1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Elists
; use Elists
;
29 with Einfo
; use Einfo
;
30 with Exp_Disp
; use Exp_Disp
;
31 with Exp_Util
; use Exp_Util
;
32 with Exp_Ch7
; use Exp_Ch7
;
33 with Exp_Tss
; use Exp_Tss
;
34 with Errout
; use Errout
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Nlists
; use Nlists
;
38 with Nmake
; use Nmake
;
40 with Output
; use Output
;
41 with Restrict
; use Restrict
;
42 with Rident
; use Rident
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch3
; use Sem_Ch3
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Eval
; use Sem_Eval
;
49 with Sem_Type
; use Sem_Type
;
50 with Sem_Util
; use Sem_Util
;
51 with Snames
; use Snames
;
52 with Sinfo
; use Sinfo
;
53 with Targparm
; use Targparm
;
54 with Tbuild
; use Tbuild
;
55 with Uintp
; use Uintp
;
57 package body Sem_Disp
is
59 -----------------------
60 -- Local Subprograms --
61 -----------------------
63 procedure Add_Dispatching_Operation
64 (Tagged_Type
: Entity_Id
;
66 -- Add New_Op in the list of primitive operations of Tagged_Type
68 function Check_Controlling_Type
70 Subp
: Entity_Id
) return Entity_Id
;
71 -- T is the tagged type of a formal parameter or the result of Subp.
72 -- If the subprogram has a controlling parameter or result that matches
73 -- the type, then returns the tagged type of that parameter or result
74 -- (returning the designated tagged type in the case of an access
75 -- parameter); otherwise returns empty.
77 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
;
78 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
79 -- type of S that has the same name of S, a type-conformant profile, an
80 -- original corresponding operation O that is a primitive of a visible
81 -- ancestor of the dispatching type of S and O is visible at the point of
82 -- of declaration of S. If the entity is found the Alias of S is set to the
83 -- original corresponding operation S and its Overridden_Operation is set
84 -- to the found entity; otherwise return Empty.
86 -- This routine does not search for non-hidden primitives since they are
87 -- covered by the normal Ada 2005 rules.
89 -------------------------------
90 -- Add_Dispatching_Operation --
91 -------------------------------
93 procedure Add_Dispatching_Operation
94 (Tagged_Type
: Entity_Id
;
97 List
: constant Elist_Id
:= Primitive_Operations
(Tagged_Type
);
100 -- The dispatching operation may already be on the list, if it is the
101 -- wrapper for an inherited function of a null extension (see Exp_Ch3
102 -- for the construction of function wrappers). The list of primitive
103 -- operations must not contain duplicates.
105 Append_Unique_Elmt
(New_Op
, List
);
106 end Add_Dispatching_Operation
;
108 ---------------------------
109 -- Covers_Some_Interface --
110 ---------------------------
112 function Covers_Some_Interface
(Prim
: Entity_Id
) return Boolean is
113 Tagged_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
118 pragma Assert
(Is_Dispatching_Operation
(Prim
));
120 -- Although this is a dispatching primitive we must check if its
121 -- dispatching type is available because it may be the primitive
122 -- of a private type not defined as tagged in its partial view.
124 if Present
(Tagged_Type
) and then Has_Interfaces
(Tagged_Type
) then
126 -- If the tagged type is frozen then the internal entities associated
127 -- with interfaces are available in the list of primitives of the
128 -- tagged type and can be used to speed up this search.
130 if Is_Frozen
(Tagged_Type
) then
131 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
132 while Present
(Elmt
) loop
135 if Present
(Interface_Alias
(E
))
136 and then Alias
(E
) = Prim
144 -- Otherwise we must collect all the interface primitives and check
145 -- if the Prim will override some interface primitive.
149 Ifaces_List
: Elist_Id
;
150 Iface_Elmt
: Elmt_Id
;
152 Iface_Prim
: Entity_Id
;
155 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
156 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
157 while Present
(Iface_Elmt
) loop
158 Iface
:= Node
(Iface_Elmt
);
160 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
161 while Present
(Elmt
) loop
162 Iface_Prim
:= Node
(Elmt
);
164 if Chars
(Iface
) = Chars
(Prim
)
165 and then Is_Interface_Conformant
166 (Tagged_Type
, Iface_Prim
, Prim
)
174 Next_Elmt
(Iface_Elmt
);
181 end Covers_Some_Interface
;
183 -------------------------------
184 -- Check_Controlling_Formals --
185 -------------------------------
187 procedure Check_Controlling_Formals
192 Ctrl_Type
: Entity_Id
;
195 Formal
:= First_Formal
(Subp
);
196 while Present
(Formal
) loop
197 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
199 if Present
(Ctrl_Type
) then
201 -- When controlling type is concurrent and declared within a
202 -- generic or inside an instance use corresponding record type.
204 if Is_Concurrent_Type
(Ctrl_Type
)
205 and then Present
(Corresponding_Record_Type
(Ctrl_Type
))
207 Ctrl_Type
:= Corresponding_Record_Type
(Ctrl_Type
);
210 if Ctrl_Type
= Typ
then
211 Set_Is_Controlling_Formal
(Formal
);
213 -- Ada 2005 (AI-231): Anonymous access types that are used in
214 -- controlling parameters exclude null because it is necessary
215 -- to read the tag to dispatch, and null has no tag.
217 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
218 Set_Can_Never_Be_Null
(Etype
(Formal
));
219 Set_Is_Known_Non_Null
(Etype
(Formal
));
222 -- Check that the parameter's nominal subtype statically
223 -- matches the first subtype.
225 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
226 if not Subtypes_Statically_Match
227 (Typ
, Designated_Type
(Etype
(Formal
)))
230 ("parameter subtype does not match controlling type",
234 elsif not Subtypes_Statically_Match
(Typ
, Etype
(Formal
)) then
236 ("parameter subtype does not match controlling type",
240 if Present
(Default_Value
(Formal
)) then
242 -- In Ada 2005, access parameters can have defaults
244 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
245 and then Ada_Version
< Ada_2005
248 ("default not allowed for controlling access parameter",
249 Default_Value
(Formal
));
251 elsif not Is_Tag_Indeterminate
(Default_Value
(Formal
)) then
253 ("default expression must be a tag indeterminate" &
254 " function call", Default_Value
(Formal
));
258 elsif Comes_From_Source
(Subp
) then
260 ("operation can be dispatching in only one type", Subp
);
264 Next_Formal
(Formal
);
267 if Ekind_In
(Subp
, E_Function
, E_Generic_Function
) then
268 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Subp
), Subp
);
270 if Present
(Ctrl_Type
) then
271 if Ctrl_Type
= Typ
then
272 Set_Has_Controlling_Result
(Subp
);
274 -- Check that result subtype statically matches first subtype
275 -- (Ada 2005): Subp may have a controlling access result.
277 if Subtypes_Statically_Match
(Typ
, Etype
(Subp
))
278 or else (Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
280 Subtypes_Statically_Match
281 (Typ
, Designated_Type
(Etype
(Subp
))))
287 ("result subtype does not match controlling type", Subp
);
290 elsif Comes_From_Source
(Subp
) then
292 ("operation can be dispatching in only one type", Subp
);
296 end Check_Controlling_Formals
;
298 ----------------------------
299 -- Check_Controlling_Type --
300 ----------------------------
302 function Check_Controlling_Type
304 Subp
: Entity_Id
) return Entity_Id
306 Tagged_Type
: Entity_Id
:= Empty
;
309 if Is_Tagged_Type
(T
) then
310 if Is_First_Subtype
(T
) then
313 Tagged_Type
:= Base_Type
(T
);
316 elsif Ekind
(T
) = E_Anonymous_Access_Type
317 and then Is_Tagged_Type
(Designated_Type
(T
))
319 if Ekind
(Designated_Type
(T
)) /= E_Incomplete_Type
then
320 if Is_First_Subtype
(Designated_Type
(T
)) then
321 Tagged_Type
:= Designated_Type
(T
);
323 Tagged_Type
:= Base_Type
(Designated_Type
(T
));
326 -- Ada 2005: an incomplete type can be tagged. An operation with an
327 -- access parameter of the type is dispatching.
329 elsif Scope
(Designated_Type
(T
)) = Current_Scope
then
330 Tagged_Type
:= Designated_Type
(T
);
332 -- Ada 2005 (AI-50217)
334 elsif From_Limited_With
(Designated_Type
(T
))
335 and then Present
(Non_Limited_View
(Designated_Type
(T
)))
336 and then Scope
(Designated_Type
(T
)) = Scope
(Subp
)
338 if Is_First_Subtype
(Non_Limited_View
(Designated_Type
(T
))) then
339 Tagged_Type
:= Non_Limited_View
(Designated_Type
(T
));
341 Tagged_Type
:= Base_Type
(Non_Limited_View
342 (Designated_Type
(T
)));
347 if No
(Tagged_Type
) or else Is_Class_Wide_Type
(Tagged_Type
) then
350 -- The dispatching type and the primitive operation must be defined in
351 -- the same scope, except in the case of internal operations and formal
352 -- abstract subprograms.
354 elsif ((Scope
(Subp
) = Scope
(Tagged_Type
) or else Is_Internal
(Subp
))
355 and then (not Is_Generic_Type
(Tagged_Type
)
356 or else not Comes_From_Source
(Subp
)))
358 (Is_Formal_Subprogram
(Subp
) and then Is_Abstract_Subprogram
(Subp
))
360 (Nkind
(Parent
(Parent
(Subp
))) = N_Subprogram_Renaming_Declaration
362 Present
(Corresponding_Formal_Spec
(Parent
(Parent
(Subp
))))
364 Is_Abstract_Subprogram
(Subp
))
371 end Check_Controlling_Type
;
373 ----------------------------
374 -- Check_Dispatching_Call --
375 ----------------------------
377 procedure Check_Dispatching_Call
(N
: Node_Id
) is
378 Loc
: constant Source_Ptr
:= Sloc
(N
);
381 Control
: Node_Id
:= Empty
;
383 Subp_Entity
: Entity_Id
;
384 Indeterm_Ancestor_Call
: Boolean := False;
385 Indeterm_Ctrl_Type
: Entity_Id
;
387 Static_Tag
: Node_Id
:= Empty
;
388 -- If a controlling formal has a statically tagged actual, the tag of
389 -- this actual is to be used for any tag-indeterminate actual.
391 procedure Check_Direct_Call
;
392 -- In the case when the controlling actual is a class-wide type whose
393 -- root type's completion is a task or protected type, the call is in
394 -- fact direct. This routine detects the above case and modifies the
397 procedure Check_Dispatching_Context
;
398 -- If the call is tag-indeterminate and the entity being called is
399 -- abstract, verify that the context is a call that will eventually
400 -- provide a tag for dispatching, or has provided one already.
402 -----------------------
403 -- Check_Direct_Call --
404 -----------------------
406 procedure Check_Direct_Call
is
407 Typ
: Entity_Id
:= Etype
(Control
);
409 function Is_User_Defined_Equality
(Id
: Entity_Id
) return Boolean;
410 -- Determine whether an entity denotes a user-defined equality
412 ------------------------------
413 -- Is_User_Defined_Equality --
414 ------------------------------
416 function Is_User_Defined_Equality
(Id
: Entity_Id
) return Boolean is
419 Ekind
(Id
) = E_Function
420 and then Chars
(Id
) = Name_Op_Eq
421 and then Comes_From_Source
(Id
)
423 -- Internally generated equalities have a full type declaration
426 and then Nkind
(Parent
(Id
)) = N_Function_Specification
;
427 end Is_User_Defined_Equality
;
429 -- Start of processing for Check_Direct_Call
432 -- Predefined primitives do not receive wrappers since they are built
433 -- from scratch for the corresponding record of synchronized types.
434 -- Equality is in general predefined, but is excluded from the check
435 -- when it is user-defined.
437 if Is_Predefined_Dispatching_Operation
(Subp_Entity
)
438 and then not Is_User_Defined_Equality
(Subp_Entity
)
443 if Is_Class_Wide_Type
(Typ
) then
444 Typ
:= Root_Type
(Typ
);
447 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
448 Typ
:= Full_View
(Typ
);
451 if Is_Concurrent_Type
(Typ
)
453 Present
(Corresponding_Record_Type
(Typ
))
455 Typ
:= Corresponding_Record_Type
(Typ
);
457 -- The concurrent record's list of primitives should contain a
458 -- wrapper for the entity of the call, retrieve it.
463 Wrapper_Found
: Boolean := False;
466 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
467 while Present
(Prim_Elmt
) loop
468 Prim
:= Node
(Prim_Elmt
);
470 if Is_Primitive_Wrapper
(Prim
)
471 and then Wrapped_Entity
(Prim
) = Subp_Entity
473 Wrapper_Found
:= True;
477 Next_Elmt
(Prim_Elmt
);
480 -- A primitive declared between two views should have a
481 -- corresponding wrapper.
483 pragma Assert
(Wrapper_Found
);
485 -- Modify the call by setting the proper entity
487 Set_Entity
(Name
(N
), Prim
);
490 end Check_Direct_Call
;
492 -------------------------------
493 -- Check_Dispatching_Context --
494 -------------------------------
496 procedure Check_Dispatching_Context
is
497 Subp
: constant Entity_Id
:= Entity
(Name
(N
));
498 Typ
: constant Entity_Id
:= Etype
(Subp
);
501 procedure Abstract_Context_Error
;
502 -- Error for abstract call dispatching on result is not dispatching
504 ----------------------------
505 -- Abstract_Context_Error --
506 ----------------------------
508 procedure Abstract_Context_Error
is
510 if Ekind
(Subp
) = E_Function
then
512 ("call to abstract function must be dispatching", N
);
514 -- This error can occur for a procedure in the case of a call to
515 -- an abstract formal procedure with a statically tagged operand.
519 ("call to abstract procedure must be dispatching",
522 end Abstract_Context_Error
;
524 -- Start of processing for Check_Dispatching_Context
527 if Is_Abstract_Subprogram
(Subp
)
528 and then No
(Controlling_Argument
(N
))
530 if Present
(Alias
(Subp
))
531 and then not Is_Abstract_Subprogram
(Alias
(Subp
))
532 and then No
(DTC_Entity
(Subp
))
534 -- Private overriding of inherited abstract operation, call is
537 Set_Entity
(Name
(N
), Alias
(Subp
));
540 -- An obscure special case: a null procedure may have a class-
541 -- wide pre/postcondition that includes a call to an abstract
542 -- subp. Calls within the expression may not have been rewritten
543 -- as dispatching calls yet, because the null body appears in
544 -- the current declarative part. The expression will be properly
545 -- rewritten/reanalyzed when the postcondition procedure is built.
547 elsif In_Spec_Expression
548 and then Is_Subprogram
(Current_Scope
)
550 Nkind
(Parent
(Current_Scope
)) = N_Procedure_Specification
551 and then Null_Present
(Parent
(Current_Scope
))
556 -- We need to determine whether the context of the call
557 -- provides a tag to make the call dispatching. This requires
558 -- the call to be the actual in an enclosing call, and that
559 -- actual must be controlling. If the call is an operand of
560 -- equality, the other operand must not ve abstract.
562 if not Is_Tagged_Type
(Typ
)
564 (Ekind
(Typ
) = E_Anonymous_Access_Type
565 and then Is_Tagged_Type
(Designated_Type
(Typ
)))
567 Abstract_Context_Error
;
573 if Nkind
(Par
) = N_Parameter_Association
then
577 while Present
(Par
) loop
578 if Nkind_In
(Par
, N_Function_Call
,
579 N_Procedure_Call_Statement
)
580 and then Is_Entity_Name
(Name
(Par
))
587 -- Find formal for which call is the actual.
589 F
:= First_Formal
(Entity
(Name
(Par
)));
590 A
:= First_Actual
(Par
);
591 while Present
(F
) loop
592 if Is_Controlling_Formal
(F
)
593 and then (N
= A
or else Parent
(N
) = A
)
603 ("call to abstract function must be dispatching", N
);
607 -- For equalitiy operators, one of the operands must be
608 -- statically or dynamically tagged.
610 elsif Nkind_In
(Par
, N_Op_Eq
, N_Op_Ne
) then
611 if N
= Right_Opnd
(Par
)
612 and then Is_Tag_Indeterminate
(Left_Opnd
(Par
))
614 Abstract_Context_Error
;
616 elsif N
= Left_Opnd
(Par
)
617 and then Is_Tag_Indeterminate
(Right_Opnd
(Par
))
619 Abstract_Context_Error
;
624 elsif Nkind
(Par
) = N_Assignment_Statement
then
627 elsif Nkind
(Par
) = N_Qualified_Expression
628 or else Nkind
(Par
) = N_Unchecked_Type_Conversion
633 Abstract_Context_Error
;
639 end Check_Dispatching_Context
;
641 -- Start of processing for Check_Dispatching_Call
644 -- Find a controlling argument, if any
646 if Present
(Parameter_Associations
(N
)) then
647 Subp_Entity
:= Entity
(Name
(N
));
649 Actual
:= First_Actual
(N
);
650 Formal
:= First_Formal
(Subp_Entity
);
651 while Present
(Actual
) loop
652 Control
:= Find_Controlling_Arg
(Actual
);
653 exit when Present
(Control
);
655 -- Check for the case where the actual is a tag-indeterminate call
656 -- whose result type is different than the tagged type associated
657 -- with the containing call, but is an ancestor of the type.
659 if Is_Controlling_Formal
(Formal
)
660 and then Is_Tag_Indeterminate
(Actual
)
661 and then Base_Type
(Etype
(Actual
)) /= Base_Type
(Etype
(Formal
))
662 and then Is_Ancestor
(Etype
(Actual
), Etype
(Formal
))
664 Indeterm_Ancestor_Call
:= True;
665 Indeterm_Ctrl_Type
:= Etype
(Formal
);
667 -- If the formal is controlling but the actual is not, the type
668 -- of the actual is statically known, and may be used as the
669 -- controlling tag for some other tag-indeterminate actual.
671 elsif Is_Controlling_Formal
(Formal
)
672 and then Is_Entity_Name
(Actual
)
673 and then Is_Tagged_Type
(Etype
(Actual
))
675 Static_Tag
:= Actual
;
678 Next_Actual
(Actual
);
679 Next_Formal
(Formal
);
682 -- If the call doesn't have a controlling actual but does have an
683 -- indeterminate actual that requires dispatching treatment, then an
684 -- object is needed that will serve as the controlling argument for
685 -- a dispatching call on the indeterminate actual. This can only
686 -- occur in the unusual situation of a default actual given by
687 -- a tag-indeterminate call and where the type of the call is an
688 -- ancestor of the type associated with a containing call to an
689 -- inherited operation (see AI-239).
691 -- Rather than create an object of the tagged type, which would
692 -- be problematic for various reasons (default initialization,
693 -- discriminants), the tag of the containing call's associated
694 -- tagged type is directly used to control the dispatching.
697 and then Indeterm_Ancestor_Call
698 and then No
(Static_Tag
)
701 Make_Attribute_Reference
(Loc
,
702 Prefix
=> New_Occurrence_Of
(Indeterm_Ctrl_Type
, Loc
),
703 Attribute_Name
=> Name_Tag
);
708 if Present
(Control
) then
710 -- Verify that no controlling arguments are statically tagged
713 Write_Str
("Found Dispatching call");
718 Actual
:= First_Actual
(N
);
719 while Present
(Actual
) loop
720 if Actual
/= Control
then
722 if not Is_Controlling_Actual
(Actual
) then
723 null; -- Can be anything
725 elsif Is_Dynamically_Tagged
(Actual
) then
726 null; -- Valid parameter
728 elsif Is_Tag_Indeterminate
(Actual
) then
730 -- The tag is inherited from the enclosing call (the node
731 -- we are currently analyzing). Explicitly expand the
732 -- actual, since the previous call to Expand (from
733 -- Resolve_Call) had no way of knowing about the
734 -- required dispatching.
736 Propagate_Tag
(Control
, Actual
);
740 ("controlling argument is not dynamically tagged",
746 Next_Actual
(Actual
);
749 -- Mark call as a dispatching call
751 Set_Controlling_Argument
(N
, Control
);
752 Check_Restriction
(No_Dispatching_Calls
, N
);
754 -- The dispatching call may need to be converted into a direct
755 -- call in certain cases.
759 -- If there is a statically tagged actual and a tag-indeterminate
760 -- call to a function of the ancestor (such as that provided by a
761 -- default), then treat this as a dispatching call and propagate
762 -- the tag to the tag-indeterminate call(s).
764 elsif Present
(Static_Tag
) and then Indeterm_Ancestor_Call
then
766 Make_Attribute_Reference
(Loc
,
768 New_Occurrence_Of
(Etype
(Static_Tag
), Loc
),
769 Attribute_Name
=> Name_Tag
);
773 Actual
:= First_Actual
(N
);
774 Formal
:= First_Formal
(Subp_Entity
);
775 while Present
(Actual
) loop
776 if Is_Tag_Indeterminate
(Actual
)
777 and then Is_Controlling_Formal
(Formal
)
779 Propagate_Tag
(Control
, Actual
);
782 Next_Actual
(Actual
);
783 Next_Formal
(Formal
);
786 Check_Dispatching_Context
;
789 -- The call is not dispatching, so check that there aren't any
790 -- tag-indeterminate abstract calls left.
792 Actual
:= First_Actual
(N
);
793 while Present
(Actual
) loop
794 if Is_Tag_Indeterminate
(Actual
) then
796 -- Function call case
798 if Nkind
(Original_Node
(Actual
)) = N_Function_Call
then
799 Func
:= Entity
(Name
(Original_Node
(Actual
)));
801 -- If the actual is an attribute then it can't be abstract
802 -- (the only current case of a tag-indeterminate attribute
803 -- is the stream Input attribute).
806 Nkind
(Original_Node
(Actual
)) = N_Attribute_Reference
810 -- Only other possibility is a qualified expression whose
811 -- constituent expression is itself a call.
817 (Expression
(Original_Node
(Actual
)))));
820 if Present
(Func
) and then Is_Abstract_Subprogram
(Func
) then
822 ("call to abstract function must be dispatching", N
);
826 Next_Actual
(Actual
);
829 Check_Dispatching_Context
;
833 -- If dispatching on result, the enclosing call, if any, will
834 -- determine the controlling argument. Otherwise this is the
835 -- primitive operation of the root type.
837 Check_Dispatching_Context
;
839 end Check_Dispatching_Call
;
841 ---------------------------------
842 -- Check_Dispatching_Operation --
843 ---------------------------------
845 procedure Check_Dispatching_Operation
(Subp
, Old_Subp
: Entity_Id
) is
846 Tagged_Type
: Entity_Id
;
847 Has_Dispatching_Parent
: Boolean := False;
848 Body_Is_Last_Primitive
: Boolean := False;
849 Ovr_Subp
: Entity_Id
:= Empty
;
852 if not Ekind_In
(Subp
, E_Procedure
, E_Function
) then
856 Set_Is_Dispatching_Operation
(Subp
, False);
857 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
859 -- Ada 2005 (AI-345): Use the corresponding record (if available).
860 -- Required because primitives of concurrent types are attached
861 -- to the corresponding record (not to the concurrent type).
863 if Ada_Version
>= Ada_2005
864 and then Present
(Tagged_Type
)
865 and then Is_Concurrent_Type
(Tagged_Type
)
866 and then Present
(Corresponding_Record_Type
(Tagged_Type
))
868 Tagged_Type
:= Corresponding_Record_Type
(Tagged_Type
);
871 -- (AI-345): The task body procedure is not a primitive of the tagged
874 if Present
(Tagged_Type
)
875 and then Is_Concurrent_Record_Type
(Tagged_Type
)
876 and then Present
(Corresponding_Concurrent_Type
(Tagged_Type
))
877 and then Is_Task_Type
(Corresponding_Concurrent_Type
(Tagged_Type
))
878 and then Subp
= Get_Task_Body_Procedure
879 (Corresponding_Concurrent_Type
(Tagged_Type
))
884 -- If Subp is derived from a dispatching operation then it should
885 -- always be treated as dispatching. In this case various checks
886 -- below will be bypassed. Makes sure that late declarations for
887 -- inherited private subprograms are treated as dispatching, even
888 -- if the associated tagged type is already frozen.
890 Has_Dispatching_Parent
:=
891 Present
(Alias
(Subp
))
892 and then Is_Dispatching_Operation
(Alias
(Subp
));
894 if No
(Tagged_Type
) then
896 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
897 -- with an abstract interface type unless the interface acts as a
898 -- parent type in a derivation. If the interface type is a formal
899 -- type then the operation is not primitive and therefore legal.
906 E
:= First_Entity
(Subp
);
907 while Present
(E
) loop
909 -- For an access parameter, check designated type
911 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
then
912 Typ
:= Designated_Type
(Etype
(E
));
917 if Comes_From_Source
(Subp
)
918 and then Is_Interface
(Typ
)
919 and then not Is_Class_Wide_Type
(Typ
)
920 and then not Is_Derived_Type
(Typ
)
921 and then not Is_Generic_Type
(Typ
)
922 and then not In_Instance
924 Error_Msg_N
("??declaration of& is too late!", Subp
);
925 Error_Msg_NE
-- CODEFIX??
926 ("\??spec should appear immediately after declaration "
927 & "of & !", Subp
, Typ
);
934 -- In case of functions check also the result type
936 if Ekind
(Subp
) = E_Function
then
937 if Is_Access_Type
(Etype
(Subp
)) then
938 Typ
:= Designated_Type
(Etype
(Subp
));
943 -- The following should be better commented, especially since
944 -- we just added several new conditions here ???
946 if Comes_From_Source
(Subp
)
947 and then Is_Interface
(Typ
)
948 and then not Is_Class_Wide_Type
(Typ
)
949 and then not Is_Derived_Type
(Typ
)
950 and then not Is_Generic_Type
(Typ
)
951 and then not In_Instance
953 Error_Msg_N
("??declaration of& is too late!", Subp
);
955 ("\??spec should appear immediately after declaration "
956 & "of & !", Subp
, Typ
);
963 -- The subprograms build internally after the freezing point (such as
964 -- init procs, interface thunks, type support subprograms, and Offset
965 -- to top functions for accessing interface components in variable
966 -- size tagged types) are not primitives.
968 elsif Is_Frozen
(Tagged_Type
)
969 and then not Comes_From_Source
(Subp
)
970 and then not Has_Dispatching_Parent
972 -- Complete decoration of internally built subprograms that override
973 -- a dispatching primitive. These entities correspond with the
976 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
977 -- to override functions of nonabstract null extensions. These
978 -- primitives were added to the list of primitives of the tagged
979 -- type by Make_Controlling_Function_Wrappers. However, attribute
980 -- Is_Dispatching_Operation must be set to true.
982 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
985 -- 3. Subprograms associated with stream attributes (built by
986 -- New_Stream_Subprogram)
988 if Present
(Old_Subp
)
989 and then Present
(Overridden_Operation
(Subp
))
990 and then Is_Dispatching_Operation
(Old_Subp
)
993 ((Ekind
(Subp
) = E_Function
994 and then Is_Dispatching_Operation
(Old_Subp
)
995 and then Is_Null_Extension
(Base_Type
(Etype
(Subp
))))
997 (Ekind
(Subp
) = E_Procedure
998 and then Is_Dispatching_Operation
(Old_Subp
)
999 and then Present
(Alias
(Old_Subp
))
1000 and then Is_Null_Interface_Primitive
1001 (Ultimate_Alias
(Old_Subp
)))
1002 or else Get_TSS_Name
(Subp
) = TSS_Stream_Read
1003 or else Get_TSS_Name
(Subp
) = TSS_Stream_Write
);
1005 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1006 Override_Dispatching_Operation
(Tagged_Type
, Old_Subp
, Subp
);
1007 Set_Is_Dispatching_Operation
(Subp
);
1012 -- The operation may be a child unit, whose scope is the defining
1013 -- package, but which is not a primitive operation of the type.
1015 elsif Is_Child_Unit
(Subp
) then
1018 -- If the subprogram is not defined in a package spec, the only case
1019 -- where it can be a dispatching op is when it overrides an operation
1020 -- before the freezing point of the type.
1022 elsif ((not Is_Package_Or_Generic_Package
(Scope
(Subp
)))
1023 or else In_Package_Body
(Scope
(Subp
)))
1024 and then not Has_Dispatching_Parent
1026 if not Comes_From_Source
(Subp
)
1027 or else (Present
(Old_Subp
) and then not Is_Frozen
(Tagged_Type
))
1031 -- If the type is already frozen, the overriding is not allowed
1032 -- except when Old_Subp is not a dispatching operation (which can
1033 -- occur when Old_Subp was inherited by an untagged type). However,
1034 -- a body with no previous spec freezes the type *after* its
1035 -- declaration, and therefore is a legal overriding (unless the type
1036 -- has already been frozen). Only the first such body is legal.
1038 elsif Present
(Old_Subp
)
1039 and then Is_Dispatching_Operation
(Old_Subp
)
1041 if Comes_From_Source
(Subp
)
1043 (Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Body
1044 or else Nkind
(Unit_Declaration_Node
(Subp
)) in N_Body_Stub
)
1047 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1048 Decl_Item
: Node_Id
;
1051 -- ??? The checks here for whether the type has been frozen
1052 -- prior to the new body are not complete. It's not simple
1053 -- to check frozenness at this point since the body has
1054 -- already caused the type to be prematurely frozen in
1055 -- Analyze_Declarations, but we're forced to recheck this
1056 -- here because of the odd rule interpretation that allows
1057 -- the overriding if the type wasn't frozen prior to the
1058 -- body. The freezing action should probably be delayed
1059 -- until after the spec is seen, but that's a tricky
1060 -- change to the delicate freezing code.
1062 -- Look at each declaration following the type up until the
1063 -- new subprogram body. If any of the declarations is a body
1064 -- then the type has been frozen already so the overriding
1065 -- primitive is illegal.
1067 Decl_Item
:= Next
(Parent
(Tagged_Type
));
1068 while Present
(Decl_Item
)
1069 and then (Decl_Item
/= Subp_Body
)
1071 if Comes_From_Source
(Decl_Item
)
1072 and then (Nkind
(Decl_Item
) in N_Proper_Body
1073 or else Nkind
(Decl_Item
) in N_Body_Stub
)
1075 Error_Msg_N
("overriding of& is too late!", Subp
);
1077 ("\spec should appear immediately after the type!",
1085 -- If the subprogram doesn't follow in the list of
1086 -- declarations including the type then the type has
1087 -- definitely been frozen already and the body is illegal.
1089 if No
(Decl_Item
) then
1090 Error_Msg_N
("overriding of& is too late!", Subp
);
1092 ("\spec should appear immediately after the type!",
1095 elsif Is_Frozen
(Subp
) then
1097 -- The subprogram body declares a primitive operation.
1098 -- If the subprogram is already frozen, we must update
1099 -- its dispatching information explicitly here. The
1100 -- information is taken from the overridden subprogram.
1101 -- We must also generate a cross-reference entry because
1102 -- references to other primitives were already created
1103 -- when type was frozen.
1105 Body_Is_Last_Primitive
:= True;
1107 if Present
(DTC_Entity
(Old_Subp
)) then
1108 Set_DTC_Entity
(Subp
, DTC_Entity
(Old_Subp
));
1109 Set_DT_Position
(Subp
, DT_Position
(Old_Subp
));
1111 if not Restriction_Active
(No_Dispatching_Calls
) then
1112 if Building_Static_DT
(Tagged_Type
) then
1114 -- If the static dispatch table has not been
1115 -- built then there is nothing else to do now;
1116 -- otherwise we notify that we cannot build the
1117 -- static dispatch table.
1119 if Has_Dispatch_Table
(Tagged_Type
) then
1121 ("overriding of& is too late for building "
1122 & " static dispatch tables!", Subp
);
1124 ("\spec should appear immediately after "
1125 & "the type!", Subp
);
1128 -- No code required to register primitives in VM
1131 elsif VM_Target
/= No_VM
then
1135 Insert_Actions_After
(Subp_Body
,
1136 Register_Primitive
(Sloc
(Subp_Body
),
1140 -- Indicate that this is an overriding operation,
1141 -- and replace the overridden entry in the list of
1142 -- primitive operations, which is used for xref
1143 -- generation subsequently.
1145 Generate_Reference
(Tagged_Type
, Subp
, 'P', False);
1146 Override_Dispatching_Operation
1147 (Tagged_Type
, Old_Subp
, Subp
);
1154 Error_Msg_N
("overriding of& is too late!", Subp
);
1156 ("\subprogram spec should appear immediately after the type!",
1160 -- If the type is not frozen yet and we are not in the overriding
1161 -- case it looks suspiciously like an attempt to define a primitive
1162 -- operation, which requires the declaration to be in a package spec
1163 -- (3.2.3(6)). Only report cases where the type and subprogram are
1164 -- in the same declaration list (by checking the enclosing parent
1165 -- declarations), to avoid spurious warnings on subprograms in
1166 -- instance bodies when the type is declared in the instance spec
1167 -- but hasn't been frozen by the instance body.
1169 elsif not Is_Frozen
(Tagged_Type
)
1170 and then In_Same_List
(Parent
(Tagged_Type
), Parent
(Parent
(Subp
)))
1173 ("??not dispatching (must be defined in a package spec)", Subp
);
1176 -- When the type is frozen, it is legitimate to define a new
1177 -- non-primitive operation.
1183 -- Now, we are sure that the scope is a package spec. If the subprogram
1184 -- is declared after the freezing point of the type that's an error
1186 elsif Is_Frozen
(Tagged_Type
) and then not Has_Dispatching_Parent
then
1187 Error_Msg_N
("this primitive operation is declared too late", Subp
);
1189 ("??no primitive operations for& after this line",
1190 Freeze_Node
(Tagged_Type
),
1195 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1197 Ovr_Subp
:= Old_Subp
;
1199 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1200 -- overridden by Subp. This only applies to source subprograms, and
1201 -- their declaration must carry an explicit overriding indicator.
1204 and then Ada_Version
>= Ada_2012
1205 and then Comes_From_Source
(Subp
)
1207 Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
1209 Ovr_Subp
:= Find_Hidden_Overridden_Primitive
(Subp
);
1211 -- Verify that the proper overriding indicator has been supplied.
1213 if Present
(Ovr_Subp
)
1215 not Must_Override
(Specification
(Unit_Declaration_Node
(Subp
)))
1217 Error_Msg_NE
("missing overriding indicator for&", Subp
, Subp
);
1221 -- Now it should be a correct primitive operation, put it in the list
1223 if Present
(Ovr_Subp
) then
1225 -- If the type has interfaces we complete this check after we set
1226 -- attribute Is_Dispatching_Operation.
1228 Check_Subtype_Conformant
(Subp
, Ovr_Subp
);
1230 if Nam_In
(Chars
(Subp
), Name_Initialize
, Name_Adjust
, Name_Finalize
)
1231 and then Is_Controlled
(Tagged_Type
)
1232 and then not Is_Visibly_Controlled
(Tagged_Type
)
1234 Set_Overridden_Operation
(Subp
, Empty
);
1236 -- If the subprogram specification carries an overriding
1237 -- indicator, no need for the warning: it is either redundant,
1238 -- or else an error will be reported.
1240 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
1242 (Must_Override
(Parent
(Subp
))
1243 or else Must_Not_Override
(Parent
(Subp
)))
1247 -- Here we need the warning
1251 ("operation does not override inherited&??", Subp
, Subp
);
1255 Override_Dispatching_Operation
(Tagged_Type
, Ovr_Subp
, Subp
);
1257 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1258 -- that covers abstract interface subprograms we must register it
1259 -- in all the secondary dispatch tables associated with abstract
1260 -- interfaces. We do this now only if not building static tables,
1261 -- nor when the expander is inactive (we avoid trying to register
1262 -- primitives in semantics-only mode, since the type may not have
1263 -- an associated dispatch table). Otherwise the patch code is
1264 -- emitted after those tables are built, to prevent access before
1265 -- elaboration in gigi.
1267 if Body_Is_Last_Primitive
and then Expander_Active
then
1269 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1274 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
1275 while Present
(Elmt
) loop
1276 Prim
:= Node
(Elmt
);
1278 -- No code required to register primitives in VM targets
1280 if Present
(Alias
(Prim
))
1281 and then Present
(Interface_Alias
(Prim
))
1282 and then Alias
(Prim
) = Subp
1283 and then not Building_Static_DT
(Tagged_Type
)
1284 and then VM_Target
= No_VM
1286 Insert_Actions_After
(Subp_Body
,
1287 Register_Primitive
(Sloc
(Subp_Body
), Prim
=> Prim
));
1293 -- Redisplay the contents of the updated dispatch table
1295 if Debug_Flag_ZZ
then
1296 Write_Str
("Late overriding: ");
1297 Write_DT
(Tagged_Type
);
1303 -- If the tagged type is a concurrent type then we must be compiling
1304 -- with no code generation (we are either compiling a generic unit or
1305 -- compiling under -gnatc mode) because we have previously tested that
1306 -- no serious errors has been reported. In this case we do not add the
1307 -- primitive to the list of primitives of Tagged_Type but we leave the
1308 -- primitive decorated as a dispatching operation to be able to analyze
1309 -- and report errors associated with the Object.Operation notation.
1311 elsif Is_Concurrent_Type
(Tagged_Type
) then
1312 pragma Assert
(not Expander_Active
);
1315 -- If no old subprogram, then we add this as a dispatching operation,
1316 -- but we avoid doing this if an error was posted, to prevent annoying
1319 elsif not Error_Posted
(Subp
) then
1320 Add_Dispatching_Operation
(Tagged_Type
, Subp
);
1323 Set_Is_Dispatching_Operation
(Subp
, True);
1325 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1326 -- subtype conformance against all the interfaces covered by this
1329 if Present
(Ovr_Subp
)
1330 and then Has_Interfaces
(Tagged_Type
)
1333 Ifaces_List
: Elist_Id
;
1334 Iface_Elmt
: Elmt_Id
;
1335 Iface_Prim_Elmt
: Elmt_Id
;
1336 Iface_Prim
: Entity_Id
;
1337 Ret_Typ
: Entity_Id
;
1340 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1342 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1343 while Present
(Iface_Elmt
) loop
1344 if not Is_Ancestor
(Node
(Iface_Elmt
), Tagged_Type
) then
1346 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
1347 while Present
(Iface_Prim_Elmt
) loop
1348 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
1350 if Is_Interface_Conformant
1351 (Tagged_Type
, Iface_Prim
, Subp
)
1353 -- Handle procedures, functions whose return type
1354 -- matches, or functions not returning interfaces
1356 if Ekind
(Subp
) = E_Procedure
1357 or else Etype
(Iface_Prim
) = Etype
(Subp
)
1358 or else not Is_Interface
(Etype
(Iface_Prim
))
1360 Check_Subtype_Conformant
1362 Old_Id
=> Iface_Prim
,
1364 Skip_Controlling_Formals
=> True);
1366 -- Handle functions returning interfaces
1368 elsif Implements_Interface
1369 (Etype
(Subp
), Etype
(Iface_Prim
))
1371 -- Temporarily force both entities to return the
1372 -- same type. Required because Subtype_Conformant
1373 -- does not handle this case.
1375 Ret_Typ
:= Etype
(Iface_Prim
);
1376 Set_Etype
(Iface_Prim
, Etype
(Subp
));
1378 Check_Subtype_Conformant
1380 Old_Id
=> Iface_Prim
,
1382 Skip_Controlling_Formals
=> True);
1384 Set_Etype
(Iface_Prim
, Ret_Typ
);
1388 Next_Elmt
(Iface_Prim_Elmt
);
1392 Next_Elmt
(Iface_Elmt
);
1397 if not Body_Is_Last_Primitive
then
1398 Set_DT_Position
(Subp
, No_Uint
);
1400 elsif Has_Controlled_Component
(Tagged_Type
)
1401 and then Nam_In
(Chars
(Subp
), Name_Initialize
,
1404 Name_Finalize_Address
)
1407 F_Node
: constant Node_Id
:= Freeze_Node
(Tagged_Type
);
1411 Old_Spec
: Entity_Id
;
1413 C_Names
: constant array (1 .. 4) of Name_Id
:=
1417 Name_Finalize_Address
);
1419 D_Names
: constant array (1 .. 4) of TSS_Name_Type
:=
1420 (TSS_Deep_Initialize
,
1423 TSS_Finalize_Address
);
1426 -- Remove previous controlled function which was constructed and
1427 -- analyzed when the type was frozen. This requires removing the
1428 -- body of the redefined primitive, as well as its specification
1429 -- if needed (there is no spec created for Deep_Initialize, see
1430 -- exp_ch3.adb). We must also dismantle the exception information
1431 -- that may have been generated for it when front end zero-cost
1432 -- tables are enabled.
1434 for J
in D_Names
'Range loop
1435 Old_P
:= TSS
(Tagged_Type
, D_Names
(J
));
1438 and then Chars
(Subp
) = C_Names
(J
)
1440 Old_Bod
:= Unit_Declaration_Node
(Old_P
);
1442 Set_Is_Eliminated
(Old_P
);
1443 Set_Scope
(Old_P
, Scope
(Current_Scope
));
1445 if Nkind
(Old_Bod
) = N_Subprogram_Body
1446 and then Present
(Corresponding_Spec
(Old_Bod
))
1448 Old_Spec
:= Corresponding_Spec
(Old_Bod
);
1449 Set_Has_Completion
(Old_Spec
, False);
1454 Build_Late_Proc
(Tagged_Type
, Chars
(Subp
));
1456 -- The new operation is added to the actions of the freeze node
1457 -- for the type, but this node has already been analyzed, so we
1458 -- must retrieve and analyze explicitly the new body.
1461 and then Present
(Actions
(F_Node
))
1463 Decl
:= Last
(Actions
(F_Node
));
1468 end Check_Dispatching_Operation
;
1470 ------------------------------------------
1471 -- Check_Operation_From_Incomplete_Type --
1472 ------------------------------------------
1474 procedure Check_Operation_From_Incomplete_Type
1478 Full
: constant Entity_Id
:= Full_View
(Typ
);
1479 Parent_Typ
: constant Entity_Id
:= Etype
(Full
);
1480 Old_Prim
: constant Elist_Id
:= Primitive_Operations
(Parent_Typ
);
1481 New_Prim
: constant Elist_Id
:= Primitive_Operations
(Full
);
1483 Prev
: Elmt_Id
:= No_Elmt
;
1485 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean;
1486 -- Check that Subp has profile of an operation derived from Parent_Subp.
1487 -- Subp must have a parameter or result type that is Typ or an access
1488 -- parameter or access result type that designates Typ.
1494 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean is
1498 if Chars
(Parent_Subp
) /= Chars
(Subp
) then
1502 -- Check that the type of controlling formals is derived from the
1503 -- parent subprogram's controlling formal type (or designated type
1504 -- if the formal type is an anonymous access type).
1506 F1
:= First_Formal
(Parent_Subp
);
1507 F2
:= First_Formal
(Subp
);
1508 while Present
(F1
) and then Present
(F2
) loop
1509 if Ekind
(Etype
(F1
)) = E_Anonymous_Access_Type
then
1510 if Ekind
(Etype
(F2
)) /= E_Anonymous_Access_Type
then
1512 elsif Designated_Type
(Etype
(F1
)) = Parent_Typ
1513 and then Designated_Type
(Etype
(F2
)) /= Full
1518 elsif Ekind
(Etype
(F2
)) = E_Anonymous_Access_Type
then
1521 elsif Etype
(F1
) = Parent_Typ
and then Etype
(F2
) /= Full
then
1529 -- Check that a controlling result type is derived from the parent
1530 -- subprogram's result type (or designated type if the result type
1531 -- is an anonymous access type).
1533 if Ekind
(Parent_Subp
) = E_Function
then
1534 if Ekind
(Subp
) /= E_Function
then
1537 elsif Ekind
(Etype
(Parent_Subp
)) = E_Anonymous_Access_Type
then
1538 if Ekind
(Etype
(Subp
)) /= E_Anonymous_Access_Type
then
1541 elsif Designated_Type
(Etype
(Parent_Subp
)) = Parent_Typ
1542 and then Designated_Type
(Etype
(Subp
)) /= Full
1547 elsif Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
then
1550 elsif Etype
(Parent_Subp
) = Parent_Typ
1551 and then Etype
(Subp
) /= Full
1556 elsif Ekind
(Subp
) = E_Function
then
1560 return No
(F1
) and then No
(F2
);
1563 -- Start of processing for Check_Operation_From_Incomplete_Type
1566 -- The operation may override an inherited one, or may be a new one
1567 -- altogether. The inherited operation will have been hidden by the
1568 -- current one at the point of the type derivation, so it does not
1569 -- appear in the list of primitive operations of the type. We have to
1570 -- find the proper place of insertion in the list of primitive opera-
1571 -- tions by iterating over the list for the parent type.
1573 Op1
:= First_Elmt
(Old_Prim
);
1574 Op2
:= First_Elmt
(New_Prim
);
1575 while Present
(Op1
) and then Present
(Op2
) loop
1576 if Derives_From
(Node
(Op1
)) then
1579 -- Avoid adding it to the list of primitives if already there
1581 if Node
(Op2
) /= Subp
then
1582 Prepend_Elmt
(Subp
, New_Prim
);
1586 Insert_Elmt_After
(Subp
, Prev
);
1597 -- Operation is a new primitive
1599 Append_Elmt
(Subp
, New_Prim
);
1600 end Check_Operation_From_Incomplete_Type
;
1602 ---------------------------------------
1603 -- Check_Operation_From_Private_View --
1604 ---------------------------------------
1606 procedure Check_Operation_From_Private_View
(Subp
, Old_Subp
: Entity_Id
) is
1607 Tagged_Type
: Entity_Id
;
1610 if Is_Dispatching_Operation
(Alias
(Subp
)) then
1611 Set_Scope
(Subp
, Current_Scope
);
1612 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
1614 -- Add Old_Subp to primitive operations if not already present
1616 if Present
(Tagged_Type
) and then Is_Tagged_Type
(Tagged_Type
) then
1617 Append_Unique_Elmt
(Old_Subp
, Primitive_Operations
(Tagged_Type
));
1619 -- If Old_Subp isn't already marked as dispatching then this is
1620 -- the case of an operation of an untagged private type fulfilled
1621 -- by a tagged type that overrides an inherited dispatching
1622 -- operation, so we set the necessary dispatching attributes here.
1624 if not Is_Dispatching_Operation
(Old_Subp
) then
1626 -- If the untagged type has no discriminants, and the full
1627 -- view is constrained, there will be a spurious mismatch of
1628 -- subtypes on the controlling arguments, because the tagged
1629 -- type is the internal base type introduced in the derivation.
1630 -- Use the original type to verify conformance, rather than the
1633 if not Comes_From_Source
(Tagged_Type
)
1634 and then Has_Discriminants
(Tagged_Type
)
1640 Formal
:= First_Formal
(Old_Subp
);
1641 while Present
(Formal
) loop
1642 if Tagged_Type
= Base_Type
(Etype
(Formal
)) then
1643 Tagged_Type
:= Etype
(Formal
);
1646 Next_Formal
(Formal
);
1650 if Tagged_Type
= Base_Type
(Etype
(Old_Subp
)) then
1651 Tagged_Type
:= Etype
(Old_Subp
);
1655 Check_Controlling_Formals
(Tagged_Type
, Old_Subp
);
1656 Set_Is_Dispatching_Operation
(Old_Subp
, True);
1657 Set_DT_Position
(Old_Subp
, No_Uint
);
1660 -- If the old subprogram is an explicit renaming of some other
1661 -- entity, it is not overridden by the inherited subprogram.
1662 -- Otherwise, update its alias and other attributes.
1664 if Present
(Alias
(Old_Subp
))
1665 and then Nkind
(Unit_Declaration_Node
(Old_Subp
)) /=
1666 N_Subprogram_Renaming_Declaration
1668 Set_Alias
(Old_Subp
, Alias
(Subp
));
1670 -- The derived subprogram should inherit the abstractness of
1671 -- the parent subprogram (except in the case of a function
1672 -- returning the type). This sets the abstractness properly
1673 -- for cases where a private extension may have inherited an
1674 -- abstract operation, but the full type is derived from a
1675 -- descendant type and inherits a nonabstract version.
1677 if Etype
(Subp
) /= Tagged_Type
then
1678 Set_Is_Abstract_Subprogram
1679 (Old_Subp
, Is_Abstract_Subprogram
(Alias
(Subp
)));
1684 end Check_Operation_From_Private_View
;
1686 --------------------------
1687 -- Find_Controlling_Arg --
1688 --------------------------
1690 function Find_Controlling_Arg
(N
: Node_Id
) return Node_Id
is
1691 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
1695 if Nkind
(Orig_Node
) = N_Qualified_Expression
then
1696 return Find_Controlling_Arg
(Expression
(Orig_Node
));
1699 -- Dispatching on result case. If expansion is disabled, the node still
1700 -- has the structure of a function call. However, if the function name
1701 -- is an operator and the call was given in infix form, the original
1702 -- node has no controlling result and we must examine the current node.
1704 if Nkind
(N
) = N_Function_Call
1705 and then Present
(Controlling_Argument
(N
))
1706 and then Has_Controlling_Result
(Entity
(Name
(N
)))
1708 return Controlling_Argument
(N
);
1710 -- If expansion is enabled, the call may have been transformed into
1711 -- an indirect call, and we need to recover the original node.
1713 elsif Nkind
(Orig_Node
) = N_Function_Call
1714 and then Present
(Controlling_Argument
(Orig_Node
))
1715 and then Has_Controlling_Result
(Entity
(Name
(Orig_Node
)))
1717 return Controlling_Argument
(Orig_Node
);
1719 -- Type conversions are dynamically tagged if the target type, or its
1720 -- designated type, are classwide. An interface conversion expands into
1721 -- a dereference, so test must be performed on the original node.
1723 elsif Nkind
(Orig_Node
) = N_Type_Conversion
1724 and then Nkind
(N
) = N_Explicit_Dereference
1725 and then Is_Controlling_Actual
(N
)
1728 Target_Type
: constant Entity_Id
:=
1729 Entity
(Subtype_Mark
(Orig_Node
));
1732 if Is_Class_Wide_Type
(Target_Type
) then
1735 elsif Is_Access_Type
(Target_Type
)
1736 and then Is_Class_Wide_Type
(Designated_Type
(Target_Type
))
1747 elsif Is_Controlling_Actual
(N
)
1749 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1750 and then Is_Controlling_Actual
(Parent
(N
)))
1754 if Is_Access_Type
(Typ
) then
1756 -- In the case of an Access attribute, use the type of the prefix,
1757 -- since in the case of an actual for an access parameter, the
1758 -- attribute's type may be of a specific designated type, even
1759 -- though the prefix type is class-wide.
1761 if Nkind
(N
) = N_Attribute_Reference
then
1762 Typ
:= Etype
(Prefix
(N
));
1764 -- An allocator is dispatching if the type of qualified expression
1765 -- is class_wide, in which case this is the controlling type.
1767 elsif Nkind
(Orig_Node
) = N_Allocator
1768 and then Nkind
(Expression
(Orig_Node
)) = N_Qualified_Expression
1770 Typ
:= Etype
(Expression
(Orig_Node
));
1772 Typ
:= Designated_Type
(Typ
);
1776 if Is_Class_Wide_Type
(Typ
)
1778 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1779 and then Is_Access_Type
(Etype
(N
))
1780 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(N
))))
1787 end Find_Controlling_Arg
;
1789 ---------------------------
1790 -- Find_Dispatching_Type --
1791 ---------------------------
1793 function Find_Dispatching_Type
(Subp
: Entity_Id
) return Entity_Id
is
1794 A_Formal
: Entity_Id
;
1796 Ctrl_Type
: Entity_Id
;
1799 if Ekind_In
(Subp
, E_Function
, E_Procedure
)
1800 and then Present
(DTC_Entity
(Subp
))
1802 return Scope
(DTC_Entity
(Subp
));
1804 -- For subprograms internally generated by derivations of tagged types
1805 -- use the alias subprogram as a reference to locate the dispatching
1808 elsif not Comes_From_Source
(Subp
)
1809 and then Present
(Alias
(Subp
))
1810 and then Is_Dispatching_Operation
(Alias
(Subp
))
1812 if Ekind
(Alias
(Subp
)) = E_Function
1813 and then Has_Controlling_Result
(Alias
(Subp
))
1815 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
1818 Formal
:= First_Formal
(Subp
);
1819 A_Formal
:= First_Formal
(Alias
(Subp
));
1820 while Present
(A_Formal
) loop
1821 if Is_Controlling_Formal
(A_Formal
) then
1822 return Check_Controlling_Type
(Etype
(Formal
), Subp
);
1825 Next_Formal
(Formal
);
1826 Next_Formal
(A_Formal
);
1829 pragma Assert
(False);
1836 Formal
:= First_Formal
(Subp
);
1837 while Present
(Formal
) loop
1838 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
1840 if Present
(Ctrl_Type
) then
1844 Next_Formal
(Formal
);
1847 -- The subprogram may also be dispatching on result
1849 if Present
(Etype
(Subp
)) then
1850 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
1854 pragma Assert
(not Is_Dispatching_Operation
(Subp
));
1856 end Find_Dispatching_Type
;
1858 --------------------------------------
1859 -- Find_Hidden_Overridden_Primitive --
1860 --------------------------------------
1862 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
1864 Tag_Typ
: constant Entity_Id
:= Find_Dispatching_Type
(S
);
1866 Orig_Prim
: Entity_Id
;
1868 Vis_List
: Elist_Id
;
1871 -- This Ada 2012 rule applies only for type extensions or private
1872 -- extensions, where the parent type is not in a parent unit, and
1873 -- where an operation is never declared but still inherited.
1876 or else not Is_Record_Type
(Tag_Typ
)
1877 or else Etype
(Tag_Typ
) = Tag_Typ
1878 or else In_Open_Scopes
(Scope
(Etype
(Tag_Typ
)))
1883 -- Collect the list of visible ancestor of the tagged type
1885 Vis_List
:= Visible_Ancestors
(Tag_Typ
);
1887 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
1888 while Present
(Elmt
) loop
1889 Prim
:= Node
(Elmt
);
1891 -- Find an inherited hidden dispatching primitive with the name of S
1892 -- and a type-conformant profile.
1894 if Present
(Alias
(Prim
))
1895 and then Is_Hidden
(Alias
(Prim
))
1896 and then Find_Dispatching_Type
(Alias
(Prim
)) /= Tag_Typ
1897 and then Primitive_Names_Match
(S
, Prim
)
1898 and then Type_Conformant
(S
, Prim
)
1901 Vis_Ancestor
: Elmt_Id
;
1905 -- The original corresponding operation of Prim must be an
1906 -- operation of a visible ancestor of the dispatching type S,
1907 -- and the original corresponding operation of S2 must be
1910 Orig_Prim
:= Original_Corresponding_Operation
(Prim
);
1912 if Orig_Prim
/= Prim
1913 and then Is_Immediately_Visible
(Orig_Prim
)
1915 Vis_Ancestor
:= First_Elmt
(Vis_List
);
1916 while Present
(Vis_Ancestor
) loop
1918 First_Elmt
(Primitive_Operations
(Node
(Vis_Ancestor
)));
1919 while Present
(Elmt
) loop
1920 if Node
(Elmt
) = Orig_Prim
then
1921 Set_Overridden_Operation
(S
, Prim
);
1922 Set_Alias
(Prim
, Orig_Prim
);
1929 Next_Elmt
(Vis_Ancestor
);
1939 end Find_Hidden_Overridden_Primitive
;
1941 ---------------------------------------
1942 -- Find_Primitive_Covering_Interface --
1943 ---------------------------------------
1945 function Find_Primitive_Covering_Interface
1946 (Tagged_Type
: Entity_Id
;
1947 Iface_Prim
: Entity_Id
) return Entity_Id
1953 pragma Assert
(Is_Interface
(Find_Dispatching_Type
(Iface_Prim
))
1954 or else (Present
(Alias
(Iface_Prim
))
1957 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
1959 -- Search in the homonym chain. Done to speed up locating visible
1960 -- entities and required to catch primitives associated with the partial
1961 -- view of private types when processing the corresponding full view.
1963 E
:= Current_Entity
(Iface_Prim
);
1964 while Present
(E
) loop
1965 if Is_Subprogram
(E
)
1966 and then Is_Dispatching_Operation
(E
)
1967 and then Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
)
1975 -- Search in the list of primitives of the type. Required to locate
1976 -- the covering primitive if the covering primitive is not visible
1977 -- (for example, non-visible inherited primitive of private type).
1979 El
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
1980 while Present
(El
) loop
1983 -- Keep separate the management of internal entities that link
1984 -- primitives with interface primitives from tagged type primitives.
1986 if No
(Interface_Alias
(E
)) then
1987 if Present
(Alias
(E
)) then
1989 -- This interface primitive has not been covered yet
1991 if Alias
(E
) = Iface_Prim
then
1994 -- The covering primitive was inherited
1996 elsif Overridden_Operation
(Ultimate_Alias
(E
))
2003 -- Check if E covers the interface primitive (includes case in
2004 -- which E is an inherited private primitive).
2006 if Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
) then
2010 -- Use the internal entity that links the interface primitive with
2011 -- the covering primitive to locate the entity.
2013 elsif Interface_Alias
(E
) = Iface_Prim
then
2023 end Find_Primitive_Covering_Interface
;
2025 ---------------------------
2026 -- Inherited_Subprograms --
2027 ---------------------------
2029 function Inherited_Subprograms
(S
: Entity_Id
) return Subprogram_List
is
2030 Result
: Subprogram_List
(1 .. 6000);
2031 -- 6000 here is intended to be infinity. We could use an expandable
2032 -- table, but it would be awfully heavy, and there is no way that we
2033 -- could reasonably exceed this value.
2036 -- Number of entries in Result
2038 Parent_Op
: Entity_Id
;
2039 -- Traverses the Overridden_Operation chain
2041 procedure Store_IS
(E
: Entity_Id
);
2042 -- Stores E in Result if not already stored
2048 procedure Store_IS
(E
: Entity_Id
) is
2050 for J
in 1 .. N
loop
2051 if E
= Result
(J
) then
2060 -- Start of processing for Inherited_Subprograms
2063 if Present
(S
) and then Is_Dispatching_Operation
(S
) then
2065 -- Deal with direct inheritance
2069 Parent_Op
:= Overridden_Operation
(Parent_Op
);
2070 exit when No
(Parent_Op
);
2072 if Is_Subprogram
(Parent_Op
)
2073 or else Is_Generic_Subprogram
(Parent_Op
)
2075 Store_IS
(Parent_Op
);
2079 -- Now deal with interfaces
2082 Tag_Typ
: Entity_Id
;
2087 Tag_Typ
:= Find_Dispatching_Type
(S
);
2089 if Is_Concurrent_Type
(Tag_Typ
) then
2090 Tag_Typ
:= Corresponding_Record_Type
(Tag_Typ
);
2093 -- Search primitive operations of dispatching type
2095 if Present
(Tag_Typ
)
2096 and then Present
(Primitive_Operations
(Tag_Typ
))
2098 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
2099 while Present
(Elmt
) loop
2100 Prim
:= Node
(Elmt
);
2102 -- The following test eliminates some odd cases in which
2103 -- Ekind (Prim) is Void, to be investigated further ???
2105 if not (Is_Subprogram
(Prim
)
2107 Is_Generic_Subprogram
(Prim
))
2111 -- For [generic] subprogram, look at interface alias
2113 elsif Present
(Interface_Alias
(Prim
))
2114 and then Alias
(Prim
) = S
2116 -- We have found a primitive covered by S
2118 Store_IS
(Interface_Alias
(Prim
));
2127 return Result
(1 .. N
);
2128 end Inherited_Subprograms
;
2130 ---------------------------
2131 -- Is_Dynamically_Tagged --
2132 ---------------------------
2134 function Is_Dynamically_Tagged
(N
: Node_Id
) return Boolean is
2136 if Nkind
(N
) = N_Error
then
2139 return Find_Controlling_Arg
(N
) /= Empty
;
2141 end Is_Dynamically_Tagged
;
2143 ---------------------------------
2144 -- Is_Null_Interface_Primitive --
2145 ---------------------------------
2147 function Is_Null_Interface_Primitive
(E
: Entity_Id
) return Boolean is
2149 return Comes_From_Source
(E
)
2150 and then Is_Dispatching_Operation
(E
)
2151 and then Ekind
(E
) = E_Procedure
2152 and then Null_Present
(Parent
(E
))
2153 and then Is_Interface
(Find_Dispatching_Type
(E
));
2154 end Is_Null_Interface_Primitive
;
2156 --------------------------
2157 -- Is_Tag_Indeterminate --
2158 --------------------------
2160 function Is_Tag_Indeterminate
(N
: Node_Id
) return Boolean is
2163 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
2166 if Nkind
(Orig_Node
) = N_Function_Call
2167 and then Is_Entity_Name
(Name
(Orig_Node
))
2169 Nam
:= Entity
(Name
(Orig_Node
));
2171 if not Has_Controlling_Result
(Nam
) then
2174 -- The function may have a controlling result, but if the return type
2175 -- is not visibly tagged, then this is not tag-indeterminate.
2177 elsif Is_Access_Type
(Etype
(Nam
))
2178 and then not Is_Tagged_Type
(Designated_Type
(Etype
(Nam
)))
2182 -- An explicit dereference means that the call has already been
2183 -- expanded and there is no tag to propagate.
2185 elsif Nkind
(N
) = N_Explicit_Dereference
then
2188 -- If there are no actuals, the call is tag-indeterminate
2190 elsif No
(Parameter_Associations
(Orig_Node
)) then
2194 Actual
:= First_Actual
(Orig_Node
);
2195 while Present
(Actual
) loop
2196 if Is_Controlling_Actual
(Actual
)
2197 and then not Is_Tag_Indeterminate
(Actual
)
2199 -- One operand is dispatching
2204 Next_Actual
(Actual
);
2210 elsif Nkind
(Orig_Node
) = N_Qualified_Expression
then
2211 return Is_Tag_Indeterminate
(Expression
(Orig_Node
));
2213 -- Case of a call to the Input attribute (possibly rewritten), which is
2214 -- always tag-indeterminate except when its prefix is a Class attribute.
2216 elsif Nkind
(Orig_Node
) = N_Attribute_Reference
2218 Get_Attribute_Id
(Attribute_Name
(Orig_Node
)) = Attribute_Input
2220 Nkind
(Prefix
(Orig_Node
)) /= N_Attribute_Reference
2224 -- In Ada 2005, a function that returns an anonymous access type can be
2225 -- dispatching, and the dereference of a call to such a function can
2226 -- also be tag-indeterminate if the call itself is.
2228 elsif Nkind
(Orig_Node
) = N_Explicit_Dereference
2229 and then Ada_Version
>= Ada_2005
2231 return Is_Tag_Indeterminate
(Prefix
(Orig_Node
));
2236 end Is_Tag_Indeterminate
;
2238 ------------------------------------
2239 -- Override_Dispatching_Operation --
2240 ------------------------------------
2242 procedure Override_Dispatching_Operation
2243 (Tagged_Type
: Entity_Id
;
2244 Prev_Op
: Entity_Id
;
2246 Is_Wrapper
: Boolean := False)
2252 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2253 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2255 if No_Return
(Prev_Op
) and then not No_Return
(New_Op
) then
2256 Error_Msg_N
("procedure & must have No_Return pragma", New_Op
);
2257 Error_Msg_N
("\since overridden procedure has No_Return", New_Op
);
2260 -- If there is no previous operation to override, the type declaration
2261 -- was malformed, and an error must have been emitted already.
2263 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2264 while Present
(Elmt
)
2265 and then Node
(Elmt
) /= Prev_Op
2274 -- The location of entities that come from source in the list of
2275 -- primitives of the tagged type must follow their order of occurrence
2276 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2277 -- primitive of an interface that is not implemented by the parents of
2278 -- this tagged type (that is, it is an alias of an interface primitive
2279 -- generated by Derive_Interface_Progenitors), then we must append the
2280 -- new entity at the end of the list of primitives.
2282 if Present
(Alias
(Prev_Op
))
2283 and then Etype
(Tagged_Type
) /= Tagged_Type
2284 and then Is_Interface
(Find_Dispatching_Type
(Alias
(Prev_Op
)))
2285 and then not Is_Ancestor
(Find_Dispatching_Type
(Alias
(Prev_Op
)),
2286 Tagged_Type
, Use_Full_View
=> True)
2287 and then not Implements_Interface
2288 (Etype
(Tagged_Type
),
2289 Find_Dispatching_Type
(Alias
(Prev_Op
)))
2291 Remove_Elmt
(Primitive_Operations
(Tagged_Type
), Elmt
);
2292 Append_Elmt
(New_Op
, Primitive_Operations
(Tagged_Type
));
2294 -- The new primitive replaces the overridden entity. Required to ensure
2295 -- that overriding primitive is assigned the same dispatch table slot.
2298 Replace_Elmt
(Elmt
, New_Op
);
2301 if Ada_Version
>= Ada_2005
2302 and then Has_Interfaces
(Tagged_Type
)
2304 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2305 -- entities of the overridden primitive to reference New_Op, and
2306 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2307 -- that the new operation is subtype conformant with the interface
2308 -- operations that it implements (for operations inherited from the
2309 -- parent itself, this check is made when building the derived type).
2311 -- Note: This code is executed with internally generated wrappers of
2312 -- functions with controlling result and late overridings.
2314 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2315 while Present
(Elmt
) loop
2316 Prim
:= Node
(Elmt
);
2318 if Prim
= New_Op
then
2321 -- Note: The check on Is_Subprogram protects the frontend against
2322 -- reading attributes in entities that are not yet fully decorated
2324 elsif Is_Subprogram
(Prim
)
2325 and then Present
(Interface_Alias
(Prim
))
2326 and then Alias
(Prim
) = Prev_Op
2328 Set_Alias
(Prim
, New_Op
);
2330 -- No further decoration needed yet for internally generated
2331 -- wrappers of controlling functions since (at this stage)
2332 -- they are not yet decorated.
2334 if not Is_Wrapper
then
2335 Check_Subtype_Conformant
(New_Op
, Prim
);
2337 Set_Is_Abstract_Subprogram
(Prim
,
2338 Is_Abstract_Subprogram
(New_Op
));
2340 -- Ensure that this entity will be expanded to fill the
2341 -- corresponding entry in its dispatch table.
2343 if not Is_Abstract_Subprogram
(Prim
) then
2344 Set_Has_Delayed_Freeze
(Prim
);
2353 if (not Is_Package_Or_Generic_Package
(Current_Scope
))
2354 or else not In_Private_Part
(Current_Scope
)
2356 -- Not a private primitive
2360 else pragma Assert
(Is_Inherited_Operation
(Prev_Op
));
2362 -- Make the overriding operation into an alias of the implicit one.
2363 -- In this fashion a call from outside ends up calling the new body
2364 -- even if non-dispatching, and a call from inside calls the over-
2365 -- riding operation because it hides the implicit one. To indicate
2366 -- that the body of Prev_Op is never called, set its dispatch table
2367 -- entity to Empty. If the overridden operation has a dispatching
2368 -- result, so does the overriding one.
2370 Set_Alias
(Prev_Op
, New_Op
);
2371 Set_DTC_Entity
(Prev_Op
, Empty
);
2372 Set_Has_Controlling_Result
(New_Op
, Has_Controlling_Result
(Prev_Op
));
2375 end Override_Dispatching_Operation
;
2381 procedure Propagate_Tag
(Control
: Node_Id
; Actual
: Node_Id
) is
2382 Call_Node
: Node_Id
;
2386 if Nkind
(Actual
) = N_Function_Call
then
2387 Call_Node
:= Actual
;
2389 elsif Nkind
(Actual
) = N_Identifier
2390 and then Nkind
(Original_Node
(Actual
)) = N_Function_Call
2392 -- Call rewritten as object declaration when stack-checking is
2393 -- enabled. Propagate tag to expression in declaration, which is
2396 Call_Node
:= Expression
(Parent
(Entity
(Actual
)));
2398 -- Ada 2005: If this is a dereference of a call to a function with a
2399 -- dispatching access-result, the tag is propagated when the dereference
2400 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2402 elsif Nkind
(Actual
) = N_Explicit_Dereference
2403 and then Nkind
(Original_Node
(Prefix
(Actual
))) = N_Function_Call
2407 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2408 -- and in that case we can simply return.
2410 elsif Nkind
(Actual
) = N_Attribute_Reference
then
2411 pragma Assert
(Attribute_Name
(Actual
) = Name_Input
);
2415 -- Only other possibilities are parenthesized or qualified expression,
2416 -- or an expander-generated unchecked conversion of a function call to
2417 -- a stream Input attribute.
2420 Call_Node
:= Expression
(Actual
);
2423 -- No action needed if the call has been already expanded
2425 if Is_Expanded_Dispatching_Call
(Call_Node
) then
2429 -- Do not set the Controlling_Argument if already set. This happens in
2430 -- the special case of _Input (see Exp_Attr, case Input).
2432 if No
(Controlling_Argument
(Call_Node
)) then
2433 Set_Controlling_Argument
(Call_Node
, Control
);
2436 Arg
:= First_Actual
(Call_Node
);
2437 while Present
(Arg
) loop
2438 if Is_Tag_Indeterminate
(Arg
) then
2439 Propagate_Tag
(Control
, Arg
);
2445 -- Expansion of dispatching calls is suppressed when VM_Target, because
2446 -- the VM back-ends directly handle the generation of dispatching calls
2447 -- and would have to undo any expansion to an indirect call.
2449 if Tagged_Type_Expansion
then
2451 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
2454 Expand_Dispatching_Call
(Call_Node
);
2456 -- If the controlling argument is an interface type and the type
2457 -- of Call_Node differs then we must add an implicit conversion to
2458 -- force displacement of the pointer to the object to reference
2459 -- the secondary dispatch table of the interface.
2461 if Is_Interface
(Etype
(Control
))
2462 and then Etype
(Control
) /= Call_Typ
2464 -- Cannot use Convert_To because the previous call to
2465 -- Expand_Dispatching_Call leaves decorated the Call_Node
2466 -- with the type of Control.
2469 Make_Type_Conversion
(Sloc
(Call_Node
),
2471 New_Occurrence_Of
(Etype
(Control
), Sloc
(Call_Node
)),
2472 Expression
=> Relocate_Node
(Call_Node
)));
2473 Set_Etype
(Call_Node
, Etype
(Control
));
2474 Set_Analyzed
(Call_Node
);
2476 Expand_Interface_Conversion
(Call_Node
);
2480 -- Expansion of a dispatching call results in an indirect call, which in
2481 -- turn causes current values to be killed (see Resolve_Call), so on VM
2482 -- targets we do the call here to ensure consistent warnings between VM
2483 -- and non-VM targets.
2486 Kill_Current_Values
;