
= node
->frequency
;
2937 node
->frequency
= NODE_FREQUENCY_NORMAL
;
2938 crtl
->maybe_hot_insn_p
= speed
;
2939 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
2941 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
2944 default_rtl_profile ();
2945 node
->frequency
= real_frequency
;
2947 cost
= seq_cost (seq
, speed
);
2949 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
),
2950 TYPE_ADDR_SPACE (type
), speed
);
2951 else if (!REG_P (rslt
))
2952 cost
+= set_src_cost (rslt
, speed
);
2957 /* Returns variable containing the value of candidate CAND at statement AT. */
2960 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
2962 if (stmt_after_increment (loop
, cand
, stmt
))
2963 return cand
->var_after
;
2965 return cand
->var_before
;
2968 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
2969 same precision that is at least as wide as the precision of TYPE, stores
2970 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
2974 determine_common_wider_type (tree
*a
, tree
*b
)
2976 tree wider_type
= NULL
;
2978 tree atype
= TREE_TYPE (*a
);
2980 if (CONVERT_EXPR_P (*a
))
2982 suba
= TREE_OPERAND (*a
, 0);
2983 wider_type
= TREE_TYPE (suba
);
2984 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
2990 if (CONVERT_EXPR_P (*b
))
2992 subb
= TREE_OPERAND (*b
, 0);
2993 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
3004 /* Determines the expression by that USE is expressed from induction variable
3005 CAND at statement AT in LOOP. The expression is stored in a decomposed
3006 form into AFF. Returns false if USE cannot be expressed using CAND. */
3009 get_computation_aff (struct loop
*loop
,
3010 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
,
3011 struct aff_tree
*aff
)
3013 tree ubase
= use
->iv
->base
;
3014 tree ustep
= use
->iv
->step
;
3015 tree cbase
= cand
->iv
->base
;
3016 tree cstep
= cand
->iv
->step
, cstep_common
;
3017 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
3018 tree common_type
, var
;
3020 aff_tree cbase_aff
, var_aff
;
3023 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3025 /* We do not have a precision to express the values of use. */
3029 var
= var_at_stmt (loop
, cand
, at
);
3030 uutype
= unsigned_type_for (utype
);
3032 /* If the conversion is not noop, perform it. */
3033 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
3035 cstep
= fold_convert (uutype
, cstep
);
3036 cbase
= fold_convert (uutype
, cbase
);
3037 var
= fold_convert (uutype
, var
);
3040 if (!constant_multiple_of (ustep
, cstep
, &rat
))
3043 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3044 type, we achieve better folding by computing their difference in this
3045 wider type, and cast the result to UUTYPE. We do not need to worry about
3046 overflows, as all the arithmetics will in the end be performed in UUTYPE
3048 common_type
= determine_common_wider_type (&ubase
, &cbase
);
3050 /* use = ubase - ratio * cbase + ratio * var. */
3051 tree_to_aff_combination (ubase
, common_type
, aff
);
3052 tree_to_aff_combination (cbase
, common_type
, &cbase_aff
);
3053 tree_to_aff_combination (var
, uutype
, &var_aff
);
3055 /* We need to shift the value if we are after the increment. */
3056 if (stmt_after_increment (loop
, cand
, at
))
3060 if (common_type
!= uutype
)
3061 cstep_common
= fold_convert (common_type
, cstep
);
3063 cstep_common
= cstep
;
3065 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
3066 aff_combination_add (&cbase_aff
, &cstep_aff
);
3069 aff_combination_scale (&cbase_aff
, -rat
);
3070 aff_combination_add (aff
, &cbase_aff
);
3071 if (common_type
!= uutype
)
3072 aff_combination_convert (aff
, uutype
);
3074 aff_combination_scale (&var_aff
, rat
);
3075 aff_combination_add (aff
, &var_aff
);
3080 /* Return the type of USE. */
3083 get_use_type (struct iv_use
*use
)
3085 tree base_type
= TREE_TYPE (use
->iv
->base
);
3088 if (use
->type
== USE_ADDRESS
)
3090 /* The base_type may be a void pointer. Create a pointer type based on
3091 the mem_ref instead. */
3092 type
= build_pointer_type (TREE_TYPE (*use
->op_p
));
3093 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type
))
3094 == TYPE_ADDR_SPACE (TREE_TYPE (base_type
)));
3102 /* Determines the expression by that USE is expressed from induction variable
3103 CAND at statement AT in LOOP. The computation is unshared. */
3106 get_computation_at (struct loop
*loop
,
3107 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
)
3110 tree type
= get_use_type (use
);
3112 if (!get_computation_aff (loop
, use
, cand
, at
, &aff
))
3114 unshare_aff_combination (&aff
);
3115 return fold_convert (type
, aff_combination_to_tree (&aff
));
3118 /* Determines the expression by that USE is expressed from induction variable
3119 CAND in LOOP. The computation is unshared. */
3122 get_computation (struct loop
*loop
, struct iv_use
*use
, struct iv_cand
*cand
)
3124 return get_computation_at (loop
, use
, cand
, use
->stmt
);
3127 /* Adjust the cost COST for being in loop setup rather than loop body.
3128 If we're optimizing for space, the loop setup overhead is constant;
3129 if we're optimizing for speed, amortize it over the per-iteration cost. */
3131 adjust_setup_cost (struct ivopts_data
*data
, unsigned cost
)
3135 else if (optimize_loop_for_speed_p (data
->current_loop
))
3136 return cost
/ avg_loop_niter (data
->current_loop
);
3141 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3142 validity for a memory reference accessing memory of mode MODE in
3143 address space AS. */
3147 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio
, enum machine_mode mode
,
3150 #define MAX_RATIO 128
3151 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mode
;
3152 static vec
<sbitmap
> valid_mult_list
;
3155 if (data_index
>= valid_mult_list
.length ())
3156 valid_mult_list
.safe_grow_cleared (data_index
+ 1);
3158 valid_mult
= valid_mult_list
[data_index
];
3161 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3162 rtx reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3163 rtx reg2
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3167 valid_mult
= sbitmap_alloc (2 * MAX_RATIO
+ 1);
3168 bitmap_clear (valid_mult
);
3169 scaled
= gen_rtx_fmt_ee (MULT
, address_mode
, reg1
, NULL_RTX
);
3170 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, scaled
, reg2
);
3171 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3173 XEXP (scaled
, 1) = gen_int_mode (i
, address_mode
);
3174 if (memory_address_addr_space_p (mode
, addr
, as
)
3175 || memory_address_addr_space_p (mode
, scaled
, as
))
3176 bitmap_set_bit (valid_mult
, i
+ MAX_RATIO
);
3179 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3181 fprintf (dump_file
, " allowed multipliers:");
3182 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3183 if (bitmap_bit_p (valid_mult
, i
+ MAX_RATIO
))
3184 fprintf (dump_file
, " %d", (int) i
);
3185 fprintf (dump_file
, "\n");
3186 fprintf (dump_file
, "\n");
3189 valid_mult_list
[data_index
] = valid_mult
;
3192 if (ratio
> MAX_RATIO
|| ratio
< -MAX_RATIO
)
3195 return bitmap_bit_p (valid_mult
, ratio
+ MAX_RATIO
);
3198 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3199 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3200 variable is omitted. Compute the cost for a memory reference that accesses
3201 a memory location of mode MEM_MODE in address space AS.
3203 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3204 size of MEM_MODE / RATIO) is available. To make this determination, we
3205 look at the size of the increment to be made, which is given in CSTEP.
3206 CSTEP may be zero if the step is unknown.
3207 STMT_AFTER_INC is true iff the statement we're looking at is after the
3208 increment of the original biv.
3210 TODO -- there must be some better way. This all is quite crude. */
3214 AINC_PRE_INC
, /* Pre increment. */
3215 AINC_PRE_DEC
, /* Pre decrement. */
3216 AINC_POST_INC
, /* Post increment. */
3217 AINC_POST_DEC
, /* Post decrement. */
3218 AINC_NONE
/* Also the number of auto increment types. */
3221 typedef struct address_cost_data_s
3223 HOST_WIDE_INT min_offset
, max_offset
;
3224 unsigned costs
[2][2][2][2];
3225 unsigned ainc_costs
[AINC_NONE
];
3226 } *address_cost_data
;
3230 get_address_cost (bool symbol_present
, bool var_present
,
3231 unsigned HOST_WIDE_INT offset
, HOST_WIDE_INT ratio
,
3232 HOST_WIDE_INT cstep
, enum machine_mode mem_mode
,
3233 addr_space_t as
, bool speed
,
3234 bool stmt_after_inc
, bool *may_autoinc
)
3236 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3237 static vec
<address_cost_data
> address_cost_data_list
;
3238 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mem_mode
;
3239 address_cost_data data
;
3240 static bool has_preinc
[MAX_MACHINE_MODE
], has_postinc
[MAX_MACHINE_MODE
];
3241 static bool has_predec
[MAX_MACHINE_MODE
], has_postdec
[MAX_MACHINE_MODE
];
3242 unsigned cost
, acost
, complexity
;
3243 enum ainc_type autoinc_type
;
3244 bool offset_p
, ratio_p
, autoinc
;
3245 HOST_WIDE_INT s_offset
, autoinc_offset
, msize
;
3246 unsigned HOST_WIDE_INT mask
;
3249 if (data_index
>= address_cost_data_list
.length ())
3250 address_cost_data_list
.safe_grow_cleared (data_index
+ 1);
3252 data
= address_cost_data_list
[data_index
];
3256 HOST_WIDE_INT rat
, off
= 0;
3257 int old_cse_not_expected
, width
;
3258 unsigned sym_p
, var_p
, off_p
, rat_p
, add_c
;
3259 rtx seq
, addr
, base
;
3262 data
= (address_cost_data
) xcalloc (1, sizeof (*data
));
3264 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3266 width
= GET_MODE_BITSIZE (address_mode
) - 1;
3267 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
3268 width
= HOST_BITS_PER_WIDE_INT
- 1;
3269 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, reg1
, NULL_RTX
);
3271 for (i
= width
; i
>= 0; i
--)
3273 off
= -((unsigned HOST_WIDE_INT
) 1 << i
);
3274 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3275 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3278 data
->min_offset
= (i
== -1? 0 : off
);
3280 for (i
= width
; i
>= 0; i
--)
3282 off
= ((unsigned HOST_WIDE_INT
) 1 << i
) - 1;
3283 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3284 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3289 data
->max_offset
= off
;
3291 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3293 fprintf (dump_file
, "get_address_cost:\n");
3294 fprintf (dump_file
, " min offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3295 GET_MODE_NAME (mem_mode
),
3297 fprintf (dump_file
, " max offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3298 GET_MODE_NAME (mem_mode
),
3303 for (i
= 2; i
<= MAX_RATIO
; i
++)
3304 if (multiplier_allowed_in_address_p (i
, mem_mode
, as
))
3310 /* Compute the cost of various addressing modes. */
3312 reg0
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3313 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3315 if (USE_LOAD_PRE_DECREMENT (mem_mode
)
3316 || USE_STORE_PRE_DECREMENT (mem_mode
))
3318 addr
= gen_rtx_PRE_DEC (address_mode
, reg0
);
3319 has_predec
[mem_mode
]
3320 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3322 if (has_predec
[mem_mode
])
3323 data
->ainc_costs
[AINC_PRE_DEC
]
3324 = address_cost (addr
, mem_mode
, as
, speed
);
3326 if (USE_LOAD_POST_DECREMENT (mem_mode
)
3327 || USE_STORE_POST_DECREMENT (mem_mode
))
3329 addr
= gen_rtx_POST_DEC (address_mode
, reg0
);
3330 has_postdec
[mem_mode
]
3331 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3333 if (has_postdec
[mem_mode
])
3334 data
->ainc_costs
[AINC_POST_DEC
]
3335 = address_cost (addr
, mem_mode
, as
, speed
);
3337 if (USE_LOAD_PRE_INCREMENT (mem_mode
)
3338 || USE_STORE_PRE_DECREMENT (mem_mode
))
3340 addr
= gen_rtx_PRE_INC (address_mode
, reg0
);
3341 has_preinc
[mem_mode
]
3342 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3344 if (has_preinc
[mem_mode
])
3345 data
->ainc_costs
[AINC_PRE_INC
]
3346 = address_cost (addr
, mem_mode
, as
, speed
);
3348 if (USE_LOAD_POST_INCREMENT (mem_mode
)
3349 || USE_STORE_POST_INCREMENT (mem_mode
))
3351 addr
= gen_rtx_POST_INC (address_mode
, reg0
);
3352 has_postinc
[mem_mode
]
3353 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3355 if (has_postinc
[mem_mode
])
3356 data
->ainc_costs
[AINC_POST_INC
]
3357 = address_cost (addr
, mem_mode
, as
, speed
);
3359 for (i
= 0; i
< 16; i
++)
3362 var_p
= (i
>> 1) & 1;
3363 off_p
= (i
>> 2) & 1;
3364 rat_p
= (i
>> 3) & 1;
3368 addr
= gen_rtx_fmt_ee (MULT
, address_mode
, addr
,
3369 gen_int_mode (rat
, address_mode
));
3372 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, reg1
);
3376 base
= gen_rtx_SYMBOL_REF (address_mode
, ggc_strdup (""));
3377 /* ??? We can run into trouble with some backends by presenting
3378 it with symbols which haven't been properly passed through
3379 targetm.encode_section_info. By setting the local bit, we
3380 enhance the probability of things working. */
3381 SYMBOL_REF_FLAGS (base
) = SYMBOL_FLAG_LOCAL
;
3384 base
= gen_rtx_fmt_e (CONST
, address_mode
,
3386 (PLUS
, address_mode
, base
,
3387 gen_int_mode (off
, address_mode
)));
3390 base
= gen_int_mode (off
, address_mode
);
3395 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, base
);
3398 /* To avoid splitting addressing modes, pretend that no cse will
3400 old_cse_not_expected
= cse_not_expected
;
3401 cse_not_expected
= true;
3402 addr
= memory_address_addr_space (mem_mode
, addr
, as
);
3403 cse_not_expected
= old_cse_not_expected
;
3407 acost
= seq_cost (seq
, speed
);
3408 acost
+= address_cost (addr
, mem_mode
, as
, speed
);
3412 data
->costs
[sym_p
][var_p
][off_p
][rat_p
] = acost
;
3415 /* On some targets, it is quite expensive to load symbol to a register,
3416 which makes addresses that contain symbols look much more expensive.
3417 However, the symbol will have to be loaded in any case before the
3418 loop (and quite likely we have it in register already), so it does not
3419 make much sense to penalize them too heavily. So make some final
3420 tweaks for the SYMBOL_PRESENT modes:
3422 If VAR_PRESENT is false, and the mode obtained by changing symbol to
3423 var is cheaper, use this mode with small penalty.
3424 If VAR_PRESENT is true, try whether the mode with
3425 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
3426 if this is the case, use it. */
3427 add_c
= add_cost (speed
, address_mode
);
3428 for (i
= 0; i
< 8; i
++)
3431 off_p
= (i
>> 1) & 1;
3432 rat_p
= (i
>> 2) & 1;
3434 acost
= data
->costs
[0][1][off_p
][rat_p
] + 1;
3438 if (acost
< data
->costs
[1][var_p
][off_p
][rat_p
])
3439 data
->costs
[1][var_p
][off_p
][rat_p
] = acost
;
3442 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3444 fprintf (dump_file
, "Address costs:\n");
3446 for (i
= 0; i
< 16; i
++)
3449 var_p
= (i
>> 1) & 1;
3450 off_p
= (i
>> 2) & 1;
3451 rat_p
= (i
>> 3) & 1;
3453 fprintf (dump_file
, " ");
3455 fprintf (dump_file
, "sym + ");
3457 fprintf (dump_file
, "var + ");
3459 fprintf (dump_file
, "cst + ");
3461 fprintf (dump_file
, "rat * ");
3463 acost
= data
->costs
[sym_p
][var_p
][off_p
][rat_p
];
3464 fprintf (dump_file
, "index costs %d\n", acost
);
3466 if (has_predec
[mem_mode
] || has_postdec
[mem_mode
]
3467 || has_preinc
[mem_mode
] || has_postinc
[mem_mode
])
3468 fprintf (dump_file
, " May include autoinc/dec\n");
3469 fprintf (dump_file
, "\n");
3472 address_cost_data_list
[data_index
] = data
;
3475 bits
= GET_MODE_BITSIZE (address_mode
);
3476 mask
= ~(~(unsigned HOST_WIDE_INT
) 0 << (bits
- 1) << 1);
3478 if ((offset
>> (bits
- 1) & 1))
3483 autoinc_type
= AINC_NONE
;
3484 msize
= GET_MODE_SIZE (mem_mode
);
3485 autoinc_offset
= offset
;
3487 autoinc_offset
+= ratio
* cstep
;
3488 if (symbol_present
|| var_present
|| ratio
!= 1)
3492 if (has_postinc
[mem_mode
] && autoinc_offset
== 0
3494 autoinc_type
= AINC_POST_INC
;
3495 else if (has_postdec
[mem_mode
] && autoinc_offset
== 0
3497 autoinc_type
= AINC_POST_DEC
;
3498 else if (has_preinc
[mem_mode
] && autoinc_offset
== msize
3500 autoinc_type
= AINC_PRE_INC
;
3501 else if (has_predec
[mem_mode
] && autoinc_offset
== -msize
3503 autoinc_type
= AINC_PRE_DEC
;
3505 if (autoinc_type
!= AINC_NONE
)
3510 offset_p
= (s_offset
!= 0
3511 && data
->min_offset
<= s_offset
3512 && s_offset
<= data
->max_offset
);
3513 ratio_p
= (ratio
!= 1
3514 && multiplier_allowed_in_address_p (ratio
, mem_mode
, as
));
3516 if (ratio
!= 1 && !ratio_p
)
3517 cost
+= mult_by_coeff_cost (ratio
, address_mode
, speed
);
3519 if (s_offset
&& !offset_p
&& !symbol_present
)
3520 cost
+= add_cost (speed
, address_mode
);
3523 *may_autoinc
= autoinc
;
3525 acost
= data
->ainc_costs
[autoinc_type
];
3527 acost
= data
->costs
[symbol_present
][var_present
][offset_p
][ratio_p
];
3528 complexity
= (symbol_present
!= 0) + (var_present
!= 0) + offset_p
+ ratio_p
;
3529 return new_cost (cost
+ acost
, complexity
);
3532 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
3533 the EXPR operand holding the shift. COST0 and COST1 are the costs for
3534 calculating the operands of EXPR. Returns true if successful, and returns
3535 the cost in COST. */
3538 get_shiftadd_cost (tree expr
, enum machine_mode mode
, comp_cost cost0
,
3539 comp_cost cost1
, tree mult
, bool speed
, comp_cost
*cost
)
3542 tree op1
= TREE_OPERAND (expr
, 1);
3543 tree cst
= TREE_OPERAND (mult
, 1);
3544 tree multop
= TREE_OPERAND (mult
, 0);
3545 int m
= exact_log2 (int_cst_value (cst
));
3546 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
3548 bool equal_p
= false;
3550 if (!(m
>= 0 && m
< maxm
))
3553 if (operand_equal_p (op1
, mult
, 0))
3556 sa_cost
= (TREE_CODE (expr
) != MINUS_EXPR
3557 ? shiftadd_cost (speed
, mode
, m
)
3559 ? shiftsub1_cost (speed
, mode
, m
)
3560 : shiftsub0_cost (speed
, mode
, m
)));
3561 res
= new_cost (sa_cost
, 0);
3562 res
= add_costs (res
, equal_p
? cost0
: cost1
);
3564 STRIP_NOPS (multop
);
3565 if (!is_gimple_val (multop
))
3566 res
= add_costs (res
, force_expr_to_var_cost (multop
, speed
));
3572 /* Estimates cost of forcing expression EXPR into a variable. */
3575 force_expr_to_var_cost (tree expr
, bool speed
)
3577 static bool costs_initialized
= false;
3578 static unsigned integer_cost
[2];
3579 static unsigned symbol_cost
[2];
3580 static unsigned address_cost
[2];
3582 comp_cost cost0
, cost1
, cost
;
3583 enum machine_mode mode
;
3585 if (!costs_initialized
)
3587 tree type
= build_pointer_type (integer_type_node
);
3592 var
= create_tmp_var_raw (integer_type_node
, "test_var");
3593 TREE_STATIC (var
) = 1;
3594 x
= produce_memory_decl_rtl (var
, NULL
);
3595 SET_DECL_RTL (var
, x
);
3597 addr
= build1 (ADDR_EXPR
, type
, var
);
3600 for (i
= 0; i
< 2; i
++)
3602 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
3605 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
3608 = computation_cost (fold_build_pointer_plus_hwi (addr
, 2000), i
) + 1;
3609 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3611 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
3612 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
3613 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
3614 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
3615 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
3616 fprintf (dump_file
, "\n");
3620 costs_initialized
= true;
3625 if (SSA_VAR_P (expr
))
3628 if (is_gimple_min_invariant (expr
))
3630 if (TREE_CODE (expr
) == INTEGER_CST
)
3631 return new_cost (integer_cost
[speed
], 0);
3633 if (TREE_CODE (expr
) == ADDR_EXPR
)
3635 tree obj
= TREE_OPERAND (expr
, 0);
3637 if (TREE_CODE (obj
) == VAR_DECL
3638 || TREE_CODE (obj
) == PARM_DECL
3639 || TREE_CODE (obj
) == RESULT_DECL
)
3640 return new_cost (symbol_cost
[speed
], 0);
3643 return new_cost (address_cost
[speed
], 0);
3646 switch (TREE_CODE (expr
))
3648 case POINTER_PLUS_EXPR
:
3652 op0
= TREE_OPERAND (expr
, 0);
3653 op1
= TREE_OPERAND (expr
, 1);
3660 op0
= TREE_OPERAND (expr
, 0);
3666 /* Just an arbitrary value, FIXME. */
3667 return new_cost (target_spill_cost
[speed
], 0);
3670 if (op0
== NULL_TREE
3671 || TREE_CODE (op0
) == SSA_NAME
|| CONSTANT_CLASS_P (op0
))
3674 cost0
= force_expr_to_var_cost (op0
, speed
);
3676 if (op1
== NULL_TREE
3677 || TREE_CODE (op1
) == SSA_NAME
|| CONSTANT_CLASS_P (op1
))
3680 cost1
= force_expr_to_var_cost (op1
, speed
);
3682 mode
= TYPE_MODE (TREE_TYPE (expr
));
3683 switch (TREE_CODE (expr
))
3685 case POINTER_PLUS_EXPR
:
3689 cost
= new_cost (add_cost (speed
, mode
), 0);
3690 if (TREE_CODE (expr
) != NEGATE_EXPR
)
3692 tree mult
= NULL_TREE
;
3694 if (TREE_CODE (op1
) == MULT_EXPR
)
3696 else if (TREE_CODE (op0
) == MULT_EXPR
)
3699 if (mult
!= NULL_TREE
3700 && cst_and_fits_in_hwi (TREE_OPERAND (mult
, 1))
3701 && get_shiftadd_cost (expr
, mode
, cost0
, cost1
, mult
,
3709 tree inner_mode
, outer_mode
;
3710 outer_mode
= TREE_TYPE (expr
);
3711 inner_mode
= TREE_TYPE (op0
);
3712 cost
= new_cost (convert_cost (TYPE_MODE (outer_mode
),
3713 TYPE_MODE (inner_mode
), speed
), 0);
3718 if (cst_and_fits_in_hwi (op0
))
3719 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op0
),
3721 else if (cst_and_fits_in_hwi (op1
))
3722 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op1
),
3725 return new_cost (target_spill_cost
[speed
], 0);
3732 cost
= add_costs (cost
, cost0
);
3733 cost
= add_costs (cost
, cost1
);
3735 /* Bound the cost by target_spill_cost. The parts of complicated
3736 computations often are either loop invariant or at least can
3737 be shared between several iv uses, so letting this grow without
3738 limits would not give reasonable results. */
3739 if (cost
.cost
> (int) target_spill_cost
[speed
])
3740 cost
.cost
= target_spill_cost
[speed
];
3745 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
3746 invariants the computation depends on. */
3749 force_var_cost (struct ivopts_data
*data
,
3750 tree expr
, bitmap
*depends_on
)
3754 fd_ivopts_data
= data
;
3755 walk_tree (&expr
, find_depends
, depends_on
, NULL
);
3758 return force_expr_to_var_cost (expr
, data
->speed
);
3761 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
3762 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
3763 to false if the corresponding part is missing. DEPENDS_ON is a set of the
3764 invariants the computation depends on. */
3767 split_address_cost (struct ivopts_data
*data
,
3768 tree addr
, bool *symbol_present
, bool *var_present
,
3769 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3772 HOST_WIDE_INT bitsize
;
3773 HOST_WIDE_INT bitpos
;
3775 enum machine_mode mode
;
3776 int unsignedp
, volatilep
;
3778 core
= get_inner_reference (addr
, &bitsize
, &bitpos
, &toffset
, &mode
,
3779 &unsignedp
, &volatilep
, false);
3782 || bitpos
% BITS_PER_UNIT
!= 0
3783 || TREE_CODE (core
) != VAR_DECL
)
3785 *symbol_present
= false;
3786 *var_present
= true;
3787 fd_ivopts_data
= data
;
3788 walk_tree (&addr
, find_depends
, depends_on
, NULL
);
3789 return new_cost (target_spill_cost
[data
->speed
], 0);
3792 *offset
+= bitpos
/ BITS_PER_UNIT
;
3793 if (TREE_STATIC (core
)
3794 || DECL_EXTERNAL (core
))
3796 *symbol_present
= true;
3797 *var_present
= false;
3801 *symbol_present
= false;
3802 *var_present
= true;
3806 /* Estimates cost of expressing difference of addresses E1 - E2 as
3807 var + symbol + offset. The value of offset is added to OFFSET,
3808 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3809 part is missing. DEPENDS_ON is a set of the invariants the computation
3813 ptr_difference_cost (struct ivopts_data
*data
,
3814 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
3815 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3817 HOST_WIDE_INT diff
= 0;
3818 aff_tree aff_e1
, aff_e2
;
3821 gcc_assert (TREE_CODE (e1
) == ADDR_EXPR
);
3823 if (ptr_difference_const (e1
, e2
, &diff
))
3826 *symbol_present
= false;
3827 *var_present
= false;
3831 if (integer_zerop (e2
))
3832 return split_address_cost (data
, TREE_OPERAND (e1
, 0),
3833 symbol_present
, var_present
, offset
, depends_on
);
3835 *symbol_present
= false;
3836 *var_present
= true;
3838 type
= signed_type_for (TREE_TYPE (e1
));
3839 tree_to_aff_combination (e1
, type
, &aff_e1
);
3840 tree_to_aff_combination (e2
, type
, &aff_e2
);
3841 aff_combination_scale (&aff_e2
, double_int_minus_one
);
3842 aff_combination_add (&aff_e1
, &aff_e2
);
3844 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
3847 /* Estimates cost of expressing difference E1 - E2 as
3848 var + symbol + offset. The value of offset is added to OFFSET,
3849 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3850 part is missing. DEPENDS_ON is a set of the invariants the computation
3854 difference_cost (struct ivopts_data
*data
,
3855 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
3856 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3858 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (e1
));
3859 unsigned HOST_WIDE_INT off1
, off2
;
3860 aff_tree aff_e1
, aff_e2
;
3863 e1
= strip_offset (e1
, &off1
);
3864 e2
= strip_offset (e2
, &off2
);
3865 *offset
+= off1
- off2
;
3870 if (TREE_CODE (e1
) == ADDR_EXPR
)
3871 return ptr_difference_cost (data
, e1
, e2
, symbol_present
, var_present
,
3872 offset
, depends_on
);
3873 *symbol_present
= false;
3875 if (operand_equal_p (e1
, e2
, 0))
3877 *var_present
= false;
3881 *var_present
= true;
3883 if (integer_zerop (e2
))
3884 return force_var_cost (data
, e1
, depends_on
);
3886 if (integer_zerop (e1
))
3888 comp_cost cost
= force_var_cost (data
, e2
, depends_on
);
3889 cost
.cost
+= mult_by_coeff_cost (-1, mode
, data
->speed
);
3893 type
= signed_type_for (TREE_TYPE (e1
));
3894 tree_to_aff_combination (e1
, type
, &aff_e1
);
3895 tree_to_aff_combination (e2
, type
, &aff_e2
);
3896 aff_combination_scale (&aff_e2
, double_int_minus_one
);
3897 aff_combination_add (&aff_e1
, &aff_e2
);
3899 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
3902 /* Returns true if AFF1 and AFF2 are identical. */
3905 compare_aff_trees (aff_tree
*aff1
, aff_tree
*aff2
)
3909 if (aff1
->n
!= aff2
->n
)
3912 for (i
= 0; i
< aff1
->n
; i
++)
3914 if (aff1
->elts
[i
].coef
!= aff2
->elts
[i
].coef
)
3917 if (!operand_equal_p (aff1
->elts
[i
].val
, aff2
->elts
[i
].val
, 0))
3923 /* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
3926 get_expr_id (struct ivopts_data
*data
, tree expr
)
3928 struct iv_inv_expr_ent ent
;
3929 struct iv_inv_expr_ent
**slot
;
3932 ent
.hash
= iterative_hash_expr (expr
, 0);
3933 slot
= data
->inv_expr_tab
.find_slot (&ent
, INSERT
);
3937 *slot
= XNEW (struct iv_inv_expr_ent
);
3938 (*slot
)->expr
= expr
;
3939 (*slot
)->hash
= ent
.hash
;
3940 (*slot
)->id
= data
->inv_expr_id
++;
3944 /* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
3945 requires a new compiler generated temporary. Returns -1 otherwise.
3946 ADDRESS_P is a flag indicating if the expression is for address
3950 get_loop_invariant_expr_id (struct ivopts_data
*data
, tree ubase
,
3951 tree cbase
, HOST_WIDE_INT ratio
,
3954 aff_tree ubase_aff
, cbase_aff
;
3962 if ((TREE_CODE (ubase
) == INTEGER_CST
)
3963 && (TREE_CODE (cbase
) == INTEGER_CST
))
3966 /* Strips the constant part. */
3967 if (TREE_CODE (ubase
) == PLUS_EXPR
3968 || TREE_CODE (ubase
) == MINUS_EXPR
3969 || TREE_CODE (ubase
) == POINTER_PLUS_EXPR
)
3971 if (TREE_CODE (TREE_OPERAND (ubase
, 1)) == INTEGER_CST
)
3972 ubase
= TREE_OPERAND (ubase
, 0);
3975 /* Strips the constant part. */
3976 if (TREE_CODE (cbase
) == PLUS_EXPR
3977 || TREE_CODE (cbase
) == MINUS_EXPR
3978 || TREE_CODE (cbase
) == POINTER_PLUS_EXPR
)
3980 if (TREE_CODE (TREE_OPERAND (cbase
, 1)) == INTEGER_CST
)
3981 cbase
= TREE_OPERAND (cbase
, 0);
3986 if (((TREE_CODE (ubase
) == SSA_NAME
)
3987 || (TREE_CODE (ubase
) == ADDR_EXPR
3988 && is_gimple_min_invariant (ubase
)))
3989 && (TREE_CODE (cbase
) == INTEGER_CST
))
3992 if (((TREE_CODE (cbase
) == SSA_NAME
)
3993 || (TREE_CODE (cbase
) == ADDR_EXPR
3994 && is_gimple_min_invariant (cbase
)))
3995 && (TREE_CODE (ubase
) == INTEGER_CST
))
4001 if (operand_equal_p (ubase
, cbase
, 0))
4004 if (TREE_CODE (ubase
) == ADDR_EXPR
4005 && TREE_CODE (cbase
) == ADDR_EXPR
)
4009 usym
= TREE_OPERAND (ubase
, 0);
4010 csym
= TREE_OPERAND (cbase
, 0);
4011 if (TREE_CODE (usym
) == ARRAY_REF
)
4013 tree ind
= TREE_OPERAND (usym
, 1);
4014 if (TREE_CODE (ind
) == INTEGER_CST
4015 && tree_fits_shwi_p (ind
)
4016 && tree_to_shwi (ind
) == 0)
4017 usym
= TREE_OPERAND (usym
, 0);
4019 if (TREE_CODE (csym
) == ARRAY_REF
)
4021 tree ind
= TREE_OPERAND (csym
, 1);
4022 if (TREE_CODE (ind
) == INTEGER_CST
4023 && tree_fits_shwi_p (ind
)
4024 && tree_to_shwi (ind
) == 0)
4025 csym
= TREE_OPERAND (csym
, 0);
4027 if (operand_equal_p (usym
, csym
, 0))
4030 /* Now do more complex comparison */
4031 tree_to_aff_combination (ubase
, TREE_TYPE (ubase
), &ubase_aff
);
4032 tree_to_aff_combination (cbase
, TREE_TYPE (cbase
), &cbase_aff
);
4033 if (compare_aff_trees (&ubase_aff
, &cbase_aff
))
4037 tree_to_aff_combination (ub
, TREE_TYPE (ub
), &ubase_aff
);
4038 tree_to_aff_combination (cb
, TREE_TYPE (cb
), &cbase_aff
);
4040 aff_combination_scale (&cbase_aff
, double_int::from_shwi (-1 * ratio
));
4041 aff_combination_add (&ubase_aff
, &cbase_aff
);
4042 expr
= aff_combination_to_tree (&ubase_aff
);
4043 return get_expr_id (data
, expr
);
4048 /* Determines the cost of the computation by that USE is expressed
4049 from induction variable CAND. If ADDRESS_P is true, we just need
4050 to create an address from it, otherwise we want to get it into
4051 register. A set of invariants we depend on is stored in
4052 DEPENDS_ON. AT is the statement at that the value is computed.
4053 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4054 addressing is likely. */
4057 get_computation_cost_at (struct ivopts_data
*data
,
4058 struct iv_use
*use
, struct iv_cand
*cand
,
4059 bool address_p
, bitmap
*depends_on
, gimple at
,
4063 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
4065 tree utype
= TREE_TYPE (ubase
), ctype
;
4066 unsigned HOST_WIDE_INT cstepi
, offset
= 0;
4067 HOST_WIDE_INT ratio
, aratio
;
4068 bool var_present
, symbol_present
, stmt_is_after_inc
;
4071 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
4072 enum machine_mode mem_mode
= (address_p
4073 ? TYPE_MODE (TREE_TYPE (*use
->op_p
))
4078 /* Only consider real candidates. */
4080 return infinite_cost
;
4082 cbase
= cand
->iv
->base
;
4083 cstep
= cand
->iv
->step
;
4084 ctype
= TREE_TYPE (cbase
);
4086 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
4088 /* We do not have a precision to express the values of use. */
4089 return infinite_cost
;
4093 || (use
->iv
->base_object
4094 && cand
->iv
->base_object
4095 && POINTER_TYPE_P (TREE_TYPE (use
->iv
->base_object
))
4096 && POINTER_TYPE_P (TREE_TYPE (cand
->iv
->base_object
))))
4098 /* Do not try to express address of an object with computation based
4099 on address of a different object. This may cause problems in rtl
4100 level alias analysis (that does not expect this to be happening,
4101 as this is illegal in C), and would be unlikely to be useful
4103 if (use
->iv
->base_object
4104 && cand
->iv
->base_object
4105 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
4106 return infinite_cost
;
4109 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
4111 /* TODO -- add direct handling of this case. */
4115 /* CSTEPI is removed from the offset in case statement is after the
4116 increment. If the step is not constant, we use zero instead.
4117 This is a bit imprecise (there is the extra addition), but
4118 redundancy elimination is likely to transform the code so that
4119 it uses value of the variable before increment anyway,
4120 so it is not that much unrealistic. */
4121 if (cst_and_fits_in_hwi (cstep
))
4122 cstepi
= int_cst_value (cstep
);
4126 if (!constant_multiple_of (ustep
, cstep
, &rat
))
4127 return infinite_cost
;
4129 if (rat
.fits_shwi ())
4130 ratio
= rat
.to_shwi ();
4132 return infinite_cost
;
4135 ctype
= TREE_TYPE (cbase
);
4137 stmt_is_after_inc
= stmt_after_increment (data
->current_loop
, cand
, at
);
4139 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4140 or ratio == 1, it is better to handle this like
4142 ubase - ratio * cbase + ratio * var
4144 (also holds in the case ratio == -1, TODO. */
4146 if (cst_and_fits_in_hwi (cbase
))
4148 offset
= - ratio
* int_cst_value (cbase
);
4149 cost
= difference_cost (data
,
4150 ubase
, build_int_cst (utype
, 0),
4151 &symbol_present
, &var_present
, &offset
,
4153 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4155 else if (ratio
== 1)
4157 tree real_cbase
= cbase
;
4159 /* Check to see if any adjustment is needed. */
4160 if (cstepi
== 0 && stmt_is_after_inc
)
4162 aff_tree real_cbase_aff
;
4165 tree_to_aff_combination (cbase
, TREE_TYPE (real_cbase
),
4167 tree_to_aff_combination (cstep
, TREE_TYPE (cstep
), &cstep_aff
);
4169 aff_combination_add (&real_cbase_aff
, &cstep_aff
);
4170 real_cbase
= aff_combination_to_tree (&real_cbase_aff
);
4173 cost
= difference_cost (data
,
4175 &symbol_present
, &var_present
, &offset
,
4177 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4180 && !POINTER_TYPE_P (ctype
)
4181 && multiplier_allowed_in_address_p
4183 TYPE_ADDR_SPACE (TREE_TYPE (utype
))))
4186 = fold_build2 (MULT_EXPR
, ctype
, cbase
, build_int_cst (ctype
, ratio
));
4187 cost
= difference_cost (data
,
4189 &symbol_present
, &var_present
, &offset
,
4191 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4195 cost
= force_var_cost (data
, cbase
, depends_on
);
4196 cost
= add_costs (cost
,
4197 difference_cost (data
,
4198 ubase
, build_int_cst (utype
, 0),
4199 &symbol_present
, &var_present
,
4200 &offset
, depends_on
));
4201 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4202 cost
.cost
+= add_cost (data
->speed
, TYPE_MODE (ctype
));
4208 get_loop_invariant_expr_id (data
, ubase
, cbase
, ratio
, address_p
);
4209 /* Clear depends on. */
4210 if (*inv_expr_id
!= -1 && depends_on
&& *depends_on
)
4211 bitmap_clear (*depends_on
);
4214 /* If we are after the increment, the value of the candidate is higher by
4216 if (stmt_is_after_inc
)
4217 offset
-= ratio
* cstepi
;
4219 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
4220 (symbol/var1/const parts may be omitted). If we are looking for an
4221 address, find the cost of addressing this. */
4223 return add_costs (cost
,
4224 get_address_cost (symbol_present
, var_present
,
4225 offset
, ratio
, cstepi
,
4227 TYPE_ADDR_SPACE (TREE_TYPE (utype
)),
4228 speed
, stmt_is_after_inc
,
4231 /* Otherwise estimate the costs for computing the expression. */
4232 if (!symbol_present
&& !var_present
&& !offset
)
4235 cost
.cost
+= mult_by_coeff_cost (ratio
, TYPE_MODE (ctype
), speed
);
4239 /* Symbol + offset should be compile-time computable so consider that they
4240 are added once to the variable, if present. */
4241 if (var_present
&& (symbol_present
|| offset
))
4242 cost
.cost
+= adjust_setup_cost (data
,
4243 add_cost (speed
, TYPE_MODE (ctype
)));
4245 /* Having offset does not affect runtime cost in case it is added to
4246 symbol, but it increases complexity. */
4250 cost
.cost
+= add_cost (speed
, TYPE_MODE (ctype
));
4252 aratio
= ratio
> 0 ? ratio
: -ratio
;
4254 cost
.cost
+= mult_by_coeff_cost (aratio
, TYPE_MODE (ctype
), speed
);
4259 *can_autoinc
= false;
4262 /* Just get the expression, expand it and measure the cost. */
4263 tree comp
= get_computation_at (data
->current_loop
, use
, cand
, at
);
4266 return infinite_cost
;
4269 comp
= build_simple_mem_ref (comp
);
4271 return new_cost (computation_cost (comp
, speed
), 0);
4275 /* Determines the cost of the computation by that USE is expressed
4276 from induction variable CAND. If ADDRESS_P is true, we just need
4277 to create an address from it, otherwise we want to get it into
4278 register. A set of invariants we depend on is stored in
4279 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
4280 autoinc addressing is likely. */
4283 get_computation_cost (struct ivopts_data
*data
,
4284 struct iv_use
*use
, struct iv_cand
*cand
,
4285 bool address_p
, bitmap
*depends_on
,
4286 bool *can_autoinc
, int *inv_expr_id
)
4288 return get_computation_cost_at (data
,
4289 use
, cand
, address_p
, depends_on
, use
->stmt
,
4290 can_autoinc
, inv_expr_id
);
4293 /* Determines cost of basing replacement of USE on CAND in a generic
4297 determine_use_iv_cost_generic (struct ivopts_data
*data
,
4298 struct iv_use
*use
, struct iv_cand
*cand
)
4302 int inv_expr_id
= -1;
4304 /* The simple case first -- if we need to express value of the preserved
4305 original biv, the cost is 0. This also prevents us from counting the
4306 cost of increment twice -- once at this use and once in the cost of
4308 if (cand
->pos
== IP_ORIGINAL
4309 && cand
->incremented_at
== use
->stmt
)
4311 set_use_iv_cost (data
, use
, cand
, no_cost
, NULL
, NULL_TREE
,
4316 cost
= get_computation_cost (data
, use
, cand
, false, &depends_on
,
4317 NULL
, &inv_expr_id
);
4319 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4322 return !infinite_cost_p (cost
);
4325 /* Determines cost of basing replacement of USE on CAND in an address. */
4328 determine_use_iv_cost_address (struct ivopts_data
*data
,
4329 struct iv_use
*use
, struct iv_cand
*cand
)
4333 int inv_expr_id
= -1;
4334 comp_cost cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
4335 &can_autoinc
, &inv_expr_id
);
4337 if (cand
->ainc_use
== use
)
4340 cost
.cost
-= cand
->cost_step
;
4341 /* If we generated the candidate solely for exploiting autoincrement
4342 opportunities, and it turns out it can't be used, set the cost to
4343 infinity to make sure we ignore it. */
4344 else if (cand
->pos
== IP_AFTER_USE
|| cand
->pos
== IP_BEFORE_USE
)
4345 cost
= infinite_cost
;
4347 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4350 return !infinite_cost_p (cost
);
4353 /* Computes value of candidate CAND at position AT in iteration NITER, and
4354 stores it to VAL. */
4357 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple at
, tree niter
,
4360 aff_tree step
, delta
, nit
;
4361 struct iv
*iv
= cand
->iv
;
4362 tree type
= TREE_TYPE (iv
->base
);
4363 tree steptype
= type
;
4364 if (POINTER_TYPE_P (type
))
4365 steptype
= sizetype
;
4367 tree_to_aff_combination (iv
->step
, steptype
, &step
);
4368 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
4369 aff_combination_convert (&nit
, steptype
);
4370 aff_combination_mult (&nit
, &step
, &delta
);
4371 if (stmt_after_increment (loop
, cand
, at
))
4372 aff_combination_add (&delta
, &step
);
4374 tree_to_aff_combination (iv
->base
, type
, val
);
4375 aff_combination_add (val
, &delta
);
4378 /* Returns period of induction variable iv. */
4381 iv_period (struct iv
*iv
)
4383 tree step
= iv
->step
, period
, type
;
4386 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
4388 type
= unsigned_type_for (TREE_TYPE (step
));
4389 /* Period of the iv is lcm (step, type_range)/step -1,
4390 i.e., N*type_range/step - 1. Since type range is power
4391 of two, N == (step >> num_of_ending_zeros_binary (step),
4392 so the final result is
4394 (type_range >> num_of_ending_zeros_binary (step)) - 1
4397 pow2div
= num_ending_zeros (step
);
4399 period
= build_low_bits_mask (type
,
4400 (TYPE_PRECISION (type
)
4401 - tree_to_uhwi (pow2div
)));
4406 /* Returns the comparison operator used when eliminating the iv USE. */
4408 static enum tree_code
4409 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
4411 struct loop
*loop
= data
->current_loop
;
4415 ex_bb
= gimple_bb (use
->stmt
);
4416 exit
= EDGE_SUCC (ex_bb
, 0);
4417 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4418 exit
= EDGE_SUCC (ex_bb
, 1);
4420 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
4424 strip_wrap_conserving_type_conversions (tree exp
)
4426 while (tree_ssa_useless_type_conversion (exp
)
4427 && (nowrap_type_p (TREE_TYPE (exp
))
4428 == nowrap_type_p (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
4429 exp
= TREE_OPERAND (exp
, 0);
4433 /* Walk the SSA form and check whether E == WHAT. Fairly simplistic, we
4434 check for an exact match. */
4437 expr_equal_p (tree e
, tree what
)
4440 enum tree_code code
;
4442 e
= strip_wrap_conserving_type_conversions (e
);
4443 what
= strip_wrap_conserving_type_conversions (what
);
4445 code
= TREE_CODE (what
);
4446 if (TREE_TYPE (e
) != TREE_TYPE (what
))
4449 if (operand_equal_p (e
, what
, 0))
4452 if (TREE_CODE (e
) != SSA_NAME
)
4455 stmt
= SSA_NAME_DEF_STMT (e
);
4456 if (gimple_code (stmt
) != GIMPLE_ASSIGN
4457 || gimple_assign_rhs_code (stmt
) != code
)
4460 switch (get_gimple_rhs_class (code
))
4462 case GIMPLE_BINARY_RHS
:
4463 if (!expr_equal_p (gimple_assign_rhs2 (stmt
), TREE_OPERAND (what
, 1)))
4467 case GIMPLE_UNARY_RHS
:
4468 case GIMPLE_SINGLE_RHS
:
4469 return expr_equal_p (gimple_assign_rhs1 (stmt
), TREE_OPERAND (what
, 0));
4475 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
4476 we only detect the situation that BASE = SOMETHING + OFFSET, where the
4477 calculation is performed in non-wrapping type.
4479 TODO: More generally, we could test for the situation that
4480 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
4481 This would require knowing the sign of OFFSET.
4483 Also, we only look for the first addition in the computation of BASE.
4484 More complex analysis would be better, but introducing it just for
4485 this optimization seems like an overkill. */
4488 difference_cannot_overflow_p (tree base
, tree offset
)
4490 enum tree_code code
;
4493 if (!nowrap_type_p (TREE_TYPE (base
)))
4496 base
= expand_simple_operations (base
);
4498 if (TREE_CODE (base
) == SSA_NAME
)
4500 gimple stmt
= SSA_NAME_DEF_STMT (base
);
4502 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
4505 code
= gimple_assign_rhs_code (stmt
);
4506 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4509 e1
= gimple_assign_rhs1 (stmt
);
4510 e2
= gimple_assign_rhs2 (stmt
);
4514 code
= TREE_CODE (base
);
4515 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4517 e1
= TREE_OPERAND (base
, 0);
4518 e2
= TREE_OPERAND (base
, 1);
4521 /* TODO: deeper inspection may be necessary to prove the equality. */
4525 return expr_equal_p (e1
, offset
) || expr_equal_p (e2
, offset
);
4526 case POINTER_PLUS_EXPR
:
4527 return expr_equal_p (e2
, offset
);
4534 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
4535 comparison with CAND. NITER describes the number of iterations of
4536 the loops. If successful, the comparison in COMP_P is altered accordingly.
4538 We aim to handle the following situation:
4554 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
4555 We aim to optimize this to
4563 while (p < p_0 - a + b);
4565 This preserves the correctness, since the pointer arithmetics does not
4566 overflow. More precisely:
4568 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
4569 overflow in computing it or the values of p.
4570 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
4571 overflow. To prove this, we use the fact that p_0 = base + a. */
4574 iv_elimination_compare_lt (struct ivopts_data
*data
,
4575 struct iv_cand
*cand
, enum tree_code
*comp_p
,
4576 struct tree_niter_desc
*niter
)
4578 tree cand_type
, a
, b
, mbz
, nit_type
= TREE_TYPE (niter
->niter
), offset
;
4579 struct aff_tree nit
, tmpa
, tmpb
;
4580 enum tree_code comp
;
4583 /* We need to know that the candidate induction variable does not overflow.
4584 While more complex analysis may be used to prove this, for now just
4585 check that the variable appears in the original program and that it
4586 is computed in a type that guarantees no overflows. */
4587 cand_type
= TREE_TYPE (cand
->iv
->base
);
4588 if (cand
->pos
!= IP_ORIGINAL
|| !nowrap_type_p (cand_type
))
4591 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
4592 the calculation of the BOUND could overflow, making the comparison
4594 if (!data
->loop_single_exit_p
)
4597 /* We need to be able to decide whether candidate is increasing or decreasing
4598 in order to choose the right comparison operator. */
4599 if (!cst_and_fits_in_hwi (cand
->iv
->step
))
4601 step
= int_cst_value (cand
->iv
->step
);
4603 /* Check that the number of iterations matches the expected pattern:
4604 a + 1 > b ? 0 : b - a - 1. */
4605 mbz
= niter
->may_be_zero
;
4606 if (TREE_CODE (mbz
) == GT_EXPR
)
4608 /* Handle a + 1 > b. */
4609 tree op0
= TREE_OPERAND (mbz
, 0);
4610 if (TREE_CODE (op0
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op0
, 1)))
4612 a
= TREE_OPERAND (op0
, 0);
4613 b
= TREE_OPERAND (mbz
, 1);
4618 else if (TREE_CODE (mbz
) == LT_EXPR
)
4620 tree op1
= TREE_OPERAND (mbz
, 1);
4622 /* Handle b < a + 1. */
4623 if (TREE_CODE (op1
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op1
, 1)))
4625 a
= TREE_OPERAND (op1
, 0);
4626 b
= TREE_OPERAND (mbz
, 0);
4634 /* Expected number of iterations is B - A - 1. Check that it matches
4635 the actual number, i.e., that B - A - NITER = 1. */
4636 tree_to_aff_combination (niter
->niter
, nit_type
, &nit
);
4637 tree_to_aff_combination (fold_convert (nit_type
, a
), nit_type
, &tmpa
);
4638 tree_to_aff_combination (fold_convert (nit_type
, b
), nit_type
, &tmpb
);
4639 aff_combination_scale (&nit
, double_int_minus_one
);
4640 aff_combination_scale (&tmpa
, double_int_minus_one
);
4641 aff_combination_add (&tmpb
, &tmpa
);
4642 aff_combination_add (&tmpb
, &nit
);
4643 if (tmpb
.n
!= 0 || tmpb
.offset
!= double_int_one
)
4646 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
4648 offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (cand
->iv
->step
),
4650 fold_convert (TREE_TYPE (cand
->iv
->step
), a
));
4651 if (!difference_cannot_overflow_p (cand
->iv
->base
, offset
))
4654 /* Determine the new comparison operator. */
4655 comp
= step
< 0 ? GT_EXPR
: LT_EXPR
;
4656 if (*comp_p
== NE_EXPR
)
4658 else if (*comp_p
== EQ_EXPR
)
4659 *comp_p
= invert_tree_comparison (comp
, false);
4666 /* Check whether it is possible to express the condition in USE by comparison
4667 of candidate CAND. If so, store the value compared with to BOUND, and the
4668 comparison operator to COMP. */
4671 may_eliminate_iv (struct ivopts_data
*data
,
4672 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
,
4673 enum tree_code
*comp
)
4678 struct loop
*loop
= data
->current_loop
;
4680 struct tree_niter_desc
*desc
= NULL
;
4682 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
4685 /* For now works only for exits that dominate the loop latch.
4686 TODO: extend to other conditions inside loop body. */
4687 ex_bb
= gimple_bb (use
->stmt
);
4688 if (use
->stmt
!= last_stmt (ex_bb
)
4689 || gimple_code (use
->stmt
) != GIMPLE_COND
4690 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
4693 exit
= EDGE_SUCC (ex_bb
, 0);
4694 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4695 exit
= EDGE_SUCC (ex_bb
, 1);
4696 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4699 desc
= niter_for_exit (data
, exit
);
4703 /* Determine whether we can use the variable to test the exit condition.
4704 This is the case iff the period of the induction variable is greater
4705 than the number of iterations for which the exit condition is true. */
4706 period
= iv_period (cand
->iv
);
4708 /* If the number of iterations is constant, compare against it directly. */
4709 if (TREE_CODE (desc
->niter
) == INTEGER_CST
)
4711 /* See cand_value_at. */
4712 if (stmt_after_increment (loop
, cand
, use
->stmt
))
4714 if (!tree_int_cst_lt (desc
->niter
, period
))
4719 if (tree_int_cst_lt (period
, desc
->niter
))
4724 /* If not, and if this is the only possible exit of the loop, see whether
4725 we can get a conservative estimate on the number of iterations of the
4726 entire loop and compare against that instead. */
4729 double_int period_value
, max_niter
;
4731 max_niter
= desc
->max
;
4732 if (stmt_after_increment (loop
, cand
, use
->stmt
))
4733 max_niter
+= double_int_one
;
4734 period_value
= tree_to_double_int (period
);
4735 if (max_niter
.ugt (period_value
))
4737 /* See if we can take advantage of inferred loop bound information. */
4738 if (data
->loop_single_exit_p
)
4740 if (!max_loop_iterations (loop
, &max_niter
))
4742 /* The loop bound is already adjusted by adding 1. */
4743 if (max_niter
.ugt (period_value
))
4751 cand_value_at (loop
, cand
, use
->stmt
, desc
->niter
, &bnd
);
4753 *bound
= aff_combination_to_tree (&bnd
);
4754 *comp
= iv_elimination_compare (data
, use
);
4756 /* It is unlikely that computing the number of iterations using division
4757 would be more profitable than keeping the original induction variable. */
4758 if (expression_expensive_p (*bound
))
4761 /* Sometimes, it is possible to handle the situation that the number of
4762 iterations may be zero unless additional assumtions by using <
4763 instead of != in the exit condition.
4765 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
4766 base the exit condition on it. However, that is often too
4768 if (!integer_zerop (desc
->may_be_zero
))
4769 return iv_elimination_compare_lt (data
, cand
, comp
, desc
);
4774 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
4775 be copied, if is is used in the loop body and DATA->body_includes_call. */
4778 parm_decl_cost (struct ivopts_data
*data
, tree bound
)
4780 tree sbound
= bound
;
4781 STRIP_NOPS (sbound
);
4783 if (TREE_CODE (sbound
) == SSA_NAME
4784 && SSA_NAME_IS_DEFAULT_DEF (sbound
)
4785 && TREE_CODE (SSA_NAME_VAR (sbound
)) == PARM_DECL
4786 && data
->body_includes_call
)
4787 return COSTS_N_INSNS (1);
4792 /* Determines cost of basing replacement of USE on CAND in a condition. */
4795 determine_use_iv_cost_condition (struct ivopts_data
*data
,
4796 struct iv_use
*use
, struct iv_cand
*cand
)
4798 tree bound
= NULL_TREE
;
4800 bitmap depends_on_elim
= NULL
, depends_on_express
= NULL
, depends_on
;
4801 comp_cost elim_cost
, express_cost
, cost
, bound_cost
;
4803 int elim_inv_expr_id
= -1, express_inv_expr_id
= -1, inv_expr_id
;
4804 tree
*control_var
, *bound_cst
;
4805 enum tree_code comp
= ERROR_MARK
;
4807 /* Only consider real candidates. */
4810 set_use_iv_cost (data
, use
, cand
, infinite_cost
, NULL
, NULL_TREE
,
4815 /* Try iv elimination. */
4816 if (may_eliminate_iv (data
, use
, cand
, &bound
, &comp
))
4818 elim_cost
= force_var_cost (data
, bound
, &depends_on_elim
);
4819 if (elim_cost
.cost
== 0)
4820 elim_cost
.cost
= parm_decl_cost (data
, bound
);
4821 else if (TREE_CODE (bound
) == INTEGER_CST
)
4823 /* If we replace a loop condition 'i < n' with 'p < base + n',
4824 depends_on_elim will have 'base' and 'n' set, which implies
4825 that both 'base' and 'n' will be live during the loop. More likely,
4826 'base + n' will be loop invariant, resulting in only one live value
4827 during the loop. So in that case we clear depends_on_elim and set
4828 elim_inv_expr_id instead. */
4829 if (depends_on_elim
&& bitmap_count_bits (depends_on_elim
) > 1)
4831 elim_inv_expr_id
= get_expr_id (data
, bound
);
4832 bitmap_clear (depends_on_elim
);
4834 /* The bound is a loop invariant, so it will be only computed
4836 elim_cost
.cost
= adjust_setup_cost (data
, elim_cost
.cost
);
4839 elim_cost
= infinite_cost
;
4841 /* Try expressing the original giv. If it is compared with an invariant,
4842 note that we cannot get rid of it. */
4843 ok
= extract_cond_operands (data
, use
->stmt
, &control_var
, &bound_cst
,
4847 /* When the condition is a comparison of the candidate IV against
4848 zero, prefer this IV.
4850 TODO: The constant that we're subtracting from the cost should
4851 be target-dependent. This information should be added to the
4852 target costs for each backend. */
4853 if (!infinite_cost_p (elim_cost
) /* Do not try to decrease infinite! */
4854 && integer_zerop (*bound_cst
)
4855 && (operand_equal_p (*control_var
, cand
->var_after
, 0)
4856 || operand_equal_p (*control_var
, cand
->var_before
, 0)))
4857 elim_cost
.cost
-= 1;
4859 express_cost
= get_computation_cost (data
, use
, cand
, false,
4860 &depends_on_express
, NULL
,
4861 &express_inv_expr_id
);
4862 fd_ivopts_data
= data
;
4863 walk_tree (&cmp_iv
->base
, find_depends
, &depends_on_express
, NULL
);
4865 /* Count the cost of the original bound as well. */
4866 bound_cost
= force_var_cost (data
, *bound_cst
, NULL
);
4867 if (bound_cost
.cost
== 0)
4868 bound_cost
.cost
= parm_decl_cost (data
, *bound_cst
);
4869 else if (TREE_CODE (*bound_cst
) == INTEGER_CST
)
4870 bound_cost
.cost
= 0;
4871 express_cost
.cost
+= bound_cost
.cost
;
4873 /* Choose the better approach, preferring the eliminated IV. */
4874 if (compare_costs (elim_cost
, express_cost
) <= 0)
4877 depends_on
= depends_on_elim
;
4878 depends_on_elim
= NULL
;
4879 inv_expr_id
= elim_inv_expr_id
;
4883 cost
= express_cost
;
4884 depends_on
= depends_on_express
;
4885 depends_on_express
= NULL
;
4888 inv_expr_id
= express_inv_expr_id
;
4891 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, bound
, comp
, inv_expr_id
);
4893 if (depends_on_elim
)
4894 BITMAP_FREE (depends_on_elim
);
4895 if (depends_on_express
)
4896 BITMAP_FREE (depends_on_express
);
4898 return !infinite_cost_p (cost
);
4901 /* Determines cost of basing replacement of USE on CAND. Returns false
4902 if USE cannot be based on CAND. */
4905 determine_use_iv_cost (struct ivopts_data
*data
,
4906 struct iv_use
*use
, struct iv_cand
*cand
)
4910 case USE_NONLINEAR_EXPR
:
4911 return determine_use_iv_cost_generic (data
, use
, cand
);
4914 return determine_use_iv_cost_address (data
, use
, cand
);
4917 return determine_use_iv_cost_condition (data
, use
, cand
);
4924 /* Return true if get_computation_cost indicates that autoincrement is
4925 a possibility for the pair of USE and CAND, false otherwise. */
4928 autoinc_possible_for_pair (struct ivopts_data
*data
, struct iv_use
*use
,
4929 struct iv_cand
*cand
)
4935 if (use
->type
!= USE_ADDRESS
)
4938 cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
4939 &can_autoinc
, NULL
);
4941 BITMAP_FREE (depends_on
);
4943 return !infinite_cost_p (cost
) && can_autoinc
;
4946 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
4947 use that allows autoincrement, and set their AINC_USE if possible. */
4950 set_autoinc_for_original_candidates (struct ivopts_data
*data
)
4954 for (i
= 0; i
< n_iv_cands (data
); i
++)
4956 struct iv_cand
*cand
= iv_cand (data
, i
);
4957 struct iv_use
*closest_before
= NULL
;
4958 struct iv_use
*closest_after
= NULL
;
4959 if (cand
->pos
!= IP_ORIGINAL
)
4962 for (j
= 0; j
< n_iv_uses (data
); j
++)
4964 struct iv_use
*use
= iv_use (data
, j
);
4965 unsigned uid
= gimple_uid (use
->stmt
);
4967 if (gimple_bb (use
->stmt
) != gimple_bb (cand
->incremented_at
))
4970 if (uid
< gimple_uid (cand
->incremented_at
)
4971 && (closest_before
== NULL
4972 || uid
> gimple_uid (closest_before
->stmt
)))
4973 closest_before
= use
;
4975 if (uid
> gimple_uid (cand
->incremented_at
)
4976 && (closest_after
== NULL
4977 || uid
< gimple_uid (closest_after
->stmt
)))
4978 closest_after
= use
;
4981 if (closest_before
!= NULL
4982 && autoinc_possible_for_pair (data
, closest_before
, cand
))
4983 cand
->ainc_use
= closest_before
;
4984 else if (closest_after
!= NULL
4985 && autoinc_possible_for_pair (data
, closest_after
, cand
))
4986 cand
->ainc_use
= closest_after
;
4990 /* Finds the candidates for the induction variables. */
4993 find_iv_candidates (struct ivopts_data
*data
)
4995 /* Add commonly used ivs. */
4996 add_standard_iv_candidates (data
);
4998 /* Add old induction variables. */
4999 add_old_ivs_candidates (data
);
5001 /* Add induction variables derived from uses. */
5002 add_derived_ivs_candidates (data
);
5004 set_autoinc_for_original_candidates (data
);
5006 /* Record the important candidates. */
5007 record_important_candidates (data
);
5010 /* Determines costs of basing the use of the iv on an iv candidate. */
5013 determine_use_iv_costs (struct ivopts_data
*data
)
5017 struct iv_cand
*cand
;
5018 bitmap to_clear
= BITMAP_ALLOC (NULL
);
5020 alloc_use_cost_map (data
);
5022 for (i
= 0; i
< n_iv_uses (data
); i
++)
5024 use
= iv_use (data
, i
);
5026 if (data
->consider_all_candidates
)
5028 for (j
= 0; j
< n_iv_cands (data
); j
++)
5030 cand
= iv_cand (data
, j
);
5031 determine_use_iv_cost (data
, use
, cand
);
5038 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, j
, bi
)
5040 cand
= iv_cand (data
, j
);
5041 if (!determine_use_iv_cost (data
, use
, cand
))
5042 bitmap_set_bit (to_clear
, j
);
5045 /* Remove the candidates for that the cost is infinite from
5046 the list of related candidates. */
5047 bitmap_and_compl_into (use
->related_cands
, to_clear
);
5048 bitmap_clear (to_clear
);
5052 BITMAP_FREE (to_clear
);
5054 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5056 fprintf (dump_file
, "Use-candidate costs:\n");
5058 for (i
= 0; i
< n_iv_uses (data
); i
++)
5060 use
= iv_use (data
, i
);
5062 fprintf (dump_file
, "Use %d:\n", i
);
5063 fprintf (dump_file
, " cand\tcost\tcompl.\tdepends on\n");
5064 for (j
= 0; j
< use
->n_map_members
; j
++)
5066 if (!use
->cost_map
[j
].cand
5067 || infinite_cost_p (use
->cost_map
[j
].cost
))
5070 fprintf (dump_file
, " %d\t%d\t%d\t",
5071 use
->cost_map
[j
].cand
->id
,
5072 use
->cost_map
[j
].cost
.cost
,
5073 use
->cost_map
[j
].cost
.complexity
);
5074 if (use
->cost_map
[j
].depends_on
)
5075 bitmap_print (dump_file
,
5076 use
->cost_map
[j
].depends_on
, "","");
5077 if (use
->cost_map
[j
].inv_expr_id
!= -1)
5078 fprintf (dump_file
, " inv_expr:%d", use
->cost_map
[j
].inv_expr_id
);
5079 fprintf (dump_file
, "\n");
5082 fprintf (dump_file
, "\n");
5084 fprintf (dump_file
, "\n");
5088 /* Determines cost of the candidate CAND. */
5091 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
5093 comp_cost cost_base
;
5094 unsigned cost
, cost_step
;
5103 /* There are two costs associated with the candidate -- its increment
5104 and its initialization. The second is almost negligible for any loop
5105 that rolls enough, so we take it just very little into account. */
5107 base
= cand
->iv
->base
;
5108 cost_base
= force_var_cost (data
, base
, NULL
);
5109 /* It will be exceptional that the iv register happens to be initialized with
5110 the proper value at no cost. In general, there will at least be a regcopy
5112 if (cost_base
.cost
== 0)
5113 cost_base
.cost
= COSTS_N_INSNS (1);
5114 cost_step
= add_cost (data
->speed
, TYPE_MODE (TREE_TYPE (base
)));
5116 cost
= cost_step
+ adjust_setup_cost (data
, cost_base
.cost
);
5118 /* Prefer the original ivs unless we may gain something by replacing it.
5119 The reason is to make debugging simpler; so this is not relevant for
5120 artificial ivs created by other optimization passes. */
5121 if (cand
->pos
!= IP_ORIGINAL
5122 || !SSA_NAME_VAR (cand
->var_before
)
5123 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
5126 /* Prefer not to insert statements into latch unless there are some
5127 already (so that we do not create unnecessary jumps). */
5128 if (cand
->pos
== IP_END
5129 && empty_block_p (ip_end_pos (data
->current_loop
)))
5133 cand
->cost_step
= cost_step
;
5136 /* Determines costs of computation of the candidates. */
5139 determine_iv_costs (struct ivopts_data
*data
)
5143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5145 fprintf (dump_file
, "Candidate costs:\n");
5146 fprintf (dump_file
, " cand\tcost\n");
5149 for (i
= 0; i
< n_iv_cands (data
); i
++)
5151 struct iv_cand
*cand
= iv_cand (data
, i
);
5153 determine_iv_cost (data
, cand
);
5155 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5156 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
5159 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5160 fprintf (dump_file
, "\n");
5163 /* Calculates cost for having SIZE induction variables. */
5166 ivopts_global_cost_for_size (struct ivopts_data
*data
, unsigned size
)
5168 /* We add size to the cost, so that we prefer eliminating ivs
5170 return size
+ estimate_reg_pressure_cost (size
, data
->regs_used
, data
->speed
,
5171 data
->body_includes_call
);
5174 /* For each size of the induction variable set determine the penalty. */
5177 determine_set_costs (struct ivopts_data
*data
)
5181 gimple_stmt_iterator psi
;
5183 struct loop
*loop
= data
->current_loop
;
5186 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5188 fprintf (dump_file
, "Global costs:\n");
5189 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
5190 fprintf (dump_file
, " target_clobbered_regs %d\n", target_clobbered_regs
);
5191 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
5192 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
5196 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
5198 phi
= gsi_stmt (psi
);
5199 op
= PHI_RESULT (phi
);
5201 if (virtual_operand_p (op
))
5204 if (get_iv (data
, op
))
5210 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
5212 struct version_info
*info
= ver_info (data
, j
);
5214 if (info
->inv_id
&& info
->has_nonlin_use
)
5218 data
->regs_used
= n
;
5219 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5220 fprintf (dump_file
, " regs_used %d\n", n
);
5222 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5224 fprintf (dump_file
, " cost for size:\n");
5225 fprintf (dump_file
, " ivs\tcost\n");
5226 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
5227 fprintf (dump_file
, " %d\t%d\n", j
,
5228 ivopts_global_cost_for_size (data
, j
));
5229 fprintf (dump_file
, "\n");
5233 /* Returns true if A is a cheaper cost pair than B. */
5236 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
5246 cmp
= compare_costs (a
->cost
, b
->cost
);
5253 /* In case the costs are the same, prefer the cheaper candidate. */
5254 if (a
->cand
->cost
< b
->cand
->cost
)
5261 /* Returns candidate by that USE is expressed in IVS. */
5263 static struct cost_pair
*
5264 iv_ca_cand_for_use (struct iv_ca
*ivs
, struct iv_use
*use
)
5266 return ivs
->cand_for_use
[use
->id
];
5269 /* Computes the cost field of IVS structure. */
5272 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
5274 comp_cost cost
= ivs
->cand_use_cost
;
5276 cost
.cost
+= ivs
->cand_cost
;
5278 cost
.cost
+= ivopts_global_cost_for_size (data
,
5279 ivs
->n_regs
+ ivs
->num_used_inv_expr
);
5284 /* Remove invariants in set INVS to set IVS. */
5287 iv_ca_set_remove_invariants (struct iv_ca
*ivs
, bitmap invs
)
5295 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5297 ivs
->n_invariant_uses
[iid
]--;
5298 if (ivs
->n_invariant_uses
[iid
] == 0)
5303 /* Set USE not to be expressed by any candidate in IVS. */
5306 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5309 unsigned uid
= use
->id
, cid
;
5310 struct cost_pair
*cp
;
5312 cp
= ivs
->cand_for_use
[uid
];
5318 ivs
->cand_for_use
[uid
] = NULL
;
5319 ivs
->n_cand_uses
[cid
]--;
5321 if (ivs
->n_cand_uses
[cid
] == 0)
5323 bitmap_clear_bit (ivs
->cands
, cid
);
5324 /* Do not count the pseudocandidates. */
5328 ivs
->cand_cost
-= cp
->cand
->cost
;
5330 iv_ca_set_remove_invariants (ivs
, cp
->cand
->depends_on
);
5333 ivs
->cand_use_cost
= sub_costs (ivs
->cand_use_cost
, cp
->cost
);
5335 iv_ca_set_remove_invariants (ivs
, cp
->depends_on
);
5337 if (cp
->inv_expr_id
!= -1)
5339 ivs
->used_inv_expr
[cp
->inv_expr_id
]--;
5340 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 0)
5341 ivs
->num_used_inv_expr
--;
5343 iv_ca_recount_cost (data
, ivs
);
5346 /* Add invariants in set INVS to set IVS. */
5349 iv_ca_set_add_invariants (struct iv_ca
*ivs
, bitmap invs
)
5357 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5359 ivs
->n_invariant_uses
[iid
]++;
5360 if (ivs
->n_invariant_uses
[iid
] == 1)
5365 /* Set cost pair for USE in set IVS to CP. */
5368 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5369 struct iv_use
*use
, struct cost_pair
*cp
)
5371 unsigned uid
= use
->id
, cid
;
5373 if (ivs
->cand_for_use
[uid
] == cp
)
5376 if (ivs
->cand_for_use
[uid
])
5377 iv_ca_set_no_cp (data
, ivs
, use
);
5384 ivs
->cand_for_use
[uid
] = cp
;
5385 ivs
->n_cand_uses
[cid
]++;
5386 if (ivs
->n_cand_uses
[cid
] == 1)
5388 bitmap_set_bit (ivs
->cands
, cid
);
5389 /* Do not count the pseudocandidates. */
5393 ivs
->cand_cost
+= cp
->cand
->cost
;
5395 iv_ca_set_add_invariants (ivs
, cp
->cand
->depends_on
);
5398 ivs
->cand_use_cost
= add_costs (ivs
->cand_use_cost
, cp
->cost
);
5399 iv_ca_set_add_invariants (ivs
, cp
->depends_on
);
5401 if (cp
->inv_expr_id
!= -1)
5403 ivs
->used_inv_expr
[cp
->inv_expr_id
]++;
5404 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 1)
5405 ivs
->num_used_inv_expr
++;
5407 iv_ca_recount_cost (data
, ivs
);
5411 /* Extend set IVS by expressing USE by some of the candidates in it
5412 if possible. All important candidates will be considered
5413 if IMPORTANT_CANDIDATES is true. */
5416 iv_ca_add_use (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5417 struct iv_use
*use
, bool important_candidates
)
5419 struct cost_pair
*best_cp
= NULL
, *cp
;
5424 gcc_assert (ivs
->upto
>= use
->id
);
5426 if (ivs
->upto
== use
->id
)
5432 cands
= (important_candidates
? data
->important_candidates
: ivs
->cands
);
5433 EXECUTE_IF_SET_IN_BITMAP (cands
, 0, i
, bi
)
5435 struct iv_cand
*cand
= iv_cand (data
, i
);
5437 cp
= get_use_iv_cost (data
, use
, cand
);
5439 if (cheaper_cost_pair (cp
, best_cp
))
5443 iv_ca_set_cp (data
, ivs
, use
, best_cp
);
5446 /* Get cost for assignment IVS. */
5449 iv_ca_cost (struct iv_ca
*ivs
)
5451 /* This was a conditional expression but it triggered a bug in
5454 return infinite_cost
;
5459 /* Returns true if all dependences of CP are among invariants in IVS. */
5462 iv_ca_has_deps (struct iv_ca
*ivs
, struct cost_pair
*cp
)
5467 if (!cp
->depends_on
)
5470 EXECUTE_IF_SET_IN_BITMAP (cp
->depends_on
, 0, i
, bi
)
5472 if (ivs
->n_invariant_uses
[i
] == 0)
5479 /* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
5480 it before NEXT_CHANGE. */
5482 static struct iv_ca_delta
*
5483 iv_ca_delta_add (struct iv_use
*use
, struct cost_pair
*old_cp
,
5484 struct cost_pair
*new_cp
, struct iv_ca_delta
*next_change
)
5486 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
5489 change
->old_cp
= old_cp
;
5490 change
->new_cp
= new_cp
;
5491 change
->next_change
= next_change
;
5496 /* Joins two lists of changes L1 and L2. Destructive -- old lists
5499 static struct iv_ca_delta
*
5500 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
5502 struct iv_ca_delta
*last
;
5510 for (last
= l1
; last
->next_change
; last
= last
->next_change
)
5512 last
->next_change
= l2
;
5517 /* Reverse the list of changes DELTA, forming the inverse to it. */
5519 static struct iv_ca_delta
*
5520 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
5522 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
5523 struct cost_pair
*tmp
;
5525 for (act
= delta
; act
; act
= next
)
5527 next
= act
->next_change
;
5528 act
->next_change
= prev
;
5532 act
->old_cp
= act
->new_cp
;
5539 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
5540 reverted instead. */
5543 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5544 struct iv_ca_delta
*delta
, bool forward
)
5546 struct cost_pair
*from
, *to
;
5547 struct iv_ca_delta
*act
;
5550 delta
= iv_ca_delta_reverse (delta
);
5552 for (act
= delta
; act
; act
= act
->next_change
)
5556 gcc_assert (iv_ca_cand_for_use (ivs
, act
->use
) == from
);
5557 iv_ca_set_cp (data
, ivs
, act
->use
, to
);
5561 iv_ca_delta_reverse (delta
);
5564 /* Returns true if CAND is used in IVS. */
5567 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
5569 return ivs
->n_cand_uses
[cand
->id
] > 0;
5572 /* Returns number of induction variable candidates in the set IVS. */
5575 iv_ca_n_cands (struct iv_ca
*ivs
)
5577 return ivs
->n_cands
;
5580 /* Free the list of changes DELTA. */
5583 iv_ca_delta_free (struct iv_ca_delta
**delta
)
5585 struct iv_ca_delta
*act
, *next
;
5587 for (act
= *delta
; act
; act
= next
)
5589 next
= act
->next_change
;
5596 /* Allocates new iv candidates assignment. */
5598 static struct iv_ca
*
5599 iv_ca_new (struct ivopts_data
*data
)
5601 struct iv_ca
*nw
= XNEW (struct iv_ca
);
5605 nw
->cand_for_use
= XCNEWVEC (struct cost_pair
*, n_iv_uses (data
));
5606 nw
->n_cand_uses
= XCNEWVEC (unsigned, n_iv_cands (data
));
5607 nw
->cands
= BITMAP_ALLOC (NULL
);
5610 nw
->cand_use_cost
= no_cost
;
5612 nw
->n_invariant_uses
= XCNEWVEC (unsigned, data
->max_inv_id
+ 1);
5614 nw
->used_inv_expr
= XCNEWVEC (unsigned, data
->inv_expr_id
+ 1);
5615 nw
->num_used_inv_expr
= 0;
5620 /* Free memory occupied by the set IVS. */
5623 iv_ca_free (struct iv_ca
**ivs
)
5625 free ((*ivs
)->cand_for_use
);
5626 free ((*ivs
)->n_cand_uses
);
5627 BITMAP_FREE ((*ivs
)->cands
);
5628 free ((*ivs
)->n_invariant_uses
);
5629 free ((*ivs
)->used_inv_expr
);
5634 /* Dumps IVS to FILE. */
5637 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
5639 const char *pref
= " invariants ";
5641 comp_cost cost
= iv_ca_cost (ivs
);
5643 fprintf (file
, " cost: %d (complexity %d)\n", cost
.cost
, cost
.complexity
);
5644 fprintf (file
, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
5645 ivs
->cand_cost
, ivs
->cand_use_cost
.cost
, ivs
->cand_use_cost
.complexity
);
5646 bitmap_print (file
, ivs
->cands
, " candidates: ","\n");
5648 for (i
= 0; i
< ivs
->upto
; i
++)
5650 struct iv_use
*use
= iv_use (data
, i
);
5651 struct cost_pair
*cp
= iv_ca_cand_for_use (ivs
, use
);
5653 fprintf (file
, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
5654 use
->id
, cp
->cand
->id
, cp
->cost
.cost
, cp
->cost
.complexity
);
5656 fprintf (file
, " use:%d --> ??\n", use
->id
);
5659 for (i
= 1; i
<= data
->max_inv_id
; i
++)
5660 if (ivs
->n_invariant_uses
[i
])
5662 fprintf (file
, "%s%d", pref
, i
);
5665 fprintf (file
, "\n\n");
5668 /* Try changing candidate in IVS to CAND for each use. Return cost of the
5669 new set, and store differences in DELTA. Number of induction variables
5670 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
5671 the function will try to find a solution with mimimal iv candidates. */
5674 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5675 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
5676 unsigned *n_ivs
, bool min_ncand
)
5681 struct cost_pair
*old_cp
, *new_cp
;
5684 for (i
= 0; i
< ivs
->upto
; i
++)
5686 use
= iv_use (data
, i
);
5687 old_cp
= iv_ca_cand_for_use (ivs
, use
);
5690 && old_cp
->cand
== cand
)
5693 new_cp
= get_use_iv_cost (data
, use
, cand
);
5697 if (!min_ncand
&& !iv_ca_has_deps (ivs
, new_cp
))
5700 if (!min_ncand
&& !cheaper_cost_pair (new_cp
, old_cp
))
5703 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
5706 iv_ca_delta_commit (data
, ivs
, *delta
, true);
5707 cost
= iv_ca_cost (ivs
);
5709 *n_ivs
= iv_ca_n_cands (ivs
);
5710 iv_ca_delta_commit (data
, ivs
, *delta
, false);
5715 /* Try narrowing set IVS by removing CAND. Return the cost of
5716 the new set and store the differences in DELTA. START is
5717 the candidate with which we start narrowing. */
5720 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5721 struct iv_cand
*cand
, struct iv_cand
*start
,
5722 struct iv_ca_delta
**delta
)
5726 struct cost_pair
*old_cp
, *new_cp
, *cp
;
5728 struct iv_cand
*cnd
;
5729 comp_cost cost
, best_cost
, acost
;
5732 for (i
= 0; i
< n_iv_uses (data
); i
++)
5734 use
= iv_use (data
, i
);
5736 old_cp
= iv_ca_cand_for_use (ivs
, use
);
5737 if (old_cp
->cand
!= cand
)
5740 best_cost
= iv_ca_cost (ivs
);
5741 /* Start narrowing with START. */
5742 new_cp
= get_use_iv_cost (data
, use
, start
);
5744 if (data
->consider_all_candidates
)
5746 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
5748 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
5751 cnd
= iv_cand (data
, ci
);
5753 cp
= get_use_iv_cost (data
, use
, cnd
);
5757 iv_ca_set_cp (data
, ivs
, use
, cp
);
5758 acost
= iv_ca_cost (ivs
);
5760 if (compare_costs (acost
, best_cost
) < 0)
5769 EXECUTE_IF_AND_IN_BITMAP (use
->related_cands
, ivs
->cands
, 0, ci
, bi
)
5771 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
5774 cnd
= iv_cand (data
, ci
);
5776 cp
= get_use_iv_cost (data
, use
, cnd
);
5780 iv_ca_set_cp (data
, ivs
, use
, cp
);
5781 acost
= iv_ca_cost (ivs
);
5783 if (compare_costs (acost
, best_cost
) < 0)
5790 /* Restore to old cp for use. */
5791 iv_ca_set_cp (data
, ivs
, use
, old_cp
);
5795 iv_ca_delta_free (delta
);
5796 return infinite_cost
;
5799 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
5802 iv_ca_delta_commit (data
, ivs
, *delta
, true);
5803 cost
= iv_ca_cost (ivs
);
5804 iv_ca_delta_commit (data
, ivs
, *delta
, false);
5809 /* Try optimizing the set of candidates IVS by removing candidates different
5810 from to EXCEPT_CAND from it. Return cost of the new set, and store
5811 differences in DELTA. */
5814 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5815 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
5818 struct iv_ca_delta
*act_delta
, *best_delta
;
5820 comp_cost best_cost
, acost
;
5821 struct iv_cand
*cand
;
5824 best_cost
= iv_ca_cost (ivs
);
5826 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
5828 cand
= iv_cand (data
, i
);
5830 if (cand
== except_cand
)
5833 acost
= iv_ca_narrow (data
, ivs
, cand
, except_cand
, &act_delta
);
5835 if (compare_costs (acost
, best_cost
) < 0)
5838 iv_ca_delta_free (&best_delta
);
5839 best_delta
= act_delta
;
5842 iv_ca_delta_free (&act_delta
);
5851 /* Recurse to possibly remove other unnecessary ivs. */
5852 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
5853 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
5854 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
5855 *delta
= iv_ca_delta_join (best_delta
, *delta
);
5859 /* Tries to extend the sets IVS in the best possible way in order
5860 to express the USE. If ORIGINALP is true, prefer candidates from
5861 the original set of IVs, otherwise favor important candidates not
5862 based on any memory object. */
5865 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5866 struct iv_use
*use
, bool originalp
)
5868 comp_cost best_cost
, act_cost
;
5871 struct iv_cand
*cand
;
5872 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
5873 struct cost_pair
*cp
;
5875 iv_ca_add_use (data
, ivs
, use
, false);
5876 best_cost
= iv_ca_cost (ivs
);
5878 cp
= iv_ca_cand_for_use (ivs
, use
);
5883 iv_ca_add_use (data
, ivs
, use
, true);
5884 best_cost
= iv_ca_cost (ivs
);
5885 cp
= iv_ca_cand_for_use (ivs
, use
);
5889 best_delta
= iv_ca_delta_add (use
, NULL
, cp
, NULL
);
5890 iv_ca_set_no_cp (data
, ivs
, use
);
5893 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
5894 first try important candidates not based on any memory object. Only if
5895 this fails, try the specific ones. Rationale -- in loops with many
5896 variables the best choice often is to use just one generic biv. If we
5897 added here many ivs specific to the uses, the optimization algorithm later
5898 would be likely to get stuck in a local minimum, thus causing us to create
5899 too many ivs. The approach from few ivs to more seems more likely to be
5900 successful -- starting from few ivs, replacing an expensive use by a
5901 specific iv should always be a win. */
5902 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
5904 cand
= iv_cand (data
, i
);
5906 if (originalp
&& cand
->pos
!=IP_ORIGINAL
)
5909 if (!originalp
&& cand
->iv
->base_object
!= NULL_TREE
)
5912 if (iv_ca_cand_used_p (ivs
, cand
))
5915 cp
= get_use_iv_cost (data
, use
, cand
);
5919 iv_ca_set_cp (data
, ivs
, use
, cp
);
5920 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
,
5922 iv_ca_set_no_cp (data
, ivs
, use
);
5923 act_delta
= iv_ca_delta_add (use
, NULL
, cp
, act_delta
);
5925 if (compare_costs (act_cost
, best_cost
) < 0)
5927 best_cost
= act_cost
;
5929 iv_ca_delta_free (&best_delta
);
5930 best_delta
= act_delta
;
5933 iv_ca_delta_free (&act_delta
);
5936 if (infinite_cost_p (best_cost
))
5938 for (i
= 0; i
< use
->n_map_members
; i
++)
5940 cp
= use
->cost_map
+ i
;
5945 /* Already tried this. */
5946 if (cand
->important
)
5948 if (originalp
&& cand
->pos
== IP_ORIGINAL
)
5950 if (!originalp
&& cand
->iv
->base_object
== NULL_TREE
)
5954 if (iv_ca_cand_used_p (ivs
, cand
))
5958 iv_ca_set_cp (data
, ivs
, use
, cp
);
5959 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
, true);
5960 iv_ca_set_no_cp (data
, ivs
, use
);
5961 act_delta
= iv_ca_delta_add (use
, iv_ca_cand_for_use (ivs
, use
),
5964 if (compare_costs (act_cost
, best_cost
) < 0)
5966 best_cost
= act_cost
;
5969 iv_ca_delta_free (&best_delta
);
5970 best_delta
= act_delta
;
5973 iv_ca_delta_free (&act_delta
);
5977 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
5978 iv_ca_delta_free (&best_delta
);
5980 return !infinite_cost_p (best_cost
);
5983 /* Finds an initial assignment of candidates to uses. */
5985 static struct iv_ca
*
5986 get_initial_solution (struct ivopts_data
*data
, bool originalp
)
5988 struct iv_ca
*ivs
= iv_ca_new (data
);
5991 for (i
= 0; i
< n_iv_uses (data
); i
++)
5992 if (!try_add_cand_for (data
, ivs
, iv_use (data
, i
), originalp
))
6001 /* Tries to improve set of induction variables IVS. */
6004 try_improve_iv_set (struct ivopts_data
*data
, struct iv_ca
*ivs
)
6007 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
6008 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
6009 struct iv_cand
*cand
;
6011 /* Try extending the set of induction variables by one. */
6012 for (i
= 0; i
< n_iv_cands (data
); i
++)
6014 cand
= iv_cand (data
, i
);
6016 if (iv_ca_cand_used_p (ivs
, cand
))
6019 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
, false);
6023 /* If we successfully added the candidate and the set is small enough,
6024 try optimizing it by removing other candidates. */
6025 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
6027 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6028 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
6029 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6030 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6033 if (compare_costs (acost
, best_cost
) < 0)
6036 iv_ca_delta_free (&best_delta
);
6037 best_delta
= act_delta
;
6040 iv_ca_delta_free (&act_delta
);
6045 /* Try removing the candidates from the set instead. */
6046 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
6048 /* Nothing more we can do. */
6053 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6054 gcc_assert (compare_costs (best_cost
, iv_ca_cost (ivs
)) == 0);
6055 iv_ca_delta_free (&best_delta
);
6059 /* Attempts to find the optimal set of induction variables. We do simple
6060 greedy heuristic -- we try to replace at most one candidate in the selected
6061 solution and remove the unused ivs while this improves the cost. */
6063 static struct iv_ca
*
6064 find_optimal_iv_set_1 (struct ivopts_data
*data
, bool originalp
)
6068 /* Get the initial solution. */
6069 set
= get_initial_solution (data
, originalp
);
6072 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6073 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
6077 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6079 fprintf (dump_file
, "Initial set of candidates:\n");
6080 iv_ca_dump (data
, dump_file
, set
);
6083 while (try_improve_iv_set (data
, set
))
6085 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6087 fprintf (dump_file
, "Improved to:\n");
6088 iv_ca_dump (data
, dump_file
, set
);
6095 static struct iv_ca
*
6096 find_optimal_iv_set (struct ivopts_data
*data
)
6099 struct iv_ca
*set
, *origset
;
6101 comp_cost cost
, origcost
;
6103 /* Determine the cost based on a strategy that starts with original IVs,
6104 and try again using a strategy that prefers candidates not based
6106 origset
= find_optimal_iv_set_1 (data
, true);
6107 set
= find_optimal_iv_set_1 (data
, false);
6109 if (!origset
&& !set
)
6112 origcost
= origset
? iv_ca_cost (origset
) : infinite_cost
;
6113 cost
= set
? iv_ca_cost (set
) : infinite_cost
;
6115 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6117 fprintf (dump_file
, "Original cost %d (complexity %d)\n\n",
6118 origcost
.cost
, origcost
.complexity
);
6119 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n",
6120 cost
.cost
, cost
.complexity
);
6123 /* Choose the one with the best cost. */
6124 if (compare_costs (origcost
, cost
) <= 0)
6131 iv_ca_free (&origset
);
6133 for (i
= 0; i
< n_iv_uses (data
); i
++)
6135 use
= iv_use (data
, i
);
6136 use
->selected
= iv_ca_cand_for_use (set
, use
)->cand
;
6142 /* Creates a new induction variable corresponding to CAND. */
6145 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
6147 gimple_stmt_iterator incr_pos
;
6157 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
6161 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
6169 incr_pos
= gsi_for_stmt (cand
->incremented_at
);
6173 /* Mark that the iv is preserved. */
6174 name_info (data
, cand
->var_before
)->preserve_biv
= true;
6175 name_info (data
, cand
->var_after
)->preserve_biv
= true;
6177 /* Rewrite the increment so that it uses var_before directly. */
6178 find_interesting_uses_op (data
, cand
->var_after
)->selected
= cand
;
6182 gimple_add_tmp_var (cand
->var_before
);
6184 base
= unshare_expr (cand
->iv
->base
);
6186 create_iv (base
, unshare_expr (cand
->iv
->step
),
6187 cand
->var_before
, data
->current_loop
,
6188 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
6191 /* Creates new induction variables described in SET. */
6194 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
6197 struct iv_cand
*cand
;
6200 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6202 cand
= iv_cand (data
, i
);
6203 create_new_iv (data
, cand
);
6206 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6208 fprintf (dump_file
, "\nSelected IV set: \n");
6209 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6211 cand
= iv_cand (data
, i
);
6212 dump_cand (dump_file
, cand
);
6214 fprintf (dump_file
, "\n");
6218 /* Rewrites USE (definition of iv used in a nonlinear expression)
6219 using candidate CAND. */
6222 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
6223 struct iv_use
*use
, struct iv_cand
*cand
)
6228 gimple_stmt_iterator bsi
;
6230 /* An important special case -- if we are asked to express value of
6231 the original iv by itself, just exit; there is no need to
6232 introduce a new computation (that might also need casting the
6233 variable to unsigned and back). */
6234 if (cand
->pos
== IP_ORIGINAL
6235 && cand
->incremented_at
== use
->stmt
)
6237 enum tree_code stmt_code
;
6239 gcc_assert (is_gimple_assign (use
->stmt
));
6240 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
6242 /* Check whether we may leave the computation unchanged.
6243 This is the case only if it does not rely on other
6244 computations in the loop -- otherwise, the computation
6245 we rely upon may be removed in remove_unused_ivs,
6246 thus leading to ICE. */
6247 stmt_code
= gimple_assign_rhs_code (use
->stmt
);
6248 if (stmt_code
== PLUS_EXPR
6249 || stmt_code
== MINUS_EXPR
6250 || stmt_code
== POINTER_PLUS_EXPR
)
6252 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
6253 op
= gimple_assign_rhs2 (use
->stmt
);
6254 else if (gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
6255 op
= gimple_assign_rhs1 (use
->stmt
);
6262 if (op
&& expr_invariant_in_loop_p (data
->current_loop
, op
))
6266 comp
= get_computation (data
->current_loop
, use
, cand
);
6267 gcc_assert (comp
!= NULL_TREE
);
6269 switch (gimple_code (use
->stmt
))
6272 tgt
= PHI_RESULT (use
->stmt
);
6274 /* If we should keep the biv, do not replace it. */
6275 if (name_info (data
, tgt
)->preserve_biv
)
6278 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
6282 tgt
= gimple_assign_lhs (use
->stmt
);
6283 bsi
= gsi_for_stmt (use
->stmt
);
6290 if (!valid_gimple_rhs_p (comp
)
6291 || (gimple_code (use
->stmt
) != GIMPLE_PHI
6292 /* We can't allow re-allocating the stmt as it might be pointed
6294 && (get_gimple_rhs_num_ops (TREE_CODE (comp
))
6295 >= gimple_num_ops (gsi_stmt (bsi
)))))
6297 comp
= force_gimple_operand_gsi (&bsi
, comp
, true, NULL_TREE
,
6298 true, GSI_SAME_STMT
);
6299 if (POINTER_TYPE_P (TREE_TYPE (tgt
)))
6301 duplicate_ssa_name_ptr_info (comp
, SSA_NAME_PTR_INFO (tgt
));
6302 /* As this isn't a plain copy we have to reset alignment
6304 if (SSA_NAME_PTR_INFO (comp
))
6305 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp
));
6309 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
6311 ass
= gimple_build_assign (tgt
, comp
);
6312 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
6314 bsi
= gsi_for_stmt (use
->stmt
);
6315 remove_phi_node (&bsi
, false);
6319 gimple_assign_set_rhs_from_tree (&bsi
, comp
);
6320 use
->stmt
= gsi_stmt (bsi
);
6324 /* Performs a peephole optimization to reorder the iv update statement with
6325 a mem ref to enable instruction combining in later phases. The mem ref uses
6326 the iv value before the update, so the reordering transformation requires
6327 adjustment of the offset. CAND is the selected IV_CAND.
6331 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
6339 directly propagating t over to (1) will introduce overlapping live range
6340 thus increase register pressure. This peephole transform it into:
6344 t = MEM_REF (base, iv2, 8, 8);
6351 adjust_iv_update_pos (struct iv_cand
*cand
, struct iv_use
*use
)
6354 gimple iv_update
, stmt
;
6356 gimple_stmt_iterator gsi
, gsi_iv
;
6358 if (cand
->pos
!= IP_NORMAL
)
6361 var_after
= cand
->var_after
;
6362 iv_update
= SSA_NAME_DEF_STMT (var_after
);
6364 bb
= gimple_bb (iv_update
);
6365 gsi
= gsi_last_nondebug_bb (bb
);
6366 stmt
= gsi_stmt (gsi
);
6368 /* Only handle conditional statement for now. */
6369 if (gimple_code (stmt
) != GIMPLE_COND
)
6372 gsi_prev_nondebug (&gsi
);
6373 stmt
= gsi_stmt (gsi
);
6374 if (stmt
!= iv_update
)
6377 gsi_prev_nondebug (&gsi
);
6378 if (gsi_end_p (gsi
))
6381 stmt
= gsi_stmt (gsi
);
6382 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
6385 if (stmt
!= use
->stmt
)
6388 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
6391 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6393 fprintf (dump_file
, "Reordering \n");
6394 print_gimple_stmt (dump_file
, iv_update
, 0, 0);
6395 print_gimple_stmt (dump_file
, use
->stmt
, 0, 0);
6396 fprintf (dump_file
, "\n");
6399 gsi
= gsi_for_stmt (use
->stmt
);
6400 gsi_iv
= gsi_for_stmt (iv_update
);
6401 gsi_move_before (&gsi_iv
, &gsi
);
6403 cand
->pos
= IP_BEFORE_USE
;
6404 cand
->incremented_at
= use
->stmt
;
6407 /* Rewrites USE (address that is an iv) using candidate CAND. */
6410 rewrite_use_address (struct ivopts_data
*data
,
6411 struct iv_use
*use
, struct iv_cand
*cand
)
6414 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6415 tree base_hint
= NULL_TREE
;
6419 adjust_iv_update_pos (cand
, use
);
6420 ok
= get_computation_aff (data
->current_loop
, use
, cand
, use
->stmt
, &aff
);
6422 unshare_aff_combination (&aff
);
6424 /* To avoid undefined overflow problems, all IV candidates use unsigned
6425 integer types. The drawback is that this makes it impossible for
6426 create_mem_ref to distinguish an IV that is based on a memory object
6427 from one that represents simply an offset.
6429 To work around this problem, we pass a hint to create_mem_ref that
6430 indicates which variable (if any) in aff is an IV based on a memory
6431 object. Note that we only consider the candidate. If this is not
6432 based on an object, the base of the reference is in some subexpression
6433 of the use -- but these will use pointer types, so they are recognized
6434 by the create_mem_ref heuristics anyway. */
6435 if (cand
->iv
->base_object
)
6436 base_hint
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6438 iv
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6439 ref
= create_mem_ref (&bsi
, TREE_TYPE (*use
->op_p
), &aff
,
6440 reference_alias_ptr_type (*use
->op_p
),
6441 iv
, base_hint
, data
->speed
);
6442 copy_ref_info (ref
, *use
->op_p
);
6446 /* Rewrites USE (the condition such that one of the arguments is an iv) using
6450 rewrite_use_compare (struct ivopts_data
*data
,
6451 struct iv_use
*use
, struct iv_cand
*cand
)
6453 tree comp
, *var_p
, op
, bound
;
6454 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6455 enum tree_code compare
;
6456 struct cost_pair
*cp
= get_use_iv_cost (data
, use
, cand
);
6462 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6463 tree var_type
= TREE_TYPE (var
);
6466 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6468 fprintf (dump_file
, "Replacing exit test: ");
6469 print_gimple_stmt (dump_file
, use
->stmt
, 0, TDF_SLIM
);
6472 bound
= unshare_expr (fold_convert (var_type
, bound
));
6473 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
6475 gsi_insert_seq_on_edge_immediate (
6476 loop_preheader_edge (data
->current_loop
),
6479 gimple_cond_set_lhs (use
->stmt
, var
);
6480 gimple_cond_set_code (use
->stmt
, compare
);
6481 gimple_cond_set_rhs (use
->stmt
, op
);
6485 /* The induction variable elimination failed; just express the original
6487 comp
= get_computation (data
->current_loop
, use
, cand
);
6488 gcc_assert (comp
!= NULL_TREE
);
6490 ok
= extract_cond_operands (data
, use
->stmt
, &var_p
, NULL
, NULL
, NULL
);
6493 *var_p
= force_gimple_operand_gsi (&bsi
, comp
, true, SSA_NAME_VAR (*var_p
),
6494 true, GSI_SAME_STMT
);
6497 /* Rewrites USE using candidate CAND. */
6500 rewrite_use (struct ivopts_data
*data
, struct iv_use
*use
, struct iv_cand
*cand
)
6504 case USE_NONLINEAR_EXPR
:
6505 rewrite_use_nonlinear_expr (data
, use
, cand
);
6509 rewrite_use_address (data
, use
, cand
);
6513 rewrite_use_compare (data
, use
, cand
);
6520 update_stmt (use
->stmt
);
6523 /* Rewrite the uses using the selected induction variables. */
6526 rewrite_uses (struct ivopts_data
*data
)
6529 struct iv_cand
*cand
;
6532 for (i
= 0; i
< n_iv_uses (data
); i
++)
6534 use
= iv_use (data
, i
);
6535 cand
= use
->selected
;
6538 rewrite_use (data
, use
, cand
);
6542 /* Removes the ivs that are not used after rewriting. */
6545 remove_unused_ivs (struct ivopts_data
*data
)
6549 bitmap toremove
= BITMAP_ALLOC (NULL
);
6551 /* Figure out an order in which to release SSA DEFs so that we don't
6552 release something that we'd have to propagate into a debug stmt
6554 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
6556 struct version_info
*info
;
6558 info
= ver_info (data
, j
);
6560 && !integer_zerop (info
->iv
->step
)
6562 && !info
->iv
->have_use_for
6563 && !info
->preserve_biv
)
6565 bitmap_set_bit (toremove
, SSA_NAME_VERSION (info
->iv
->ssa_name
));
6567 tree def
= info
->iv
->ssa_name
;
6569 if (MAY_HAVE_DEBUG_STMTS
&& SSA_NAME_DEF_STMT (def
))
6571 imm_use_iterator imm_iter
;
6572 use_operand_p use_p
;
6576 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
6578 if (!gimple_debug_bind_p (stmt
))
6581 /* We just want to determine whether to do nothing
6582 (count == 0), to substitute the computed
6583 expression into a single use of the SSA DEF by
6584 itself (count == 1), or to use a debug temp
6585 because the SSA DEF is used multiple times or as
6586 part of a larger expression (count > 1). */
6588 if (gimple_debug_bind_get_value (stmt
) != def
)
6592 BREAK_FROM_IMM_USE_STMT (imm_iter
);
6598 struct iv_use dummy_use
;
6599 struct iv_cand
*best_cand
= NULL
, *cand
;
6600 unsigned i
, best_pref
= 0, cand_pref
;
6602 memset (&dummy_use
, 0, sizeof (dummy_use
));
6603 dummy_use
.iv
= info
->iv
;
6604 for (i
= 0; i
< n_iv_uses (data
) && i
< 64; i
++)
6606 cand
= iv_use (data
, i
)->selected
;
6607 if (cand
== best_cand
)
6609 cand_pref
= operand_equal_p (cand
->iv
->step
,
6613 += TYPE_MODE (TREE_TYPE (cand
->iv
->base
))
6614 == TYPE_MODE (TREE_TYPE (info
->iv
->base
))
6617 += TREE_CODE (cand
->iv
->base
) == INTEGER_CST
6619 if (best_cand
== NULL
|| best_pref
< cand_pref
)
6622 best_pref
= cand_pref
;
6629 tree comp
= get_computation_at (data
->current_loop
,
6630 &dummy_use
, best_cand
,
6631 SSA_NAME_DEF_STMT (def
));
6637 tree vexpr
= make_node (DEBUG_EXPR_DECL
);
6638 DECL_ARTIFICIAL (vexpr
) = 1;
6639 TREE_TYPE (vexpr
) = TREE_TYPE (comp
);
6640 if (SSA_NAME_VAR (def
))
6641 DECL_MODE (vexpr
) = DECL_MODE (SSA_NAME_VAR (def
));
6643 DECL_MODE (vexpr
) = TYPE_MODE (TREE_TYPE (vexpr
));
6644 gimple def_temp
= gimple_build_debug_bind (vexpr
, comp
, NULL
);
6645 gimple_stmt_iterator gsi
;
6647 if (gimple_code (SSA_NAME_DEF_STMT (def
)) == GIMPLE_PHI
)
6648 gsi
= gsi_after_labels (gimple_bb
6649 (SSA_NAME_DEF_STMT (def
)));
6651 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (def
));
6653 gsi_insert_before (&gsi
, def_temp
, GSI_SAME_STMT
);
6657 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
6659 if (!gimple_debug_bind_p (stmt
))
6662 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
6663 SET_USE (use_p
, comp
);
6671 release_defs_bitset (toremove
);
6673 BITMAP_FREE (toremove
);
6676 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
6677 for pointer_map_traverse. */
6680 free_tree_niter_desc (const void *key ATTRIBUTE_UNUSED
, void **value
,
6681 void *data ATTRIBUTE_UNUSED
)
6683 struct tree_niter_desc
*const niter
= (struct tree_niter_desc
*) *value
;
6689 /* Frees data allocated by the optimization of a single loop. */
6692 free_loop_data (struct ivopts_data
*data
)
6700 pointer_map_traverse (data
->niters
, free_tree_niter_desc
, NULL
);
6701 pointer_map_destroy (data
->niters
);
6702 data
->niters
= NULL
;
6705 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
6707 struct version_info
*info
;
6709 info
= ver_info (data
, i
);
6712 info
->has_nonlin_use
= false;
6713 info
->preserve_biv
= false;
6716 bitmap_clear (data
->relevant
);
6717 bitmap_clear (data
->important_candidates
);
6719 for (i
= 0; i
< n_iv_uses (data
); i
++)
6721 struct iv_use
*use
= iv_use (data
, i
);
6724 BITMAP_FREE (use
->related_cands
);
6725 for (j
= 0; j
< use
->n_map_members
; j
++)
6726 if (use
->cost_map
[j
].depends_on
)
6727 BITMAP_FREE (use
->cost_map
[j
].depends_on
);
6728 free (use
->cost_map
);
6731 data
->iv_uses
.truncate (0);
6733 for (i
= 0; i
< n_iv_cands (data
); i
++)
6735 struct iv_cand
*cand
= iv_cand (data
, i
);
6738 if (cand
->depends_on
)
6739 BITMAP_FREE (cand
->depends_on
);
6742 data
->iv_candidates
.truncate (0);
6744 if (data
->version_info_size
< num_ssa_names
)
6746 data
->version_info_size
= 2 * num_ssa_names
;
6747 free (data
->version_info
);
6748 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
6751 data
->max_inv_id
= 0;
6753 FOR_EACH_VEC_ELT (decl_rtl_to_reset
, i
, obj
)
6754 SET_DECL_RTL (obj
, NULL_RTX
);
6756 decl_rtl_to_reset
.truncate (0);
6758 data
->inv_expr_tab
.empty ();
6759 data
->inv_expr_id
= 0;
6762 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
6766 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
6768 free_loop_data (data
);
6769 free (data
->version_info
);
6770 BITMAP_FREE (data
->relevant
);
6771 BITMAP_FREE (data
->important_candidates
);
6773 decl_rtl_to_reset
.release ();
6774 data
->iv_uses
.release ();
6775 data
->iv_candidates
.release ();
6776 data
->inv_expr_tab
.dispose ();
6779 /* Returns true if the loop body BODY includes any function calls. */
6782 loop_body_includes_call (basic_block
*body
, unsigned num_nodes
)
6784 gimple_stmt_iterator gsi
;
6787 for (i
= 0; i
< num_nodes
; i
++)
6788 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
6790 gimple stmt
= gsi_stmt (gsi
);
6791 if (is_gimple_call (stmt
)
6792 && !is_inexpensive_builtin (gimple_call_fndecl (stmt
)))
6798 /* Optimizes the LOOP. Returns true if anything changed. */
6801 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
6803 bool changed
= false;
6804 struct iv_ca
*iv_ca
;
6805 edge exit
= single_dom_exit (loop
);
6808 gcc_assert (!data
->niters
);
6809 data
->current_loop
= loop
;
6810 data
->speed
= optimize_loop_for_speed_p (loop
);
6812 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6814 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
6818 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
6819 exit
->src
->index
, exit
->dest
->index
);
6820 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
6821 fprintf (dump_file
, "\n");
6824 fprintf (dump_file
, "\n");
6827 body
= get_loop_body (loop
);
6828 data
->body_includes_call
= loop_body_includes_call (body
, loop
->num_nodes
);
6829 renumber_gimple_stmt_uids_in_blocks (body
, loop
->num_nodes
);
6832 data
->loop_single_exit_p
= exit
!= NULL
&& loop_only_exit_p (loop
, exit
);
6834 /* For each ssa name determines whether it behaves as an induction variable
6836 if (!find_induction_variables (data
))
6839 /* Finds interesting uses (item 1). */
6840 find_interesting_uses (data
);
6841 if (n_iv_uses (data
) > MAX_CONSIDERED_USES
)
6844 /* Finds candidates for the induction variables (item 2). */
6845 find_iv_candidates (data
);
6847 /* Calculates the costs (item 3, part 1). */
6848 determine_iv_costs (data
);
6849 determine_use_iv_costs (data
);
6850 determine_set_costs (data
);
6852 /* Find the optimal set of induction variables (item 3, part 2). */
6853 iv_ca
= find_optimal_iv_set (data
);
6858 /* Create the new induction variables (item 4, part 1). */
6859 create_new_ivs (data
, iv_ca
);
6860 iv_ca_free (&iv_ca
);
6862 /* Rewrite the uses (item 4, part 2). */
6863 rewrite_uses (data
);
6865 /* Remove the ivs that are unused after rewriting. */
6866 remove_unused_ivs (data
);
6868 /* We have changed the structure of induction variables; it might happen
6869 that definitions in the scev database refer to some of them that were
6874 free_loop_data (data
);
6879 /* Main entry point. Optimizes induction variables in loops. */
6882 tree_ssa_iv_optimize (void)
6885 struct ivopts_data data
;
6887 tree_ssa_iv_optimize_init (&data
);
6889 /* Optimize the loops starting with the innermost ones. */
6890 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
6892 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6893 flow_loop_dump (loop
, dump_file
, NULL
, 1);
6895 tree_ssa_iv_optimize_loop (&data
, loop
);
6898 tree_ssa_iv_optimize_finalize (&data
);