2014-02-20 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / gnat_rm.texi
blobcd8508898211233c97147a7cdc8db8a02134979c
1 \input texinfo   @c -*-texinfo-*-
3 @c %**start of header
5 @c oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
6 @c                                                                            o
7 @c                           GNAT DOCUMENTATION                               o
8 @c                                                                            o
9 @c                              G N A T _ RM                                  o
10 @c                                                                            o
11 @c  GNAT is maintained by Ada Core Technologies Inc (http://www.gnat.com).    o
12 @c                                                                            o
13 @c oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
15 @setfilename gnat_rm.info
17 @copying
18 Copyright @copyright{} 1995-2012, Free Software Foundation, Inc.
20 Permission is granted to copy, distribute and/or modify this document
21 under the terms of the GNU Free Documentation License, Version 1.3 or
22 any later version published by the Free Software Foundation; with no
23 Invariant Sections, with the Front-Cover Texts being ``GNAT Reference
24 Manual'', and with no Back-Cover Texts.  A copy of the license is
25 included in the section entitled ``GNU Free Documentation License''.
26 @end copying
28 @set EDITION GNAT
30 @settitle GNAT Reference Manual
32 @setchapternewpage odd
33 @syncodeindex fn cp
35 @include gcc-common.texi
37 @dircategory GNU Ada tools
38 @direntry
39 * GNAT Reference Manual: (gnat_rm).  Reference Manual for GNU Ada tools.
40 @end direntry
42 @titlepage
43 @title GNAT Reference Manual
44 @subtitle GNAT, The GNU Ada Compiler
45 @versionsubtitle
46 @author AdaCore
47 @page
48 @vskip 0pt plus 1filll
50 @insertcopying
52 @end titlepage
54 @ifnottex
55 @node Top, About This Guide, (dir), (dir)
56 @top GNAT Reference Manual
58 @noindent
59 GNAT Reference Manual
61 @noindent
62 GNAT, The GNU Ada Compiler@*
63 GCC version @value{version-GCC}@*
65 @noindent
66 AdaCore
68 @menu
69 * About This Guide::
70 * Implementation Defined Pragmas::
71 * Implementation Defined Aspects::
72 * Implementation Defined Attributes::
73 * Standard and Implementation Defined Restrictions::
74 * Implementation Advice::
75 * Implementation Defined Characteristics::
76 * Intrinsic Subprograms::
77 * Representation Clauses and Pragmas::
78 * Standard Library Routines::
79 * The Implementation of Standard I/O::
80 * The GNAT Library::
81 * Interfacing to Other Languages::
82 * Specialized Needs Annexes::
83 * Implementation of Specific Ada Features::
84 * Implementation of Ada 2012 Features::
85 * Obsolescent Features::
86 * GNU Free Documentation License::
87 * Index::
89  --- The Detailed Node Listing ---
91 About This Guide
93 * What This Reference Manual Contains::
94 * Related Information::
96 Implementation Defined Pragmas
98 * Pragma Abort_Defer::
99 * Pragma Abstract_State::
100 * Pragma Ada_83::
101 * Pragma Ada_95::
102 * Pragma Ada_05::
103 * Pragma Ada_2005::
104 * Pragma Ada_12::
105 * Pragma Ada_2012::
106 * Pragma Allow_Integer_Address::
107 * Pragma Annotate::
108 * Pragma Assert::
109 * Pragma Assert_And_Cut::
110 * Pragma Assertion_Policy::
111 * Pragma Assume::
112 * Pragma Assume_No_Invalid_Values::
113 * Pragma Attribute_Definition::
114 * Pragma Ast_Entry::
115 * Pragma C_Pass_By_Copy::
116 * Pragma Check::
117 * Pragma Check_Float_Overflow::
118 * Pragma Check_Name::
119 * Pragma Check_Policy::
120 * Pragma CIL_Constructor::
121 * Pragma Comment::
122 * Pragma Common_Object::
123 * Pragma Compile_Time_Error::
124 * Pragma Compile_Time_Warning::
125 * Pragma Compiler_Unit::
126 * Pragma Complete_Representation::
127 * Pragma Complex_Representation::
128 * Pragma Component_Alignment::
129 * Pragma Contract_Cases::
130 * Pragma Convention_Identifier::
131 * Pragma CPP_Class::
132 * Pragma CPP_Constructor::
133 * Pragma CPP_Virtual::
134 * Pragma CPP_Vtable::
135 * Pragma CPU::
136 * Pragma Debug::
137 * Pragma Debug_Policy::
138 * Pragma Default_Storage_Pool::
139 * Pragma Depends::
140 * Pragma Detect_Blocking::
141 * Pragma Disable_Atomic_Synchronization::
142 * Pragma Dispatching_Domain::
143 * Pragma Elaboration_Checks::
144 * Pragma Eliminate::
145 * Pragma Enable_Atomic_Synchronization::
146 * Pragma Export_Exception::
147 * Pragma Export_Function::
148 * Pragma Export_Object::
149 * Pragma Export_Procedure::
150 * Pragma Export_Value::
151 * Pragma Export_Valued_Procedure::
152 * Pragma Extend_System::
153 * Pragma Extensions_Allowed::
154 * Pragma External::
155 * Pragma External_Name_Casing::
156 * Pragma Fast_Math::
157 * Pragma Favor_Top_Level::
158 * Pragma Finalize_Storage_Only::
159 * Pragma Float_Representation::
160 * Pragma Global::
161 * Pragma Ident::
162 * Pragma Implementation_Defined::
163 * Pragma Implemented::
164 * Pragma Implicit_Packing::
165 * Pragma Import_Exception::
166 * Pragma Import_Function::
167 * Pragma Import_Object::
168 * Pragma Import_Procedure::
169 * Pragma Import_Valued_Procedure::
170 * Pragma Independent::
171 * Pragma Independent_Components::
172 * Pragma Initial_Condition::
173 * Pragma Initialize_Scalars::
174 * Pragma Initializes::
175 * Pragma Inline_Always::
176 * Pragma Inline_Generic::
177 * Pragma Interface::
178 * Pragma Interface_Name::
179 * Pragma Interrupt_Handler::
180 * Pragma Interrupt_State::
181 * Pragma Invariant::
182 * Pragma Java_Constructor::
183 * Pragma Java_Interface::
184 * Pragma Keep_Names::
185 * Pragma License::
186 * Pragma Link_With::
187 * Pragma Linker_Alias::
188 * Pragma Linker_Constructor::
189 * Pragma Linker_Destructor::
190 * Pragma Linker_Section::
191 * Pragma Long_Float::
192 * Pragma Loop_Invariant::
193 * Pragma Loop_Optimize::
194 * Pragma Loop_Variant::
195 * Pragma Machine_Attribute::
196 * Pragma Main::
197 * Pragma Main_Storage::
198 * Pragma No_Body::
199 * Pragma No_Inline::
200 * Pragma No_Return::
201 * Pragma No_Run_Time::
202 * Pragma No_Strict_Aliasing ::
203 * Pragma Normalize_Scalars::
204 * Pragma Obsolescent::
205 * Pragma Optimize_Alignment::
206 * Pragma Ordered::
207 * Pragma Overflow_Mode::
208 * Pragma Overriding_Renamings::
209 * Pragma Partition_Elaboration_Policy::
210 * Pragma Passive::
211 * Pragma Persistent_BSS::
212 * Pragma Polling::
213 * Pragma Post::
214 * Pragma Postcondition::
215 * Pragma Post_Class::
216 * Pragma Pre::
217 * Pragma Precondition::
218 * Pragma Predicate::
219 * Pragma Preelaborable_Initialization::
220 * Pragma Preelaborate_05::
221 * Pragma Pre_Class::
222 * Pragma Priority_Specific_Dispatching::
223 * Pragma Profile::
224 * Pragma Profile_Warnings::
225 * Pragma Propagate_Exceptions::
226 * Pragma Psect_Object::
227 * Pragma Pure_05::
228 * Pragma Pure_12::
229 * Pragma Pure_Function::
230 * Pragma Ravenscar::
231 * Pragma Refined_State::
232 * Pragma Relative_Deadline::
233 * Pragma Remote_Access_Type::
234 * Pragma Restricted_Run_Time::
235 * Pragma Restriction_Warnings::
236 * Pragma Share_Generic::
237 * Pragma Shared::
238 * Pragma Short_Circuit_And_Or::
239 * Pragma Short_Descriptors::
240 * Pragma Simple_Storage_Pool_Type::
241 * Pragma Source_File_Name::
242 * Pragma Source_File_Name_Project::
243 * Pragma Source_Reference::
244 * Pragma SPARK_Mode::
245 * Pragma Static_Elaboration_Desired::
246 * Pragma Stream_Convert::
247 * Pragma Style_Checks::
248 * Pragma Subtitle::
249 * Pragma Suppress::
250 * Pragma Suppress_All::
251 * Pragma Suppress_Debug_Info::
252 * Pragma Suppress_Exception_Locations::
253 * Pragma Suppress_Initialization::
254 * Pragma Task_Info::
255 * Pragma Task_Name::
256 * Pragma Task_Storage::
257 * Pragma Test_Case::
258 * Pragma Thread_Local_Storage::
259 * Pragma Time_Slice::
260 * Pragma Title::
261 * Pragma Type_Invariant::
262 * Pragma Type_Invariant_Class::
263 * Pragma Unchecked_Union::
264 * Pragma Unimplemented_Unit::
265 * Pragma Universal_Aliasing ::
266 * Pragma Universal_Data::
267 * Pragma Unmodified::
268 * Pragma Unreferenced::
269 * Pragma Unreferenced_Objects::
270 * Pragma Unreserve_All_Interrupts::
271 * Pragma Unsuppress::
272 * Pragma Use_VADS_Size::
273 * Pragma Validity_Checks::
274 * Pragma Volatile::
275 * Pragma Warnings::
276 * Pragma Weak_External::
277 * Pragma Wide_Character_Encoding::
279 Implementation Defined Aspects
281 * Aspect Abstract_State::
282 * Aspect Ada_2005::
283 * Aspect Ada_2012::
284 * Aspect Compiler_Unit::
285 * Aspect Contract_Cases::
286 * Aspect Depends::
287 * Aspect Dimension::
288 * Aspect Dimension_System::
289 * Aspect Favor_Top_Level::
290 * Aspect Global::
291 * Aspect Initial_Condition::
292 * Aspect Initializes::
293 * Aspect Inline_Always::
294 * Aspect Invariant::
295 * Aspect Linker_Section::
296 * Aspect Object_Size::
297 * Aspect Persistent_BSS::
298 * Aspect Predicate::
299 * Aspect Preelaborate_05::
300 * Aspect Pure_05::
301 * Aspect Pure_12::
302 * Aspect Pure_Function::
303 * Aspect Refined_State::
304 * Aspect Remote_Access_Type::
305 * Aspect Scalar_Storage_Order::
306 * Aspect Shared::
307 * Aspect Simple_Storage_Pool::
308 * Aspect Simple_Storage_Pool_Type::
309 * Aspect SPARK_Mode::
310 * Aspect Suppress_Debug_Info::
311 * Aspect Test_Case::
312 * Aspect Universal_Aliasing::
313 * Aspect Universal_Data::
314 * Aspect Unmodified::
315 * Aspect Unreferenced::
316 * Aspect Unreferenced_Objects::
317 * Aspect Value_Size::
318 * Aspect Warnings::
320 Implementation Defined Attributes
322 * Attribute Abort_Signal::
323 * Attribute Address_Size::
324 * Attribute Asm_Input::
325 * Attribute Asm_Output::
326 * Attribute AST_Entry::
327 * Attribute Bit::
328 * Attribute Bit_Position::
329 * Attribute Compiler_Version::
330 * Attribute Code_Address::
331 * Attribute Default_Bit_Order::
332 * Attribute Descriptor_Size::
333 * Attribute Elaborated::
334 * Attribute Elab_Body::
335 * Attribute Elab_Spec::
336 * Attribute Elab_Subp_Body::
337 * Attribute Emax::
338 * Attribute Enabled::
339 * Attribute Enum_Rep::
340 * Attribute Enum_Val::
341 * Attribute Epsilon::
342 * Attribute Fixed_Value::
343 * Attribute Has_Access_Values::
344 * Attribute Has_Discriminants::
345 * Attribute Img::
346 * Attribute Integer_Value::
347 * Attribute Invalid_Value::
348 * Attribute Large::
349 * Attribute Library_Level::
350 * Attribute Loop_Entry::
351 * Attribute Machine_Size::
352 * Attribute Mantissa::
353 * Attribute Max_Interrupt_Priority::
354 * Attribute Max_Priority::
355 * Attribute Maximum_Alignment::
356 * Attribute Mechanism_Code::
357 * Attribute Null_Parameter::
358 * Attribute Object_Size::
359 * Attribute Passed_By_Reference::
360 * Attribute Pool_Address::
361 * Attribute Range_Length::
362 * Attribute Ref::
363 * Attribute Restriction_Set::
364 * Attribute Result::
365 * Attribute Safe_Emax::
366 * Attribute Safe_Large::
367 * Attribute Scalar_Storage_Order::
368 * Attribute Simple_Storage_Pool::
369 * Attribute Small::
370 * Attribute Storage_Unit::
371 * Attribute Stub_Type::
372 * Attribute System_Allocator_Alignment::
373 * Attribute Target_Name::
374 * Attribute Tick::
375 * Attribute To_Address::
376 * Attribute Type_Class::
377 * Attribute UET_Address::
378 * Attribute Unconstrained_Array::
379 * Attribute Universal_Literal_String::
380 * Attribute Unrestricted_Access::
381 * Attribute Update::
382 * Attribute Valid_Scalars::
383 * Attribute VADS_Size::
384 * Attribute Value_Size::
385 * Attribute Wchar_T_Size::
386 * Attribute Word_Size::
388 Standard and Implementation Defined Restrictions
390 * Partition-Wide Restrictions::
391 * Program Unit Level Restrictions::
393 Partition-Wide Restrictions
395 * Immediate_Reclamation::
396 * Max_Asynchronous_Select_Nesting::
397 * Max_Entry_Queue_Length::
398 * Max_Protected_Entries::
399 * Max_Select_Alternatives::
400 * Max_Storage_At_Blocking::
401 * Max_Task_Entries::
402 * Max_Tasks::
403 * No_Abort_Statements::
404 * No_Access_Parameter_Allocators::
405 * No_Access_Subprograms::
406 * No_Allocators::
407 * No_Anonymous_Allocators::
408 * No_Calendar::
409 * No_Coextensions::
410 * No_Default_Initialization::
411 * No_Delay::
412 * No_Dependence::
413 * No_Direct_Boolean_Operators::
414 * No_Dispatch::
415 * No_Dispatching_Calls::
416 * No_Dynamic_Attachment::
417 * No_Dynamic_Priorities::
418 * No_Entry_Calls_In_Elaboration_Code::
419 * No_Enumeration_Maps::
420 * No_Exception_Handlers::
421 * No_Exception_Propagation::
422 * No_Exception_Registration::
423 * No_Exceptions::
424 * No_Finalization::
425 * No_Fixed_Point::
426 * No_Floating_Point::
427 * No_Implicit_Conditionals::
428 * No_Implicit_Dynamic_Code::
429 * No_Implicit_Heap_Allocations::
430 * No_Implicit_Loops::
431 * No_Initialize_Scalars::
432 * No_IO::
433 * No_Local_Allocators::
434 * No_Local_Protected_Objects::
435 * No_Local_Timing_Events::
436 * No_Nested_Finalization::
437 * No_Protected_Type_Allocators::
438 * No_Protected_Types::
439 * No_Recursion::
440 * No_Reentrancy::
441 * No_Relative_Delay::
442 * No_Requeue_Statements::
443 * No_Secondary_Stack::
444 * No_Select_Statements::
445 * No_Specific_Termination_Handlers::
446 * No_Specification_of_Aspect::
447 * No_Standard_Allocators_After_Elaboration::
448 * No_Standard_Storage_Pools::
449 * No_Stream_Optimizations::
450 * No_Streams::
451 * No_Task_Allocators::
452 * No_Task_Attributes_Package::
453 * No_Task_Hierarchy::
454 * No_Task_Termination::
455 * No_Tasking::
456 * No_Terminate_Alternatives::
457 * No_Unchecked_Access::
458 * Simple_Barriers::
459 * Static_Priorities::
460 * Static_Storage_Size::
462 Program Unit Level Restrictions
464 * No_Elaboration_Code::
465 * No_Entry_Queue::
466 * No_Implementation_Aspect_Specifications::
467 * No_Implementation_Attributes::
468 * No_Implementation_Identifiers::
469 * No_Implementation_Pragmas::
470 * No_Implementation_Restrictions::
471 * No_Implementation_Units::
472 * No_Implicit_Aliasing::
473 * No_Obsolescent_Features::
474 * No_Wide_Characters::
475 * SPARK_05::
477 The Implementation of Standard I/O
479 * Standard I/O Packages::
480 * FORM Strings::
481 * Direct_IO::
482 * Sequential_IO::
483 * Text_IO::
484 * Wide_Text_IO::
485 * Wide_Wide_Text_IO::
486 * Stream_IO::
487 * Text Translation::
488 * Shared Files::
489 * Filenames encoding::
490 * Open Modes::
491 * Operations on C Streams::
492 * Interfacing to C Streams::
494 The GNAT Library
496 * Ada.Characters.Latin_9 (a-chlat9.ads)::
497 * Ada.Characters.Wide_Latin_1 (a-cwila1.ads)::
498 * Ada.Characters.Wide_Latin_9 (a-cwila9.ads)::
499 * Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads)::
500 * Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads)::
501 * Ada.Containers.Formal_Doubly_Linked_Lists (a-cfdlli.ads)::
502 * Ada.Containers.Formal_Hashed_Maps (a-cfhama.ads)::
503 * Ada.Containers.Formal_Hashed_Sets (a-cfhase.ads)::
504 * Ada.Containers.Formal_Ordered_Maps (a-cforma.ads)::
505 * Ada.Containers.Formal_Ordered_Sets (a-cforse.ads)::
506 * Ada.Containers.Formal_Vectors (a-cofove.ads)::
507 * Ada.Command_Line.Environment (a-colien.ads)::
508 * Ada.Command_Line.Remove (a-colire.ads)::
509 * Ada.Command_Line.Response_File (a-clrefi.ads)::
510 * Ada.Direct_IO.C_Streams (a-diocst.ads)::
511 * Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads)::
512 * Ada.Exceptions.Last_Chance_Handler (a-elchha.ads)::
513 * Ada.Exceptions.Traceback (a-exctra.ads)::
514 * Ada.Sequential_IO.C_Streams (a-siocst.ads)::
515 * Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads)::
516 * Ada.Strings.Unbounded.Text_IO (a-suteio.ads)::
517 * Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads)::
518 * Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads)::
519 * Ada.Text_IO.C_Streams (a-tiocst.ads)::
520 * Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads)::
521 * Ada.Wide_Characters.Unicode (a-wichun.ads)::
522 * Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads)::
523 * Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads)::
524 * Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads)::
525 * Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads)::
526 * Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads)::
527 * GNAT.Altivec (g-altive.ads)::
528 * GNAT.Altivec.Conversions (g-altcon.ads)::
529 * GNAT.Altivec.Vector_Operations (g-alveop.ads)::
530 * GNAT.Altivec.Vector_Types (g-alvety.ads)::
531 * GNAT.Altivec.Vector_Views (g-alvevi.ads)::
532 * GNAT.Array_Split (g-arrspl.ads)::
533 * GNAT.AWK (g-awk.ads)::
534 * GNAT.Bounded_Buffers (g-boubuf.ads)::
535 * GNAT.Bounded_Mailboxes (g-boumai.ads)::
536 * GNAT.Bubble_Sort (g-bubsor.ads)::
537 * GNAT.Bubble_Sort_A (g-busora.ads)::
538 * GNAT.Bubble_Sort_G (g-busorg.ads)::
539 * GNAT.Byte_Order_Mark (g-byorma.ads)::
540 * GNAT.Byte_Swapping (g-bytswa.ads)::
541 * GNAT.Calendar (g-calend.ads)::
542 * GNAT.Calendar.Time_IO (g-catiio.ads)::
543 * GNAT.Case_Util (g-casuti.ads)::
544 * GNAT.CGI (g-cgi.ads)::
545 * GNAT.CGI.Cookie (g-cgicoo.ads)::
546 * GNAT.CGI.Debug (g-cgideb.ads)::
547 * GNAT.Command_Line (g-comlin.ads)::
548 * GNAT.Compiler_Version (g-comver.ads)::
549 * GNAT.Ctrl_C (g-ctrl_c.ads)::
550 * GNAT.CRC32 (g-crc32.ads)::
551 * GNAT.Current_Exception (g-curexc.ads)::
552 * GNAT.Debug_Pools (g-debpoo.ads)::
553 * GNAT.Debug_Utilities (g-debuti.ads)::
554 * GNAT.Decode_String (g-decstr.ads)::
555 * GNAT.Decode_UTF8_String (g-deutst.ads)::
556 * GNAT.Directory_Operations (g-dirope.ads)::
557 * GNAT.Directory_Operations.Iteration (g-diopit.ads)::
558 * GNAT.Dynamic_HTables (g-dynhta.ads)::
559 * GNAT.Dynamic_Tables (g-dyntab.ads)::
560 * GNAT.Encode_String (g-encstr.ads)::
561 * GNAT.Encode_UTF8_String (g-enutst.ads)::
562 * GNAT.Exception_Actions (g-excact.ads)::
563 * GNAT.Exception_Traces (g-exctra.ads)::
564 * GNAT.Exceptions (g-except.ads)::
565 * GNAT.Expect (g-expect.ads)::
566 * GNAT.Expect.TTY (g-exptty.ads)::
567 * GNAT.Float_Control (g-flocon.ads)::
568 * GNAT.Heap_Sort (g-heasor.ads)::
569 * GNAT.Heap_Sort_A (g-hesora.ads)::
570 * GNAT.Heap_Sort_G (g-hesorg.ads)::
571 * GNAT.HTable (g-htable.ads)::
572 * GNAT.IO (g-io.ads)::
573 * GNAT.IO_Aux (g-io_aux.ads)::
574 * GNAT.Lock_Files (g-locfil.ads)::
575 * GNAT.MBBS_Discrete_Random (g-mbdira.ads)::
576 * GNAT.MBBS_Float_Random (g-mbflra.ads)::
577 * GNAT.MD5 (g-md5.ads)::
578 * GNAT.Memory_Dump (g-memdum.ads)::
579 * GNAT.Most_Recent_Exception (g-moreex.ads)::
580 * GNAT.OS_Lib (g-os_lib.ads)::
581 * GNAT.Perfect_Hash_Generators (g-pehage.ads)::
582 * GNAT.Random_Numbers (g-rannum.ads)::
583 * GNAT.Regexp (g-regexp.ads)::
584 * GNAT.Registry (g-regist.ads)::
585 * GNAT.Regpat (g-regpat.ads)::
586 * GNAT.Secondary_Stack_Info (g-sestin.ads)::
587 * GNAT.Semaphores (g-semaph.ads)::
588 * GNAT.Serial_Communications (g-sercom.ads)::
589 * GNAT.SHA1 (g-sha1.ads)::
590 * GNAT.SHA224 (g-sha224.ads)::
591 * GNAT.SHA256 (g-sha256.ads)::
592 * GNAT.SHA384 (g-sha384.ads)::
593 * GNAT.SHA512 (g-sha512.ads)::
594 * GNAT.Signals (g-signal.ads)::
595 * GNAT.Sockets (g-socket.ads)::
596 * GNAT.Source_Info (g-souinf.ads)::
597 * GNAT.Spelling_Checker (g-speche.ads)::
598 * GNAT.Spelling_Checker_Generic (g-spchge.ads)::
599 * GNAT.Spitbol.Patterns (g-spipat.ads)::
600 * GNAT.Spitbol (g-spitbo.ads)::
601 * GNAT.Spitbol.Table_Boolean (g-sptabo.ads)::
602 * GNAT.Spitbol.Table_Integer (g-sptain.ads)::
603 * GNAT.Spitbol.Table_VString (g-sptavs.ads)::
604 * GNAT.SSE (g-sse.ads)::
605 * GNAT.SSE.Vector_Types (g-ssvety.ads)::
606 * GNAT.Strings (g-string.ads)::
607 * GNAT.String_Split (g-strspl.ads)::
608 * GNAT.Table (g-table.ads)::
609 * GNAT.Task_Lock (g-tasloc.ads)::
610 * GNAT.Threads (g-thread.ads)::
611 * GNAT.Time_Stamp (g-timsta.ads)::
612 * GNAT.Traceback (g-traceb.ads)::
613 * GNAT.Traceback.Symbolic (g-trasym.ads)::
614 * GNAT.UTF_32 (g-utf_32.ads)::
615 * GNAT.UTF_32_Spelling_Checker (g-u3spch.ads)::
616 * GNAT.Wide_Spelling_Checker (g-wispch.ads)::
617 * GNAT.Wide_String_Split (g-wistsp.ads)::
618 * GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads)::
619 * GNAT.Wide_Wide_String_Split (g-zistsp.ads)::
620 * Interfaces.C.Extensions (i-cexten.ads)::
621 * Interfaces.C.Streams (i-cstrea.ads)::
622 * Interfaces.CPP (i-cpp.ads)::
623 * Interfaces.Packed_Decimal (i-pacdec.ads)::
624 * Interfaces.VxWorks (i-vxwork.ads)::
625 * Interfaces.VxWorks.IO (i-vxwoio.ads)::
626 * System.Address_Image (s-addima.ads)::
627 * System.Assertions (s-assert.ads)::
628 * System.Memory (s-memory.ads)::
629 * System.Multiprocessors (s-multip.ads)::
630 * System.Multiprocessors.Dispatching_Domains (s-mudido.ads)::
631 * System.Partition_Interface (s-parint.ads)::
632 * System.Pool_Global (s-pooglo.ads)::
633 * System.Pool_Local (s-pooloc.ads)::
634 * System.Restrictions (s-restri.ads)::
635 * System.Rident (s-rident.ads)::
636 * System.Strings.Stream_Ops (s-ststop.ads)::
637 * System.Task_Info (s-tasinf.ads)::
638 * System.Wch_Cnv (s-wchcnv.ads)::
639 * System.Wch_Con (s-wchcon.ads)::
641 Text_IO
643 * Text_IO Stream Pointer Positioning::
644 * Text_IO Reading and Writing Non-Regular Files::
645 * Get_Immediate::
646 * Treating Text_IO Files as Streams::
647 * Text_IO Extensions::
648 * Text_IO Facilities for Unbounded Strings::
650 Wide_Text_IO
652 * Wide_Text_IO Stream Pointer Positioning::
653 * Wide_Text_IO Reading and Writing Non-Regular Files::
655 Wide_Wide_Text_IO
657 * Wide_Wide_Text_IO Stream Pointer Positioning::
658 * Wide_Wide_Text_IO Reading and Writing Non-Regular Files::
660 Interfacing to Other Languages
662 * Interfacing to C::
663 * Interfacing to C++::
664 * Interfacing to COBOL::
665 * Interfacing to Fortran::
666 * Interfacing to non-GNAT Ada code::
668 Specialized Needs Annexes
670 Implementation of Specific Ada Features
671 * Machine Code Insertions::
672 * GNAT Implementation of Tasking::
673 * GNAT Implementation of Shared Passive Packages::
674 * Code Generation for Array Aggregates::
675 * The Size of Discriminated Records with Default Discriminants::
676 * Strict Conformance to the Ada Reference Manual::
678 Implementation of Ada 2012 Features
680 Obsolescent Features
682 GNU Free Documentation License
684 Index
685 @end menu
687 @end ifnottex
689 @node About This Guide
690 @unnumbered About This Guide
692 @noindent
693 This manual contains useful information in writing programs using the
694 @value{EDITION} compiler.  It includes information on implementation dependent
695 characteristics of @value{EDITION}, including all the information required by
696 Annex M of the Ada language standard.
698 @value{EDITION} implements Ada 95, Ada 2005 and Ada 2012, and it may also be
699 invoked in Ada 83 compatibility mode.
700 By default, @value{EDITION} assumes Ada 2012,
701 but you can override with a compiler switch
702 to explicitly specify the language version.
703 (Please refer to @ref{Compiling Different Versions of Ada,,, gnat_ugn,
704 @value{EDITION} User's Guide}, for details on these switches.)
705 Throughout this manual, references to ``Ada'' without a year suffix
706 apply to all the Ada versions of the language.
708 Ada is designed to be highly portable.
709 In general, a program will have the same effect even when compiled by
710 different compilers on different platforms.
711 However, since Ada is designed to be used in a
712 wide variety of applications, it also contains a number of system
713 dependent features to be used in interfacing to the external world.
714 @cindex Implementation-dependent features
715 @cindex Portability
717 Note: Any program that makes use of implementation-dependent features
718 may be non-portable.  You should follow good programming practice and
719 isolate and clearly document any sections of your program that make use
720 of these features in a non-portable manner.
722 @ifset PROEDITION
723 For ease of exposition, ``@value{EDITION}'' will be referred to simply as
724 ``GNAT'' in the remainder of this document.
725 @end ifset
727 @menu
728 * What This Reference Manual Contains::
729 * Conventions::
730 * Related Information::
731 @end menu
733 @node What This Reference Manual Contains
734 @unnumberedsec What This Reference Manual Contains
736 @noindent
737 This reference manual contains the following chapters:
739 @itemize @bullet
740 @item
741 @ref{Implementation Defined Pragmas}, lists GNAT implementation-dependent
742 pragmas, which can be used to extend and enhance the functionality of the
743 compiler.
745 @item
746 @ref{Implementation Defined Attributes}, lists GNAT
747 implementation-dependent attributes, which can be used to extend and
748 enhance the functionality of the compiler.
750 @item
751 @ref{Standard and Implementation Defined Restrictions}, lists GNAT
752 implementation-dependent restrictions, which can be used to extend and
753 enhance the functionality of the compiler.
755 @item
756 @ref{Implementation Advice}, provides information on generally
757 desirable behavior which are not requirements that all compilers must
758 follow since it cannot be provided on all systems, or which may be
759 undesirable on some systems.
761 @item
762 @ref{Implementation Defined Characteristics}, provides a guide to
763 minimizing implementation dependent features.
765 @item
766 @ref{Intrinsic Subprograms}, describes the intrinsic subprograms
767 implemented by GNAT, and how they can be imported into user
768 application programs.
770 @item
771 @ref{Representation Clauses and Pragmas}, describes in detail the
772 way that GNAT represents data, and in particular the exact set
773 of representation clauses and pragmas that is accepted.
775 @item
776 @ref{Standard Library Routines}, provides a listing of packages and a
777 brief description of the functionality that is provided by Ada's
778 extensive set of standard library routines as implemented by GNAT@.
780 @item
781 @ref{The Implementation of Standard I/O}, details how the GNAT
782 implementation of the input-output facilities.
784 @item
785 @ref{The GNAT Library}, is a catalog of packages that complement
786 the Ada predefined library.
788 @item
789 @ref{Interfacing to Other Languages}, describes how programs
790 written in Ada using GNAT can be interfaced to other programming
791 languages.
793 @ref{Specialized Needs Annexes}, describes the GNAT implementation of all
794 of the specialized needs annexes.
796 @item
797 @ref{Implementation of Specific Ada Features}, discusses issues related
798 to GNAT's implementation of machine code insertions, tasking, and several
799 other features.
801 @item
802 @ref{Implementation of Ada 2012 Features}, describes the status of the
803 GNAT implementation of the Ada 2012 language standard.
805 @item
806 @ref{Obsolescent Features} documents implementation dependent features,
807 including pragmas and attributes, which are considered obsolescent, since
808 there are other preferred ways of achieving the same results. These
809 obsolescent forms are retained for backwards compatibility.
811 @end itemize
813 @cindex Ada 95 Language Reference Manual
814 @cindex Ada 2005 Language Reference Manual
815 @noindent
816 This reference manual assumes a basic familiarity with the Ada 95 language, as
817 described in the International Standard ANSI/ISO/IEC-8652:1995,
818 January 1995.
819 It does not require knowledge of the new features introduced by Ada 2005,
820 (officially known as ISO/IEC 8652:1995 with Technical Corrigendum 1
821 and Amendment 1).
822 Both reference manuals are included in the GNAT documentation
823 package.
825 @node Conventions
826 @unnumberedsec Conventions
827 @cindex Conventions, typographical
828 @cindex Typographical conventions
830 @noindent
831 Following are examples of the typographical and graphic conventions used
832 in this guide:
834 @itemize @bullet
835 @item
836 @code{Functions}, @code{utility program names}, @code{standard names},
837 and @code{classes}.
839 @item
840 @code{Option flags}
842 @item
843 @file{File names}, @samp{button names}, and @samp{field names}.
845 @item
846 @code{Variables}, @env{environment variables}, and @var{metasyntactic
847 variables}.
849 @item
850 @emph{Emphasis}.
852 @item
853 [optional information or parameters]
855 @item
856 Examples are described by text
857 @smallexample
858 and then shown this way.
859 @end smallexample
860 @end itemize
862 @noindent
863 Commands that are entered by the user are preceded in this manual by the
864 characters @samp{$ } (dollar sign followed by space).  If your system uses this
865 sequence as a prompt, then the commands will appear exactly as you see them
866 in the manual.  If your system uses some other prompt, then the command will
867 appear with the @samp{$} replaced by whatever prompt character you are using.
869 @node Related Information
870 @unnumberedsec Related Information
871 @noindent
872 See the following documents for further information on GNAT:
874 @itemize @bullet
875 @item
876 @xref{Top, @value{EDITION} User's Guide, About This Guide, gnat_ugn,
877 @value{EDITION} User's Guide}, which provides information on how to use the
878 GNAT compiler system.
880 @item
881 @cite{Ada 95 Reference Manual}, which contains all reference
882 material for the Ada 95 programming language.
884 @item
885 @cite{Ada 95 Annotated Reference Manual}, which is an annotated version
886 of the Ada 95 standard.  The annotations describe
887 detailed aspects of the design decision, and in particular contain useful
888 sections on Ada 83 compatibility.
890 @item
891 @cite{Ada 2005 Reference Manual}, which contains all reference
892 material for the Ada 2005 programming language.
894 @item
895 @cite{Ada 2005 Annotated Reference Manual}, which is an annotated version
896 of the Ada 2005 standard.  The annotations describe
897 detailed aspects of the design decision, and in particular contain useful
898 sections on Ada 83 and Ada 95 compatibility.
900 @item
901 @cite{DEC Ada, Technical Overview and Comparison on DIGITAL Platforms},
902 which contains specific information on compatibility between GNAT and
903 DEC Ada 83 systems.
905 @item
906 @cite{DEC Ada, Language Reference Manual, part number AA-PYZAB-TK} which
907 describes in detail the pragmas and attributes provided by the DEC Ada 83
908 compiler system.
910 @end itemize
912 @node Implementation Defined Pragmas
913 @chapter Implementation Defined Pragmas
915 @noindent
916 Ada defines a set of pragmas that can be used to supply additional
917 information to the compiler.  These language defined pragmas are
918 implemented in GNAT and work as described in the Ada Reference Manual.
920 In addition, Ada allows implementations to define additional pragmas
921 whose meaning is defined by the implementation.  GNAT provides a number
922 of these implementation-defined pragmas, which can be used to extend
923 and enhance the functionality of the compiler.  This section of the GNAT
924 Reference Manual describes these additional pragmas.
926 Note that any program using these pragmas might not be portable to other
927 compilers (although GNAT implements this set of pragmas on all
928 platforms).  Therefore if portability to other compilers is an important
929 consideration, the use of these pragmas should be minimized.
931 @menu
932 * Pragma Abort_Defer::
933 * Pragma Abstract_State::
934 * Pragma Ada_83::
935 * Pragma Ada_95::
936 * Pragma Ada_05::
937 * Pragma Ada_2005::
938 * Pragma Ada_12::
939 * Pragma Ada_2012::
940 * Pragma Allow_Integer_Address::
941 * Pragma Annotate::
942 * Pragma Assert::
943 * Pragma Assert_And_Cut::
944 * Pragma Assertion_Policy::
945 * Pragma Assume::
946 * Pragma Assume_No_Invalid_Values::
947 * Pragma Attribute_Definition::
948 * Pragma Ast_Entry::
949 * Pragma C_Pass_By_Copy::
950 * Pragma Check::
951 * Pragma Check_Float_Overflow::
952 * Pragma Check_Name::
953 * Pragma Check_Policy::
954 * Pragma CIL_Constructor::
955 * Pragma Comment::
956 * Pragma Common_Object::
957 * Pragma Compile_Time_Error::
958 * Pragma Compile_Time_Warning::
959 * Pragma Compiler_Unit::
960 * Pragma Complete_Representation::
961 * Pragma Complex_Representation::
962 * Pragma Component_Alignment::
963 * Pragma Contract_Cases::
964 * Pragma Convention_Identifier::
965 * Pragma CPP_Class::
966 * Pragma CPP_Constructor::
967 * Pragma CPP_Virtual::
968 * Pragma CPP_Vtable::
969 * Pragma CPU::
970 * Pragma Debug::
971 * Pragma Debug_Policy::
972 * Pragma Default_Storage_Pool::
973 * Pragma Depends::
974 * Pragma Detect_Blocking::
975 * Pragma Disable_Atomic_Synchronization::
976 * Pragma Dispatching_Domain::
977 * Pragma Elaboration_Checks::
978 * Pragma Eliminate::
979 * Pragma Enable_Atomic_Synchronization::
980 * Pragma Export_Exception::
981 * Pragma Export_Function::
982 * Pragma Export_Object::
983 * Pragma Export_Procedure::
984 * Pragma Export_Value::
985 * Pragma Export_Valued_Procedure::
986 * Pragma Extend_System::
987 * Pragma Extensions_Allowed::
988 * Pragma External::
989 * Pragma External_Name_Casing::
990 * Pragma Fast_Math::
991 * Pragma Favor_Top_Level::
992 * Pragma Finalize_Storage_Only::
993 * Pragma Float_Representation::
994 * Pragma Global::
995 * Pragma Ident::
996 * Pragma Implementation_Defined::
997 * Pragma Implemented::
998 * Pragma Implicit_Packing::
999 * Pragma Import_Exception::
1000 * Pragma Import_Function::
1001 * Pragma Import_Object::
1002 * Pragma Import_Procedure::
1003 * Pragma Import_Valued_Procedure::
1004 * Pragma Independent::
1005 * Pragma Independent_Components::
1006 * Pragma Initial_Condition::
1007 * Pragma Initialize_Scalars::
1008 * Pragma Initializes::
1009 * Pragma Inline_Always::
1010 * Pragma Inline_Generic::
1011 * Pragma Interface::
1012 * Pragma Interface_Name::
1013 * Pragma Interrupt_Handler::
1014 * Pragma Interrupt_State::
1015 * Pragma Invariant::
1016 * Pragma Java_Constructor::
1017 * Pragma Java_Interface::
1018 * Pragma Keep_Names::
1019 * Pragma License::
1020 * Pragma Link_With::
1021 * Pragma Linker_Alias::
1022 * Pragma Linker_Constructor::
1023 * Pragma Linker_Destructor::
1024 * Pragma Linker_Section::
1025 * Pragma Long_Float::
1026 * Pragma Loop_Invariant::
1027 * Pragma Loop_Optimize::
1028 * Pragma Loop_Variant::
1029 * Pragma Machine_Attribute::
1030 * Pragma Main::
1031 * Pragma Main_Storage::
1032 * Pragma No_Body::
1033 * Pragma No_Inline::
1034 * Pragma No_Return::
1035 * Pragma No_Run_Time::
1036 * Pragma No_Strict_Aliasing::
1037 * Pragma Normalize_Scalars::
1038 * Pragma Obsolescent::
1039 * Pragma Optimize_Alignment::
1040 * Pragma Ordered::
1041 * Pragma Overflow_Mode::
1042 * Pragma Overriding_Renamings::
1043 * Pragma Partition_Elaboration_Policy::
1044 * Pragma Passive::
1045 * Pragma Persistent_BSS::
1046 * Pragma Polling::
1047 * Pragma Post::
1048 * Pragma Postcondition::
1049 * Pragma Post_Class::
1050 * Pragma Pre::
1051 * Pragma Precondition::
1052 * Pragma Predicate::
1053 * Pragma Preelaborable_Initialization::
1054 * Pragma Preelaborate_05::
1055 * Pragma Pre_Class::
1056 * Pragma Priority_Specific_Dispatching::
1057 * Pragma Profile::
1058 * Pragma Profile_Warnings::
1059 * Pragma Propagate_Exceptions::
1060 * Pragma Psect_Object::
1061 * Pragma Pure_05::
1062 * Pragma Pure_12::
1063 * Pragma Pure_Function::
1064 * Pragma Ravenscar::
1065 * Pragma Refined_State::
1066 * Pragma Relative_Deadline::
1067 * Pragma Remote_Access_Type::
1068 * Pragma Restricted_Run_Time::
1069 * Pragma Restriction_Warnings::
1070 * Pragma Share_Generic::
1071 * Pragma Shared::
1072 * Pragma Short_Circuit_And_Or::
1073 * Pragma Short_Descriptors::
1074 * Pragma Simple_Storage_Pool_Type::
1075 * Pragma Source_File_Name::
1076 * Pragma Source_File_Name_Project::
1077 * Pragma Source_Reference::
1078 * Pragma SPARK_Mode::
1079 * Pragma Static_Elaboration_Desired::
1080 * Pragma Stream_Convert::
1081 * Pragma Style_Checks::
1082 * Pragma Subtitle::
1083 * Pragma Suppress::
1084 * Pragma Suppress_All::
1085 * Pragma Suppress_Debug_Info::
1086 * Pragma Suppress_Exception_Locations::
1087 * Pragma Suppress_Initialization::
1088 * Pragma Task_Info::
1089 * Pragma Task_Name::
1090 * Pragma Task_Storage::
1091 * Pragma Test_Case::
1092 * Pragma Thread_Local_Storage::
1093 * Pragma Time_Slice::
1094 * Pragma Title::
1095 * Pragma Type_Invariant::
1096 * Pragma Type_Invariant_Class::
1097 * Pragma Unchecked_Union::
1098 * Pragma Unimplemented_Unit::
1099 * Pragma Universal_Aliasing ::
1100 * Pragma Universal_Data::
1101 * Pragma Unmodified::
1102 * Pragma Unreferenced::
1103 * Pragma Unreferenced_Objects::
1104 * Pragma Unreserve_All_Interrupts::
1105 * Pragma Unsuppress::
1106 * Pragma Use_VADS_Size::
1107 * Pragma Validity_Checks::
1108 * Pragma Volatile::
1109 * Pragma Warnings::
1110 * Pragma Weak_External::
1111 * Pragma Wide_Character_Encoding::
1112 @end menu
1114 @node Pragma Abort_Defer
1115 @unnumberedsec Pragma Abort_Defer
1116 @findex Abort_Defer
1117 @cindex Deferring aborts
1118 @noindent
1119 Syntax:
1120 @smallexample
1121 pragma Abort_Defer;
1122 @end smallexample
1124 @noindent
1125 This pragma must appear at the start of the statement sequence of a
1126 handled sequence of statements (right after the @code{begin}).  It has
1127 the effect of deferring aborts for the sequence of statements (but not
1128 for the declarations or handlers, if any, associated with this statement
1129 sequence).
1131 @node Pragma Abstract_State
1132 @unnumberedsec Pragma Abstract_State
1133 @findex Abstract_State
1134 @noindent
1135 For the description of this pragma, see SPARK 2014 Reference Manual,
1136 section 7.1.4.
1138 @node Pragma Ada_83
1139 @unnumberedsec Pragma Ada_83
1140 @findex Ada_83
1141 @noindent
1142 Syntax:
1143 @smallexample @c ada
1144 pragma Ada_83;
1145 @end smallexample
1147 @noindent
1148 A configuration pragma that establishes Ada 83 mode for the unit to
1149 which it applies, regardless of the mode set by the command line
1150 switches.  In Ada 83 mode, GNAT attempts to be as compatible with
1151 the syntax and semantics of Ada 83, as defined in the original Ada
1152 83 Reference Manual as possible.  In particular, the keywords added by Ada 95
1153 and Ada 2005 are not recognized, optional package bodies are allowed,
1154 and generics may name types with unknown discriminants without using
1155 the @code{(<>)} notation.  In addition, some but not all of the additional
1156 restrictions of Ada 83 are enforced.
1158 Ada 83 mode is intended for two purposes.  Firstly, it allows existing
1159 Ada 83 code to be compiled and adapted to GNAT with less effort.
1160 Secondly, it aids in keeping code backwards compatible with Ada 83.
1161 However, there is no guarantee that code that is processed correctly
1162 by GNAT in Ada 83 mode will in fact compile and execute with an Ada
1163 83 compiler, since GNAT does not enforce all the additional checks
1164 required by Ada 83.
1166 @node Pragma Ada_95
1167 @unnumberedsec Pragma Ada_95
1168 @findex Ada_95
1169 @noindent
1170 Syntax:
1171 @smallexample @c ada
1172 pragma Ada_95;
1173 @end smallexample
1175 @noindent
1176 A configuration pragma that establishes Ada 95 mode for the unit to which
1177 it applies, regardless of the mode set by the command line switches.
1178 This mode is set automatically for the @code{Ada} and @code{System}
1179 packages and their children, so you need not specify it in these
1180 contexts.  This pragma is useful when writing a reusable component that
1181 itself uses Ada 95 features, but which is intended to be usable from
1182 either Ada 83 or Ada 95 programs.
1184 @node Pragma Ada_05
1185 @unnumberedsec Pragma Ada_05
1186 @findex Ada_05
1187 @noindent
1188 Syntax:
1189 @smallexample @c ada
1190 pragma Ada_05;
1191 @end smallexample
1193 @noindent
1194 A configuration pragma that establishes Ada 2005 mode for the unit to which
1195 it applies, regardless of the mode set by the command line switches.
1196 This pragma is useful when writing a reusable component that
1197 itself uses Ada 2005 features, but which is intended to be usable from
1198 either Ada 83 or Ada 95 programs.
1200 @node Pragma Ada_2005
1201 @unnumberedsec Pragma Ada_2005
1202 @findex Ada_2005
1203 @noindent
1204 Syntax:
1205 @smallexample @c ada
1206 pragma Ada_2005;
1207 @end smallexample
1209 @noindent
1210 This configuration pragma is a synonym for pragma Ada_05 and has the
1211 same syntax and effect.
1213 @node Pragma Ada_12
1214 @unnumberedsec Pragma Ada_12
1215 @findex Ada_12
1216 @noindent
1217 Syntax:
1218 @smallexample @c ada
1219 pragma Ada_12;
1220 @end smallexample
1222 @noindent
1223 A configuration pragma that establishes Ada 2012 mode for the unit to which
1224 it applies, regardless of the mode set by the command line switches.
1225 This mode is set automatically for the @code{Ada} and @code{System}
1226 packages and their children, so you need not specify it in these
1227 contexts.  This pragma is useful when writing a reusable component that
1228 itself uses Ada 2012 features, but which is intended to be usable from
1229 Ada 83, Ada 95, or Ada 2005 programs.
1231 @node Pragma Ada_2012
1232 @unnumberedsec Pragma Ada_2012
1233 @findex Ada_2005
1234 @noindent
1235 Syntax:
1236 @smallexample @c ada
1237 pragma Ada_2012;
1238 @end smallexample
1240 @noindent
1241 This configuration pragma is a synonym for pragma Ada_12 and has the
1242 same syntax and effect.
1244 @node Pragma Allow_Integer_Address
1245 @unnumberedsec Pragma Allow_Integer_Address
1246 @findex Allow_Integer_Address
1247 @noindent
1248 Syntax:
1249 @smallexample @c ada
1250 pragma Allow_Integer_Address;
1251 @end smallexample
1253 @noindent
1254 In almost all versions of GNAT, @code{System.Address} is a private
1255 type in accordance with the implementation advice in the RM. This
1256 means that integer values,
1257 in particular integer literals, are not allowed as address values.
1258 If the configuration pragma
1259 @code{Allow_Integer_Address} is given, then integer expressions may
1260 be used anywhere a value of type @code{System.Address} is required.
1261 The effect is to introduce an implicit unchecked conversion from the
1262 integer value to type @code{System.Address}. The reverse case of using
1263 an address where an integer type is required is handled analogously.
1264 The following example compiles without errors:
1266 @smallexample @c ada
1267 pragma Allow_Integer_Address;
1268 with System; use System;
1269 package AddrAsInt is
1270    X : Integer;
1271    Y : Integer;
1272    for X'Address use 16#1240#;
1273    for Y use at 16#3230#;
1274    m : Address := 16#4000#;
1275    n : constant Address := 4000;
1276    p : constant Address := Address (X + Y);
1277    v : Integer := y'Address;
1278    w : constant Integer := Integer (Y'Address);
1279    type R is new integer;
1280    RR : R := 1000;
1281    Z : Integer;
1282    for Z'Address use RR;
1283 end AddrAsInt;
1284 @end smallexample
1286 @noindent
1287 Note that pragma @code{Allow_Integer_Address} is ignored if
1288 @code{System.Address}
1289 is not a private type. In implementations of @code{GNAT} where
1290 System.Address is a visible integer type (notably the implementations
1291 for @code{OpenVMS}), this pragma serves no purpose but is ignored
1292 rather than rejected to allow common sets of sources to be used
1293 in the two situations.
1295 @node Pragma Annotate
1296 @unnumberedsec Pragma Annotate
1297 @findex Annotate
1298 @noindent
1299 Syntax:
1300 @smallexample @c ada
1301 pragma Annotate (IDENTIFIER [,IDENTIFIER @{, ARG@}]);
1303 ARG ::= NAME | EXPRESSION
1304 @end smallexample
1306 @noindent
1307 This pragma is used to annotate programs.  @var{identifier} identifies
1308 the type of annotation.  GNAT verifies that it is an identifier, but does
1309 not otherwise analyze it. The second optional identifier is also left
1310 unanalyzed, and by convention is used to control the action of the tool to
1311 which the annotation is addressed.  The remaining @var{arg} arguments
1312 can be either string literals or more generally expressions.
1313 String literals are assumed to be either of type
1314 @code{Standard.String} or else @code{Wide_String} or @code{Wide_Wide_String}
1315 depending on the character literals they contain.
1316 All other kinds of arguments are analyzed as expressions, and must be
1317 unambiguous.
1319 The analyzed pragma is retained in the tree, but not otherwise processed
1320 by any part of the GNAT compiler, except to generate corresponding note
1321 lines in the generated ALI file. For the format of these note lines, see
1322 the compiler source file lib-writ.ads. This pragma is intended for use by
1323 external tools, including ASIS@. The use of pragma Annotate does not
1324 affect the compilation process in any way. This pragma may be used as
1325 a configuration pragma.
1327 @node Pragma Assert
1328 @unnumberedsec Pragma Assert
1329 @findex Assert
1330 @noindent
1331 Syntax:
1332 @smallexample @c ada
1333 pragma Assert (
1334   boolean_EXPRESSION
1335   [, string_EXPRESSION]);
1336 @end smallexample
1338 @noindent
1339 The effect of this pragma depends on whether the corresponding command
1340 line switch is set to activate assertions.  The pragma expands into code
1341 equivalent to the following:
1343 @smallexample @c ada
1344 if assertions-enabled then
1345    if not boolean_EXPRESSION then
1346       System.Assertions.Raise_Assert_Failure
1347         (string_EXPRESSION);
1348    end if;
1349 end if;
1350 @end smallexample
1352 @noindent
1353 The string argument, if given, is the message that will be associated
1354 with the exception occurrence if the exception is raised.  If no second
1355 argument is given, the default message is @samp{@var{file}:@var{nnn}},
1356 where @var{file} is the name of the source file containing the assert,
1357 and @var{nnn} is the line number of the assert.  A pragma is not a
1358 statement, so if a statement sequence contains nothing but a pragma
1359 assert, then a null statement is required in addition, as in:
1361 @smallexample @c ada
1362 @dots{}
1363 if J > 3 then
1364    pragma Assert (K > 3, "Bad value for K");
1365    null;
1366 end if;
1367 @end smallexample
1369 @noindent
1370 Note that, as with the @code{if} statement to which it is equivalent, the
1371 type of the expression is either @code{Standard.Boolean}, or any type derived
1372 from this standard type.
1374 Assert checks can be either checked or ignored. By default they are ignored.
1375 They will be checked if either the command line switch @option{-gnata} is
1376 used, or if an @code{Assertion_Policy} or @code{Check_Policy} pragma is used
1377 to enable @code{Assert_Checks}.
1379 If assertions are ignored, then there
1380 is no run-time effect (and in particular, any side effects from the
1381 expression will not occur at run time).  (The expression is still
1382 analyzed at compile time, and may cause types to be frozen if they are
1383 mentioned here for the first time).
1385 If assertions are checked, then the given expression is tested, and if
1386 it is @code{False} then @code{System.Assertions.Raise_Assert_Failure} is called
1387 which results in the raising of @code{Assert_Failure} with the given message.
1389 You should generally avoid side effects in the expression arguments of
1390 this pragma, because these side effects will turn on and off with the
1391 setting of the assertions mode, resulting in assertions that have an
1392 effect on the program.  However, the expressions are analyzed for
1393 semantic correctness whether or not assertions are enabled, so turning
1394 assertions on and off cannot affect the legality of a program.
1396 Note that the implementation defined policy @code{DISABLE}, given in a
1397 pragma @code{Assertion_Policy}, can be used to suppress this semantic analysis.
1399 Note: this is a standard language-defined pragma in versions
1400 of Ada from 2005 on. In GNAT, it is implemented in all versions
1401 of Ada, and the DISABLE policy is an implementation-defined
1402 addition.
1404 @node Pragma Assert_And_Cut
1405 @unnumberedsec Pragma Assert_And_Cut
1406 @findex Assert_And_Cut
1407 @noindent
1408 Syntax:
1409 @smallexample @c ada
1410 pragma Assert_And_Cut (
1411   boolean_EXPRESSION
1412   [, string_EXPRESSION]);
1413 @end smallexample
1415 @noindent
1416 The effect of this pragma is identical to that of pragma @code{Assert},
1417 except that in an @code{Assertion_Policy} pragma, the identifier
1418 @code{Assert_And_Cut} is used to control whether it is ignored or checked
1419 (or disabled).
1421 The intention is that this be used within a subprogram when the
1422 given test expresion sums up all the work done so far in the
1423 subprogram, so that the rest of the subprogram can be verified
1424 (informally or formally) using only the entry preconditions,
1425 and the expression in this pragma. This allows dividing up
1426 a subprogram into sections for the purposes of testing or
1427 formal verification. The pragma also serves as useful
1428 documentation.
1430 @node Pragma Assertion_Policy
1431 @unnumberedsec Pragma Assertion_Policy
1432 @findex Assertion_Policy
1433 @noindent
1434 Syntax:
1435 @smallexample @c ada
1436 pragma Assertion_Policy (CHECK | DISABLE | IGNORE);
1438 pragma Assertion_Policy (
1439     ASSERTION_KIND => POLICY_IDENTIFIER
1440  @{, ASSERTION_KIND => POLICY_IDENTIFIER@});
1442 ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND
1444 RM_ASSERTION_KIND ::= Assert               |
1445                       Static_Predicate     |
1446                       Dynamic_Predicate    |
1447                       Pre                  |
1448                       Pre'Class            |
1449                       Post                 |
1450                       Post'Class           |
1451                       Type_Invariant       |
1452                       Type_Invariant'Class
1454 ID_ASSERTION_KIND ::= Assertions           |
1455                       Assert_And_Cut       |
1456                       Assume               |
1457                       Contract_Cases       |
1458                       Debug                |
1459                       Invariant            |
1460                       Invariant'Class      |
1461                       Loop_Invariant       |
1462                       Loop_Variant         |
1463                       Postcondition        |
1464                       Precondition         |
1465                       Predicate            |
1466                       Refined_Post         |
1467                       Statement_Assertions
1469 POLICY_IDENTIFIER ::= Check | Disable | Ignore
1470 @end smallexample
1472 @noindent
1473 This is a standard Ada 2012 pragma that is available as an
1474 implementation-defined pragma in earlier versions of Ada.
1475 The assertion kinds @code{RM_ASSERTION_KIND} are those defined in
1476 the Ada standard. The assertion kinds @code{ID_ASSERTION_KIND}
1477 are implementation defined additions recognized by the GNAT compiler.
1479 The pragma applies in both cases to pragmas and aspects with matching
1480 names, e.g. @code{Pre} applies to the Pre aspect, and @code{Precondition}
1481 applies to both the @code{Precondition} pragma
1482 and the aspect @code{Precondition}. Note that the identifiers for
1483 pragmas Pre_Class and Post_Class are Pre'Class and Post'Class (not
1484 Pre_Class and Post_Class), since these pragmas are intended to be
1485 identical to the corresponding aspects).
1487 If the policy is @code{CHECK}, then assertions are enabled, i.e.
1488 the corresponding pragma or aspect is activated.
1489 If the policy is @code{IGNORE}, then assertions are ignored, i.e.
1490 the corresponding pragma or aspect is deactivated.
1491 This pragma overrides the effect of the @option{-gnata} switch on the
1492 command line.
1494 The implementation defined policy @code{DISABLE} is like
1495 @code{IGNORE} except that it completely disables semantic
1496 checking of the corresponding pragma or aspect. This is
1497 useful when the pragma or aspect argument references subprograms
1498 in a with'ed package which is replaced by a dummy package
1499 for the final build.
1501 The implementation defined policy @code{Assertions} applies to all
1502 assertion kinds. The form with no assertion kind given implies this
1503 choice, so it applies to all assertion kinds (RM defined, and
1504 implementation defined).
1506 The implementation defined policy @code{Statement_Assertions}
1507 applies to @code{Assert}, @code{Assert_And_Cut},
1508 @code{Assume}, @code{Loop_Invariant}, and @code{Loop_Variant}.
1510 @node Pragma Assume
1511 @unnumberedsec Pragma Assume
1512 @findex Assume
1513 @noindent
1514 Syntax:
1515 @smallexample @c ada
1516 pragma Assume (
1517   boolean_EXPRESSION
1518   [, string_EXPRESSION]);
1519 @end smallexample
1521 @noindent
1522 The effect of this pragma is identical to that of pragma @code{Assert},
1523 except that in an @code{Assertion_Policy} pragma, the identifier
1524 @code{Assume} is used to control whether it is ignored or checked
1525 (or disabled).
1527 The intention is that this be used for assumptions about the
1528 external environment. So you cannot expect to verify formally
1529 or informally that the condition is met, this must be
1530 established by examining things outside the program itself.
1531 For example, we may have code that depends on the size of
1532 @code{Long_Long_Integer} being at least 64. So we could write:
1534 @smallexample @c ada
1535 pragma Assume (Long_Long_Integer'Size >= 64);
1536 @end smallexample
1538 @noindent
1539 This assumption cannot be proved from the program itself,
1540 but it acts as a useful run-time check that the assumption
1541 is met, and documents the need to ensure that it is met by
1542 reference to information outside the program.
1544 @node Pragma Assume_No_Invalid_Values
1545 @unnumberedsec Pragma Assume_No_Invalid_Values
1546 @findex Assume_No_Invalid_Values
1547 @cindex Invalid representations
1548 @cindex Invalid values
1549 @noindent
1550 Syntax:
1551 @smallexample @c ada
1552 pragma Assume_No_Invalid_Values (On | Off);
1553 @end smallexample
1555 @noindent
1556 This is a configuration pragma that controls the assumptions made by the
1557 compiler about the occurrence of invalid representations (invalid values)
1558 in the code.
1560 The default behavior (corresponding to an Off argument for this pragma), is
1561 to assume that values may in general be invalid unless the compiler can
1562 prove they are valid. Consider the following example:
1564 @smallexample @c ada
1565 V1 : Integer range 1 .. 10;
1566 V2 : Integer range 11 .. 20;
1568 for J in V2 .. V1 loop
1569    ...
1570 end loop;
1571 @end smallexample
1573 @noindent
1574 if V1 and V2 have valid values, then the loop is known at compile
1575 time not to execute since the lower bound must be greater than the
1576 upper bound. However in default mode, no such assumption is made,
1577 and the loop may execute. If @code{Assume_No_Invalid_Values (On)}
1578 is given, the compiler will assume that any occurrence of a variable
1579 other than in an explicit @code{'Valid} test always has a valid
1580 value, and the loop above will be optimized away.
1582 The use of @code{Assume_No_Invalid_Values (On)} is appropriate if
1583 you know your code is free of uninitialized variables and other
1584 possible sources of invalid representations, and may result in
1585 more efficient code. A program that accesses an invalid representation
1586 with this pragma in effect is erroneous, so no guarantees can be made
1587 about its behavior.
1589 It is peculiar though permissible to use this pragma in conjunction
1590 with validity checking (-gnatVa). In such cases, accessing invalid
1591 values will generally give an exception, though formally the program
1592 is erroneous so there are no guarantees that this will always be the
1593 case, and it is recommended that these two options not be used together.
1595 @node Pragma Ast_Entry
1596 @unnumberedsec Pragma Ast_Entry
1597 @cindex OpenVMS
1598 @findex Ast_Entry
1599 @noindent
1600 Syntax:
1601 @smallexample @c ada
1602 pragma AST_Entry (entry_IDENTIFIER);
1603 @end smallexample
1605 @noindent
1606 This pragma is implemented only in the OpenVMS implementation of GNAT@.  The
1607 argument is the simple name of a single entry; at most one @code{AST_Entry}
1608 pragma is allowed for any given entry.  This pragma must be used in
1609 conjunction with the @code{AST_Entry} attribute, and is only allowed after
1610 the entry declaration and in the same task type specification or single task
1611 as the entry to which it applies.  This pragma specifies that the given entry
1612 may be used to handle an OpenVMS asynchronous system trap (@code{AST})
1613 resulting from an OpenVMS system service call.  The pragma does not affect
1614 normal use of the entry.  For further details on this pragma, see the
1615 DEC Ada Language Reference Manual, section 9.12a.
1617 @node Pragma Attribute_Definition
1618 @unnumberedsec Pragma Attribute_Definition
1619 @findex Attribute_Definition
1620 @noindent
1621 Syntax:
1622 @smallexample @c ada
1623 pragma Attribute_Definition
1624   ([Attribute  =>] ATTRIBUTE_DESIGNATOR,
1625    [Entity     =>] LOCAL_NAME,
1626    [Expression =>] EXPRESSION | NAME);
1627 @end smallexample
1629 @noindent
1630 If @code{Attribute} is a known attribute name, this pragma is equivalent to
1631 the attribute definition clause:
1633 @smallexample @c ada
1634   for Entity'Attribute use Expression;
1635 @end smallexample
1637 If @code{Attribute} is not a recognized attribute name, the pragma is
1638 ignored, and a warning is emitted. This allows source
1639 code to be written that takes advantage of some new attribute, while remaining
1640 compilable with earlier compilers.
1642 @node Pragma C_Pass_By_Copy
1643 @unnumberedsec Pragma C_Pass_By_Copy
1644 @cindex Passing by copy
1645 @findex C_Pass_By_Copy
1646 @noindent
1647 Syntax:
1648 @smallexample @c ada
1649 pragma C_Pass_By_Copy
1650   ([Max_Size =>] static_integer_EXPRESSION);
1651 @end smallexample
1653 @noindent
1654 Normally the default mechanism for passing C convention records to C
1655 convention subprograms is to pass them by reference, as suggested by RM
1656 B.3(69).  Use the configuration pragma @code{C_Pass_By_Copy} to change
1657 this default, by requiring that record formal parameters be passed by
1658 copy if all of the following conditions are met:
1660 @itemize @bullet
1661 @item
1662 The size of the record type does not exceed the value specified for
1663 @code{Max_Size}.
1664 @item
1665 The record type has @code{Convention C}.
1666 @item
1667 The formal parameter has this record type, and the subprogram has a
1668 foreign (non-Ada) convention.
1669 @end itemize
1671 @noindent
1672 If these conditions are met the argument is passed by copy, i.e.@: in a
1673 manner consistent with what C expects if the corresponding formal in the
1674 C prototype is a struct (rather than a pointer to a struct).
1676 You can also pass records by copy by specifying the convention
1677 @code{C_Pass_By_Copy} for the record type, or by using the extended
1678 @code{Import} and @code{Export} pragmas, which allow specification of
1679 passing mechanisms on a parameter by parameter basis.
1681 @node Pragma Check
1682 @unnumberedsec Pragma Check
1683 @cindex Assertions
1684 @cindex Named assertions
1685 @findex Check
1686 @noindent
1687 Syntax:
1688 @smallexample @c ada
1689 pragma Check (
1690      [Name    =>] CHECK_KIND,
1691      [Check   =>] Boolean_EXPRESSION
1692   [, [Message =>] string_EXPRESSION] );
1694 CHECK_KIND ::= IDENTIFIER           |
1695                Pre'Class            |
1696                Post'Class           |
1697                Type_Invariant'Class |
1698                Invariant'Class
1699 @end smallexample
1701 @noindent
1702 This pragma is similar to the predefined pragma @code{Assert} except that an
1703 extra identifier argument is present. In conjunction with pragma
1704 @code{Check_Policy}, this can be used to define groups of assertions that can
1705 be independently controlled. The identifier @code{Assertion} is special, it
1706 refers to the normal set of pragma @code{Assert} statements.
1708 Checks introduced by this pragma are normally deactivated by default. They can
1709 be activated either by the command line option @option{-gnata}, which turns on
1710 all checks, or individually controlled using pragma @code{Check_Policy}.
1712 The identifiers @code{Assertions} and @code{Statement_Assertions} are not
1713 permitted as check kinds, since this would cause confusion with the use
1714 of these identifiers in @code{Assertion_Policy} and @code{Check_Policy}
1715 pragmas, where they are used to refer to sets of assertions.
1717 @node Pragma Check_Float_Overflow
1718 @unnumberedsec Pragma Check_Float_Overflow
1719 @cindex Floating-point overflow
1720 @findex Check_Float_Overflow
1721 @noindent
1722 Syntax:
1723 @smallexample @c ada
1724 pragma Check_Float_Overflow;
1725 @end smallexample
1727 @noindent
1728 In Ada, the predefined floating-point types (@code{Short_Float},
1729 @code{Float}, @code{Long_Float}, @code{Long_Long_Float}) are
1730 defined to be @emph{unconstrained}. This means that even though each
1731 has a well-defined base range, an operation that delivers a result
1732 outside this base range is not required to raise an exception.
1733 This implementation permission accommodates the notion
1734 of infinities in IEEE floating-point, and corresponds to the
1735 efficient execution mode on most machines. GNAT will not raise
1736 overflow exceptions on these machines; instead it will generate
1737 infinities and NaN's as defined in the IEEE standard.
1739 Generating infinities, although efficient, is not always desirable.
1740 Often the preferable approach is to check for overflow, even at the
1741 (perhaps considerable) expense of run-time performance.
1742 This can be accomplished by defining your own constrained floating-point subtypes -- i.e., by supplying explicit
1743 range constraints -- and indeed such a subtype
1744 can have the same base range as its base type. For example:
1746 @smallexample @c ada
1747 subtype My_Float is Float range Float'Range;
1748 @end smallexample
1750 @noindent
1751 Here @code{My_Float} has the same range as
1752 @code{Float} but is constrained, so operations on
1753 @code{My_Float} values will be checked for overflow
1754 against this range.
1756 This style will achieve the desired goal, but
1757 it is often more convenient to be able to simply use
1758 the standard predefined floating-point types as long
1759 as overflow checking could be guaranteed.
1760 The @code{Check_Float_Overflow}
1761 configuration pragma achieves this effect. If a unit is compiled
1762 subject to this configuration pragma, then all operations
1763 on predefined floating-point types will be treated as
1764 though those types were constrained, and overflow checks
1765 will be generated. The @code{Constraint_Error}
1766 exception is raised if the result is out of range.
1768 This mode can also be set by use of the compiler
1769 switch @option{-gnateF}.
1771 @node Pragma Check_Name
1772 @unnumberedsec Pragma Check_Name
1773 @cindex Defining check names
1774 @cindex Check names, defining
1775 @findex Check_Name
1776 @noindent
1777 Syntax:
1778 @smallexample @c ada
1779 pragma Check_Name (check_name_IDENTIFIER);
1780 @end smallexample
1782 @noindent
1783 This is a configuration pragma that defines a new implementation
1784 defined check name (unless IDENTIFIER matches one of the predefined
1785 check names, in which case the pragma has no effect). Check names
1786 are global to a partition, so if two or more configuration pragmas
1787 are present in a partition mentioning the same name, only one new
1788 check name is introduced.
1790 An implementation defined check name introduced with this pragma may
1791 be used in only three contexts: @code{pragma Suppress},
1792 @code{pragma Unsuppress},
1793 and as the prefix of a @code{Check_Name'Enabled} attribute reference. For
1794 any of these three cases, the check name must be visible. A check
1795 name is visible if it is in the configuration pragmas applying to
1796 the current unit, or if it appears at the start of any unit that
1797 is part of the dependency set of the current unit (e.g., units that
1798 are mentioned in @code{with} clauses).
1800 Check names introduced by this pragma are subject to control by compiler
1801 switches (in particular -gnatp) in the usual manner.
1803 @node Pragma Check_Policy
1804 @unnumberedsec Pragma Check_Policy
1805 @cindex Controlling assertions
1806 @cindex Assertions, control
1807 @cindex Check pragma control
1808 @cindex Named assertions
1809 @findex Check
1810 @noindent
1811 Syntax:
1812 @smallexample @c ada
1813 pragma Check_Policy
1814  ([Name   =>] CHECK_KIND,
1815   [Policy =>] POLICY_IDENTIFIER);
1817 pragma Check_Policy (
1818     CHECK_KIND => POLICY_IDENTIFIER
1819  @{, CHECK_KIND => POLICY_IDENTIFIER@});
1821 ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND
1823 CHECK_KIND ::= IDENTIFIER           |
1824                Pre'Class            |
1825                Post'Class           |
1826                Type_Invariant'Class |
1827                Invariant'Class
1829 The identifiers Name and Policy are not allowed as CHECK_KIND values. This
1830 avoids confusion between the two possible syntax forms for this pragma.
1832 POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE
1833 @end smallexample
1835 @noindent
1836 This pragma is used to set the checking policy for assertions (specified
1837 by aspects or pragmas), the @code{Debug} pragma, or additional checks
1838 to be checked using the @code{Check} pragma. It may appear either as
1839 a configuration pragma, or within a declarative part of package. In the
1840 latter case, it applies from the point where it appears to the end of
1841 the declarative region (like pragma @code{Suppress}).
1843 The @code{Check_Policy} pragma is similar to the
1844 predefined @code{Assertion_Policy} pragma,
1845 and if the check kind corresponds to one of the assertion kinds that
1846 are allowed by @code{Assertion_Policy}, then the effect is identical.
1848 If the first argument is Debug, then the policy applies to Debug pragmas,
1849 disabling their effect if the policy is @code{OFF}, @code{DISABLE}, or
1850 @code{IGNORE}, and allowing them to execute with normal semantics if
1851 the policy is @code{ON} or @code{CHECK}. In addition if the policy is
1852 @code{DISABLE}, then the procedure call in @code{Debug} pragmas will
1853 be totally ignored and not analyzed semantically.
1855 Finally the first argument may be some other identifier than the above
1856 possibilities, in which case it controls a set of named assertions
1857 that can be checked using pragma @code{Check}. For example, if the pragma:
1859 @smallexample @c ada
1860 pragma Check_Policy (Critical_Error, OFF);
1861 @end smallexample
1863 @noindent
1864 is given, then subsequent @code{Check} pragmas whose first argument is also
1865 @code{Critical_Error} will be disabled.
1867 The check policy is @code{OFF} to turn off corresponding checks, and @code{ON}
1868 to turn on corresponding checks. The default for a set of checks for which no
1869 @code{Check_Policy} is given is @code{OFF} unless the compiler switch
1870 @option{-gnata} is given, which turns on all checks by default.
1872 The check policy settings @code{CHECK} and @code{IGNORE} are recognized
1873 as synonyms for @code{ON} and @code{OFF}. These synonyms are provided for
1874 compatibility with the standard @code{Assertion_Policy} pragma. The check
1875 policy setting @code{DISABLE} causes the second argument of a corresponding
1876 @code{Check} pragma to be completely ignored and not analyzed.
1878 @node Pragma CIL_Constructor
1879 @unnumberedsec Pragma CIL_Constructor
1880 @findex CIL_Constructor
1881 @noindent
1882 Syntax:
1884 @smallexample @c ada
1885 pragma CIL_Constructor ([Entity =>] function_LOCAL_NAME);
1886 @end smallexample
1888 @noindent
1889 This pragma is used to assert that the specified Ada function should be
1890 mapped to the .NET constructor for some Ada tagged record type.
1892 See section 4.1 of the
1893 @code{GNAT User's Guide: Supplement for the .NET Platform.}
1894 for related information.
1896 @node Pragma Comment
1897 @unnumberedsec Pragma Comment
1898 @findex Comment
1899 @noindent
1900 Syntax:
1902 @smallexample @c ada
1903 pragma Comment (static_string_EXPRESSION);
1904 @end smallexample
1906 @noindent
1907 This is almost identical in effect to pragma @code{Ident}.  It allows the
1908 placement of a comment into the object file and hence into the
1909 executable file if the operating system permits such usage.  The
1910 difference is that @code{Comment}, unlike @code{Ident}, has
1911 no limitations on placement of the pragma (it can be placed
1912 anywhere in the main source unit), and if more than one pragma
1913 is used, all comments are retained.
1915 @node Pragma Common_Object
1916 @unnumberedsec Pragma Common_Object
1917 @findex Common_Object
1918 @noindent
1919 Syntax:
1921 @smallexample @c ada
1922 pragma Common_Object (
1923      [Internal =>] LOCAL_NAME
1924   [, [External =>] EXTERNAL_SYMBOL]
1925   [, [Size     =>] EXTERNAL_SYMBOL] );
1927 EXTERNAL_SYMBOL ::=
1928   IDENTIFIER
1929 | static_string_EXPRESSION
1930 @end smallexample
1932 @noindent
1933 This pragma enables the shared use of variables stored in overlaid
1934 linker areas corresponding to the use of @code{COMMON}
1935 in Fortran.  The single
1936 object @var{LOCAL_NAME} is assigned to the area designated by
1937 the @var{External} argument.
1938 You may define a record to correspond to a series
1939 of fields.  The @var{Size} argument
1940 is syntax checked in GNAT, but otherwise ignored.
1942 @code{Common_Object} is not supported on all platforms.  If no
1943 support is available, then the code generator will issue a message
1944 indicating that the necessary attribute for implementation of this
1945 pragma is not available.
1947 @node Pragma Compile_Time_Error
1948 @unnumberedsec Pragma Compile_Time_Error
1949 @findex Compile_Time_Error
1950 @noindent
1951 Syntax:
1953 @smallexample @c ada
1954 pragma Compile_Time_Error
1955          (boolean_EXPRESSION, static_string_EXPRESSION);
1956 @end smallexample
1958 @noindent
1959 This pragma can be used to generate additional compile time
1960 error messages. It
1961 is particularly useful in generics, where errors can be issued for
1962 specific problematic instantiations. The first parameter is a boolean
1963 expression. The pragma is effective only if the value of this expression
1964 is known at compile time, and has the value True. The set of expressions
1965 whose values are known at compile time includes all static boolean
1966 expressions, and also other values which the compiler can determine
1967 at compile time (e.g., the size of a record type set by an explicit
1968 size representation clause, or the value of a variable which was
1969 initialized to a constant and is known not to have been modified).
1970 If these conditions are met, an error message is generated using
1971 the value given as the second argument. This string value may contain
1972 embedded ASCII.LF characters to break the message into multiple lines.
1974 @node Pragma Compile_Time_Warning
1975 @unnumberedsec Pragma Compile_Time_Warning
1976 @findex Compile_Time_Warning
1977 @noindent
1978 Syntax:
1980 @smallexample @c ada
1981 pragma Compile_Time_Warning
1982          (boolean_EXPRESSION, static_string_EXPRESSION);
1983 @end smallexample
1985 @noindent
1986 Same as pragma Compile_Time_Error, except a warning is issued instead
1987 of an error message. Note that if this pragma is used in a package that
1988 is with'ed by a client, the client will get the warning even though it
1989 is issued by a with'ed package (normally warnings in with'ed units are
1990 suppressed, but this is a special exception to that rule).
1992 One typical use is within a generic where compile time known characteristics
1993 of formal parameters are tested, and warnings given appropriately. Another use
1994 with a first parameter of True is to warn a client about use of a package,
1995 for example that it is not fully implemented.
1997 @node Pragma Compiler_Unit
1998 @unnumberedsec Pragma Compiler_Unit
1999 @findex Compiler_Unit
2000 @noindent
2001 Syntax:
2003 @smallexample @c ada
2004 pragma Compiler_Unit;
2005 @end smallexample
2007 @noindent
2008 This pragma is intended only for internal use in the GNAT run-time library.
2009 It indicates that the unit is used as part of the compiler build. The effect
2010 is to disallow constructs (raise with message, conditional expressions etc)
2011 that would cause trouble when bootstrapping using an older version of GNAT.
2012 For the exact list of restrictions, see the compiler sources and references
2013 to Is_Compiler_Unit.
2015 @node Pragma Complete_Representation
2016 @unnumberedsec Pragma Complete_Representation
2017 @findex Complete_Representation
2018 @noindent
2019 Syntax:
2021 @smallexample @c ada
2022 pragma Complete_Representation;
2023 @end smallexample
2025 @noindent
2026 This pragma must appear immediately within a record representation
2027 clause. Typical placements are before the first component clause
2028 or after the last component clause. The effect is to give an error
2029 message if any component is missing a component clause. This pragma
2030 may be used to ensure that a record representation clause is
2031 complete, and that this invariant is maintained if fields are
2032 added to the record in the future.
2034 @node Pragma Complex_Representation
2035 @unnumberedsec Pragma Complex_Representation
2036 @findex Complex_Representation
2037 @noindent
2038 Syntax:
2040 @smallexample @c ada
2041 pragma Complex_Representation
2042         ([Entity =>] LOCAL_NAME);
2043 @end smallexample
2045 @noindent
2046 The @var{Entity} argument must be the name of a record type which has
2047 two fields of the same floating-point type.  The effect of this pragma is
2048 to force gcc to use the special internal complex representation form for
2049 this record, which may be more efficient.  Note that this may result in
2050 the code for this type not conforming to standard ABI (application
2051 binary interface) requirements for the handling of record types.  For
2052 example, in some environments, there is a requirement for passing
2053 records by pointer, and the use of this pragma may result in passing
2054 this type in floating-point registers.
2056 @node Pragma Component_Alignment
2057 @unnumberedsec Pragma Component_Alignment
2058 @cindex Alignments of components
2059 @findex Component_Alignment
2060 @noindent
2061 Syntax:
2063 @smallexample @c ada
2064 pragma Component_Alignment (
2065      [Form =>] ALIGNMENT_CHOICE
2066   [, [Name =>] type_LOCAL_NAME]);
2068 ALIGNMENT_CHOICE ::=
2069   Component_Size
2070 | Component_Size_4
2071 | Storage_Unit
2072 | Default
2073 @end smallexample
2075 @noindent
2076 Specifies the alignment of components in array or record types.
2077 The meaning of the @var{Form} argument is as follows:
2079 @table @code
2080 @findex Component_Size
2081 @item Component_Size
2082 Aligns scalar components and subcomponents of the array or record type
2083 on boundaries appropriate to their inherent size (naturally
2084 aligned).  For example, 1-byte components are aligned on byte boundaries,
2085 2-byte integer components are aligned on 2-byte boundaries, 4-byte
2086 integer components are aligned on 4-byte boundaries and so on.  These
2087 alignment rules correspond to the normal rules for C compilers on all
2088 machines except the VAX@.
2090 @findex Component_Size_4
2091 @item Component_Size_4
2092 Naturally aligns components with a size of four or fewer
2093 bytes.  Components that are larger than 4 bytes are placed on the next
2094 4-byte boundary.
2096 @findex Storage_Unit
2097 @item Storage_Unit
2098 Specifies that array or record components are byte aligned, i.e.@:
2099 aligned on boundaries determined by the value of the constant
2100 @code{System.Storage_Unit}.
2102 @cindex OpenVMS
2103 @item Default
2104 Specifies that array or record components are aligned on default
2105 boundaries, appropriate to the underlying hardware or operating system or
2106 both.  For OpenVMS VAX systems, the @code{Default} choice is the same as
2107 the @code{Storage_Unit} choice (byte alignment).  For all other systems,
2108 the @code{Default} choice is the same as @code{Component_Size} (natural
2109 alignment).
2110 @end table
2112 @noindent
2113 If the @code{Name} parameter is present, @var{type_LOCAL_NAME} must
2114 refer to a local record or array type, and the specified alignment
2115 choice applies to the specified type.  The use of
2116 @code{Component_Alignment} together with a pragma @code{Pack} causes the
2117 @code{Component_Alignment} pragma to be ignored.  The use of
2118 @code{Component_Alignment} together with a record representation clause
2119 is only effective for fields not specified by the representation clause.
2121 If the @code{Name} parameter is absent, the pragma can be used as either
2122 a configuration pragma, in which case it applies to one or more units in
2123 accordance with the normal rules for configuration pragmas, or it can be
2124 used within a declarative part, in which case it applies to types that
2125 are declared within this declarative part, or within any nested scope
2126 within this declarative part.  In either case it specifies the alignment
2127 to be applied to any record or array type which has otherwise standard
2128 representation.
2130 If the alignment for a record or array type is not specified (using
2131 pragma @code{Pack}, pragma @code{Component_Alignment}, or a record rep
2132 clause), the GNAT uses the default alignment as described previously.
2134 @node Pragma Contract_Cases
2135 @unnumberedsec Pragma Contract_Cases
2136 @cindex Contract cases
2137 @findex Contract_Cases
2138 @noindent
2139 Syntax:
2141 @smallexample @c ada
2142 pragma Contract_Cases (
2143    Condition => Consequence
2144  @{,Condition => Consequence@});
2145 @end smallexample
2147 @noindent
2148 The @code{Contract_Cases} pragma allows defining fine-grain specifications
2149 that can complement or replace the contract given by a precondition and a
2150 postcondition. Additionally, the @code{Contract_Cases} pragma can be used
2151 by testing and formal verification tools. The compiler checks its validity and,
2152 depending on the assertion policy at the point of declaration of the pragma,
2153 it may insert a check in the executable. For code generation, the contract
2154 cases
2156 @smallexample @c ada
2157 pragma Contract_Cases (
2158   Cond1 => Pred1,
2159   Cond2 => Pred2);
2160 @end smallexample
2162 @noindent
2163 are equivalent to
2165 @smallexample @c ada
2166 C1 : constant Boolean := Cond1;  --  evaluated at subprogram entry
2167 C2 : constant Boolean := Cond2;  --  evaluated at subprogram entry
2168 pragma Precondition ((C1 and not C2) or (C2 and not C1));
2169 pragma Postcondition (if C1 then Pred1);
2170 pragma Postcondition (if C2 then Pred2);
2171 @end smallexample
2173 @noindent
2174 The precondition ensures that one and only one of the conditions is
2175 satisfied on entry to the subprogram.
2176 The postcondition ensures that for the condition that was True on entry,
2177 the corrresponding consequence is True on exit. Other consequence expressions
2178 are not evaluated.
2180 A precondition @code{P} and postcondition @code{Q} can also be
2181 expressed as contract cases:
2183 @smallexample @c ada
2184 pragma Contract_Cases (P => Q);
2185 @end smallexample
2187 The placement and visibility rules for @code{Contract_Cases} pragmas are
2188 identical to those described for preconditions and postconditions.
2190 The compiler checks that boolean expressions given in conditions and
2191 consequences are valid, where the rules for conditions are the same as
2192 the rule for an expression in @code{Precondition} and the rules for
2193 consequences are the same as the rule for an expression in
2194 @code{Postcondition}. In particular, attributes @code{'Old} and
2195 @code{'Result} can only be used within consequence expressions.
2196 The condition for the last contract case may be @code{others}, to denote
2197 any case not captured by the previous cases. The
2198 following is an example of use within a package spec:
2200 @smallexample @c ada
2201 package Math_Functions is
2202    ...
2203    function Sqrt (Arg : Float) return Float;
2204    pragma Contract_Cases ((Arg in 0 .. 99) => Sqrt'Result < 10,
2205                           Arg >= 100       => Sqrt'Result >= 10,
2206                           others           => Sqrt'Result = 0);
2207    ...
2208 end Math_Functions;
2209 @end smallexample
2211 @noindent
2212 The meaning of contract cases is that only one case should apply at each
2213 call, as determined by the corresponding condition evaluating to True,
2214 and that the consequence for this case should hold when the subprogram
2215 returns.
2217 @node Pragma Convention_Identifier
2218 @unnumberedsec Pragma Convention_Identifier
2219 @findex Convention_Identifier
2220 @cindex Conventions, synonyms
2221 @noindent
2222 Syntax:
2224 @smallexample @c ada
2225 pragma Convention_Identifier (
2226          [Name =>]       IDENTIFIER,
2227          [Convention =>] convention_IDENTIFIER);
2228 @end smallexample
2230 @noindent
2231 This pragma provides a mechanism for supplying synonyms for existing
2232 convention identifiers. The @code{Name} identifier can subsequently
2233 be used as a synonym for the given convention in other pragmas (including
2234 for example pragma @code{Import} or another @code{Convention_Identifier}
2235 pragma). As an example of the use of this, suppose you had legacy code
2236 which used Fortran77 as the identifier for Fortran. Then the pragma:
2238 @smallexample @c ada
2239 pragma Convention_Identifier (Fortran77, Fortran);
2240 @end smallexample
2242 @noindent
2243 would allow the use of the convention identifier @code{Fortran77} in
2244 subsequent code, avoiding the need to modify the sources. As another
2245 example, you could use this to parameterize convention requirements
2246 according to systems. Suppose you needed to use @code{Stdcall} on
2247 windows systems, and @code{C} on some other system, then you could
2248 define a convention identifier @code{Library} and use a single
2249 @code{Convention_Identifier} pragma to specify which convention
2250 would be used system-wide.
2252 @node Pragma CPP_Class
2253 @unnumberedsec Pragma CPP_Class
2254 @findex CPP_Class
2255 @cindex Interfacing with C++
2256 @noindent
2257 Syntax:
2259 @smallexample @c ada
2260 pragma CPP_Class ([Entity =>] LOCAL_NAME);
2261 @end smallexample
2263 @noindent
2264 The argument denotes an entity in the current declarative region that is
2265 declared as a record type. It indicates that the type corresponds to an
2266 externally declared C++ class type, and is to be laid out the same way
2267 that C++ would lay out the type. If the C++ class has virtual primitives
2268 then the record must be declared as a tagged record type.
2270 Types for which @code{CPP_Class} is specified do not have assignment or
2271 equality operators defined (such operations can be imported or declared
2272 as subprograms as required). Initialization is allowed only by constructor
2273 functions (see pragma @code{CPP_Constructor}). Such types are implicitly
2274 limited if not explicitly declared as limited or derived from a limited
2275 type, and an error is issued in that case.
2277 See @ref{Interfacing to C++} for related information.
2279 Note: Pragma @code{CPP_Class} is currently obsolete. It is supported
2280 for backward compatibility but its functionality is available
2281 using pragma @code{Import} with @code{Convention} = @code{CPP}.
2283 @node Pragma CPP_Constructor
2284 @unnumberedsec Pragma CPP_Constructor
2285 @cindex Interfacing with C++
2286 @findex CPP_Constructor
2287 @noindent
2288 Syntax:
2290 @smallexample @c ada
2291 pragma CPP_Constructor ([Entity =>] LOCAL_NAME
2292   [, [External_Name =>] static_string_EXPRESSION ]
2293   [, [Link_Name     =>] static_string_EXPRESSION ]);
2294 @end smallexample
2296 @noindent
2297 This pragma identifies an imported function (imported in the usual way
2298 with pragma @code{Import}) as corresponding to a C++ constructor. If
2299 @code{External_Name} and @code{Link_Name} are not specified then the
2300 @code{Entity} argument is a name that must have been previously mentioned
2301 in a pragma @code{Import} with @code{Convention} = @code{CPP}. Such name
2302 must be of one of the following forms:
2304 @itemize @bullet
2305 @item
2306 @code{function @var{Fname} return @var{T}}
2308 @itemize @bullet
2309 @item
2310 @code{function @var{Fname} return @var{T}'Class}
2312 @item
2313 @code{function @var{Fname} (@dots{}) return @var{T}}
2314 @end itemize
2316 @item
2317 @code{function @var{Fname} (@dots{}) return @var{T}'Class}
2318 @end itemize
2320 @noindent
2321 where @var{T} is a limited record type imported from C++ with pragma
2322 @code{Import} and @code{Convention} = @code{CPP}.
2324 The first two forms import the default constructor, used when an object
2325 of type @var{T} is created on the Ada side with no explicit constructor.
2326 The latter two forms cover all the non-default constructors of the type.
2327 See the @value{EDITION} User's Guide for details.
2329 If no constructors are imported, it is impossible to create any objects
2330 on the Ada side and the type is implicitly declared abstract.
2332 Pragma @code{CPP_Constructor} is intended primarily for automatic generation
2333 using an automatic binding generator tool (such as the @code{-fdump-ada-spec}
2334 GCC switch).
2335 See @ref{Interfacing to C++} for more related information.
2337 Note: The use of functions returning class-wide types for constructors is
2338 currently obsolete. They are supported for backward compatibility. The
2339 use of functions returning the type T leave the Ada sources more clear
2340 because the imported C++ constructors always return an object of type T;
2341 that is, they never return an object whose type is a descendant of type T.
2343 @node Pragma CPP_Virtual
2344 @unnumberedsec Pragma CPP_Virtual
2345 @cindex Interfacing to C++
2346 @findex CPP_Virtual
2347 @noindent
2348 This pragma is now obsolete and, other than generating a warning if warnings
2349 on obsolescent features are enabled, is completely ignored.
2350 It is retained for compatibility
2351 purposes. It used to be required to ensure compoatibility with C++, but
2352 is no longer required for that purpose because GNAT generates
2353 the same object layout as the G++ compiler by default.
2355 See @ref{Interfacing to C++} for related information.
2357 @node Pragma CPP_Vtable
2358 @unnumberedsec Pragma CPP_Vtable
2359 @cindex Interfacing with C++
2360 @findex CPP_Vtable
2361 @noindent
2362 This pragma is now obsolete and, other than generating a warning if warnings
2363 on obsolescent features are enabled, is completely ignored.
2364 It used to be required to ensure compatibility with C++, but
2365 is no longer required for that purpose because GNAT generates
2366 the same object layout than the G++ compiler by default.
2368 See @ref{Interfacing to C++} for related information.
2370 @node Pragma CPU
2371 @unnumberedsec Pragma CPU
2372 @findex CPU
2373 @noindent
2374 Syntax:
2376 @smallexample @c ada
2377 pragma CPU (EXPRESSION);
2378 @end smallexample
2380 @noindent
2381 This pragma is standard in Ada 2012, but is available in all earlier
2382 versions of Ada as an implementation-defined pragma.
2383 See Ada 2012 Reference Manual for details.
2385 @node Pragma Debug
2386 @unnumberedsec Pragma Debug
2387 @findex Debug
2388 @noindent
2389 Syntax:
2391 @smallexample @c ada
2392 pragma Debug ([CONDITION, ]PROCEDURE_CALL_WITHOUT_SEMICOLON);
2394 PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
2395   PROCEDURE_NAME
2396 | PROCEDURE_PREFIX ACTUAL_PARAMETER_PART
2397 @end smallexample
2399 @noindent
2400 The procedure call argument has the syntactic form of an expression, meeting
2401 the syntactic requirements for pragmas.
2403 If debug pragmas are not enabled or if the condition is present and evaluates
2404 to False, this pragma has no effect. If debug pragmas are enabled, the
2405 semantics of the pragma is exactly equivalent to the procedure call statement
2406 corresponding to the argument with a terminating semicolon. Pragmas are
2407 permitted in sequences of declarations, so you can use pragma @code{Debug} to
2408 intersperse calls to debug procedures in the middle of declarations. Debug
2409 pragmas can be enabled either by use of the command line switch @option{-gnata}
2410 or by use of the pragma @code{Check_Policy} with a first argument of
2411 @code{Debug}.
2413 @node Pragma Debug_Policy
2414 @unnumberedsec Pragma Debug_Policy
2415 @findex Debug_Policy
2416 @noindent
2417 Syntax:
2419 @smallexample @c ada
2420 pragma Debug_Policy (CHECK | DISABLE | IGNORE | ON | OFF);
2421 @end smallexample
2423 @noindent
2424 This pragma is equivalent to a corresponding @code{Check_Policy} pragma
2425 with a first argument of @code{Debug}. It is retained for historical
2426 compatibility reasons.
2428 @node Pragma Default_Storage_Pool
2429 @unnumberedsec Pragma Default_Storage_Pool
2430 @findex Default_Storage_Pool
2431 @noindent
2432 Syntax:
2434 @smallexample @c ada
2435 pragma Default_Storage_Pool (storage_pool_NAME | null);
2436 @end smallexample
2438 @noindent
2439 This pragma is standard in Ada 2012, but is available in all earlier
2440 versions of Ada as an implementation-defined pragma.
2441 See Ada 2012 Reference Manual for details.
2443 @node Pragma Depends
2444 @unnumberedsec Pragma Depends
2445 @findex Depends
2446 @noindent
2447 For the description of this pragma, see SPARK 2014 Reference Manual,
2448 section 6.1.5.
2450 @node Pragma Detect_Blocking
2451 @unnumberedsec Pragma Detect_Blocking
2452 @findex Detect_Blocking
2453 @noindent
2454 Syntax:
2456 @smallexample @c ada
2457 pragma Detect_Blocking;
2458 @end smallexample
2460 @noindent
2461 This is a standard pragma in Ada 2005, that is available in all earlier
2462 versions of Ada as an implementation-defined pragma.
2464 This is a configuration pragma that forces the detection of potentially
2465 blocking operations within a protected operation, and to raise Program_Error
2466 if that happens.
2468 @node Pragma Disable_Atomic_Synchronization
2469 @unnumberedsec Pragma Disable_Atomic_Synchronization
2470 @cindex Atomic Synchronization
2471 @findex Disable_Atomic_Synchronization
2472 @noindent
2473 Syntax:
2475 @smallexample @c ada
2476 pragma Disable_Atomic_Synchronization [(Entity)];
2477 @end smallexample
2479 @noindent
2480 Ada requires that accesses (reads or writes) of an atomic variable be
2481 regarded as synchronization points in the case of multiple tasks.
2482 Particularly in the case of multi-processors this may require special
2483 handling, e.g. the generation of memory barriers. This capability may
2484 be turned off using this pragma in cases where it is known not to be
2485 required.
2487 The placement and scope rules for this pragma are the same as those
2488 for @code{pragma Suppress}. In particular it can be used as a
2489 configuration  pragma, or in a declaration sequence where it applies
2490 till the end of the scope. If an @code{Entity} argument is present,
2491 the action applies only to that entity.
2493 @node Pragma Dispatching_Domain
2494 @unnumberedsec Pragma Dispatching_Domain
2495 @findex Dispatching_Domain
2496 @noindent
2497 Syntax:
2499 @smallexample @c ada
2500 pragma Dispatching_Domain (EXPRESSION);
2501 @end smallexample
2503 @noindent
2504 This pragma is standard in Ada 2012, but is available in all earlier
2505 versions of Ada as an implementation-defined pragma.
2506 See Ada 2012 Reference Manual for details.
2508 @node Pragma Elaboration_Checks
2509 @unnumberedsec Pragma Elaboration_Checks
2510 @cindex Elaboration control
2511 @findex Elaboration_Checks
2512 @noindent
2513 Syntax:
2515 @smallexample @c ada
2516 pragma Elaboration_Checks (Dynamic | Static);
2517 @end smallexample
2519 @noindent
2520 This is a configuration pragma that provides control over the
2521 elaboration model used by the compilation affected by the
2522 pragma.  If the parameter is @code{Dynamic},
2523 then the dynamic elaboration
2524 model described in the Ada Reference Manual is used, as though
2525 the @option{-gnatE} switch had been specified on the command
2526 line.  If the parameter is @code{Static}, then the default GNAT static
2527 model is used.  This configuration pragma overrides the setting
2528 of the command line.  For full details on the elaboration models
2529 used by the GNAT compiler, see @ref{Elaboration Order Handling in GNAT,,,
2530 gnat_ugn, @value{EDITION} User's Guide}.
2532 @node Pragma Eliminate
2533 @unnumberedsec Pragma Eliminate
2534 @cindex Elimination of unused subprograms
2535 @findex Eliminate
2536 @noindent
2537 Syntax:
2539 @smallexample @c ada
2540 pragma Eliminate ([Entity          =>] DEFINING_DESIGNATOR,
2541                   [Source_Location =>] STRING_LITERAL);
2542 @end smallexample
2544 @noindent
2545 The string literal given for the source location is a string which
2546 specifies the line number of the occurrence of the entity, using
2547 the syntax for SOURCE_TRACE given below:
2549 @smallexample @c ada
2550  SOURCE_TRACE     ::= SOURCE_REFERENCE [LBRACKET SOURCE_TRACE RBRACKET]
2552  LBRACKET         ::= [
2553  RBRACKET         ::= ]
2555  SOURCE_REFERENCE ::= FILE_NAME : LINE_NUMBER
2557  LINE_NUMBER      ::= DIGIT @{DIGIT@}
2558 @end smallexample
2560 @noindent
2561 Spaces around the colon in a @code{Source_Reference} are optional.
2563 The @code{DEFINING_DESIGNATOR} matches the defining designator used in an
2564 explicit subprogram declaration, where the @code{entity} name in this
2565 designator appears on the source line specified by the source location.
2567 The source trace that is given as the @code{Source_Location} shall obey the
2568 following rules. The @code{FILE_NAME} is the short name (with no directory
2569 information) of an Ada source file, given using exactly the required syntax
2570 for the underlying file system (e.g. case is important if the underlying
2571 operating system is case sensitive). @code{LINE_NUMBER} gives the line
2572 number of the occurrence of the @code{entity}
2573 as a decimal literal without an exponent or point. If an @code{entity} is not
2574 declared in a generic instantiation (this includes generic subprogram
2575 instances), the source trace includes only one source reference. If an entity
2576 is declared inside a generic instantiation, its source trace (when parsing
2577 from left to right) starts with the source location of the declaration of the
2578 entity in the generic unit and ends with the source location of the
2579 instantiation (it is given in square brackets). This approach is recursively
2580 used in case of nested instantiations: the rightmost (nested most deeply in
2581 square brackets) element of the source trace is the location of the outermost
2582 instantiation, the next to left element is the location of the next (first
2583 nested) instantiation in the code of the corresponding generic unit, and so
2584 on, and the leftmost element (that is out of any square brackets) is the
2585 location of the declaration of the entity to eliminate in a generic unit.
2587 Note that the @code{Source_Location} argument specifies which of a set of
2588 similarly named entities is being eliminated, dealing both with overloading,
2589 and also appearance of the same entity name in different scopes.
2591 This pragma indicates that the given entity is not used in the program to be
2592 compiled and built. The effect of the pragma is to allow the compiler to
2593 eliminate the code or data associated with the named entity. Any reference to
2594 an eliminated entity causes a compile-time or link-time error.
2596 The intention of pragma @code{Eliminate} is to allow a program to be compiled
2597 in a system-independent manner, with unused entities eliminated, without
2598 needing to modify the source text. Normally the required set of
2599 @code{Eliminate} pragmas is constructed automatically using the gnatelim tool.
2601 Any source file change that removes, splits, or
2602 adds lines may make the set of Eliminate pragmas invalid because their
2603 @code{Source_Location} argument values may get out of date.
2605 Pragma @code{Eliminate} may be used where the referenced entity is a dispatching
2606 operation. In this case all the subprograms to which the given operation can
2607 dispatch are considered to be unused (are never called as a result of a direct
2608 or a dispatching call).
2610 @node Pragma Enable_Atomic_Synchronization
2611 @unnumberedsec Pragma Enable_Atomic_Synchronization
2612 @cindex Atomic Synchronization
2613 @findex Enable_Atomic_Synchronization
2614 @noindent
2615 Syntax:
2617 @smallexample @c ada
2618 pragma Enable_Atomic_Synchronization [(Entity)];
2619 @end smallexample
2621 @noindent
2622 Ada requires that accesses (reads or writes) of an atomic variable be
2623 regarded as synchronization points in the case of multiple tasks.
2624 Particularly in the case of multi-processors this may require special
2625 handling, e.g. the generation of memory barriers. This synchronization
2626 is performed by default, but can be turned off using
2627 @code{pragma Disable_Atomic_Synchronization}. The
2628 @code{Enable_Atomic_Synchronization} pragma can be used to turn
2629 it back on.
2631 The placement and scope rules for this pragma are the same as those
2632 for @code{pragma Unsuppress}. In particular it can be used as a
2633 configuration  pragma, or in a declaration sequence where it applies
2634 till the end of the scope. If an @code{Entity} argument is present,
2635 the action applies only to that entity.
2637 @node Pragma Export_Exception
2638 @unnumberedsec Pragma Export_Exception
2639 @cindex OpenVMS
2640 @findex Export_Exception
2641 @noindent
2642 Syntax:
2644 @smallexample @c ada
2645 pragma Export_Exception (
2646      [Internal =>] LOCAL_NAME
2647   [, [External =>] EXTERNAL_SYMBOL]
2648   [, [Form     =>] Ada | VMS]
2649   [, [Code     =>] static_integer_EXPRESSION]);
2651 EXTERNAL_SYMBOL ::=
2652   IDENTIFIER
2653 | static_string_EXPRESSION
2654 @end smallexample
2656 @noindent
2657 This pragma is implemented only in the OpenVMS implementation of GNAT@.  It
2658 causes the specified exception to be propagated outside of the Ada program,
2659 so that it can be handled by programs written in other OpenVMS languages.
2660 This pragma establishes an external name for an Ada exception and makes the
2661 name available to the OpenVMS Linker as a global symbol.  For further details
2662 on this pragma, see the
2663 DEC Ada Language Reference Manual, section 13.9a3.2.
2665 @node Pragma Export_Function
2666 @unnumberedsec Pragma Export_Function
2667 @cindex Argument passing mechanisms
2668 @findex Export_Function
2670 @noindent
2671 Syntax:
2673 @smallexample @c ada
2674 pragma Export_Function (
2675      [Internal         =>] LOCAL_NAME
2676   [, [External         =>] EXTERNAL_SYMBOL]
2677   [, [Parameter_Types  =>] PARAMETER_TYPES]
2678   [, [Result_Type      =>] result_SUBTYPE_MARK]
2679   [, [Mechanism        =>] MECHANISM]
2680   [, [Result_Mechanism =>] MECHANISM_NAME]);
2682 EXTERNAL_SYMBOL ::=
2683   IDENTIFIER
2684 | static_string_EXPRESSION
2685 | ""
2687 PARAMETER_TYPES ::=
2688   null
2689 | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
2691 TYPE_DESIGNATOR ::=
2692   subtype_NAME
2693 | subtype_Name ' Access
2695 MECHANISM ::=
2696   MECHANISM_NAME
2697 | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
2699 MECHANISM_ASSOCIATION ::=
2700   [formal_parameter_NAME =>] MECHANISM_NAME
2702 MECHANISM_NAME ::=
2703   Value
2704 | Reference
2705 | Descriptor [([Class =>] CLASS_NAME)]
2706 | Short_Descriptor [([Class =>] CLASS_NAME)]
2708 CLASS_NAME ::= ubs | ubsb | uba | s | sb | a
2709 @end smallexample
2711 @noindent
2712 Use this pragma to make a function externally callable and optionally
2713 provide information on mechanisms to be used for passing parameter and
2714 result values.  We recommend, for the purposes of improving portability,
2715 this pragma always be used in conjunction with a separate pragma
2716 @code{Export}, which must precede the pragma @code{Export_Function}.
2717 GNAT does not require a separate pragma @code{Export}, but if none is
2718 present, @code{Convention Ada} is assumed, which is usually
2719 not what is wanted, so it is usually appropriate to use this
2720 pragma in conjunction with a @code{Export} or @code{Convention}
2721 pragma that specifies the desired foreign convention.
2722 Pragma @code{Export_Function}
2723 (and @code{Export}, if present) must appear in the same declarative
2724 region as the function to which they apply.
2726 @var{internal_name} must uniquely designate the function to which the
2727 pragma applies.  If more than one function name exists of this name in
2728 the declarative part you must use the @code{Parameter_Types} and
2729 @code{Result_Type} parameters is mandatory to achieve the required
2730 unique designation.  @var{subtype_mark}s in these parameters must
2731 exactly match the subtypes in the corresponding function specification,
2732 using positional notation to match parameters with subtype marks.
2733 The form with an @code{'Access} attribute can be used to match an
2734 anonymous access parameter.
2736 @cindex OpenVMS
2737 @cindex Passing by descriptor
2738 Passing by descriptor is supported only on the OpenVMS ports of GNAT@.
2739 The default behavior for Export_Function is to accept either 64bit or
2740 32bit descriptors unless short_descriptor is specified, then only 32bit
2741 descriptors are accepted.
2743 @cindex Suppressing external name
2744 Special treatment is given if the EXTERNAL is an explicit null
2745 string or a static string expressions that evaluates to the null
2746 string. In this case, no external name is generated. This form
2747 still allows the specification of parameter mechanisms.
2749 @node Pragma Export_Object
2750 @unnumberedsec Pragma Export_Object
2751 @findex Export_Object
2752 @noindent
2753 Syntax:
2755 @smallexample @c ada
2756 pragma Export_Object
2757       [Internal =>] LOCAL_NAME
2758    [, [External =>] EXTERNAL_SYMBOL]
2759    [, [Size     =>] EXTERNAL_SYMBOL]
2761 EXTERNAL_SYMBOL ::=
2762   IDENTIFIER
2763 | static_string_EXPRESSION
2764 @end smallexample
2766 @noindent
2767 This pragma designates an object as exported, and apart from the
2768 extended rules for external symbols, is identical in effect to the use of
2769 the normal @code{Export} pragma applied to an object.  You may use a
2770 separate Export pragma (and you probably should from the point of view
2771 of portability), but it is not required.  @var{Size} is syntax checked,
2772 but otherwise ignored by GNAT@.
2774 @node Pragma Export_Procedure
2775 @unnumberedsec Pragma Export_Procedure
2776 @findex Export_Procedure
2777 @noindent
2778 Syntax:
2780 @smallexample @c ada
2781 pragma Export_Procedure (
2782      [Internal        =>] LOCAL_NAME
2783   [, [External        =>] EXTERNAL_SYMBOL]
2784   [, [Parameter_Types =>] PARAMETER_TYPES]
2785   [, [Mechanism       =>] MECHANISM]);
2787 EXTERNAL_SYMBOL ::=
2788   IDENTIFIER
2789 | static_string_EXPRESSION
2790 | ""
2792 PARAMETER_TYPES ::=
2793   null
2794 | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
2796 TYPE_DESIGNATOR ::=
2797   subtype_NAME
2798 | subtype_Name ' Access
2800 MECHANISM ::=
2801   MECHANISM_NAME
2802 | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
2804 MECHANISM_ASSOCIATION ::=
2805   [formal_parameter_NAME =>] MECHANISM_NAME
2807 MECHANISM_NAME ::=
2808   Value
2809 | Reference
2810 | Descriptor [([Class =>] CLASS_NAME)]
2811 | Short_Descriptor [([Class =>] CLASS_NAME)]
2813 CLASS_NAME ::= ubs | ubsb | uba | s | sb | a
2814 @end smallexample
2816 @noindent
2817 This pragma is identical to @code{Export_Function} except that it
2818 applies to a procedure rather than a function and the parameters
2819 @code{Result_Type} and @code{Result_Mechanism} are not permitted.
2820 GNAT does not require a separate pragma @code{Export}, but if none is
2821 present, @code{Convention Ada} is assumed, which is usually
2822 not what is wanted, so it is usually appropriate to use this
2823 pragma in conjunction with a @code{Export} or @code{Convention}
2824 pragma that specifies the desired foreign convention.
2826 @cindex OpenVMS
2827 @cindex Passing by descriptor
2828 Passing by descriptor is supported only on the OpenVMS ports of GNAT@.
2829 The default behavior for Export_Procedure is to accept either 64bit or
2830 32bit descriptors unless short_descriptor is specified, then only 32bit
2831 descriptors are accepted.
2833 @cindex Suppressing external name
2834 Special treatment is given if the EXTERNAL is an explicit null
2835 string or a static string expressions that evaluates to the null
2836 string. In this case, no external name is generated. This form
2837 still allows the specification of parameter mechanisms.
2839 @node Pragma Export_Value
2840 @unnumberedsec Pragma Export_Value
2841 @findex Export_Value
2842 @noindent
2843 Syntax:
2845 @smallexample @c ada
2846 pragma Export_Value (
2847   [Value     =>] static_integer_EXPRESSION,
2848   [Link_Name =>] static_string_EXPRESSION);
2849 @end smallexample
2851 @noindent
2852 This pragma serves to export a static integer value for external use.
2853 The first argument specifies the value to be exported. The Link_Name
2854 argument specifies the symbolic name to be associated with the integer
2855 value. This pragma is useful for defining a named static value in Ada
2856 that can be referenced in assembly language units to be linked with
2857 the application. This pragma is currently supported only for the
2858 AAMP target and is ignored for other targets.
2860 @node Pragma Export_Valued_Procedure
2861 @unnumberedsec Pragma Export_Valued_Procedure
2862 @findex Export_Valued_Procedure
2863 @noindent
2864 Syntax:
2866 @smallexample @c ada
2867 pragma Export_Valued_Procedure (
2868      [Internal        =>] LOCAL_NAME
2869   [, [External        =>] EXTERNAL_SYMBOL]
2870   [, [Parameter_Types =>] PARAMETER_TYPES]
2871   [, [Mechanism       =>] MECHANISM]);
2873 EXTERNAL_SYMBOL ::=
2874   IDENTIFIER
2875 | static_string_EXPRESSION
2876 | ""
2878 PARAMETER_TYPES ::=
2879   null
2880 | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
2882 TYPE_DESIGNATOR ::=
2883   subtype_NAME
2884 | subtype_Name ' Access
2886 MECHANISM ::=
2887   MECHANISM_NAME
2888 | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
2890 MECHANISM_ASSOCIATION ::=
2891   [formal_parameter_NAME =>] MECHANISM_NAME
2893 MECHANISM_NAME ::=
2894   Value
2895 | Reference
2896 | Descriptor [([Class =>] CLASS_NAME)]
2897 | Short_Descriptor [([Class =>] CLASS_NAME)]
2899 CLASS_NAME ::= ubs | ubsb | uba | s | sb | a
2900 @end smallexample
2902 @noindent
2903 This pragma is identical to @code{Export_Procedure} except that the
2904 first parameter of @var{LOCAL_NAME}, which must be present, must be of
2905 mode @code{OUT}, and externally the subprogram is treated as a function
2906 with this parameter as the result of the function.  GNAT provides for
2907 this capability to allow the use of @code{OUT} and @code{IN OUT}
2908 parameters in interfacing to external functions (which are not permitted
2909 in Ada functions).
2910 GNAT does not require a separate pragma @code{Export}, but if none is
2911 present, @code{Convention Ada} is assumed, which is almost certainly
2912 not what is wanted since the whole point of this pragma is to interface
2913 with foreign language functions, so it is usually appropriate to use this
2914 pragma in conjunction with a @code{Export} or @code{Convention}
2915 pragma that specifies the desired foreign convention.
2917 @cindex OpenVMS
2918 @cindex Passing by descriptor
2919 Passing by descriptor is supported only on the OpenVMS ports of GNAT@.
2920 The default behavior for Export_Valued_Procedure is to accept either 64bit or
2921 32bit descriptors unless short_descriptor is specified, then only 32bit
2922 descriptors are accepted.
2924 @cindex Suppressing external name
2925 Special treatment is given if the EXTERNAL is an explicit null
2926 string or a static string expressions that evaluates to the null
2927 string. In this case, no external name is generated. This form
2928 still allows the specification of parameter mechanisms.
2930 @node Pragma Extend_System
2931 @unnumberedsec Pragma Extend_System
2932 @cindex @code{system}, extending
2933 @cindex Dec Ada 83
2934 @findex Extend_System
2935 @noindent
2936 Syntax:
2938 @smallexample @c ada
2939 pragma Extend_System ([Name =>] IDENTIFIER);
2940 @end smallexample
2942 @noindent
2943 This pragma is used to provide backwards compatibility with other
2944 implementations that extend the facilities of package @code{System}.  In
2945 GNAT, @code{System} contains only the definitions that are present in
2946 the Ada RM@.  However, other implementations, notably the DEC Ada 83
2947 implementation, provide many extensions to package @code{System}.
2949 For each such implementation accommodated by this pragma, GNAT provides a
2950 package @code{Aux_@var{xxx}}, e.g.@: @code{Aux_DEC} for the DEC Ada 83
2951 implementation, which provides the required additional definitions.  You
2952 can use this package in two ways.  You can @code{with} it in the normal
2953 way and access entities either by selection or using a @code{use}
2954 clause.  In this case no special processing is required.
2956 However, if existing code contains references such as
2957 @code{System.@var{xxx}} where @var{xxx} is an entity in the extended
2958 definitions provided in package @code{System}, you may use this pragma
2959 to extend visibility in @code{System} in a non-standard way that
2960 provides greater compatibility with the existing code.  Pragma
2961 @code{Extend_System} is a configuration pragma whose single argument is
2962 the name of the package containing the extended definition
2963 (e.g.@: @code{Aux_DEC} for the DEC Ada case).  A unit compiled under
2964 control of this pragma will be processed using special visibility
2965 processing that looks in package @code{System.Aux_@var{xxx}} where
2966 @code{Aux_@var{xxx}} is the pragma argument for any entity referenced in
2967 package @code{System}, but not found in package @code{System}.
2969 You can use this pragma either to access a predefined @code{System}
2970 extension supplied with the compiler, for example @code{Aux_DEC} or
2971 you can construct your own extension unit following the above
2972 definition.  Note that such a package is a child of @code{System}
2973 and thus is considered part of the implementation.
2974 To compile it you will have to use the @option{-gnatg} switch,
2975 or the @option{/GNAT_INTERNAL} qualifier on OpenVMS,
2976 for compiling System units, as explained in the
2977 @value{EDITION} User's Guide.
2979 @node Pragma Extensions_Allowed
2980 @unnumberedsec Pragma Extensions_Allowed
2981 @cindex Ada Extensions
2982 @cindex GNAT Extensions
2983 @findex Extensions_Allowed
2984 @noindent
2985 Syntax:
2987 @smallexample @c ada
2988 pragma Extensions_Allowed (On | Off);
2989 @end smallexample
2991 @noindent
2992 This configuration pragma enables or disables the implementation
2993 extension mode (the use of Off as a parameter cancels the effect
2994 of the @option{-gnatX} command switch).
2996 In extension mode, the latest version of the Ada language is
2997 implemented (currently Ada 2012), and in addition a small number
2998 of GNAT specific extensions are recognized as follows:
3000 @table @asis
3001 @item Constrained attribute for generic objects
3002 The @code{Constrained} attribute is permitted for objects of
3003 generic types. The result indicates if the corresponding actual
3004 is constrained.
3006 @end table
3008 @node Pragma External
3009 @unnumberedsec Pragma External
3010 @findex External
3011 @noindent
3012 Syntax:
3014 @smallexample @c ada
3015 pragma External (
3016   [   Convention    =>] convention_IDENTIFIER,
3017   [   Entity        =>] LOCAL_NAME
3018   [, [External_Name =>] static_string_EXPRESSION ]
3019   [, [Link_Name     =>] static_string_EXPRESSION ]);
3020 @end smallexample
3022 @noindent
3023 This pragma is identical in syntax and semantics to pragma
3024 @code{Export} as defined in the Ada Reference Manual.  It is
3025 provided for compatibility with some Ada 83 compilers that
3026 used this pragma for exactly the same purposes as pragma
3027 @code{Export} before the latter was standardized.
3029 @node Pragma External_Name_Casing
3030 @unnumberedsec Pragma External_Name_Casing
3031 @cindex Dec Ada 83 casing compatibility
3032 @cindex External Names, casing
3033 @cindex Casing of External names
3034 @findex External_Name_Casing
3035 @noindent
3036 Syntax:
3038 @smallexample @c ada
3039 pragma External_Name_Casing (
3040   Uppercase | Lowercase
3041   [, Uppercase | Lowercase | As_Is]);
3042 @end smallexample
3044 @noindent
3045 This pragma provides control over the casing of external names associated
3046 with Import and Export pragmas.  There are two cases to consider:
3048 @table @asis
3049 @item Implicit external names
3050 Implicit external names are derived from identifiers.  The most common case
3051 arises when a standard Ada Import or Export pragma is used with only two
3052 arguments, as in:
3054 @smallexample @c ada
3055    pragma Import (C, C_Routine);
3056 @end smallexample
3058 @noindent
3059 Since Ada is a case-insensitive language, the spelling of the identifier in
3060 the Ada source program does not provide any information on the desired
3061 casing of the external name, and so a convention is needed.  In GNAT the
3062 default treatment is that such names are converted to all lower case
3063 letters.  This corresponds to the normal C style in many environments.
3064 The first argument of pragma @code{External_Name_Casing} can be used to
3065 control this treatment.  If @code{Uppercase} is specified, then the name
3066 will be forced to all uppercase letters.  If @code{Lowercase} is specified,
3067 then the normal default of all lower case letters will be used.
3069 This same implicit treatment is also used in the case of extended DEC Ada 83
3070 compatible Import and Export pragmas where an external name is explicitly
3071 specified using an identifier rather than a string.
3073 @item Explicit external names
3074 Explicit external names are given as string literals.  The most common case
3075 arises when a standard Ada Import or Export pragma is used with three
3076 arguments, as in:
3078 @smallexample @c ada
3079 pragma Import (C, C_Routine, "C_routine");
3080 @end smallexample
3082 @noindent
3083 In this case, the string literal normally provides the exact casing required
3084 for the external name.  The second argument of pragma
3085 @code{External_Name_Casing} may be used to modify this behavior.
3086 If @code{Uppercase} is specified, then the name
3087 will be forced to all uppercase letters.  If @code{Lowercase} is specified,
3088 then the name will be forced to all lowercase letters.  A specification of
3089 @code{As_Is} provides the normal default behavior in which the casing is
3090 taken from the string provided.
3091 @end table
3093 @noindent
3094 This pragma may appear anywhere that a pragma is valid.  In particular, it
3095 can be used as a configuration pragma in the @file{gnat.adc} file, in which
3096 case it applies to all subsequent compilations, or it can be used as a program
3097 unit pragma, in which case it only applies to the current unit, or it can
3098 be used more locally to control individual Import/Export pragmas.
3100 It is primarily intended for use with OpenVMS systems, where many
3101 compilers convert all symbols to upper case by default.  For interfacing to
3102 such compilers (e.g.@: the DEC C compiler), it may be convenient to use
3103 the pragma:
3105 @smallexample @c ada
3106 pragma External_Name_Casing (Uppercase, Uppercase);
3107 @end smallexample
3109 @noindent
3110 to enforce the upper casing of all external symbols.
3112 @node Pragma Fast_Math
3113 @unnumberedsec Pragma Fast_Math
3114 @findex Fast_Math
3115 @noindent
3116 Syntax:
3118 @smallexample @c ada
3119 pragma Fast_Math;
3120 @end smallexample
3122 @noindent
3123 This is a configuration pragma which activates a mode in which speed is
3124 considered more important for floating-point operations than absolutely
3125 accurate adherence to the requirements of the standard. Currently the
3126 following operations are affected:
3128 @table @asis
3129 @item Complex Multiplication
3130 The normal simple formula for complex multiplication can result in intermediate
3131 overflows for numbers near the end of the range. The Ada standard requires that
3132 this situation be detected and corrected by scaling, but in Fast_Math mode such
3133 cases will simply result in overflow. Note that to take advantage of this you
3134 must instantiate your own version of @code{Ada.Numerics.Generic_Complex_Types}
3135 under control of the pragma, rather than use the preinstantiated versions.
3136 @end table
3138 @node Pragma Favor_Top_Level
3139 @unnumberedsec Pragma Favor_Top_Level
3140 @findex Favor_Top_Level
3141 @noindent
3142 Syntax:
3144 @smallexample @c ada
3145 pragma Favor_Top_Level (type_NAME);
3146 @end smallexample
3148 @noindent
3149 The named type must be an access-to-subprogram type. This pragma is an
3150 efficiency hint to the compiler, regarding the use of 'Access or
3151 'Unrestricted_Access on nested (non-library-level) subprograms. The
3152 pragma means that nested subprograms are not used with this type, or
3153 are rare, so that the generated code should be efficient in the
3154 top-level case. When this pragma is used, dynamically generated
3155 trampolines may be used on some targets for nested subprograms.
3156 See also the No_Implicit_Dynamic_Code restriction.
3158 @node Pragma Finalize_Storage_Only
3159 @unnumberedsec Pragma Finalize_Storage_Only
3160 @findex Finalize_Storage_Only
3161 @noindent
3162 Syntax:
3164 @smallexample @c ada
3165 pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME);
3166 @end smallexample
3168 @noindent
3169 This pragma allows the compiler not to emit a Finalize call for objects
3170 defined at the library level.  This is mostly useful for types where
3171 finalization is only used to deal with storage reclamation since in most
3172 environments it is not necessary to reclaim memory just before terminating
3173 execution, hence the name.
3175 @node Pragma Float_Representation
3176 @unnumberedsec Pragma Float_Representation
3177 @cindex OpenVMS
3178 @findex Float_Representation
3179 @noindent
3180 Syntax:
3182 @smallexample @c ada
3183 pragma Float_Representation (FLOAT_REP[, float_type_LOCAL_NAME]);
3185 FLOAT_REP ::= VAX_Float | IEEE_Float
3186 @end smallexample
3188 @noindent
3189 In the one argument form, this pragma is a configuration pragma which
3190 allows control over the internal representation chosen for the predefined
3191 floating point types declared in the packages @code{Standard} and
3192 @code{System}. On all systems other than OpenVMS, the argument must
3193 be @code{IEEE_Float} and the pragma has no effect. On OpenVMS, the
3194 argument may be @code{VAX_Float} to specify the use of the VAX float
3195 format for the floating-point types in Standard. This requires that
3196 the standard runtime libraries be recompiled.
3198 The two argument form specifies the representation to be used for
3199 the specified floating-point type. On all systems other than OpenVMS,
3200 the argument must
3201 be @code{IEEE_Float} to specify the use of IEEE format, as follows:
3203 @itemize @bullet
3204 @item
3205 For a digits value of 6, 32-bit IEEE short format will be used.
3206 @item
3207 For a digits value of 15, 64-bit IEEE long format will be used.
3208 @item
3209 No other value of digits is permitted.
3210 @end itemize
3212 On OpenVMS, the
3213 argument may be @code{VAX_Float} to specify the use of the VAX float
3214 format, as follows:
3216 @itemize @bullet
3217 @item
3218 For digits values up to 6, F float format will be used.
3219 @item
3220 For digits values from 7 to 9, D float format will be used.
3221 @item
3222 For digits values from 10 to 15, G float format will be used.
3223 @item
3224 Digits values above 15 are not allowed.
3225 @end itemize
3227 @node Pragma Global
3228 @unnumberedsec Pragma Global
3229 @findex Global
3230 @noindent
3231 For the description of this pragma, see SPARK 2014 Reference Manual,
3232 section 6.1.4.
3234 @node Pragma Ident
3235 @unnumberedsec Pragma Ident
3236 @findex Ident
3237 @noindent
3238 Syntax:
3240 @smallexample @c ada
3241 pragma Ident (static_string_EXPRESSION);
3242 @end smallexample
3244 @noindent
3245 This pragma provides a string identification in the generated object file,
3246 if the system supports the concept of this kind of identification string.
3247 This pragma is allowed only in the outermost declarative part or
3248 declarative items of a compilation unit. If more than one @code{Ident}
3249 pragma is given, only the last one processed is effective.
3250 @cindex OpenVMS
3251 On OpenVMS systems, the effect of the pragma is identical to the effect of
3252 the DEC Ada 83 pragma of the same name. Note that in DEC Ada 83, the
3253 maximum allowed length is 31 characters, so if it is important to
3254 maintain compatibility with this compiler, you should obey this length
3255 limit.
3257 @node Pragma Implementation_Defined
3258 @unnumberedsec Pragma Implementation_Defined
3259 @findex Implementation_Defined
3260 @noindent
3261 Syntax:
3263 @smallexample @c ada
3264 pragma Implementation_Defined (local_NAME);
3265 @end smallexample
3267 @noindent
3268 This pragma marks a previously declared entioty as implementation-defined.
3269 For an overloaded entity, applies to the most recent homonym.
3271 @smallexample @c ada
3272 pragma Implementation_Defined;
3273 @end smallexample
3275 @noindent
3276 The form with no arguments appears anywhere within a scope, most
3277 typically a package spec, and indicates that all entities that are
3278 defined within the package spec are Implementation_Defined.
3280 This pragma is used within the GNAT runtime library to identify
3281 implementation-defined entities introduced in language-defined units,
3282 for the purpose of implementing the No_Implementation_Identifiers
3283 restriction.
3285 @node Pragma Implemented
3286 @unnumberedsec Pragma Implemented
3287 @findex Implemented
3288 @noindent
3289 Syntax:
3291 @smallexample @c ada
3292 pragma Implemented (procedure_LOCAL_NAME, implementation_kind);
3294 implementation_kind ::= By_Entry | By_Protected_Procedure | By_Any
3295 @end smallexample
3297 @noindent
3298 This is an Ada 2012 representation pragma which applies to protected, task
3299 and synchronized interface primitives. The use of pragma Implemented provides
3300 a way to impose a static requirement on the overriding operation by adhering
3301 to one of the three implementation kinds: entry, protected procedure or any of
3302 the above. This pragma is available in all earlier versions of Ada as an
3303 implementation-defined pragma.
3305 @smallexample @c ada
3306 type Synch_Iface is synchronized interface;
3307 procedure Prim_Op (Obj : in out Iface) is abstract;
3308 pragma Implemented (Prim_Op, By_Protected_Procedure);
3310 protected type Prot_1 is new Synch_Iface with
3311    procedure Prim_Op;  --  Legal
3312 end Prot_1;
3314 protected type Prot_2 is new Synch_Iface with
3315    entry Prim_Op;      --  Illegal
3316 end Prot_2;
3318 task type Task_Typ is new Synch_Iface with
3319    entry Prim_Op;      --  Illegal
3320 end Task_Typ;
3321 @end smallexample
3323 @noindent
3324 When applied to the procedure_or_entry_NAME of a requeue statement, pragma
3325 Implemented determines the runtime behavior of the requeue. Implementation kind
3326 By_Entry guarantees that the action of requeueing will proceed from an entry to
3327 another entry. Implementation kind By_Protected_Procedure transforms the
3328 requeue into a dispatching call, thus eliminating the chance of blocking. Kind
3329 By_Any shares the behavior of By_Entry and By_Protected_Procedure depending on
3330 the target's overriding subprogram kind.
3332 @node Pragma Implicit_Packing
3333 @unnumberedsec Pragma Implicit_Packing
3334 @findex Implicit_Packing
3335 @cindex Rational Profile
3336 @noindent
3337 Syntax:
3339 @smallexample @c ada
3340 pragma Implicit_Packing;
3341 @end smallexample
3343 @noindent
3344 This is a configuration pragma that requests implicit packing for packed
3345 arrays for which a size clause is given but no explicit pragma Pack or
3346 specification of Component_Size is present. It also applies to records
3347 where no record representation clause is present. Consider this example:
3349 @smallexample @c ada
3350 type R is array (0 .. 7) of Boolean;
3351 for R'Size use 8;
3352 @end smallexample
3354 @noindent
3355 In accordance with the recommendation in the RM (RM 13.3(53)), a Size clause
3356 does not change the layout of a composite object. So the Size clause in the
3357 above example is normally rejected, since the default layout of the array uses
3358 8-bit components, and thus the array requires a minimum of 64 bits.
3360 If this declaration is compiled in a region of code covered by an occurrence
3361 of the configuration pragma Implicit_Packing, then the Size clause in this
3362 and similar examples will cause implicit packing and thus be accepted. For
3363 this implicit packing to occur, the type in question must be an array of small
3364 components whose size is known at compile time, and the Size clause must
3365 specify the exact size that corresponds to the number of elements in the array
3366 multiplied by the size in bits of the component type (both single and
3367 multi-dimensioned arrays can be controlled with this pragma).
3369 @cindex Array packing
3371 Similarly, the following example shows the use in the record case
3373 @smallexample @c ada
3374 type r is record
3375    a, b, c, d, e, f, g, h : boolean;
3376    chr                    : character;
3377 end record;
3378 for r'size use 16;
3379 @end smallexample
3381 @noindent
3382 Without a pragma Pack, each Boolean field requires 8 bits, so the
3383 minimum size is 72 bits, but with a pragma Pack, 16 bits would be
3384 sufficient. The use of pragma Implicit_Packing allows this record
3385 declaration to compile without an explicit pragma Pack.
3386 @node Pragma Import_Exception
3387 @unnumberedsec Pragma Import_Exception
3388 @cindex OpenVMS
3389 @findex Import_Exception
3390 @noindent
3391 Syntax:
3393 @smallexample @c ada
3394 pragma Import_Exception (
3395      [Internal =>] LOCAL_NAME
3396   [, [External =>] EXTERNAL_SYMBOL]
3397   [, [Form     =>] Ada | VMS]
3398   [, [Code     =>] static_integer_EXPRESSION]);
3400 EXTERNAL_SYMBOL ::=
3401   IDENTIFIER
3402 | static_string_EXPRESSION
3403 @end smallexample
3405 @noindent
3406 This pragma is implemented only in the OpenVMS implementation of GNAT@.
3407 It allows OpenVMS conditions (for example, from OpenVMS system services or
3408 other OpenVMS languages) to be propagated to Ada programs as Ada exceptions.
3409 The pragma specifies that the exception associated with an exception
3410 declaration in an Ada program be defined externally (in non-Ada code).
3411 For further details on this pragma, see the
3412 DEC Ada Language Reference Manual, section 13.9a.3.1.
3414 @node Pragma Import_Function
3415 @unnumberedsec Pragma Import_Function
3416 @findex Import_Function
3417 @noindent
3418 Syntax:
3420 @smallexample @c ada
3421 pragma Import_Function (
3422      [Internal                 =>] LOCAL_NAME,
3423   [, [External                 =>] EXTERNAL_SYMBOL]
3424   [, [Parameter_Types          =>] PARAMETER_TYPES]
3425   [, [Result_Type              =>] SUBTYPE_MARK]
3426   [, [Mechanism                =>] MECHANISM]
3427   [, [Result_Mechanism         =>] MECHANISM_NAME]
3428   [, [First_Optional_Parameter =>] IDENTIFIER]);
3430 EXTERNAL_SYMBOL ::=
3431   IDENTIFIER
3432 | static_string_EXPRESSION
3434 PARAMETER_TYPES ::=
3435   null
3436 | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
3438 TYPE_DESIGNATOR ::=
3439   subtype_NAME
3440 | subtype_Name ' Access
3442 MECHANISM ::=
3443   MECHANISM_NAME
3444 | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
3446 MECHANISM_ASSOCIATION ::=
3447   [formal_parameter_NAME =>] MECHANISM_NAME
3449 MECHANISM_NAME ::=
3450   Value
3451 | Reference
3452 | Descriptor [([Class =>] CLASS_NAME)]
3453 | Short_Descriptor [([Class =>] CLASS_NAME)]
3455 CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
3456 @end smallexample
3458 @noindent
3459 This pragma is used in conjunction with a pragma @code{Import} to
3460 specify additional information for an imported function.  The pragma
3461 @code{Import} (or equivalent pragma @code{Interface}) must precede the
3462 @code{Import_Function} pragma and both must appear in the same
3463 declarative part as the function specification.
3465 The @var{Internal} argument must uniquely designate
3466 the function to which the
3467 pragma applies.  If more than one function name exists of this name in
3468 the declarative part you must use the @code{Parameter_Types} and
3469 @var{Result_Type} parameters to achieve the required unique
3470 designation.  Subtype marks in these parameters must exactly match the
3471 subtypes in the corresponding function specification, using positional
3472 notation to match parameters with subtype marks.
3473 The form with an @code{'Access} attribute can be used to match an
3474 anonymous access parameter.
3476 You may optionally use the @var{Mechanism} and @var{Result_Mechanism}
3477 parameters to specify passing mechanisms for the
3478 parameters and result.  If you specify a single mechanism name, it
3479 applies to all parameters.  Otherwise you may specify a mechanism on a
3480 parameter by parameter basis using either positional or named
3481 notation.  If the mechanism is not specified, the default mechanism
3482 is used.
3484 @cindex OpenVMS
3485 @cindex Passing by descriptor
3486 Passing by descriptor is supported only on the OpenVMS ports of GNAT@.
3487 The default behavior for Import_Function is to pass a 64bit descriptor
3488 unless short_descriptor is specified, then a 32bit descriptor is passed.
3490 @code{First_Optional_Parameter} applies only to OpenVMS ports of GNAT@.
3491 It specifies that the designated parameter and all following parameters
3492 are optional, meaning that they are not passed at the generated code
3493 level (this is distinct from the notion of optional parameters in Ada
3494 where the parameters are passed anyway with the designated optional
3495 parameters).  All optional parameters must be of mode @code{IN} and have
3496 default parameter values that are either known at compile time
3497 expressions, or uses of the @code{'Null_Parameter} attribute.
3499 @node Pragma Import_Object
3500 @unnumberedsec Pragma Import_Object
3501 @findex Import_Object
3502 @noindent
3503 Syntax:
3505 @smallexample @c ada
3506 pragma Import_Object
3507      [Internal =>] LOCAL_NAME
3508   [, [External =>] EXTERNAL_SYMBOL]
3509   [, [Size     =>] EXTERNAL_SYMBOL]);
3511 EXTERNAL_SYMBOL ::=
3512   IDENTIFIER
3513 | static_string_EXPRESSION
3514 @end smallexample
3516 @noindent
3517 This pragma designates an object as imported, and apart from the
3518 extended rules for external symbols, is identical in effect to the use of
3519 the normal @code{Import} pragma applied to an object.  Unlike the
3520 subprogram case, you need not use a separate @code{Import} pragma,
3521 although you may do so (and probably should do so from a portability
3522 point of view).  @var{size} is syntax checked, but otherwise ignored by
3523 GNAT@.
3525 @node Pragma Import_Procedure
3526 @unnumberedsec Pragma Import_Procedure
3527 @findex Import_Procedure
3528 @noindent
3529 Syntax:
3531 @smallexample @c ada
3532 pragma Import_Procedure (
3533      [Internal                 =>] LOCAL_NAME
3534   [, [External                 =>] EXTERNAL_SYMBOL]
3535   [, [Parameter_Types          =>] PARAMETER_TYPES]
3536   [, [Mechanism                =>] MECHANISM]
3537   [, [First_Optional_Parameter =>] IDENTIFIER]);
3539 EXTERNAL_SYMBOL ::=
3540   IDENTIFIER
3541 | static_string_EXPRESSION
3543 PARAMETER_TYPES ::=
3544   null
3545 | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
3547 TYPE_DESIGNATOR ::=
3548   subtype_NAME
3549 | subtype_Name ' Access
3551 MECHANISM ::=
3552   MECHANISM_NAME
3553 | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
3555 MECHANISM_ASSOCIATION ::=
3556   [formal_parameter_NAME =>] MECHANISM_NAME
3558 MECHANISM_NAME ::=
3559   Value
3560 | Reference
3561 | Descriptor [([Class =>] CLASS_NAME)]
3562 | Short_Descriptor [([Class =>] CLASS_NAME)]
3564 CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
3565 @end smallexample
3567 @noindent
3568 This pragma is identical to @code{Import_Function} except that it
3569 applies to a procedure rather than a function and the parameters
3570 @code{Result_Type} and @code{Result_Mechanism} are not permitted.
3572 @node Pragma Import_Valued_Procedure
3573 @unnumberedsec Pragma Import_Valued_Procedure
3574 @findex Import_Valued_Procedure
3575 @noindent
3576 Syntax:
3578 @smallexample @c ada
3579 pragma Import_Valued_Procedure (
3580      [Internal                 =>] LOCAL_NAME
3581   [, [External                 =>] EXTERNAL_SYMBOL]
3582   [, [Parameter_Types          =>] PARAMETER_TYPES]
3583   [, [Mechanism                =>] MECHANISM]
3584   [, [First_Optional_Parameter =>] IDENTIFIER]);
3586 EXTERNAL_SYMBOL ::=
3587   IDENTIFIER
3588 | static_string_EXPRESSION
3590 PARAMETER_TYPES ::=
3591   null
3592 | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
3594 TYPE_DESIGNATOR ::=
3595   subtype_NAME
3596 | subtype_Name ' Access
3598 MECHANISM ::=
3599   MECHANISM_NAME
3600 | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
3602 MECHANISM_ASSOCIATION ::=
3603   [formal_parameter_NAME =>] MECHANISM_NAME
3605 MECHANISM_NAME ::=
3606   Value
3607 | Reference
3608 | Descriptor [([Class =>] CLASS_NAME)]
3609 | Short_Descriptor [([Class =>] CLASS_NAME)]
3611 CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca
3612 @end smallexample
3614 @noindent
3615 This pragma is identical to @code{Import_Procedure} except that the
3616 first parameter of @var{LOCAL_NAME}, which must be present, must be of
3617 mode @code{OUT}, and externally the subprogram is treated as a function
3618 with this parameter as the result of the function.  The purpose of this
3619 capability is to allow the use of @code{OUT} and @code{IN OUT}
3620 parameters in interfacing to external functions (which are not permitted
3621 in Ada functions).  You may optionally use the @code{Mechanism}
3622 parameters to specify passing mechanisms for the parameters.
3623 If you specify a single mechanism name, it applies to all parameters.
3624 Otherwise you may specify a mechanism on a parameter by parameter
3625 basis using either positional or named notation.  If the mechanism is not
3626 specified, the default mechanism is used.
3628 Note that it is important to use this pragma in conjunction with a separate
3629 pragma Import that specifies the desired convention, since otherwise the
3630 default convention is Ada, which is almost certainly not what is required.
3632 @node Pragma Independent
3633 @unnumberedsec Pragma Independent
3634 @findex Independent
3635 @noindent
3636 Syntax:
3638 @smallexample @c ada
3639 pragma Independent (Local_NAME);
3640 @end smallexample
3642 @noindent
3643 This pragma is standard in Ada 2012 mode (which also provides an aspect
3644 of the same name). It is also available as an implementation-defined
3645 pragma in all earlier versions. It specifies that the
3646 designated object or all objects of the designated type must be
3647 independently addressable. This means that separate tasks can safely
3648 manipulate such objects. For example, if two components of a record are
3649 independent, then two separate tasks may access these two components.
3650 This may place
3651 constraints on the representation of the object (for instance prohibiting
3652 tight packing).
3654 @node Pragma Independent_Components
3655 @unnumberedsec Pragma Independent_Components
3656 @findex Independent_Components
3657 @noindent
3658 Syntax:
3660 @smallexample @c ada
3661 pragma Independent_Components (Local_NAME);
3662 @end smallexample
3664 @noindent
3665 This pragma is standard in Ada 2012 mode (which also provides an aspect
3666 of the same name). It is also available as an implementation-defined
3667 pragma in all earlier versions. It specifies that the components of the
3668 designated object, or the components of each object of the designated
3669 type, must be
3670 independently addressable. This means that separate tasks can safely
3671 manipulate separate components in the composite object. This may place
3672 constraints on the representation of the object (for instance prohibiting
3673 tight packing).
3675 @node Pragma Initial_Condition
3676 @unnumberedsec Pragma Initial_Condition
3677 @findex Initial_Condition
3678 @noindent
3679 For the description of this pragma, see SPARK 2014 Reference Manual,
3680 section 7.1.6.
3682 @node Pragma Initialize_Scalars
3683 @unnumberedsec Pragma Initialize_Scalars
3684 @findex Initialize_Scalars
3685 @cindex debugging with Initialize_Scalars
3686 @noindent
3687 Syntax:
3689 @smallexample @c ada
3690 pragma Initialize_Scalars;
3691 @end smallexample
3693 @noindent
3694 This pragma is similar to @code{Normalize_Scalars} conceptually but has
3695 two important differences.  First, there is no requirement for the pragma
3696 to be used uniformly in all units of a partition, in particular, it is fine
3697 to use this just for some or all of the application units of a partition,
3698 without needing to recompile the run-time library.
3700 In the case where some units are compiled with the pragma, and some without,
3701 then a declaration of a variable where the type is defined in package
3702 Standard or is locally declared will always be subject to initialization,
3703 as will any declaration of a scalar variable.  For composite variables,
3704 whether the variable is initialized may also depend on whether the package
3705 in which the type of the variable is declared is compiled with the pragma.
3707 The other important difference is that you can control the value used
3708 for initializing scalar objects.  At bind time, you can select several
3709 options for initialization. You can
3710 initialize with invalid values (similar to Normalize_Scalars, though for
3711 Initialize_Scalars it is not always possible to determine the invalid
3712 values in complex cases like signed component fields with non-standard
3713 sizes). You can also initialize with high or
3714 low values, or with a specified bit pattern.  See the @value{EDITION}
3715 User's Guide for binder options for specifying these cases.
3717 This means that you can compile a program, and then without having to
3718 recompile the program, you can run it with different values being used
3719 for initializing otherwise uninitialized values, to test if your program
3720 behavior depends on the choice.  Of course the behavior should not change,
3721 and if it does, then most likely you have an incorrect reference to an
3722 uninitialized value.
3724 It is even possible to change the value at execution time eliminating even
3725 the need to rebind with a different switch using an environment variable.
3726 See the @value{EDITION} User's Guide for details.
3728 Note that pragma @code{Initialize_Scalars} is particularly useful in
3729 conjunction with the enhanced validity checking that is now provided
3730 in GNAT, which checks for invalid values under more conditions.
3731 Using this feature (see description of the @option{-gnatV} flag in the
3732 @value{EDITION} User's Guide) in conjunction with
3733 pragma @code{Initialize_Scalars}
3734 provides a powerful new tool to assist in the detection of problems
3735 caused by uninitialized variables.
3737 Note: the use of @code{Initialize_Scalars} has a fairly extensive
3738 effect on the generated code. This may cause your code to be
3739 substantially larger. It may also cause an increase in the amount
3740 of stack required, so it is probably a good idea to turn on stack
3741 checking (see description of stack checking in the @value{EDITION}
3742 User's Guide) when using this pragma.
3744 @node Pragma Initializes
3745 @unnumberedsec Pragma Initializes
3746 @findex Initializes
3747 @noindent
3748 For the description of this pragma, see SPARK 2014 Reference Manual,
3749 section 7.1.5.
3751 @node Pragma Inline_Always
3752 @unnumberedsec Pragma Inline_Always
3753 @findex Inline_Always
3754 @noindent
3755 Syntax:
3757 @smallexample @c ada
3758 pragma Inline_Always (NAME [, NAME]);
3759 @end smallexample
3761 @noindent
3762 Similar to pragma @code{Inline} except that inlining is not subject to
3763 the use of option @option{-gnatn} or @option{-gnatN} and the inlining
3764 happens regardless of whether these options are used.
3766 @node Pragma Inline_Generic
3767 @unnumberedsec Pragma Inline_Generic
3768 @findex Inline_Generic
3769 @noindent
3770 Syntax:
3772 @smallexample @c ada
3773 pragma Inline_Generic (GNAME @{, GNAME@});
3775 GNAME ::= generic_unit_NAME | generic_instance_NAME
3776 @end smallexample
3778 @noindent
3779 This pragma is provided for compatibility with Dec Ada 83. It has
3780 no effect in @code{GNAT} (which always inlines generics), other
3781 than to check that the given names are all names of generic units or
3782 generic instances.
3784 @node Pragma Interface
3785 @unnumberedsec Pragma Interface
3786 @findex Interface
3787 @noindent
3788 Syntax:
3790 @smallexample @c ada
3791 pragma Interface (
3792      [Convention    =>] convention_identifier,
3793      [Entity        =>] local_NAME
3794   [, [External_Name =>] static_string_expression]
3795   [, [Link_Name     =>] static_string_expression]);
3796 @end smallexample
3798 @noindent
3799 This pragma is identical in syntax and semantics to
3800 the standard Ada pragma @code{Import}.  It is provided for compatibility
3801 with Ada 83.  The definition is upwards compatible both with pragma
3802 @code{Interface} as defined in the Ada 83 Reference Manual, and also
3803 with some extended implementations of this pragma in certain Ada 83
3804 implementations.  The only difference between pragma @code{Interface}
3805 and pragma @code{Import} is that there is special circuitry to allow
3806 both pragmas to appear for the same subprogram entity (normally it
3807 is illegal to have multiple @code{Import} pragmas. This is useful in
3808 maintaining Ada 83/Ada 95 compatibility and is compatible with other
3809 Ada 83 compilers.
3811 @node Pragma Interface_Name
3812 @unnumberedsec Pragma Interface_Name
3813 @findex Interface_Name
3814 @noindent
3815 Syntax:
3817 @smallexample @c ada
3818 pragma Interface_Name (
3819      [Entity        =>] LOCAL_NAME
3820   [, [External_Name =>] static_string_EXPRESSION]
3821   [, [Link_Name     =>] static_string_EXPRESSION]);
3822 @end smallexample
3824 @noindent
3825 This pragma provides an alternative way of specifying the interface name
3826 for an interfaced subprogram, and is provided for compatibility with Ada
3827 83 compilers that use the pragma for this purpose.  You must provide at
3828 least one of @var{External_Name} or @var{Link_Name}.
3830 @node Pragma Interrupt_Handler
3831 @unnumberedsec Pragma Interrupt_Handler
3832 @findex Interrupt_Handler
3833 @noindent
3834 Syntax:
3836 @smallexample @c ada
3837 pragma Interrupt_Handler (procedure_LOCAL_NAME);
3838 @end smallexample
3840 @noindent
3841 This program unit pragma is supported for parameterless protected procedures
3842 as described in Annex C of the Ada Reference Manual. On the AAMP target
3843 the pragma can also be specified for nonprotected parameterless procedures
3844 that are declared at the library level (which includes procedures
3845 declared at the top level of a library package). In the case of AAMP,
3846 when this pragma is applied to a nonprotected procedure, the instruction
3847 @code{IERET} is generated for returns from the procedure, enabling
3848 maskable interrupts, in place of the normal return instruction.
3850 @node Pragma Interrupt_State
3851 @unnumberedsec Pragma Interrupt_State
3852 @findex Interrupt_State
3853 @noindent
3854 Syntax:
3856 @smallexample @c ada
3857 pragma Interrupt_State
3858  ([Name  =>] value,
3859   [State =>] SYSTEM | RUNTIME | USER);
3860 @end smallexample
3862 @noindent
3863 Normally certain interrupts are reserved to the implementation.  Any attempt
3864 to attach an interrupt causes Program_Error to be raised, as described in
3865 RM C.3.2(22).  A typical example is the @code{SIGINT} interrupt used in
3866 many systems for an @kbd{Ctrl-C} interrupt.  Normally this interrupt is
3867 reserved to the implementation, so that @kbd{Ctrl-C} can be used to
3868 interrupt execution.  Additionally, signals such as @code{SIGSEGV},
3869 @code{SIGABRT}, @code{SIGFPE} and @code{SIGILL} are often mapped to specific
3870 Ada exceptions, or used to implement run-time functions such as the
3871 @code{abort} statement and stack overflow checking.
3873 Pragma @code{Interrupt_State} provides a general mechanism for overriding
3874 such uses of interrupts.  It subsumes the functionality of pragma
3875 @code{Unreserve_All_Interrupts}.  Pragma @code{Interrupt_State} is not
3876 available on Windows or VMS.  On all other platforms than VxWorks,
3877 it applies to signals; on VxWorks, it applies to vectored hardware interrupts
3878 and may be used to mark interrupts required by the board support package
3879 as reserved.
3881 Interrupts can be in one of three states:
3882 @itemize @bullet
3883 @item System
3885 The interrupt is reserved (no Ada handler can be installed), and the
3886 Ada run-time may not install a handler. As a result you are guaranteed
3887 standard system default action if this interrupt is raised.
3889 @item Runtime
3891 The interrupt is reserved (no Ada handler can be installed). The run time
3892 is allowed to install a handler for internal control purposes, but is
3893 not required to do so.
3895 @item User
3897 The interrupt is unreserved.  The user may install a handler to provide
3898 some other action.
3899 @end itemize
3901 @noindent
3902 These states are the allowed values of the @code{State} parameter of the
3903 pragma.  The @code{Name} parameter is a value of the type
3904 @code{Ada.Interrupts.Interrupt_ID}.  Typically, it is a name declared in
3905 @code{Ada.Interrupts.Names}.
3907 This is a configuration pragma, and the binder will check that there
3908 are no inconsistencies between different units in a partition in how a
3909 given interrupt is specified. It may appear anywhere a pragma is legal.
3911 The effect is to move the interrupt to the specified state.
3913 By declaring interrupts to be SYSTEM, you guarantee the standard system
3914 action, such as a core dump.
3916 By declaring interrupts to be USER, you guarantee that you can install
3917 a handler.
3919 Note that certain signals on many operating systems cannot be caught and
3920 handled by applications.  In such cases, the pragma is ignored.  See the
3921 operating system documentation, or the value of the array @code{Reserved}
3922 declared in the spec of package @code{System.OS_Interface}.
3924 Overriding the default state of signals used by the Ada runtime may interfere
3925 with an application's runtime behavior in the cases of the synchronous signals,
3926 and in the case of the signal used to implement the @code{abort} statement.
3928 @node Pragma Invariant
3929 @unnumberedsec Pragma Invariant
3930 @findex Invariant
3931 @noindent
3932 Syntax:
3934 @smallexample @c ada
3935 pragma Invariant
3936   ([Entity =>]    private_type_LOCAL_NAME,
3937    [Check  =>]    EXPRESSION
3938    [,[Message =>] String_Expression]);
3939 @end smallexample
3941 @noindent
3942 This pragma provides exactly the same capabilities as the Type_Invariant aspect
3943 defined in AI05-0146-1, and in the Ada 2012 Reference Manual. The
3944 Type_Invariant aspect is fully implemented in Ada 2012 mode, but since it
3945 requires the use of the aspect syntax, which is not available except in 2012
3946 mode, it is not possible to use the Type_Invariant aspect in earlier versions
3947 of Ada. However the Invariant pragma may be used in any version of Ada. Also
3948 note that the aspect Invariant is a synonym in GNAT for the aspect
3949 Type_Invariant, but there is no pragma Type_Invariant.
3951 The pragma must appear within the visible part of the package specification,
3952 after the type to which its Entity argument appears. As with the Invariant
3953 aspect, the Check expression is not analyzed until the end of the visible
3954 part of the package, so it may contain forward references. The Message
3955 argument, if present, provides the exception message used if the invariant
3956 is violated. If no Message parameter is provided, a default message that
3957 identifies the line on which the pragma appears is used.
3959 It is permissible to have multiple Invariants for the same type entity, in
3960 which case they are and'ed together. It is permissible to use this pragma
3961 in Ada 2012 mode, but you cannot have both an invariant aspect and an
3962 invariant pragma for the same entity.
3964 For further details on the use of this pragma, see the Ada 2012 documentation
3965 of the Type_Invariant aspect.
3967 @node Pragma Java_Constructor
3968 @unnumberedsec Pragma Java_Constructor
3969 @findex Java_Constructor
3970 @noindent
3971 Syntax:
3973 @smallexample @c ada
3974 pragma Java_Constructor ([Entity =>] function_LOCAL_NAME);
3975 @end smallexample
3977 @noindent
3978 This pragma is used to assert that the specified Ada function should be
3979 mapped to the Java constructor for some Ada tagged record type.
3981 See section 7.3.2 of the
3982 @code{GNAT User's Guide: Supplement for the JVM Platform.}
3983 for related information.
3985 @node Pragma Java_Interface
3986 @unnumberedsec Pragma Java_Interface
3987 @findex Java_Interface
3988 @noindent
3989 Syntax:
3991 @smallexample @c ada
3992 pragma Java_Interface ([Entity =>] abstract_tagged_type_LOCAL_NAME);
3993 @end smallexample
3995 @noindent
3996 This pragma is used to assert that the specified Ada abstract tagged type
3997 is to be mapped to a Java interface name.
3999 See sections 7.1 and 7.2 of the
4000 @code{GNAT User's Guide: Supplement for the JVM Platform.}
4001 for related information.
4003 @node Pragma Keep_Names
4004 @unnumberedsec Pragma Keep_Names
4005 @findex Keep_Names
4006 @noindent
4007 Syntax:
4009 @smallexample @c ada
4010 pragma Keep_Names ([On =>] enumeration_first_subtype_LOCAL_NAME);
4011 @end smallexample
4013 @noindent
4014 The @var{LOCAL_NAME} argument
4015 must refer to an enumeration first subtype
4016 in the current declarative part. The effect is to retain the enumeration
4017 literal names for use by @code{Image} and @code{Value} even if a global
4018 @code{Discard_Names} pragma applies. This is useful when you want to
4019 generally suppress enumeration literal names and for example you therefore
4020 use a @code{Discard_Names} pragma in the @file{gnat.adc} file, but you
4021 want to retain the names for specific enumeration types.
4023 @node Pragma License
4024 @unnumberedsec Pragma License
4025 @findex License
4026 @cindex License checking
4027 @noindent
4028 Syntax:
4030 @smallexample @c ada
4031 pragma License (Unrestricted | GPL | Modified_GPL | Restricted);
4032 @end smallexample
4034 @noindent
4035 This pragma is provided to allow automated checking for appropriate license
4036 conditions with respect to the standard and modified GPL@.  A pragma
4037 @code{License}, which is a configuration pragma that typically appears at
4038 the start of a source file or in a separate @file{gnat.adc} file, specifies
4039 the licensing conditions of a unit as follows:
4041 @itemize @bullet
4042 @item Unrestricted
4043 This is used for a unit that can be freely used with no license restrictions.
4044 Examples of such units are public domain units, and units from the Ada
4045 Reference Manual.
4047 @item GPL
4048 This is used for a unit that is licensed under the unmodified GPL, and which
4049 therefore cannot be @code{with}'ed by a restricted unit.
4051 @item Modified_GPL
4052 This is used for a unit licensed under the GNAT modified GPL that includes
4053 a special exception paragraph that specifically permits the inclusion of
4054 the unit in programs without requiring the entire program to be released
4055 under the GPL@.
4057 @item Restricted
4058 This is used for a unit that is restricted in that it is not permitted to
4059 depend on units that are licensed under the GPL@.  Typical examples are
4060 proprietary code that is to be released under more restrictive license
4061 conditions.  Note that restricted units are permitted to @code{with} units
4062 which are licensed under the modified GPL (this is the whole point of the
4063 modified GPL).
4065 @end itemize
4067 @noindent
4068 Normally a unit with no @code{License} pragma is considered to have an
4069 unknown license, and no checking is done.  However, standard GNAT headers
4070 are recognized, and license information is derived from them as follows.
4072 @itemize @bullet
4074 A GNAT license header starts with a line containing 78 hyphens.  The following
4075 comment text is searched for the appearance of any of the following strings.
4077 If the string ``GNU General Public License'' is found, then the unit is assumed
4078 to have GPL license, unless the string ``As a special exception'' follows, in
4079 which case the license is assumed to be modified GPL@.
4081 If one of the strings
4082 ``This specification is adapted from the Ada Semantic Interface'' or
4083 ``This specification is derived from the Ada Reference Manual'' is found
4084 then the unit is assumed to be unrestricted.
4085 @end itemize
4087 @noindent
4088 These default actions means that a program with a restricted license pragma
4089 will automatically get warnings if a GPL unit is inappropriately
4090 @code{with}'ed.  For example, the program:
4092 @smallexample @c ada
4093 with Sem_Ch3;
4094 with GNAT.Sockets;
4095 procedure Secret_Stuff is
4096   @dots{}
4097 end Secret_Stuff
4098 @end smallexample
4100 @noindent
4101 if compiled with pragma @code{License} (@code{Restricted}) in a
4102 @file{gnat.adc} file will generate the warning:
4104 @smallexample
4105 1.  with Sem_Ch3;
4106         |
4107    >>> license of withed unit "Sem_Ch3" is incompatible
4109 2.  with GNAT.Sockets;
4110 3.  procedure Secret_Stuff is
4111 @end smallexample
4113 @noindent
4114 Here we get a warning on @code{Sem_Ch3} since it is part of the GNAT
4115 compiler and is licensed under the
4116 GPL, but no warning for @code{GNAT.Sockets} which is part of the GNAT
4117 run time, and is therefore licensed under the modified GPL@.
4119 @node Pragma Link_With
4120 @unnumberedsec Pragma Link_With
4121 @findex Link_With
4122 @noindent
4123 Syntax:
4125 @smallexample @c ada
4126 pragma Link_With (static_string_EXPRESSION @{,static_string_EXPRESSION@});
4127 @end smallexample
4129 @noindent
4130 This pragma is provided for compatibility with certain Ada 83 compilers.
4131 It has exactly the same effect as pragma @code{Linker_Options} except
4132 that spaces occurring within one of the string expressions are treated
4133 as separators. For example, in the following case:
4135 @smallexample @c ada
4136 pragma Link_With ("-labc -ldef");
4137 @end smallexample
4139 @noindent
4140 results in passing the strings @code{-labc} and @code{-ldef} as two
4141 separate arguments to the linker. In addition pragma Link_With allows
4142 multiple arguments, with the same effect as successive pragmas.
4144 @node Pragma Linker_Alias
4145 @unnumberedsec Pragma Linker_Alias
4146 @findex Linker_Alias
4147 @noindent
4148 Syntax:
4150 @smallexample @c ada
4151 pragma Linker_Alias (
4152   [Entity =>] LOCAL_NAME,
4153   [Target =>] static_string_EXPRESSION);
4154 @end smallexample
4156 @noindent
4157 @var{LOCAL_NAME} must refer to an object that is declared at the library
4158 level. This pragma establishes the given entity as a linker alias for the
4159 given target. It is equivalent to @code{__attribute__((alias))} in GNU C
4160 and causes @var{LOCAL_NAME} to be emitted as an alias for the symbol
4161 @var{static_string_EXPRESSION} in the object file, that is to say no space
4162 is reserved for @var{LOCAL_NAME} by the assembler and it will be resolved
4163 to the same address as @var{static_string_EXPRESSION} by the linker.
4165 The actual linker name for the target must be used (e.g.@: the fully
4166 encoded name with qualification in Ada, or the mangled name in C++),
4167 or it must be declared using the C convention with @code{pragma Import}
4168 or @code{pragma Export}.
4170 Not all target machines support this pragma. On some of them it is accepted
4171 only if @code{pragma Weak_External} has been applied to @var{LOCAL_NAME}.
4173 @smallexample @c ada
4174 --  Example of the use of pragma Linker_Alias
4176 package p is
4177   i : Integer := 1;
4178   pragma Export (C, i);
4180   new_name_for_i : Integer;
4181   pragma Linker_Alias (new_name_for_i, "i");
4182 end p;
4183 @end smallexample
4185 @node Pragma Linker_Constructor
4186 @unnumberedsec Pragma Linker_Constructor
4187 @findex Linker_Constructor
4188 @noindent
4189 Syntax:
4191 @smallexample @c ada
4192 pragma Linker_Constructor (procedure_LOCAL_NAME);
4193 @end smallexample
4195 @noindent
4196 @var{procedure_LOCAL_NAME} must refer to a parameterless procedure that
4197 is declared at the library level. A procedure to which this pragma is
4198 applied will be treated as an initialization routine by the linker.
4199 It is equivalent to @code{__attribute__((constructor))} in GNU C and
4200 causes @var{procedure_LOCAL_NAME} to be invoked before the entry point
4201 of the executable is called (or immediately after the shared library is
4202 loaded if the procedure is linked in a shared library), in particular
4203 before the Ada run-time environment is set up.
4205 Because of these specific contexts, the set of operations such a procedure
4206 can perform is very limited and the type of objects it can manipulate is
4207 essentially restricted to the elementary types. In particular, it must only
4208 contain code to which pragma Restrictions (No_Elaboration_Code) applies.
4210 This pragma is used by GNAT to implement auto-initialization of shared Stand
4211 Alone Libraries, which provides a related capability without the restrictions
4212 listed above. Where possible, the use of Stand Alone Libraries is preferable
4213 to the use of this pragma.
4215 @node Pragma Linker_Destructor
4216 @unnumberedsec Pragma Linker_Destructor
4217 @findex Linker_Destructor
4218 @noindent
4219 Syntax:
4221 @smallexample @c ada
4222 pragma Linker_Destructor (procedure_LOCAL_NAME);
4223 @end smallexample
4225 @noindent
4226 @var{procedure_LOCAL_NAME} must refer to a parameterless procedure that
4227 is declared at the library level. A procedure to which this pragma is
4228 applied will be treated as a finalization routine by the linker.
4229 It is equivalent to @code{__attribute__((destructor))} in GNU C and
4230 causes @var{procedure_LOCAL_NAME} to be invoked after the entry point
4231 of the executable has exited (or immediately before the shared library
4232 is unloaded if the procedure is linked in a shared library), in particular
4233 after the Ada run-time environment is shut down.
4235 See @code{pragma Linker_Constructor} for the set of restrictions that apply
4236 because of these specific contexts.
4238 @node Pragma Linker_Section
4239 @unnumberedsec Pragma Linker_Section
4240 @findex Linker_Section
4241 @noindent
4242 Syntax:
4244 @smallexample @c ada
4245 pragma Linker_Section (
4246   [Entity  =>] LOCAL_NAME,
4247   [Section =>] static_string_EXPRESSION);
4248 @end smallexample
4250 @noindent
4251 @var{LOCAL_NAME} must refer to an object, type, or subprogram that is
4252 declared at the library level. This pragma specifies the name of the
4253 linker section for the given entity. It is equivalent to
4254 @code{__attribute__((section))} in GNU C and causes @var{LOCAL_NAME} to
4255 be placed in the @var{static_string_EXPRESSION} section of the
4256 executable (assuming the linker doesn't rename the section).
4257 GNAT also provides an implementation defined aspect of the same name.
4259 In the case of specifying this aspect for a type, the effect is to
4260 specify the corresponding for all library level objects of the type which
4261 do not have an explicit linker section set. Note that this only applies to
4262 whole objects, not to components of composite objects.
4264 In the case of a subprogram, the linker section applies to all previously
4265 declared matching overloaded subprograms in the current declarative part
4266 which do not already have a linker section assigned. The linker section
4267 aspect is useful in this case for specifying different linker sections
4268 for different elements of such an overloaded set.
4270 Note that an empty string specifies that no linker section is specified.
4271 This is not quite the same as omitting the pragma or aspect, since it
4272 can be used to specify that one element of an overloaded set of subprograms
4273 has the default linker section, or that one object of a type for which a
4274 linker section is specified should has the default linker section.
4276 The compiler normally places library-level entities in standard sections
4277 depending on the class: procedures and functions generally go in the
4278 @code{.text} section, initialized variables in the @code{.data} section
4279 and uninitialized variables in the @code{.bss} section.
4281 Other, special sections may exist on given target machines to map special
4282 hardware, for example I/O ports or flash memory. This pragma is a means to
4283 defer the final layout of the executable to the linker, thus fully working
4284 at the symbolic level with the compiler.
4286 Some file formats do not support arbitrary sections so not all target
4287 machines support this pragma. The use of this pragma may cause a program
4288 execution to be erroneous if it is used to place an entity into an
4289 inappropriate section (e.g.@: a modified variable into the @code{.text}
4290 section). See also @code{pragma Persistent_BSS}.
4292 @smallexample @c ada
4293 --  Example of the use of pragma Linker_Section
4295 package IO_Card is
4296   Port_A : Integer;
4297   pragma Volatile (Port_A);
4298   pragma Linker_Section (Port_A, ".bss.port_a");
4300   Port_B : Integer;
4301   pragma Volatile (Port_B);
4302   pragma Linker_Section (Port_B, ".bss.port_b");
4304   type Port_Type is new Integer with Linker_Section => ".bss";
4305   PA : Port_Type with Linker_Section => ".bss.PA";
4306   PB : Port_Type; --  ends up in linker section ".bss"
4308   procedure Q with Linker_Section => "Qsection";
4309 end IO_Card;
4310 @end smallexample
4312 @node Pragma Long_Float
4313 @unnumberedsec Pragma Long_Float
4314 @cindex OpenVMS
4315 @findex Long_Float
4316 @noindent
4317 Syntax:
4319 @smallexample @c ada
4320 pragma Long_Float (FLOAT_FORMAT);
4322 FLOAT_FORMAT ::= D_Float | G_Float
4323 @end smallexample
4325 @noindent
4326 This pragma is implemented only in the OpenVMS implementation of GNAT@.
4327 It allows control over the internal representation chosen for the predefined
4328 type @code{Long_Float} and for floating point type representations with
4329 @code{digits} specified in the range 7 through 15.
4330 For further details on this pragma, see the
4331 @cite{DEC Ada Language Reference Manual}, section 3.5.7b.  Note that to use
4332 this pragma, the standard runtime libraries must be recompiled.
4334 @node Pragma Loop_Invariant
4335 @unnumberedsec Pragma Loop_Invariant
4336 @findex Loop_Invariant
4337 @noindent
4338 Syntax:
4340 @smallexample @c ada
4341 pragma Loop_Invariant ( boolean_EXPRESSION );
4342 @end smallexample
4344 @noindent
4345 The effect of this pragma is similar to that of pragma @code{Assert},
4346 except that in an @code{Assertion_Policy} pragma, the identifier
4347 @code{Loop_Invariant} is used to control whether it is ignored or checked
4348 (or disabled).
4350 @code{Loop_Invariant} can only appear as one of the items in the sequence
4351 of statements of a loop body, or nested inside block statements that
4352 appear in the sequence of statements of a loop body.
4353 The intention is that it be used to
4354 represent a "loop invariant" assertion, i.e. something that is true each
4355 time through the loop, and which can be used to show that the loop is
4356 achieving its purpose.
4358 Multiple @code{Loop_Invariant} and @code{Loop_Variant} pragmas that
4359 apply to the same loop should be grouped in the same sequence of
4360 statements.
4362 To aid in writing such invariants, the special attribute @code{Loop_Entry}
4363 may be used to refer to the value of an expression on entry to the loop. This
4364 attribute can only be used within the expression of a @code{Loop_Invariant}
4365 pragma. For full details, see documentation of attribute @code{Loop_Entry}.
4367 @node Pragma Loop_Optimize
4368 @unnumberedsec Pragma Loop_Optimize
4369 @findex Loop_Optimize
4370 @noindent
4371 Syntax:
4373 @smallexample @c ada
4374 pragma Loop_Optimize (OPTIMIZATION_HINT @{, OPTIMIZATION_HINT@});
4376 OPTIMIZATION_HINT ::= No_Unroll | Unroll | No_Vector | Vector
4377 @end smallexample
4379 @noindent
4380 This pragma must appear immediately within a loop statement.  It allows the
4381 programmer to specify optimization hints for the enclosing loop.  The hints
4382 are not mutually exclusive and can be freely mixed, but not all combinations
4383 will yield a sensible outcome.
4385 There are four supported optimization hints for a loop:
4386 @itemize @bullet
4387 @item No_Unroll
4389 The loop must not be unrolled.  This is a strong hint: the compiler will not
4390 unroll a loop marked with this hint.
4392 @item Unroll
4394 The loop should be unrolled.  This is a weak hint: the compiler will try to
4395 apply unrolling to this loop preferably to other optimizations, notably
4396 vectorization, but there is no guarantee that the loop will be unrolled.
4398 @item No_Vector
4400 The loop must not be vectorized.  This is a strong hint: the compiler will not
4401 vectorize a loop marked with this hint.
4403 @item Vector
4405 The loop should be vectorized.  This is a weak hint: the compiler will try to
4406 apply vectorization to this loop preferably to other optimizations, notably
4407 unrolling, but there is no guarantee that the loop will be vectorized.
4409 @end itemize
4411 These hints do not void the need to pass the appropriate switches to the
4412 compiler in order to enable the relevant optimizations, that is to say
4413 @option{-funroll-loops} for unrolling and @option{-ftree-vectorize} for
4414 vectorization.
4416 @node Pragma Loop_Variant
4417 @unnumberedsec Pragma Loop_Variant
4418 @findex Loop_Variant
4419 @noindent
4420 Syntax:
4422 @smallexample @c ada
4423 pragma Loop_Variant ( LOOP_VARIANT_ITEM @{, LOOP_VARIANT_ITEM @} );
4424 LOOP_VARIANT_ITEM ::= CHANGE_DIRECTION => discrete_EXPRESSION
4425 CHANGE_DIRECTION ::= Increases | Decreases
4426 @end smallexample
4428 @noindent
4429 @code{Loop_Variant} can only appear as one of the items in the sequence
4430 of statements of a loop body, or nested inside block statements that
4431 appear in the sequence of statements of a loop body.
4432 It allows the specification of quantities which must always
4433 decrease or increase in successive iterations of the loop. In its simplest
4434 form, just one expression is specified, whose value must increase or decrease
4435 on each iteration of the loop.
4437 In a more complex form, multiple arguments can be given which are intepreted
4438 in a nesting lexicographic manner. For example:
4440 @smallexample @c ada
4441 pragma Loop_Variant (Increases => X, Decreases => Y);
4442 @end smallexample
4444 @noindent
4445 specifies that each time through the loop either X increases, or X stays
4446 the same and Y decreases. A @code{Loop_Variant} pragma ensures that the
4447 loop is making progress. It can be useful in helping to show informally
4448 or prove formally that the loop always terminates.
4450 @code{Loop_Variant} is an assertion whose effect can be controlled using
4451 an @code{Assertion_Policy} with a check name of @code{Loop_Variant}. The
4452 policy can be @code{Check} to enable the loop variant check, @code{Ignore}
4453 to ignore the check (in which case the pragma has no effect on the program),
4454 or @code{Disable} in which case the pragma is not even checked for correct
4455 syntax.
4457 Multiple @code{Loop_Invariant} and @code{Loop_Variant} pragmas that
4458 apply to the same loop should be grouped in the same sequence of
4459 statements.
4461 The @code{Loop_Entry} attribute may be used within the expressions of the
4462 @code{Loop_Variant} pragma to refer to values on entry to the loop.
4464 @node Pragma Machine_Attribute
4465 @unnumberedsec Pragma Machine_Attribute
4466 @findex Machine_Attribute
4467 @noindent
4468 Syntax:
4470 @smallexample @c ada
4471 pragma Machine_Attribute (
4472      [Entity         =>] LOCAL_NAME,
4473      [Attribute_Name =>] static_string_EXPRESSION
4474   [, [Info           =>] static_EXPRESSION] );
4475 @end smallexample
4477 @noindent
4478 Machine-dependent attributes can be specified for types and/or
4479 declarations.  This pragma is semantically equivalent to
4480 @code{__attribute__((@var{attribute_name}))} (if @var{info} is not
4481 specified) or @code{__attribute__((@var{attribute_name}(@var{info})))}
4482 in GNU C, where @code{@var{attribute_name}} is recognized by the
4483 compiler middle-end or the @code{TARGET_ATTRIBUTE_TABLE} machine
4484 specific macro.  A string literal for the optional parameter @var{info}
4485 is transformed into an identifier, which may make this pragma unusable
4486 for some attributes.  @xref{Target Attributes,, Defining target-specific
4487 uses of @code{__attribute__}, gccint, GNU Compiler Collection (GCC)
4488 Internals}, further information.
4490 @node Pragma Main
4491 @unnumberedsec Pragma Main
4492 @cindex OpenVMS
4493 @findex Main
4494 @noindent
4495 Syntax:
4497 @smallexample @c ada
4498 pragma Main
4499  (MAIN_OPTION [, MAIN_OPTION]);
4501 MAIN_OPTION ::=
4502   [Stack_Size              =>] static_integer_EXPRESSION
4503 | [Task_Stack_Size_Default =>] static_integer_EXPRESSION
4504 | [Time_Slicing_Enabled    =>] static_boolean_EXPRESSION
4505 @end smallexample
4507 @noindent
4508 This pragma is provided for compatibility with OpenVMS VAX Systems.  It has
4509 no effect in GNAT, other than being syntax checked.
4511 @node Pragma Main_Storage
4512 @unnumberedsec Pragma Main_Storage
4513 @cindex OpenVMS
4514 @findex Main_Storage
4515 @noindent
4516 Syntax:
4518 @smallexample @c ada
4519 pragma Main_Storage
4520   (MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);
4522 MAIN_STORAGE_OPTION ::=
4523   [WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
4524 | [TOP_GUARD       =>] static_SIMPLE_EXPRESSION
4525 @end smallexample
4527 @noindent
4528 This pragma is provided for compatibility with OpenVMS VAX Systems.  It has
4529 no effect in GNAT, other than being syntax checked.  Note that the pragma
4530 also has no effect in DEC Ada 83 for OpenVMS Alpha Systems.
4532 @node Pragma No_Body
4533 @unnumberedsec Pragma No_Body
4534 @findex No_Body
4535 @noindent
4536 Syntax:
4538 @smallexample @c ada
4539 pragma No_Body;
4540 @end smallexample
4542 @noindent
4543 There are a number of cases in which a package spec does not require a body,
4544 and in fact a body is not permitted. GNAT will not permit the spec to be
4545 compiled if there is a body around. The pragma No_Body allows you to provide
4546 a body file, even in a case where no body is allowed. The body file must
4547 contain only comments and a single No_Body pragma. This is recognized by
4548 the compiler as indicating that no body is logically present.
4550 This is particularly useful during maintenance when a package is modified in
4551 such a way that a body needed before is no longer needed. The provision of a
4552 dummy body with a No_Body pragma ensures that there is no interference from
4553 earlier versions of the package body.
4555 @node Pragma No_Inline
4556 @unnumberedsec Pragma No_Inline
4557 @findex No_Inline
4558 @noindent
4559 Syntax:
4561 @smallexample @c ada
4562 pragma No_Inline (NAME @{, NAME@});
4563 @end smallexample
4565 @noindent
4566 This pragma suppresses inlining for the callable entity or the instances of
4567 the generic subprogram designated by @var{NAME}, including inlining that
4568 results from the use of pragma @code{Inline}.  This pragma is always active,
4569 in particular it is not subject to the use of option @option{-gnatn} or
4570 @option{-gnatN}.  It is illegal to specify both pragma @code{No_Inline} and
4571 pragma @code{Inline_Always} for the same @var{NAME}.
4573 @node Pragma No_Return
4574 @unnumberedsec Pragma No_Return
4575 @findex No_Return
4576 @noindent
4577 Syntax:
4579 @smallexample @c ada
4580 pragma No_Return (procedure_LOCAL_NAME @{, procedure_LOCAL_NAME@});
4581 @end smallexample
4583 @noindent
4584 Each @var{procedure_LOCAL_NAME} argument must refer to one or more procedure
4585 declarations in the current declarative part.  A procedure to which this
4586 pragma is applied may not contain any explicit @code{return} statements.
4587 In addition, if the procedure contains any implicit returns from falling
4588 off the end of a statement sequence, then execution of that implicit
4589 return will cause Program_Error to be raised.
4591 One use of this pragma is to identify procedures whose only purpose is to raise
4592 an exception. Another use of this pragma is to suppress incorrect warnings
4593 about missing returns in functions, where the last statement of a function
4594 statement sequence is a call to such a procedure.
4596 Note that in Ada 2005 mode, this pragma is part of the language. It is
4597 available in all earlier versions of Ada as an implementation-defined
4598 pragma.
4600 @node Pragma No_Run_Time
4601 @unnumberedsec Pragma No_Run_Time
4602 @findex No_Run_Time
4603 @noindent
4604 Syntax:
4606 @smallexample @c ada
4607 pragma No_Run_Time;
4608 @end smallexample
4610 @noindent
4611 This is an obsolete configuration pragma that historically was used to
4612 setup what is now called the "zero footprint" library. It causes any
4613 library units outside this basic library to be ignored. The use of
4614 this pragma has been superseded by the general configurable run-time
4615 capability of @code{GNAT} where the compiler takes into account whatever
4616 units happen to be accessible in the library.
4618 @node Pragma No_Strict_Aliasing
4619 @unnumberedsec Pragma No_Strict_Aliasing
4620 @findex No_Strict_Aliasing
4621 @noindent
4622 Syntax:
4624 @smallexample @c ada
4625 pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)];
4626 @end smallexample
4628 @noindent
4629 @var{type_LOCAL_NAME} must refer to an access type
4630 declaration in the current declarative part.  The effect is to inhibit
4631 strict aliasing optimization for the given type.  The form with no
4632 arguments is a configuration pragma which applies to all access types
4633 declared in units to which the pragma applies. For a detailed
4634 description of the strict aliasing optimization, and the situations
4635 in which it must be suppressed, see @ref{Optimization and Strict
4636 Aliasing,,, gnat_ugn, @value{EDITION} User's Guide}.
4638 This pragma currently has no effects on access to unconstrained array types.
4640 @node Pragma Normalize_Scalars
4641 @unnumberedsec Pragma Normalize_Scalars
4642 @findex Normalize_Scalars
4643 @noindent
4644 Syntax:
4646 @smallexample @c ada
4647 pragma Normalize_Scalars;
4648 @end smallexample
4650 @noindent
4651 This is a language defined pragma which is fully implemented in GNAT@.  The
4652 effect is to cause all scalar objects that are not otherwise initialized
4653 to be initialized.  The initial values are implementation dependent and
4654 are as follows:
4656 @table @code
4657 @item Standard.Character
4658 @noindent
4659 Objects whose root type is Standard.Character are initialized to
4660 Character'Last unless the subtype range excludes NUL (in which case
4661 NUL is used). This choice will always generate an invalid value if
4662 one exists.
4664 @item Standard.Wide_Character
4665 @noindent
4666 Objects whose root type is Standard.Wide_Character are initialized to
4667 Wide_Character'Last unless the subtype range excludes NUL (in which case
4668 NUL is used). This choice will always generate an invalid value if
4669 one exists.
4671 @item Standard.Wide_Wide_Character
4672 @noindent
4673 Objects whose root type is Standard.Wide_Wide_Character are initialized to
4674 the invalid value 16#FFFF_FFFF# unless the subtype range excludes NUL (in
4675 which case NUL is used). This choice will always generate an invalid value if
4676 one exists.
4678 @item Integer types
4679 @noindent
4680 Objects of an integer type are treated differently depending on whether
4681 negative values are present in the subtype. If no negative values are
4682 present, then all one bits is used as the initial value except in the
4683 special case where zero is excluded from the subtype, in which case
4684 all zero bits are used. This choice will always generate an invalid
4685 value if one exists.
4687 For subtypes with negative values present, the largest negative number
4688 is used, except in the unusual case where this largest negative number
4689 is in the subtype, and the largest positive number is not, in which case
4690 the largest positive value is used. This choice will always generate
4691 an invalid value if one exists.
4693 @item Floating-Point Types
4694 Objects of all floating-point types are initialized to all 1-bits. For
4695 standard IEEE format, this corresponds to a NaN (not a number) which is
4696 indeed an invalid value.
4698 @item Fixed-Point Types
4699 Objects of all fixed-point types are treated as described above for integers,
4700 with the rules applying to the underlying integer value used to represent
4701 the fixed-point value.
4703 @item Modular types
4704 Objects of a modular type are initialized to all one bits, except in
4705 the special case where zero is excluded from the subtype, in which
4706 case all zero bits are used. This choice will always generate an
4707 invalid value if one exists.
4709 @item Enumeration types
4710 Objects of an enumeration type are initialized to all one-bits, i.e.@: to
4711 the value @code{2 ** typ'Size - 1} unless the subtype excludes the literal
4712 whose Pos value is zero, in which case a code of zero is used. This choice
4713 will always generate an invalid value if one exists.
4715 @end table
4717 @node Pragma Obsolescent
4718 @unnumberedsec Pragma Obsolescent
4719 @findex Obsolescent
4720 @noindent
4721 Syntax:
4723 @smallexample @c ada
4724 pragma Obsolescent;
4726 pragma Obsolescent (
4727   [Message =>] static_string_EXPRESSION
4728 [,[Version =>] Ada_05]]);
4730 pragma Obsolescent (
4731   [Entity  =>] NAME
4732 [,[Message =>] static_string_EXPRESSION
4733 [,[Version =>] Ada_05]] );
4734 @end smallexample
4736 @noindent
4737 This pragma can occur immediately following a declaration of an entity,
4738 including the case of a record component. If no Entity argument is present,
4739 then this declaration is the one to which the pragma applies. If an Entity
4740 parameter is present, it must either match the name of the entity in this
4741 declaration, or alternatively, the pragma can immediately follow an enumeration
4742 type declaration, where the Entity argument names one of the enumeration
4743 literals.
4745 This pragma is used to indicate that the named entity
4746 is considered obsolescent and should not be used. Typically this is
4747 used when an API must be modified by eventually removing or modifying
4748 existing subprograms or other entities. The pragma can be used at an
4749 intermediate stage when the entity is still present, but will be
4750 removed later.
4752 The effect of this pragma is to output a warning message on a reference to
4753 an entity thus marked that the subprogram is obsolescent if the appropriate
4754 warning option in the compiler is activated. If the Message parameter is
4755 present, then a second warning message is given containing this text. In
4756 addition, a reference to the entity is considered to be a violation of pragma
4757 Restrictions (No_Obsolescent_Features).
4759 This pragma can also be used as a program unit pragma for a package,
4760 in which case the entity name is the name of the package, and the
4761 pragma indicates that the entire package is considered
4762 obsolescent. In this case a client @code{with}'ing such a package
4763 violates the restriction, and the @code{with} statement is
4764 flagged with warnings if the warning option is set.
4766 If the Version parameter is present (which must be exactly
4767 the identifier Ada_05, no other argument is allowed), then the
4768 indication of obsolescence applies only when compiling in Ada 2005
4769 mode. This is primarily intended for dealing with the situations
4770 in the predefined library where subprograms or packages
4771 have become defined as obsolescent in Ada 2005
4772 (e.g.@: in Ada.Characters.Handling), but may be used anywhere.
4774 The following examples show typical uses of this pragma:
4776 @smallexample @c ada
4777 package p is
4778    pragma Obsolescent (p, Message => "use pp instead of p");
4779 end p;
4781 package q is
4782    procedure q2;
4783    pragma Obsolescent ("use q2new instead");
4785    type R is new integer;
4786    pragma Obsolescent
4787      (Entity  => R,
4788       Message => "use RR in Ada 2005",
4789       Version => Ada_05);
4791    type M is record
4792       F1 : Integer;
4793       F2 : Integer;
4794       pragma Obsolescent;
4795       F3 : Integer;
4796    end record;
4798    type E is (a, bc, 'd', quack);
4799    pragma Obsolescent (Entity => bc)
4800    pragma Obsolescent (Entity => 'd')
4802    function "+"
4803      (a, b : character) return character;
4804    pragma Obsolescent (Entity => "+");
4805 end;
4806 @end smallexample
4808 @noindent
4809 Note that, as for all pragmas, if you use a pragma argument identifier,
4810 then all subsequent parameters must also use a pragma argument identifier.
4811 So if you specify "Entity =>" for the Entity argument, and a Message
4812 argument is present, it must be preceded by "Message =>".
4814 @node Pragma Optimize_Alignment
4815 @unnumberedsec Pragma Optimize_Alignment
4816 @findex Optimize_Alignment
4817 @cindex Alignment, default settings
4818 @noindent
4819 Syntax:
4821 @smallexample @c ada
4822 pragma Optimize_Alignment (TIME | SPACE | OFF);
4823 @end smallexample
4825 @noindent
4826 This is a configuration pragma which affects the choice of default alignments
4827 for types and objects where no alignment is explicitly specified. There is a
4828 time/space trade-off in the selection of these values. Large alignments result
4829 in more efficient code, at the expense of larger data space, since sizes have
4830 to be increased to match these alignments. Smaller alignments save space, but
4831 the access code is slower. The normal choice of default alignments for types
4832 and individual alignment promotions for objects (which is what you get if you
4833 do not use this pragma, or if you use an argument of OFF), tries to balance
4834 these two requirements.
4836 Specifying SPACE causes smaller default alignments to be chosen in two cases.
4837 First any packed record is given an alignment of 1. Second, if a size is given
4838 for the type, then the alignment is chosen to avoid increasing this size. For
4839 example, consider:
4841 @smallexample @c ada
4842    type R is record
4843       X : Integer;
4844       Y : Character;
4845    end record;
4847    for R'Size use 5*8;
4848 @end smallexample
4850 @noindent
4851 In the default mode, this type gets an alignment of 4, so that access to the
4852 Integer field X are efficient. But this means that objects of the type end up
4853 with a size of 8 bytes. This is a valid choice, since sizes of objects are
4854 allowed to be bigger than the size of the type, but it can waste space if for
4855 example fields of type R appear in an enclosing record. If the above type is
4856 compiled in @code{Optimize_Alignment (Space)} mode, the alignment is set to 1.
4858 However, there is one case in which SPACE is ignored. If a variable length
4859 record (that is a discriminated record with a component which is an array
4860 whose length depends on a discriminant), has a pragma Pack, then it is not
4861 in general possible to set the alignment of such a record to one, so the
4862 pragma is ignored in this case (with a warning).
4864 Specifying SPACE also disables alignment promotions for standalone objects,
4865 which occur when the compiler increases the alignment of a specific object
4866 without changing the alignment of its type.
4868 Specifying TIME causes larger default alignments to be chosen in the case of
4869 small types with sizes that are not a power of 2. For example, consider:
4871 @smallexample @c ada
4872    type R is record
4873       A : Character;
4874       B : Character;
4875       C : Boolean;
4876    end record;
4878    pragma Pack (R);
4879    for R'Size use 17;
4880 @end smallexample
4882 @noindent
4883 The default alignment for this record is normally 1, but if this type is
4884 compiled in @code{Optimize_Alignment (Time)} mode, then the alignment is set
4885 to 4, which wastes space for objects of the type, since they are now 4 bytes
4886 long, but results in more efficient access when the whole record is referenced.
4888 As noted above, this is a configuration pragma, and there is a requirement
4889 that all units in a partition be compiled with a consistent setting of the
4890 optimization setting. This would normally be achieved by use of a configuration
4891 pragma file containing the appropriate setting. The exception to this rule is
4892 that units with an explicit configuration pragma in the same file as the source
4893 unit are excluded from the consistency check, as are all predefined units. The
4894 latter are compiled by default in pragma Optimize_Alignment (Off) mode if no
4895 pragma appears at the start of the file.
4897 @node Pragma Ordered
4898 @unnumberedsec Pragma Ordered
4899 @findex Ordered
4900 @findex pragma @code{Ordered}
4901 @noindent
4902 Syntax:
4904 @smallexample @c ada
4905 pragma Ordered (enumeration_first_subtype_LOCAL_NAME);
4906 @end smallexample
4908 @noindent
4909 Most enumeration types are from a conceptual point of view unordered.
4910 For example, consider:
4912 @smallexample @c ada
4913 type Color is (Red, Blue, Green, Yellow);
4914 @end smallexample
4916 @noindent
4917 By Ada semantics @code{Blue > Red} and @code{Green > Blue},
4918 but really these relations make no sense; the enumeration type merely
4919 specifies a set of possible colors, and the order is unimportant.
4921 For unordered enumeration types, it is generally a good idea if
4922 clients avoid comparisons (other than equality or inequality) and
4923 explicit ranges. (A @emph{client} is a unit where the type is referenced,
4924 other than the unit where the type is declared, its body, and its subunits.)
4925 For example, if code buried in some client says:
4927 @smallexample @c ada
4928 if Current_Color < Yellow then ...
4929 if Current_Color in Blue .. Green then ...
4930 @end smallexample
4932 @noindent
4933 then the client code is relying on the order, which is undesirable.
4934 It makes the code hard to read and creates maintenance difficulties if
4935 entries have to be added to the enumeration type. Instead,
4936 the code in the client should list the possibilities, or an
4937 appropriate subtype should be declared in the unit that declares
4938 the original enumeration type. E.g., the following subtype could
4939 be declared along with the type @code{Color}:
4941 @smallexample @c ada
4942 subtype RBG is Color range Red .. Green;
4943 @end smallexample
4945 @noindent
4946 and then the client could write:
4948 @smallexample @c ada
4949 if Current_Color in RBG then ...
4950 if Current_Color = Blue or Current_Color = Green then ...
4951 @end smallexample
4953 @noindent
4954 However, some enumeration types are legitimately ordered from a conceptual
4955 point of view. For example, if you declare:
4957 @smallexample @c ada
4958 type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
4959 @end smallexample
4961 @noindent
4962 then the ordering imposed by the language is reasonable, and
4963 clients can depend on it, writing for example:
4965 @smallexample @c ada
4966 if D in Mon .. Fri then ...
4967 if D < Wed then ...
4968 @end smallexample
4970 @noindent
4971 The pragma @option{Ordered} is provided to mark enumeration types that
4972 are conceptually ordered, alerting the reader that clients may depend
4973 on the ordering. GNAT provides a pragma to mark enumerations as ordered
4974 rather than one to mark them as unordered, since in our experience,
4975 the great majority of enumeration types are conceptually unordered.
4977 The types @code{Boolean}, @code{Character}, @code{Wide_Character},
4978 and @code{Wide_Wide_Character}
4979 are considered to be ordered types, so each is declared with a
4980 pragma @code{Ordered} in package @code{Standard}.
4982 Normally pragma @code{Ordered} serves only as documentation and a guide for
4983 coding standards, but GNAT provides a warning switch @option{-gnatw.u} that
4984 requests warnings for inappropriate uses (comparisons and explicit
4985 subranges) for unordered types. If this switch is used, then any
4986 enumeration type not marked with pragma @code{Ordered} will be considered
4987 as unordered, and will generate warnings for inappropriate uses.
4989 For additional information please refer to the description of the
4990 @option{-gnatw.u} switch in the @value{EDITION} User's Guide.
4992 @node Pragma Overflow_Mode
4993 @unnumberedsec Pragma Overflow_Mode
4994 @findex Overflow checks
4995 @findex Overflow mode
4996 @findex pragma @code{Overflow_Mode}
4997 @noindent
4998 Syntax:
5000 @smallexample @c ada
5001 pragma Overflow_Mode
5002  (  [General    =>] MODE
5003   [,[Assertions =>] MODE]);
5005 MODE ::= STRICT | MINIMIZED | ELIMINATED
5006 @end smallexample
5008 @noindent
5009 This pragma sets the current overflow mode to the given setting. For details
5010 of the meaning of these modes, please refer to the
5011 ``Overflow Check Handling in GNAT'' appendix in the
5012 @value{EDITION} User's Guide. If only the @code{General} parameter is present,
5013 the given mode applies to all expressions. If both parameters are present,
5014 the @code{General} mode applies to expressions outside assertions, and
5015 the @code{Eliminated} mode applies to expressions within assertions.
5017 The case of the @code{MODE} parameter is ignored,
5018 so @code{MINIMIZED}, @code{Minimized} and
5019 @code{minimized} all have the same effect.
5021 The @code{Overflow_Mode} pragma has the same scoping and placement
5022 rules as pragma @code{Suppress}, so it can occur either as a
5023 configuration pragma, specifying a default for the whole
5024 program, or in a declarative scope, where it applies to the
5025 remaining declarations and statements in that scope.
5027 The pragma @code{Suppress (Overflow_Check)} suppresses
5028 overflow checking, but does not affect the overflow mode.
5030 The pragma @code{Unsuppress (Overflow_Check)} unsuppresses (enables)
5031 overflow checking, but does not affect the overflow mode.
5033 @node Pragma Overriding_Renamings
5034 @unnumberedsec Pragma Overriding_Renamings
5035 @findex Overriding_Renamings
5036 @cindex Rational profile
5037 @cindex Rational compatibility
5038 @noindent
5039 Syntax:
5041 @smallexample @c ada
5042 pragma Overriding_Renamings;
5043 @end smallexample
5045 @noindent
5046 This is a GNAT configuration pragma to simplify porting
5047 legacy code accepted by the Rational
5048 Ada compiler. In the presence of this pragma, a renaming declaration that
5049 renames an inherited operation declared in the same scope is legal if selected
5050 notation is used as in:
5052 @smallexample @c ada
5053 pragma Overriding_Renamings;
5055 package R is
5056   function F (..);
5057   ...
5058   function F (..) renames R.F;
5059 end R;
5060 @end smallexample
5062 even though
5063 RM 8.3 (15) stipulates that an overridden operation is not visible within the
5064 declaration of the overriding operation.
5066 @node Pragma Partition_Elaboration_Policy
5067 @unnumberedsec Pragma Partition_Elaboration_Policy
5068 @findex Partition_Elaboration_Policy
5069 @noindent
5070 Syntax:
5072 @smallexample @c ada
5073 pragma Partition_Elaboration_Policy (POLICY_IDENTIFIER);
5075 POLICY_IDENTIFIER ::= Concurrent | Sequential
5076 @end smallexample
5078 @noindent
5079 This pragma is standard in Ada 2005, but is available in all earlier
5080 versions of Ada as an implementation-defined pragma.
5081 See Ada 2012 Reference Manual for details.
5083 @node Pragma Passive
5084 @unnumberedsec Pragma Passive
5085 @findex Passive
5086 @noindent
5087 Syntax:
5089 @smallexample @c ada
5090 pragma Passive [(Semaphore | No)];
5091 @end smallexample
5093 @noindent
5094 Syntax checked, but otherwise ignored by GNAT@.  This is recognized for
5095 compatibility with DEC Ada 83 implementations, where it is used within a
5096 task definition to request that a task be made passive.  If the argument
5097 @code{Semaphore} is present, or the argument is omitted, then DEC Ada 83
5098 treats the pragma as an assertion that the containing task is passive
5099 and that optimization of context switch with this task is permitted and
5100 desired.  If the argument @code{No} is present, the task must not be
5101 optimized.  GNAT does not attempt to optimize any tasks in this manner
5102 (since protected objects are available in place of passive tasks).
5104 For more information on the subject of passive tasks, see the section
5105 ``Passive Task Optimization'' in the GNAT Users Guide.
5107 @node Pragma Persistent_BSS
5108 @unnumberedsec Pragma Persistent_BSS
5109 @findex Persistent_BSS
5110 @noindent
5111 Syntax:
5113 @smallexample @c ada
5114 pragma Persistent_BSS [(LOCAL_NAME)]
5115 @end smallexample
5117 @noindent
5118 This pragma allows selected objects to be placed in the @code{.persistent_bss}
5119 section. On some targets the linker and loader provide for special
5120 treatment of this section, allowing a program to be reloaded without
5121 affecting the contents of this data (hence the name persistent).
5123 There are two forms of usage. If an argument is given, it must be the
5124 local name of a library level object, with no explicit initialization
5125 and whose type is potentially persistent. If no argument is given, then
5126 the pragma is a configuration pragma, and applies to all library level
5127 objects with no explicit initialization of potentially persistent types.
5129 A potentially persistent type is a scalar type, or a non-tagged,
5130 non-discriminated record, all of whose components have no explicit
5131 initialization and are themselves of a potentially persistent type,
5132 or an array, all of whose constraints are static, and whose component
5133 type is potentially persistent.
5135 If this pragma is used on a target where this feature is not supported,
5136 then the pragma will be ignored. See also @code{pragma Linker_Section}.
5138 @node Pragma Polling
5139 @unnumberedsec Pragma Polling
5140 @findex Polling
5141 @noindent
5142 Syntax:
5144 @smallexample @c ada
5145 pragma Polling (ON | OFF);
5146 @end smallexample
5148 @noindent
5149 This pragma controls the generation of polling code.  This is normally off.
5150 If @code{pragma Polling (ON)} is used then periodic calls are generated to
5151 the routine @code{Ada.Exceptions.Poll}.  This routine is a separate unit in the
5152 runtime library, and can be found in file @file{a-excpol.adb}.
5154 Pragma @code{Polling} can appear as a configuration pragma (for example it
5155 can be placed in the @file{gnat.adc} file) to enable polling globally, or it
5156 can be used in the statement or declaration sequence to control polling
5157 more locally.
5159 A call to the polling routine is generated at the start of every loop and
5160 at the start of every subprogram call.  This guarantees that the @code{Poll}
5161 routine is called frequently, and places an upper bound (determined by
5162 the complexity of the code) on the period between two @code{Poll} calls.
5164 The primary purpose of the polling interface is to enable asynchronous
5165 aborts on targets that cannot otherwise support it (for example Windows
5166 NT), but it may be used for any other purpose requiring periodic polling.
5167 The standard version is null, and can be replaced by a user program.  This
5168 will require re-compilation of the @code{Ada.Exceptions} package that can
5169 be found in files @file{a-except.ads} and @file{a-except.adb}.
5171 A standard alternative unit (in file @file{4wexcpol.adb} in the standard GNAT
5172 distribution) is used to enable the asynchronous abort capability on
5173 targets that do not normally support the capability.  The version of
5174 @code{Poll} in this file makes a call to the appropriate runtime routine
5175 to test for an abort condition.
5177 Note that polling can also be enabled by use of the @option{-gnatP} switch.
5178 @xref{Switches for gcc,,, gnat_ugn, @value{EDITION} User's Guide}, for
5179 details.
5181 @node Pragma Post
5182 @unnumberedsec Pragma Post
5183 @cindex Post
5184 @cindex Checks, postconditions
5185 @findex Postconditions
5186 @noindent
5187 Syntax:
5189 @smallexample @c ada
5190 pragma Post (Boolean_Expression);
5191 @end smallexample
5193 @noindent
5194 The @code{Post} pragma is intended to be an exact replacement for
5195 the language-defined
5196 @code{Post} aspect, and shares its restrictions and semantics.
5197 It must appear either immediately following the corresponding
5198 subprogram declaration (only other pragmas may intervene), or
5199 if there is no separate subprogram declaration, then it can
5200 appear at the start of the declarations in a subprogram body
5201 (preceded only by other pragmas).
5203 @node Pragma Postcondition
5204 @unnumberedsec Pragma Postcondition
5205 @cindex Postcondition
5206 @cindex Checks, postconditions
5207 @findex Postconditions
5208 @noindent
5209 Syntax:
5211 @smallexample @c ada
5212 pragma Postcondition (
5213    [Check   =>] Boolean_Expression
5214  [,[Message =>] String_Expression]);
5215 @end smallexample
5217 @noindent
5218 The @code{Postcondition} pragma allows specification of automatic
5219 postcondition checks for subprograms. These checks are similar to
5220 assertions, but are automatically inserted just prior to the return
5221 statements of the subprogram with which they are associated (including
5222 implicit returns at the end of procedure bodies and associated
5223 exception handlers).
5225 In addition, the boolean expression which is the condition which
5226 must be true may contain references to function'Result in the case
5227 of a function to refer to the returned value.
5229 @code{Postcondition} pragmas may appear either immediately following the
5230 (separate) declaration of a subprogram, or at the start of the
5231 declarations of a subprogram body. Only other pragmas may intervene
5232 (that is appear between the subprogram declaration and its
5233 postconditions, or appear before the postcondition in the
5234 declaration sequence in a subprogram body). In the case of a
5235 postcondition appearing after a subprogram declaration, the
5236 formal arguments of the subprogram are visible, and can be
5237 referenced in the postcondition expressions.
5239 The postconditions are collected and automatically tested just
5240 before any return (implicit or explicit) in the subprogram body.
5241 A postcondition is only recognized if postconditions are active
5242 at the time the pragma is encountered. The compiler switch @option{gnata}
5243 turns on all postconditions by default, and pragma @code{Check_Policy}
5244 with an identifier of @code{Postcondition} can also be used to
5245 control whether postconditions are active.
5247 The general approach is that postconditions are placed in the spec
5248 if they represent functional aspects which make sense to the client.
5249 For example we might have:
5251 @smallexample @c ada
5252    function Direction return Integer;
5253    pragma Postcondition
5254     (Direction'Result = +1
5255        or else
5256      Direction'Result = -1);
5257 @end smallexample
5259 @noindent
5260 which serves to document that the result must be +1 or -1, and
5261 will test that this is the case at run time if postcondition
5262 checking is active.
5264 Postconditions within the subprogram body can be used to
5265 check that some internal aspect of the implementation,
5266 not visible to the client, is operating as expected.
5267 For instance if a square root routine keeps an internal
5268 counter of the number of times it is called, then we
5269 might have the following postcondition:
5271 @smallexample @c ada
5272    Sqrt_Calls : Natural := 0;
5274    function Sqrt (Arg : Float) return Float is
5275      pragma Postcondition
5276        (Sqrt_Calls = Sqrt_Calls'Old + 1);
5277      ...
5278    end Sqrt
5279 @end smallexample
5281 @noindent
5282 As this example, shows, the use of the @code{Old} attribute
5283 is often useful in postconditions to refer to the state on
5284 entry to the subprogram.
5286 Note that postconditions are only checked on normal returns
5287 from the subprogram. If an abnormal return results from
5288 raising an exception, then the postconditions are not checked.
5290 If a postcondition fails, then the exception
5291 @code{System.Assertions.Assert_Failure} is raised. If
5292 a message argument was supplied, then the given string
5293 will be used as the exception message. If no message
5294 argument was supplied, then the default message has
5295 the form "Postcondition failed at file:line". The
5296 exception is raised in the context of the subprogram
5297 body, so it is possible to catch postcondition failures
5298 within the subprogram body itself.
5300 Within a package spec, normal visibility rules
5301 in Ada would prevent forward references within a
5302 postcondition pragma to functions defined later in
5303 the same package. This would introduce undesirable
5304 ordering constraints. To avoid this problem, all
5305 postcondition pragmas are analyzed at the end of
5306 the package spec, allowing forward references.
5308 The following example shows that this even allows
5309 mutually recursive postconditions as in:
5311 @smallexample @c ada
5312 package Parity_Functions is
5313    function Odd  (X : Natural) return Boolean;
5314    pragma Postcondition
5315      (Odd'Result =
5316         (x = 1
5317           or else
5318         (x /= 0 and then Even (X - 1))));
5320    function Even (X : Natural) return Boolean;
5321    pragma Postcondition
5322      (Even'Result =
5323         (x = 0
5324           or else
5325         (x /= 1 and then Odd (X - 1))));
5327 end Parity_Functions;
5328 @end smallexample
5330 @noindent
5331 There are no restrictions on the complexity or form of
5332 conditions used within @code{Postcondition} pragmas.
5333 The following example shows that it is even possible
5334 to verify performance behavior.
5336 @smallexample @c ada
5337 package Sort is
5339    Performance : constant Float;
5340    --  Performance constant set by implementation
5341    --  to match target architecture behavior.
5343    procedure Treesort (Arg : String);
5344    --  Sorts characters of argument using N*logN sort
5345    pragma Postcondition
5346      (Float (Clock - Clock'Old) <=
5347         Float (Arg'Length) *
5348         log (Float (Arg'Length)) *
5349         Performance);
5350 end Sort;
5351 @end smallexample
5353 @noindent
5354 Note: postcondition pragmas associated with subprograms that are
5355 marked as Inline_Always, or those marked as Inline with front-end
5356 inlining (-gnatN option set) are accepted and legality-checked
5357 by the compiler, but are ignored at run-time even if postcondition
5358 checking is enabled.
5360 Note that pragma @code{Postcondition} differs from the language-defined
5361 @code{Post} aspect (and corresponding @code{Post} pragma) in allowing
5362 multiple occurrences, allowing occurences in the body even if there
5363 is a separate spec, and allowing a second string parameter, and the
5364 use of the pragma identifier @code{Check}. Historically, pragma
5365 @code{Postcondition} was implemented prior to the development of
5366 Ada 2012, and has been retained in its original form for
5367 compatibility purposes.
5369 @node Pragma Post_Class
5370 @unnumberedsec Pragma Post_Class
5371 @cindex Post
5372 @cindex Checks, postconditions
5373 @findex Postconditions
5374 @noindent
5375 Syntax:
5377 @smallexample @c ada
5378 pragma Post_Class (Boolean_Expression);
5379 @end smallexample
5381 @noindent
5382 The @code{Post_Class} pragma is intended to be an exact replacement for
5383 the language-defined
5384 @code{Post'Class} aspect, and shares its restrictions and semantics.
5385 It must appear either immediately following the corresponding
5386 subprogram declaration (only other pragmas may intervene), or
5387 if there is no separate subprogram declaration, then it can
5388 appear at the start of the declarations in a subprogram body
5389 (preceded only by other pragmas).
5391 Note: This pragma is called @code{Post_Class} rather than
5392 @code{Post'Class} because the latter would not be strictly
5393 conforming to the allowed syntax for pragmas. The motivation
5394 for provinding pragmas equivalent to the aspects is to allow a program
5395 to be written using the pragmas, and then compiled if necessary
5396 using an Ada compiler that does not recognize the pragmas or
5397 aspects, but is prepared to ignore the pragmas. The assertion
5398 policy that controls this pragma is @code{Post'Class}, not
5399 @code{Post_Class}.
5401 @node Pragma Pre
5402 @unnumberedsec Pragma Pre
5403 @cindex Pre
5404 @cindex Checks, preconditions
5405 @findex Preconditions
5406 @noindent
5407 Syntax:
5409 @smallexample @c ada
5410 pragma Pre (Boolean_Expression);
5411 @end smallexample
5413 @noindent
5414 The @code{Pre} pragma is intended to be an exact replacement for
5415 the language-defined
5416 @code{Pre} aspect, and shares its restrictions and semantics.
5417 It must appear either immediately following the corresponding
5418 subprogram declaration (only other pragmas may intervene), or
5419 if there is no separate subprogram declaration, then it can
5420 appear at the start of the declarations in a subprogram body
5421 (preceded only by other pragmas).
5423 @node Pragma Precondition
5424 @unnumberedsec Pragma Precondition
5425 @cindex Preconditions
5426 @cindex Checks, preconditions
5427 @findex Preconditions
5428 @noindent
5429 Syntax:
5431 @smallexample @c ada
5432 pragma Precondition (
5433    [Check   =>] Boolean_Expression
5434  [,[Message =>] String_Expression]);
5435 @end smallexample
5437 @noindent
5438 The @code{Precondition} pragma is similar to @code{Postcondition}
5439 except that the corresponding checks take place immediately upon
5440 entry to the subprogram, and if a precondition fails, the exception
5441 is raised in the context of the caller, and the attribute 'Result
5442 cannot be used within the precondition expression.
5444 Otherwise, the placement and visibility rules are identical to those
5445 described for postconditions. The following is an example of use
5446 within a package spec:
5448 @smallexample @c ada
5449 package Math_Functions is
5450    ...
5451    function Sqrt (Arg : Float) return Float;
5452    pragma Precondition (Arg >= 0.0)
5453    ...
5454 end Math_Functions;
5455 @end smallexample
5457 @noindent
5458 @code{Precondition} pragmas may appear either immediately following the
5459 (separate) declaration of a subprogram, or at the start of the
5460 declarations of a subprogram body. Only other pragmas may intervene
5461 (that is appear between the subprogram declaration and its
5462 postconditions, or appear before the postcondition in the
5463 declaration sequence in a subprogram body).
5465 Note: precondition pragmas associated with subprograms that are
5466 marked as Inline_Always, or those marked as Inline with front-end
5467 inlining (-gnatN option set) are accepted and legality-checked
5468 by the compiler, but are ignored at run-time even if precondition
5469 checking is enabled.
5471 Note that pragma @code{Precondition} differs from the language-defined
5472 @code{Pre} aspect (and corresponding @code{Pre} pragma) in allowing
5473 multiple occurrences, allowing occurences in the body even if there
5474 is a separate spec, and allowing a second string parameter, and the
5475 use of the pragma identifier @code{Check}. Historically, pragma
5476 @code{Precondition} was implemented prior to the development of
5477 Ada 2012, and has been retained in its original form for
5478 compatibility purposes.
5480 @node Pragma Predicate
5481 @unnumberedsec Pragma Predicate
5482 @findex Predicate
5483 @findex Predicate pragma
5484 @noindent
5485 Syntax:
5487 @smallexample @c ada
5488 pragma Predicate
5489   ([Entity =>] type_LOCAL_NAME,
5490    [Check  =>] EXPRESSION);
5491 @end smallexample
5493 @noindent
5494 This pragma (available in all versions of Ada in GNAT) encompasses both
5495 the @code{Static_Predicate} and @code{Dynamic_Predicate} aspects in
5496 Ada 2012. A predicate is regarded as static if it has an allowed form
5497 for @code{Static_Predicate} and is otherwise treated as a
5498 @code{Dynamic_Predicate}. Otherwise, predicates specified by this
5499 pragma behave exactly as described in the Ada 2012 reference manual.
5500 For example, if we have
5502 @smallexample @c ada
5503 type R is range 1 .. 10;
5504 subtype S is R;
5505 pragma Predicate (Entity => S, Check => S not in 4 .. 6);
5506 subtype Q is R
5507 pragma Predicate (Entity => Q, Check => F(Q) or G(Q));
5508 @end smallexample
5510 @noindent
5511 the effect is identical to the following Ada 2012 code:
5513 @smallexample @c ada
5514 type R is range 1 .. 10;
5515 subtype S is R with
5516   Static_Predicate => S not in 4 .. 6;
5517 subtype Q is R with
5518   Dynamic_Predicate => F(Q) or G(Q);
5519 @end smallexample
5521 Note that there is are no pragmas @code{Dynamic_Predicate}
5522 or @code{Static_Predicate}. That is
5523 because these pragmas would affect legality and semantics of
5524 the program and thus do not have a neutral effect if ignored.
5525 The motivation behind providing pragmas equivalent to
5526 corresponding aspects is to allow a program to be written
5527 using the pragmas, and then compiled with a compiler that
5528 will ignore the pragmas. That doesn't work in the case of
5529 static and dynamic predicates, since if the corresponding
5530 pragmas are ignored, then the behavior of the program is
5531 fundamentally changed (for example a membership test
5532 @code{A in B} would not take into account a predicate
5533 defined for subtype B). When following this approach, the
5534 use of predicates should be avoided.
5536 @node Pragma Preelaborable_Initialization
5537 @unnumberedsec Pragma Preelaborable_Initialization
5538 @findex Preelaborable_Initialization
5539 @noindent
5540 Syntax:
5542 @smallexample @c ada
5543 pragma Preelaborable_Initialization (DIRECT_NAME);
5544 @end smallexample
5546 @noindent
5547 This pragma is standard in Ada 2005, but is available in all earlier
5548 versions of Ada as an implementation-defined pragma.
5549 See Ada 2012 Reference Manual for details.
5551 @node Pragma Preelaborate_05
5552 @unnumberedsec Pragma Preelaborate_05
5553 @findex Preelaborate_05
5554 @noindent
5555 Syntax:
5557 @smallexample @c ada
5558 pragma Preelaborate_05 [(library_unit_NAME)];
5559 @end smallexample
5561 @noindent
5562 This pragma is only available in GNAT mode (@option{-gnatg} switch set)
5563 and is intended for use in the standard run-time library only. It has
5564 no effect in Ada 83 or Ada 95 mode, but is
5565 equivalent to @code{pragma Prelaborate} when operating in later
5566 Ada versions. This is used to handle some cases where packages
5567 not previously preelaborable became so in Ada 2005.
5569 @node Pragma Pre_Class
5570 @unnumberedsec Pragma Pre_Class
5571 @cindex Pre_Class
5572 @cindex Checks, preconditions
5573 @findex Preconditions
5574 @noindent
5575 Syntax:
5577 @smallexample @c ada
5578 pragma Pre_Class (Boolean_Expression);
5579 @end smallexample
5581 @noindent
5582 The @code{Pre_Class} pragma is intended to be an exact replacement for
5583 the language-defined
5584 @code{Pre'Class} aspect, and shares its restrictions and semantics.
5585 It must appear either immediately following the corresponding
5586 subprogram declaration (only other pragmas may intervene), or
5587 if there is no separate subprogram declaration, then it can
5588 appear at the start of the declarations in a subprogram body
5589 (preceded only by other pragmas).
5591 Note: This pragma is called @code{Pre_Class} rather than
5592 @code{Pre'Class} because the latter would not be strictly
5593 conforming to the allowed syntax for pragmas. The motivation
5594 for providing pragmas equivalent to the aspects is to allow a program
5595 to be written using the pragmas, and then compiled if necessary
5596 using an Ada compiler that does not recognize the pragmas or
5597 aspects, but is prepared to ignore the pragmas. The assertion
5598 policy that controls this pragma is @code{Pre'Class}, not
5599 @code{Pre_Class}.
5601 @node Pragma Priority_Specific_Dispatching
5602 @unnumberedsec Pragma Priority_Specific_Dispatching
5603 @findex Priority_Specific_Dispatching
5604 @noindent
5605 Syntax:
5607 @smallexample @c ada
5608 pragma Priority_Specific_Dispatching (
5609    POLICY_IDENTIFIER,
5610    first_priority_EXPRESSION,
5611    last_priority_EXPRESSION)
5613 POLICY_IDENTIFIER ::=
5614    EDF_Across_Priorities            |
5615    FIFO_Within_Priorities           |
5616    Non_Preemptive_Within_Priorities |
5617    Round_Robin_Within_Priorities
5618 @end smallexample
5620 @noindent
5621 This pragma is standard in Ada 2005, but is available in all earlier
5622 versions of Ada as an implementation-defined pragma.
5623 See Ada 2012 Reference Manual for details.
5625 @node Pragma Profile
5626 @unnumberedsec Pragma Profile
5627 @findex Profile
5628 @noindent
5629 Syntax:
5631 @smallexample @c ada
5632 pragma Profile (Ravenscar | Restricted | Rational);
5633 @end smallexample
5635 @noindent
5636 This pragma is standard in Ada 2005, but is available in all earlier
5637 versions of Ada as an implementation-defined pragma. This is a
5638 configuration pragma that establishes a set of configiuration pragmas
5639 that depend on the argument. @code{Ravenscar} is standard in Ada 2005.
5640 The other two possibilities (@code{Restricted} or @code{Rational})
5641 are implementation-defined. The set of configuration pragmas
5642 is defined in the following sections.
5644 @itemize
5646 @item Pragma Profile (Ravenscar)
5647 @findex Ravenscar
5648 @noindent
5650 The @code{Ravenscar} profile is standard in Ada 2005,
5651 but is available in all earlier
5652 versions of Ada as an implementation-defined pragma. This profile
5653 establishes the following set of configuration pragmas:
5655 @table @code
5656 @item Task_Dispatching_Policy (FIFO_Within_Priorities)
5657 [RM D.2.2] Tasks are dispatched following a preemptive
5658 priority-ordered scheduling policy.
5660 @item Locking_Policy (Ceiling_Locking)
5661 [RM D.3] While tasks and interrupts execute a protected action, they inherit
5662 the ceiling priority of the corresponding protected object.
5664 @item Detect_Blocking
5665 This pragma forces the detection of potentially blocking operations within a
5666 protected operation, and to raise Program_Error if that happens.
5667 @end table
5668 @noindent
5670 plus the following set of restrictions:
5672 @table @code
5673 @item Max_Entry_Queue_Length => 1
5674 No task can be queued on a protected entry.
5675 @item Max_Protected_Entries => 1
5676 @item Max_Task_Entries => 0
5677 No rendezvous statements are allowed.
5678 @item No_Abort_Statements
5679 @item No_Dynamic_Attachment
5680 @item No_Dynamic_Priorities
5681 @item No_Implicit_Heap_Allocations
5682 @item No_Local_Protected_Objects
5683 @item No_Local_Timing_Events
5684 @item No_Protected_Type_Allocators
5685 @item No_Relative_Delay
5686 @item No_Requeue_Statements
5687 @item No_Select_Statements
5688 @item No_Specific_Termination_Handlers
5689 @item No_Task_Allocators
5690 @item No_Task_Hierarchy
5691 @item No_Task_Termination
5692 @item Simple_Barriers
5693 @end table
5694 @noindent
5696 The Ravenscar profile also includes the following restrictions that specify
5697 that there are no semantic dependences on the corresponding predefined
5698 packages:
5700 @table @code
5701 @item No_Dependence => Ada.Asynchronous_Task_Control
5702 @item No_Dependence => Ada.Calendar
5703 @item No_Dependence => Ada.Execution_Time.Group_Budget
5704 @item No_Dependence => Ada.Execution_Time.Timers
5705 @item No_Dependence => Ada.Task_Attributes
5706 @item No_Dependence => System.Multiprocessors.Dispatching_Domains
5707 @end table
5709 @noindent
5711 This set of configuration pragmas and restrictions correspond to the
5712 definition of the ``Ravenscar Profile'' for limited tasking, devised and
5713 published by the @cite{International Real-Time Ada Workshop}, 1997,
5714 and whose most recent description is available at
5715 @url{http://www-users.cs.york.ac.uk/~burns/ravenscar.ps}.
5717 The original definition of the profile was revised at subsequent IRTAW
5718 meetings. It has been included in the ISO
5719 @cite{Guide for the Use of the Ada Programming Language in High
5720 Integrity Systems}, and has been approved by ISO/IEC/SC22/WG9 for inclusion in
5721 the next revision of the standard. The formal definition given by
5722 the Ada Rapporteur Group (ARG) can be found in two Ada Issues (AI-249 and
5723 AI-305) available at
5724 @url{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00249.txt} and
5725 @url{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00305.txt}.
5727 The above set is a superset of the restrictions provided by pragma
5728 @code{Profile (Restricted)}, it includes six additional restrictions
5729 (@code{Simple_Barriers}, @code{No_Select_Statements},
5730 @code{No_Calendar}, @code{No_Implicit_Heap_Allocations},
5731 @code{No_Relative_Delay} and @code{No_Task_Termination}).  This means
5732 that pragma @code{Profile (Ravenscar)}, like the pragma
5733 @code{Profile (Restricted)},
5734 automatically causes the use of a simplified,
5735 more efficient version of the tasking run-time system.
5737 @item Pragma Profile (Restricted)
5738 @findex Restricted Run Time
5739 @noindent
5740 This profile corresponds to the GNAT restricted run time. It
5741 establishes the following set of restrictions:
5743 @itemize @bullet
5744 @item No_Abort_Statements
5745 @item No_Entry_Queue
5746 @item No_Task_Hierarchy
5747 @item No_Task_Allocators
5748 @item No_Dynamic_Priorities
5749 @item No_Terminate_Alternatives
5750 @item No_Dynamic_Attachment
5751 @item No_Protected_Type_Allocators
5752 @item No_Local_Protected_Objects
5753 @item No_Requeue_Statements
5754 @item No_Task_Attributes_Package
5755 @item Max_Asynchronous_Select_Nesting =  0
5756 @item Max_Task_Entries =  0
5757 @item Max_Protected_Entries = 1
5758 @item Max_Select_Alternatives = 0
5759 @end itemize
5761 @noindent
5762 This set of restrictions causes the automatic selection of a simplified
5763 version of the run time that provides improved performance for the
5764 limited set of tasking functionality permitted by this set of restrictions.
5766 @item Pragma Profile (Rational)
5767 @findex Rational compatibility mode
5768 @noindent
5769 The Rational profile is intended to facilitate porting legacy code that
5770 compiles with the Rational APEX compiler, even when the code includes non-
5771 conforming Ada constructs.  The profile enables the following three pragmas:
5773 @itemize @bullet
5774 @item pragma Implicit_Packing
5775 @item pragma Overriding_Renamings
5776 @item pragma Use_VADS_Size
5777 @end itemize
5779 @end itemize
5781 @node Pragma Profile_Warnings
5782 @unnumberedsec Pragma Profile_Warnings
5783 @findex Profile_Warnings
5784 @noindent
5785 Syntax:
5787 @smallexample @c ada
5788 pragma Profile_Warnings (Ravenscar | Restricted | Rational);
5789 @end smallexample
5791 @noindent
5792 This is an implementation-defined pragma that is similar in
5793 effect to @code{pragma Profile} except that instead of
5794 generating @code{Restrictions} pragmas, it generates
5795 @code{Restriction_Warnings} pragmas. The result is that
5796 violations of the profile generate warning messages instead
5797 of error messages.
5799 @node Pragma Propagate_Exceptions
5800 @unnumberedsec Pragma Propagate_Exceptions
5801 @cindex Interfacing to C++
5802 @findex Propagate_Exceptions
5803 @noindent
5804 Syntax:
5806 @smallexample @c ada
5807 pragma Propagate_Exceptions;
5808 @end smallexample
5810 @noindent
5811 This pragma is now obsolete and, other than generating a warning if warnings
5812 on obsolescent features are enabled, is ignored.
5813 It is retained for compatibility
5814 purposes. It used to be used in connection with optimization of
5815 a now-obsolete mechanism for implementation of exceptions.
5817 @node Pragma Psect_Object
5818 @unnumberedsec Pragma Psect_Object
5819 @findex Psect_Object
5820 @noindent
5821 Syntax:
5823 @smallexample @c ada
5824 pragma Psect_Object (
5825      [Internal =>] LOCAL_NAME,
5826   [, [External =>] EXTERNAL_SYMBOL]
5827   [, [Size     =>] EXTERNAL_SYMBOL]);
5829 EXTERNAL_SYMBOL ::=
5830   IDENTIFIER
5831 | static_string_EXPRESSION
5832 @end smallexample
5834 @noindent
5835 This pragma is identical in effect to pragma @code{Common_Object}.
5837 @node Pragma Pure_05
5838 @unnumberedsec Pragma Pure_05
5839 @findex Pure_05
5840 @noindent
5841 Syntax:
5843 @smallexample @c ada
5844 pragma Pure_05 [(library_unit_NAME)];
5845 @end smallexample
5847 @noindent
5848 This pragma is only available in GNAT mode (@option{-gnatg} switch set)
5849 and is intended for use in the standard run-time library only. It has
5850 no effect in Ada 83 or Ada 95 mode, but is
5851 equivalent to @code{pragma Pure} when operating in later
5852 Ada versions. This is used to handle some cases where packages
5853 not previously pure became so in Ada 2005.
5855 @node Pragma Pure_12
5856 @unnumberedsec Pragma Pure_12
5857 @findex Pure_12
5858 @noindent
5859 Syntax:
5861 @smallexample @c ada
5862 pragma Pure_12 [(library_unit_NAME)];
5863 @end smallexample
5865 @noindent
5866 This pragma is only available in GNAT mode (@option{-gnatg} switch set)
5867 and is intended for use in the standard run-time library only. It has
5868 no effect in Ada 83, Ada 95, or Ada 2005 modes, but is
5869 equivalent to @code{pragma Pure} when operating in later
5870 Ada versions. This is used to handle some cases where packages
5871 not previously pure became so in Ada 2012.
5873 @node Pragma Pure_Function
5874 @unnumberedsec Pragma Pure_Function
5875 @findex Pure_Function
5876 @noindent
5877 Syntax:
5879 @smallexample @c ada
5880 pragma Pure_Function ([Entity =>] function_LOCAL_NAME);
5881 @end smallexample
5883 @noindent
5884 This pragma appears in the same declarative part as a function
5885 declaration (or a set of function declarations if more than one
5886 overloaded declaration exists, in which case the pragma applies
5887 to all entities).  It specifies that the function @code{Entity} is
5888 to be considered pure for the purposes of code generation.  This means
5889 that the compiler can assume that there are no side effects, and
5890 in particular that two calls with identical arguments produce the
5891 same result.  It also means that the function can be used in an
5892 address clause.
5894 Note that, quite deliberately, there are no static checks to try
5895 to ensure that this promise is met, so @code{Pure_Function} can be used
5896 with functions that are conceptually pure, even if they do modify
5897 global variables.  For example, a square root function that is
5898 instrumented to count the number of times it is called is still
5899 conceptually pure, and can still be optimized, even though it
5900 modifies a global variable (the count).  Memo functions are another
5901 example (where a table of previous calls is kept and consulted to
5902 avoid re-computation).
5904 Note also that the normal rules excluding optimization of subprograms
5905 in pure units (when parameter types are descended from System.Address,
5906 or when the full view of a parameter type is limited), do not apply
5907 for the Pure_Function case. If you explicitly specify Pure_Function,
5908 the compiler may optimize away calls with identical arguments, and
5909 if that results in unexpected behavior, the proper action is not to
5910 use the pragma for subprograms that are not (conceptually) pure.
5912 @findex Pure
5913 Note: Most functions in a @code{Pure} package are automatically pure, and
5914 there is no need to use pragma @code{Pure_Function} for such functions.  One
5915 exception is any function that has at least one formal of type
5916 @code{System.Address} or a type derived from it.  Such functions are not
5917 considered pure by default, since the compiler assumes that the
5918 @code{Address} parameter may be functioning as a pointer and that the
5919 referenced data may change even if the address value does not.
5920 Similarly, imported functions are not considered to be pure by default,
5921 since there is no way of checking that they are in fact pure.  The use
5922 of pragma @code{Pure_Function} for such a function will override these default
5923 assumption, and cause the compiler to treat a designated subprogram as pure
5924 in these cases.
5926 Note: If pragma @code{Pure_Function} is applied to a renamed function, it
5927 applies to the underlying renamed function.  This can be used to
5928 disambiguate cases of overloading where some but not all functions
5929 in a set of overloaded functions are to be designated as pure.
5931 If pragma @code{Pure_Function} is applied to a library level function, the
5932 function is also considered pure from an optimization point of view, but the
5933 unit is not a Pure unit in the categorization sense. So for example, a function
5934 thus marked is free to @code{with} non-pure units.
5936 @node Pragma Ravenscar
5937 @unnumberedsec Pragma Ravenscar
5938 @findex Pragma Ravenscar
5939 @noindent
5940 Syntax:
5942 @smallexample @c ada
5943 pragma Ravenscar;
5944 @end smallexample
5946 @noindent
5947 This pragma is considered obsolescent, but is retained for
5948 compatibility purposes. It is equivalent to:
5950 @smallexample @c ada
5951 pragma Profile (Ravenscar);
5952 @end smallexample
5954 @noindent
5955 which is the preferred method of setting the @code{Ravenscar} profile.
5957 @node Pragma Refined_State
5958 @unnumberedsec Pragma Refined_State
5959 @findex Refined_State
5960 @noindent
5961 For the description of this pragma, see SPARK 2014 Reference Manual,
5962 section 7.2.2.
5964 @node Pragma Relative_Deadline
5965 @unnumberedsec Pragma Relative_Deadline
5966 @findex Relative_Deadline
5967 @noindent
5968 Syntax:
5970 @smallexample @c ada
5971 pragma Relative_Deadline (time_span_EXPRESSION);
5972 @end smallexample
5974 @noindent
5975 This pragma is standard in Ada 2005, but is available in all earlier
5976 versions of Ada as an implementation-defined pragma.
5977 See Ada 2012 Reference Manual for details.
5979 @node Pragma Remote_Access_Type
5980 @unnumberedsec Pragma Remote_Access_Type
5981 @findex Remote_Access_Type
5982 @noindent
5983 Syntax:
5985 @smallexample @c ada
5986 pragma Remote_Access_Type ([Entity =>] formal_access_type_LOCAL_NAME);
5987 @end smallexample
5989 @noindent
5990 This pragma appears in the formal part of a generic declaration.
5991 It specifies an exception to the RM rule from E.2.2(17/2), which forbids
5992 the use of a remote access to class-wide type as actual for a formal
5993 access type.
5995 When this pragma applies to a formal access type @code{Entity}, that
5996 type is treated as a remote access to class-wide type in the generic.
5997 It must be a formal general access type, and its designated type must
5998 be the class-wide type of a formal tagged limited private type from the
5999 same generic declaration.
6001 In the generic unit, the formal type is subject to all restrictions
6002 pertaining to remote access to class-wide types. At instantiation, the
6003 actual type must be a remote access to class-wide type.
6005 @node Pragma Restricted_Run_Time
6006 @unnumberedsec Pragma Restricted_Run_Time
6007 @findex Pragma Restricted_Run_Time
6008 @noindent
6009 Syntax:
6011 @smallexample @c ada
6012 pragma Restricted_Run_Time;
6013 @end smallexample
6015 @noindent
6016 This pragma is considered obsolescent, but is retained for
6017 compatibility purposes. It is equivalent to:
6019 @smallexample @c ada
6020 pragma Profile (Restricted);
6021 @end smallexample
6023 @noindent
6024 which is the preferred method of setting the restricted run time
6025 profile.
6027 @node Pragma Restriction_Warnings
6028 @unnumberedsec Pragma Restriction_Warnings
6029 @findex Restriction_Warnings
6030 @noindent
6031 Syntax:
6033 @smallexample @c ada
6034 pragma Restriction_Warnings
6035   (restriction_IDENTIFIER @{, restriction_IDENTIFIER@});
6036 @end smallexample
6038 @noindent
6039 This pragma allows a series of restriction identifiers to be
6040 specified (the list of allowed identifiers is the same as for
6041 pragma @code{Restrictions}). For each of these identifiers
6042 the compiler checks for violations of the restriction, but
6043 generates a warning message rather than an error message
6044 if the restriction is violated.
6046 One use of this is in situations where you want to know
6047 about violations of a restriction, but you want to ignore some of
6048 these violations. Consider this example, where you want to set
6049 Ada_95 mode and enable style checks, but you want to know about
6050 any other use of implementation pragmas:
6052 @smallexample @c ada
6053 pragma Restriction_Warnings (No_Implementation_Pragmas);
6054 pragma Warnings (Off, "violation of*No_Implementation_Pragmas*");
6055 pragma Ada_95;
6056 pragma Style_Checks ("2bfhkM160");
6057 pragma Warnings (On, "violation of*No_Implementation_Pragmas*");
6058 @end smallexample
6060 @noindent
6061 By including the above lines in a configuration pragmas file,
6062 the Ada_95 and Style_Checks pragmas are accepted without
6063 generating a warning, but any other use of implementation
6064 defined pragmas will cause a warning to be generated.
6066 @node Pragma Share_Generic
6067 @unnumberedsec Pragma Share_Generic
6068 @findex Share_Generic
6069 @noindent
6070 Syntax:
6072 @smallexample @c ada
6073 pragma Share_Generic (GNAME @{, GNAME@});
6075 GNAME ::= generic_unit_NAME | generic_instance_NAME
6076 @end smallexample
6078 @noindent
6079 This pragma is provided for compatibility with Dec Ada 83. It has
6080 no effect in @code{GNAT} (which does not implement shared generics), other
6081 than to check that the given names are all names of generic units or
6082 generic instances.
6084 @node Pragma Shared
6085 @unnumberedsec Pragma Shared
6086 @findex Shared
6088 @noindent
6089 This pragma is provided for compatibility with Ada 83. The syntax and
6090 semantics are identical to pragma Atomic.
6092 @node Pragma Short_Circuit_And_Or
6093 @unnumberedsec Pragma Short_Circuit_And_Or
6094 @findex Short_Circuit_And_Or
6095 @noindent
6096 Syntax:
6098 @smallexample @c ada
6099 pragma Short_Circuit_And_Or;
6100 @end smallexample
6102 @noindent
6103 This configuration pragma causes any occurrence of the AND operator applied to
6104 operands of type Standard.Boolean to be short-circuited (i.e. the AND operator
6105 is treated as if it were AND THEN). Or is similarly treated as OR ELSE. This
6106 may be useful in the context of certification protocols requiring the use of
6107 short-circuited logical operators. If this configuration pragma occurs locally
6108 within the file being compiled, it applies only to the file being compiled.
6109 There is no requirement that all units in a partition use this option.
6111 @node Pragma Short_Descriptors
6112 @unnumberedsec Pragma Short_Descriptors
6113 @findex Short_Descriptors
6114 @noindent
6115 Syntax:
6117 @smallexample @c ada
6118 pragma Short_Descriptors
6119 @end smallexample
6121 @noindent
6122 In VMS versions of the compiler, this configuration pragma causes all
6123 occurrences of the mechanism types Descriptor[_xxx] to be treated as
6124 Short_Descriptor[_xxx]. This is helpful in porting legacy applications from a
6125 32-bit environment to a 64-bit environment. This pragma is ignored for non-VMS
6126 versions.
6128 @node Pragma Simple_Storage_Pool_Type
6129 @unnumberedsec Pragma Simple_Storage_Pool_Type
6130 @findex Simple_Storage_Pool_Type
6131 @cindex Storage pool, simple
6132 @cindex Simple storage pool
6133 @noindent
6134 Syntax:
6136 @smallexample @c ada
6137 pragma Simple_Storage_Pool_Type (type_LOCAL_NAME);
6138 @end smallexample
6140 @noindent
6141 A type can be established as a ``simple storage pool type'' by applying
6142 the representation pragma @code{Simple_Storage_Pool_Type} to the type.
6143 A type named in the pragma must be a library-level immutably limited record
6144 type or limited tagged type declared immediately within a package declaration.
6145 The type can also be a limited private type whose full type is allowed as
6146 a simple storage pool type.
6148 For a simple storage pool type @var{SSP}, nonabstract primitive subprograms
6149 @code{Allocate}, @code{Deallocate}, and @code{Storage_Size} can be declared that
6150 are subtype conformant with the following subprogram declarations:
6152 @smallexample @c ada
6153 procedure Allocate
6154   (Pool                     : in out SSP;
6155    Storage_Address          : out System.Address;
6156    Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
6157    Alignment                : System.Storage_Elements.Storage_Count);
6159 procedure Deallocate
6160   (Pool : in out SSP;
6161    Storage_Address          : System.Address;
6162    Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
6163    Alignment                : System.Storage_Elements.Storage_Count);
6165 function Storage_Size (Pool : SSP)
6166   return System.Storage_Elements.Storage_Count;
6167 @end smallexample
6169 @noindent
6170 Procedure @code{Allocate} must be declared, whereas @code{Deallocate} and
6171 @code{Storage_Size} are optional. If @code{Deallocate} is not declared, then
6172 applying an unchecked deallocation has no effect other than to set its actual
6173 parameter to null. If @code{Storage_Size} is not declared, then the
6174 @code{Storage_Size} attribute applied to an access type associated with
6175 a pool object of type SSP returns zero. Additional operations can be declared
6176 for a simple storage pool type (such as for supporting a mark/release
6177 storage-management discipline).
6179 An object of a simple storage pool type can be associated with an access
6180 type by specifying the attribute @code{Simple_Storage_Pool}. For example:
6182 @smallexample @c ada
6184 My_Pool : My_Simple_Storage_Pool_Type;
6186 type Acc is access My_Data_Type;
6188 for Acc'Simple_Storage_Pool use My_Pool;
6190 @end smallexample
6192 @noindent
6193 See attribute @code{Simple_Storage_Pool} for further details.
6195 @node Pragma Source_File_Name
6196 @unnumberedsec Pragma Source_File_Name
6197 @findex Source_File_Name
6198 @noindent
6199 Syntax:
6201 @smallexample @c ada
6202 pragma Source_File_Name (
6203   [Unit_Name   =>] unit_NAME,
6204   Spec_File_Name =>  STRING_LITERAL,
6205   [Index => INTEGER_LITERAL]);
6207 pragma Source_File_Name (
6208   [Unit_Name   =>] unit_NAME,
6209   Body_File_Name =>  STRING_LITERAL,
6210   [Index => INTEGER_LITERAL]);
6211 @end smallexample
6213 @noindent
6214 Use this to override the normal naming convention.  It is a configuration
6215 pragma, and so has the usual applicability of configuration pragmas
6216 (i.e.@: it applies to either an entire partition, or to all units in a
6217 compilation, or to a single unit, depending on how it is used.
6218 @var{unit_name} is mapped to @var{file_name_literal}.  The identifier for
6219 the second argument is required, and indicates whether this is the file
6220 name for the spec or for the body.
6222 The optional Index argument should be used when a file contains multiple
6223 units, and when you do not want to use @code{gnatchop} to separate then
6224 into multiple files (which is the recommended procedure to limit the
6225 number of recompilations that are needed when some sources change).
6226 For instance, if the source file @file{source.ada} contains
6228 @smallexample @c ada
6229 package B is
6231 end B;
6233 with B;
6234 procedure A is
6235 begin
6236    ..
6237 end A;
6238 @end smallexample
6240 you could use the following configuration pragmas:
6242 @smallexample @c ada
6243 pragma Source_File_Name
6244   (B, Spec_File_Name => "source.ada", Index => 1);
6245 pragma Source_File_Name
6246   (A, Body_File_Name => "source.ada", Index => 2);
6247 @end smallexample
6249 Note that the @code{gnatname} utility can also be used to generate those
6250 configuration pragmas.
6252 Another form of the @code{Source_File_Name} pragma allows
6253 the specification of patterns defining alternative file naming schemes
6254 to apply to all files.
6256 @smallexample @c ada
6257 pragma Source_File_Name
6258   (  [Spec_File_Name  =>] STRING_LITERAL
6259    [,[Casing          =>] CASING_SPEC]
6260    [,[Dot_Replacement =>] STRING_LITERAL]);
6262 pragma Source_File_Name
6263   (  [Body_File_Name  =>] STRING_LITERAL
6264    [,[Casing          =>] CASING_SPEC]
6265    [,[Dot_Replacement =>] STRING_LITERAL]);
6267 pragma Source_File_Name
6268   (  [Subunit_File_Name =>] STRING_LITERAL
6269    [,[Casing            =>] CASING_SPEC]
6270    [,[Dot_Replacement   =>] STRING_LITERAL]);
6272 CASING_SPEC ::= Lowercase | Uppercase | Mixedcase
6273 @end smallexample
6275 @noindent
6276 The first argument is a pattern that contains a single asterisk indicating
6277 the point at which the unit name is to be inserted in the pattern string
6278 to form the file name.  The second argument is optional.  If present it
6279 specifies the casing of the unit name in the resulting file name string.
6280 The default is lower case.  Finally the third argument allows for systematic
6281 replacement of any dots in the unit name by the specified string literal.
6283 Note that Source_File_Name pragmas should not be used if you are using
6284 project files. The reason for this rule is that the project manager is not
6285 aware of these pragmas, and so other tools that use the projet file would not
6286 be aware of the intended naming conventions. If you are using project files,
6287 file naming is controlled by Source_File_Name_Project pragmas, which are
6288 usually supplied automatically by the project manager. A pragma
6289 Source_File_Name cannot appear after a @ref{Pragma Source_File_Name_Project}.
6291 For more details on the use of the @code{Source_File_Name} pragma,
6292 @xref{Using Other File Names,,, gnat_ugn, @value{EDITION} User's Guide},
6293 and @ref{Alternative File Naming Schemes,,, gnat_ugn, @value{EDITION}
6294 User's Guide}.
6296 @node Pragma Source_File_Name_Project
6297 @unnumberedsec Pragma Source_File_Name_Project
6298 @findex Source_File_Name_Project
6299 @noindent
6301 This pragma has the same syntax and semantics as pragma Source_File_Name.
6302 It is only allowed as a stand alone configuration pragma.
6303 It cannot appear after a @ref{Pragma Source_File_Name}, and
6304 most importantly, once pragma Source_File_Name_Project appears,
6305 no further Source_File_Name pragmas are allowed.
6307 The intention is that Source_File_Name_Project pragmas are always
6308 generated by the Project Manager in a manner consistent with the naming
6309 specified in a project file, and when naming is controlled in this manner,
6310 it is not permissible to attempt to modify this naming scheme using
6311 Source_File_Name or Source_File_Name_Project pragmas (which would not be
6312 known to the project manager).
6314 @node Pragma Source_Reference
6315 @unnumberedsec Pragma Source_Reference
6316 @findex Source_Reference
6317 @noindent
6318 Syntax:
6320 @smallexample @c ada
6321 pragma Source_Reference (INTEGER_LITERAL, STRING_LITERAL);
6322 @end smallexample
6324 @noindent
6325 This pragma must appear as the first line of a source file.
6326 @var{integer_literal} is the logical line number of the line following
6327 the pragma line (for use in error messages and debugging
6328 information).  @var{string_literal} is a static string constant that
6329 specifies the file name to be used in error messages and debugging
6330 information.  This is most notably used for the output of @code{gnatchop}
6331 with the @option{-r} switch, to make sure that the original unchopped
6332 source file is the one referred to.
6334 The second argument must be a string literal, it cannot be a static
6335 string expression other than a string literal.  This is because its value
6336 is needed for error messages issued by all phases of the compiler.
6338 @node Pragma SPARK_Mode
6339 @unnumberedsec Pragma SPARK_Mode
6340 @findex SPARK_Mode
6341 @noindent
6342 Syntax:
6344 @smallexample @c ada
6345 pragma SPARK_Mode [(On | Off)] ;
6346 @end smallexample
6348 @noindent
6349 In general a program can have some parts that are in SPARK 2014 (and
6350 follow all the rules in the SPARK Reference Manual), and some parts
6351 that are full Ada 2012.
6353 The SPARK_Mode pragma is used to identify which parts are in SPARK
6354 2014 (by default programs are in full Ada). The SPARK_Mode pragma can
6355 be used in the following places:
6357 @itemize @bullet
6359 @item
6360 As a configuration pragma, in which case it sets the default mode for
6361 all units compiled with this pragma.
6363 @item
6364 Immediately following a library-level subprogram spec
6366 @item
6367 Immediately within a library-level package body
6369 @item
6370 Immediately following the @code{private} keyword of a library-level
6371 package spec
6373 @item
6374 Immediately following the @code{begin} keyword of a library-level
6375 package body
6377 @item
6378 Immediately within a library-level subprogram body
6380 @end itemize
6382 @noindent
6383 Normally a subprogram or package spec/body inherits the current mode
6384 that is active at the point it is declared. But this can be overridden
6385 by pragma within the spec or body as above.
6387 The basic consistency rule is that you can't turn SPARK_Mode back
6388 @code{On}, once you have explicitly (with a pragma) turned if
6389 @code{Off}. So the following rules apply:
6391 @noindent
6392 If a subprogram spec has SPARK_Mode @code{Off}, then the body must
6393 also have SPARK_Mode @code{Off}.
6395 @noindent
6396 For a package, we have four parts:
6398 @itemize
6399 @item
6400 the package public declarations
6401 @item
6402 the package private part
6403 @item
6404 the body of the package
6405 @item
6406 the elaboration code after @code{begin}
6407 @end itemize
6409 @noindent
6410 For a package, the rule is that if you explicitly turn SPARK_Mode
6411 @code{Off} for any part, then all the following parts must have
6412 SPARK_Mode @code{Off}. Note that this may require repeating a pragma
6413 SPARK_Mode (@code{Off}) in the body. For example, if we have a
6414 configuration pragma SPARK_Mode (@code{On}) that turns the mode on by
6415 default everywhere, and one particular package spec has pragma
6416 SPARK_Mode (@code{Off}), then that pragma will need to be repeated in
6417 the package body.
6419 @node Pragma Static_Elaboration_Desired
6420 @unnumberedsec Pragma Static_Elaboration_Desired
6421 @findex Static_Elaboration_Desired
6422 @noindent
6423 Syntax:
6425 @smallexample @c ada
6426 pragma Static_Elaboration_Desired;
6427 @end smallexample
6429 @noindent
6430 This pragma is used to indicate that the compiler should attempt to initialize
6431 statically the objects declared in the library unit to which the pragma applies,
6432 when these objects are initialized (explicitly or implicitly) by an aggregate.
6433 In the absence of this pragma, aggregates in object declarations are expanded
6434 into assignments and loops, even when the aggregate components are static
6435 constants. When the aggregate is present the compiler builds a static expression
6436 that requires no run-time code, so that the initialized object can be placed in
6437 read-only data space. If the components are not static, or the aggregate has
6438 more that 100 components, the compiler emits a warning that the pragma cannot
6439 be obeyed. (See also the restriction No_Implicit_Loops, which supports static
6440 construction of larger aggregates with static components that include an others
6441 choice.)
6443 @node Pragma Stream_Convert
6444 @unnumberedsec Pragma Stream_Convert
6445 @findex Stream_Convert
6446 @noindent
6447 Syntax:
6449 @smallexample @c ada
6450 pragma Stream_Convert (
6451   [Entity =>] type_LOCAL_NAME,
6452   [Read   =>] function_NAME,
6453   [Write  =>] function_NAME);
6454 @end smallexample
6456 @noindent
6457 This pragma provides an efficient way of providing user-defined stream
6458 attributes.  Not only is it simpler to use than specifying the attributes
6459 directly, but more importantly, it allows the specification to be made in such
6460 a way that the predefined unit Ada.Streams is not loaded unless it is actually
6461 needed (i.e. unless the stream attributes are actually used); the use of
6462 the Stream_Convert pragma adds no overhead at all, unless the stream
6463 attributes are actually used on the designated type.
6465 The first argument specifies the type for which stream functions are
6466 provided.  The second parameter provides a function used to read values
6467 of this type.  It must name a function whose argument type may be any
6468 subtype, and whose returned type must be the type given as the first
6469 argument to the pragma.
6471 The meaning of the @var{Read} parameter is that if a stream attribute directly
6472 or indirectly specifies reading of the type given as the first parameter,
6473 then a value of the type given as the argument to the Read function is
6474 read from the stream, and then the Read function is used to convert this
6475 to the required target type.
6477 Similarly the @var{Write} parameter specifies how to treat write attributes
6478 that directly or indirectly apply to the type given as the first parameter.
6479 It must have an input parameter of the type specified by the first parameter,
6480 and the return type must be the same as the input type of the Read function.
6481 The effect is to first call the Write function to convert to the given stream
6482 type, and then write the result type to the stream.
6484 The Read and Write functions must not be overloaded subprograms.  If necessary
6485 renamings can be supplied to meet this requirement.
6486 The usage of this attribute is best illustrated by a simple example, taken
6487 from the GNAT implementation of package Ada.Strings.Unbounded:
6489 @smallexample @c ada
6490 function To_Unbounded (S : String)
6491            return Unbounded_String
6492   renames To_Unbounded_String;
6494 pragma Stream_Convert
6495   (Unbounded_String, To_Unbounded, To_String);
6496 @end smallexample
6498 @noindent
6499 The specifications of the referenced functions, as given in the Ada
6500 Reference Manual are:
6502 @smallexample @c ada
6503 function To_Unbounded_String (Source : String)
6504   return Unbounded_String;
6506 function To_String (Source : Unbounded_String)
6507   return String;
6508 @end smallexample
6510 @noindent
6511 The effect is that if the value of an unbounded string is written to a stream,
6512 then the representation of the item in the stream is in the same format that
6513 would be used for @code{Standard.String'Output}, and this same representation
6514 is expected when a value of this type is read from the stream. Note that the
6515 value written always includes the bounds, even for Unbounded_String'Write,
6516 since Unbounded_String is not an array type.
6518 @node Pragma Style_Checks
6519 @unnumberedsec Pragma Style_Checks
6520 @findex Style_Checks
6521 @noindent
6522 Syntax:
6524 @smallexample @c ada
6525 pragma Style_Checks (string_LITERAL | ALL_CHECKS |
6526                      On | Off [, LOCAL_NAME]);
6527 @end smallexample
6529 @noindent
6530 This pragma is used in conjunction with compiler switches to control the
6531 built in style checking provided by GNAT@.  The compiler switches, if set,
6532 provide an initial setting for the switches, and this pragma may be used
6533 to modify these settings, or the settings may be provided entirely by
6534 the use of the pragma.  This pragma can be used anywhere that a pragma
6535 is legal, including use as a configuration pragma (including use in
6536 the @file{gnat.adc} file).
6538 The form with a string literal specifies which style options are to be
6539 activated.  These are additive, so they apply in addition to any previously
6540 set style check options.  The codes for the options are the same as those
6541 used in the @option{-gnaty} switch to @command{gcc} or @command{gnatmake}.
6542 For example the following two methods can be used to enable
6543 layout checking:
6545 @itemize @bullet
6546 @item
6547 @smallexample @c ada
6548 pragma Style_Checks ("l");
6549 @end smallexample
6551 @item
6552 @smallexample
6553 gcc -c -gnatyl @dots{}
6554 @end smallexample
6555 @end itemize
6557 @noindent
6558 The form ALL_CHECKS activates all standard checks (its use is equivalent
6559 to the use of the @code{gnaty} switch with no options.  @xref{Top,
6560 @value{EDITION} User's Guide, About This Guide, gnat_ugn,
6561 @value{EDITION} User's Guide}, for details.)
6563 Note: the behavior is slightly different in GNAT mode (@option{-gnatg} used).
6564 In this case, ALL_CHECKS implies the standard set of GNAT mode style check
6565 options (i.e. equivalent to -gnatyg).
6567 The forms with @code{Off} and @code{On}
6568 can be used to temporarily disable style checks
6569 as shown in the following example:
6571 @smallexample @c ada
6572 @iftex
6573 @leftskip=0cm
6574 @end iftex
6575 pragma Style_Checks ("k"); -- requires keywords in lower case
6576 pragma Style_Checks (Off); -- turn off style checks
6577 NULL;                      -- this will not generate an error message
6578 pragma Style_Checks (On);  -- turn style checks back on
6579 NULL;                      -- this will generate an error message
6580 @end smallexample
6582 @noindent
6583 Finally the two argument form is allowed only if the first argument is
6584 @code{On} or @code{Off}.  The effect is to turn of semantic style checks
6585 for the specified entity, as shown in the following example:
6587 @smallexample @c ada
6588 @iftex
6589 @leftskip=0cm
6590 @end iftex
6591 pragma Style_Checks ("r"); -- require consistency of identifier casing
6592 Arg : Integer;
6593 Rf1 : Integer := ARG;      -- incorrect, wrong case
6594 pragma Style_Checks (Off, Arg);
6595 Rf2 : Integer := ARG;      -- OK, no error
6596 @end smallexample
6598 @node Pragma Subtitle
6599 @unnumberedsec Pragma Subtitle
6600 @findex Subtitle
6601 @noindent
6602 Syntax:
6604 @smallexample @c ada
6605 pragma Subtitle ([Subtitle =>] STRING_LITERAL);
6606 @end smallexample
6608 @noindent
6609 This pragma is recognized for compatibility with other Ada compilers
6610 but is ignored by GNAT@.
6612 @node Pragma Suppress
6613 @unnumberedsec Pragma Suppress
6614 @findex Suppress
6615 @noindent
6616 Syntax:
6618 @smallexample @c ada
6619 pragma Suppress (Identifier [, [On =>] Name]);
6620 @end smallexample
6622 @noindent
6623 This is a standard pragma, and supports all the check names required in
6624 the RM. It is included here because GNAT recognizes some additional check
6625 names that are implementation defined (as permitted by the RM):
6627 @itemize @bullet
6629 @item
6630 @code{Alignment_Check} can be used to suppress alignment checks
6631 on addresses used in address clauses. Such checks can also be suppressed
6632 by suppressing range checks, but the specific use of @code{Alignment_Check}
6633 allows suppression of alignment checks without suppressing other range checks.
6635 @item
6636 @code{Predicate_Check} can be used to control whether predicate checks are
6637 active. It is applicable only to predicates for which the policy is
6638 @code{Check}. Unlike @code{Assertion_Policy}, which determines if a given
6639 predicate is ignored or checked for the whole program, the use of
6640 @code{Suppress} and @code{Unsuppress} with this check name allows a given
6641 predicate to be turned on and off at specific points in the program.
6643 @item
6644 @code{Validity_Check} can be used specifically to control validity checks.
6645 If @code{Suppress} is used to suppress validity checks, then no validity
6646 checks are performed, including those specified by the appropriate compiler
6647 switch or the @code{Validity_Checks} pragma.
6649 @item
6650 Additional check names previously introduced by use of the @code{Check_Name}
6651 pragma are also allowed.
6653 @end itemize
6655 @noindent
6656 Note that pragma Suppress gives the compiler permission to omit
6657 checks, but does not require the compiler to omit checks. The compiler
6658 will generate checks if they are essentially free, even when they are
6659 suppressed. In particular, if the compiler can prove that a certain
6660 check will necessarily fail, it will generate code to do an
6661 unconditional ``raise'', even if checks are suppressed. The compiler
6662 warns in this case.
6664 Of course, run-time checks are omitted whenever the compiler can prove
6665 that they will not fail, whether or not checks are suppressed.
6667 @node Pragma Suppress_All
6668 @unnumberedsec Pragma Suppress_All
6669 @findex Suppress_All
6670 @noindent
6671 Syntax:
6673 @smallexample @c ada
6674 pragma Suppress_All;
6675 @end smallexample
6677 @noindent
6678 This pragma can appear anywhere within a unit.
6679 The effect is to apply @code{Suppress (All_Checks)} to the unit
6680 in which it appears.  This pragma is implemented for compatibility with DEC
6681 Ada 83 usage where it appears at the end of a unit, and for compatibility
6682 with Rational Ada, where it appears as a program unit pragma.
6683 The use of the standard Ada pragma @code{Suppress (All_Checks)}
6684 as a normal configuration pragma is the preferred usage in GNAT@.
6686 @node Pragma Suppress_Debug_Info
6687 @unnumberedsec Pragma Suppress_Debug_Info
6688 @findex Suppress_Debug_Info
6689 @noindent
6690 Syntax:
6692 @smallexample @c ada
6693 Suppress_Debug_Info ([Entity =>] LOCAL_NAME);
6694 @end smallexample
6696 @noindent
6697 This pragma can be used to suppress generation of debug information
6698 for the specified entity. It is intended primarily for use in debugging
6699 the debugger, and navigating around debugger problems.
6701 @node Pragma Suppress_Exception_Locations
6702 @unnumberedsec Pragma Suppress_Exception_Locations
6703 @findex Suppress_Exception_Locations
6704 @noindent
6705 Syntax:
6707 @smallexample @c ada
6708 pragma Suppress_Exception_Locations;
6709 @end smallexample
6711 @noindent
6712 In normal mode, a raise statement for an exception by default generates
6713 an exception message giving the file name and line number for the location
6714 of the raise. This is useful for debugging and logging purposes, but this
6715 entails extra space for the strings for the messages. The configuration
6716 pragma @code{Suppress_Exception_Locations} can be used to suppress the
6717 generation of these strings, with the result that space is saved, but the
6718 exception message for such raises is null. This configuration pragma may
6719 appear in a global configuration pragma file, or in a specific unit as
6720 usual. It is not required that this pragma be used consistently within
6721 a partition, so it is fine to have some units within a partition compiled
6722 with this pragma and others compiled in normal mode without it.
6724 @node Pragma Suppress_Initialization
6725 @unnumberedsec Pragma Suppress_Initialization
6726 @findex Suppress_Initialization
6727 @cindex Suppressing initialization
6728 @cindex Initialization, suppression of
6729 @noindent
6730 Syntax:
6732 @smallexample @c ada
6733 pragma Suppress_Initialization ([Entity =>] subtype_Name);
6734 @end smallexample
6736 @noindent
6737 Here subtype_Name is the name introduced by a type declaration
6738 or subtype declaration.
6739 This pragma suppresses any implicit or explicit initialization
6740 for all variables of the given type or subtype,
6741 including initialization resulting from the use of pragmas
6742 Normalize_Scalars or Initialize_Scalars.
6744 This is considered a representation item, so it cannot be given after
6745 the type is frozen. It applies to all subsequent object declarations,
6746 and also any allocator that creates objects of the type.
6748 If the pragma is given for the first subtype, then it is considered
6749 to apply to the base type and all its subtypes. If the pragma is given
6750 for other than a first subtype, then it applies only to the given subtype.
6751 The pragma may not be given after the type is frozen.
6753 @node Pragma Task_Info
6754 @unnumberedsec Pragma Task_Info
6755 @findex Task_Info
6756 @noindent
6757 Syntax
6759 @smallexample @c ada
6760 pragma Task_Info (EXPRESSION);
6761 @end smallexample
6763 @noindent
6764 This pragma appears within a task definition (like pragma
6765 @code{Priority}) and applies to the task in which it appears.  The
6766 argument must be of type @code{System.Task_Info.Task_Info_Type}.
6767 The @code{Task_Info} pragma provides system dependent control over
6768 aspects of tasking implementation, for example, the ability to map
6769 tasks to specific processors.  For details on the facilities available
6770 for the version of GNAT that you are using, see the documentation
6771 in the spec of package System.Task_Info in the runtime
6772 library.
6774 @node Pragma Task_Name
6775 @unnumberedsec Pragma Task_Name
6776 @findex Task_Name
6777 @noindent
6778 Syntax
6780 @smallexample @c ada
6781 pragma Task_Name (string_EXPRESSION);
6782 @end smallexample
6784 @noindent
6785 This pragma appears within a task definition (like pragma
6786 @code{Priority}) and applies to the task in which it appears.  The
6787 argument must be of type String, and provides a name to be used for
6788 the task instance when the task is created.  Note that this expression
6789 is not required to be static, and in particular, it can contain
6790 references to task discriminants.  This facility can be used to
6791 provide different names for different tasks as they are created,
6792 as illustrated in the example below.
6794 The task name is recorded internally in the run-time structures
6795 and is accessible to tools like the debugger.  In addition the
6796 routine @code{Ada.Task_Identification.Image} will return this
6797 string, with a unique task address appended.
6799 @smallexample @c ada
6800 --  Example of the use of pragma Task_Name
6802 with Ada.Task_Identification;
6803 use Ada.Task_Identification;
6804 with Text_IO; use Text_IO;
6805 procedure t3 is
6807    type Astring is access String;
6809    task type Task_Typ (Name : access String) is
6810       pragma Task_Name (Name.all);
6811    end Task_Typ;
6813    task body Task_Typ is
6814       Nam : constant String := Image (Current_Task);
6815    begin
6816       Put_Line ("-->" & Nam (1 .. 14) & "<--");
6817    end Task_Typ;
6819    type Ptr_Task is access Task_Typ;
6820    Task_Var : Ptr_Task;
6822 begin
6823    Task_Var :=
6824      new Task_Typ (new String'("This is task 1"));
6825    Task_Var :=
6826      new Task_Typ (new String'("This is task 2"));
6827 end;
6828 @end smallexample
6830 @node Pragma Task_Storage
6831 @unnumberedsec Pragma Task_Storage
6832 @findex Task_Storage
6833 Syntax:
6835 @smallexample @c ada
6836 pragma Task_Storage (
6837   [Task_Type =>] LOCAL_NAME,
6838   [Top_Guard =>] static_integer_EXPRESSION);
6839 @end smallexample
6841 @noindent
6842 This pragma specifies the length of the guard area for tasks.  The guard
6843 area is an additional storage area allocated to a task.  A value of zero
6844 means that either no guard area is created or a minimal guard area is
6845 created, depending on the target.  This pragma can appear anywhere a
6846 @code{Storage_Size} attribute definition clause is allowed for a task
6847 type.
6849 @node Pragma Test_Case
6850 @unnumberedsec Pragma Test_Case
6851 @cindex Test cases
6852 @findex Test_Case
6853 @noindent
6854 Syntax:
6856 @smallexample @c ada
6857 pragma Test_Case (
6858    [Name     =>] static_string_Expression
6859   ,[Mode     =>] (Nominal | Robustness)
6860  [, Requires =>  Boolean_Expression]
6861  [, Ensures  =>  Boolean_Expression]);
6862 @end smallexample
6864 @noindent
6865 The @code{Test_Case} pragma allows defining fine-grain specifications
6866 for use by testing tools.
6867 The compiler checks the validity of the @code{Test_Case} pragma, but its
6868 presence does not lead to any modification of the code generated by the
6869 compiler.
6871 @code{Test_Case} pragmas may only appear immediately following the
6872 (separate) declaration of a subprogram in a package declaration, inside
6873 a package spec unit. Only other pragmas may intervene (that is appear
6874 between the subprogram declaration and a test case).
6876 The compiler checks that boolean expressions given in @code{Requires} and
6877 @code{Ensures} are valid, where the rules for @code{Requires} are the
6878 same as the rule for an expression in @code{Precondition} and the rules
6879 for @code{Ensures} are the same as the rule for an expression in
6880 @code{Postcondition}. In particular, attributes @code{'Old} and
6881 @code{'Result} can only be used within the @code{Ensures}
6882 expression. The following is an example of use within a package spec:
6884 @smallexample @c ada
6885 package Math_Functions is
6886    ...
6887    function Sqrt (Arg : Float) return Float;
6888    pragma Test_Case (Name     => "Test 1",
6889                      Mode     => Nominal,
6890                      Requires => Arg < 10000,
6891                      Ensures  => Sqrt'Result < 10);
6892    ...
6893 end Math_Functions;
6894 @end smallexample
6896 @noindent
6897 The meaning of a test case is that there is at least one context where
6898 @code{Requires} holds such that, if the associated subprogram is executed in
6899 that context, then @code{Ensures} holds when the subprogram returns.
6900 Mode @code{Nominal} indicates that the input context should also satisfy the
6901 precondition of the subprogram, and the output context should also satisfy its
6902 postcondition. More @code{Robustness} indicates that the precondition and
6903 postcondition of the subprogram should be ignored for this test case.
6905 @node Pragma Thread_Local_Storage
6906 @unnumberedsec Pragma Thread_Local_Storage
6907 @findex Thread_Local_Storage
6908 @cindex Task specific storage
6909 @cindex TLS (Thread Local Storage)
6910 @cindex Task_Attributes
6911 Syntax:
6913 @smallexample @c ada
6914 pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME);
6915 @end smallexample
6917 @noindent
6918 This pragma specifies that the specified entity, which must be
6919 a variable declared in a library level package, is to be marked as
6920 "Thread Local Storage" (@code{TLS}). On systems supporting this (which
6921 include Solaris, GNU/Linux and VxWorks 6), this causes each thread
6922 (and hence each Ada task) to see a distinct copy of the variable.
6924 The variable may not have default initialization, and if there is
6925 an explicit initialization, it must be either @code{null} for an
6926 access variable, or a static expression for a scalar variable.
6927 This provides a low level mechanism similar to that provided by
6928 the @code{Ada.Task_Attributes} package, but much more efficient
6929 and is also useful in writing interface code that will interact
6930 with foreign threads.
6932 If this pragma is used on a system where @code{TLS} is not supported,
6933 then an error message will be generated and the program will be rejected.
6935 @node Pragma Time_Slice
6936 @unnumberedsec Pragma Time_Slice
6937 @findex Time_Slice
6938 @noindent
6939 Syntax:
6941 @smallexample @c ada
6942 pragma Time_Slice (static_duration_EXPRESSION);
6943 @end smallexample
6945 @noindent
6946 For implementations of GNAT on operating systems where it is possible
6947 to supply a time slice value, this pragma may be used for this purpose.
6948 It is ignored if it is used in a system that does not allow this control,
6949 or if it appears in other than the main program unit.
6950 @cindex OpenVMS
6951 Note that the effect of this pragma is identical to the effect of the
6952 DEC Ada 83 pragma of the same name when operating under OpenVMS systems.
6954 @node Pragma Title
6955 @unnumberedsec Pragma Title
6956 @findex Title
6957 @noindent
6958 Syntax:
6960 @smallexample @c ada
6961 pragma Title (TITLING_OPTION [, TITLING OPTION]);
6963 TITLING_OPTION ::=
6964   [Title    =>] STRING_LITERAL,
6965 | [Subtitle =>] STRING_LITERAL
6966 @end smallexample
6968 @noindent
6969 Syntax checked but otherwise ignored by GNAT@.  This is a listing control
6970 pragma used in DEC Ada 83 implementations to provide a title and/or
6971 subtitle for the program listing.  The program listing generated by GNAT
6972 does not have titles or subtitles.
6974 Unlike other pragmas, the full flexibility of named notation is allowed
6975 for this pragma, i.e.@: the parameters may be given in any order if named
6976 notation is used, and named and positional notation can be mixed
6977 following the normal rules for procedure calls in Ada.
6979 @node Pragma Type_Invariant
6980 @unnumberedsec Pragma Type_Invariant
6981 @findex Invariant
6982 @findex Type_Invariant pragma
6983 @noindent
6984 Syntax:
6986 @smallexample @c ada
6987 pragma Type_Invariant
6988   ([Entity =>] type_LOCAL_NAME,
6989    [Check  =>] EXPRESSION);
6990 @end smallexample
6992 @noindent
6993 The @code{Type_Invariant} pragma is intended to be an exact
6994 replacement for the language-defined @code{Type_Invariant}
6995 aspect, and shares its restrictions and semantics. It differs
6996 from the language defined @code{Invariant} pragma in that it
6997 does not permit a string parameter, and it is
6998 controlled by the assertion identifier @code{Type_Invariant}
6999 rather than @code{Invariant}.
7001 @node Pragma Type_Invariant_Class
7002 @unnumberedsec Pragma Type_Invariant_Class
7003 @findex Invariant
7004 @findex Type_Invariant_Class pragma
7005 @noindent
7006 Syntax:
7008 @smallexample @c ada
7009 pragma Type_Invariant_Class
7010   ([Entity =>] type_LOCAL_NAME,
7011    [Check  =>] EXPRESSION);
7012 @end smallexample
7014 @noindent
7015 The @code{Type_Invariant_Class} pragma is intended to be an exact
7016 replacement for the language-defined @code{Type_Invariant'Class}
7017 aspect, and shares its restrictions and semantics.
7019 Note: This pragma is called @code{Type_Invariant_Class} rather than
7020 @code{Type_Invariant'Class} because the latter would not be strictly
7021 conforming to the allowed syntax for pragmas. The motivation
7022 for providing pragmas equivalent to the aspects is to allow a program
7023 to be written using the pragmas, and then compiled if necessary
7024 using an Ada compiler that does not recognize the pragmas or
7025 aspects, but is prepared to ignore the pragmas. The assertion
7026 policy that controls this pragma is @code{Type_Invariant'Class},
7027 not @code{Type_Invariant_Class}.
7029 @node Pragma Unchecked_Union
7030 @unnumberedsec Pragma Unchecked_Union
7031 @cindex Unions in C
7032 @findex Unchecked_Union
7033 @noindent
7034 Syntax:
7036 @smallexample @c ada
7037 pragma Unchecked_Union (first_subtype_LOCAL_NAME);
7038 @end smallexample
7040 @noindent
7041 This pragma is used to specify a representation of a record type that is
7042 equivalent to a C union. It was introduced as a GNAT implementation defined
7043 pragma in the GNAT Ada 95 mode. Ada 2005 includes an extended version of this
7044 pragma, making it language defined, and GNAT fully implements this extended
7045 version in all language modes (Ada 83, Ada 95, and Ada 2005). For full
7046 details, consult the Ada 2012 Reference Manual, section B.3.3.
7048 @node Pragma Unimplemented_Unit
7049 @unnumberedsec Pragma Unimplemented_Unit
7050 @findex Unimplemented_Unit
7051 @noindent
7052 Syntax:
7054 @smallexample @c ada
7055 pragma Unimplemented_Unit;
7056 @end smallexample
7058 @noindent
7059 If this pragma occurs in a unit that is processed by the compiler, GNAT
7060 aborts with the message @samp{@var{xxx} not implemented}, where
7061 @var{xxx} is the name of the current compilation unit.  This pragma is
7062 intended to allow the compiler to handle unimplemented library units in
7063 a clean manner.
7065 The abort only happens if code is being generated.  Thus you can use
7066 specs of unimplemented packages in syntax or semantic checking mode.
7068 @node Pragma Universal_Aliasing
7069 @unnumberedsec Pragma Universal_Aliasing
7070 @findex Universal_Aliasing
7071 @noindent
7072 Syntax:
7074 @smallexample @c ada
7075 pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)];
7076 @end smallexample
7078 @noindent
7079 @var{type_LOCAL_NAME} must refer to a type declaration in the current
7080 declarative part.  The effect is to inhibit strict type-based aliasing
7081 optimization for the given type.  In other words, the effect is as though
7082 access types designating this type were subject to pragma No_Strict_Aliasing.
7083 For a detailed description of the strict aliasing optimization, and the
7084 situations in which it must be suppressed, @xref{Optimization and Strict
7085 Aliasing,,, gnat_ugn, @value{EDITION} User's Guide}.
7087 @node Pragma Universal_Data
7088 @unnumberedsec Pragma Universal_Data
7089 @findex Universal_Data
7090 @noindent
7091 Syntax:
7093 @smallexample @c ada
7094 pragma Universal_Data [(library_unit_Name)];
7095 @end smallexample
7097 @noindent
7098 This pragma is supported only for the AAMP target and is ignored for
7099 other targets. The pragma specifies that all library-level objects
7100 (Counter 0 data) associated with the library unit are to be accessed
7101 and updated using universal addressing (24-bit addresses for AAMP5)
7102 rather than the default of 16-bit Data Environment (DENV) addressing.
7103 Use of this pragma will generally result in less efficient code for
7104 references to global data associated with the library unit, but
7105 allows such data to be located anywhere in memory. This pragma is
7106 a library unit pragma, but can also be used as a configuration pragma
7107 (including use in the @file{gnat.adc} file). The functionality
7108 of this pragma is also available by applying the -univ switch on the
7109 compilations of units where universal addressing of the data is desired.
7111 @node Pragma Unmodified
7112 @unnumberedsec Pragma Unmodified
7113 @findex Unmodified
7114 @cindex Warnings, unmodified
7115 @noindent
7116 Syntax:
7118 @smallexample @c ada
7119 pragma Unmodified (LOCAL_NAME @{, LOCAL_NAME@});
7120 @end smallexample
7122 @noindent
7123 This pragma signals that the assignable entities (variables,
7124 @code{out} parameters, @code{in out} parameters) whose names are listed are
7125 deliberately not assigned in the current source unit. This
7126 suppresses warnings about the
7127 entities being referenced but not assigned, and in addition a warning will be
7128 generated if one of these entities is in fact assigned in the
7129 same unit as the pragma (or in the corresponding body, or one
7130 of its subunits).
7132 This is particularly useful for clearly signaling that a particular
7133 parameter is not modified, even though the spec suggests that it might
7136 @node Pragma Unreferenced
7137 @unnumberedsec Pragma Unreferenced
7138 @findex Unreferenced
7139 @cindex Warnings, unreferenced
7140 @noindent
7141 Syntax:
7143 @smallexample @c ada
7144 pragma Unreferenced (LOCAL_NAME @{, LOCAL_NAME@});
7145 pragma Unreferenced (library_unit_NAME @{, library_unit_NAME@});
7146 @end smallexample
7148 @noindent
7149 This pragma signals that the entities whose names are listed are
7150 deliberately not referenced in the current source unit. This
7151 suppresses warnings about the
7152 entities being unreferenced, and in addition a warning will be
7153 generated if one of these entities is in fact subsequently referenced in the
7154 same unit as the pragma (or in the corresponding body, or one
7155 of its subunits).
7157 This is particularly useful for clearly signaling that a particular
7158 parameter is not referenced in some particular subprogram implementation
7159 and that this is deliberate. It can also be useful in the case of
7160 objects declared only for their initialization or finalization side
7161 effects.
7163 If @code{LOCAL_NAME} identifies more than one matching homonym in the
7164 current scope, then the entity most recently declared is the one to which
7165 the pragma applies. Note that in the case of accept formals, the pragma
7166 Unreferenced may appear immediately after the keyword @code{do} which
7167 allows the indication of whether or not accept formals are referenced
7168 or not to be given individually for each accept statement.
7170 The left hand side of an assignment does not count as a reference for the
7171 purpose of this pragma. Thus it is fine to assign to an entity for which
7172 pragma Unreferenced is given.
7174 Note that if a warning is desired for all calls to a given subprogram,
7175 regardless of whether they occur in the same unit as the subprogram
7176 declaration, then this pragma should not be used (calls from another
7177 unit would not be flagged); pragma Obsolescent can be used instead
7178 for this purpose, see @xref{Pragma Obsolescent}.
7180 The second form of pragma @code{Unreferenced} is used within a context
7181 clause. In this case the arguments must be unit names of units previously
7182 mentioned in @code{with} clauses (similar to the usage of pragma
7183 @code{Elaborate_All}. The effect is to suppress warnings about unreferenced
7184 units and unreferenced entities within these units.
7186 @node Pragma Unreferenced_Objects
7187 @unnumberedsec Pragma Unreferenced_Objects
7188 @findex Unreferenced_Objects
7189 @cindex Warnings, unreferenced
7190 @noindent
7191 Syntax:
7193 @smallexample @c ada
7194 pragma Unreferenced_Objects (local_subtype_NAME @{, local_subtype_NAME@});
7195 @end smallexample
7197 @noindent
7198 This pragma signals that for the types or subtypes whose names are
7199 listed, objects which are declared with one of these types or subtypes may
7200 not be referenced, and if no references appear, no warnings are given.
7202 This is particularly useful for objects which are declared solely for their
7203 initialization and finalization effect. Such variables are sometimes referred
7204 to as RAII variables (Resource Acquisition Is Initialization). Using this
7205 pragma on the relevant type (most typically a limited controlled type), the
7206 compiler will automatically suppress unwanted warnings about these variables
7207 not being referenced.
7209 @node Pragma Unreserve_All_Interrupts
7210 @unnumberedsec Pragma Unreserve_All_Interrupts
7211 @findex Unreserve_All_Interrupts
7212 @noindent
7213 Syntax:
7215 @smallexample @c ada
7216 pragma Unreserve_All_Interrupts;
7217 @end smallexample
7219 @noindent
7220 Normally certain interrupts are reserved to the implementation.  Any attempt
7221 to attach an interrupt causes Program_Error to be raised, as described in
7222 RM C.3.2(22).  A typical example is the @code{SIGINT} interrupt used in
7223 many systems for a @kbd{Ctrl-C} interrupt.  Normally this interrupt is
7224 reserved to the implementation, so that @kbd{Ctrl-C} can be used to
7225 interrupt execution.
7227 If the pragma @code{Unreserve_All_Interrupts} appears anywhere in any unit in
7228 a program, then all such interrupts are unreserved.  This allows the
7229 program to handle these interrupts, but disables their standard
7230 functions.  For example, if this pragma is used, then pressing
7231 @kbd{Ctrl-C} will not automatically interrupt execution.  However,
7232 a program can then handle the @code{SIGINT} interrupt as it chooses.
7234 For a full list of the interrupts handled in a specific implementation,
7235 see the source code for the spec of @code{Ada.Interrupts.Names} in
7236 file @file{a-intnam.ads}.  This is a target dependent file that contains the
7237 list of interrupts recognized for a given target.  The documentation in
7238 this file also specifies what interrupts are affected by the use of
7239 the @code{Unreserve_All_Interrupts} pragma.
7241 For a more general facility for controlling what interrupts can be
7242 handled, see pragma @code{Interrupt_State}, which subsumes the functionality
7243 of the @code{Unreserve_All_Interrupts} pragma.
7245 @node Pragma Unsuppress
7246 @unnumberedsec Pragma Unsuppress
7247 @findex Unsuppress
7248 @noindent
7249 Syntax:
7251 @smallexample @c ada
7252 pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);
7253 @end smallexample
7255 @noindent
7256 This pragma undoes the effect of a previous pragma @code{Suppress}.  If
7257 there is no corresponding pragma @code{Suppress} in effect, it has no
7258 effect.  The range of the effect is the same as for pragma
7259 @code{Suppress}.  The meaning of the arguments is identical to that used
7260 in pragma @code{Suppress}.
7262 One important application is to ensure that checks are on in cases where
7263 code depends on the checks for its correct functioning, so that the code
7264 will compile correctly even if the compiler switches are set to suppress
7265 checks.
7267 This pragma is standard in Ada 2005. It is available in all earlier versions
7268 of Ada as an implementation-defined pragma.
7270 Note that in addition to the checks defined in the Ada RM, GNAT recogizes
7271 a number of implementation-defined check names. See description of pragma
7272 @code{Suppress} for full details.
7274 @node Pragma Use_VADS_Size
7275 @unnumberedsec Pragma Use_VADS_Size
7276 @cindex @code{Size}, VADS compatibility
7277 @cindex Rational profile
7278 @findex Use_VADS_Size
7279 @noindent
7280 Syntax:
7282 @smallexample @c ada
7283 pragma Use_VADS_Size;
7284 @end smallexample
7286 @noindent
7287 This is a configuration pragma.  In a unit to which it applies, any use
7288 of the 'Size attribute is automatically interpreted as a use of the
7289 'VADS_Size attribute.  Note that this may result in incorrect semantic
7290 processing of valid Ada 95 or Ada 2005 programs.  This is intended to aid in
7291 the handling of existing code which depends on the interpretation of Size
7292 as implemented in the VADS compiler.  See description of the VADS_Size
7293 attribute for further details.
7295 @node Pragma Validity_Checks
7296 @unnumberedsec Pragma Validity_Checks
7297 @findex Validity_Checks
7298 @noindent
7299 Syntax:
7301 @smallexample @c ada
7302 pragma Validity_Checks (string_LITERAL | ALL_CHECKS | On | Off);
7303 @end smallexample
7305 @noindent
7306 This pragma is used in conjunction with compiler switches to control the
7307 built-in validity checking provided by GNAT@.  The compiler switches, if set
7308 provide an initial setting for the switches, and this pragma may be used
7309 to modify these settings, or the settings may be provided entirely by
7310 the use of the pragma.  This pragma can be used anywhere that a pragma
7311 is legal, including use as a configuration pragma (including use in
7312 the @file{gnat.adc} file).
7314 The form with a string literal specifies which validity options are to be
7315 activated.  The validity checks are first set to include only the default
7316 reference manual settings, and then a string of letters in the string
7317 specifies the exact set of options required.  The form of this string
7318 is exactly as described for the @option{-gnatVx} compiler switch (see the
7319 @value{EDITION} User's Guide for details).  For example the following two
7320 methods can be used to enable validity checking for mode @code{in} and
7321 @code{in out} subprogram parameters:
7323 @itemize @bullet
7324 @item
7325 @smallexample @c ada
7326 pragma Validity_Checks ("im");
7327 @end smallexample
7329 @item
7330 @smallexample
7331 gcc -c -gnatVim @dots{}
7332 @end smallexample
7333 @end itemize
7335 @noindent
7336 The form ALL_CHECKS activates all standard checks (its use is equivalent
7337 to the use of the @code{gnatva} switch.
7339 The forms with @code{Off} and @code{On}
7340 can be used to temporarily disable validity checks
7341 as shown in the following example:
7343 @smallexample @c ada
7344 @iftex
7345 @leftskip=0cm
7346 @end iftex
7347 pragma Validity_Checks ("c"); -- validity checks for copies
7348 pragma Validity_Checks (Off); -- turn off validity checks
7349 A := B;                       -- B will not be validity checked
7350 pragma Validity_Checks (On);  -- turn validity checks back on
7351 A := C;                       -- C will be validity checked
7352 @end smallexample
7354 @node Pragma Volatile
7355 @unnumberedsec Pragma Volatile
7356 @findex Volatile
7357 @noindent
7358 Syntax:
7360 @smallexample @c ada
7361 pragma Volatile (LOCAL_NAME);
7362 @end smallexample
7364 @noindent
7365 This pragma is defined by the Ada Reference Manual, and the GNAT
7366 implementation is fully conformant with this definition.  The reason it
7367 is mentioned in this section is that a pragma of the same name was supplied
7368 in some Ada 83 compilers, including DEC Ada 83.  The Ada 95 / Ada 2005
7369 implementation of pragma Volatile is upwards compatible with the
7370 implementation in DEC Ada 83.
7372 @node Pragma Warnings
7373 @unnumberedsec Pragma Warnings
7374 @findex Warnings
7375 @noindent
7376 Syntax:
7378 @smallexample @c ada
7379 pragma Warnings (On | Off [,REASON]);
7380 pragma Warnings (On | Off, LOCAL_NAME [,REASON]);
7381 pragma Warnings (static_string_EXPRESSION [,REASON]);
7382 pragma Warnings (On | Off, static_string_EXPRESSION [,REASON]);
7384 REASON ::= Reason => static_string_EXPRESSION
7385 @end smallexample
7387 @noindent
7388 Normally warnings are enabled, with the output being controlled by
7389 the command line switch.  Warnings (@code{Off}) turns off generation of
7390 warnings until a Warnings (@code{On}) is encountered or the end of the
7391 current unit.  If generation of warnings is turned off using this
7392 pragma, then some or all of the warning messages are suppressed,
7393 regardless of the setting of the command line switches.
7395 The @code{Reason} parameter may optionally appear as the last argument
7396 in any of the forms of this pragma. It is intended purely for the
7397 purposes of documenting the reason for the @code{Warnings} pragma.
7398 The compiler will check that the argument is a static string but
7399 otherwise ignore this argument. Other tools may provide specialized
7400 processing for this string.
7402 The form with a single argument (or two arguments if Reason present),
7403 where the first argument is @code{ON} or @code{OFF}
7404 may be used as a configuration pragma.
7406 If the @var{LOCAL_NAME} parameter is present, warnings are suppressed for
7407 the specified entity.  This suppression is effective from the point where
7408 it occurs till the end of the extended scope of the variable (similar to
7409 the scope of @code{Suppress}). This form cannot be used as a configuration
7410 pragma.
7412 The form with a single static_string_EXPRESSION argument (and possible
7413 reason) provides more precise
7414 control over which warnings are active. The string is a list of letters
7415 specifying which warnings are to be activated and which deactivated. The
7416 code for these letters is the same as the string used in the command
7417 line switch controlling warnings. For a brief summary, use the gnatmake
7418 command with no arguments, which will generate usage information containing
7419 the list of warnings switches supported. For
7420 full details see @ref{Warning Message Control,,, gnat_ugn, @value{EDITION}
7421 User's Guide}. This form can also be used as a configuration pragma.
7423 @noindent
7424 The warnings controlled by the `-gnatw' switch are generated by the front end
7425 of the compiler. The `GCC' back end can provide additional warnings and they
7426 are controlled by the `-W' switch.
7427 The form with a single static_string_EXPRESSION argument also works for the
7428 latters, but the string must be a single full `-W' switch in this case.
7429 The above reference lists a few examples of these additional warnings.
7431 @noindent
7432 The specified warnings will be in effect until the end of the program
7433 or another pragma Warnings is encountered. The effect of the pragma is
7434 cumulative. Initially the set of warnings is the standard default set
7435 as possibly modified by compiler switches. Then each pragma Warning
7436 modifies this set of warnings as specified. This form of the pragma may
7437 also be used as a configuration pragma.
7439 The fourth form, with an @code{On|Off} parameter and a string, is used to
7440 control individual messages, based on their text. The string argument
7441 is a pattern that is used to match against the text of individual
7442 warning messages (not including the initial "warning: " tag).
7444 The pattern may contain asterisks, which match zero or more characters in
7445 the message. For example, you can use
7446 @code{pragma Warnings (Off, "*bits of*unused")} to suppress the warning
7447 message @code{warning: 960 bits of "a" unused}. No other regular
7448 expression notations are permitted. All characters other than asterisk in
7449 these three specific cases are treated as literal characters in the match.
7450 The match is case insensitive, for example XYZ matches xyz.
7452 The above use of patterns to match the message applies only to warning
7453 messages generated by the front end. This form of the pragma with a
7454 string argument can also be used to control back end warnings controlled
7455 by a "-Wxxx" switch. Such warnings can be identified by the appearance
7456 of a string of the form "[-Wxxx]" in the message which identifies the
7457 "-W" switch that controls the message. By using the text of the
7458 "-W" switch in the pragma, such back end warnings can be turned on and off.
7460 There are two ways to use the pragma in this form. The OFF form can be used as a
7461 configuration pragma. The effect is to suppress all warnings (if any)
7462 that match the pattern string throughout the compilation (or match the
7463 -W switch in the back end case).
7465 The second usage is to suppress a warning locally, and in this case, two
7466 pragmas must appear in sequence:
7468 @smallexample @c ada
7469 pragma Warnings (Off, Pattern);
7470 @dots{} code where given warning is to be suppressed
7471 pragma Warnings (On, Pattern);
7472 @end smallexample
7474 @noindent
7475 In this usage, the pattern string must match in the Off and On pragmas,
7476 and at least one matching warning must be suppressed.
7478 Note: to write a string that will match any warning, use the string
7479 @code{"***"}. It will not work to use a single asterisk or two asterisks
7480 since this looks like an operator name. This form with three asterisks
7481 is similar in effect to specifying @code{pragma Warnings (Off)} except that a
7482 matching @code{pragma Warnings (On, "***")} will be required. This can be
7483 helpful in avoiding forgetting to turn warnings back on.
7485 Note: the debug flag -gnatd.i (@code{/NOWARNINGS_PRAGMAS} in VMS) can be
7486 used to cause the compiler to entirely ignore all WARNINGS pragmas. This can
7487 be useful in checking whether obsolete pragmas in existing programs are hiding
7488 real problems.
7490 Note: pragma Warnings does not affect the processing of style messages. See
7491 separate entry for pragma Style_Checks for control of style messages.
7493 @node Pragma Weak_External
7494 @unnumberedsec Pragma Weak_External
7495 @findex Weak_External
7496 @noindent
7497 Syntax:
7499 @smallexample @c ada
7500 pragma Weak_External ([Entity =>] LOCAL_NAME);
7501 @end smallexample
7503 @noindent
7504 @var{LOCAL_NAME} must refer to an object that is declared at the library
7505 level. This pragma specifies that the given entity should be marked as a
7506 weak symbol for the linker. It is equivalent to @code{__attribute__((weak))}
7507 in GNU C and causes @var{LOCAL_NAME} to be emitted as a weak symbol instead
7508 of a regular symbol, that is to say a symbol that does not have to be
7509 resolved by the linker if used in conjunction with a pragma Import.
7511 When a weak symbol is not resolved by the linker, its address is set to
7512 zero. This is useful in writing interfaces to external modules that may
7513 or may not be linked in the final executable, for example depending on
7514 configuration settings.
7516 If a program references at run time an entity to which this pragma has been
7517 applied, and the corresponding symbol was not resolved at link time, then
7518 the execution of the program is erroneous. It is not erroneous to take the
7519 Address of such an entity, for example to guard potential references,
7520 as shown in the example below.
7522 Some file formats do not support weak symbols so not all target machines
7523 support this pragma.
7525 @smallexample @c ada
7526 --  Example of the use of pragma Weak_External
7528 package External_Module is
7529   key : Integer;
7530   pragma Import (C, key);
7531   pragma Weak_External (key);
7532   function Present return boolean;
7533 end External_Module;
7535 with System; use System;
7536 package body External_Module is
7537   function Present return boolean is
7538   begin
7539     return key'Address /= System.Null_Address;
7540   end Present;
7541 end External_Module;
7542 @end smallexample
7544 @node Pragma Wide_Character_Encoding
7545 @unnumberedsec Pragma Wide_Character_Encoding
7546 @findex Wide_Character_Encoding
7547 @noindent
7548 Syntax:
7550 @smallexample @c ada
7551 pragma Wide_Character_Encoding (IDENTIFIER | CHARACTER_LITERAL);
7552 @end smallexample
7554 @noindent
7555 This pragma specifies the wide character encoding to be used in program
7556 source text appearing subsequently. It is a configuration pragma, but may
7557 also be used at any point that a pragma is allowed, and it is permissible
7558 to have more than one such pragma in a file, allowing multiple encodings
7559 to appear within the same file.
7561 The argument can be an identifier or a character literal. In the identifier
7562 case, it is one of @code{HEX}, @code{UPPER}, @code{SHIFT_JIS},
7563 @code{EUC}, @code{UTF8}, or @code{BRACKETS}. In the character literal
7564 case it is correspondingly one of the characters @samp{h}, @samp{u},
7565 @samp{s}, @samp{e}, @samp{8}, or @samp{b}.
7567 Note that when the pragma is used within a file, it affects only the
7568 encoding within that file, and does not affect withed units, specs,
7569 or subunits.
7571 @node Implementation Defined Aspects
7572 @chapter Implementation Defined Aspects
7573 Ada defines (throughout the Ada 2012 reference manual, summarized
7574 in annex K) a set of aspects that can be specified for certain entities.
7575 These language defined aspects are implemented in GNAT in Ada 2012 mode
7576 and work as described in the Ada 2012 Reference Manual.
7578 In addition, Ada 2012 allows implementations to define additional aspects
7579 whose meaning is defined by the implementation.  GNAT provides
7580 a number of these implementation-dependent aspects which can be used
7581 to extend and enhance the functionality of the compiler.  This section of
7582 the GNAT reference manual describes these additional attributes.
7584 Note that any program using these aspects may not be portable to
7585 other compilers (although GNAT implements this set of aspects on all
7586 platforms).  Therefore if portability to other compilers is an important
7587 consideration, you should minimize the use of these aspects.
7589 Note that for many of these aspects, the effect is essentially similar
7590 to the use of a pragma or attribute specification with the same name
7591 applied to the entity. For example, if we write:
7593 @smallexample @c ada
7594 type R is range 1 .. 100
7595   with Value_Size => 10;
7596 @end smallexample
7598 @noindent
7599 then the effect is the same as:
7601 @smallexample @c ada
7602 type R is range 1 .. 100;
7603 for R'Value_Size use 10;
7604 @end smallexample
7606 @noindent
7607 and if we write:
7609 @smallexample @c ada
7610 type R is new Integer
7611   with Shared => True;
7612 @end smallexample
7614 @noindent
7615 then the effect is the same as:
7617 @smallexample @c ada
7618 type R is new Integer;
7619 pragma Shared (R);
7620 @end smallexample
7622 @noindent
7623 In the documentation sections that follow, such cases are simply marked
7624 as being equivalent to the corresponding pragma or attribute definition
7625 clause.
7627 @menu
7628 * Aspect Abstract_State::
7629 * Aspect Ada_2005::
7630 * Aspect Ada_2012::
7631 * Aspect Compiler_Unit::
7632 * Aspect Contract_Cases::
7633 * Aspect Depends::
7634 * Aspect Dimension::
7635 * Aspect Dimension_System::
7636 * Aspect Favor_Top_Level::
7637 * Aspect Global::
7638 * Aspect Initial_Condition::
7639 * Aspect Initializes::
7640 * Aspect Inline_Always::
7641 * Aspect Invariant::
7642 * Aspect Linker_Section::
7643 * Aspect Lock_Free::
7644 * Aspect Object_Size::
7645 * Aspect Persistent_BSS::
7646 * Aspect Predicate::
7647 * Aspect Preelaborate_05::
7648 * Aspect Pure_05::
7649 * Aspect Pure_12::
7650 * Aspect Pure_Function::
7651 * Aspect Refined_State::
7652 * Aspect Remote_Access_Type::
7653 * Aspect Scalar_Storage_Order::
7654 * Aspect Shared::
7655 * Aspect Simple_Storage_Pool::
7656 * Aspect Simple_Storage_Pool_Type::
7657 * Aspect SPARK_Mode::
7658 * Aspect Suppress_Debug_Info::
7659 * Aspect Test_Case::
7660 * Aspect Universal_Aliasing::
7661 * Aspect Universal_Data::
7662 * Aspect Unmodified::
7663 * Aspect Unreferenced::
7664 * Aspect Unreferenced_Objects::
7665 * Aspect Value_Size::
7666 * Aspect Warnings::
7667 @end menu
7669 @node Aspect Abstract_State
7670 @unnumberedsec Aspect Abstract_State
7671 @findex Abstract_State
7672 @noindent
7673 This aspect is equivalent to pragma @code{Abstract_State}.
7675 @node Aspect Ada_2005
7676 @unnumberedsec Aspect Ada_2005
7677 @findex Ada_2005
7678 @noindent
7679 This aspect is equivalent to the one argument form of pragma @code{Ada_2005}.
7681 @node Aspect Ada_2012
7682 @unnumberedsec Aspect Ada_2012
7683 @findex Ada_2012
7684 @noindent
7685 This aspect is equivalent to the one argument form of pragma @code{Ada_2012}.
7687 @node Aspect Compiler_Unit
7688 @unnumberedsec Aspect Compiler_Unit
7689 @findex Compiler_Unit
7690 @noindent
7691 This aspect is equivalent to pragma @code{Compiler_Unit}.
7693 @node Aspect Contract_Cases
7694 @unnumberedsec Aspect Contract_Cases
7695 @findex Contract_Cases
7696 @noindent
7697 This aspect is equivalent to pragma @code{Contract_Cases}, the sequence
7698 of clauses being enclosed in parentheses so that syntactically it is an
7699 aggregate.
7701 @node Aspect Depends
7702 @unnumberedsec Aspect Depends
7703 @findex Depends
7704 @noindent
7705 This aspect is equivalent to pragma @code{Depends}.
7707 * Dimension::
7709 @node Aspect Dimension
7710 @unnumberedsec Aspect Dimension
7711 @findex Dimension
7712 @noindent
7713 The @code{Dimension} aspect is used to specify the dimensions of a given
7714 subtype of a dimensioned numeric type. The aspect also specifies a symbol
7715 used when doing formatted output of dimensioned quantities. The syntax is:
7717 @smallexample @c ada
7718 with Dimension =>
7719   ([Symbol =>] SYMBOL, DIMENSION_VALUE @{, DIMENSION_Value@})
7721 SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL
7723 DIMENSION_VALUE ::=
7724   RATIONAL
7725 | others               => RATIONAL
7726 | DISCRETE_CHOICE_LIST => RATIONAL
7728 RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL]
7729 @end smallexample
7731 @noindent
7732 This aspect can only be applied to a subtype whose parent type has
7733 a @code{Dimension_Systen} aspect. The aspect must specify values for
7734 all dimensions of the system. The rational values are the powers of the
7735 corresponding dimensions that are used by the compiler to verify that
7736 physical (numeric) computations are dimensionally consistent. For example,
7737 the computation of a force must result in dimensions (L => 1, M => 1, T => -2).
7738 For further examples of the usage
7739 of this aspect, see package @code{System.Dim.Mks}.
7740 Note that when the dimensioned type is an integer type, then any
7741 dimension value must be an integer literal.
7743 @node Aspect Dimension_System
7744 @unnumberedsec Aspect Dimension_System
7745 @findex Dimension_System
7746 @noindent
7747 The @code{Dimension_System} aspect is used to define a system of
7748 dimensions that will be used in subsequent subtype declarations with
7749 @code{Dimension} aspects that reference this system. The syntax is:
7751 @smallexample @c ada
7752 with Dimension_System => (DIMENSION @{, DIMENSION@});
7754 DIMENSION ::= ([Unit_Name   =>] IDENTIFIER,
7755                [Unit_Symbol =>] SYMBOL,
7756                [Dim_Symbol  =>] SYMBOL)
7758 SYMBOL ::= CHARACTER_LITERAL | STRING_LITERAL
7759 @end smallexample
7761 @noindent
7762 This aspect is applied to a type, which must be a numeric derived type
7763 (typically a floating-point type), that
7764 will represent values within the dimension system. Each @code{DIMENSION}
7765 corresponds to one particular dimension. A maximum of 7 dimensions may
7766 be specified. @code{Unit_Name} is the name of the dimension (for example
7767 @code{Meter}). @code{Unit_Symbol} is the shorthand used for quantities
7768 of this dimension (for example 'm' for Meter). @code{Dim_Symbol} gives
7769 the identification within the dimension system (typically this is a
7770 single letter, e.g. 'L' standing for length for unit name Meter). The
7771 Unit_Smbol is used in formatted output of dimensioned quantities. The
7772 Dim_Symbol is used in error messages when numeric operations have
7773 inconsistent dimensions.
7775 GNAT provides the standard definition of the International MKS system in
7776 the run-time package @code{System.Dim.Mks}. You can easily define
7777 similar packages for cgs units or British units, and define conversion factors
7778 between values in different systems. The MKS system is characterized by the
7779 following aspect:
7781 @smallexample @c ada
7782    type Mks_Type is new Long_Long_Float
7783      with
7784       Dimension_System => (
7785         (Unit_Name => Meter,    Unit_Symbol => 'm',   Dim_Symbol => 'L'),
7786         (Unit_Name => Kilogram, Unit_Symbol => "kg",  Dim_Symbol => 'M'),
7787         (Unit_Name => Second,   Unit_Symbol => 's',   Dim_Symbol => 'T'),
7788         (Unit_Name => Ampere,   Unit_Symbol => 'A',   Dim_Symbol => 'I'),
7789         (Unit_Name => Kelvin,   Unit_Symbol => 'K',   Dim_Symbol => "Theta"),
7790         (Unit_Name => Mole,     Unit_Symbol => "mol", Dim_Symbol => 'N'),
7791         (Unit_Name => Candela,  Unit_Symbol => "cd",  Dim_Symbol => 'J'));
7792 @end smallexample
7794 @noindent
7795 See section "Performing Dimensionality Analysis in GNAT" in the GNAT Users
7796 Guide for detailed examples of use of the dimension system.
7798 @node Aspect Favor_Top_Level
7799 @unnumberedsec Aspect Favor_Top_Level
7800 @findex Favor_Top_Level
7801 @noindent
7802 This aspect is equivalent to pragma @code{Favor_Top_Level}.
7804 @node Aspect Global
7805 @unnumberedsec Aspect Global
7806 @findex Global
7807 @noindent
7808 This aspect is equivalent to pragma @code{Global}.
7810 @node Aspect Initial_Condition
7811 @unnumberedsec Aspect Initial_Condition
7812 @findex Initial_Condition
7813 @noindent
7814 This aspect is equivalent to pragma @code{Initial_Condition}.
7816 @node Aspect Initializes
7817 @unnumberedsec Aspect Initializes
7818 @findex Initializes
7819 @noindent
7820 This aspect is equivalent to pragma @code{Initializes}.
7822 @node Aspect Inline_Always
7823 @unnumberedsec Aspect Inline_Always
7824 @findex Inline_Always
7825 @noindent
7826 This aspect is equivalent to pragma @code{Inline_Always}.
7828 @node Aspect Invariant
7829 @unnumberedsec Aspect Invariant
7830 @findex Invariant
7831 @noindent
7832 This aspect is equivalent to pragma @code{Invariant}. It is a
7833 synonym for the language defined aspect @code{Type_Invariant} except
7834 that it is separately controllable using pragma @code{Assertion_Policy}.
7836 @node Aspect Linker_Section
7837 @unnumberedsec Aspect Linker_Section
7838 @findex Linker_Section
7839 @noindent
7840 This aspect is equivalent to an @code{Linker_Section} pragma.
7842 @node Aspect Lock_Free
7843 @unnumberedsec Aspect Lock_Free
7844 @findex Lock_Free
7845 @noindent
7846 This aspect is equivalent to pragma @code{Lock_Free}.
7848 @node Aspect Object_Size
7849 @unnumberedsec Aspect Object_Size
7850 @findex Object_Size
7851 @noindent
7852 This aspect is equivalent to an @code{Object_Size} attribute definition
7853 clause.
7855 @node Aspect Persistent_BSS
7856 @unnumberedsec Aspect Persistent_BSS
7857 @findex Persistent_BSS
7858 @noindent
7859 This aspect is equivalent to pragma @code{Persistent_BSS}.
7861 @node Aspect Predicate
7862 @unnumberedsec Aspect Predicate
7863 @findex Predicate
7864 @noindent
7865 This aspect is equivalent to pragma @code{Predicate}. It is thus
7866 similar to the language defined aspects @code{Dynamic_Predicate}
7867 and @code{Static_Predicate} except that whether the resulting
7868 predicate is static or dynamic is controlled by the form of the
7869 expression. It is also separately controllable using pragma
7870 @code{Assertion_Policy}.
7872 @node Aspect Preelaborate_05
7873 @unnumberedsec Aspect Preelaborate_05
7874 @findex Preelaborate_05
7875 @noindent
7876 This aspect is equivalent to pragma @code{Preelaborate_05}.
7878 @node Aspect Pure_05
7879 @unnumberedsec Aspect Pure_05
7880 @findex Pure_05
7881 @noindent
7882 This aspect is equivalent to pragma @code{Pure_05}.
7884 @node Aspect Pure_12
7885 @unnumberedsec Aspect Pure_12
7886 @findex Pure_12
7887 @noindent
7888 This aspect is equivalent to pragma @code{Pure_12}.
7890 @node Aspect Pure_Function
7891 @unnumberedsec Aspect Pure_Function
7892 @findex Pure_Function
7893 @noindent
7894 This aspect is equivalent to pragma @code{Pure_Function}.
7896 @node Aspect Refined_State
7897 @unnumberedsec Aspect Refined_State
7898 @findex Refined_State
7899 @noindent
7900 This aspect is equivalent to pragma @code{Refined_State}.
7902 @node Aspect Remote_Access_Type
7903 @unnumberedsec Aspect Remote_Access_Type
7904 @findex Remote_Access_Type
7905 @noindent
7906 This aspect is equivalent to pragma @code{Remote_Access_Type}.
7908 @node Aspect Scalar_Storage_Order
7909 @unnumberedsec Aspect Scalar_Storage_Order
7910 @findex Scalar_Storage_Order
7911 @noindent
7912 This aspect is equivalent to a @code{Scalar_Storage_Order}
7913 attribute definition clause.
7915 @node Aspect Shared
7916 @unnumberedsec Aspect Shared
7917 @findex Shared
7918 @noindent
7919 This aspect is equivalent to pragma @code{Shared}, and is thus a synonym
7920 for aspect @code{Atomic}.
7922 @node Aspect Simple_Storage_Pool
7923 @unnumberedsec Aspect Simple_Storage_Pool
7924 @findex Simple_Storage_Pool
7925 @noindent
7926 This aspect is equivalent to a @code{Simple_Storage_Pool}
7927 attribute definition clause.
7929 @node Aspect Simple_Storage_Pool_Type
7930 @unnumberedsec Aspect Simple_Storage_Pool_Type
7931 @findex Simple_Storage_Pool_Type
7932 @noindent
7933 This aspect is equivalent to pragma @code{Simple_Storage_Pool_Type}.
7935 @node Aspect SPARK_Mode
7936 @unnumberedsec Aspect SPARK_Mode
7937 @findex SPARK_Mode
7938 @noindent
7939 This aspect is equivalent to pragma @code{SPARK_Mode} and
7940 may be specified for either or both of the specification and body
7941 of a subprogram or package.
7943 @node Aspect Suppress_Debug_Info
7944 @unnumberedsec Aspect Suppress_Debug_Info
7945 @findex Suppress_Debug_Info
7946 @noindent
7947 This aspect is equivalent to pragma @code{Suppress_Debug_Info}.
7949 @node Aspect Test_Case
7950 @unnumberedsec Aspect Test_Case
7951 @findex Test_Case
7952 @noindent
7953 This aspect is equivalent to pragma @code{Test_Case}.
7955 @node Aspect Universal_Aliasing
7956 @unnumberedsec Aspect Universal_Aliasing
7957 @findex Universal_Aliasing
7958 @noindent
7959 This aspect is equivalent to pragma @code{Universal_Aliasing}.
7961 @node Aspect Universal_Data
7962 @unnumberedsec Aspect Universal_Data
7963 @findex Universal_Data
7964 @noindent
7965 This aspect is equivalent to pragma @code{Universal_Data}.
7967 @node Aspect Unmodified
7968 @unnumberedsec Aspect Unmodified
7969 @findex Unmodified
7970 @noindent
7971 This aspect is equivalent to pragma @code{Unmodified}.
7973 @node Aspect Unreferenced
7974 @unnumberedsec Aspect Unreferenced
7975 @findex Unreferenced
7976 @noindent
7977 This aspect is equivalent to pragma @code{Unreferenced}.
7979 @node Aspect Unreferenced_Objects
7980 @unnumberedsec Aspect Unreferenced_Objects
7981 @findex Unreferenced_Objects
7982 @noindent
7983 This aspect is equivalent to pragma @code{Unreferenced_Objects}.
7985 @node Aspect Value_Size
7986 @unnumberedsec Aspect Value_Size
7987 @findex Value_Size
7988 @noindent
7989 This aspect is equivalent to a @code{Value_Size}
7990 attribute definition clause.
7992 @node Aspect Warnings
7993 @unnumberedsec Aspect Warnings
7994 @findex Warnings
7995 @noindent
7996 This aspect is equivalent to the two argument form of pragma @code{Warnings},
7997 where the first argument is @code{ON} or @code{OFF} and the second argument
7998 is the entity.
8000 @node Implementation Defined Attributes
8001 @chapter Implementation Defined Attributes
8002 Ada defines (throughout the Ada reference manual,
8003 summarized in Annex K),
8004 a set of attributes that provide useful additional functionality in all
8005 areas of the language.  These language defined attributes are implemented
8006 in GNAT and work as described in the Ada Reference Manual.
8008 In addition, Ada allows implementations to define additional
8009 attributes whose meaning is defined by the implementation.  GNAT provides
8010 a number of these implementation-dependent attributes which can be used
8011 to extend and enhance the functionality of the compiler.  This section of
8012 the GNAT reference manual describes these additional attributes.
8014 Note that any program using these attributes may not be portable to
8015 other compilers (although GNAT implements this set of attributes on all
8016 platforms).  Therefore if portability to other compilers is an important
8017 consideration, you should minimize the use of these attributes.
8019 @menu
8020 * Attribute Abort_Signal::
8021 * Attribute Address_Size::
8022 * Attribute Asm_Input::
8023 * Attribute Asm_Output::
8024 * Attribute AST_Entry::
8025 * Attribute Bit::
8026 * Attribute Bit_Position::
8027 * Attribute Compiler_Version::
8028 * Attribute Code_Address::
8029 * Attribute Default_Bit_Order::
8030 * Attribute Descriptor_Size::
8031 * Attribute Elaborated::
8032 * Attribute Elab_Body::
8033 * Attribute Elab_Spec::
8034 * Attribute Elab_Subp_Body::
8035 * Attribute Emax::
8036 * Attribute Enabled::
8037 * Attribute Enum_Rep::
8038 * Attribute Enum_Val::
8039 * Attribute Epsilon::
8040 * Attribute Fixed_Value::
8041 * Attribute Has_Access_Values::
8042 * Attribute Has_Discriminants::
8043 * Attribute Img::
8044 * Attribute Integer_Value::
8045 * Attribute Invalid_Value::
8046 * Attribute Large::
8047 * Attribute Library_Level::
8048 * Attribute Loop_Entry::
8049 * Attribute Machine_Size::
8050 * Attribute Mantissa::
8051 * Attribute Max_Interrupt_Priority::
8052 * Attribute Max_Priority::
8053 * Attribute Maximum_Alignment::
8054 * Attribute Mechanism_Code::
8055 * Attribute Null_Parameter::
8056 * Attribute Object_Size::
8057 * Attribute Passed_By_Reference::
8058 * Attribute Pool_Address::
8059 * Attribute Range_Length::
8060 * Attribute Ref::
8061 * Attribute Restriction_Set::
8062 * Attribute Result::
8063 * Attribute Safe_Emax::
8064 * Attribute Safe_Large::
8065 * Attribute Scalar_Storage_Order::
8066 * Attribute Simple_Storage_Pool::
8067 * Attribute Small::
8068 * Attribute Storage_Unit::
8069 * Attribute Stub_Type::
8070 * Attribute System_Allocator_Alignment::
8071 * Attribute Target_Name::
8072 * Attribute Tick::
8073 * Attribute To_Address::
8074 * Attribute Type_Class::
8075 * Attribute UET_Address::
8076 * Attribute Unconstrained_Array::
8077 * Attribute Universal_Literal_String::
8078 * Attribute Unrestricted_Access::
8079 * Attribute Update::
8080 * Attribute Valid_Scalars::
8081 * Attribute VADS_Size::
8082 * Attribute Value_Size::
8083 * Attribute Wchar_T_Size::
8084 * Attribute Word_Size::
8085 @end menu
8087 @node Attribute Abort_Signal
8088 @unnumberedsec Attribute Abort_Signal
8089 @findex Abort_Signal
8090 @noindent
8091 @code{Standard'Abort_Signal} (@code{Standard} is the only allowed
8092 prefix) provides the entity for the special exception used to signal
8093 task abort or asynchronous transfer of control.  Normally this attribute
8094 should only be used in the tasking runtime (it is highly peculiar, and
8095 completely outside the normal semantics of Ada, for a user program to
8096 intercept the abort exception).
8098 @node Attribute Address_Size
8099 @unnumberedsec Attribute Address_Size
8100 @cindex Size of @code{Address}
8101 @findex Address_Size
8102 @noindent
8103 @code{Standard'Address_Size} (@code{Standard} is the only allowed
8104 prefix) is a static constant giving the number of bits in an
8105 @code{Address}. It is the same value as System.Address'Size,
8106 but has the advantage of being static, while a direct
8107 reference to System.Address'Size is non-static because Address
8108 is a private type.
8110 @node Attribute Asm_Input
8111 @unnumberedsec Attribute Asm_Input
8112 @findex Asm_Input
8113 @noindent
8114 The @code{Asm_Input} attribute denotes a function that takes two
8115 parameters.  The first is a string, the second is an expression of the
8116 type designated by the prefix.  The first (string) argument is required
8117 to be a static expression, and is the constraint for the parameter,
8118 (e.g.@: what kind of register is required).  The second argument is the
8119 value to be used as the input argument.  The possible values for the
8120 constant are the same as those used in the RTL, and are dependent on
8121 the configuration file used to built the GCC back end.
8122 @ref{Machine Code Insertions}
8124 @node Attribute Asm_Output
8125 @unnumberedsec Attribute Asm_Output
8126 @findex Asm_Output
8127 @noindent
8128 The @code{Asm_Output} attribute denotes a function that takes two
8129 parameters.  The first is a string, the second is the name of a variable
8130 of the type designated by the attribute prefix.  The first (string)
8131 argument is required to be a static expression and designates the
8132 constraint for the parameter (e.g.@: what kind of register is
8133 required).  The second argument is the variable to be updated with the
8134 result.  The possible values for constraint are the same as those used in
8135 the RTL, and are dependent on the configuration file used to build the
8136 GCC back end.  If there are no output operands, then this argument may
8137 either be omitted, or explicitly given as @code{No_Output_Operands}.
8138 @ref{Machine Code Insertions}
8140 @node Attribute AST_Entry
8141 @unnumberedsec Attribute AST_Entry
8142 @cindex OpenVMS
8143 @findex AST_Entry
8144 @noindent
8145 This attribute is implemented only in OpenVMS versions of GNAT@.  Applied to
8146 the name of an entry, it yields a value of the predefined type AST_Handler
8147 (declared in the predefined package System, as extended by the use of
8148 pragma @code{Extend_System (Aux_DEC)}).  This value enables the given entry to
8149 be called when an AST occurs.  For further details, refer to the @cite{DEC Ada
8150 Language Reference Manual}, section 9.12a.
8152 @node Attribute Bit
8153 @unnumberedsec Attribute Bit
8154 @findex Bit
8155 @code{@var{obj}'Bit}, where @var{obj} is any object, yields the bit
8156 offset within the storage unit (byte) that contains the first bit of
8157 storage allocated for the object.  The value of this attribute is of the
8158 type @code{Universal_Integer}, and is always a non-negative number not
8159 exceeding the value of @code{System.Storage_Unit}.
8161 For an object that is a variable or a constant allocated in a register,
8162 the value is zero.  (The use of this attribute does not force the
8163 allocation of a variable to memory).
8165 For an object that is a formal parameter, this attribute applies
8166 to either the matching actual parameter or to a copy of the
8167 matching actual parameter.
8169 For an access object the value is zero.  Note that
8170 @code{@var{obj}.all'Bit} is subject to an @code{Access_Check} for the
8171 designated object.  Similarly for a record component
8172 @code{@var{X}.@var{C}'Bit} is subject to a discriminant check and
8173 @code{@var{X}(@var{I}).Bit} and @code{@var{X}(@var{I1}..@var{I2})'Bit}
8174 are subject to index checks.
8176 This attribute is designed to be compatible with the DEC Ada 83 definition
8177 and implementation of the @code{Bit} attribute.
8179 @node Attribute Bit_Position
8180 @unnumberedsec Attribute Bit_Position
8181 @findex Bit_Position
8182 @noindent
8183 @code{@var{R.C}'Bit_Position}, where @var{R} is a record object and C is one
8184 of the fields of the record type, yields the bit
8185 offset within the record contains the first bit of
8186 storage allocated for the object.  The value of this attribute is of the
8187 type @code{Universal_Integer}.  The value depends only on the field
8188 @var{C} and is independent of the alignment of
8189 the containing record @var{R}.
8191 @node Attribute Compiler_Version
8192 @unnumberedsec Attribute Compiler_Version
8193 @findex Compiler_Version
8194 @noindent
8195 @code{Standard'Compiler_Version} (@code{Standard} is the only allowed
8196 prefix) yields a static string identifying the version of the compiler
8197 being used to compile the unit containing the attribute reference. A
8198 typical result would be something like "@value{EDITION} @i{version} (20090221)".
8200 @node Attribute Code_Address
8201 @unnumberedsec Attribute Code_Address
8202 @findex Code_Address
8203 @cindex Subprogram address
8204 @cindex Address of subprogram code
8205 @noindent
8206 The @code{'Address}
8207 attribute may be applied to subprograms in Ada 95 and Ada 2005, but the
8208 intended effect seems to be to provide
8209 an address value which can be used to call the subprogram by means of
8210 an address clause as in the following example:
8212 @smallexample @c ada
8213 procedure K is @dots{}
8215 procedure L;
8216 for L'Address use K'Address;
8217 pragma Import (Ada, L);
8218 @end smallexample
8220 @noindent
8221 A call to @code{L} is then expected to result in a call to @code{K}@.
8222 In Ada 83, where there were no access-to-subprogram values, this was
8223 a common work-around for getting the effect of an indirect call.
8224 GNAT implements the above use of @code{Address} and the technique
8225 illustrated by the example code works correctly.
8227 However, for some purposes, it is useful to have the address of the start
8228 of the generated code for the subprogram.  On some architectures, this is
8229 not necessarily the same as the @code{Address} value described above.
8230 For example, the @code{Address} value may reference a subprogram
8231 descriptor rather than the subprogram itself.
8233 The @code{'Code_Address} attribute, which can only be applied to
8234 subprogram entities, always returns the address of the start of the
8235 generated code of the specified subprogram, which may or may not be
8236 the same value as is returned by the corresponding @code{'Address}
8237 attribute.
8239 @node Attribute Default_Bit_Order
8240 @unnumberedsec Attribute Default_Bit_Order
8241 @cindex Big endian
8242 @cindex Little endian
8243 @findex Default_Bit_Order
8244 @noindent
8245 @code{Standard'Default_Bit_Order} (@code{Standard} is the only
8246 permissible prefix), provides the value @code{System.Default_Bit_Order}
8247 as a @code{Pos} value (0 for @code{High_Order_First}, 1 for
8248 @code{Low_Order_First}).  This is used to construct the definition of
8249 @code{Default_Bit_Order} in package @code{System}.
8251 @node Attribute Descriptor_Size
8252 @unnumberedsec Attribute Descriptor_Size
8253 @cindex Descriptor
8254 @cindex Dope vector
8255 @findex Descriptor_Size
8256 @noindent
8257 Non-static attribute @code{Descriptor_Size} returns the size in bits of the
8258 descriptor allocated for a type.  The result is non-zero only for unconstrained
8259 array types and the returned value is of type universal integer.  In GNAT, an
8260 array descriptor contains bounds information and is located immediately before
8261 the first element of the array.
8263 @smallexample @c ada
8264 type Unconstr_Array is array (Positive range <>) of Boolean;
8265 Put_Line ("Descriptor size = " & Unconstr_Array'Descriptor_Size'Img);
8266 @end smallexample
8268 @noindent
8269 The attribute takes into account any additional padding due to type alignment.
8270 In the example above, the descriptor contains two values of type
8271 @code{Positive} representing the low and high bound.  Since @code{Positive} has
8272 a size of 31 bits and an alignment of 4, the descriptor size is @code{2 *
8273 Positive'Size + 2} or 64 bits.
8275 @node Attribute Elaborated
8276 @unnumberedsec Attribute Elaborated
8277 @findex Elaborated
8278 @noindent
8279 The prefix of the @code{'Elaborated} attribute must be a unit name.  The
8280 value is a Boolean which indicates whether or not the given unit has been
8281 elaborated.  This attribute is primarily intended for internal use by the
8282 generated code for dynamic elaboration checking, but it can also be used
8283 in user programs.  The value will always be True once elaboration of all
8284 units has been completed.  An exception is for units which need no
8285 elaboration, the value is always False for such units.
8287 @node Attribute Elab_Body
8288 @unnumberedsec Attribute Elab_Body
8289 @findex Elab_Body
8290 @noindent
8291 This attribute can only be applied to a program unit name.  It returns
8292 the entity for the corresponding elaboration procedure for elaborating
8293 the body of the referenced unit.  This is used in the main generated
8294 elaboration procedure by the binder and is not normally used in any
8295 other context.  However, there may be specialized situations in which it
8296 is useful to be able to call this elaboration procedure from Ada code,
8297 e.g.@: if it is necessary to do selective re-elaboration to fix some
8298 error.
8300 @node Attribute Elab_Spec
8301 @unnumberedsec Attribute Elab_Spec
8302 @findex Elab_Spec
8303 @noindent
8304 This attribute can only be applied to a program unit name.  It returns
8305 the entity for the corresponding elaboration procedure for elaborating
8306 the spec of the referenced unit.  This is used in the main
8307 generated elaboration procedure by the binder and is not normally used
8308 in any other context.  However, there may be specialized situations in
8309 which it is useful to be able to call this elaboration procedure from
8310 Ada code, e.g.@: if it is necessary to do selective re-elaboration to fix
8311 some error.
8313 @node Attribute Elab_Subp_Body
8314 @unnumberedsec Attribute Elab_Subp_Body
8315 @findex Elab_Subp_Body
8316 @noindent
8317 This attribute can only be applied to a library level subprogram
8318 name and is only allowed in CodePeer mode. It returns the entity
8319 for the corresponding elaboration procedure for elaborating the body
8320 of the referenced subprogram unit. This is used in the main generated
8321 elaboration procedure by the binder in CodePeer mode only and is unrecognized
8322 otherwise.
8324 @node Attribute Emax
8325 @unnumberedsec Attribute Emax
8326 @cindex Ada 83 attributes
8327 @findex Emax
8328 @noindent
8329 The @code{Emax} attribute is provided for compatibility with Ada 83.  See
8330 the Ada 83 reference manual for an exact description of the semantics of
8331 this attribute.
8333 @node Attribute Enabled
8334 @unnumberedsec Attribute Enabled
8335 @findex Enabled
8336 @noindent
8337 The @code{Enabled} attribute allows an application program to check at compile
8338 time to see if the designated check is currently enabled. The prefix is a
8339 simple identifier, referencing any predefined check name (other than
8340 @code{All_Checks}) or a check name introduced by pragma Check_Name. If
8341 no argument is given for the attribute, the check is for the general state
8342 of the check, if an argument is given, then it is an entity name, and the
8343 check indicates whether an @code{Suppress} or @code{Unsuppress} has been
8344 given naming the entity (if not, then the argument is ignored).
8346 Note that instantiations inherit the check status at the point of the
8347 instantiation, so a useful idiom is to have a library package that
8348 introduces a check name with @code{pragma Check_Name}, and then contains
8349 generic packages or subprograms which use the @code{Enabled} attribute
8350 to see if the check is enabled. A user of this package can then issue
8351 a @code{pragma Suppress} or @code{pragma Unsuppress} before instantiating
8352 the package or subprogram, controlling whether the check will be present.
8354 @node Attribute Enum_Rep
8355 @unnumberedsec Attribute Enum_Rep
8356 @cindex Representation of enums
8357 @findex Enum_Rep
8358 @noindent
8359 For every enumeration subtype @var{S}, @code{@var{S}'Enum_Rep} denotes a
8360 function with the following spec:
8362 @smallexample @c ada
8363 function @var{S}'Enum_Rep (Arg : @var{S}'Base)
8364   return @i{Universal_Integer};
8365 @end smallexample
8367 @noindent
8368 It is also allowable to apply @code{Enum_Rep} directly to an object of an
8369 enumeration type or to a non-overloaded enumeration
8370 literal.  In this case @code{@var{S}'Enum_Rep} is equivalent to
8371 @code{@var{typ}'Enum_Rep(@var{S})} where @var{typ} is the type of the
8372 enumeration literal or object.
8374 The function returns the representation value for the given enumeration
8375 value.  This will be equal to value of the @code{Pos} attribute in the
8376 absence of an enumeration representation clause.  This is a static
8377 attribute (i.e.@: the result is static if the argument is static).
8379 @code{@var{S}'Enum_Rep} can also be used with integer types and objects,
8380 in which case it simply returns the integer value.  The reason for this
8381 is to allow it to be used for @code{(<>)} discrete formal arguments in
8382 a generic unit that can be instantiated with either enumeration types
8383 or integer types.  Note that if @code{Enum_Rep} is used on a modular
8384 type whose upper bound exceeds the upper bound of the largest signed
8385 integer type, and the argument is a variable, so that the universal
8386 integer calculation is done at run time, then the call to @code{Enum_Rep}
8387 may raise @code{Constraint_Error}.
8389 @node Attribute Enum_Val
8390 @unnumberedsec Attribute Enum_Val
8391 @cindex Representation of enums
8392 @findex Enum_Val
8393 @noindent
8394 For every enumeration subtype @var{S}, @code{@var{S}'Enum_Val} denotes a
8395 function with the following spec:
8397 @smallexample @c ada
8398 function @var{S}'Enum_Val (Arg : @i{Universal_Integer)
8399   return @var{S}'Base};
8400 @end smallexample
8402 @noindent
8403 The function returns the enumeration value whose representation matches the
8404 argument, or raises Constraint_Error if no enumeration literal of the type
8405 has the matching value.
8406 This will be equal to value of the @code{Val} attribute in the
8407 absence of an enumeration representation clause.  This is a static
8408 attribute (i.e.@: the result is static if the argument is static).
8410 @node Attribute Epsilon
8411 @unnumberedsec Attribute Epsilon
8412 @cindex Ada 83 attributes
8413 @findex Epsilon
8414 @noindent
8415 The @code{Epsilon} attribute is provided for compatibility with Ada 83.  See
8416 the Ada 83 reference manual for an exact description of the semantics of
8417 this attribute.
8419 @node Attribute Fixed_Value
8420 @unnumberedsec Attribute Fixed_Value
8421 @findex Fixed_Value
8422 @noindent
8423 For every fixed-point type @var{S}, @code{@var{S}'Fixed_Value} denotes a
8424 function with the following specification:
8426 @smallexample @c ada
8427 function @var{S}'Fixed_Value (Arg : @i{Universal_Integer})
8428   return @var{S};
8429 @end smallexample
8431 @noindent
8432 The value returned is the fixed-point value @var{V} such that
8434 @smallexample @c ada
8435 @var{V} = Arg * @var{S}'Small
8436 @end smallexample
8438 @noindent
8439 The effect is thus similar to first converting the argument to the
8440 integer type used to represent @var{S}, and then doing an unchecked
8441 conversion to the fixed-point type.  The difference is
8442 that there are full range checks, to ensure that the result is in range.
8443 This attribute is primarily intended for use in implementation of the
8444 input-output functions for fixed-point values.
8446 @node Attribute Has_Access_Values
8447 @unnumberedsec Attribute Has_Access_Values
8448 @cindex Access values, testing for
8449 @findex Has_Access_Values
8450 @noindent
8451 The prefix of the @code{Has_Access_Values} attribute is a type.  The result
8452 is a Boolean value which is True if the is an access type, or is a composite
8453 type with a component (at any nesting depth) that is an access type, and is
8454 False otherwise.
8455 The intended use of this attribute is in conjunction with generic
8456 definitions.  If the attribute is applied to a generic private type, it
8457 indicates whether or not the corresponding actual type has access values.
8459 @node Attribute Has_Discriminants
8460 @unnumberedsec Attribute Has_Discriminants
8461 @cindex Discriminants, testing for
8462 @findex Has_Discriminants
8463 @noindent
8464 The prefix of the @code{Has_Discriminants} attribute is a type.  The result
8465 is a Boolean value which is True if the type has discriminants, and False
8466 otherwise.  The intended use of this attribute is in conjunction with generic
8467 definitions.  If the attribute is applied to a generic private type, it
8468 indicates whether or not the corresponding actual type has discriminants.
8470 @node Attribute Img
8471 @unnumberedsec Attribute Img
8472 @findex Img
8473 @noindent
8474 The @code{Img} attribute differs from @code{Image} in that it is applied
8475 directly to an object, and yields the same result as
8476 @code{Image} for the subtype of the object.  This is convenient for
8477 debugging:
8479 @smallexample @c ada
8480 Put_Line ("X = " & X'Img);
8481 @end smallexample
8483 @noindent
8484 has the same meaning as the more verbose:
8486 @smallexample @c ada
8487 Put_Line ("X = " & @var{T}'Image (X));
8488 @end smallexample
8490 @noindent
8491 where @var{T} is the (sub)type of the object @code{X}.
8493 Note that technically, in analogy to @code{Image},
8494 @code{X'Img} returns a parameterless function
8495 that returns the appropriate string when called. This means that
8496 @code{X'Img} can be renamed as a function-returning-string, or used
8497 in an instantiation as a function parameter.
8499 @node Attribute Integer_Value
8500 @unnumberedsec Attribute Integer_Value
8501 @findex Integer_Value
8502 @noindent
8503 For every integer type @var{S}, @code{@var{S}'Integer_Value} denotes a
8504 function with the following spec:
8506 @smallexample @c ada
8507 function @var{S}'Integer_Value (Arg : @i{Universal_Fixed})
8508   return @var{S};
8509 @end smallexample
8511 @noindent
8512 The value returned is the integer value @var{V}, such that
8514 @smallexample @c ada
8515 Arg = @var{V} * @var{T}'Small
8516 @end smallexample
8518 @noindent
8519 where @var{T} is the type of @code{Arg}.
8520 The effect is thus similar to first doing an unchecked conversion from
8521 the fixed-point type to its corresponding implementation type, and then
8522 converting the result to the target integer type.  The difference is
8523 that there are full range checks, to ensure that the result is in range.
8524 This attribute is primarily intended for use in implementation of the
8525 standard input-output functions for fixed-point values.
8527 @node Attribute Invalid_Value
8528 @unnumberedsec Attribute Invalid_Value
8529 @findex Invalid_Value
8530 @noindent
8531 For every scalar type S, S'Invalid_Value returns an undefined value of the
8532 type. If possible this value is an invalid representation for the type. The
8533 value returned is identical to the value used to initialize an otherwise
8534 uninitialized value of the type if pragma Initialize_Scalars is used,
8535 including the ability to modify the value with the binder -Sxx flag and
8536 relevant environment variables at run time.
8538 @node Attribute Large
8539 @unnumberedsec Attribute Large
8540 @cindex Ada 83 attributes
8541 @findex Large
8542 @noindent
8543 The @code{Large} attribute is provided for compatibility with Ada 83.  See
8544 the Ada 83 reference manual for an exact description of the semantics of
8545 this attribute.
8547 @node Attribute Library_Level
8548 @unnumberedsec Attribute Library_Level
8549 @findex Library_Level
8550 @noindent
8551 @noindent
8552 @code{P'Library_Level}, where P is an entity name,
8553 returns a Boolean value which is True if the entity is declared
8554 at the library level, and False otherwise. Note that within a
8555 generic instantition, the name of the generic unit denotes the
8556 instance, which means that this attribute can be used to test
8557 if a generic is instantiated at the library level, as shown
8558 in this example:
8560 @smallexample @c ada
8561 generic
8562   ...
8563 package Gen is
8564   pragma Compile_Time_Error
8565     (not Gen'Library_Level,
8566      "Gen can only be instantiated at library level");
8567   ...
8568 end Gen;
8569 @end smallexample
8571 @node Attribute Loop_Entry
8572 @unnumberedsec Attribute Loop_Entry
8573 @findex Loop_Entry
8574 @noindent
8575 Syntax:
8577 @smallexample @c ada
8578 X'Loop_Entry [(loop_name)]
8579 @end smallexample
8581 @noindent
8582 The @code{Loop_Entry} attribute is used to refer to the value that an
8583 expression had upon entry to a given loop in much the same way that the
8584 @code{Old} attribute in a subprogram postcondition can be used to refer
8585 to the value an expression had upon entry to the subprogram. The
8586 relevant loop is either identified by the given loop name, or it is the
8587 innermost enclosing loop when no loop name is given.
8589 @noindent
8590 A @code{Loop_Entry} attribute can only occur within a
8591 @code{Loop_Variant} or @code{Loop_Invariant} pragma. A common use of
8592 @code{Loop_Entry} is to compare the current value of objects with their
8593 initial value at loop entry, in a @code{Loop_Invariant} pragma.
8595 @noindent
8596 The effect of using @code{X'Loop_Entry} is the same as declaring
8597 a constant initialized with the initial value of @code{X} at loop
8598 entry. This copy is not performed if the loop is not entered, or if the
8599 corresponding pragmas are ignored or disabled.
8601 @node Attribute Machine_Size
8602 @unnumberedsec Attribute Machine_Size
8603 @findex Machine_Size
8604 @noindent
8605 This attribute is identical to the @code{Object_Size} attribute.  It is
8606 provided for compatibility with the DEC Ada 83 attribute of this name.
8608 @node Attribute Mantissa
8609 @unnumberedsec Attribute Mantissa
8610 @cindex Ada 83 attributes
8611 @findex Mantissa
8612 @noindent
8613 The @code{Mantissa} attribute is provided for compatibility with Ada 83.  See
8614 the Ada 83 reference manual for an exact description of the semantics of
8615 this attribute.
8617 @node Attribute Max_Interrupt_Priority
8618 @unnumberedsec Attribute Max_Interrupt_Priority
8619 @cindex Interrupt priority, maximum
8620 @findex Max_Interrupt_Priority
8621 @noindent
8622 @code{Standard'Max_Interrupt_Priority} (@code{Standard} is the only
8623 permissible prefix), provides the same value as
8624 @code{System.Max_Interrupt_Priority}.
8626 @node Attribute Max_Priority
8627 @unnumberedsec Attribute Max_Priority
8628 @cindex Priority, maximum
8629 @findex Max_Priority
8630 @noindent
8631 @code{Standard'Max_Priority} (@code{Standard} is the only permissible
8632 prefix) provides the same value as @code{System.Max_Priority}.
8634 @node Attribute Maximum_Alignment
8635 @unnumberedsec Attribute Maximum_Alignment
8636 @cindex Alignment, maximum
8637 @findex Maximum_Alignment
8638 @noindent
8639 @code{Standard'Maximum_Alignment} (@code{Standard} is the only
8640 permissible prefix) provides the maximum useful alignment value for the
8641 target.  This is a static value that can be used to specify the alignment
8642 for an object, guaranteeing that it is properly aligned in all
8643 cases.
8645 @node Attribute Mechanism_Code
8646 @unnumberedsec Attribute Mechanism_Code
8647 @cindex Return values, passing mechanism
8648 @cindex Parameters, passing mechanism
8649 @findex Mechanism_Code
8650 @noindent
8651 @code{@var{function}'Mechanism_Code} yields an integer code for the
8652 mechanism used for the result of function, and
8653 @code{@var{subprogram}'Mechanism_Code (@var{n})} yields the mechanism
8654 used for formal parameter number @var{n} (a static integer value with 1
8655 meaning the first parameter) of @var{subprogram}.  The code returned is:
8657 @table @asis
8658 @item 1
8659 by copy (value)
8660 @item 2
8661 by reference
8662 @item 3
8663 by descriptor (default descriptor class)
8664 @item 4
8665 by descriptor (UBS: unaligned bit string)
8666 @item 5
8667 by descriptor (UBSB: aligned bit string with arbitrary bounds)
8668 @item 6
8669 by descriptor (UBA: unaligned bit array)
8670 @item 7
8671 by descriptor (S: string, also scalar access type parameter)
8672 @item 8
8673 by descriptor (SB: string with arbitrary bounds)
8674 @item 9
8675 by descriptor (A: contiguous array)
8676 @item 10
8677 by descriptor (NCA: non-contiguous array)
8678 @end table
8680 @noindent
8681 Values from 3 through 10 are only relevant to Digital OpenVMS implementations.
8682 @cindex OpenVMS
8684 @node Attribute Null_Parameter
8685 @unnumberedsec Attribute Null_Parameter
8686 @cindex Zero address, passing
8687 @findex Null_Parameter
8688 @noindent
8689 A reference @code{@var{T}'Null_Parameter} denotes an imaginary object of
8690 type or subtype @var{T} allocated at machine address zero.  The attribute
8691 is allowed only as the default expression of a formal parameter, or as
8692 an actual expression of a subprogram call.  In either case, the
8693 subprogram must be imported.
8695 The identity of the object is represented by the address zero in the
8696 argument list, independent of the passing mechanism (explicit or
8697 default).
8699 This capability is needed to specify that a zero address should be
8700 passed for a record or other composite object passed by reference.
8701 There is no way of indicating this without the @code{Null_Parameter}
8702 attribute.
8704 @node Attribute Object_Size
8705 @unnumberedsec Attribute Object_Size
8706 @cindex Size, used for objects
8707 @findex Object_Size
8708 @noindent
8709 The size of an object is not necessarily the same as the size of the type
8710 of an object.  This is because by default object sizes are increased to be
8711 a multiple of the alignment of the object.  For example,
8712 @code{Natural'Size} is
8713 31, but by default objects of type @code{Natural} will have a size of 32 bits.
8714 Similarly, a record containing an integer and a character:
8716 @smallexample @c ada
8717 type Rec is record
8718    I : Integer;
8719    C : Character;
8720 end record;
8721 @end smallexample
8723 @noindent
8724 will have a size of 40 (that is @code{Rec'Size} will be 40).  The
8725 alignment will be 4, because of the
8726 integer field, and so the default size of record objects for this type
8727 will be 64 (8 bytes).
8729 A consequence of this capability is that different object sizes can be
8730 given to subtypes that would otherwise be considered in Ada to be
8731 statically matching.  But it makes no sense to consider such subtypes
8732 as statically matching.  Consequently, in @code{GNAT} we add a rule
8733 to the static matching rules that requires object sizes to match.
8734 Consider this example:
8736 @smallexample @c ada
8737  1. procedure BadAVConvert is
8738  2.    type R is new Integer;
8739  3.    subtype R1 is R range 1 .. 10;
8740  4.    subtype R2 is R range 1 .. 10;
8741  5.    for R1'Object_Size use 8;
8742  6.    for R2'Object_Size use 16;
8743  7.    type R1P is access all R1;
8744  8.    type R2P is access all R2;
8745  9.    R1PV : R1P := new R1'(4);
8746 10.    R2PV : R2P;
8747 11. begin
8748 12.    R2PV := R2P (R1PV);
8749                |
8750        >>> target designated subtype not compatible with
8751            type "R1" defined at line 3
8753 13. end;
8754 @end smallexample
8756 @noindent
8757 In the absence of lines 5 and 6,
8758 types @code{R1} and @code{R2} statically match and
8759 hence the conversion on line 12 is legal. But since lines 5 and 6
8760 cause the object sizes to differ, @code{GNAT} considers that types
8761 @code{R1} and @code{R2} are not statically matching, and line 12
8762 generates the diagnostic shown above.
8764 @noindent
8765 Similar additional checks are performed in other contexts requiring
8766 statically matching subtypes.
8768 @node Attribute Passed_By_Reference
8769 @unnumberedsec Attribute Passed_By_Reference
8770 @cindex Parameters, when passed by reference
8771 @findex Passed_By_Reference
8772 @noindent
8773 @code{@var{type}'Passed_By_Reference} for any subtype @var{type} returns
8774 a value of type @code{Boolean} value that is @code{True} if the type is
8775 normally passed by reference and @code{False} if the type is normally
8776 passed by copy in calls.  For scalar types, the result is always @code{False}
8777 and is static.  For non-scalar types, the result is non-static.
8779 @node Attribute Pool_Address
8780 @unnumberedsec Attribute Pool_Address
8781 @cindex Parameters, when passed by reference
8782 @findex Pool_Address
8783 @noindent
8784 @code{@var{X}'Pool_Address} for any object @var{X} returns the address
8785 of X within its storage pool. This is the same as
8786 @code{@var{X}'Address}, except that for an unconstrained array whose
8787 bounds are allocated just before the first component,
8788 @code{@var{X}'Pool_Address} returns the address of those bounds,
8789 whereas @code{@var{X}'Address} returns the address of the first
8790 component.
8792 Here, we are interpreting ``storage pool'' broadly to mean ``wherever
8793 the object is allocated'', which could be a user-defined storage pool,
8794 the global heap, on the stack, or in a static memory area. For an
8795 object created by @code{new}, @code{@var{Ptr.all}'Pool_Address} is
8796 what is passed to @code{Allocate} and returned from @code{Deallocate}.
8798 @node Attribute Range_Length
8799 @unnumberedsec Attribute Range_Length
8800 @findex Range_Length
8801 @noindent
8802 @code{@var{type}'Range_Length} for any discrete type @var{type} yields
8803 the number of values represented by the subtype (zero for a null
8804 range).  The result is static for static subtypes.  @code{Range_Length}
8805 applied to the index subtype of a one dimensional array always gives the
8806 same result as @code{Length} applied to the array itself.
8808 @node Attribute Ref
8809 @unnumberedsec Attribute Ref
8810 @findex Ref
8811 @noindent
8814 @node Attribute Restriction_Set
8815 @unnumberedsec Attribute Restriction_Set
8816 @findex Restriction_Set
8817 @cindex Restrictions
8818 @noindent
8819 This attribute allows compile time testing of restrictions that
8820 are currently in effect. It is primarily intended for specializing
8821 code in the run-time based on restrictions that are active (e.g.
8822 don't need to save fpt registers if restriction No_Floating_Point
8823 is known to be in effect), but can be used anywhere.
8825 There are two forms:
8827 @smallexample @c ada
8828 System'Restriction_Set (partition_boolean_restriction_NAME)
8829 System'Restriction_Set (No_Dependence => library_unit_NAME);
8830 @end smallexample
8832 @noindent
8833 In the case of the first form, the only restriction names
8834 allowed are parameterless restrictions that are checked
8835 for consistency at bind time. For a complete list see the
8836 subtype @code{System.Rident.Partition_Boolean_Restrictions}.
8838 The result returned is True if the restriction is known to
8839 be in effect, and False if the restriction is known not to
8840 be in effect. An important guarantee is that the value of
8841 a Restriction_Set attribute is known to be consistent throughout
8842 all the code of a partition.
8844 This is trivially achieved if the entire partition is compiled
8845 with a consistent set of restriction pragmas. However, the
8846 compilation model does not require this. It is possible to
8847 compile one set of units with one set of pragmas, and another
8848 set of units with another set of pragmas. It is even possible
8849 to compile a spec with one set of pragmas, and then WITH the
8850 same spec with a different set of pragmas. Inconsistencies
8851 in the actual use of the restriction are checked at bind time.
8853 In order to achieve the guarantee of consistency for the
8854 Restriction_Set pragma, we consider that a use of the pragma
8855 that yields False is equivalent to a violation of the
8856 restriction.
8858 So for example if you write
8860 @smallexample @c ada
8861 if System'Restriction_Set (No_Floating_Point) then
8862    ...
8863 else
8864    ...
8865 end if;
8866 @end smallexample
8868 @noindent
8869 And the result is False, so that the else branch is executed,
8870 you can assume that this restriction is not set for any unit
8871 in the partition. This is checked by considering this use of
8872 the restriction pragma to be a violation of the restriction
8873 No_Floating_Point. This means that no other unit can attempt
8874 to set this restriction (if some unit does attempt to set it,
8875 the binder will refuse to bind the partition).
8877 Technical note: The restriction name and the unit name are
8878 intepreted entirely syntactically, as in the corresponding
8879 Restrictions pragma, they are not analyzed semantically,
8880 so they do not have a type.
8882 @node Attribute Result
8883 @unnumberedsec Attribute Result
8884 @findex Result
8885 @noindent
8886 @code{@var{function}'Result} can only be used with in a Postcondition pragma
8887 for a function. The prefix must be the name of the corresponding function. This
8888 is used to refer to the result of the function in the postcondition expression.
8889 For a further discussion of the use of this attribute and examples of its use,
8890 see the description of pragma Postcondition.
8892 @node Attribute Safe_Emax
8893 @unnumberedsec Attribute Safe_Emax
8894 @cindex Ada 83 attributes
8895 @findex Safe_Emax
8896 @noindent
8897 The @code{Safe_Emax} attribute is provided for compatibility with Ada 83.  See
8898 the Ada 83 reference manual for an exact description of the semantics of
8899 this attribute.
8901 @node Attribute Safe_Large
8902 @unnumberedsec Attribute Safe_Large
8903 @cindex Ada 83 attributes
8904 @findex Safe_Large
8905 @noindent
8906 The @code{Safe_Large} attribute is provided for compatibility with Ada 83.  See
8907 the Ada 83 reference manual for an exact description of the semantics of
8908 this attribute.
8910 @node Attribute Scalar_Storage_Order
8911 @unnumberedsec Attribute Scalar_Storage_Order
8912 @cindex Endianness
8913 @cindex Scalar storage order
8914 @findex Scalar_Storage_Order
8915 @noindent
8916 For every array or record type @var{S}, the representation attribute
8917 @code{Scalar_Storage_Order} denotes the order in which storage elements
8918 that make up scalar components are ordered within S:
8920 @smallexample @c ada
8921    --  Component type definitions
8923    subtype Yr_Type is Natural range 0 .. 127;
8924    subtype Mo_Type is Natural range 1 .. 12;
8925    subtype Da_Type is Natural range 1 .. 31;
8927    --  Record declaration
8929    type Date is record
8930       Years_Since_1980 : Yr_Type;
8931       Month            : Mo_Type;
8932       Day_Of_Month     : Da_Type;
8933    end record;
8935    --  Record representation clause
8937    for Date use record
8938       Years_Since_1980 at 0 range 0  ..  6;
8939       Month            at 0 range 7  .. 10;
8940       Day_Of_Month     at 0 range 11 .. 15;
8941    end record;
8943    --  Attribute definition clauses
8945    for Date'Bit_Order use System.High_Order_First;
8946    for Date'Scalar_Storage_Order use System.High_Order_First;
8947    --  If Scalar_Storage_Order is specified, it must be consistent with
8948    --  Bit_Order, so it's best to always define the latter explicitly if
8949    --  the former is used.
8950 @end smallexample
8952 Other properties are
8953 as for standard representation attribute @code{Bit_Order}, as defined by
8954 Ada RM 13.5.3(4). The default is @code{System.Default_Bit_Order}.
8956 For a record type @var{S}, if @code{@var{S}'Scalar_Storage_Order} is
8957 specified explicitly, it shall be equal to @code{@var{S}'Bit_Order}. Note:
8958 this means that if a @code{Scalar_Storage_Order} attribute definition
8959 clause is not confirming, then the type's @code{Bit_Order} shall be
8960 specified explicitly and set to the same value.
8962 For a record extension, the derived type shall have the same scalar storage
8963 order as the parent type.
8965 If a component of @var{S} has itself a record or array type, then it shall also
8966 have a @code{Scalar_Storage_Order} attribute definition clause. In addition,
8967 if the component is a packed array, or does not start on a byte boundary, then
8968 the scalar storage order specified for S and for the nested component type shall
8969 be identical.
8971 If @var{S} appears as the type of a record or array component, the enclosing
8972 record or array shall also have a @code{Scalar_Storage_Order} attribute
8973 definition clause.
8975 No component of a type that has a @code{Scalar_Storage_Order} attribute
8976 definition may be aliased.
8978 A confirming @code{Scalar_Storage_Order} attribute definition clause (i.e.
8979 with a value equal to @code{System.Default_Bit_Order}) has no effect.
8981 If the opposite storage order is specified, then whenever the value of
8982 a scalar component of an object of type @var{S} is read, the storage
8983 elements of the enclosing machine scalar are first reversed (before
8984 retrieving the component value, possibly applying some shift and mask
8985 operatings on the enclosing machine scalar), and the opposite operation
8986 is done for writes.
8988 In that case, the restrictions set forth in 13.5.1(10.3/2) for scalar components
8989 are relaxed. Instead, the following rules apply:
8991 @itemize @bullet
8992 @item the underlying storage elements are those at positions
8993   @code{(position + first_bit / storage_element_size) ..
8994         (position + (last_bit + storage_element_size - 1) /
8995                     storage_element_size)}
8996 @item the sequence of underlying storage elements shall have
8997         a size no greater than the largest machine scalar
8998 @item the enclosing machine scalar is defined as the smallest machine
8999         scalar starting at a position no greater than
9000         @code{position + first_bit / storage_element_size} and covering
9001         storage elements at least up to @code{position + (last_bit +
9002         storage_element_size - 1) / storage_element_size}
9003 @item the position of the component is interpreted relative to that machine
9004  scalar.
9006 @end itemize
9008 @node Attribute Simple_Storage_Pool
9009 @unnumberedsec Attribute Simple_Storage_Pool
9010 @cindex Storage pool, simple
9011 @cindex Simple storage pool
9012 @findex Simple_Storage_Pool
9013 @noindent
9014 For every nonformal, nonderived access-to-object type @var{Acc}, the
9015 representation attribute @code{Simple_Storage_Pool} may be specified
9016 via an attribute_definition_clause (or by specifying the equivalent aspect):
9018 @smallexample @c ada
9020 My_Pool : My_Simple_Storage_Pool_Type;
9022 type Acc is access My_Data_Type;
9024 for Acc'Simple_Storage_Pool use My_Pool;
9026 @end smallexample
9028 @noindent
9029 The name given in an attribute_definition_clause for the
9030 @code{Simple_Storage_Pool} attribute shall denote a variable of
9031 a ``simple storage pool type'' (see pragma @code{Simple_Storage_Pool_Type}).
9033 The use of this attribute is only allowed for a prefix denoting a type
9034 for which it has been specified. The type of the attribute is the type
9035 of the variable specified as the simple storage pool of the access type,
9036 and the attribute denotes that variable.
9038 It is illegal to specify both @code{Storage_Pool} and @code{Simple_Storage_Pool}
9039 for the same access type.
9041 If the @code{Simple_Storage_Pool} attribute has been specified for an access
9042 type, then applying the @code{Storage_Pool} attribute to the type is flagged
9043 with a warning and its evaluation raises the exception @code{Program_Error}.
9045 If the Simple_Storage_Pool attribute has been specified for an access
9046 type @var{S}, then the evaluation of the attribute @code{@var{S}'Storage_Size}
9047 returns the result of calling @code{Storage_Size (@var{S}'Simple_Storage_Pool)},
9048 which is intended to indicate the number of storage elements reserved for
9049 the simple storage pool. If the Storage_Size function has not been defined
9050 for the simple storage pool type, then this attribute returns zero.
9052 If an access type @var{S} has a specified simple storage pool of type
9053 @var{SSP}, then the evaluation of an allocator for that access type calls
9054 the primitive @code{Allocate} procedure for type @var{SSP}, passing
9055 @code{@var{S}'Simple_Storage_Pool} as the pool parameter. The detailed
9056 semantics of such allocators is the same as those defined for allocators
9057 in section 13.11 of the Ada Reference Manual, with the term
9058 ``simple storage pool'' substituted for ``storage pool''.
9060 If an access type @var{S} has a specified simple storage pool of type
9061 @var{SSP}, then a call to an instance of the @code{Ada.Unchecked_Deallocation}
9062 for that access type invokes the primitive @code{Deallocate} procedure
9063 for type @var{SSP}, passing @code{@var{S}'Simple_Storage_Pool} as the pool
9064 parameter. The detailed semantics of such unchecked deallocations is the same
9065 as defined in section 13.11.2 of the Ada Reference Manual, except that the
9066 term ``simple storage pool'' is substituted for ``storage pool''.
9068 @node Attribute Small
9069 @unnumberedsec Attribute Small
9070 @cindex Ada 83 attributes
9071 @findex Small
9072 @noindent
9073 The @code{Small} attribute is defined in Ada 95 (and Ada 2005) only for
9074 fixed-point types.
9075 GNAT also allows this attribute to be applied to floating-point types
9076 for compatibility with Ada 83.  See
9077 the Ada 83 reference manual for an exact description of the semantics of
9078 this attribute when applied to floating-point types.
9080 @node Attribute Storage_Unit
9081 @unnumberedsec Attribute Storage_Unit
9082 @findex Storage_Unit
9083 @noindent
9084 @code{Standard'Storage_Unit} (@code{Standard} is the only permissible
9085 prefix) provides the same value as @code{System.Storage_Unit}.
9087 @node Attribute Stub_Type
9088 @unnumberedsec Attribute Stub_Type
9089 @findex Stub_Type
9090 @noindent
9091 The GNAT implementation of remote access-to-classwide types is
9092 organized as described in AARM section E.4 (20.t): a value of an RACW type
9093 (designating a remote object) is represented as a normal access
9094 value, pointing to a "stub" object which in turn contains the
9095 necessary information to contact the designated remote object. A
9096 call on any dispatching operation of such a stub object does the
9097 remote call, if necessary, using the information in the stub object
9098 to locate the target partition, etc.
9100 For a prefix @code{T} that denotes a remote access-to-classwide type,
9101 @code{T'Stub_Type} denotes the type of the corresponding stub objects.
9103 By construction, the layout of @code{T'Stub_Type} is identical to that of
9104 type @code{RACW_Stub_Type} declared in the internal implementation-defined
9105 unit @code{System.Partition_Interface}. Use of this attribute will create
9106 an implicit dependency on this unit.
9108 @node Attribute System_Allocator_Alignment
9109 @unnumberedsec Attribute System_Allocator_Alignment
9110 @cindex Alignment, allocator
9111 @findex System_Allocator_Alignment
9112 @noindent
9113 @code{Standard'System_Allocator_Alignment} (@code{Standard} is the only
9114 permissible prefix) provides the observable guaranted to be honored by
9115 the system allocator (malloc). This is a static value that can be used
9116 in user storage pools based on malloc either to reject allocation
9117 with alignment too large or to enable a realignment circuitry if the
9118 alignment request is larger than this value.
9120 @node Attribute Target_Name
9121 @unnumberedsec Attribute Target_Name
9122 @findex Target_Name
9123 @noindent
9124 @code{Standard'Target_Name} (@code{Standard} is the only permissible
9125 prefix) provides a static string value that identifies the target
9126 for the current compilation. For GCC implementations, this is the
9127 standard gcc target name without the terminating slash (for
9128 example, GNAT 5.0 on windows yields "i586-pc-mingw32msv").
9130 @node Attribute Tick
9131 @unnumberedsec Attribute Tick
9132 @findex Tick
9133 @noindent
9134 @code{Standard'Tick} (@code{Standard} is the only permissible prefix)
9135 provides the same value as @code{System.Tick},
9137 @node Attribute To_Address
9138 @unnumberedsec Attribute To_Address
9139 @findex To_Address
9140 @noindent
9141 The @code{System'To_Address}
9142 (@code{System} is the only permissible prefix)
9143 denotes a function identical to
9144 @code{System.Storage_Elements.To_Address} except that
9145 it is a static attribute.  This means that if its argument is
9146 a static expression, then the result of the attribute is a
9147 static expression.  This means that such an expression can be
9148 used in contexts (e.g.@: preelaborable packages) which require a
9149 static expression and where the function call could not be used
9150 (since the function call is always non-static, even if its
9151 argument is static). The argument must be in the range
9152 -(2**(m-1) .. 2**m-1, where m is the memory size
9153 (typically 32 or 64). Negative values are intepreted in a
9154 modular manner (e.g. -1 means the same as 16#FFFF_FFFF# on
9155 a 32 bits machine).
9157 @node Attribute Type_Class
9158 @unnumberedsec Attribute Type_Class
9159 @findex Type_Class
9160 @noindent
9161 @code{@var{type}'Type_Class} for any type or subtype @var{type} yields
9162 the value of the type class for the full type of @var{type}.  If
9163 @var{type} is a generic formal type, the value is the value for the
9164 corresponding actual subtype.  The value of this attribute is of type
9165 @code{System.Aux_DEC.Type_Class}, which has the following definition:
9167 @smallexample @c ada
9168   type Type_Class is
9169     (Type_Class_Enumeration,
9170      Type_Class_Integer,
9171      Type_Class_Fixed_Point,
9172      Type_Class_Floating_Point,
9173      Type_Class_Array,
9174      Type_Class_Record,
9175      Type_Class_Access,
9176      Type_Class_Task,
9177      Type_Class_Address);
9178 @end smallexample
9180 @noindent
9181 Protected types yield the value @code{Type_Class_Task}, which thus
9182 applies to all concurrent types.  This attribute is designed to
9183 be compatible with the DEC Ada 83 attribute of the same name.
9185 @node Attribute UET_Address
9186 @unnumberedsec Attribute UET_Address
9187 @findex UET_Address
9188 @noindent
9189 The @code{UET_Address} attribute can only be used for a prefix which
9190 denotes a library package.  It yields the address of the unit exception
9191 table when zero cost exception handling is used.  This attribute is
9192 intended only for use within the GNAT implementation.  See the unit
9193 @code{Ada.Exceptions} in files @file{a-except.ads} and @file{a-except.adb}
9194 for details on how this attribute is used in the implementation.
9196 @node Attribute Unconstrained_Array
9197 @unnumberedsec Attribute Unconstrained_Array
9198 @findex Unconstrained_Array
9199 @noindent
9200 The @code{Unconstrained_Array} attribute can be used with a prefix that
9201 denotes any type or subtype. It is a static attribute that yields
9202 @code{True} if the prefix designates an unconstrained array,
9203 and @code{False} otherwise. In a generic instance, the result is
9204 still static, and yields the result of applying this test to the
9205 generic actual.
9207 @node Attribute Universal_Literal_String
9208 @unnumberedsec Attribute Universal_Literal_String
9209 @cindex Named numbers, representation of
9210 @findex Universal_Literal_String
9211 @noindent
9212 The prefix of @code{Universal_Literal_String} must be a named
9213 number.  The static result is the string consisting of the characters of
9214 the number as defined in the original source.  This allows the user
9215 program to access the actual text of named numbers without intermediate
9216 conversions and without the need to enclose the strings in quotes (which
9217 would preclude their use as numbers).
9219 For example, the following program prints the first 50 digits of pi:
9221 @smallexample @c ada
9222 with Text_IO; use Text_IO;
9223 with Ada.Numerics;
9224 procedure Pi is
9225 begin
9226    Put (Ada.Numerics.Pi'Universal_Literal_String);
9227 end;
9228 @end smallexample
9230 @node Attribute Unrestricted_Access
9231 @unnumberedsec Attribute Unrestricted_Access
9232 @cindex @code{Access}, unrestricted
9233 @findex Unrestricted_Access
9234 @noindent
9235 The @code{Unrestricted_Access} attribute is similar to @code{Access}
9236 except that all accessibility and aliased view checks are omitted.  This
9237 is a user-beware attribute.  It is similar to
9238 @code{Address}, for which it is a desirable replacement where the value
9239 desired is an access type.  In other words, its effect is identical to
9240 first applying the @code{Address} attribute and then doing an unchecked
9241 conversion to a desired access type.  In GNAT, but not necessarily in
9242 other implementations, the use of static chains for inner level
9243 subprograms means that @code{Unrestricted_Access} applied to a
9244 subprogram yields a value that can be called as long as the subprogram
9245 is in scope (normal Ada accessibility rules restrict this usage).
9247 It is possible to use @code{Unrestricted_Access} for any type, but care
9248 must be exercised if it is used to create pointers to unconstrained
9249 objects. In this case, the resulting pointer has the same scope as the
9250 context of the attribute, and may not be returned to some enclosing
9251 scope. For instance, a function cannot use @code{Unrestricted_Access}
9252 to create a unconstrained pointer and then return that value to the
9253 caller.
9255 @node Attribute Update
9256 @unnumberedsec Attribute Update
9257 @findex Update
9258 @noindent
9259 The @code{Update} attribute creates a copy of an array or record value
9260 with one or more modified components. The syntax is:
9262 @smallexample @c ada
9263 PREFIX'Update (AGGREGATE)
9264 @end smallexample
9266 @noindent
9267 where @code{PREFIX} is the name of an array or record object, and
9268 @code{AGGREGATE} is a named aggregate that does not contain an @code{others}
9269 choice. The effect is to yield a copy of the array or record value which
9270 is unchanged apart from the components mentioned in the aggregate, which
9271 are changed to the indicated value. The original value of the array or
9272 record value is not affected. For example:
9274 @smallexample @c ada
9275 type Arr is Array (1 .. 5) of Integer;
9277 Avar1 : Arr := (1,2,3,4,5);
9278 Avar2 : Arr := Avar1'Update ((2 => 10, 3 .. 4 => 20));
9279 @end smallexample
9281 @noindent
9282 yields a value for @code{Avar2} of 1,10,20,20,5 with @code{Avar1}
9283 begin unmodified. Similarly:
9285 @smallexample @c ada
9286 type Rec is A, B, C : Integer;
9288 Rvar1 : Rec := (A => 1, B => 2, C => 3);
9289 Rvar2 : Rec := Rvar1'Update ((B => 20));
9290 @end smallexample
9292 @noindent
9293 yields a value for @code{Rvar2} of (A => 1, B => 20, C => 3),
9294 with @code{Rvar1} being unmodifed.
9295 Note that the value of the attribute reference is computed
9296 completely before it is used. This means that if you write:
9298 @smallexample @c ada
9299 Avar1 := Avar1'Update ((1 => 10, 2 => Function_Call));
9300 @end smallexample
9302 @noindent
9303 then the value of @code{Avar1} is not modified if @code{Function_Call}
9304 raises an exception, unlike the effect of a series of direct assignments
9305 to elements of @code{Avar1}. In general this requires that
9306 two extra complete copies of the object are required, which should be
9307 kept in mind when considering efficiency.
9309 The @code{Update} attribute cannot be applied to prefixes of a limited
9310 type, and cannot reference discriminants in the case of a record type.
9311 The accessibility level of an Update attribute result object is defined
9312 as for an aggregate.
9314 In the record case, no component can be mentioned more than once. In
9315 the array case, two overlapping ranges can appear in the aggregate,
9316 in which case the modifications are processed left to right.
9318 Multi-dimensional arrays can be modified, as shown by this example:
9320 @smallexample @c ada
9321 A : array (1 .. 10, 1 .. 10) of Integer;
9323 A := A'Update (1 => (2 => 20), 3 => (4 => 30));
9324 @end smallexample
9326 @noindent
9327 which changes element (1,2) to 20 and (3,4) to 30.
9329 @node Attribute Valid_Scalars
9330 @unnumberedsec Attribute Valid_Scalars
9331 @findex Valid_Scalars
9332 @noindent
9333 The @code{'Valid_Scalars} attribute is intended to make it easier to
9334 check the validity of scalar subcomponents of composite objects. It
9335 is defined for any prefix @code{X} that denotes an object.
9336 The value of this attribute is of the predefined type Boolean.
9337 @code{X'Valid_Scalars} yields True if and only if evaluation of
9338 @code{P'Valid} yields True for every scalar part P of X or if X has
9339 no scalar parts. It is not specified in what order the scalar parts
9340 are checked, nor whether any more are checked after any one of them
9341 is determined to be invalid. If the prefix @code{X} is of a class-wide
9342 type @code{T'Class} (where @code{T} is the associated specific type),
9343 or if the prefix @code{X} is of a specific tagged type @code{T}, then
9344 only the scalar parts of components of @code{T} are traversed; in other
9345 words, components of extensions of @code{T} are not traversed even if
9346 @code{T'Class (X)'Tag /= T'Tag} . The compiler will issue a warning if it can
9347 be determined at compile time that the prefix of the attribute has no
9348 scalar parts (e.g., if the prefix is of an access type, an interface type,
9349 an undiscriminated task type, or an undiscriminated protected type).
9351 @node Attribute VADS_Size
9352 @unnumberedsec Attribute VADS_Size
9353 @cindex @code{Size}, VADS compatibility
9354 @findex VADS_Size
9355 @noindent
9356 The @code{'VADS_Size} attribute is intended to make it easier to port
9357 legacy code which relies on the semantics of @code{'Size} as implemented
9358 by the VADS Ada 83 compiler.  GNAT makes a best effort at duplicating the
9359 same semantic interpretation.  In particular, @code{'VADS_Size} applied
9360 to a predefined or other primitive type with no Size clause yields the
9361 Object_Size (for example, @code{Natural'Size} is 32 rather than 31 on
9362 typical machines).  In addition @code{'VADS_Size} applied to an object
9363 gives the result that would be obtained by applying the attribute to
9364 the corresponding type.
9366 @node Attribute Value_Size
9367 @unnumberedsec Attribute Value_Size
9368 @cindex @code{Size}, setting for not-first subtype
9369 @findex Value_Size
9370 @code{@var{type}'Value_Size} is the number of bits required to represent
9371 a value of the given subtype.  It is the same as @code{@var{type}'Size},
9372 but, unlike @code{Size}, may be set for non-first subtypes.
9374 @node Attribute Wchar_T_Size
9375 @unnumberedsec Attribute Wchar_T_Size
9376 @findex Wchar_T_Size
9377 @code{Standard'Wchar_T_Size} (@code{Standard} is the only permissible
9378 prefix) provides the size in bits of the C @code{wchar_t} type
9379 primarily for constructing the definition of this type in
9380 package @code{Interfaces.C}.
9382 @node Attribute Word_Size
9383 @unnumberedsec Attribute Word_Size
9384 @findex Word_Size
9385 @code{Standard'Word_Size} (@code{Standard} is the only permissible
9386 prefix) provides the value @code{System.Word_Size}.
9388 @node Standard and Implementation Defined Restrictions
9389 @chapter Standard and Implementation Defined Restrictions
9391 @noindent
9392 All RM defined Restriction identifiers are implemented:
9394 @itemize @bullet
9395 @item language-defined restrictions (see 13.12.1)
9396 @item tasking restrictions (see D.7)
9397 @item high integrity restrictions (see H.4)
9398 @end itemize
9400 @noindent
9401 GNAT implements additional restriction identifiers. All restrictions, whether
9402 language defined or GNAT-specific, are listed in the following.
9404 @menu
9405 * Partition-Wide Restrictions::
9406 * Program Unit Level Restrictions::
9407 @end menu
9409 @node Partition-Wide Restrictions
9410 @section Partition-Wide Restrictions
9412 There are two separate lists of restriction identifiers. The first
9413 set requires consistency throughout a partition (in other words, if the
9414 restriction identifier is used for any compilation unit in the partition,
9415 then all compilation units in the partition must obey the restriction).
9417 @menu
9418 * Immediate_Reclamation::
9419 * Max_Asynchronous_Select_Nesting::
9420 * Max_Entry_Queue_Length::
9421 * Max_Protected_Entries::
9422 * Max_Select_Alternatives::
9423 * Max_Storage_At_Blocking::
9424 * Max_Task_Entries::
9425 * Max_Tasks::
9426 * No_Abort_Statements::
9427 * No_Access_Parameter_Allocators::
9428 * No_Access_Subprograms::
9429 * No_Allocators::
9430 * No_Anonymous_Allocators::
9431 * No_Calendar::
9432 * No_Coextensions::
9433 * No_Default_Initialization::
9434 * No_Delay::
9435 * No_Dependence::
9436 * No_Direct_Boolean_Operators::
9437 * No_Dispatch::
9438 * No_Dispatching_Calls::
9439 * No_Dynamic_Attachment::
9440 * No_Dynamic_Priorities::
9441 * No_Entry_Calls_In_Elaboration_Code::
9442 * No_Enumeration_Maps::
9443 * No_Exception_Handlers::
9444 * No_Exception_Propagation::
9445 * No_Exception_Registration::
9446 * No_Exceptions::
9447 * No_Finalization::
9448 * No_Fixed_Point::
9449 * No_Floating_Point::
9450 * No_Implicit_Conditionals::
9451 * No_Implicit_Dynamic_Code::
9452 * No_Implicit_Heap_Allocations::
9453 * No_Implicit_Loops::
9454 * No_Initialize_Scalars::
9455 * No_IO::
9456 * No_Local_Allocators::
9457 * No_Local_Protected_Objects::
9458 * No_Local_Timing_Events::
9459 * No_Nested_Finalization::
9460 * No_Protected_Type_Allocators::
9461 * No_Protected_Types::
9462 * No_Recursion::
9463 * No_Reentrancy::
9464 * No_Relative_Delay::
9465 * No_Requeue_Statements::
9466 * No_Secondary_Stack::
9467 * No_Select_Statements::
9468 * No_Specific_Termination_Handlers::
9469 * No_Specification_of_Aspect::
9470 * No_Standard_Allocators_After_Elaboration::
9471 * No_Standard_Storage_Pools::
9472 * No_Stream_Optimizations::
9473 * No_Streams::
9474 * No_Task_Allocators::
9475 * No_Task_Attributes_Package::
9476 * No_Task_Hierarchy::
9477 * No_Task_Termination::
9478 * No_Tasking::
9479 * No_Terminate_Alternatives::
9480 * No_Unchecked_Access::
9481 * Simple_Barriers::
9482 * Static_Priorities::
9483 * Static_Storage_Size::
9484 @end menu
9486 @node Immediate_Reclamation
9487 @unnumberedsubsec Immediate_Reclamation
9488 @findex Immediate_Reclamation
9489 [RM H.4] This restriction ensures that, except for storage occupied by
9490 objects created by allocators and not deallocated via unchecked
9491 deallocation, any storage reserved at run time for an object is
9492 immediately reclaimed when the object no longer exists.
9494 @node Max_Asynchronous_Select_Nesting
9495 @unnumberedsubsec Max_Asynchronous_Select_Nesting
9496 @findex Max_Asynchronous_Select_Nesting
9497 [RM D.7] Specifies the maximum dynamic nesting level of asynchronous
9498 selects. Violations of this restriction with a value of zero are
9499 detected at compile time. Violations of this restriction with values
9500 other than zero cause Storage_Error to be raised.
9502 @node Max_Entry_Queue_Length
9503 @unnumberedsubsec Max_Entry_Queue_Length
9504 @findex Max_Entry_Queue_Length
9505 [RM D.7] This restriction is a declaration that any protected entry compiled in
9506 the scope of the restriction has at most the specified number of
9507 tasks waiting on the entry at any one time, and so no queue is required.
9508 Note that this restriction is checked at run time. Violation of this
9509 restriction results in the raising of Program_Error exception at the point of
9510 the call.
9512 @findex Max_Entry_Queue_Depth
9513 The restriction @code{Max_Entry_Queue_Depth} is recognized as a
9514 synonym for @code{Max_Entry_Queue_Length}. This is retained for historical
9515 compatibility purposes (and a warning will be generated for its use if
9516 warnings on obsolescent features are activated).
9518 @node Max_Protected_Entries
9519 @unnumberedsubsec Max_Protected_Entries
9520 @findex Max_Protected_Entries
9521 [RM D.7] Specifies the maximum number of entries per protected type. The
9522 bounds of every entry family of a protected unit shall be static, or shall be
9523 defined by a discriminant of a subtype whose corresponding bound is static.
9525 @node Max_Select_Alternatives
9526 @unnumberedsubsec Max_Select_Alternatives
9527 @findex Max_Select_Alternatives
9528 [RM D.7] Specifies the maximum number of alternatives in a selective accept.
9530 @node Max_Storage_At_Blocking
9531 @unnumberedsubsec Max_Storage_At_Blocking
9532 @findex Max_Storage_At_Blocking
9533 [RM D.7] Specifies the maximum portion (in storage elements) of a task's
9534 Storage_Size that can be retained by a blocked task. A violation of this
9535 restriction causes Storage_Error to be raised.
9537 @node Max_Task_Entries
9538 @unnumberedsubsec Max_Task_Entries
9539 @findex Max_Task_Entries
9540 [RM D.7] Specifies the maximum number of entries
9541 per task.  The bounds of every entry family
9542 of a task unit shall be static, or shall be
9543 defined by a discriminant of a subtype whose
9544 corresponding bound is static.
9546 @node Max_Tasks
9547 @unnumberedsubsec Max_Tasks
9548 @findex Max_Tasks
9549 [RM D.7] Specifies the maximum number of task that may be created, not
9550 counting the creation of the environment task.  Violations of this
9551 restriction with a value of zero are detected at compile
9552 time. Violations of this restriction with values other than zero cause
9553 Storage_Error to be raised.
9555 @node No_Abort_Statements
9556 @unnumberedsubsec No_Abort_Statements
9557 @findex No_Abort_Statements
9558 [RM D.7] There are no abort_statements, and there are
9559 no calls to Task_Identification.Abort_Task.
9561 @node No_Access_Parameter_Allocators
9562 @unnumberedsubsec No_Access_Parameter_Allocators
9563 @findex No_Access_Parameter_Allocators
9564 [RM H.4] This restriction ensures at compile time that there are no
9565 occurrences of an allocator as the actual parameter to an access
9566 parameter.
9568 @node No_Access_Subprograms
9569 @unnumberedsubsec No_Access_Subprograms
9570 @findex No_Access_Subprograms
9571 [RM H.4] This restriction ensures at compile time that there are no
9572 declarations of access-to-subprogram types.
9574 @node No_Allocators
9575 @unnumberedsubsec No_Allocators
9576 @findex No_Allocators
9577 [RM H.4] This restriction ensures at compile time that there are no
9578 occurrences of an allocator.
9580 @node No_Anonymous_Allocators
9581 @unnumberedsubsec No_Anonymous_Allocators
9582 @findex No_Anonymous_Allocators
9583 [RM H.4] This restriction ensures at compile time that there are no
9584 occurrences of an allocator of anonymous access type.
9586 @node No_Calendar
9587 @unnumberedsubsec No_Calendar
9588 @findex No_Calendar
9589 [GNAT] This restriction ensures at compile time that there is no implicit or
9590 explicit dependence on the package @code{Ada.Calendar}.
9592 @node No_Coextensions
9593 @unnumberedsubsec No_Coextensions
9594 @findex No_Coextensions
9595 [RM H.4] This restriction ensures at compile time that there are no
9596 coextensions. See 3.10.2.
9598 @node No_Default_Initialization
9599 @unnumberedsubsec No_Default_Initialization
9600 @findex No_Default_Initialization
9602 [GNAT] This restriction prohibits any instance of default initialization
9603 of variables.  The binder implements a consistency rule which prevents
9604 any unit compiled without the restriction from with'ing a unit with the
9605 restriction (this allows the generation of initialization procedures to
9606 be skipped, since you can be sure that no call is ever generated to an
9607 initialization procedure in a unit with the restriction active). If used
9608 in conjunction with Initialize_Scalars or Normalize_Scalars, the effect
9609 is to prohibit all cases of variables declared without a specific
9610 initializer (including the case of OUT scalar parameters).
9612 @node No_Delay
9613 @unnumberedsubsec No_Delay
9614 @findex No_Delay
9615 [RM H.4] This restriction ensures at compile time that there are no
9616 delay statements and no dependences on package Calendar.
9618 @node No_Dependence
9619 @unnumberedsubsec No_Dependence
9620 @findex No_Dependence
9621 [RM 13.12.1] This restriction checks at compile time that there are no
9622 dependence on a library unit.
9624 @node No_Direct_Boolean_Operators
9625 @unnumberedsubsec No_Direct_Boolean_Operators
9626 @findex No_Direct_Boolean_Operators
9627 [GNAT] This restriction ensures that no logical operators (and/or/xor)
9628 are used on operands of type Boolean (or any type derived from Boolean).
9629 This is intended for use in safety critical programs where the certification
9630 protocol requires the use of short-circuit (and then, or else) forms for all
9631 composite boolean operations.
9633 @node No_Dispatch
9634 @unnumberedsubsec No_Dispatch
9635 @findex No_Dispatch
9636 [RM H.4] This restriction ensures at compile time that there are no
9637 occurrences of @code{T'Class}, for any (tagged) subtype @code{T}.
9639 @node No_Dispatching_Calls
9640 @unnumberedsubsec No_Dispatching_Calls
9641 @findex No_Dispatching_Calls
9642 [GNAT] This restriction ensures at compile time that the code generated by the
9643 compiler involves no dispatching calls. The use of this restriction allows the
9644 safe use of record extensions, classwide membership tests and other classwide
9645 features not involving implicit dispatching. This restriction ensures that
9646 the code contains no indirect calls through a dispatching mechanism. Note that
9647 this includes internally-generated calls created by the compiler, for example
9648 in the implementation of class-wide objects assignments. The
9649 membership test is allowed in the presence of this restriction, because its
9650 implementation requires no dispatching.
9651 This restriction is comparable to the official Ada restriction
9652 @code{No_Dispatch} except that it is a bit less restrictive in that it allows
9653 all classwide constructs that do not imply dispatching.
9654 The following example indicates constructs that violate this restriction.
9656 @smallexample
9657 package Pkg is
9658   type T is tagged record
9659     Data : Natural;
9660   end record;
9661   procedure P (X : T);
9663   type DT is new T with record
9664     More_Data : Natural;
9665   end record;
9666   procedure Q (X : DT);
9667 end Pkg;
9669 with Pkg; use Pkg;
9670 procedure Example is
9671   procedure Test (O : T'Class) is
9672     N : Natural  := O'Size;--  Error: Dispatching call
9673     C : T'Class := O;      --  Error: implicit Dispatching Call
9674   begin
9675     if O in DT'Class then  --  OK   : Membership test
9676        Q (DT (O));         --  OK   : Type conversion plus direct call
9677     else
9678        P (O);              --  Error: Dispatching call
9679     end if;
9680   end Test;
9682   Obj : DT;
9683 begin
9684   P (Obj);                 --  OK   : Direct call
9685   P (T (Obj));             --  OK   : Type conversion plus direct call
9686   P (T'Class (Obj));       --  Error: Dispatching call
9688   Test (Obj);              --  OK   : Type conversion
9690   if Obj in T'Class then   --  OK   : Membership test
9691      null;
9692   end if;
9693 end Example;
9694 @end smallexample
9696 @node No_Dynamic_Attachment
9697 @unnumberedsubsec No_Dynamic_Attachment
9698 @findex No_Dynamic_Attachment
9699 [RM D.7] This restriction ensures that there is no call to any of the
9700 operations defined in package Ada.Interrupts
9701 (Is_Reserved, Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler,
9702 Detach_Handler, and Reference).
9704 @findex No_Dynamic_Interrupts
9705 The restriction @code{No_Dynamic_Interrupts} is recognized as a
9706 synonym for @code{No_Dynamic_Attachment}. This is retained for historical
9707 compatibility purposes (and a warning will be generated for its use if
9708 warnings on obsolescent features are activated).
9710 @node No_Dynamic_Priorities
9711 @unnumberedsubsec No_Dynamic_Priorities
9712 @findex No_Dynamic_Priorities
9713 [RM D.7] There are no semantic dependencies on the package Dynamic_Priorities.
9715 @node No_Entry_Calls_In_Elaboration_Code
9716 @unnumberedsubsec No_Entry_Calls_In_Elaboration_Code
9717 @findex No_Entry_Calls_In_Elaboration_Code
9718 [GNAT] This restriction ensures at compile time that no task or protected entry
9719 calls are made during elaboration code.  As a result of the use of this
9720 restriction, the compiler can assume that no code past an accept statement
9721 in a task can be executed at elaboration time.
9723 @node No_Enumeration_Maps
9724 @unnumberedsubsec No_Enumeration_Maps
9725 @findex No_Enumeration_Maps
9726 [GNAT] This restriction ensures at compile time that no operations requiring
9727 enumeration maps are used (that is Image and Value attributes applied
9728 to enumeration types).
9730 @node No_Exception_Handlers
9731 @unnumberedsubsec No_Exception_Handlers
9732 @findex No_Exception_Handlers
9733 [GNAT] This restriction ensures at compile time that there are no explicit
9734 exception handlers. It also indicates that no exception propagation will
9735 be provided. In this mode, exceptions may be raised but will result in
9736 an immediate call to the last chance handler, a routine that the user
9737 must define with the following profile:
9739 @smallexample @c ada
9740 procedure Last_Chance_Handler
9741   (Source_Location : System.Address; Line : Integer);
9742 pragma Export (C, Last_Chance_Handler,
9743                "__gnat_last_chance_handler");
9744 @end smallexample
9746 The parameter is a C null-terminated string representing a message to be
9747 associated with the exception (typically the source location of the raise
9748 statement generated by the compiler). The Line parameter when nonzero
9749 represents the line number in the source program where the raise occurs.
9751 @node No_Exception_Propagation
9752 @unnumberedsubsec No_Exception_Propagation
9753 @findex No_Exception_Propagation
9754 [GNAT] This restriction guarantees that exceptions are never propagated
9755 to an outer subprogram scope. The only case in which an exception may
9756 be raised is when the handler is statically in the same subprogram, so
9757 that the effect of a raise is essentially like a goto statement. Any
9758 other raise statement (implicit or explicit) will be considered
9759 unhandled. Exception handlers are allowed, but may not contain an
9760 exception occurrence identifier (exception choice). In addition, use of
9761 the package GNAT.Current_Exception is not permitted, and reraise
9762 statements (raise with no operand) are not permitted.
9764 @node No_Exception_Registration
9765 @unnumberedsubsec No_Exception_Registration
9766 @findex No_Exception_Registration
9767 [GNAT] This restriction ensures at compile time that no stream operations for
9768 types Exception_Id or Exception_Occurrence are used. This also makes it
9769 impossible to pass exceptions to or from a partition with this restriction
9770 in a distributed environment. If this exception is active, then the generated
9771 code is simplified by omitting the otherwise-required global registration
9772 of exceptions when they are declared.
9774 @node No_Exceptions
9775 @unnumberedsubsec No_Exceptions
9776 @findex No_Exceptions
9777 [RM H.4] This restriction ensures at compile time that there are no
9778 raise statements and no exception handlers.
9780 @node No_Finalization
9781 @unnumberedsubsec No_Finalization
9782 @findex No_Finalization
9783 [GNAT] This restriction disables the language features described in
9784 chapter 7.6 of the Ada 2005 RM as well as all form of code generation
9785 performed by the compiler to support these features. The following types
9786 are no longer considered controlled when this restriction is in effect:
9787 @itemize @bullet
9788 @item
9789 @code{Ada.Finalization.Controlled}
9790 @item
9791 @code{Ada.Finalization.Limited_Controlled}
9792 @item
9793 Derivations from @code{Controlled} or @code{Limited_Controlled}
9794 @item
9795 Class-wide types
9796 @item
9797 Protected types
9798 @item
9799 Task types
9800 @item
9801 Array and record types with controlled components
9802 @end itemize
9803 The compiler no longer generates code to initialize, finalize or adjust an
9804 object or a nested component, either declared on the stack or on the heap. The
9805 deallocation of a controlled object no longer finalizes its contents.
9807 @node No_Fixed_Point
9808 @unnumberedsubsec No_Fixed_Point
9809 @findex No_Fixed_Point
9810 [RM H.4] This restriction ensures at compile time that there are no
9811 occurrences of fixed point types and operations.
9813 @node No_Floating_Point
9814 @unnumberedsubsec No_Floating_Point
9815 @findex No_Floating_Point
9816 [RM H.4] This restriction ensures at compile time that there are no
9817 occurrences of floating point types and operations.
9819 @node No_Implicit_Conditionals
9820 @unnumberedsubsec No_Implicit_Conditionals
9821 @findex No_Implicit_Conditionals
9822 [GNAT] This restriction ensures that the generated code does not contain any
9823 implicit conditionals, either by modifying the generated code where possible,
9824 or by rejecting any construct that would otherwise generate an implicit
9825 conditional. Note that this check does not include run time constraint
9826 checks, which on some targets may generate implicit conditionals as
9827 well. To control the latter, constraint checks can be suppressed in the
9828 normal manner. Constructs generating implicit conditionals include comparisons
9829 of composite objects and the Max/Min attributes.
9831 @node No_Implicit_Dynamic_Code
9832 @unnumberedsubsec No_Implicit_Dynamic_Code
9833 @findex No_Implicit_Dynamic_Code
9834 @cindex trampoline
9835 [GNAT] This restriction prevents the compiler from building ``trampolines''.
9836 This is a structure that is built on the stack and contains dynamic
9837 code to be executed at run time. On some targets, a trampoline is
9838 built for the following features: @code{Access},
9839 @code{Unrestricted_Access}, or @code{Address} of a nested subprogram;
9840 nested task bodies; primitive operations of nested tagged types.
9841 Trampolines do not work on machines that prevent execution of stack
9842 data. For example, on windows systems, enabling DEP (data execution
9843 protection) will cause trampolines to raise an exception.
9844 Trampolines are also quite slow at run time.
9846 On many targets, trampolines have been largely eliminated. Look at the
9847 version of system.ads for your target --- if it has
9848 Always_Compatible_Rep equal to False, then trampolines are largely
9849 eliminated. In particular, a trampoline is built for the following
9850 features: @code{Address} of a nested subprogram;
9851 @code{Access} or @code{Unrestricted_Access} of a nested subprogram,
9852 but only if pragma Favor_Top_Level applies, or the access type has a
9853 foreign-language convention; primitive operations of nested tagged
9854 types.
9856 @node No_Implicit_Heap_Allocations
9857 @unnumberedsubsec No_Implicit_Heap_Allocations
9858 @findex No_Implicit_Heap_Allocations
9859 [RM D.7] No constructs are allowed to cause implicit heap allocation.
9861 @node No_Implicit_Loops
9862 @unnumberedsubsec No_Implicit_Loops
9863 @findex No_Implicit_Loops
9864 [GNAT] This restriction ensures that the generated code does not contain any
9865 implicit @code{for} loops, either by modifying
9866 the generated code where possible,
9867 or by rejecting any construct that would otherwise generate an implicit
9868 @code{for} loop. If this restriction is active, it is possible to build
9869 large array aggregates with all static components without generating an
9870 intermediate temporary, and without generating a loop to initialize individual
9871 components. Otherwise, a loop is created for arrays larger than about 5000
9872 scalar components.
9874 @node No_Initialize_Scalars
9875 @unnumberedsubsec No_Initialize_Scalars
9876 @findex No_Initialize_Scalars
9877 [GNAT] This restriction ensures that no unit in the partition is compiled with
9878 pragma Initialize_Scalars. This allows the generation of more efficient
9879 code, and in particular eliminates dummy null initialization routines that
9880 are otherwise generated for some record and array types.
9882 @node No_IO
9883 @unnumberedsubsec No_IO
9884 @findex No_IO
9885 [RM H.4] This restriction ensures at compile time that there are no
9886 dependences on any of the library units Sequential_IO, Direct_IO,
9887 Text_IO, Wide_Text_IO, Wide_Wide_Text_IO, or Stream_IO.
9889 @node No_Local_Allocators
9890 @unnumberedsubsec No_Local_Allocators
9891 @findex No_Local_Allocators
9892 [RM H.4] This restriction ensures at compile time that there are no
9893 occurrences of an allocator in subprograms, generic subprograms, tasks,
9894 and entry bodies.
9896 @node No_Local_Protected_Objects
9897 @unnumberedsubsec No_Local_Protected_Objects
9898 @findex No_Local_Protected_Objects
9899 [RM D.7] This restriction ensures at compile time that protected objects are
9900 only declared at the library level.
9902 @node No_Local_Timing_Events
9903 @unnumberedsubsec No_Local_Timing_Events
9904 @findex No_Local_Timing_Events
9905 [RM D.7] All objects of type Ada.Timing_Events.Timing_Event are
9906 declared at the library level.
9908 @node No_Nested_Finalization
9909 @unnumberedsubsec No_Nested_Finalization
9910 @findex No_Nested_Finalization
9911 [RM D.7] All objects requiring finalization are declared at the library level.
9913 @node No_Protected_Type_Allocators
9914 @unnumberedsubsec No_Protected_Type_Allocators
9915 @findex No_Protected_Type_Allocators
9916 [RM D.7] This restriction ensures at compile time that there are no allocator
9917 expressions that attempt to allocate protected objects.
9919 @node No_Protected_Types
9920 @unnumberedsubsec No_Protected_Types
9921 @findex No_Protected_Types
9922 [RM H.4] This restriction ensures at compile time that there are no
9923 declarations of protected types or protected objects.
9925 @node No_Recursion
9926 @unnumberedsubsec No_Recursion
9927 @findex No_Recursion
9928 [RM H.4] A program execution is erroneous if a subprogram is invoked as
9929 part of its execution.
9931 @node No_Reentrancy
9932 @unnumberedsubsec No_Reentrancy
9933 @findex No_Reentrancy
9934 [RM H.4] A program execution is erroneous if a subprogram is executed by
9935 two tasks at the same time.
9937 @node No_Relative_Delay
9938 @unnumberedsubsec No_Relative_Delay
9939 @findex No_Relative_Delay
9940 [RM D.7] This restriction ensures at compile time that there are no delay
9941 relative statements and prevents expressions such as @code{delay 1.23;} from
9942 appearing in source code.
9944 @node No_Requeue_Statements
9945 @unnumberedsubsec No_Requeue_Statements
9946 @findex No_Requeue_Statements
9947 [RM D.7] This restriction ensures at compile time that no requeue statements
9948 are permitted and prevents keyword @code{requeue} from being used in source
9949 code.
9951 @findex No_Requeue
9952 The restriction @code{No_Requeue} is recognized as a
9953 synonym for @code{No_Requeue_Statements}. This is retained for historical
9954 compatibility purposes (and a warning will be generated for its use if
9955 warnings on oNobsolescent features are activated).
9957 @node No_Secondary_Stack
9958 @unnumberedsubsec No_Secondary_Stack
9959 @findex No_Secondary_Stack
9960 [GNAT] This restriction ensures at compile time that the generated code
9961 does not contain any reference to the secondary stack.  The secondary
9962 stack is used to implement functions returning unconstrained objects
9963 (arrays or records) on some targets.
9965 @node No_Select_Statements
9966 @unnumberedsubsec No_Select_Statements
9967 @findex No_Select_Statements
9968 [RM D.7] This restriction ensures at compile time no select statements of any
9969 kind are permitted, that is the keyword @code{select} may not appear.
9971 @node No_Specific_Termination_Handlers
9972 @unnumberedsubsec No_Specific_Termination_Handlers
9973 @findex No_Specific_Termination_Handlers
9974 [RM D.7] There are no calls to Ada.Task_Termination.Set_Specific_Handler
9975 or to Ada.Task_Termination.Specific_Handler.
9977 @node No_Specification_of_Aspect
9978 @unnumberedsubsec No_Specification_of_Aspect
9979 @findex No_Specification_of_Aspect
9980 [RM 13.12.1] This restriction checks at compile time that no aspect
9981 specification, attribute definition clause, or pragma is given for a
9982 given aspect.
9984 @node No_Standard_Allocators_After_Elaboration
9985 @unnumberedsubsec No_Standard_Allocators_After_Elaboration
9986 @findex No_Standard_Allocators_After_Elaboration
9987 [RM D.7] Specifies that an allocator using a standard storage pool
9988 should never be evaluated at run time after the elaboration of the
9989 library items of the partition has completed. Otherwise, Storage_Error
9990 is raised.
9992 @node No_Standard_Storage_Pools
9993 @unnumberedsubsec No_Standard_Storage_Pools
9994 @findex No_Standard_Storage_Pools
9995 [GNAT] This restriction ensures at compile time that no access types
9996 use the standard default storage pool.  Any access type declared must
9997 have an explicit Storage_Pool attribute defined specifying a
9998 user-defined storage pool.
10000 @node No_Stream_Optimizations
10001 @unnumberedsubsec No_Stream_Optimizations
10002 @findex No_Stream_Optimizations
10003 [GNAT] This restriction affects the performance of stream operations on types
10004 @code{String}, @code{Wide_String} and @code{Wide_Wide_String}. By default, the
10005 compiler uses block reads and writes when manipulating @code{String} objects
10006 due to their supperior performance. When this restriction is in effect, the
10007 compiler performs all IO operations on a per-character basis.
10009 @node No_Streams
10010 @unnumberedsubsec No_Streams
10011 @findex No_Streams
10012 [GNAT] This restriction ensures at compile/bind time that there are no
10013 stream objects created and no use of stream attributes.
10014 This restriction does not forbid dependences on the package
10015 @code{Ada.Streams}. So it is permissible to with
10016 @code{Ada.Streams} (or another package that does so itself)
10017 as long as no actual stream objects are created and no
10018 stream attributes are used.
10020 Note that the use of restriction allows optimization of tagged types,
10021 since they do not need to worry about dispatching stream operations.
10022 To take maximum advantage of this space-saving optimization, any
10023 unit declaring a tagged type should be compiled with the restriction,
10024 though this is not required.
10026 @node No_Task_Allocators
10027 @unnumberedsubsec No_Task_Allocators
10028 @findex No_Task_Allocators
10029 [RM D.7] There are no allocators for task types
10030 or types containing task subcomponents.
10032 @node No_Task_Attributes_Package
10033 @unnumberedsubsec No_Task_Attributes_Package
10034 @findex No_Task_Attributes_Package
10035 [GNAT] This restriction ensures at compile time that there are no implicit or
10036 explicit dependencies on the package @code{Ada.Task_Attributes}.
10038 @findex No_Task_Attributes
10039 The restriction @code{No_Task_Attributes} is recognized as a synonym
10040 for @code{No_Task_Attributes_Package}. This is retained for historical
10041 compatibility purposes (and a warning will be generated for its use if
10042 warnings on obsolescent features are activated).
10044 @node No_Task_Hierarchy
10045 @unnumberedsubsec No_Task_Hierarchy
10046 @findex No_Task_Hierarchy
10047 [RM D.7] All (non-environment) tasks depend
10048 directly on the environment task of the partition.
10050 @node No_Task_Termination
10051 @unnumberedsubsec No_Task_Termination
10052 @findex No_Task_Termination
10053 [RM D.7] Tasks which terminate are erroneous.
10055 @node No_Tasking
10056 @unnumberedsubsec No_Tasking
10057 @findex No_Tasking
10058 [GNAT] This restriction prevents the declaration of tasks or task types
10059 throughout the partition.  It is similar in effect to the use of
10060 @code{Max_Tasks => 0} except that violations are caught at compile time
10061 and cause an error message to be output either by the compiler or
10062 binder.
10064 @node No_Terminate_Alternatives
10065 @unnumberedsubsec No_Terminate_Alternatives
10066 @findex No_Terminate_Alternatives
10067 [RM D.7] There are no selective accepts with terminate alternatives.
10069 @node No_Unchecked_Access
10070 @unnumberedsubsec No_Unchecked_Access
10071 @findex No_Unchecked_Access
10072 [RM H.4] This restriction ensures at compile time that there are no
10073 occurrences of the Unchecked_Access attribute.
10075 @node Simple_Barriers
10076 @unnumberedsubsec Simple_Barriers
10077 @findex Simple_Barriers
10078 [RM D.7] This restriction ensures at compile time that barriers in entry
10079 declarations for protected types are restricted to either static boolean
10080 expressions or references to simple boolean variables defined in the private
10081 part of the protected type.  No other form of entry barriers is permitted.
10083 @findex Boolean_Entry_Barriers
10084 The restriction @code{Boolean_Entry_Barriers} is recognized as a
10085 synonym for @code{Simple_Barriers}. This is retained for historical
10086 compatibility purposes (and a warning will be generated for its use if
10087 warnings on obsolescent features are activated).
10089 @node Static_Priorities
10090 @unnumberedsubsec Static_Priorities
10091 @findex Static_Priorities
10092 [GNAT] This restriction ensures at compile time that all priority expressions
10093 are static, and that there are no dependences on the package
10094 @code{Ada.Dynamic_Priorities}.
10096 @node Static_Storage_Size
10097 @unnumberedsubsec Static_Storage_Size
10098 @findex Static_Storage_Size
10099 [GNAT] This restriction ensures at compile time that any expression appearing
10100 in a Storage_Size pragma or attribute definition clause is static.
10102 @node Program Unit Level Restrictions
10103 @section Program Unit Level Restrictions
10105 @noindent
10106 The second set of restriction identifiers
10107 does not require partition-wide consistency.
10108 The restriction may be enforced for a single
10109 compilation unit without any effect on any of the
10110 other compilation units in the partition.
10112 @menu
10113 * No_Elaboration_Code::
10114 * No_Entry_Queue::
10115 * No_Implementation_Aspect_Specifications::
10116 * No_Implementation_Attributes::
10117 * No_Implementation_Identifiers::
10118 * No_Implementation_Pragmas::
10119 * No_Implementation_Restrictions::
10120 * No_Implementation_Units::
10121 * No_Implicit_Aliasing::
10122 * No_Obsolescent_Features::
10123 * No_Wide_Characters::
10124 * SPARK_05::
10125 @end menu
10127 @node No_Elaboration_Code
10128 @unnumberedsubsec No_Elaboration_Code
10129 @findex No_Elaboration_Code
10130 [GNAT] This restriction ensures at compile time that no elaboration code is
10131 generated.  Note that this is not the same condition as is enforced
10132 by pragma @code{Preelaborate}.  There are cases in which pragma
10133 @code{Preelaborate} still permits code to be generated (e.g.@: code
10134 to initialize a large array to all zeroes), and there are cases of units
10135 which do not meet the requirements for pragma @code{Preelaborate},
10136 but for which no elaboration code is generated.  Generally, it is
10137 the case that preelaborable units will meet the restrictions, with
10138 the exception of large aggregates initialized with an others_clause,
10139 and exception declarations (which generate calls to a run-time
10140 registry procedure).  This restriction is enforced on
10141 a unit by unit basis, it need not be obeyed consistently
10142 throughout a partition.
10144 In the case of aggregates with others, if the aggregate has a dynamic
10145 size, there is no way to eliminate the elaboration code (such dynamic
10146 bounds would be incompatible with @code{Preelaborate} in any case). If
10147 the bounds are static, then use of this restriction actually modifies
10148 the code choice of the compiler to avoid generating a loop, and instead
10149 generate the aggregate statically if possible, no matter how many times
10150 the data for the others clause must be repeatedly generated.
10152 It is not possible to precisely document
10153 the constructs which are compatible with this restriction, since,
10154 unlike most other restrictions, this is not a restriction on the
10155 source code, but a restriction on the generated object code. For
10156 example, if the source contains a declaration:
10158 @smallexample
10159    Val : constant Integer := X;
10160 @end smallexample
10162 @noindent
10163 where X is not a static constant, it may be possible, depending
10164 on complex optimization circuitry, for the compiler to figure
10165 out the value of X at compile time, in which case this initialization
10166 can be done by the loader, and requires no initialization code. It
10167 is not possible to document the precise conditions under which the
10168 optimizer can figure this out.
10170 Note that this the implementation of this restriction requires full
10171 code generation. If it is used in conjunction with "semantics only"
10172 checking, then some cases of violations may be missed.
10174 @node No_Entry_Queue
10175 @unnumberedsubsec No_Entry_Queue
10176 @findex No_Entry_Queue
10177 [GNAT] This restriction is a declaration that any protected entry compiled in
10178 the scope of the restriction has at most one task waiting on the entry
10179 at any one time, and so no queue is required.  This restriction is not
10180 checked at compile time.  A program execution is erroneous if an attempt
10181 is made to queue a second task on such an entry.
10183 @node No_Implementation_Aspect_Specifications
10184 @unnumberedsubsec No_Implementation_Aspect_Specifications
10185 @findex No_Implementation_Aspect_Specifications
10186 [RM 13.12.1] This restriction checks at compile time that no
10187 GNAT-defined aspects are present.  With this restriction, the only
10188 aspects that can be used are those defined in the Ada Reference Manual.
10190 @node No_Implementation_Attributes
10191 @unnumberedsubsec No_Implementation_Attributes
10192 @findex No_Implementation_Attributes
10193 [RM 13.12.1] This restriction checks at compile time that no
10194 GNAT-defined attributes are present.  With this restriction, the only
10195 attributes that can be used are those defined in the Ada Reference
10196 Manual.
10198 @node No_Implementation_Identifiers
10199 @unnumberedsubsec No_Implementation_Identifiers
10200 @findex No_Implementation_Identifiers
10201 [RM 13.12.1] This restriction checks at compile time that no
10202 implementation-defined identifiers (marked with pragma Implementation_Defined)
10203 occur within language-defined packages.
10205 @node No_Implementation_Pragmas
10206 @unnumberedsubsec No_Implementation_Pragmas
10207 @findex No_Implementation_Pragmas
10208 [RM 13.12.1] This restriction checks at compile time that no
10209 GNAT-defined pragmas are present.  With this restriction, the only
10210 pragmas that can be used are those defined in the Ada Reference Manual.
10212 @node No_Implementation_Restrictions
10213 @unnumberedsubsec No_Implementation_Restrictions
10214 @findex No_Implementation_Restrictions
10215 [GNAT] This restriction checks at compile time that no GNAT-defined restriction
10216 identifiers (other than @code{No_Implementation_Restrictions} itself)
10217 are present.  With this restriction, the only other restriction identifiers
10218 that can be used are those defined in the Ada Reference Manual.
10220 @node No_Implementation_Units
10221 @unnumberedsubsec No_Implementation_Units
10222 @findex No_Implementation_Units
10223 [RM 13.12.1] This restriction checks at compile time that there is no
10224 mention in the context clause of any implementation-defined descendants
10225 of packages Ada, Interfaces, or System.
10227 @node No_Implicit_Aliasing
10228 @unnumberedsubsec No_Implicit_Aliasing
10229 @findex No_Implicit_Aliasing
10230 [GNAT] This restriction, which is not required to be partition-wide consistent,
10231 requires an explicit aliased keyword for an object to which 'Access,
10232 'Unchecked_Access, or 'Address is applied, and forbids entirely the use of
10233 the 'Unrestricted_Access attribute for objects. Note: the reason that
10234 Unrestricted_Access is forbidden is that it would require the prefix
10235 to be aliased, and in such cases, it can always be replaced by
10236 the standard attribute Unchecked_Access which is preferable.
10238 @node No_Obsolescent_Features
10239 @unnumberedsubsec No_Obsolescent_Features
10240 @findex No_Obsolescent_Features
10241 [RM 13.12.1] This restriction checks at compile time that no obsolescent
10242 features are used, as defined in Annex J of the Ada Reference Manual.
10244 @node No_Wide_Characters
10245 @unnumberedsubsec No_Wide_Characters
10246 @findex No_Wide_Characters
10247 [GNAT] This restriction ensures at compile time that no uses of the types
10248 @code{Wide_Character} or @code{Wide_String} or corresponding wide
10249 wide types
10250 appear, and that no wide or wide wide string or character literals
10251 appear in the program (that is literals representing characters not in
10252 type @code{Character}).
10254 @node SPARK_05
10255 @unnumberedsubsec SPARK_05
10256 @findex SPARK_05
10257 [GNAT] This restriction checks at compile time that some constructs
10258 forbidden in SPARK 2005 are not present. Error messages related to
10259 SPARK restriction have the form:
10261 @findex SPARK
10262 The restriction @code{SPARK} is recognized as a
10263 synonym for @code{SPARK_05}. This is retained for historical
10264 compatibility purposes (and an unconditional warning will be generated
10265 for its use, advising replacement by @code{SPARK}.
10267 @smallexample
10268 violation of restriction "SPARK" at <file>
10269  <error message>
10270 @end smallexample
10272 This is not a replacement for the semantic checks performed by the
10273 SPARK Examiner tool, as the compiler only deals currently with code,
10274 not at all with SPARK 2005 annotations and does not guarantee catching all
10275 cases of constructs forbidden by SPARK 2005.
10277 Thus it may well be the case that code which passes the compiler with
10278 the SPARK restriction is rejected by the SPARK Examiner, e.g. due to
10279 the different visibility rules of the Examiner based on SPARK 2005
10280 @code{inherit} annotations.
10282 This restriction can be useful in providing an initial filter for code
10283 developed using SPARK 2005, or in examining legacy code to see how far
10284 it is from meeting SPARK restrictions.
10286 Note that if a unit is compiled in Ada 95 mode with SPARK restriction,
10287 violations will be reported for constructs forbidden in SPARK 95,
10288 instead of SPARK 2005.
10290 @c ------------------------
10291 @node Implementation Advice
10292 @chapter Implementation Advice
10293 @noindent
10294 The main text of the Ada Reference Manual describes the required
10295 behavior of all Ada compilers, and the GNAT compiler conforms to
10296 these requirements.
10298 In addition, there are sections throughout the Ada Reference Manual headed
10299 by the phrase ``Implementation advice''.  These sections are not normative,
10300 i.e., they do not specify requirements that all compilers must
10301 follow.  Rather they provide advice on generally desirable behavior.  You
10302 may wonder why they are not requirements.  The most typical answer is
10303 that they describe behavior that seems generally desirable, but cannot
10304 be provided on all systems, or which may be undesirable on some systems.
10306 As far as practical, GNAT follows the implementation advice sections in
10307 the Ada Reference Manual.  This chapter contains a table giving the
10308 reference manual section number, paragraph number and several keywords
10309 for each advice.  Each entry consists of the text of the advice followed
10310 by the GNAT interpretation of this advice.  Most often, this simply says
10311 ``followed'', which means that GNAT follows the advice.  However, in a
10312 number of cases, GNAT deliberately deviates from this advice, in which
10313 case the text describes what GNAT does and why.
10315 @cindex Error detection
10316 @unnumberedsec 1.1.3(20): Error Detection
10317 @sp 1
10318 @cartouche
10319 If an implementation detects the use of an unsupported Specialized Needs
10320 Annex feature at run time, it should raise @code{Program_Error} if
10321 feasible.
10322 @end cartouche
10323 Not relevant.  All specialized needs annex features are either supported,
10324 or diagnosed at compile time.
10326 @cindex Child Units
10327 @unnumberedsec 1.1.3(31): Child Units
10328 @sp 1
10329 @cartouche
10330 If an implementation wishes to provide implementation-defined
10331 extensions to the functionality of a language-defined library unit, it
10332 should normally do so by adding children to the library unit.
10333 @end cartouche
10334 Followed.
10336 @cindex Bounded errors
10337 @unnumberedsec 1.1.5(12): Bounded Errors
10338 @sp 1
10339 @cartouche
10340 If an implementation detects a bounded error or erroneous
10341 execution, it should raise @code{Program_Error}.
10342 @end cartouche
10343 Followed in all cases in which the implementation detects a bounded
10344 error or erroneous execution.  Not all such situations are detected at
10345 runtime.
10347 @cindex Pragmas
10348 @unnumberedsec 2.8(16): Pragmas
10349 @sp 1
10350 @cartouche
10351 Normally, implementation-defined pragmas should have no semantic effect
10352 for error-free programs; that is, if the implementation-defined pragmas
10353 are removed from a working program, the program should still be legal,
10354 and should still have the same semantics.
10355 @end cartouche
10356 The following implementation defined pragmas are exceptions to this
10357 rule:
10359 @table @code
10360 @item Abort_Defer
10361 Affects semantics
10362 @item Ada_83
10363 Affects legality
10364 @item Assert
10365 Affects semantics
10366 @item CPP_Class
10367 Affects semantics
10368 @item CPP_Constructor
10369 Affects semantics
10370 @item Debug
10371 Affects semantics
10372 @item Interface_Name
10373 Affects semantics
10374 @item Machine_Attribute
10375 Affects semantics
10376 @item Unimplemented_Unit
10377 Affects legality
10378 @item Unchecked_Union
10379 Affects semantics
10380 @end table
10382 @noindent
10383 In each of the above cases, it is essential to the purpose of the pragma
10384 that this advice not be followed.  For details see the separate section
10385 on implementation defined pragmas.
10387 @unnumberedsec 2.8(17-19): Pragmas
10388 @sp 1
10389 @cartouche
10390 Normally, an implementation should not define pragmas that can
10391 make an illegal program legal, except as follows:
10392 @end cartouche
10393 @sp 1
10394 @cartouche
10395 A pragma used to complete a declaration, such as a pragma @code{Import};
10396 @end cartouche
10397 @sp 1
10398 @cartouche
10399 A pragma used to configure the environment by adding, removing, or
10400 replacing @code{library_items}.
10401 @end cartouche
10402 See response to paragraph 16 of this same section.
10404 @cindex Character Sets
10405 @cindex Alternative Character Sets
10406 @unnumberedsec 3.5.2(5): Alternative Character Sets
10407 @sp 1
10408 @cartouche
10409 If an implementation supports a mode with alternative interpretations
10410 for @code{Character} and @code{Wide_Character}, the set of graphic
10411 characters of @code{Character} should nevertheless remain a proper
10412 subset of the set of graphic characters of @code{Wide_Character}.  Any
10413 character set ``localizations'' should be reflected in the results of
10414 the subprograms defined in the language-defined package
10415 @code{Characters.Handling} (see A.3) available in such a mode.  In a mode with
10416 an alternative interpretation of @code{Character}, the implementation should
10417 also support a corresponding change in what is a legal
10418 @code{identifier_letter}.
10419 @end cartouche
10420 Not all wide character modes follow this advice, in particular the JIS
10421 and IEC modes reflect standard usage in Japan, and in these encoding,
10422 the upper half of the Latin-1 set is not part of the wide-character
10423 subset, since the most significant bit is used for wide character
10424 encoding.  However, this only applies to the external forms.  Internally
10425 there is no such restriction.
10427 @cindex Integer types
10428 @unnumberedsec 3.5.4(28): Integer Types
10430 @sp 1
10431 @cartouche
10432 An implementation should support @code{Long_Integer} in addition to
10433 @code{Integer} if the target machine supports 32-bit (or longer)
10434 arithmetic.  No other named integer subtypes are recommended for package
10435 @code{Standard}.  Instead, appropriate named integer subtypes should be
10436 provided in the library package @code{Interfaces} (see B.2).
10437 @end cartouche
10438 @code{Long_Integer} is supported.  Other standard integer types are supported
10439 so this advice is not fully followed.  These types
10440 are supported for convenient interface to C, and so that all hardware
10441 types of the machine are easily available.
10442 @unnumberedsec 3.5.4(29): Integer Types
10444 @sp 1
10445 @cartouche
10446 An implementation for a two's complement machine should support
10447 modular types with a binary modulus up to @code{System.Max_Int*2+2}.  An
10448 implementation should support a non-binary modules up to @code{Integer'Last}.
10449 @end cartouche
10450 Followed.
10452 @cindex Enumeration values
10453 @unnumberedsec 3.5.5(8): Enumeration Values
10454 @sp 1
10455 @cartouche
10456 For the evaluation of a call on @code{@var{S}'Pos} for an enumeration
10457 subtype, if the value of the operand does not correspond to the internal
10458 code for any enumeration literal of its type (perhaps due to an
10459 un-initialized variable), then the implementation should raise
10460 @code{Program_Error}.  This is particularly important for enumeration
10461 types with noncontiguous internal codes specified by an
10462 enumeration_representation_clause.
10463 @end cartouche
10464 Followed.
10466 @cindex Float types
10467 @unnumberedsec 3.5.7(17): Float Types
10468 @sp 1
10469 @cartouche
10470 An implementation should support @code{Long_Float} in addition to
10471 @code{Float} if the target machine supports 11 or more digits of
10472 precision.  No other named floating point subtypes are recommended for
10473 package @code{Standard}.  Instead, appropriate named floating point subtypes
10474 should be provided in the library package @code{Interfaces} (see B.2).
10475 @end cartouche
10476 @code{Short_Float} and @code{Long_Long_Float} are also provided.  The
10477 former provides improved compatibility with other implementations
10478 supporting this type.  The latter corresponds to the highest precision
10479 floating-point type supported by the hardware.  On most machines, this
10480 will be the same as @code{Long_Float}, but on some machines, it will
10481 correspond to the IEEE extended form.  The notable case is all ia32
10482 (x86) implementations, where @code{Long_Long_Float} corresponds to
10483 the 80-bit extended precision format supported in hardware on this
10484 processor.  Note that the 128-bit format on SPARC is not supported,
10485 since this is a software rather than a hardware format.
10487 @cindex Multidimensional arrays
10488 @cindex Arrays, multidimensional
10489 @unnumberedsec 3.6.2(11): Multidimensional Arrays
10490 @sp 1
10491 @cartouche
10492 An implementation should normally represent multidimensional arrays in
10493 row-major order, consistent with the notation used for multidimensional
10494 array aggregates (see 4.3.3).  However, if a pragma @code{Convention}
10495 (@code{Fortran}, @dots{}) applies to a multidimensional array type, then
10496 column-major order should be used instead (see B.5, ``Interfacing with
10497 Fortran'').
10498 @end cartouche
10499 Followed.
10501 @findex Duration'Small
10502 @unnumberedsec 9.6(30-31): Duration'Small
10503 @sp 1
10504 @cartouche
10505 Whenever possible in an implementation, the value of @code{Duration'Small}
10506 should be no greater than 100 microseconds.
10507 @end cartouche
10508 Followed.  (@code{Duration'Small} = 10**(@minus{}9)).
10510 @sp 1
10511 @cartouche
10512 The time base for @code{delay_relative_statements} should be monotonic;
10513 it need not be the same time base as used for @code{Calendar.Clock}.
10514 @end cartouche
10515 Followed.
10517 @unnumberedsec 10.2.1(12): Consistent Representation
10518 @sp 1
10519 @cartouche
10520 In an implementation, a type declared in a pre-elaborated package should
10521 have the same representation in every elaboration of a given version of
10522 the package, whether the elaborations occur in distinct executions of
10523 the same program, or in executions of distinct programs or partitions
10524 that include the given version.
10525 @end cartouche
10526 Followed, except in the case of tagged types.  Tagged types involve
10527 implicit pointers to a local copy of a dispatch table, and these pointers
10528 have representations which thus depend on a particular elaboration of the
10529 package.  It is not easy to see how it would be possible to follow this
10530 advice without severely impacting efficiency of execution.
10532 @cindex Exception information
10533 @unnumberedsec 11.4.1(19): Exception Information
10534 @sp 1
10535 @cartouche
10536 @code{Exception_Message} by default and @code{Exception_Information}
10537 should produce information useful for
10538 debugging.  @code{Exception_Message} should be short, about one
10539 line.  @code{Exception_Information} can be long.  @code{Exception_Message}
10540 should not include the
10541 @code{Exception_Name}.  @code{Exception_Information} should include both
10542 the @code{Exception_Name} and the @code{Exception_Message}.
10543 @end cartouche
10544 Followed.  For each exception that doesn't have a specified
10545 @code{Exception_Message}, the compiler generates one containing the location
10546 of the raise statement.  This location has the form ``file:line'', where
10547 file is the short file name (without path information) and line is the line
10548 number in the file.  Note that in the case of the Zero Cost Exception
10549 mechanism, these messages become redundant with the Exception_Information that
10550 contains a full backtrace of the calling sequence, so they are disabled.
10551 To disable explicitly the generation of the source location message, use the
10552 Pragma @code{Discard_Names}.
10554 @cindex Suppression of checks
10555 @cindex Checks, suppression of
10556 @unnumberedsec 11.5(28): Suppression of Checks
10557 @sp 1
10558 @cartouche
10559 The implementation should minimize the code executed for checks that
10560 have been suppressed.
10561 @end cartouche
10562 Followed.
10564 @cindex Representation clauses
10565 @unnumberedsec 13.1 (21-24): Representation Clauses
10566 @sp 1
10567 @cartouche
10568 The recommended level of support for all representation items is
10569 qualified as follows:
10570 @end cartouche
10571 @sp 1
10572 @cartouche
10573 An implementation need not support representation items containing
10574 non-static expressions, except that an implementation should support a
10575 representation item for a given entity if each non-static expression in
10576 the representation item is a name that statically denotes a constant
10577 declared before the entity.
10578 @end cartouche
10579 Followed.  In fact, GNAT goes beyond the recommended level of support
10580 by allowing nonstatic expressions in some representation clauses even
10581 without the need to declare constants initialized with the values of
10582 such expressions.
10583 For example:
10585 @smallexample @c ada
10586   X : Integer;
10587   Y : Float;
10588   for Y'Address use X'Address;>>
10589 @end smallexample
10591 @sp 1
10592 @cartouche
10593 An implementation need not support a specification for the @code{Size}
10594 for a given composite subtype, nor the size or storage place for an
10595 object (including a component) of a given composite subtype, unless the
10596 constraints on the subtype and its composite subcomponents (if any) are
10597 all static constraints.
10598 @end cartouche
10599 Followed.  Size Clauses are not permitted on non-static components, as
10600 described above.
10602 @sp 1
10603 @cartouche
10604 An aliased component, or a component whose type is by-reference, should
10605 always be allocated at an addressable location.
10606 @end cartouche
10607 Followed.
10609 @cindex Packed types
10610 @unnumberedsec 13.2(6-8): Packed Types
10611 @sp 1
10612 @cartouche
10613 If a type is packed, then the implementation should try to minimize
10614 storage allocated to objects of the type, possibly at the expense of
10615 speed of accessing components, subject to reasonable complexity in
10616 addressing calculations.
10617 @end cartouche
10618 @sp 1
10619 @cartouche
10620 The recommended level of support pragma @code{Pack} is:
10622 For a packed record type, the components should be packed as tightly as
10623 possible subject to the Sizes of the component subtypes, and subject to
10624 any @code{record_representation_clause} that applies to the type; the
10625 implementation may, but need not, reorder components or cross aligned
10626 word boundaries to improve the packing.  A component whose @code{Size} is
10627 greater than the word size may be allocated an integral number of words.
10628 @end cartouche
10629 Followed.  Tight packing of arrays is supported for all component sizes
10630 up to 64-bits. If the array component size is 1 (that is to say, if
10631 the component is a boolean type or an enumeration type with two values)
10632 then values of the type are implicitly initialized to zero. This
10633 happens both for objects of the packed type, and for objects that have a
10634 subcomponent of the packed type.
10636 @sp 1
10637 @cartouche
10638 An implementation should support Address clauses for imported
10639 subprograms.
10640 @end cartouche
10641 Followed.
10642 @cindex @code{Address} clauses
10643 @unnumberedsec 13.3(14-19): Address Clauses
10645 @sp 1
10646 @cartouche
10647 For an array @var{X}, @code{@var{X}'Address} should point at the first
10648 component of the array, and not at the array bounds.
10649 @end cartouche
10650 Followed.
10652 @sp 1
10653 @cartouche
10654 The recommended level of support for the @code{Address} attribute is:
10656 @code{@var{X}'Address} should produce a useful result if @var{X} is an
10657 object that is aliased or of a by-reference type, or is an entity whose
10658 @code{Address} has been specified.
10659 @end cartouche
10660 Followed.  A valid address will be produced even if none of those
10661 conditions have been met.  If necessary, the object is forced into
10662 memory to ensure the address is valid.
10664 @sp 1
10665 @cartouche
10666 An implementation should support @code{Address} clauses for imported
10667 subprograms.
10668 @end cartouche
10669 Followed.
10671 @sp 1
10672 @cartouche
10673 Objects (including subcomponents) that are aliased or of a by-reference
10674 type should be allocated on storage element boundaries.
10675 @end cartouche
10676 Followed.
10678 @sp 1
10679 @cartouche
10680 If the @code{Address} of an object is specified, or it is imported or exported,
10681 then the implementation should not perform optimizations based on
10682 assumptions of no aliases.
10683 @end cartouche
10684 Followed.
10686 @cindex @code{Alignment} clauses
10687 @unnumberedsec 13.3(29-35): Alignment Clauses
10688 @sp 1
10689 @cartouche
10690 The recommended level of support for the @code{Alignment} attribute for
10691 subtypes is:
10693 An implementation should support specified Alignments that are factors
10694 and multiples of the number of storage elements per word, subject to the
10695 following:
10696 @end cartouche
10697 Followed.
10699 @sp 1
10700 @cartouche
10701 An implementation need not support specified @code{Alignment}s for
10702 combinations of @code{Size}s and @code{Alignment}s that cannot be easily
10703 loaded and stored by available machine instructions.
10704 @end cartouche
10705 Followed.
10707 @sp 1
10708 @cartouche
10709 An implementation need not support specified @code{Alignment}s that are
10710 greater than the maximum @code{Alignment} the implementation ever returns by
10711 default.
10712 @end cartouche
10713 Followed.
10715 @sp 1
10716 @cartouche
10717 The recommended level of support for the @code{Alignment} attribute for
10718 objects is:
10720 Same as above, for subtypes, but in addition:
10721 @end cartouche
10722 Followed.
10724 @sp 1
10725 @cartouche
10726 For stand-alone library-level objects of statically constrained
10727 subtypes, the implementation should support all @code{Alignment}s
10728 supported by the target linker.  For example, page alignment is likely to
10729 be supported for such objects, but not for subtypes.
10730 @end cartouche
10731 Followed.
10733 @cindex @code{Size} clauses
10734 @unnumberedsec 13.3(42-43): Size Clauses
10735 @sp 1
10736 @cartouche
10737 The recommended level of support for the @code{Size} attribute of
10738 objects is:
10740 A @code{Size} clause should be supported for an object if the specified
10741 @code{Size} is at least as large as its subtype's @code{Size}, and
10742 corresponds to a size in storage elements that is a multiple of the
10743 object's @code{Alignment} (if the @code{Alignment} is nonzero).
10744 @end cartouche
10745 Followed.
10747 @unnumberedsec 13.3(50-56): Size Clauses
10748 @sp 1
10749 @cartouche
10750 If the @code{Size} of a subtype is specified, and allows for efficient
10751 independent addressability (see 9.10) on the target architecture, then
10752 the @code{Size} of the following objects of the subtype should equal the
10753 @code{Size} of the subtype:
10755 Aliased objects (including components).
10756 @end cartouche
10757 Followed.
10759 @sp 1
10760 @cartouche
10761 @code{Size} clause on a composite subtype should not affect the
10762 internal layout of components.
10763 @end cartouche
10764 Followed. But note that this can be overridden by use of the implementation
10765 pragma Implicit_Packing in the case of packed arrays.
10767 @sp 1
10768 @cartouche
10769 The recommended level of support for the @code{Size} attribute of subtypes is:
10770 @end cartouche
10771 @sp 1
10772 @cartouche
10773 The @code{Size} (if not specified) of a static discrete or fixed point
10774 subtype should be the number of bits needed to represent each value
10775 belonging to the subtype using an unbiased representation, leaving space
10776 for a sign bit only if the subtype contains negative values.  If such a
10777 subtype is a first subtype, then an implementation should support a
10778 specified @code{Size} for it that reflects this representation.
10779 @end cartouche
10780 Followed.
10782 @sp 1
10783 @cartouche
10784 For a subtype implemented with levels of indirection, the @code{Size}
10785 should include the size of the pointers, but not the size of what they
10786 point at.
10787 @end cartouche
10788 Followed.
10790 @cindex @code{Component_Size} clauses
10791 @unnumberedsec 13.3(71-73): Component Size Clauses
10792 @sp 1
10793 @cartouche
10794 The recommended level of support for the @code{Component_Size}
10795 attribute is:
10796 @end cartouche
10797 @sp 1
10798 @cartouche
10799 An implementation need not support specified @code{Component_Sizes} that are
10800 less than the @code{Size} of the component subtype.
10801 @end cartouche
10802 Followed.
10804 @sp 1
10805 @cartouche
10806 An implementation should support specified @code{Component_Size}s that
10807 are factors and multiples of the word size.  For such
10808 @code{Component_Size}s, the array should contain no gaps between
10809 components.  For other @code{Component_Size}s (if supported), the array
10810 should contain no gaps between components when packing is also
10811 specified; the implementation should forbid this combination in cases
10812 where it cannot support a no-gaps representation.
10813 @end cartouche
10814 Followed.
10816 @cindex Enumeration representation clauses
10817 @cindex Representation clauses, enumeration
10818 @unnumberedsec 13.4(9-10): Enumeration Representation Clauses
10819 @sp 1
10820 @cartouche
10821 The recommended level of support for enumeration representation clauses
10824 An implementation need not support enumeration representation clauses
10825 for boolean types, but should at minimum support the internal codes in
10826 the range @code{System.Min_Int.System.Max_Int}.
10827 @end cartouche
10828 Followed.
10830 @cindex Record representation clauses
10831 @cindex Representation clauses, records
10832 @unnumberedsec 13.5.1(17-22): Record Representation Clauses
10833 @sp 1
10834 @cartouche
10835 The recommended level of support for
10836 @*@code{record_representation_clauses} is:
10838 An implementation should support storage places that can be extracted
10839 with a load, mask, shift sequence of machine code, and set with a load,
10840 shift, mask, store sequence, given the available machine instructions
10841 and run-time model.
10842 @end cartouche
10843 Followed.
10845 @sp 1
10846 @cartouche
10847 A storage place should be supported if its size is equal to the
10848 @code{Size} of the component subtype, and it starts and ends on a
10849 boundary that obeys the @code{Alignment} of the component subtype.
10850 @end cartouche
10851 Followed.
10853 @sp 1
10854 @cartouche
10855 If the default bit ordering applies to the declaration of a given type,
10856 then for a component whose subtype's @code{Size} is less than the word
10857 size, any storage place that does not cross an aligned word boundary
10858 should be supported.
10859 @end cartouche
10860 Followed.
10862 @sp 1
10863 @cartouche
10864 An implementation may reserve a storage place for the tag field of a
10865 tagged type, and disallow other components from overlapping that place.
10866 @end cartouche
10867 Followed.  The storage place for the tag field is the beginning of the tagged
10868 record, and its size is Address'Size.  GNAT will reject an explicit component
10869 clause for the tag field.
10871 @sp 1
10872 @cartouche
10873 An implementation need not support a @code{component_clause} for a
10874 component of an extension part if the storage place is not after the
10875 storage places of all components of the parent type, whether or not
10876 those storage places had been specified.
10877 @end cartouche
10878 Followed.  The above advice on record representation clauses is followed,
10879 and all mentioned features are implemented.
10881 @cindex Storage place attributes
10882 @unnumberedsec 13.5.2(5): Storage Place Attributes
10883 @sp 1
10884 @cartouche
10885 If a component is represented using some form of pointer (such as an
10886 offset) to the actual data of the component, and this data is contiguous
10887 with the rest of the object, then the storage place attributes should
10888 reflect the place of the actual data, not the pointer.  If a component is
10889 allocated discontinuously from the rest of the object, then a warning
10890 should be generated upon reference to one of its storage place
10891 attributes.
10892 @end cartouche
10893 Followed.  There are no such components in GNAT@.
10895 @cindex Bit ordering
10896 @unnumberedsec 13.5.3(7-8): Bit Ordering
10897 @sp 1
10898 @cartouche
10899 The recommended level of support for the non-default bit ordering is:
10900 @end cartouche
10901 @sp 1
10902 @cartouche
10903 If @code{Word_Size} = @code{Storage_Unit}, then the implementation
10904 should support the non-default bit ordering in addition to the default
10905 bit ordering.
10906 @end cartouche
10907 Followed.  Word size does not equal storage size in this implementation.
10908 Thus non-default bit ordering is not supported.
10910 @cindex @code{Address}, as private type
10911 @unnumberedsec 13.7(37): Address as Private
10912 @sp 1
10913 @cartouche
10914 @code{Address} should be of a private type.
10915 @end cartouche
10916 Followed.
10918 @cindex Operations, on @code{Address}
10919 @cindex @code{Address}, operations of
10920 @unnumberedsec 13.7.1(16): Address Operations
10921 @sp 1
10922 @cartouche
10923 Operations in @code{System} and its children should reflect the target
10924 environment semantics as closely as is reasonable.  For example, on most
10925 machines, it makes sense for address arithmetic to ``wrap around''.
10926 Operations that do not make sense should raise @code{Program_Error}.
10927 @end cartouche
10928 Followed.  Address arithmetic is modular arithmetic that wraps around.  No
10929 operation raises @code{Program_Error}, since all operations make sense.
10931 @cindex Unchecked conversion
10932 @unnumberedsec 13.9(14-17): Unchecked Conversion
10933 @sp 1
10934 @cartouche
10935 The @code{Size} of an array object should not include its bounds; hence,
10936 the bounds should not be part of the converted data.
10937 @end cartouche
10938 Followed.
10940 @sp 1
10941 @cartouche
10942 The implementation should not generate unnecessary run-time checks to
10943 ensure that the representation of @var{S} is a representation of the
10944 target type.  It should take advantage of the permission to return by
10945 reference when possible.  Restrictions on unchecked conversions should be
10946 avoided unless required by the target environment.
10947 @end cartouche
10948 Followed.  There are no restrictions on unchecked conversion.  A warning is
10949 generated if the source and target types do not have the same size since
10950 the semantics in this case may be target dependent.
10952 @sp 1
10953 @cartouche
10954 The recommended level of support for unchecked conversions is:
10955 @end cartouche
10956 @sp 1
10957 @cartouche
10958 Unchecked conversions should be supported and should be reversible in
10959 the cases where this clause defines the result.  To enable meaningful use
10960 of unchecked conversion, a contiguous representation should be used for
10961 elementary subtypes, for statically constrained array subtypes whose
10962 component subtype is one of the subtypes described in this paragraph,
10963 and for record subtypes without discriminants whose component subtypes
10964 are described in this paragraph.
10965 @end cartouche
10966 Followed.
10968 @cindex Heap usage, implicit
10969 @unnumberedsec 13.11(23-25): Implicit Heap Usage
10970 @sp 1
10971 @cartouche
10972 An implementation should document any cases in which it dynamically
10973 allocates heap storage for a purpose other than the evaluation of an
10974 allocator.
10975 @end cartouche
10976 Followed, the only other points at which heap storage is dynamically
10977 allocated are as follows:
10979 @itemize @bullet
10980 @item
10981 At initial elaboration time, to allocate dynamically sized global
10982 objects.
10984 @item
10985 To allocate space for a task when a task is created.
10987 @item
10988 To extend the secondary stack dynamically when needed.  The secondary
10989 stack is used for returning variable length results.
10990 @end itemize
10992 @sp 1
10993 @cartouche
10994 A default (implementation-provided) storage pool for an
10995 access-to-constant type should not have overhead to support deallocation of
10996 individual objects.
10997 @end cartouche
10998 Followed.
11000 @sp 1
11001 @cartouche
11002 A storage pool for an anonymous access type should be created at the
11003 point of an allocator for the type, and be reclaimed when the designated
11004 object becomes inaccessible.
11005 @end cartouche
11006 Followed.
11008 @cindex Unchecked deallocation
11009 @unnumberedsec 13.11.2(17): Unchecked De-allocation
11010 @sp 1
11011 @cartouche
11012 For a standard storage pool, @code{Free} should actually reclaim the
11013 storage.
11014 @end cartouche
11015 Followed.
11017 @cindex Stream oriented attributes
11018 @unnumberedsec 13.13.2(17): Stream Oriented Attributes
11019 @sp 1
11020 @cartouche
11021 If a stream element is the same size as a storage element, then the
11022 normal in-memory representation should be used by @code{Read} and
11023 @code{Write} for scalar objects.  Otherwise, @code{Read} and @code{Write}
11024 should use the smallest number of stream elements needed to represent
11025 all values in the base range of the scalar type.
11026 @end cartouche
11028 Followed.  By default, GNAT uses the interpretation suggested by AI-195,
11029 which specifies using the size of the first subtype.
11030 However, such an implementation is based on direct binary
11031 representations and is therefore target- and endianness-dependent.
11032 To address this issue, GNAT also supplies an alternate implementation
11033 of the stream attributes @code{Read} and @code{Write},
11034 which uses the target-independent XDR standard representation
11035 for scalar types.
11036 @cindex XDR representation
11037 @cindex @code{Read} attribute
11038 @cindex @code{Write} attribute
11039 @cindex Stream oriented attributes
11040 The XDR implementation is provided as an alternative body of the
11041 @code{System.Stream_Attributes} package, in the file
11042 @file{s-stratt-xdr.adb} in the GNAT library.
11043 There is no @file{s-stratt-xdr.ads} file.
11044 In order to install the XDR implementation, do the following:
11045 @enumerate
11046 @item Replace the default implementation of the
11047 @code{System.Stream_Attributes} package with the XDR implementation.
11048 For example on a Unix platform issue the commands:
11049 @smallexample
11050 $ mv s-stratt.adb s-stratt-default.adb
11051 $ mv s-stratt-xdr.adb s-stratt.adb
11052 @end smallexample
11054 @item
11055 Rebuild the GNAT run-time library as documented in
11056 @ref{GNAT and Libraries,,, gnat_ugn, @value{EDITION} User's Guide}.
11057 @end enumerate
11059 @unnumberedsec A.1(52): Names of Predefined Numeric Types
11060 @sp 1
11061 @cartouche
11062 If an implementation provides additional named predefined integer types,
11063 then the names should end with @samp{Integer} as in
11064 @samp{Long_Integer}.  If an implementation provides additional named
11065 predefined floating point types, then the names should end with
11066 @samp{Float} as in @samp{Long_Float}.
11067 @end cartouche
11068 Followed.
11070 @findex Ada.Characters.Handling
11071 @unnumberedsec A.3.2(49): @code{Ada.Characters.Handling}
11072 @sp 1
11073 @cartouche
11074 If an implementation provides a localized definition of @code{Character}
11075 or @code{Wide_Character}, then the effects of the subprograms in
11076 @code{Characters.Handling} should reflect the localizations.  See also
11077 3.5.2.
11078 @end cartouche
11079 Followed.  GNAT provides no such localized definitions.
11081 @cindex Bounded-length strings
11082 @unnumberedsec A.4.4(106): Bounded-Length String Handling
11083 @sp 1
11084 @cartouche
11085 Bounded string objects should not be implemented by implicit pointers
11086 and dynamic allocation.
11087 @end cartouche
11088 Followed.  No implicit pointers or dynamic allocation are used.
11090 @cindex Random number generation
11091 @unnumberedsec A.5.2(46-47): Random Number Generation
11092 @sp 1
11093 @cartouche
11094 Any storage associated with an object of type @code{Generator} should be
11095 reclaimed on exit from the scope of the object.
11096 @end cartouche
11097 Followed.
11099 @sp 1
11100 @cartouche
11101 If the generator period is sufficiently long in relation to the number
11102 of distinct initiator values, then each possible value of
11103 @code{Initiator} passed to @code{Reset} should initiate a sequence of
11104 random numbers that does not, in a practical sense, overlap the sequence
11105 initiated by any other value.  If this is not possible, then the mapping
11106 between initiator values and generator states should be a rapidly
11107 varying function of the initiator value.
11108 @end cartouche
11109 Followed.  The generator period is sufficiently long for the first
11110 condition here to hold true.
11112 @findex Get_Immediate
11113 @unnumberedsec A.10.7(23): @code{Get_Immediate}
11114 @sp 1
11115 @cartouche
11116 The @code{Get_Immediate} procedures should be implemented with
11117 unbuffered input.  For a device such as a keyboard, input should be
11118 @dfn{available} if a key has already been typed, whereas for a disk
11119 file, input should always be available except at end of file.  For a file
11120 associated with a keyboard-like device, any line-editing features of the
11121 underlying operating system should be disabled during the execution of
11122 @code{Get_Immediate}.
11123 @end cartouche
11124 Followed on all targets except VxWorks. For VxWorks, there is no way to
11125 provide this functionality that does not result in the input buffer being
11126 flushed before the @code{Get_Immediate} call. A special unit
11127 @code{Interfaces.Vxworks.IO} is provided that contains routines to enable
11128 this functionality.
11130 @findex Export
11131 @unnumberedsec B.1(39-41): Pragma @code{Export}
11132 @sp 1
11133 @cartouche
11134 If an implementation supports pragma @code{Export} to a given language,
11135 then it should also allow the main subprogram to be written in that
11136 language.  It should support some mechanism for invoking the elaboration
11137 of the Ada library units included in the system, and for invoking the
11138 finalization of the environment task.  On typical systems, the
11139 recommended mechanism is to provide two subprograms whose link names are
11140 @code{adainit} and @code{adafinal}.  @code{adainit} should contain the
11141 elaboration code for library units.  @code{adafinal} should contain the
11142 finalization code.  These subprograms should have no effect the second
11143 and subsequent time they are called.
11144 @end cartouche
11145 Followed.
11147 @sp 1
11148 @cartouche
11149 Automatic elaboration of pre-elaborated packages should be
11150 provided when pragma @code{Export} is supported.
11151 @end cartouche
11152 Followed when the main program is in Ada.  If the main program is in a
11153 foreign language, then
11154 @code{adainit} must be called to elaborate pre-elaborated
11155 packages.
11157 @sp 1
11158 @cartouche
11159 For each supported convention @var{L} other than @code{Intrinsic}, an
11160 implementation should support @code{Import} and @code{Export} pragmas
11161 for objects of @var{L}-compatible types and for subprograms, and pragma
11162 @code{Convention} for @var{L}-eligible types and for subprograms,
11163 presuming the other language has corresponding features.  Pragma
11164 @code{Convention} need not be supported for scalar types.
11165 @end cartouche
11166 Followed.
11168 @cindex Package @code{Interfaces}
11169 @findex Interfaces
11170 @unnumberedsec B.2(12-13): Package @code{Interfaces}
11171 @sp 1
11172 @cartouche
11173 For each implementation-defined convention identifier, there should be a
11174 child package of package Interfaces with the corresponding name.  This
11175 package should contain any declarations that would be useful for
11176 interfacing to the language (implementation) represented by the
11177 convention.  Any declarations useful for interfacing to any language on
11178 the given hardware architecture should be provided directly in
11179 @code{Interfaces}.
11180 @end cartouche
11181 Followed. An additional package not defined
11182 in the Ada Reference Manual is @code{Interfaces.CPP}, used
11183 for interfacing to C++.
11185 @sp 1
11186 @cartouche
11187 An implementation supporting an interface to C, COBOL, or Fortran should
11188 provide the corresponding package or packages described in the following
11189 clauses.
11190 @end cartouche
11191 Followed.  GNAT provides all the packages described in this section.
11193 @cindex C, interfacing with
11194 @unnumberedsec B.3(63-71): Interfacing with C
11195 @sp 1
11196 @cartouche
11197 An implementation should support the following interface correspondences
11198 between Ada and C@.
11199 @end cartouche
11200 Followed.
11202 @sp 1
11203 @cartouche
11204 An Ada procedure corresponds to a void-returning C function.
11205 @end cartouche
11206 Followed.
11208 @sp 1
11209 @cartouche
11210 An Ada function corresponds to a non-void C function.
11211 @end cartouche
11212 Followed.
11214 @sp 1
11215 @cartouche
11216 An Ada @code{in} scalar parameter is passed as a scalar argument to a C
11217 function.
11218 @end cartouche
11219 Followed.
11221 @sp 1
11222 @cartouche
11223 An Ada @code{in} parameter of an access-to-object type with designated
11224 type @var{T} is passed as a @code{@var{t}*} argument to a C function,
11225 where @var{t} is the C type corresponding to the Ada type @var{T}.
11226 @end cartouche
11227 Followed.
11229 @sp 1
11230 @cartouche
11231 An Ada access @var{T} parameter, or an Ada @code{out} or @code{in out}
11232 parameter of an elementary type @var{T}, is passed as a @code{@var{t}*}
11233 argument to a C function, where @var{t} is the C type corresponding to
11234 the Ada type @var{T}.  In the case of an elementary @code{out} or
11235 @code{in out} parameter, a pointer to a temporary copy is used to
11236 preserve by-copy semantics.
11237 @end cartouche
11238 Followed.
11240 @sp 1
11241 @cartouche
11242 An Ada parameter of a record type @var{T}, of any mode, is passed as a
11243 @code{@var{t}*} argument to a C function, where @var{t} is the C
11244 structure corresponding to the Ada type @var{T}.
11245 @end cartouche
11246 Followed.  This convention may be overridden by the use of the C_Pass_By_Copy
11247 pragma, or Convention, or by explicitly specifying the mechanism for a given
11248 call using an extended import or export pragma.
11250 @sp 1
11251 @cartouche
11252 An Ada parameter of an array type with component type @var{T}, of any
11253 mode, is passed as a @code{@var{t}*} argument to a C function, where
11254 @var{t} is the C type corresponding to the Ada type @var{T}.
11255 @end cartouche
11256 Followed.
11258 @sp 1
11259 @cartouche
11260 An Ada parameter of an access-to-subprogram type is passed as a pointer
11261 to a C function whose prototype corresponds to the designated
11262 subprogram's specification.
11263 @end cartouche
11264 Followed.
11266 @cindex COBOL, interfacing with
11267 @unnumberedsec B.4(95-98): Interfacing with COBOL
11268 @sp 1
11269 @cartouche
11270 An Ada implementation should support the following interface
11271 correspondences between Ada and COBOL@.
11272 @end cartouche
11273 Followed.
11275 @sp 1
11276 @cartouche
11277 An Ada access @var{T} parameter is passed as a @samp{BY REFERENCE} data item of
11278 the COBOL type corresponding to @var{T}.
11279 @end cartouche
11280 Followed.
11282 @sp 1
11283 @cartouche
11284 An Ada in scalar parameter is passed as a @samp{BY CONTENT} data item of
11285 the corresponding COBOL type.
11286 @end cartouche
11287 Followed.
11289 @sp 1
11290 @cartouche
11291 Any other Ada parameter is passed as a @samp{BY REFERENCE} data item of the
11292 COBOL type corresponding to the Ada parameter type; for scalars, a local
11293 copy is used if necessary to ensure by-copy semantics.
11294 @end cartouche
11295 Followed.
11297 @cindex Fortran, interfacing with
11298 @unnumberedsec B.5(22-26): Interfacing with Fortran
11299 @sp 1
11300 @cartouche
11301 An Ada implementation should support the following interface
11302 correspondences between Ada and Fortran:
11303 @end cartouche
11304 Followed.
11306 @sp 1
11307 @cartouche
11308 An Ada procedure corresponds to a Fortran subroutine.
11309 @end cartouche
11310 Followed.
11312 @sp 1
11313 @cartouche
11314 An Ada function corresponds to a Fortran function.
11315 @end cartouche
11316 Followed.
11318 @sp 1
11319 @cartouche
11320 An Ada parameter of an elementary, array, or record type @var{T} is
11321 passed as a @var{T} argument to a Fortran procedure, where @var{T} is
11322 the Fortran type corresponding to the Ada type @var{T}, and where the
11323 INTENT attribute of the corresponding dummy argument matches the Ada
11324 formal parameter mode; the Fortran implementation's parameter passing
11325 conventions are used.  For elementary types, a local copy is used if
11326 necessary to ensure by-copy semantics.
11327 @end cartouche
11328 Followed.
11330 @sp 1
11331 @cartouche
11332 An Ada parameter of an access-to-subprogram type is passed as a
11333 reference to a Fortran procedure whose interface corresponds to the
11334 designated subprogram's specification.
11335 @end cartouche
11336 Followed.
11338 @cindex Machine operations
11339 @unnumberedsec C.1(3-5): Access to Machine Operations
11340 @sp 1
11341 @cartouche
11342 The machine code or intrinsic support should allow access to all
11343 operations normally available to assembly language programmers for the
11344 target environment, including privileged instructions, if any.
11345 @end cartouche
11346 Followed.
11348 @sp 1
11349 @cartouche
11350 The interfacing pragmas (see Annex B) should support interface to
11351 assembler; the default assembler should be associated with the
11352 convention identifier @code{Assembler}.
11353 @end cartouche
11354 Followed.
11356 @sp 1
11357 @cartouche
11358 If an entity is exported to assembly language, then the implementation
11359 should allocate it at an addressable location, and should ensure that it
11360 is retained by the linking process, even if not otherwise referenced
11361 from the Ada code.  The implementation should assume that any call to a
11362 machine code or assembler subprogram is allowed to read or update every
11363 object that is specified as exported.
11364 @end cartouche
11365 Followed.
11367 @unnumberedsec C.1(10-16): Access to Machine Operations
11368 @sp 1
11369 @cartouche
11370 The implementation should ensure that little or no overhead is
11371 associated with calling intrinsic and machine-code subprograms.
11372 @end cartouche
11373 Followed for both intrinsics and machine-code subprograms.
11375 @sp 1
11376 @cartouche
11377 It is recommended that intrinsic subprograms be provided for convenient
11378 access to any machine operations that provide special capabilities or
11379 efficiency and that are not otherwise available through the language
11380 constructs.
11381 @end cartouche
11382 Followed.  A full set of machine operation intrinsic subprograms is provided.
11384 @sp 1
11385 @cartouche
11386 Atomic read-modify-write operations---e.g.@:, test and set, compare and
11387 swap, decrement and test, enqueue/dequeue.
11388 @end cartouche
11389 Followed on any target supporting such operations.
11391 @sp 1
11392 @cartouche
11393 Standard numeric functions---e.g.@:, sin, log.
11394 @end cartouche
11395 Followed on any target supporting such operations.
11397 @sp 1
11398 @cartouche
11399 String manipulation operations---e.g.@:, translate and test.
11400 @end cartouche
11401 Followed on any target supporting such operations.
11403 @sp 1
11404 @cartouche
11405 Vector operations---e.g.@:, compare vector against thresholds.
11406 @end cartouche
11407 Followed on any target supporting such operations.
11409 @sp 1
11410 @cartouche
11411 Direct operations on I/O ports.
11412 @end cartouche
11413 Followed on any target supporting such operations.
11415 @cindex Interrupt support
11416 @unnumberedsec C.3(28): Interrupt Support
11417 @sp 1
11418 @cartouche
11419 If the @code{Ceiling_Locking} policy is not in effect, the
11420 implementation should provide means for the application to specify which
11421 interrupts are to be blocked during protected actions, if the underlying
11422 system allows for a finer-grain control of interrupt blocking.
11423 @end cartouche
11424 Followed.  The underlying system does not allow for finer-grain control
11425 of interrupt blocking.
11427 @cindex Protected procedure handlers
11428 @unnumberedsec C.3.1(20-21): Protected Procedure Handlers
11429 @sp 1
11430 @cartouche
11431 Whenever possible, the implementation should allow interrupt handlers to
11432 be called directly by the hardware.
11433 @end cartouche
11434 Followed on any target where the underlying operating system permits
11435 such direct calls.
11437 @sp 1
11438 @cartouche
11439 Whenever practical, violations of any
11440 implementation-defined restrictions should be detected before run time.
11441 @end cartouche
11442 Followed.  Compile time warnings are given when possible.
11444 @cindex Package @code{Interrupts}
11445 @findex Interrupts
11446 @unnumberedsec C.3.2(25): Package @code{Interrupts}
11448 @sp 1
11449 @cartouche
11450 If implementation-defined forms of interrupt handler procedures are
11451 supported, such as protected procedures with parameters, then for each
11452 such form of a handler, a type analogous to @code{Parameterless_Handler}
11453 should be specified in a child package of @code{Interrupts}, with the
11454 same operations as in the predefined package Interrupts.
11455 @end cartouche
11456 Followed.
11458 @cindex Pre-elaboration requirements
11459 @unnumberedsec C.4(14): Pre-elaboration Requirements
11460 @sp 1
11461 @cartouche
11462 It is recommended that pre-elaborated packages be implemented in such a
11463 way that there should be little or no code executed at run time for the
11464 elaboration of entities not already covered by the Implementation
11465 Requirements.
11466 @end cartouche
11467 Followed.  Executable code is generated in some cases, e.g.@: loops
11468 to initialize large arrays.
11470 @unnumberedsec C.5(8): Pragma @code{Discard_Names}
11471 @sp 1
11472 @cartouche
11473 If the pragma applies to an entity, then the implementation should
11474 reduce the amount of storage used for storing names associated with that
11475 entity.
11476 @end cartouche
11477 Followed.
11479 @cindex Package @code{Task_Attributes}
11480 @findex Task_Attributes
11481 @unnumberedsec C.7.2(30): The Package Task_Attributes
11482 @sp 1
11483 @cartouche
11484 Some implementations are targeted to domains in which memory use at run
11485 time must be completely deterministic.  For such implementations, it is
11486 recommended that the storage for task attributes will be pre-allocated
11487 statically and not from the heap.  This can be accomplished by either
11488 placing restrictions on the number and the size of the task's
11489 attributes, or by using the pre-allocated storage for the first @var{N}
11490 attribute objects, and the heap for the others.  In the latter case,
11491 @var{N} should be documented.
11492 @end cartouche
11493 Not followed.  This implementation is not targeted to such a domain.
11495 @cindex Locking Policies
11496 @unnumberedsec D.3(17): Locking Policies
11498 @sp 1
11499 @cartouche
11500 The implementation should use names that end with @samp{_Locking} for
11501 locking policies defined by the implementation.
11502 @end cartouche
11503 Followed.  Two implementation-defined locking policies are defined,
11504 whose names (@code{Inheritance_Locking} and
11505 @code{Concurrent_Readers_Locking}) follow this suggestion.
11507 @cindex Entry queuing policies
11508 @unnumberedsec D.4(16): Entry Queuing Policies
11509 @sp 1
11510 @cartouche
11511 Names that end with @samp{_Queuing} should be used
11512 for all implementation-defined queuing policies.
11513 @end cartouche
11514 Followed.  No such implementation-defined queuing policies exist.
11516 @cindex Preemptive abort
11517 @unnumberedsec D.6(9-10): Preemptive Abort
11518 @sp 1
11519 @cartouche
11520 Even though the @code{abort_statement} is included in the list of
11521 potentially blocking operations (see 9.5.1), it is recommended that this
11522 statement be implemented in a way that never requires the task executing
11523 the @code{abort_statement} to block.
11524 @end cartouche
11525 Followed.
11527 @sp 1
11528 @cartouche
11529 On a multi-processor, the delay associated with aborting a task on
11530 another processor should be bounded; the implementation should use
11531 periodic polling, if necessary, to achieve this.
11532 @end cartouche
11533 Followed.
11535 @cindex Tasking restrictions
11536 @unnumberedsec D.7(21): Tasking Restrictions
11537 @sp 1
11538 @cartouche
11539 When feasible, the implementation should take advantage of the specified
11540 restrictions to produce a more efficient implementation.
11541 @end cartouche
11542 GNAT currently takes advantage of these restrictions by providing an optimized
11543 run time when the Ravenscar profile and the GNAT restricted run time set
11544 of restrictions are specified.  See pragma @code{Profile (Ravenscar)} and
11545 pragma @code{Profile (Restricted)} for more details.
11547 @cindex Time, monotonic
11548 @unnumberedsec D.8(47-49): Monotonic Time
11549 @sp 1
11550 @cartouche
11551 When appropriate, implementations should provide configuration
11552 mechanisms to change the value of @code{Tick}.
11553 @end cartouche
11554 Such configuration mechanisms are not appropriate to this implementation
11555 and are thus not supported.
11557 @sp 1
11558 @cartouche
11559 It is recommended that @code{Calendar.Clock} and @code{Real_Time.Clock}
11560 be implemented as transformations of the same time base.
11561 @end cartouche
11562 Followed.
11564 @sp 1
11565 @cartouche
11566 It is recommended that the @dfn{best} time base which exists in
11567 the underlying system be available to the application through
11568 @code{Clock}.  @dfn{Best} may mean highest accuracy or largest range.
11569 @end cartouche
11570 Followed.
11572 @cindex Partition communication subsystem
11573 @cindex PCS
11574 @unnumberedsec E.5(28-29): Partition Communication Subsystem
11575 @sp 1
11576 @cartouche
11577 Whenever possible, the PCS on the called partition should allow for
11578 multiple tasks to call the RPC-receiver with different messages and
11579 should allow them to block until the corresponding subprogram body
11580 returns.
11581 @end cartouche
11582 Followed by GLADE, a separately supplied PCS that can be used with
11583 GNAT.
11585 @sp 1
11586 @cartouche
11587 The @code{Write} operation on a stream of type @code{Params_Stream_Type}
11588 should raise @code{Storage_Error} if it runs out of space trying to
11589 write the @code{Item} into the stream.
11590 @end cartouche
11591 Followed by GLADE, a separately supplied PCS that can be used with
11592 GNAT@.
11594 @cindex COBOL support
11595 @unnumberedsec F(7): COBOL Support
11596 @sp 1
11597 @cartouche
11598 If COBOL (respectively, C) is widely supported in the target
11599 environment, implementations supporting the Information Systems Annex
11600 should provide the child package @code{Interfaces.COBOL} (respectively,
11601 @code{Interfaces.C}) specified in Annex B and should support a
11602 @code{convention_identifier} of COBOL (respectively, C) in the interfacing
11603 pragmas (see Annex B), thus allowing Ada programs to interface with
11604 programs written in that language.
11605 @end cartouche
11606 Followed.
11608 @cindex Decimal radix support
11609 @unnumberedsec F.1(2): Decimal Radix Support
11610 @sp 1
11611 @cartouche
11612 Packed decimal should be used as the internal representation for objects
11613 of subtype @var{S} when @var{S}'Machine_Radix = 10.
11614 @end cartouche
11615 Not followed.  GNAT ignores @var{S}'Machine_Radix and always uses binary
11616 representations.
11618 @cindex Numerics
11619 @unnumberedsec G: Numerics
11620 @sp 2
11621 @cartouche
11622 If Fortran (respectively, C) is widely supported in the target
11623 environment, implementations supporting the Numerics Annex
11624 should provide the child package @code{Interfaces.Fortran} (respectively,
11625 @code{Interfaces.C}) specified in Annex B and should support a
11626 @code{convention_identifier} of Fortran (respectively, C) in the interfacing
11627 pragmas (see Annex B), thus allowing Ada programs to interface with
11628 programs written in that language.
11629 @end cartouche
11630 Followed.
11632 @cindex Complex types
11633 @unnumberedsec G.1.1(56-58): Complex Types
11634 @sp 2
11635 @cartouche
11636 Because the usual mathematical meaning of multiplication of a complex
11637 operand and a real operand is that of the scaling of both components of
11638 the former by the latter, an implementation should not perform this
11639 operation by first promoting the real operand to complex type and then
11640 performing a full complex multiplication.  In systems that, in the
11641 future, support an Ada binding to IEC 559:1989, the latter technique
11642 will not generate the required result when one of the components of the
11643 complex operand is infinite.  (Explicit multiplication of the infinite
11644 component by the zero component obtained during promotion yields a NaN
11645 that propagates into the final result.) Analogous advice applies in the
11646 case of multiplication of a complex operand and a pure-imaginary
11647 operand, and in the case of division of a complex operand by a real or
11648 pure-imaginary operand.
11649 @end cartouche
11650 Not followed.
11652 @sp 1
11653 @cartouche
11654 Similarly, because the usual mathematical meaning of addition of a
11655 complex operand and a real operand is that the imaginary operand remains
11656 unchanged, an implementation should not perform this operation by first
11657 promoting the real operand to complex type and then performing a full
11658 complex addition.  In implementations in which the @code{Signed_Zeros}
11659 attribute of the component type is @code{True} (and which therefore
11660 conform to IEC 559:1989 in regard to the handling of the sign of zero in
11661 predefined arithmetic operations), the latter technique will not
11662 generate the required result when the imaginary component of the complex
11663 operand is a negatively signed zero.  (Explicit addition of the negative
11664 zero to the zero obtained during promotion yields a positive zero.)
11665 Analogous advice applies in the case of addition of a complex operand
11666 and a pure-imaginary operand, and in the case of subtraction of a
11667 complex operand and a real or pure-imaginary operand.
11668 @end cartouche
11669 Not followed.
11671 @sp 1
11672 @cartouche
11673 Implementations in which @code{Real'Signed_Zeros} is @code{True} should
11674 attempt to provide a rational treatment of the signs of zero results and
11675 result components.  As one example, the result of the @code{Argument}
11676 function should have the sign of the imaginary component of the
11677 parameter @code{X} when the point represented by that parameter lies on
11678 the positive real axis; as another, the sign of the imaginary component
11679 of the @code{Compose_From_Polar} function should be the same as
11680 (respectively, the opposite of) that of the @code{Argument} parameter when that
11681 parameter has a value of zero and the @code{Modulus} parameter has a
11682 nonnegative (respectively, negative) value.
11683 @end cartouche
11684 Followed.
11686 @cindex Complex elementary functions
11687 @unnumberedsec G.1.2(49): Complex Elementary Functions
11688 @sp 1
11689 @cartouche
11690 Implementations in which @code{Complex_Types.Real'Signed_Zeros} is
11691 @code{True} should attempt to provide a rational treatment of the signs
11692 of zero results and result components.  For example, many of the complex
11693 elementary functions have components that are odd functions of one of
11694 the parameter components; in these cases, the result component should
11695 have the sign of the parameter component at the origin.  Other complex
11696 elementary functions have zero components whose sign is opposite that of
11697 a parameter component at the origin, or is always positive or always
11698 negative.
11699 @end cartouche
11700 Followed.
11702 @cindex Accuracy requirements
11703 @unnumberedsec G.2.4(19): Accuracy Requirements
11704 @sp 1
11705 @cartouche
11706 The versions of the forward trigonometric functions without a
11707 @code{Cycle} parameter should not be implemented by calling the
11708 corresponding version with a @code{Cycle} parameter of
11709 @code{2.0*Numerics.Pi}, since this will not provide the required
11710 accuracy in some portions of the domain.  For the same reason, the
11711 version of @code{Log} without a @code{Base} parameter should not be
11712 implemented by calling the corresponding version with a @code{Base}
11713 parameter of @code{Numerics.e}.
11714 @end cartouche
11715 Followed.
11717 @cindex Complex arithmetic accuracy
11718 @cindex Accuracy, complex arithmetic
11719 @unnumberedsec G.2.6(15): Complex Arithmetic Accuracy
11721 @sp 1
11722 @cartouche
11723 The version of the @code{Compose_From_Polar} function without a
11724 @code{Cycle} parameter should not be implemented by calling the
11725 corresponding version with a @code{Cycle} parameter of
11726 @code{2.0*Numerics.Pi}, since this will not provide the required
11727 accuracy in some portions of the domain.
11728 @end cartouche
11729 Followed.
11731 @cindex Sequential elaboration policy
11732 @unnumberedsec H.6(15/2): Pragma Partition_Elaboration_Policy
11734 @sp 1
11735 @cartouche
11736 If the partition elaboration policy is @code{Sequential} and the
11737 Environment task becomes permanently blocked during elaboration then the
11738 partition is deadlocked and it is recommended that the partition be
11739 immediately terminated.
11740 @end cartouche
11741 Not followed.
11743 @c -----------------------------------------
11744 @node Implementation Defined Characteristics
11745 @chapter Implementation Defined Characteristics
11747 @noindent
11748 In addition to the implementation dependent pragmas and attributes, and the
11749 implementation advice, there are a number of other Ada features that are
11750 potentially implementation dependent and are designated as
11751 implementation-defined. These are mentioned throughout the Ada Reference
11752 Manual, and are summarized in Annex M@.
11754 A requirement for conforming Ada compilers is that they provide
11755 documentation describing how the implementation deals with each of these
11756 issues.  In this chapter, you will find each point in Annex M listed
11757 followed by a description in italic font of how GNAT
11758 handles the implementation dependence.
11760 You can use this chapter as a guide to minimizing implementation
11761 dependent features in your programs if portability to other compilers
11762 and other operating systems is an important consideration.  The numbers
11763 in each section below correspond to the paragraph number in the Ada
11764 Reference Manual.
11766 @sp 1
11767 @cartouche
11768 @noindent
11769 @strong{2}.  Whether or not each recommendation given in Implementation
11770 Advice is followed.  See 1.1.2(37).
11771 @end cartouche
11772 @noindent
11773 @xref{Implementation Advice}.
11775 @sp 1
11776 @cartouche
11777 @noindent
11778 @strong{3}.  Capacity limitations of the implementation.  See 1.1.3(3).
11779 @end cartouche
11780 @noindent
11781 The complexity of programs that can be processed is limited only by the
11782 total amount of available virtual memory, and disk space for the
11783 generated object files.
11785 @sp 1
11786 @cartouche
11787 @noindent
11788 @strong{4}.  Variations from the standard that are impractical to avoid
11789 given the implementation's execution environment.  See 1.1.3(6).
11790 @end cartouche
11791 @noindent
11792 There are no variations from the standard.
11794 @sp 1
11795 @cartouche
11796 @noindent
11797 @strong{5}.  Which @code{code_statement}s cause external
11798 interactions.  See 1.1.3(10).
11799 @end cartouche
11800 @noindent
11801 Any @code{code_statement} can potentially cause external interactions.
11803 @sp 1
11804 @cartouche
11805 @noindent
11806 @strong{6}.  The coded representation for the text of an Ada
11807 program.  See 2.1(4).
11808 @end cartouche
11809 @noindent
11810 See separate section on source representation.
11812 @sp 1
11813 @cartouche
11814 @noindent
11815 @strong{7}.  The control functions allowed in comments.  See 2.1(14).
11816 @end cartouche
11817 @noindent
11818 See separate section on source representation.
11820 @sp 1
11821 @cartouche
11822 @noindent
11823 @strong{8}.  The representation for an end of line.  See 2.2(2).
11824 @end cartouche
11825 @noindent
11826 See separate section on source representation.
11828 @sp 1
11829 @cartouche
11830 @noindent
11831 @strong{9}.  Maximum supported line length and lexical element
11832 length.  See 2.2(15).
11833 @end cartouche
11834 @noindent
11835 The maximum line length is 255 characters and the maximum length of
11836 a lexical element is also 255 characters. This is the default setting
11837 if not overridden by the use of compiler switch @option{-gnaty} (which
11838 sets the maximum to 79) or @option{-gnatyMnn} which allows the maximum
11839 line length to be specified to be any value up to 32767. The maximum
11840 length of a lexical element is the same as the maximum line length.
11842 @sp 1
11843 @cartouche
11844 @noindent
11845 @strong{10}.  Implementation defined pragmas.  See 2.8(14).
11846 @end cartouche
11847 @noindent
11849 @xref{Implementation Defined Pragmas}.
11851 @sp 1
11852 @cartouche
11853 @noindent
11854 @strong{11}.  Effect of pragma @code{Optimize}.  See 2.8(27).
11855 @end cartouche
11856 @noindent
11857 Pragma @code{Optimize}, if given with a @code{Time} or @code{Space}
11858 parameter, checks that the optimization flag is set, and aborts if it is
11859 not.
11861 @sp 1
11862 @cartouche
11863 @noindent
11864 @strong{12}.  The sequence of characters of the value returned by
11865 @code{@var{S}'Image} when some of the graphic characters of
11866 @code{@var{S}'Wide_Image} are not defined in @code{Character}.  See
11867 3.5(37).
11868 @end cartouche
11869 @noindent
11870 The sequence of characters is as defined by the wide character encoding
11871 method used for the source.  See section on source representation for
11872 further details.
11874 @sp 1
11875 @cartouche
11876 @noindent
11877 @strong{13}.  The predefined integer types declared in
11878 @code{Standard}.  See 3.5.4(25).
11879 @end cartouche
11880 @noindent
11881 @table @code
11882 @item Short_Short_Integer
11883 8 bit signed
11884 @item Short_Integer
11885 (Short) 16 bit signed
11886 @item Integer
11887 32 bit signed
11888 @item Long_Integer
11889 64 bit signed (on most 64 bit targets, depending on the C definition of long).
11890 32 bit signed (all other targets)
11891 @item Long_Long_Integer
11892 64 bit signed
11893 @end table
11895 @sp 1
11896 @cartouche
11897 @noindent
11898 @strong{14}.  Any nonstandard integer types and the operators defined
11899 for them.  See 3.5.4(26).
11900 @end cartouche
11901 @noindent
11902 There are no nonstandard integer types.
11904 @sp 1
11905 @cartouche
11906 @noindent
11907 @strong{15}.  Any nonstandard real types and the operators defined for
11908 them.  See 3.5.6(8).
11909 @end cartouche
11910 @noindent
11911 There are no nonstandard real types.
11913 @sp 1
11914 @cartouche
11915 @noindent
11916 @strong{16}.  What combinations of requested decimal precision and range
11917 are supported for floating point types.  See 3.5.7(7).
11918 @end cartouche
11919 @noindent
11920 The precision and range is as defined by the IEEE standard.
11922 @sp 1
11923 @cartouche
11924 @noindent
11925 @strong{17}.  The predefined floating point types declared in
11926 @code{Standard}.  See 3.5.7(16).
11927 @end cartouche
11928 @noindent
11929 @table @code
11930 @item Short_Float
11931 32 bit IEEE short
11932 @item Float
11933 (Short) 32 bit IEEE short
11934 @item Long_Float
11935 64 bit IEEE long
11936 @item Long_Long_Float
11937 64 bit IEEE long (80 bit IEEE long on x86 processors)
11938 @end table
11940 @sp 1
11941 @cartouche
11942 @noindent
11943 @strong{18}.  The small of an ordinary fixed point type.  See 3.5.9(8).
11944 @end cartouche
11945 @noindent
11946 @code{Fine_Delta} is 2**(@minus{}63)
11948 @sp 1
11949 @cartouche
11950 @noindent
11951 @strong{19}.  What combinations of small, range, and digits are
11952 supported for fixed point types.  See 3.5.9(10).
11953 @end cartouche
11954 @noindent
11955 Any combinations are permitted that do not result in a small less than
11956 @code{Fine_Delta} and do not result in a mantissa larger than 63 bits.
11957 If the mantissa is larger than 53 bits on machines where Long_Long_Float
11958 is 64 bits (true of all architectures except ia32), then the output from
11959 Text_IO is accurate to only 53 bits, rather than the full mantissa.  This
11960 is because floating-point conversions are used to convert fixed point.
11962 @sp 1
11963 @cartouche
11964 @noindent
11965 @strong{20}.  The result of @code{Tags.Expanded_Name} for types declared
11966 within an unnamed @code{block_statement}.  See 3.9(10).
11967 @end cartouche
11968 @noindent
11969 Block numbers of the form @code{B@var{nnn}}, where @var{nnn} is a
11970 decimal integer are allocated.
11972 @sp 1
11973 @cartouche
11974 @noindent
11975 @strong{21}.  Implementation-defined attributes.  See 4.1.4(12).
11976 @end cartouche
11977 @noindent
11978 @xref{Implementation Defined Attributes}.
11980 @sp 1
11981 @cartouche
11982 @noindent
11983 @strong{22}.  Any implementation-defined time types.  See 9.6(6).
11984 @end cartouche
11985 @noindent
11986 There are no implementation-defined time types.
11988 @sp 1
11989 @cartouche
11990 @noindent
11991 @strong{23}.  The time base associated with relative delays.
11992 @end cartouche
11993 @noindent
11994 See 9.6(20).  The time base used is that provided by the C library
11995 function @code{gettimeofday}.
11997 @sp 1
11998 @cartouche
11999 @noindent
12000 @strong{24}.  The time base of the type @code{Calendar.Time}.  See
12001 9.6(23).
12002 @end cartouche
12003 @noindent
12004 The time base used is that provided by the C library function
12005 @code{gettimeofday}.
12007 @sp 1
12008 @cartouche
12009 @noindent
12010 @strong{25}.  The time zone used for package @code{Calendar}
12011 operations.  See 9.6(24).
12012 @end cartouche
12013 @noindent
12014 The time zone used by package @code{Calendar} is the current system time zone
12015 setting for local time, as accessed by the C library function
12016 @code{localtime}.
12018 @sp 1
12019 @cartouche
12020 @noindent
12021 @strong{26}.  Any limit on @code{delay_until_statements} of
12022 @code{select_statements}.  See 9.6(29).
12023 @end cartouche
12024 @noindent
12025 There are no such limits.
12027 @sp 1
12028 @cartouche
12029 @noindent
12030 @strong{27}.  Whether or not two non-overlapping parts of a composite
12031 object are independently addressable, in the case where packing, record
12032 layout, or @code{Component_Size} is specified for the object.  See
12033 9.10(1).
12034 @end cartouche
12035 @noindent
12036 Separate components are independently addressable if they do not share
12037 overlapping storage units.
12039 @sp 1
12040 @cartouche
12041 @noindent
12042 @strong{28}.  The representation for a compilation.  See 10.1(2).
12043 @end cartouche
12044 @noindent
12045 A compilation is represented by a sequence of files presented to the
12046 compiler in a single invocation of the @command{gcc} command.
12048 @sp 1
12049 @cartouche
12050 @noindent
12051 @strong{29}.  Any restrictions on compilations that contain multiple
12052 compilation_units.  See 10.1(4).
12053 @end cartouche
12054 @noindent
12055 No single file can contain more than one compilation unit, but any
12056 sequence of files can be presented to the compiler as a single
12057 compilation.
12059 @sp 1
12060 @cartouche
12061 @noindent
12062 @strong{30}.  The mechanisms for creating an environment and for adding
12063 and replacing compilation units.  See 10.1.4(3).
12064 @end cartouche
12065 @noindent
12066 See separate section on compilation model.
12068 @sp 1
12069 @cartouche
12070 @noindent
12071 @strong{31}.  The manner of explicitly assigning library units to a
12072 partition.  See 10.2(2).
12073 @end cartouche
12074 @noindent
12075 If a unit contains an Ada main program, then the Ada units for the partition
12076 are determined by recursive application of the rules in the Ada Reference
12077 Manual section 10.2(2-6).  In other words, the Ada units will be those that
12078 are needed by the main program, and then this definition of need is applied
12079 recursively to those units, and the partition contains the transitive
12080 closure determined by this relationship.  In short, all the necessary units
12081 are included, with no need to explicitly specify the list.  If additional
12082 units are required, e.g.@: by foreign language units, then all units must be
12083 mentioned in the context clause of one of the needed Ada units.
12085 If the partition contains no main program, or if the main program is in
12086 a language other than Ada, then GNAT
12087 provides the binder options @option{-z} and @option{-n} respectively, and in
12088 this case a list of units can be explicitly supplied to the binder for
12089 inclusion in the partition (all units needed by these units will also
12090 be included automatically).  For full details on the use of these
12091 options, refer to @ref{The GNAT Make Program gnatmake,,, gnat_ugn,
12092 @value{EDITION} User's Guide}.
12094 @sp 1
12095 @cartouche
12096 @noindent
12097 @strong{32}.  The implementation-defined means, if any, of specifying
12098 which compilation units are needed by a given compilation unit.  See
12099 10.2(2).
12100 @end cartouche
12101 @noindent
12102 The units needed by a given compilation unit are as defined in
12103 the Ada Reference Manual section 10.2(2-6).  There are no
12104 implementation-defined pragmas or other implementation-defined
12105 means for specifying needed units.
12107 @sp 1
12108 @cartouche
12109 @noindent
12110 @strong{33}.  The manner of designating the main subprogram of a
12111 partition.  See 10.2(7).
12112 @end cartouche
12113 @noindent
12114 The main program is designated by providing the name of the
12115 corresponding @file{ALI} file as the input parameter to the binder.
12117 @sp 1
12118 @cartouche
12119 @noindent
12120 @strong{34}.  The order of elaboration of @code{library_items}.  See
12121 10.2(18).
12122 @end cartouche
12123 @noindent
12124 The first constraint on ordering is that it meets the requirements of
12125 Chapter 10 of the Ada Reference Manual.  This still leaves some
12126 implementation dependent choices, which are resolved by first
12127 elaborating bodies as early as possible (i.e., in preference to specs
12128 where there is a choice), and second by evaluating the immediate with
12129 clauses of a unit to determine the probably best choice, and
12130 third by elaborating in alphabetical order of unit names
12131 where a choice still remains.
12133 @sp 1
12134 @cartouche
12135 @noindent
12136 @strong{35}.  Parameter passing and function return for the main
12137 subprogram.  See 10.2(21).
12138 @end cartouche
12139 @noindent
12140 The main program has no parameters.  It may be a procedure, or a function
12141 returning an integer type.  In the latter case, the returned integer
12142 value is the return code of the program (overriding any value that
12143 may have been set by a call to @code{Ada.Command_Line.Set_Exit_Status}).
12145 @sp 1
12146 @cartouche
12147 @noindent
12148 @strong{36}.  The mechanisms for building and running partitions.  See
12149 10.2(24).
12150 @end cartouche
12151 @noindent
12152 GNAT itself supports programs with only a single partition.  The GNATDIST
12153 tool provided with the GLADE package (which also includes an implementation
12154 of the PCS) provides a completely flexible method for building and running
12155 programs consisting of multiple partitions.  See the separate GLADE manual
12156 for details.
12158 @sp 1
12159 @cartouche
12160 @noindent
12161 @strong{37}.  The details of program execution, including program
12162 termination.  See 10.2(25).
12163 @end cartouche
12164 @noindent
12165 See separate section on compilation model.
12167 @sp 1
12168 @cartouche
12169 @noindent
12170 @strong{38}.  The semantics of any non-active partitions supported by the
12171 implementation.  See 10.2(28).
12172 @end cartouche
12173 @noindent
12174 Passive partitions are supported on targets where shared memory is
12175 provided by the operating system.  See the GLADE reference manual for
12176 further details.
12178 @sp 1
12179 @cartouche
12180 @noindent
12181 @strong{39}.  The information returned by @code{Exception_Message}.  See
12182 11.4.1(10).
12183 @end cartouche
12184 @noindent
12185 Exception message returns the null string unless a specific message has
12186 been passed by the program.
12188 @sp 1
12189 @cartouche
12190 @noindent
12191 @strong{40}.  The result of @code{Exceptions.Exception_Name} for types
12192 declared within an unnamed @code{block_statement}.  See 11.4.1(12).
12193 @end cartouche
12194 @noindent
12195 Blocks have implementation defined names of the form @code{B@var{nnn}}
12196 where @var{nnn} is an integer.
12198 @sp 1
12199 @cartouche
12200 @noindent
12201 @strong{41}.  The information returned by
12202 @code{Exception_Information}.  See 11.4.1(13).
12203 @end cartouche
12204 @noindent
12205 @code{Exception_Information} returns a string in the following format:
12207 @smallexample
12208 @emph{Exception_Name:} nnnnn
12209 @emph{Message:} mmmmm
12210 @emph{PID:} ppp
12211 @emph{Load address:} 0xhhhh
12212 @emph{Call stack traceback locations:}
12213 0xhhhh 0xhhhh 0xhhhh ... 0xhhh
12214 @end smallexample
12216 @noindent
12217 where
12219 @itemize @bullet
12220 @item
12221 @code{nnnn} is the fully qualified name of the exception in all upper
12222 case letters. This line is always present.
12224 @item
12225 @code{mmmm} is the message (this line present only if message is non-null)
12227 @item
12228 @code{ppp} is the Process Id value as a decimal integer (this line is
12229 present only if the Process Id is nonzero). Currently we are
12230 not making use of this field.
12232 @item
12233 The Load address line, the Call stack traceback locations line and the
12234 following values are present only if at least one traceback location was
12235 recorded. The Load address indicates the address at which the main executable
12236 was loaded; this line may not be present if operating system hasn't relocated
12237 the main executable. The values are given in C style format, with lower case
12238 letters for a-f, and only as many digits present as are necessary.
12239 @end itemize
12241 @noindent
12242 The line terminator sequence at the end of each line, including
12243 the last line is a single @code{LF} character (@code{16#0A#}).
12245 @sp 1
12246 @cartouche
12247 @noindent
12248 @strong{42}.  Implementation-defined check names.  See 11.5(27).
12249 @end cartouche
12250 @noindent
12251 The implementation defined check name Alignment_Check controls checking of
12252 address clause values for proper alignment (that is, the address supplied
12253 must be consistent with the alignment of the type).
12255 The implementation defined check name Predicate_Check controls whether
12256 predicate checks are generated.
12258 The implementation defined check name Validity_Check controls whether
12259 validity checks are generated.
12261 In addition, a user program can add implementation-defined check names
12262 by means of the pragma Check_Name.
12264 @sp 1
12265 @cartouche
12266 @noindent
12267 @strong{43}.  The interpretation of each aspect of representation.  See
12268 13.1(20).
12269 @end cartouche
12270 @noindent
12271 See separate section on data representations.
12273 @sp 1
12274 @cartouche
12275 @noindent
12276 @strong{44}.  Any restrictions placed upon representation items.  See
12277 13.1(20).
12278 @end cartouche
12279 @noindent
12280 See separate section on data representations.
12282 @sp 1
12283 @cartouche
12284 @noindent
12285 @strong{45}.  The meaning of @code{Size} for indefinite subtypes.  See
12286 13.3(48).
12287 @end cartouche
12288 @noindent
12289 Size for an indefinite subtype is the maximum possible size, except that
12290 for the case of a subprogram parameter, the size of the parameter object
12291 is the actual size.
12293 @sp 1
12294 @cartouche
12295 @noindent
12296 @strong{46}.  The default external representation for a type tag.  See
12297 13.3(75).
12298 @end cartouche
12299 @noindent
12300 The default external representation for a type tag is the fully expanded
12301 name of the type in upper case letters.
12303 @sp 1
12304 @cartouche
12305 @noindent
12306 @strong{47}.  What determines whether a compilation unit is the same in
12307 two different partitions.  See 13.3(76).
12308 @end cartouche
12309 @noindent
12310 A compilation unit is the same in two different partitions if and only
12311 if it derives from the same source file.
12313 @sp 1
12314 @cartouche
12315 @noindent
12316 @strong{48}.  Implementation-defined components.  See 13.5.1(15).
12317 @end cartouche
12318 @noindent
12319 The only implementation defined component is the tag for a tagged type,
12320 which contains a pointer to the dispatching table.
12322 @sp 1
12323 @cartouche
12324 @noindent
12325 @strong{49}.  If @code{Word_Size} = @code{Storage_Unit}, the default bit
12326 ordering.  See 13.5.3(5).
12327 @end cartouche
12328 @noindent
12329 @code{Word_Size} (32) is not the same as @code{Storage_Unit} (8) for this
12330 implementation, so no non-default bit ordering is supported.  The default
12331 bit ordering corresponds to the natural endianness of the target architecture.
12333 @sp 1
12334 @cartouche
12335 @noindent
12336 @strong{50}.  The contents of the visible part of package @code{System}
12337 and its language-defined children.  See 13.7(2).
12338 @end cartouche
12339 @noindent
12340 See the definition of these packages in files @file{system.ads} and
12341 @file{s-stoele.ads}.
12343 @sp 1
12344 @cartouche
12345 @noindent
12346 @strong{51}.  The contents of the visible part of package
12347 @code{System.Machine_Code}, and the meaning of
12348 @code{code_statements}.  See 13.8(7).
12349 @end cartouche
12350 @noindent
12351 See the definition and documentation in file @file{s-maccod.ads}.
12353 @sp 1
12354 @cartouche
12355 @noindent
12356 @strong{52}.  The effect of unchecked conversion.  See 13.9(11).
12357 @end cartouche
12358 @noindent
12359 Unchecked conversion between types of the same size
12360 results in an uninterpreted transmission of the bits from one type
12361 to the other.  If the types are of unequal sizes, then in the case of
12362 discrete types, a shorter source is first zero or sign extended as
12363 necessary, and a shorter target is simply truncated on the left.
12364 For all non-discrete types, the source is first copied if necessary
12365 to ensure that the alignment requirements of the target are met, then
12366 a pointer is constructed to the source value, and the result is obtained
12367 by dereferencing this pointer after converting it to be a pointer to the
12368 target type. Unchecked conversions where the target subtype is an
12369 unconstrained array are not permitted. If the target alignment is
12370 greater than the source alignment, then a copy of the result is
12371 made with appropriate alignment
12373 @sp 1
12374 @cartouche
12375 @noindent
12376 @strong{53}. The semantics of operations on invalid representations.
12377 See 13.9.2(10-11).
12378 @end cartouche
12379 @noindent
12380 For assignments and other operations where the use of invalid values cannot
12381 result in erroneous behavior, the compiler ignores the possibility of invalid
12382 values. An exception is raised at the point where an invalid value would
12383 result in erroneous behavior. For example executing:
12385 @smallexample @c ada
12386 procedure invalidvals is
12387    X : Integer := -1;
12388    Y : Natural range 1 .. 10;
12389    for Y'Address use X'Address;
12390    Z : Natural range 1 .. 10;
12391    A : array (Natural range 1 .. 10) of Integer;
12392 begin
12393    Z := Y;     -- no exception
12394    A (Z) := 3; -- exception raised;
12395 end;
12396 @end smallexample
12398 @noindent
12399 As indicated, an exception is raised on the array assignment, but not
12400 on the simple assignment of the invalid negative value from Y to Z.
12402 @sp 1
12403 @cartouche
12404 @noindent
12405 @strong{53}.  The manner of choosing a storage pool for an access type
12406 when @code{Storage_Pool} is not specified for the type.  See 13.11(17).
12407 @end cartouche
12408 @noindent
12409 There are 3 different standard pools used by the compiler when
12410 @code{Storage_Pool} is not specified depending whether the type is local
12411 to a subprogram or defined at the library level and whether
12412 @code{Storage_Size}is specified or not.  See documentation in the runtime
12413 library units @code{System.Pool_Global}, @code{System.Pool_Size} and
12414 @code{System.Pool_Local} in files @file{s-poosiz.ads},
12415 @file{s-pooglo.ads} and @file{s-pooloc.ads} for full details on the
12416 default pools used.
12418 @sp 1
12419 @cartouche
12420 @noindent
12421 @strong{54}.  Whether or not the implementation provides user-accessible
12422 names for the standard pool type(s).  See 13.11(17).
12423 @end cartouche
12424 @noindent
12426 See documentation in the sources of the run time mentioned in paragraph
12427 @strong{53} .  All these pools are accessible by means of @code{with}'ing
12428 these units.
12430 @sp 1
12431 @cartouche
12432 @noindent
12433 @strong{55}.  The meaning of @code{Storage_Size}.  See 13.11(18).
12434 @end cartouche
12435 @noindent
12436 @code{Storage_Size} is measured in storage units, and refers to the
12437 total space available for an access type collection, or to the primary
12438 stack space for a task.
12440 @sp 1
12441 @cartouche
12442 @noindent
12443 @strong{56}.  Implementation-defined aspects of storage pools.  See
12444 13.11(22).
12445 @end cartouche
12446 @noindent
12447 See documentation in the sources of the run time mentioned in paragraph
12448 @strong{53} for details on GNAT-defined aspects of storage pools.
12450 @sp 1
12451 @cartouche
12452 @noindent
12453 @strong{57}.  The set of restrictions allowed in a pragma
12454 @code{Restrictions}.  See 13.12(7).
12455 @end cartouche
12456 @noindent
12457 @xref{Standard and Implementation Defined Restrictions}.
12459 @sp 1
12460 @cartouche
12461 @noindent
12462 @strong{58}.  The consequences of violating limitations on
12463 @code{Restrictions} pragmas.  See 13.12(9).
12464 @end cartouche
12465 @noindent
12466 Restrictions that can be checked at compile time result in illegalities
12467 if violated.  Currently there are no other consequences of violating
12468 restrictions.
12470 @sp 1
12471 @cartouche
12472 @noindent
12473 @strong{59}.  The representation used by the @code{Read} and
12474 @code{Write} attributes of elementary types in terms of stream
12475 elements.  See 13.13.2(9).
12476 @end cartouche
12477 @noindent
12478 The representation is the in-memory representation of the base type of
12479 the type, using the number of bits corresponding to the
12480 @code{@var{type}'Size} value, and the natural ordering of the machine.
12482 @sp 1
12483 @cartouche
12484 @noindent
12485 @strong{60}.  The names and characteristics of the numeric subtypes
12486 declared in the visible part of package @code{Standard}.  See A.1(3).
12487 @end cartouche
12488 @noindent
12489 See items describing the integer and floating-point types supported.
12491 @sp 1
12492 @cartouche
12493 @noindent
12494 @strong{61}. The string returned by @code{Character_Set_Version}.
12495 See A.3.5(3).
12496 @end cartouche
12497 @noindent
12498 @code{Ada.Wide_Characters.Handling.Character_Set_Version} returns
12499 the string "Unicode 4.0", referring to version 4.0 of the
12500 Unicode specification.
12502 @sp 1
12503 @cartouche
12504 @noindent
12505 @strong{62}.  The accuracy actually achieved by the elementary
12506 functions.  See A.5.1(1).
12507 @end cartouche
12508 @noindent
12509 The elementary functions correspond to the functions available in the C
12510 library.  Only fast math mode is implemented.
12512 @sp 1
12513 @cartouche
12514 @noindent
12515 @strong{63}.  The sign of a zero result from some of the operators or
12516 functions in @code{Numerics.Generic_Elementary_Functions}, when
12517 @code{Float_Type'Signed_Zeros} is @code{True}.  See A.5.1(46).
12518 @end cartouche
12519 @noindent
12520 The sign of zeroes follows the requirements of the IEEE 754 standard on
12521 floating-point.
12523 @sp 1
12524 @cartouche
12525 @noindent
12526 @strong{64}.  The value of
12527 @code{Numerics.Float_Random.Max_Image_Width}.  See A.5.2(27).
12528 @end cartouche
12529 @noindent
12530 Maximum image width is 6864, see library file @file{s-rannum.ads}.
12532 @sp 1
12533 @cartouche
12534 @noindent
12535 @strong{65}.  The value of
12536 @code{Numerics.Discrete_Random.Max_Image_Width}.  See A.5.2(27).
12537 @end cartouche
12538 @noindent
12539 Maximum image width is 6864, see library file @file{s-rannum.ads}.
12541 @sp 1
12542 @cartouche
12543 @noindent
12544 @strong{66}.  The algorithms for random number generation.  See
12545 A.5.2(32).
12546 @end cartouche
12547 @noindent
12548 The algorithm is the Mersenne Twister, as documented in the source file
12549 @file{s-rannum.adb}. This version of the algorithm has a period of
12550 2**19937-1.
12552 @sp 1
12553 @cartouche
12554 @noindent
12555 @strong{67}.  The string representation of a random number generator's
12556 state.  See A.5.2(38).
12557 @end cartouche
12558 @noindent
12559 The value returned by the Image function is the concatenation of
12560 the fixed-width decimal representations of the 624 32-bit integers
12561 of the state vector.
12563 @sp 1
12564 @cartouche
12565 @noindent
12566 @strong{68}.  The minimum time interval between calls to the
12567 time-dependent Reset procedure that are guaranteed to initiate different
12568 random number sequences.  See A.5.2(45).
12569 @end cartouche
12570 @noindent
12571 The minimum period between reset calls to guarantee distinct series of
12572 random numbers is one microsecond.
12574 @sp 1
12575 @cartouche
12576 @noindent
12577 @strong{69}.  The values of the @code{Model_Mantissa},
12578 @code{Model_Emin}, @code{Model_Epsilon}, @code{Model},
12579 @code{Safe_First}, and @code{Safe_Last} attributes, if the Numerics
12580 Annex is not supported.  See A.5.3(72).
12581 @end cartouche
12582 @noindent
12583 Run the compiler with @option{-gnatS} to produce a listing of package
12584 @code{Standard}, has the values of all numeric attributes.
12586 @sp 1
12587 @cartouche
12588 @noindent
12589 @strong{70}.  Any implementation-defined characteristics of the
12590 input-output packages.  See A.7(14).
12591 @end cartouche
12592 @noindent
12593 There are no special implementation defined characteristics for these
12594 packages.
12596 @sp 1
12597 @cartouche
12598 @noindent
12599 @strong{71}.  The value of @code{Buffer_Size} in @code{Storage_IO}.  See
12600 A.9(10).
12601 @end cartouche
12602 @noindent
12603 All type representations are contiguous, and the @code{Buffer_Size} is
12604 the value of @code{@var{type}'Size} rounded up to the next storage unit
12605 boundary.
12607 @sp 1
12608 @cartouche
12609 @noindent
12610 @strong{72}.  External files for standard input, standard output, and
12611 standard error See A.10(5).
12612 @end cartouche
12613 @noindent
12614 These files are mapped onto the files provided by the C streams
12615 libraries.  See source file @file{i-cstrea.ads} for further details.
12617 @sp 1
12618 @cartouche
12619 @noindent
12620 @strong{73}.  The accuracy of the value produced by @code{Put}.  See
12621 A.10.9(36).
12622 @end cartouche
12623 @noindent
12624 If more digits are requested in the output than are represented by the
12625 precision of the value, zeroes are output in the corresponding least
12626 significant digit positions.
12628 @sp 1
12629 @cartouche
12630 @noindent
12631 @strong{74}.  The meaning of @code{Argument_Count}, @code{Argument}, and
12632 @code{Command_Name}.  See A.15(1).
12633 @end cartouche
12634 @noindent
12635 These are mapped onto the @code{argv} and @code{argc} parameters of the
12636 main program in the natural manner.
12638 @sp 1
12639 @cartouche
12640 @noindent
12641 @strong{75}.  The interpretation of the @code{Form} parameter in procedure
12642 @code{Create_Directory}.  See A.16(56).
12643 @end cartouche
12644 @noindent
12645 The @code{Form} parameter is not used.
12647 @sp 1
12648 @cartouche
12649 @noindent
12650 @strong{76}.  The interpretation of the @code{Form} parameter in procedure
12651 @code{Create_Path}.  See A.16(60).
12652 @end cartouche
12653 @noindent
12654 The @code{Form} parameter is not used.
12656 @sp 1
12657 @cartouche
12658 @noindent
12659 @strong{77}.  The interpretation of the @code{Form} parameter in procedure
12660 @code{Copy_File}.  See A.16(68).
12661 @end cartouche
12662 @noindent
12663 The @code{Form} parameter is case-insensitive.
12665 Two fields are recognized in the @code{Form} parameter:
12667 @table @code
12669 @item preserve=<value>
12671 @item mode=<value>
12673 @end table
12675 @noindent
12676 <value> starts immediately after the character '=' and ends with the
12677 character immediately preceding the next comma (',') or with the last
12678 character of the parameter.
12680 The only possible values for preserve= are:
12682 @table @code
12684 @item no_attributes
12685 Do not try to preserve any file attributes. This is the default if no
12686 preserve= is found in Form.
12688 @item all_attributes
12689 Try to preserve all file attributes (timestamps, access rights).
12691 @item timestamps
12692 Preserve the timestamp of the copied file, but not the other file attributes.
12694 @end table
12696 @noindent
12697 The only possible values for mode= are:
12699 @table @code
12701 @item copy
12702 Only do the copy if the destination file does not already exist. If it already
12703 exists, Copy_File fails.
12705 @item overwrite
12706 Copy the file in all cases. Overwrite an already existing destination file.
12708 @item append
12709 Append the original file to the destination file. If the destination file does
12710 not exist, the destination file is a copy of the source file. When mode=append,
12711 the field preserve=, if it exists, is not taken into account.
12713 @end table
12715 @noindent
12716 If the Form parameter includes one or both of the fields and the value or
12717 values are incorrect, Copy_file fails with Use_Error.
12719 Examples of correct Forms:
12721 @smallexample
12722 Form => "preserve=no_attributes,mode=overwrite" (the default)
12723 Form => "mode=append"
12724 Form => "mode=copy, preserve=all_attributes"
12725 @end smallexample
12727 @noindent
12728 Examples of incorrect Forms
12730 @smallexample
12731 Form => "preserve=junk"
12732 Form => "mode=internal, preserve=timestamps"
12733 @end smallexample
12735 @sp 1
12736 @cartouche
12737 @noindent
12738 @strong{78}.  Implementation-defined convention names.  See B.1(11).
12739 @end cartouche
12740 @noindent
12741 The following convention names are supported
12743 @table @code
12744 @item  Ada
12746 @item Ada_Pass_By_Copy
12747 Allowed for any types except by-reference types such as limited
12748 records. Compatible with convention Ada, but causes any parameters
12749 with this convention to be passed by copy.
12750 @item Ada_Pass_By_Reference
12751 Allowed for any types except by-copy types such as scalars.
12752 Compatible with convention Ada, but causes any parameters
12753 with this convention to be passed by reference.
12754 @item Assembler
12755 Assembly language
12756 @item Asm
12757 Synonym for Assembler
12758 @item Assembly
12759 Synonym for Assembler
12760 @item C
12762 @item C_Pass_By_Copy
12763 Allowed only for record types, like C, but also notes that record
12764 is to be passed by copy rather than reference.
12765 @item COBOL
12766 COBOL
12767 @item C_Plus_Plus (or CPP)
12769 @item Default
12770 Treated the same as C
12771 @item External
12772 Treated the same as C
12773 @item Fortran
12774 Fortran
12775 @item Intrinsic
12776 For support of pragma @code{Import} with convention Intrinsic, see
12777 separate section on Intrinsic Subprograms.
12778 @item Stdcall
12779 Stdcall (used for Windows implementations only).  This convention correspond
12780 to the WINAPI (previously called Pascal convention) C/C++ convention under
12781 Windows.  A routine with this convention cleans the stack before
12782 exit. This pragma cannot be applied to a dispatching call.
12783 @item DLL
12784 Synonym for Stdcall
12785 @item Win32
12786 Synonym for Stdcall
12787 @item Stubbed
12788 Stubbed is a special convention used to indicate that the body of the
12789 subprogram will be entirely ignored.  Any call to the subprogram
12790 is converted into a raise of the @code{Program_Error} exception.  If a
12791 pragma @code{Import} specifies convention @code{stubbed} then no body need
12792 be present at all.  This convention is useful during development for the
12793 inclusion of subprograms whose body has not yet been written.
12795 @end table
12796 @noindent
12797 In addition, all otherwise unrecognized convention names are also
12798 treated as being synonymous with convention C@.  In all implementations
12799 except for VMS, use of such other names results in a warning.  In VMS
12800 implementations, these names are accepted silently.
12802 @sp 1
12803 @cartouche
12804 @noindent
12805 @strong{79}.  The meaning of link names.  See B.1(36).
12806 @end cartouche
12807 @noindent
12808 Link names are the actual names used by the linker.
12810 @sp 1
12811 @cartouche
12812 @noindent
12813 @strong{80}.  The manner of choosing link names when neither the link
12814 name nor the address of an imported or exported entity is specified.  See
12815 B.1(36).
12816 @end cartouche
12817 @noindent
12818 The default linker name is that which would be assigned by the relevant
12819 external language, interpreting the Ada name as being in all lower case
12820 letters.
12822 @sp 1
12823 @cartouche
12824 @noindent
12825 @strong{81}.  The effect of pragma @code{Linker_Options}.  See B.1(37).
12826 @end cartouche
12827 @noindent
12828 The string passed to @code{Linker_Options} is presented uninterpreted as
12829 an argument to the link command, unless it contains ASCII.NUL characters.
12830 NUL characters if they appear act as argument separators, so for example
12832 @smallexample @c ada
12833 pragma Linker_Options ("-labc" & ASCII.NUL & "-ldef");
12834 @end smallexample
12836 @noindent
12837 causes two separate arguments @code{-labc} and @code{-ldef} to be passed to the
12838 linker. The order of linker options is preserved for a given unit. The final
12839 list of options passed to the linker is in reverse order of the elaboration
12840 order. For example, linker options for a body always appear before the options
12841 from the corresponding package spec.
12843 @sp 1
12844 @cartouche
12845 @noindent
12846 @strong{82}.  The contents of the visible part of package
12847 @code{Interfaces} and its language-defined descendants.  See B.2(1).
12848 @end cartouche
12849 @noindent
12850 See files with prefix @file{i-} in the distributed library.
12852 @sp 1
12853 @cartouche
12854 @noindent
12855 @strong{83}.  Implementation-defined children of package
12856 @code{Interfaces}.  The contents of the visible part of package
12857 @code{Interfaces}.  See B.2(11).
12858 @end cartouche
12859 @noindent
12860 See files with prefix @file{i-} in the distributed library.
12862 @sp 1
12863 @cartouche
12864 @noindent
12865 @strong{84}.  The types @code{Floating}, @code{Long_Floating},
12866 @code{Binary}, @code{Long_Binary}, @code{Decimal_ Element}, and
12867 @code{COBOL_Character}; and the initialization of the variables
12868 @code{Ada_To_COBOL} and @code{COBOL_To_Ada}, in
12869 @code{Interfaces.COBOL}.  See B.4(50).
12870 @end cartouche
12871 @noindent
12872 @table @code
12873 @item Floating
12874 Float
12875 @item Long_Floating
12876 (Floating) Long_Float
12877 @item Binary
12878 Integer
12879 @item Long_Binary
12880 Long_Long_Integer
12881 @item Decimal_Element
12882 Character
12883 @item COBOL_Character
12884 Character
12885 @end table
12887 @noindent
12888 For initialization, see the file @file{i-cobol.ads} in the distributed library.
12890 @sp 1
12891 @cartouche
12892 @noindent
12893 @strong{85}.  Support for access to machine instructions.  See C.1(1).
12894 @end cartouche
12895 @noindent
12896 See documentation in file @file{s-maccod.ads} in the distributed library.
12898 @sp 1
12899 @cartouche
12900 @noindent
12901 @strong{86}.  Implementation-defined aspects of access to machine
12902 operations.  See C.1(9).
12903 @end cartouche
12904 @noindent
12905 See documentation in file @file{s-maccod.ads} in the distributed library.
12907 @sp 1
12908 @cartouche
12909 @noindent
12910 @strong{87}.  Implementation-defined aspects of interrupts.  See C.3(2).
12911 @end cartouche
12912 @noindent
12913 Interrupts are mapped to signals or conditions as appropriate.  See
12914 definition of unit
12915 @code{Ada.Interrupt_Names} in source file @file{a-intnam.ads} for details
12916 on the interrupts supported on a particular target.
12918 @sp 1
12919 @cartouche
12920 @noindent
12921 @strong{88}.  Implementation-defined aspects of pre-elaboration.  See
12922 C.4(13).
12923 @end cartouche
12924 @noindent
12925 GNAT does not permit a partition to be restarted without reloading,
12926 except under control of the debugger.
12928 @sp 1
12929 @cartouche
12930 @noindent
12931 @strong{89}.  The semantics of pragma @code{Discard_Names}.  See C.5(7).
12932 @end cartouche
12933 @noindent
12934 Pragma @code{Discard_Names} causes names of enumeration literals to
12935 be suppressed.  In the presence of this pragma, the Image attribute
12936 provides the image of the Pos of the literal, and Value accepts
12937 Pos values.
12939 @sp 1
12940 @cartouche
12941 @noindent
12942 @strong{90}.  The result of the @code{Task_Identification.Image}
12943 attribute.  See C.7.1(7).
12944 @end cartouche
12945 @noindent
12946 The result of this attribute is a string that identifies
12947 the object or component that denotes a given task. If a variable @code{Var}
12948 has a task type, the image for this task will have the form @code{Var_@var{XXXXXXXX}},
12949 where the suffix
12950 is the hexadecimal representation of the virtual address of the corresponding
12951 task control block. If the variable is an array of tasks, the image of each
12952 task will have the form of an indexed component indicating the position of a
12953 given task in the array, e.g.@: @code{Group(5)_@var{XXXXXXX}}. If the task is a
12954 component of a record, the image of the task will have the form of a selected
12955 component. These rules are fully recursive, so that the image of a task that
12956 is a subcomponent of a composite object corresponds to the expression that
12957 designates this task.
12958 @noindent
12959 If a task is created by an allocator, its image depends on the context. If the
12960 allocator is part of an object declaration, the rules described above are used
12961 to construct its image, and this image is not affected by subsequent
12962 assignments. If the allocator appears within an expression, the image
12963 includes only the name of the task type.
12964 @noindent
12965 If the configuration pragma Discard_Names is present, or if the restriction
12966 No_Implicit_Heap_Allocation is in effect,  the image reduces to
12967 the numeric suffix, that is to say the hexadecimal representation of the
12968 virtual address of the control block of the task.
12969 @sp 1
12970 @cartouche
12971 @noindent
12972 @strong{91}.  The value of @code{Current_Task} when in a protected entry
12973 or interrupt handler.  See C.7.1(17).
12974 @end cartouche
12975 @noindent
12976 Protected entries or interrupt handlers can be executed by any
12977 convenient thread, so the value of @code{Current_Task} is undefined.
12979 @sp 1
12980 @cartouche
12981 @noindent
12982 @strong{92}.  The effect of calling @code{Current_Task} from an entry
12983 body or interrupt handler.  See C.7.1(19).
12984 @end cartouche
12985 @noindent
12986 The effect of calling @code{Current_Task} from an entry body or
12987 interrupt handler is to return the identification of the task currently
12988 executing the code.
12990 @sp 1
12991 @cartouche
12992 @noindent
12993 @strong{93}.  Implementation-defined aspects of
12994 @code{Task_Attributes}.  See C.7.2(19).
12995 @end cartouche
12996 @noindent
12997 There are no implementation-defined aspects of @code{Task_Attributes}.
12999 @sp 1
13000 @cartouche
13001 @noindent
13002 @strong{94}.  Values of all @code{Metrics}.  See D(2).
13003 @end cartouche
13004 @noindent
13005 The metrics information for GNAT depends on the performance of the
13006 underlying operating system.  The sources of the run-time for tasking
13007 implementation, together with the output from @option{-gnatG} can be
13008 used to determine the exact sequence of operating systems calls made
13009 to implement various tasking constructs.  Together with appropriate
13010 information on the performance of the underlying operating system,
13011 on the exact target in use, this information can be used to determine
13012 the required metrics.
13014 @sp 1
13015 @cartouche
13016 @noindent
13017 @strong{95}.  The declarations of @code{Any_Priority} and
13018 @code{Priority}.  See D.1(11).
13019 @end cartouche
13020 @noindent
13021 See declarations in file @file{system.ads}.
13023 @sp 1
13024 @cartouche
13025 @noindent
13026 @strong{96}.  Implementation-defined execution resources.  See D.1(15).
13027 @end cartouche
13028 @noindent
13029 There are no implementation-defined execution resources.
13031 @sp 1
13032 @cartouche
13033 @noindent
13034 @strong{97}.  Whether, on a multiprocessor, a task that is waiting for
13035 access to a protected object keeps its processor busy.  See D.2.1(3).
13036 @end cartouche
13037 @noindent
13038 On a multi-processor, a task that is waiting for access to a protected
13039 object does not keep its processor busy.
13041 @sp 1
13042 @cartouche
13043 @noindent
13044 @strong{98}.  The affect of implementation defined execution resources
13045 on task dispatching.  See D.2.1(9).
13046 @end cartouche
13047 @noindent
13048 Tasks map to threads in the threads package used by GNAT@.  Where possible
13049 and appropriate, these threads correspond to native threads of the
13050 underlying operating system.
13052 @sp 1
13053 @cartouche
13054 @noindent
13055 @strong{99}.  Implementation-defined @code{policy_identifiers} allowed
13056 in a pragma @code{Task_Dispatching_Policy}.  See D.2.2(3).
13057 @end cartouche
13058 @noindent
13059 There are no implementation-defined policy-identifiers allowed in this
13060 pragma.
13062 @sp 1
13063 @cartouche
13064 @noindent
13065 @strong{100}.  Implementation-defined aspects of priority inversion.  See
13066 D.2.2(16).
13067 @end cartouche
13068 @noindent
13069 Execution of a task cannot be preempted by the implementation processing
13070 of delay expirations for lower priority tasks.
13072 @sp 1
13073 @cartouche
13074 @noindent
13075 @strong{101}.  Implementation-defined task dispatching.  See D.2.2(18).
13076 @end cartouche
13077 @noindent
13078 The policy is the same as that of the underlying threads implementation.
13080 @sp 1
13081 @cartouche
13082 @noindent
13083 @strong{102}.  Implementation-defined @code{policy_identifiers} allowed
13084 in a pragma @code{Locking_Policy}.  See D.3(4).
13085 @end cartouche
13086 @noindent
13087 The two implementation defined policies permitted in GNAT are
13088 @code{Inheritance_Locking} and  @code{Conccurent_Readers_Locking}.  On
13089 targets that support the @code{Inheritance_Locking} policy, locking is
13090 implemented by inheritance, i.e.@: the task owning the lock operates
13091 at a priority equal to the highest priority of any task currently
13092 requesting the lock.  On targets that support the
13093 @code{Conccurent_Readers_Locking} policy, locking is implemented with a
13094 read/write lock allowing multiple propected object functions to enter
13095 concurrently.
13097 @sp 1
13098 @cartouche
13099 @noindent
13100 @strong{103}.  Default ceiling priorities.  See D.3(10).
13101 @end cartouche
13102 @noindent
13103 The ceiling priority of protected objects of the type
13104 @code{System.Interrupt_Priority'Last} as described in the Ada
13105 Reference Manual D.3(10),
13107 @sp 1
13108 @cartouche
13109 @noindent
13110 @strong{104}.  The ceiling of any protected object used internally by
13111 the implementation.  See D.3(16).
13112 @end cartouche
13113 @noindent
13114 The ceiling priority of internal protected objects is
13115 @code{System.Priority'Last}.
13117 @sp 1
13118 @cartouche
13119 @noindent
13120 @strong{105}.  Implementation-defined queuing policies.  See D.4(1).
13121 @end cartouche
13122 @noindent
13123 There are no implementation-defined queuing policies.
13125 @sp 1
13126 @cartouche
13127 @noindent
13128 @strong{106}.  On a multiprocessor, any conditions that cause the
13129 completion of an aborted construct to be delayed later than what is
13130 specified for a single processor.  See D.6(3).
13131 @end cartouche
13132 @noindent
13133 The semantics for abort on a multi-processor is the same as on a single
13134 processor, there are no further delays.
13136 @sp 1
13137 @cartouche
13138 @noindent
13139 @strong{107}.  Any operations that implicitly require heap storage
13140 allocation.  See D.7(8).
13141 @end cartouche
13142 @noindent
13143 The only operation that implicitly requires heap storage allocation is
13144 task creation.
13146 @sp 1
13147 @cartouche
13148 @noindent
13149 @strong{108}.  Implementation-defined aspects of pragma
13150 @code{Restrictions}.  See D.7(20).
13151 @end cartouche
13152 @noindent
13153 There are no such implementation-defined aspects.
13155 @sp 1
13156 @cartouche
13157 @noindent
13158 @strong{109}.  Implementation-defined aspects of package
13159 @code{Real_Time}.  See D.8(17).
13160 @end cartouche
13161 @noindent
13162 There are no implementation defined aspects of package @code{Real_Time}.
13164 @sp 1
13165 @cartouche
13166 @noindent
13167 @strong{110}.  Implementation-defined aspects of
13168 @code{delay_statements}.  See D.9(8).
13169 @end cartouche
13170 @noindent
13171 Any difference greater than one microsecond will cause the task to be
13172 delayed (see D.9(7)).
13174 @sp 1
13175 @cartouche
13176 @noindent
13177 @strong{111}.  The upper bound on the duration of interrupt blocking
13178 caused by the implementation.  See D.12(5).
13179 @end cartouche
13180 @noindent
13181 The upper bound is determined by the underlying operating system.  In
13182 no cases is it more than 10 milliseconds.
13184 @sp 1
13185 @cartouche
13186 @noindent
13187 @strong{112}.  The means for creating and executing distributed
13188 programs.  See E(5).
13189 @end cartouche
13190 @noindent
13191 The GLADE package provides a utility GNATDIST for creating and executing
13192 distributed programs.  See the GLADE reference manual for further details.
13194 @sp 1
13195 @cartouche
13196 @noindent
13197 @strong{113}.  Any events that can result in a partition becoming
13198 inaccessible.  See E.1(7).
13199 @end cartouche
13200 @noindent
13201 See the GLADE reference manual for full details on such events.
13203 @sp 1
13204 @cartouche
13205 @noindent
13206 @strong{114}.  The scheduling policies, treatment of priorities, and
13207 management of shared resources between partitions in certain cases.  See
13208 E.1(11).
13209 @end cartouche
13210 @noindent
13211 See the GLADE reference manual for full details on these aspects of
13212 multi-partition execution.
13214 @sp 1
13215 @cartouche
13216 @noindent
13217 @strong{115}.  Events that cause the version of a compilation unit to
13218 change.  See E.3(5).
13219 @end cartouche
13220 @noindent
13221 Editing the source file of a compilation unit, or the source files of
13222 any units on which it is dependent in a significant way cause the version
13223 to change.  No other actions cause the version number to change.  All changes
13224 are significant except those which affect only layout, capitalization or
13225 comments.
13227 @sp 1
13228 @cartouche
13229 @noindent
13230 @strong{116}.  Whether the execution of the remote subprogram is
13231 immediately aborted as a result of cancellation.  See E.4(13).
13232 @end cartouche
13233 @noindent
13234 See the GLADE reference manual for details on the effect of abort in
13235 a distributed application.
13237 @sp 1
13238 @cartouche
13239 @noindent
13240 @strong{117}.  Implementation-defined aspects of the PCS@.  See E.5(25).
13241 @end cartouche
13242 @noindent
13243 See the GLADE reference manual for a full description of all implementation
13244 defined aspects of the PCS@.
13246 @sp 1
13247 @cartouche
13248 @noindent
13249 @strong{118}.  Implementation-defined interfaces in the PCS@.  See
13250 E.5(26).
13251 @end cartouche
13252 @noindent
13253 See the GLADE reference manual for a full description of all
13254 implementation defined interfaces.
13256 @sp 1
13257 @cartouche
13258 @noindent
13259 @strong{119}.  The values of named numbers in the package
13260 @code{Decimal}.  See F.2(7).
13261 @end cartouche
13262 @noindent
13263 @table @code
13264 @item Max_Scale
13266 @item Min_Scale
13268 @item Min_Delta
13269 1.0E-18
13270 @item Max_Delta
13271 1.0E+18
13272 @item Max_Decimal_Digits
13274 @end table
13276 @sp 1
13277 @cartouche
13278 @noindent
13279 @strong{120}.  The value of @code{Max_Picture_Length} in the package
13280 @code{Text_IO.Editing}.  See F.3.3(16).
13281 @end cartouche
13282 @noindent
13285 @sp 1
13286 @cartouche
13287 @noindent
13288 @strong{121}.  The value of @code{Max_Picture_Length} in the package
13289 @code{Wide_Text_IO.Editing}.  See F.3.4(5).
13290 @end cartouche
13291 @noindent
13294 @sp 1
13295 @cartouche
13296 @noindent
13297 @strong{122}.  The accuracy actually achieved by the complex elementary
13298 functions and by other complex arithmetic operations.  See G.1(1).
13299 @end cartouche
13300 @noindent
13301 Standard library functions are used for the complex arithmetic
13302 operations.  Only fast math mode is currently supported.
13304 @sp 1
13305 @cartouche
13306 @noindent
13307 @strong{123}.  The sign of a zero result (or a component thereof) from
13308 any operator or function in @code{Numerics.Generic_Complex_Types}, when
13309 @code{Real'Signed_Zeros} is True.  See G.1.1(53).
13310 @end cartouche
13311 @noindent
13312 The signs of zero values are as recommended by the relevant
13313 implementation advice.
13315 @sp 1
13316 @cartouche
13317 @noindent
13318 @strong{124}.  The sign of a zero result (or a component thereof) from
13319 any operator or function in
13320 @code{Numerics.Generic_Complex_Elementary_Functions}, when
13321 @code{Real'Signed_Zeros} is @code{True}.  See G.1.2(45).
13322 @end cartouche
13323 @noindent
13324 The signs of zero values are as recommended by the relevant
13325 implementation advice.
13327 @sp 1
13328 @cartouche
13329 @noindent
13330 @strong{125}.  Whether the strict mode or the relaxed mode is the
13331 default.  See G.2(2).
13332 @end cartouche
13333 @noindent
13334 The strict mode is the default.  There is no separate relaxed mode.  GNAT
13335 provides a highly efficient implementation of strict mode.
13337 @sp 1
13338 @cartouche
13339 @noindent
13340 @strong{126}.  The result interval in certain cases of fixed-to-float
13341 conversion.  See G.2.1(10).
13342 @end cartouche
13343 @noindent
13344 For cases where the result interval is implementation dependent, the
13345 accuracy is that provided by performing all operations in 64-bit IEEE
13346 floating-point format.
13348 @sp 1
13349 @cartouche
13350 @noindent
13351 @strong{127}.  The result of a floating point arithmetic operation in
13352 overflow situations, when the @code{Machine_Overflows} attribute of the
13353 result type is @code{False}.  See G.2.1(13).
13354 @end cartouche
13355 @noindent
13356 Infinite and NaN values are produced as dictated by the IEEE
13357 floating-point standard.
13359 Note that on machines that are not fully compliant with the IEEE
13360 floating-point standard, such as Alpha, the @option{-mieee} compiler flag
13361 must be used for achieving IEEE conforming behavior (although at the cost
13362 of a significant performance penalty), so infinite and NaN values are
13363 properly generated.
13365 @sp 1
13366 @cartouche
13367 @noindent
13368 @strong{128}.  The result interval for division (or exponentiation by a
13369 negative exponent), when the floating point hardware implements division
13370 as multiplication by a reciprocal.  See G.2.1(16).
13371 @end cartouche
13372 @noindent
13373 Not relevant, division is IEEE exact.
13375 @sp 1
13376 @cartouche
13377 @noindent
13378 @strong{129}.  The definition of close result set, which determines the
13379 accuracy of certain fixed point multiplications and divisions.  See
13380 G.2.3(5).
13381 @end cartouche
13382 @noindent
13383 Operations in the close result set are performed using IEEE long format
13384 floating-point arithmetic.  The input operands are converted to
13385 floating-point, the operation is done in floating-point, and the result
13386 is converted to the target type.
13388 @sp 1
13389 @cartouche
13390 @noindent
13391 @strong{130}.  Conditions on a @code{universal_real} operand of a fixed
13392 point multiplication or division for which the result shall be in the
13393 perfect result set.  See G.2.3(22).
13394 @end cartouche
13395 @noindent
13396 The result is only defined to be in the perfect result set if the result
13397 can be computed by a single scaling operation involving a scale factor
13398 representable in 64-bits.
13400 @sp 1
13401 @cartouche
13402 @noindent
13403 @strong{131}.  The result of a fixed point arithmetic operation in
13404 overflow situations, when the @code{Machine_Overflows} attribute of the
13405 result type is @code{False}.  See G.2.3(27).
13406 @end cartouche
13407 @noindent
13408 Not relevant, @code{Machine_Overflows} is @code{True} for fixed-point
13409 types.
13411 @sp 1
13412 @cartouche
13413 @noindent
13414 @strong{132}.  The result of an elementary function reference in
13415 overflow situations, when the @code{Machine_Overflows} attribute of the
13416 result type is @code{False}.  See G.2.4(4).
13417 @end cartouche
13418 @noindent
13419 IEEE infinite and Nan values are produced as appropriate.
13421 @sp 1
13422 @cartouche
13423 @noindent
13424 @strong{133}.  The value of the angle threshold, within which certain
13425 elementary functions, complex arithmetic operations, and complex
13426 elementary functions yield results conforming to a maximum relative
13427 error bound.  See G.2.4(10).
13428 @end cartouche
13429 @noindent
13430 Information on this subject is not yet available.
13432 @sp 1
13433 @cartouche
13434 @noindent
13435 @strong{134}.  The accuracy of certain elementary functions for
13436 parameters beyond the angle threshold.  See G.2.4(10).
13437 @end cartouche
13438 @noindent
13439 Information on this subject is not yet available.
13441 @sp 1
13442 @cartouche
13443 @noindent
13444 @strong{135}.  The result of a complex arithmetic operation or complex
13445 elementary function reference in overflow situations, when the
13446 @code{Machine_Overflows} attribute of the corresponding real type is
13447 @code{False}.  See G.2.6(5).
13448 @end cartouche
13449 @noindent
13450 IEEE infinite and Nan values are produced as appropriate.
13452 @sp 1
13453 @cartouche
13454 @noindent
13455 @strong{136}.  The accuracy of certain complex arithmetic operations and
13456 certain complex elementary functions for parameters (or components
13457 thereof) beyond the angle threshold.  See G.2.6(8).
13458 @end cartouche
13459 @noindent
13460 Information on those subjects is not yet available.
13462 @sp 1
13463 @cartouche
13464 @noindent
13465 @strong{137}.  Information regarding bounded errors and erroneous
13466 execution.  See H.2(1).
13467 @end cartouche
13468 @noindent
13469 Information on this subject is not yet available.
13471 @sp 1
13472 @cartouche
13473 @noindent
13474 @strong{138}.  Implementation-defined aspects of pragma
13475 @code{Inspection_Point}.  See H.3.2(8).
13476 @end cartouche
13477 @noindent
13478 Pragma @code{Inspection_Point} ensures that the variable is live and can
13479 be examined by the debugger at the inspection point.
13481 @sp 1
13482 @cartouche
13483 @noindent
13484 @strong{139}.  Implementation-defined aspects of pragma
13485 @code{Restrictions}.  See H.4(25).
13486 @end cartouche
13487 @noindent
13488 There are no implementation-defined aspects of pragma @code{Restrictions}.  The
13489 use of pragma @code{Restrictions [No_Exceptions]} has no effect on the
13490 generated code.  Checks must suppressed by use of pragma @code{Suppress}.
13492 @sp 1
13493 @cartouche
13494 @noindent
13495 @strong{140}.  Any restrictions on pragma @code{Restrictions}.  See
13496 H.4(27).
13497 @end cartouche
13498 @noindent
13499 There are no restrictions on pragma @code{Restrictions}.
13501 @node Intrinsic Subprograms
13502 @chapter Intrinsic Subprograms
13503 @cindex Intrinsic Subprograms
13505 @menu
13506 * Intrinsic Operators::
13507 * Enclosing_Entity::
13508 * Exception_Information::
13509 * Exception_Message::
13510 * Exception_Name::
13511 * File::
13512 * Line::
13513 * Shifts and Rotates::
13514 * Source_Location::
13515 @end menu
13517 @noindent
13518 GNAT allows a user application program to write the declaration:
13520 @smallexample @c ada
13521    pragma Import (Intrinsic, name);
13522 @end smallexample
13524 @noindent
13525 providing that the name corresponds to one of the implemented intrinsic
13526 subprograms in GNAT, and that the parameter profile of the referenced
13527 subprogram meets the requirements.  This chapter describes the set of
13528 implemented intrinsic subprograms, and the requirements on parameter profiles.
13529 Note that no body is supplied; as with other uses of pragma Import, the
13530 body is supplied elsewhere (in this case by the compiler itself).  Note
13531 that any use of this feature is potentially non-portable, since the
13532 Ada standard does not require Ada compilers to implement this feature.
13534 @node Intrinsic Operators
13535 @section Intrinsic Operators
13536 @cindex Intrinsic operator
13538 @noindent
13539 All the predefined numeric operators in package Standard
13540 in @code{pragma Import (Intrinsic,..)}
13541 declarations.  In the binary operator case, the operands must have the same
13542 size.  The operand or operands must also be appropriate for
13543 the operator.  For example, for addition, the operands must
13544 both be floating-point or both be fixed-point, and the
13545 right operand for @code{"**"} must have a root type of
13546 @code{Standard.Integer'Base}.
13547 You can use an intrinsic operator declaration as in the following example:
13549 @smallexample @c ada
13550    type Int1 is new Integer;
13551    type Int2 is new Integer;
13553    function "+" (X1 : Int1; X2 : Int2) return Int1;
13554    function "+" (X1 : Int1; X2 : Int2) return Int2;
13555    pragma Import (Intrinsic, "+");
13556 @end smallexample
13558 @noindent
13559 This declaration would permit ``mixed mode'' arithmetic on items
13560 of the differing types @code{Int1} and @code{Int2}.
13561 It is also possible to specify such operators for private types, if the
13562 full views are appropriate arithmetic types.
13564 @node Enclosing_Entity
13565 @section Enclosing_Entity
13566 @cindex Enclosing_Entity
13567 @noindent
13568 This intrinsic subprogram is used in the implementation of the
13569 library routine @code{GNAT.Source_Info}.  The only useful use of the
13570 intrinsic import in this case is the one in this unit, so an
13571 application program should simply call the function
13572 @code{GNAT.Source_Info.Enclosing_Entity} to obtain the name of
13573 the current subprogram, package, task, entry, or protected subprogram.
13575 @node Exception_Information
13576 @section Exception_Information
13577 @cindex Exception_Information'
13578 @noindent
13579 This intrinsic subprogram is used in the implementation of the
13580 library routine @code{GNAT.Current_Exception}.  The only useful
13581 use of the intrinsic import in this case is the one in this unit,
13582 so an application program should simply call the function
13583 @code{GNAT.Current_Exception.Exception_Information} to obtain
13584 the exception information associated with the current exception.
13586 @node Exception_Message
13587 @section Exception_Message
13588 @cindex Exception_Message
13589 @noindent
13590 This intrinsic subprogram is used in the implementation of the
13591 library routine @code{GNAT.Current_Exception}.  The only useful
13592 use of the intrinsic import in this case is the one in this unit,
13593 so an application program should simply call the function
13594 @code{GNAT.Current_Exception.Exception_Message} to obtain
13595 the message associated with the current exception.
13597 @node Exception_Name
13598 @section Exception_Name
13599 @cindex Exception_Name
13600 @noindent
13601 This intrinsic subprogram is used in the implementation of the
13602 library routine @code{GNAT.Current_Exception}.  The only useful
13603 use of the intrinsic import in this case is the one in this unit,
13604 so an application program should simply call the function
13605 @code{GNAT.Current_Exception.Exception_Name} to obtain
13606 the name of the current exception.
13608 @node File
13609 @section File
13610 @cindex File
13611 @noindent
13612 This intrinsic subprogram is used in the implementation of the
13613 library routine @code{GNAT.Source_Info}.  The only useful use of the
13614 intrinsic import in this case is the one in this unit, so an
13615 application program should simply call the function
13616 @code{GNAT.Source_Info.File} to obtain the name of the current
13617 file.
13619 @node Line
13620 @section Line
13621 @cindex Line
13622 @noindent
13623 This intrinsic subprogram is used in the implementation of the
13624 library routine @code{GNAT.Source_Info}.  The only useful use of the
13625 intrinsic import in this case is the one in this unit, so an
13626 application program should simply call the function
13627 @code{GNAT.Source_Info.Line} to obtain the number of the current
13628 source line.
13630 @node Shifts and Rotates
13631 @section Shifts and Rotates
13632 @cindex Shift_Left
13633 @cindex Shift_Right
13634 @cindex Shift_Right_Arithmetic
13635 @cindex Rotate_Left
13636 @cindex Rotate_Right
13637 @noindent
13638 In standard Ada, the shift and rotate functions are available only
13639 for the predefined modular types in package @code{Interfaces}.  However, in
13640 GNAT it is possible to define these functions for any integer
13641 type (signed or modular), as in this example:
13643 @smallexample @c ada
13644    function Shift_Left
13645      (Value  : T;
13646       Amount : Natural)
13647       return   T;
13648 @end smallexample
13650 @noindent
13651 The function name must be one of
13652 Shift_Left, Shift_Right, Shift_Right_Arithmetic, Rotate_Left, or
13653 Rotate_Right. T must be an integer type. T'Size must be
13654 8, 16, 32 or 64 bits; if T is modular, the modulus
13655 must be 2**8, 2**16, 2**32 or 2**64.
13656 The result type must be the same as the type of @code{Value}.
13657 The shift amount must be Natural.
13658 The formal parameter names can be anything.
13660 @node Source_Location
13661 @section Source_Location
13662 @cindex Source_Location
13663 @noindent
13664 This intrinsic subprogram is used in the implementation of the
13665 library routine @code{GNAT.Source_Info}.  The only useful use of the
13666 intrinsic import in this case is the one in this unit, so an
13667 application program should simply call the function
13668 @code{GNAT.Source_Info.Source_Location} to obtain the current
13669 source file location.
13671 @node Representation Clauses and Pragmas
13672 @chapter Representation Clauses and Pragmas
13673 @cindex Representation Clauses
13675 @menu
13676 * Alignment Clauses::
13677 * Size Clauses::
13678 * Storage_Size Clauses::
13679 * Size of Variant Record Objects::
13680 * Biased Representation ::
13681 * Value_Size and Object_Size Clauses::
13682 * Component_Size Clauses::
13683 * Bit_Order Clauses::
13684 * Effect of Bit_Order on Byte Ordering::
13685 * Pragma Pack for Arrays::
13686 * Pragma Pack for Records::
13687 * Record Representation Clauses::
13688 * Enumeration Clauses::
13689 * Address Clauses::
13690 * Effect of Convention on Representation::
13691 * Determining the Representations chosen by GNAT::
13692 @end menu
13694 @noindent
13695 @cindex Representation Clause
13696 @cindex Representation Pragma
13697 @cindex Pragma, representation
13698 This section describes the representation clauses accepted by GNAT, and
13699 their effect on the representation of corresponding data objects.
13701 GNAT fully implements Annex C (Systems Programming).  This means that all
13702 the implementation advice sections in chapter 13 are fully implemented.
13703 However, these sections only require a minimal level of support for
13704 representation clauses.  GNAT provides much more extensive capabilities,
13705 and this section describes the additional capabilities provided.
13707 @node Alignment Clauses
13708 @section Alignment Clauses
13709 @cindex Alignment Clause
13711 @noindent
13712 GNAT requires that all alignment clauses specify a power of 2, and all
13713 default alignments are always a power of 2.  The default alignment
13714 values are as follows:
13716 @itemize @bullet
13717 @item @emph{Primitive Types}.
13718 For primitive types, the alignment is the minimum of the actual size of
13719 objects of the type divided by @code{Storage_Unit},
13720 and the maximum alignment supported by the target.
13721 (This maximum alignment is given by the GNAT-specific attribute
13722 @code{Standard'Maximum_Alignment}; see @ref{Attribute Maximum_Alignment}.)
13723 @cindex @code{Maximum_Alignment} attribute
13724 For example, for type @code{Long_Float}, the object size is 8 bytes, and the
13725 default alignment will be 8 on any target that supports alignments
13726 this large, but on some targets, the maximum alignment may be smaller
13727 than 8, in which case objects of type @code{Long_Float} will be maximally
13728 aligned.
13730 @item @emph{Arrays}.
13731 For arrays, the alignment is equal to the alignment of the component type
13732 for the normal case where no packing or component size is given.  If the
13733 array is packed, and the packing is effective (see separate section on
13734 packed arrays), then the alignment will be one for long packed arrays,
13735 or arrays whose length is not known at compile time.  For short packed
13736 arrays, which are handled internally as modular types, the alignment
13737 will be as described for primitive types, e.g.@: a packed array of length
13738 31 bits will have an object size of four bytes, and an alignment of 4.
13740 @item @emph{Records}.
13741 For the normal non-packed case, the alignment of a record is equal to
13742 the maximum alignment of any of its components.  For tagged records, this
13743 includes the implicit access type used for the tag.  If a pragma @code{Pack}
13744 is used and all components are packable (see separate section on pragma
13745 @code{Pack}), then the resulting alignment is 1, unless the layout of the
13746 record makes it profitable to increase it.
13748 A special case is when:
13749 @itemize @bullet
13750 @item
13751 the size of the record is given explicitly, or a
13752 full record representation clause is given, and
13753 @item
13754 the size of the record is 2, 4, or 8 bytes.
13755 @end itemize
13756 @noindent
13757 In this case, an alignment is chosen to match the
13758 size of the record. For example, if we have:
13760 @smallexample @c ada
13761    type Small is record
13762       A, B : Character;
13763    end record;
13764    for Small'Size use 16;
13765 @end smallexample
13767 @noindent
13768 then the default alignment of the record type @code{Small} is 2, not 1. This
13769 leads to more efficient code when the record is treated as a unit, and also
13770 allows the type to specified as @code{Atomic} on architectures requiring
13771 strict alignment.
13773 @end itemize
13775 @noindent
13776 An alignment clause may specify a larger alignment than the default value
13777 up to some maximum value dependent on the target (obtainable by using the
13778 attribute reference @code{Standard'Maximum_Alignment}). It may also specify
13779 a smaller alignment than the default value for enumeration, integer and
13780 fixed point types, as well as for record types, for example
13782 @smallexample @c ada
13783   type V is record
13784      A : Integer;
13785   end record;
13787   for V'alignment use 1;
13788 @end smallexample
13790 @noindent
13791 @cindex Alignment, default
13792 The default alignment for the type @code{V} is 4, as a result of the
13793 Integer field in the record, but it is permissible, as shown, to
13794 override the default alignment of the record with a smaller value.
13796 @cindex Alignment, subtypes
13797 Note that according to the Ada standard, an alignment clause applies only
13798 to the first named subtype. If additional subtypes are declared, then the
13799 compiler is allowed to choose any alignment it likes, and there is no way
13800 to control this choice. Consider:
13802 @smallexample @c ada
13803    type R is range 1 .. 10_000;
13804    for R'Alignment use 1;
13805    subtype RS is R range 1 .. 1000;
13806 @end smallexample
13808 @noindent
13809 The alignment clause specifies an alignment of 1 for the first named subtype
13810 @code{R} but this does not necessarily apply to @code{RS}. When writing
13811 portable Ada code, you should avoid writing code that explicitly or
13812 implicitly relies on the alignment of such subtypes.
13814 For the GNAT compiler, if an explicit alignment clause is given, this
13815 value is also used for any subsequent subtypes. So for GNAT, in the
13816 above example, you can count on the alignment of @code{RS} being 1. But this
13817 assumption is non-portable, and other compilers may choose different
13818 alignments for the subtype @code{RS}.
13820 @node Size Clauses
13821 @section Size Clauses
13822 @cindex Size Clause
13824 @noindent
13825 The default size for a type @code{T} is obtainable through the
13826 language-defined attribute @code{T'Size} and also through the
13827 equivalent GNAT-defined attribute @code{T'Value_Size}.
13828 For objects of type @code{T}, GNAT will generally increase the type size
13829 so that the object size (obtainable through the GNAT-defined attribute
13830 @code{T'Object_Size})
13831 is a multiple of @code{T'Alignment * Storage_Unit}.
13832 For example
13834 @smallexample @c ada
13835    type Smallint is range 1 .. 6;
13837    type Rec is record
13838       Y1 : integer;
13839       Y2 : boolean;
13840    end record;
13841 @end smallexample
13843 @noindent
13844 In this example, @code{Smallint'Size} = @code{Smallint'Value_Size} = 3,
13845 as specified by the RM rules,
13846 but objects of this type will have a size of 8
13847 (@code{Smallint'Object_Size} = 8),
13848 since objects by default occupy an integral number
13849 of storage units.  On some targets, notably older
13850 versions of the Digital Alpha, the size of stand
13851 alone objects of this type may be 32, reflecting
13852 the inability of the hardware to do byte load/stores.
13854 Similarly, the size of type @code{Rec} is 40 bits
13855 (@code{Rec'Size} = @code{Rec'Value_Size} = 40), but
13856 the alignment is 4, so objects of this type will have
13857 their size increased to 64 bits so that it is a multiple
13858 of the alignment (in bits).  This decision is
13859 in accordance with the specific Implementation Advice in RM 13.3(43):
13861 @quotation
13862 A @code{Size} clause should be supported for an object if the specified
13863 @code{Size} is at least as large as its subtype's @code{Size}, and corresponds
13864 to a size in storage elements that is a multiple of the object's
13865 @code{Alignment} (if the @code{Alignment} is nonzero).
13866 @end quotation
13868 @noindent
13869 An explicit size clause may be used to override the default size by
13870 increasing it.  For example, if we have:
13872 @smallexample @c ada
13873    type My_Boolean is new Boolean;
13874    for My_Boolean'Size use 32;
13875 @end smallexample
13877 @noindent
13878 then values of this type will always be 32 bits long.  In the case of
13879 discrete types, the size can be increased up to 64 bits, with the effect
13880 that the entire specified field is used to hold the value, sign- or
13881 zero-extended as appropriate.  If more than 64 bits is specified, then
13882 padding space is allocated after the value, and a warning is issued that
13883 there are unused bits.
13885 Similarly the size of records and arrays may be increased, and the effect
13886 is to add padding bits after the value.  This also causes a warning message
13887 to be generated.
13889 The largest Size value permitted in GNAT is 2**31@minus{}1.  Since this is a
13890 Size in bits, this corresponds to an object of size 256 megabytes (minus
13891 one).  This limitation is true on all targets.  The reason for this
13892 limitation is that it improves the quality of the code in many cases
13893 if it is known that a Size value can be accommodated in an object of
13894 type Integer.
13896 @node Storage_Size Clauses
13897 @section Storage_Size Clauses
13898 @cindex Storage_Size Clause
13900 @noindent
13901 For tasks, the @code{Storage_Size} clause specifies the amount of space
13902 to be allocated for the task stack.  This cannot be extended, and if the
13903 stack is exhausted, then @code{Storage_Error} will be raised (if stack
13904 checking is enabled).  Use a @code{Storage_Size} attribute definition clause,
13905 or a @code{Storage_Size} pragma in the task definition to set the
13906 appropriate required size.  A useful technique is to include in every
13907 task definition a pragma of the form:
13909 @smallexample @c ada
13910    pragma Storage_Size (Default_Stack_Size);
13911 @end smallexample
13913 @noindent
13914 Then @code{Default_Stack_Size} can be defined in a global package, and
13915 modified as required. Any tasks requiring stack sizes different from the
13916 default can have an appropriate alternative reference in the pragma.
13918 You can also use the @option{-d} binder switch to modify the default stack
13919 size.
13921 For access types, the @code{Storage_Size} clause specifies the maximum
13922 space available for allocation of objects of the type.  If this space is
13923 exceeded then @code{Storage_Error} will be raised by an allocation attempt.
13924 In the case where the access type is declared local to a subprogram, the
13925 use of a @code{Storage_Size} clause triggers automatic use of a special
13926 predefined storage pool (@code{System.Pool_Size}) that ensures that all
13927 space for the pool is automatically reclaimed on exit from the scope in
13928 which the type is declared.
13930 A special case recognized by the compiler is the specification of a
13931 @code{Storage_Size} of zero for an access type.  This means that no
13932 items can be allocated from the pool, and this is recognized at compile
13933 time, and all the overhead normally associated with maintaining a fixed
13934 size storage pool is eliminated.  Consider the following example:
13936 @smallexample @c ada
13937    procedure p is
13938       type R is array (Natural) of Character;
13939       type P is access all R;
13940       for P'Storage_Size use 0;
13941       --  Above access type intended only for interfacing purposes
13943       y : P;
13945       procedure g (m : P);
13946       pragma Import (C, g);
13948       --  @dots{}
13950    begin
13951       --  @dots{}
13952       y := new R;
13953    end;
13954 @end smallexample
13956 @noindent
13957 As indicated in this example, these dummy storage pools are often useful in
13958 connection with interfacing where no object will ever be allocated.  If you
13959 compile the above example, you get the warning:
13961 @smallexample
13962    p.adb:16:09: warning: allocation from empty storage pool
13963    p.adb:16:09: warning: Storage_Error will be raised at run time
13964 @end smallexample
13966 @noindent
13967 Of course in practice, there will not be any explicit allocators in the
13968 case of such an access declaration.
13970 @node Size of Variant Record Objects
13971 @section Size of Variant Record Objects
13972 @cindex Size, variant record objects
13973 @cindex Variant record objects, size
13975 @noindent
13976 In the case of variant record objects, there is a question whether Size gives
13977 information about a particular variant, or the maximum size required
13978 for any variant.  Consider the following program
13980 @smallexample @c ada
13981 with Text_IO; use Text_IO;
13982 procedure q is
13983    type R1 (A : Boolean := False) is record
13984      case A is
13985        when True  => X : Character;
13986        when False => null;
13987      end case;
13988    end record;
13990    V1 : R1 (False);
13991    V2 : R1;
13993 begin
13994    Put_Line (Integer'Image (V1'Size));
13995    Put_Line (Integer'Image (V2'Size));
13996 end q;
13997 @end smallexample
13999 @noindent
14000 Here we are dealing with a variant record, where the True variant
14001 requires 16 bits, and the False variant requires 8 bits.
14002 In the above example, both V1 and V2 contain the False variant,
14003 which is only 8 bits long.  However, the result of running the
14004 program is:
14006 @smallexample
14009 @end smallexample
14011 @noindent
14012 The reason for the difference here is that the discriminant value of
14013 V1 is fixed, and will always be False.  It is not possible to assign
14014 a True variant value to V1, therefore 8 bits is sufficient.  On the
14015 other hand, in the case of V2, the initial discriminant value is
14016 False (from the default), but it is possible to assign a True
14017 variant value to V2, therefore 16 bits must be allocated for V2
14018 in the general case, even fewer bits may be needed at any particular
14019 point during the program execution.
14021 As can be seen from the output of this program, the @code{'Size}
14022 attribute applied to such an object in GNAT gives the actual allocated
14023 size of the variable, which is the largest size of any of the variants.
14024 The Ada Reference Manual is not completely clear on what choice should
14025 be made here, but the GNAT behavior seems most consistent with the
14026 language in the RM@.
14028 In some cases, it may be desirable to obtain the size of the current
14029 variant, rather than the size of the largest variant.  This can be
14030 achieved in GNAT by making use of the fact that in the case of a
14031 subprogram parameter, GNAT does indeed return the size of the current
14032 variant (because a subprogram has no way of knowing how much space
14033 is actually allocated for the actual).
14035 Consider the following modified version of the above program:
14037 @smallexample @c ada
14038 with Text_IO; use Text_IO;
14039 procedure q is
14040    type R1 (A : Boolean := False) is record
14041      case A is
14042        when True  => X : Character;
14043        when False => null;
14044      end case;
14045    end record;
14047    V2 : R1;
14049    function Size (V : R1) return Integer is
14050    begin
14051       return V'Size;
14052    end Size;
14054 begin
14055    Put_Line (Integer'Image (V2'Size));
14056    Put_Line (Integer'IMage (Size (V2)));
14057    V2 := (True, 'x');
14058    Put_Line (Integer'Image (V2'Size));
14059    Put_Line (Integer'IMage (Size (V2)));
14060 end q;
14061 @end smallexample
14063 @noindent
14064 The output from this program is
14066 @smallexample
14071 @end smallexample
14073 @noindent
14074 Here we see that while the @code{'Size} attribute always returns
14075 the maximum size, regardless of the current variant value, the
14076 @code{Size} function does indeed return the size of the current
14077 variant value.
14079 @node Biased Representation
14080 @section Biased Representation
14081 @cindex Size for biased representation
14082 @cindex Biased representation
14084 @noindent
14085 In the case of scalars with a range starting at other than zero, it is
14086 possible in some cases to specify a size smaller than the default minimum
14087 value, and in such cases, GNAT uses an unsigned biased representation,
14088 in which zero is used to represent the lower bound, and successive values
14089 represent successive values of the type.
14091 For example, suppose we have the declaration:
14093 @smallexample @c ada
14094    type Small is range -7 .. -4;
14095    for Small'Size use 2;
14096 @end smallexample
14098 @noindent
14099 Although the default size of type @code{Small} is 4, the @code{Size}
14100 clause is accepted by GNAT and results in the following representation
14101 scheme:
14103 @smallexample
14104   -7 is represented as 2#00#
14105   -6 is represented as 2#01#
14106   -5 is represented as 2#10#
14107   -4 is represented as 2#11#
14108 @end smallexample
14110 @noindent
14111 Biased representation is only used if the specified @code{Size} clause
14112 cannot be accepted in any other manner.  These reduced sizes that force
14113 biased representation can be used for all discrete types except for
14114 enumeration types for which a representation clause is given.
14116 @node Value_Size and Object_Size Clauses
14117 @section Value_Size and Object_Size Clauses
14118 @findex Value_Size
14119 @findex Object_Size
14120 @cindex Size, of objects
14122 @noindent
14123 In Ada 95 and Ada 2005, @code{T'Size} for a type @code{T} is the minimum
14124 number of bits required to hold values of type @code{T}.
14125 Although this interpretation was allowed in Ada 83, it was not required,
14126 and this requirement in practice can cause some significant difficulties.
14127 For example, in most Ada 83 compilers, @code{Natural'Size} was 32.
14128 However, in Ada 95 and Ada 2005,
14129 @code{Natural'Size} is
14130 typically 31.  This means that code may change in behavior when moving
14131 from Ada 83 to Ada 95 or Ada 2005.  For example, consider:
14133 @smallexample @c ada
14134    type Rec is record;
14135       A : Natural;
14136       B : Natural;
14137    end record;
14139    for Rec use record
14140       at 0  range 0 .. Natural'Size - 1;
14141       at 0  range Natural'Size .. 2 * Natural'Size - 1;
14142    end record;
14143 @end smallexample
14145 @noindent
14146 In the above code, since the typical size of @code{Natural} objects
14147 is 32 bits and @code{Natural'Size} is 31, the above code can cause
14148 unexpected inefficient packing in Ada 95 and Ada 2005, and in general
14149 there are cases where the fact that the object size can exceed the
14150 size of the type causes surprises.
14152 To help get around this problem GNAT provides two implementation
14153 defined attributes, @code{Value_Size} and @code{Object_Size}.  When
14154 applied to a type, these attributes yield the size of the type
14155 (corresponding to the RM defined size attribute), and the size of
14156 objects of the type respectively.
14158 The @code{Object_Size} is used for determining the default size of
14159 objects and components.  This size value can be referred to using the
14160 @code{Object_Size} attribute.  The phrase ``is used'' here means that it is
14161 the basis of the determination of the size.  The backend is free to
14162 pad this up if necessary for efficiency, e.g.@: an 8-bit stand-alone
14163 character might be stored in 32 bits on a machine with no efficient
14164 byte access instructions such as the Alpha.
14166 The default rules for the value of @code{Object_Size} for
14167 discrete types are as follows:
14169 @itemize @bullet
14170 @item
14171 The @code{Object_Size} for base subtypes reflect the natural hardware
14172 size in bits (run the compiler with @option{-gnatS} to find those values
14173 for numeric types). Enumeration types and fixed-point base subtypes have
14174 8, 16, 32 or 64 bits for this size, depending on the range of values
14175 to be stored.
14177 @item
14178 The @code{Object_Size} of a subtype is the same as the
14179 @code{Object_Size} of
14180 the type from which it is obtained.
14182 @item
14183 The @code{Object_Size} of a derived base type is copied from the parent
14184 base type, and the @code{Object_Size} of a derived first subtype is copied
14185 from the parent first subtype.
14186 @end itemize
14188 @noindent
14189 The @code{Value_Size} attribute
14190 is the (minimum) number of bits required to store a value
14191 of the type.
14192 This value is used to determine how tightly to pack
14193 records or arrays with components of this type, and also affects
14194 the semantics of unchecked conversion (unchecked conversions where
14195 the @code{Value_Size} values differ generate a warning, and are potentially
14196 target dependent).
14198 The default rules for the value of @code{Value_Size} are as follows:
14200 @itemize @bullet
14201 @item
14202 The @code{Value_Size} for a base subtype is the minimum number of bits
14203 required to store all values of the type (including the sign bit
14204 only if negative values are possible).
14206 @item
14207 If a subtype statically matches the first subtype of a given type, then it has
14208 by default the same @code{Value_Size} as the first subtype.  This is a
14209 consequence of RM 13.1(14) (``if two subtypes statically match,
14210 then their subtype-specific aspects are the same''.)
14212 @item
14213 All other subtypes have a @code{Value_Size} corresponding to the minimum
14214 number of bits required to store all values of the subtype.  For
14215 dynamic bounds, it is assumed that the value can range down or up
14216 to the corresponding bound of the ancestor
14217 @end itemize
14219 @noindent
14220 The RM defined attribute @code{Size} corresponds to the
14221 @code{Value_Size} attribute.
14223 The @code{Size} attribute may be defined for a first-named subtype.  This sets
14224 the @code{Value_Size} of
14225 the first-named subtype to the given value, and the
14226 @code{Object_Size} of this first-named subtype to the given value padded up
14227 to an appropriate boundary.  It is a consequence of the default rules
14228 above that this @code{Object_Size} will apply to all further subtypes.  On the
14229 other hand, @code{Value_Size} is affected only for the first subtype, any
14230 dynamic subtypes obtained from it directly, and any statically matching
14231 subtypes.  The @code{Value_Size} of any other static subtypes is not affected.
14233 @code{Value_Size} and
14234 @code{Object_Size} may be explicitly set for any subtype using
14235 an attribute definition clause.  Note that the use of these attributes
14236 can cause the RM 13.1(14) rule to be violated.  If two access types
14237 reference aliased objects whose subtypes have differing @code{Object_Size}
14238 values as a result of explicit attribute definition clauses, then it
14239 is illegal to convert from one access subtype to the other. For a more
14240 complete description of this additional legality rule, see the
14241 description of the @code{Object_Size} attribute.
14243 At the implementation level, Esize stores the Object_Size and the
14244 RM_Size field stores the @code{Value_Size} (and hence the value of the
14245 @code{Size} attribute,
14246 which, as noted above, is equivalent to @code{Value_Size}).
14248 To get a feel for the difference, consider the following examples (note
14249 that in each case the base is @code{Short_Short_Integer} with a size of 8):
14251 @smallexample
14252                                        Object_Size     Value_Size
14254 type x1 is range 0 .. 5;                    8               3
14256 type x2 is range 0 .. 5;
14257 for x2'size use 12;                        16              12
14259 subtype x3 is x2 range 0 .. 3;             16               2
14261 subtype x4 is x2'base range 0 .. 10;        8               4
14263 subtype x5 is x2 range 0 .. dynamic;       16               3*
14265 subtype x6 is x2'base range 0 .. dynamic;   8               3*
14267 @end smallexample
14269 @noindent
14270 Note: the entries marked ``3*'' are not actually specified by the Ada
14271 Reference Manual, but it seems in the spirit of the RM rules to allocate
14272 the minimum number of bits (here 3, given the range for @code{x2})
14273 known to be large enough to hold the given range of values.
14275 So far, so good, but GNAT has to obey the RM rules, so the question is
14276 under what conditions must the RM @code{Size} be used.
14277 The following is a list
14278 of the occasions on which the RM @code{Size} must be used:
14280 @itemize @bullet
14281 @item
14282 Component size for packed arrays or records
14284 @item
14285 Value of the attribute @code{Size} for a type
14287 @item
14288 Warning about sizes not matching for unchecked conversion
14289 @end itemize
14291 @noindent
14292 For record types, the @code{Object_Size} is always a multiple of the
14293 alignment of the type (this is true for all types). In some cases the
14294 @code{Value_Size} can be smaller. Consider:
14296 @smallexample
14297    type R is record
14298      X : Integer;
14299      Y : Character;
14300    end record;
14301 @end smallexample
14303 @noindent
14304 On a typical 32-bit architecture, the X component will be four bytes, and
14305 require four-byte alignment, and the Y component will be one byte. In this
14306 case @code{R'Value_Size} will be 40 (bits) since this is the minimum size
14307 required to store a value of this type, and for example, it is permissible
14308 to have a component of type R in an outer array whose component size is
14309 specified to be 48 bits. However, @code{R'Object_Size} will be 64 (bits),
14310 since it must be rounded up so that this value is a multiple of the
14311 alignment (4 bytes = 32 bits).
14313 @noindent
14314 For all other types, the @code{Object_Size}
14315 and Value_Size are the same (and equivalent to the RM attribute @code{Size}).
14316 Only @code{Size} may be specified for such types.
14318 Note that @code{Value_Size} can be used to force biased representation
14319 for a particular subtype. Consider this example:
14321 @smallexample
14322    type R is (A, B, C, D, E, F);
14323    subtype RAB is R range A .. B;
14324    subtype REF is R range E .. F;
14325 @end smallexample
14327 @noindent
14328 By default, @code{RAB}
14329 has a size of 1 (sufficient to accommodate the representation
14330 of @code{A} and @code{B}, 0 and 1), and @code{REF}
14331 has a size of 3 (sufficient to accommodate the representation
14332 of @code{E} and @code{F}, 4 and 5). But if we add the
14333 following @code{Value_Size} attribute definition clause:
14335 @smallexample
14336    for REF'Value_Size use 1;
14337 @end smallexample
14339 @noindent
14340 then biased representation is forced for @code{REF},
14341 and 0 will represent @code{E} and 1 will represent @code{F}.
14342 A warning is issued when a @code{Value_Size} attribute
14343 definition clause forces biased representation. This
14344 warning can be turned off using @code{-gnatw.B}.
14346 @node Component_Size Clauses
14347 @section Component_Size Clauses
14348 @cindex Component_Size Clause
14350 @noindent
14351 Normally, the value specified in a component size clause must be consistent
14352 with the subtype of the array component with regard to size and alignment.
14353 In other words, the value specified must be at least equal to the size
14354 of this subtype, and must be a multiple of the alignment value.
14356 In addition, component size clauses are allowed which cause the array
14357 to be packed, by specifying a smaller value.  A first case is for
14358 component size values in the range 1 through 63.  The value specified
14359 must not be smaller than the Size of the subtype.  GNAT will accurately
14360 honor all packing requests in this range.  For example, if we have:
14362 @smallexample @c ada
14363 type r is array (1 .. 8) of Natural;
14364 for r'Component_Size use 31;
14365 @end smallexample
14367 @noindent
14368 then the resulting array has a length of 31 bytes (248 bits = 8 * 31).
14369 Of course access to the components of such an array is considerably
14370 less efficient than if the natural component size of 32 is used.
14371 A second case is when the subtype of the component is a record type
14372 padded because of its default alignment.  For example, if we have:
14374 @smallexample @c ada
14375 type r is record
14376   i : Integer;
14377   j : Integer;
14378   b : Boolean;
14379 end record;
14381 type a is array (1 .. 8) of r;
14382 for a'Component_Size use 72;
14383 @end smallexample
14385 @noindent
14386 then the resulting array has a length of 72 bytes, instead of 96 bytes
14387 if the alignment of the record (4) was obeyed.
14389 Note that there is no point in giving both a component size clause
14390 and a pragma Pack for the same array type. if such duplicate
14391 clauses are given, the pragma Pack will be ignored.
14393 @node Bit_Order Clauses
14394 @section Bit_Order Clauses
14395 @cindex Bit_Order Clause
14396 @cindex bit ordering
14397 @cindex ordering, of bits
14399 @noindent
14400 For record subtypes, GNAT permits the specification of the @code{Bit_Order}
14401 attribute.  The specification may either correspond to the default bit
14402 order for the target, in which case the specification has no effect and
14403 places no additional restrictions, or it may be for the non-standard
14404 setting (that is the opposite of the default).
14406 In the case where the non-standard value is specified, the effect is
14407 to renumber bits within each byte, but the ordering of bytes is not
14408 affected.  There are certain
14409 restrictions placed on component clauses as follows:
14411 @itemize @bullet
14413 @item Components fitting within a single storage unit.
14414 @noindent
14415 These are unrestricted, and the effect is merely to renumber bits.  For
14416 example if we are on a little-endian machine with @code{Low_Order_First}
14417 being the default, then the following two declarations have exactly
14418 the same effect:
14420 @smallexample @c ada
14421    type R1 is record
14422       A : Boolean;
14423       B : Integer range 1 .. 120;
14424    end record;
14426    for R1 use record
14427       A at 0 range 0 .. 0;
14428       B at 0 range 1 .. 7;
14429    end record;
14431    type R2 is record
14432       A : Boolean;
14433       B : Integer range 1 .. 120;
14434    end record;
14436    for R2'Bit_Order use High_Order_First;
14438    for R2 use record
14439       A at 0 range 7 .. 7;
14440       B at 0 range 0 .. 6;
14441    end record;
14442 @end smallexample
14444 @noindent
14445 The useful application here is to write the second declaration with the
14446 @code{Bit_Order} attribute definition clause, and know that it will be treated
14447 the same, regardless of whether the target is little-endian or big-endian.
14449 @item Components occupying an integral number of bytes.
14450 @noindent
14451 These are components that exactly fit in two or more bytes.  Such component
14452 declarations are allowed, but have no effect, since it is important to realize
14453 that the @code{Bit_Order} specification does not affect the ordering of bytes.
14454 In particular, the following attempt at getting an endian-independent integer
14455 does not work:
14457 @smallexample @c ada
14458    type R2 is record
14459       A : Integer;
14460    end record;
14462    for R2'Bit_Order use High_Order_First;
14464    for R2 use record
14465       A at 0 range 0 .. 31;
14466    end record;
14467 @end smallexample
14469 @noindent
14470 This declaration will result in a little-endian integer on a
14471 little-endian machine, and a big-endian integer on a big-endian machine.
14472 If byte flipping is required for interoperability between big- and
14473 little-endian machines, this must be explicitly programmed.  This capability
14474 is not provided by @code{Bit_Order}.
14476 @item Components that are positioned across byte boundaries
14477 @noindent
14478 but do not occupy an integral number of bytes.  Given that bytes are not
14479 reordered, such fields would occupy a non-contiguous sequence of bits
14480 in memory, requiring non-trivial code to reassemble.  They are for this
14481 reason not permitted, and any component clause specifying such a layout
14482 will be flagged as illegal by GNAT@.
14484 @end itemize
14486 @noindent
14487 Since the misconception that Bit_Order automatically deals with all
14488 endian-related incompatibilities is a common one, the specification of
14489 a component field that is an integral number of bytes will always
14490 generate a warning.  This warning may be suppressed using @code{pragma
14491 Warnings (Off)} if desired.  The following section contains additional
14492 details regarding the issue of byte ordering.
14494 @node Effect of Bit_Order on Byte Ordering
14495 @section Effect of Bit_Order on Byte Ordering
14496 @cindex byte ordering
14497 @cindex ordering, of bytes
14499 @noindent
14500 In this section we will review the effect of the @code{Bit_Order} attribute
14501 definition clause on byte ordering.  Briefly, it has no effect at all, but
14502 a detailed example will be helpful.  Before giving this
14503 example, let us review the precise
14504 definition of the effect of defining @code{Bit_Order}.  The effect of a
14505 non-standard bit order is described in section 15.5.3 of the Ada
14506 Reference Manual:
14508 @quotation
14509 2   A bit ordering is a method of interpreting the meaning of
14510 the storage place attributes.
14511 @end quotation
14513 @noindent
14514 To understand the precise definition of storage place attributes in
14515 this context, we visit section 13.5.1 of the manual:
14517 @quotation
14518 13   A record_representation_clause (without the mod_clause)
14519 specifies the layout.  The storage place attributes (see 13.5.2)
14520 are taken from the values of the position, first_bit, and last_bit
14521 expressions after normalizing those values so that first_bit is
14522 less than Storage_Unit.
14523 @end quotation
14525 @noindent
14526 The critical point here is that storage places are taken from
14527 the values after normalization, not before.  So the @code{Bit_Order}
14528 interpretation applies to normalized values.  The interpretation
14529 is described in the later part of the 15.5.3 paragraph:
14531 @quotation
14532 2   A bit ordering is a method of interpreting the meaning of
14533 the storage place attributes.  High_Order_First (known in the
14534 vernacular as ``big endian'') means that the first bit of a
14535 storage element (bit 0) is the most significant bit (interpreting
14536 the sequence of bits that represent a component as an unsigned
14537 integer value).  Low_Order_First (known in the vernacular as
14538 ``little endian'') means the opposite: the first bit is the
14539 least significant.
14540 @end quotation
14542 @noindent
14543 Note that the numbering is with respect to the bits of a storage
14544 unit.  In other words, the specification affects only the numbering
14545 of bits within a single storage unit.
14547 We can make the effect clearer by giving an example.
14549 Suppose that we have an external device which presents two bytes, the first
14550 byte presented, which is the first (low addressed byte) of the two byte
14551 record is called Master, and the second byte is called Slave.
14553 The left most (most significant bit is called Control for each byte, and
14554 the remaining 7 bits are called V1, V2, @dots{} V7, where V7 is the rightmost
14555 (least significant) bit.
14557 On a big-endian machine, we can write the following representation clause
14559 @smallexample @c ada
14560    type Data is record
14561       Master_Control : Bit;
14562       Master_V1      : Bit;
14563       Master_V2      : Bit;
14564       Master_V3      : Bit;
14565       Master_V4      : Bit;
14566       Master_V5      : Bit;
14567       Master_V6      : Bit;
14568       Master_V7      : Bit;
14569       Slave_Control  : Bit;
14570       Slave_V1       : Bit;
14571       Slave_V2       : Bit;
14572       Slave_V3       : Bit;
14573       Slave_V4       : Bit;
14574       Slave_V5       : Bit;
14575       Slave_V6       : Bit;
14576       Slave_V7       : Bit;
14577    end record;
14579    for Data use record
14580       Master_Control at 0 range 0 .. 0;
14581       Master_V1      at 0 range 1 .. 1;
14582       Master_V2      at 0 range 2 .. 2;
14583       Master_V3      at 0 range 3 .. 3;
14584       Master_V4      at 0 range 4 .. 4;
14585       Master_V5      at 0 range 5 .. 5;
14586       Master_V6      at 0 range 6 .. 6;
14587       Master_V7      at 0 range 7 .. 7;
14588       Slave_Control  at 1 range 0 .. 0;
14589       Slave_V1       at 1 range 1 .. 1;
14590       Slave_V2       at 1 range 2 .. 2;
14591       Slave_V3       at 1 range 3 .. 3;
14592       Slave_V4       at 1 range 4 .. 4;
14593       Slave_V5       at 1 range 5 .. 5;
14594       Slave_V6       at 1 range 6 .. 6;
14595       Slave_V7       at 1 range 7 .. 7;
14596    end record;
14597 @end smallexample
14599 @noindent
14600 Now if we move this to a little endian machine, then the bit ordering within
14601 the byte is backwards, so we have to rewrite the record rep clause as:
14603 @smallexample @c ada
14604    for Data use record
14605       Master_Control at 0 range 7 .. 7;
14606       Master_V1      at 0 range 6 .. 6;
14607       Master_V2      at 0 range 5 .. 5;
14608       Master_V3      at 0 range 4 .. 4;
14609       Master_V4      at 0 range 3 .. 3;
14610       Master_V5      at 0 range 2 .. 2;
14611       Master_V6      at 0 range 1 .. 1;
14612       Master_V7      at 0 range 0 .. 0;
14613       Slave_Control  at 1 range 7 .. 7;
14614       Slave_V1       at 1 range 6 .. 6;
14615       Slave_V2       at 1 range 5 .. 5;
14616       Slave_V3       at 1 range 4 .. 4;
14617       Slave_V4       at 1 range 3 .. 3;
14618       Slave_V5       at 1 range 2 .. 2;
14619       Slave_V6       at 1 range 1 .. 1;
14620       Slave_V7       at 1 range 0 .. 0;
14621    end record;
14622 @end smallexample
14624 @noindent
14625 It is a nuisance to have to rewrite the clause, especially if
14626 the code has to be maintained on both machines.  However,
14627 this is a case that we can handle with the
14628 @code{Bit_Order} attribute if it is implemented.
14629 Note that the implementation is not required on byte addressed
14630 machines, but it is indeed implemented in GNAT.
14631 This means that we can simply use the
14632 first record clause, together with the declaration
14634 @smallexample @c ada
14635    for Data'Bit_Order use High_Order_First;
14636 @end smallexample
14638 @noindent
14639 and the effect is what is desired, namely the layout is exactly the same,
14640 independent of whether the code is compiled on a big-endian or little-endian
14641 machine.
14643 The important point to understand is that byte ordering is not affected.
14644 A @code{Bit_Order} attribute definition never affects which byte a field
14645 ends up in, only where it ends up in that byte.
14646 To make this clear, let us rewrite the record rep clause of the previous
14647 example as:
14649 @smallexample @c ada
14650    for Data'Bit_Order use High_Order_First;
14651    for Data use record
14652       Master_Control at 0 range  0 .. 0;
14653       Master_V1      at 0 range  1 .. 1;
14654       Master_V2      at 0 range  2 .. 2;
14655       Master_V3      at 0 range  3 .. 3;
14656       Master_V4      at 0 range  4 .. 4;
14657       Master_V5      at 0 range  5 .. 5;
14658       Master_V6      at 0 range  6 .. 6;
14659       Master_V7      at 0 range  7 .. 7;
14660       Slave_Control  at 0 range  8 .. 8;
14661       Slave_V1       at 0 range  9 .. 9;
14662       Slave_V2       at 0 range 10 .. 10;
14663       Slave_V3       at 0 range 11 .. 11;
14664       Slave_V4       at 0 range 12 .. 12;
14665       Slave_V5       at 0 range 13 .. 13;
14666       Slave_V6       at 0 range 14 .. 14;
14667       Slave_V7       at 0 range 15 .. 15;
14668    end record;
14669 @end smallexample
14671 @noindent
14672 This is exactly equivalent to saying (a repeat of the first example):
14674 @smallexample @c ada
14675    for Data'Bit_Order use High_Order_First;
14676    for Data use record
14677       Master_Control at 0 range 0 .. 0;
14678       Master_V1      at 0 range 1 .. 1;
14679       Master_V2      at 0 range 2 .. 2;
14680       Master_V3      at 0 range 3 .. 3;
14681       Master_V4      at 0 range 4 .. 4;
14682       Master_V5      at 0 range 5 .. 5;
14683       Master_V6      at 0 range 6 .. 6;
14684       Master_V7      at 0 range 7 .. 7;
14685       Slave_Control  at 1 range 0 .. 0;
14686       Slave_V1       at 1 range 1 .. 1;
14687       Slave_V2       at 1 range 2 .. 2;
14688       Slave_V3       at 1 range 3 .. 3;
14689       Slave_V4       at 1 range 4 .. 4;
14690       Slave_V5       at 1 range 5 .. 5;
14691       Slave_V6       at 1 range 6 .. 6;
14692       Slave_V7       at 1 range 7 .. 7;
14693    end record;
14694 @end smallexample
14696 @noindent
14697 Why are they equivalent? Well take a specific field, the @code{Slave_V2}
14698 field.  The storage place attributes are obtained by normalizing the
14699 values given so that the @code{First_Bit} value is less than 8.  After
14700 normalizing the values (0,10,10) we get (1,2,2) which is exactly what
14701 we specified in the other case.
14703 Now one might expect that the @code{Bit_Order} attribute might affect
14704 bit numbering within the entire record component (two bytes in this
14705 case, thus affecting which byte fields end up in), but that is not
14706 the way this feature is defined, it only affects numbering of bits,
14707 not which byte they end up in.
14709 Consequently it never makes sense to specify a starting bit number
14710 greater than 7 (for a byte addressable field) if an attribute
14711 definition for @code{Bit_Order} has been given, and indeed it
14712 may be actively confusing to specify such a value, so the compiler
14713 generates a warning for such usage.
14715 If you do need to control byte ordering then appropriate conditional
14716 values must be used.  If in our example, the slave byte came first on
14717 some machines we might write:
14719 @smallexample @c ada
14720    Master_Byte_First constant Boolean := @dots{};
14722    Master_Byte : constant Natural :=
14723                    1 - Boolean'Pos (Master_Byte_First);
14724    Slave_Byte  : constant Natural :=
14725                    Boolean'Pos (Master_Byte_First);
14727    for Data'Bit_Order use High_Order_First;
14728    for Data use record
14729       Master_Control at Master_Byte range 0 .. 0;
14730       Master_V1      at Master_Byte range 1 .. 1;
14731       Master_V2      at Master_Byte range 2 .. 2;
14732       Master_V3      at Master_Byte range 3 .. 3;
14733       Master_V4      at Master_Byte range 4 .. 4;
14734       Master_V5      at Master_Byte range 5 .. 5;
14735       Master_V6      at Master_Byte range 6 .. 6;
14736       Master_V7      at Master_Byte range 7 .. 7;
14737       Slave_Control  at Slave_Byte  range 0 .. 0;
14738       Slave_V1       at Slave_Byte  range 1 .. 1;
14739       Slave_V2       at Slave_Byte  range 2 .. 2;
14740       Slave_V3       at Slave_Byte  range 3 .. 3;
14741       Slave_V4       at Slave_Byte  range 4 .. 4;
14742       Slave_V5       at Slave_Byte  range 5 .. 5;
14743       Slave_V6       at Slave_Byte  range 6 .. 6;
14744       Slave_V7       at Slave_Byte  range 7 .. 7;
14745    end record;
14746 @end smallexample
14748 @noindent
14749 Now to switch between machines, all that is necessary is
14750 to set the boolean constant @code{Master_Byte_First} in
14751 an appropriate manner.
14753 @node Pragma Pack for Arrays
14754 @section Pragma Pack for Arrays
14755 @cindex Pragma Pack (for arrays)
14757 @noindent
14758 Pragma @code{Pack} applied to an array has no effect unless the component type
14759 is packable.  For a component type to be packable, it must be one of the
14760 following cases:
14762 @itemize @bullet
14763 @item
14764 Any scalar type
14765 @item
14766 Any type whose size is specified with a size clause
14767 @item
14768 Any packed array type with a static size
14769 @item
14770 Any record type padded because of its default alignment
14771 @end itemize
14773 @noindent
14774 For all these cases, if the component subtype size is in the range
14775 1 through 63, then the effect of the pragma @code{Pack} is exactly as though a
14776 component size were specified giving the component subtype size.
14777 For example if we have:
14779 @smallexample @c ada
14780    type r is range 0 .. 17;
14782    type ar is array (1 .. 8) of r;
14783    pragma Pack (ar);
14784 @end smallexample
14786 @noindent
14787 Then the component size of @code{ar} will be set to 5 (i.e.@: to @code{r'size},
14788 and the size of the array @code{ar} will be exactly 40 bits.
14790 Note that in some cases this rather fierce approach to packing can produce
14791 unexpected effects.  For example, in Ada 95 and Ada 2005,
14792 subtype @code{Natural} typically has a size of 31, meaning that if you
14793 pack an array of @code{Natural}, you get 31-bit
14794 close packing, which saves a few bits, but results in far less efficient
14795 access.  Since many other Ada compilers will ignore such a packing request,
14796 GNAT will generate a warning on some uses of pragma @code{Pack} that it guesses
14797 might not be what is intended.  You can easily remove this warning by
14798 using an explicit @code{Component_Size} setting instead, which never generates
14799 a warning, since the intention of the programmer is clear in this case.
14801 GNAT treats packed arrays in one of two ways.  If the size of the array is
14802 known at compile time and is less than 64 bits, then internally the array
14803 is represented as a single modular type, of exactly the appropriate number
14804 of bits.  If the length is greater than 63 bits, or is not known at compile
14805 time, then the packed array is represented as an array of bytes, and the
14806 length is always a multiple of 8 bits.
14808 Note that to represent a packed array as a modular type, the alignment must
14809 be suitable for the modular type involved. For example, on typical machines
14810 a 32-bit packed array will be represented by a 32-bit modular integer with
14811 an alignment of four bytes. If you explicitly override the default alignment
14812 with an alignment clause that is too small, the modular representation
14813 cannot be used. For example, consider the following set of declarations:
14815 @smallexample @c ada
14816    type R is range 1 .. 3;
14817    type S is array (1 .. 31) of R;
14818    for S'Component_Size use 2;
14819    for S'Size use 62;
14820    for S'Alignment use 1;
14821 @end smallexample
14823 @noindent
14824 If the alignment clause were not present, then a 62-bit modular
14825 representation would be chosen (typically with an alignment of 4 or 8
14826 bytes depending on the target). But the default alignment is overridden
14827 with the explicit alignment clause. This means that the modular
14828 representation cannot be used, and instead the array of bytes
14829 representation must be used, meaning that the length must be a multiple
14830 of 8. Thus the above set of declarations will result in a diagnostic
14831 rejecting the size clause and noting that the minimum size allowed is 64.
14833 @cindex Pragma Pack (for type Natural)
14834 @cindex Pragma Pack warning
14836 One special case that is worth noting occurs when the base type of the
14837 component size is 8/16/32 and the subtype is one bit less. Notably this
14838 occurs with subtype @code{Natural}. Consider:
14840 @smallexample @c ada
14841    type Arr is array (1 .. 32) of Natural;
14842    pragma Pack (Arr);
14843 @end smallexample
14845 @noindent
14846 In all commonly used Ada 83 compilers, this pragma Pack would be ignored,
14847 since typically @code{Natural'Size} is 32 in Ada 83, and in any case most
14848 Ada 83 compilers did not attempt 31 bit packing.
14850 In Ada 95 and Ada 2005, @code{Natural'Size} is required to be 31. Furthermore,
14851 GNAT really does pack 31-bit subtype to 31 bits. This may result in a
14852 substantial unintended performance penalty when porting legacy Ada 83 code.
14853 To help prevent this, GNAT generates a warning in such cases. If you really
14854 want 31 bit packing in a case like this, you can set the component size
14855 explicitly:
14857 @smallexample @c ada
14858    type Arr is array (1 .. 32) of Natural;
14859    for Arr'Component_Size use 31;
14860 @end smallexample
14862 @noindent
14863 Here 31-bit packing is achieved as required, and no warning is generated,
14864 since in this case the programmer intention is clear.
14866 @node Pragma Pack for Records
14867 @section Pragma Pack for Records
14868 @cindex Pragma Pack (for records)
14870 @noindent
14871 Pragma @code{Pack} applied to a record will pack the components to reduce
14872 wasted space from alignment gaps and by reducing the amount of space
14873 taken by components.  We distinguish between @emph{packable} components and
14874 @emph{non-packable} components.
14875 Components of the following types are considered packable:
14876 @itemize @bullet
14877 @item
14878 All primitive types are packable.
14880 @item
14881 Small packed arrays, whose size does not exceed 64 bits, and where the
14882 size is statically known at compile time, are represented internally
14883 as modular integers, and so they are also packable.
14885 @end itemize
14887 @noindent
14888 All packable components occupy the exact number of bits corresponding to
14889 their @code{Size} value, and are packed with no padding bits, i.e.@: they
14890 can start on an arbitrary bit boundary.
14892 All other types are non-packable, they occupy an integral number of
14893 storage units, and
14894 are placed at a boundary corresponding to their alignment requirements.
14896 For example, consider the record
14898 @smallexample @c ada
14899    type Rb1 is array (1 .. 13) of Boolean;
14900    pragma Pack (rb1);
14902    type Rb2 is array (1 .. 65) of Boolean;
14903    pragma Pack (rb2);
14905    type x2 is record
14906       l1 : Boolean;
14907       l2 : Duration;
14908       l3 : Float;
14909       l4 : Boolean;
14910       l5 : Rb1;
14911       l6 : Rb2;
14912    end record;
14913    pragma Pack (x2);
14914 @end smallexample
14916 @noindent
14917 The representation for the record x2 is as follows:
14919 @smallexample @c ada
14920 for x2'Size use 224;
14921 for x2 use record
14922    l1 at  0 range  0 .. 0;
14923    l2 at  0 range  1 .. 64;
14924    l3 at 12 range  0 .. 31;
14925    l4 at 16 range  0 .. 0;
14926    l5 at 16 range  1 .. 13;
14927    l6 at 18 range  0 .. 71;
14928 end record;
14929 @end smallexample
14931 @noindent
14932 Studying this example, we see that the packable fields @code{l1}
14933 and @code{l2} are
14934 of length equal to their sizes, and placed at specific bit boundaries (and
14935 not byte boundaries) to
14936 eliminate padding.  But @code{l3} is of a non-packable float type, so
14937 it is on the next appropriate alignment boundary.
14939 The next two fields are fully packable, so @code{l4} and @code{l5} are
14940 minimally packed with no gaps.  However, type @code{Rb2} is a packed
14941 array that is longer than 64 bits, so it is itself non-packable.  Thus
14942 the @code{l6} field is aligned to the next byte boundary, and takes an
14943 integral number of bytes, i.e.@: 72 bits.
14945 @node Record Representation Clauses
14946 @section Record Representation Clauses
14947 @cindex Record Representation Clause
14949 @noindent
14950 Record representation clauses may be given for all record types, including
14951 types obtained by record extension.  Component clauses are allowed for any
14952 static component.  The restrictions on component clauses depend on the type
14953 of the component.
14955 @cindex Component Clause
14956 For all components of an elementary type, the only restriction on component
14957 clauses is that the size must be at least the 'Size value of the type
14958 (actually the Value_Size).  There are no restrictions due to alignment,
14959 and such components may freely cross storage boundaries.
14961 Packed arrays with a size up to and including 64 bits are represented
14962 internally using a modular type with the appropriate number of bits, and
14963 thus the same lack of restriction applies.  For example, if you declare:
14965 @smallexample @c ada
14966    type R is array (1 .. 49) of Boolean;
14967    pragma Pack (R);
14968    for R'Size use 49;
14969 @end smallexample
14971 @noindent
14972 then a component clause for a component of type R may start on any
14973 specified bit boundary, and may specify a value of 49 bits or greater.
14975 For packed bit arrays that are longer than 64 bits, there are two
14976 cases. If the component size is a power of 2 (1,2,4,8,16,32 bits),
14977 including the important case of single bits or boolean values, then
14978 there are no limitations on placement of such components, and they
14979 may start and end at arbitrary bit boundaries.
14981 If the component size is not a power of 2 (e.g.@: 3 or 5), then
14982 an array of this type longer than 64 bits must always be placed on
14983 on a storage unit (byte) boundary and occupy an integral number
14984 of storage units (bytes). Any component clause that does not
14985 meet this requirement will be rejected.
14987 Any aliased component, or component of an aliased type, must
14988 have its normal alignment and size. A component clause that
14989 does not meet this requirement will be rejected.
14991 The tag field of a tagged type always occupies an address sized field at
14992 the start of the record.  No component clause may attempt to overlay this
14993 tag. When a tagged type appears as a component, the tag field must have
14994 proper alignment
14996 In the case of a record extension T1, of a type T, no component clause applied
14997 to the type T1 can specify a storage location that would overlap the first
14998 T'Size bytes of the record.
15000 For all other component types, including non-bit-packed arrays,
15001 the component can be placed at an arbitrary bit boundary,
15002 so for example, the following is permitted:
15004 @smallexample @c ada
15005    type R is array (1 .. 10) of Boolean;
15006    for R'Size use 80;
15008    type Q is record
15009       G, H : Boolean;
15010       L, M : R;
15011    end record;
15013    for Q use record
15014       G at 0 range  0 ..   0;
15015       H at 0 range  1 ..   1;
15016       L at 0 range  2 ..  81;
15017       R at 0 range 82 .. 161;
15018    end record;
15019 @end smallexample
15021 @noindent
15022 Note: the above rules apply to recent releases of GNAT 5.
15023 In GNAT 3, there are more severe restrictions on larger components.
15024 For non-primitive types, including packed arrays with a size greater than
15025 64 bits, component clauses must respect the alignment requirement of the
15026 type, in particular, always starting on a byte boundary, and the length
15027 must be a multiple of the storage unit.
15029 @node Enumeration Clauses
15030 @section Enumeration Clauses
15032 The only restriction on enumeration clauses is that the range of values
15033 must be representable.  For the signed case, if one or more of the
15034 representation values are negative, all values must be in the range:
15036 @smallexample @c ada
15037    System.Min_Int .. System.Max_Int
15038 @end smallexample
15040 @noindent
15041 For the unsigned case, where all values are nonnegative, the values must
15042 be in the range:
15044 @smallexample @c ada
15045    0 .. System.Max_Binary_Modulus;
15046 @end smallexample
15048 @noindent
15049 A @emph{confirming} representation clause is one in which the values range
15050 from 0 in sequence, i.e.@: a clause that confirms the default representation
15051 for an enumeration type.
15052 Such a confirming representation
15053 is permitted by these rules, and is specially recognized by the compiler so
15054 that no extra overhead results from the use of such a clause.
15056 If an array has an index type which is an enumeration type to which an
15057 enumeration clause has been applied, then the array is stored in a compact
15058 manner.  Consider the declarations:
15060 @smallexample @c ada
15061    type r is (A, B, C);
15062    for r use (A => 1, B => 5, C => 10);
15063    type t is array (r) of Character;
15064 @end smallexample
15066 @noindent
15067 The array type t corresponds to a vector with exactly three elements and
15068 has a default size equal to @code{3*Character'Size}.  This ensures efficient
15069 use of space, but means that accesses to elements of the array will incur
15070 the overhead of converting representation values to the corresponding
15071 positional values, (i.e.@: the value delivered by the @code{Pos} attribute).
15073 @node Address Clauses
15074 @section Address Clauses
15075 @cindex Address Clause
15077 The reference manual allows a general restriction on representation clauses,
15078 as found in RM 13.1(22):
15080 @quotation
15081 An implementation need not support representation
15082 items containing nonstatic expressions, except that
15083 an implementation should support a representation item
15084 for a given entity if each nonstatic expression in the
15085 representation item is a name that statically denotes
15086 a constant declared before the entity.
15087 @end quotation
15089 @noindent
15090 In practice this is applicable only to address clauses, since this is the
15091 only case in which a non-static expression is permitted by the syntax.  As
15092 the AARM notes in sections 13.1 (22.a-22.h):
15094 @display
15095   22.a   Reason: This is to avoid the following sort of thing:
15097   22.b        X : Integer := F(@dots{});
15098               Y : Address := G(@dots{});
15099               for X'Address use Y;
15101   22.c   In the above, we have to evaluate the
15102          initialization expression for X before we
15103          know where to put the result.  This seems
15104          like an unreasonable implementation burden.
15106   22.d   The above code should instead be written
15107          like this:
15109   22.e        Y : constant Address := G(@dots{});
15110               X : Integer := F(@dots{});
15111               for X'Address use Y;
15113   22.f   This allows the expression ``Y'' to be safely
15114          evaluated before X is created.
15116   22.g   The constant could be a formal parameter of mode in.
15118   22.h   An implementation can support other nonstatic
15119          expressions if it wants to.  Expressions of type
15120          Address are hardly ever static, but their value
15121          might be known at compile time anyway in many
15122          cases.
15123 @end display
15125 @noindent
15126 GNAT does indeed permit many additional cases of non-static expressions.  In
15127 particular, if the type involved is elementary there are no restrictions
15128 (since in this case, holding a temporary copy of the initialization value,
15129 if one is present, is inexpensive).  In addition, if there is no implicit or
15130 explicit initialization, then there are no restrictions.  GNAT will reject
15131 only the case where all three of these conditions hold:
15133 @itemize @bullet
15135 @item
15136 The type of the item is non-elementary (e.g.@: a record or array).
15138 @item
15139 There is explicit or implicit initialization required for the object.
15140 Note that access values are always implicitly initialized.
15142 @item
15143 The address value is non-static.  Here GNAT is more permissive than the
15144 RM, and allows the address value to be the address of a previously declared
15145 stand-alone variable, as long as it does not itself have an address clause.
15147 @smallexample @c ada
15148            Anchor  : Some_Initialized_Type;
15149            Overlay : Some_Initialized_Type;
15150            for Overlay'Address use Anchor'Address;
15151 @end smallexample
15153 @noindent
15154 However, the prefix of the address clause cannot be an array component, or
15155 a component of a discriminated record.
15157 @end itemize
15159 @noindent
15160 As noted above in section 22.h, address values are typically non-static.  In
15161 particular the To_Address function, even if applied to a literal value, is
15162 a non-static function call.  To avoid this minor annoyance, GNAT provides
15163 the implementation defined attribute 'To_Address.  The following two
15164 expressions have identical values:
15166 @findex Attribute
15167 @findex To_Address
15168 @smallexample @c ada
15169    To_Address (16#1234_0000#)
15170    System'To_Address (16#1234_0000#);
15171 @end smallexample
15173 @noindent
15174 except that the second form is considered to be a static expression, and
15175 thus when used as an address clause value is always permitted.
15177 @noindent
15178 Additionally, GNAT treats as static an address clause that is an
15179 unchecked_conversion of a static integer value.  This simplifies the porting
15180 of legacy code, and provides a portable equivalent to the GNAT attribute
15181 @code{To_Address}.
15183 Another issue with address clauses is the interaction with alignment
15184 requirements.  When an address clause is given for an object, the address
15185 value must be consistent with the alignment of the object (which is usually
15186 the same as the alignment of the type of the object).  If an address clause
15187 is given that specifies an inappropriately aligned address value, then the
15188 program execution is erroneous.
15190 Since this source of erroneous behavior can have unfortunate effects, GNAT
15191 checks (at compile time if possible, generating a warning, or at execution
15192 time with a run-time check) that the alignment is appropriate.  If the
15193 run-time check fails, then @code{Program_Error} is raised.  This run-time
15194 check is suppressed if range checks are suppressed, or if the special GNAT
15195 check Alignment_Check is suppressed, or if
15196 @code{pragma Restrictions (No_Elaboration_Code)} is in effect.
15198 Finally, GNAT does not permit overlaying of objects of controlled types or
15199 composite types containing a controlled component. In most cases, the compiler
15200 can detect an attempt at such overlays and will generate a warning at compile
15201 time and a Program_Error exception at run time.
15203 @findex Export
15204 An address clause cannot be given for an exported object.  More
15205 understandably the real restriction is that objects with an address
15206 clause cannot be exported.  This is because such variables are not
15207 defined by the Ada program, so there is no external object to export.
15209 @findex Import
15210 It is permissible to give an address clause and a pragma Import for the
15211 same object.  In this case, the variable is not really defined by the
15212 Ada program, so there is no external symbol to be linked.  The link name
15213 and the external name are ignored in this case.  The reason that we allow this
15214 combination is that it provides a useful idiom to avoid unwanted
15215 initializations on objects with address clauses.
15217 When an address clause is given for an object that has implicit or
15218 explicit initialization, then by default initialization takes place.  This
15219 means that the effect of the object declaration is to overwrite the
15220 memory at the specified address.  This is almost always not what the
15221 programmer wants, so GNAT will output a warning:
15223 @smallexample
15224   with System;
15225   package G is
15226      type R is record
15227         M : Integer := 0;
15228      end record;
15230      Ext : R;
15231      for Ext'Address use System'To_Address (16#1234_1234#);
15232          |
15233   >>> warning: implicit initialization of "Ext" may
15234       modify overlaid storage
15235   >>> warning: use pragma Import for "Ext" to suppress
15236       initialization (RM B(24))
15238   end G;
15239 @end smallexample
15241 @noindent
15242 As indicated by the warning message, the solution is to use a (dummy) pragma
15243 Import to suppress this initialization.  The pragma tell the compiler that the
15244 object is declared and initialized elsewhere.  The following package compiles
15245 without warnings (and the initialization is suppressed):
15247 @smallexample @c ada
15248    with System;
15249    package G is
15250       type R is record
15251          M : Integer := 0;
15252       end record;
15254       Ext : R;
15255       for Ext'Address use System'To_Address (16#1234_1234#);
15256       pragma Import (Ada, Ext);
15257    end G;
15258 @end smallexample
15260 @noindent
15261 A final issue with address clauses involves their use for overlaying
15262 variables, as in the following example:
15263 @cindex Overlaying of objects
15265 @smallexample @c ada
15266   A : Integer;
15267   B : Integer;
15268   for B'Address use A'Address;
15269 @end smallexample
15271 @noindent
15272 or alternatively, using the form recommended by the RM:
15274 @smallexample @c ada
15275   A    : Integer;
15276   Addr : constant Address := A'Address;
15277   B    : Integer;
15278   for B'Address use Addr;
15279 @end smallexample
15281 @noindent
15282 In both of these cases, @code{A}
15283 and @code{B} become aliased to one another via the
15284 address clause. This use of address clauses to overlay
15285 variables, achieving an effect similar to unchecked
15286 conversion was erroneous in Ada 83, but in Ada 95 and Ada 2005
15287 the effect is implementation defined. Furthermore, the
15288 Ada RM specifically recommends that in a situation
15289 like this, @code{B} should be subject to the following
15290 implementation advice (RM 13.3(19)):
15292 @quotation
15293 19  If the Address of an object is specified, or it is imported
15294     or exported, then the implementation should not perform
15295     optimizations based on assumptions of no aliases.
15296 @end quotation
15298 @noindent
15299 GNAT follows this recommendation, and goes further by also applying
15300 this recommendation to the overlaid variable (@code{A}
15301 in the above example) in this case. This means that the overlay
15302 works "as expected", in that a modification to one of the variables
15303 will affect the value of the other.
15305 @node Effect of Convention on Representation
15306 @section Effect of Convention on Representation
15307 @cindex Convention, effect on representation
15309 @noindent
15310 Normally the specification of a foreign language convention for a type or
15311 an object has no effect on the chosen representation.  In particular, the
15312 representation chosen for data in GNAT generally meets the standard system
15313 conventions, and for example records are laid out in a manner that is
15314 consistent with C@.  This means that specifying convention C (for example)
15315 has no effect.
15317 There are four exceptions to this general rule:
15319 @itemize @bullet
15321 @item Convention Fortran and array subtypes
15322 If pragma Convention Fortran is specified for an array subtype, then in
15323 accordance with the implementation advice in section 3.6.2(11) of the
15324 Ada Reference Manual, the array will be stored in a Fortran-compatible
15325 column-major manner, instead of the normal default row-major order.
15327 @item Convention C and enumeration types
15328 GNAT normally stores enumeration types in 8, 16, or 32 bits as required
15329 to accommodate all values of the type.  For example, for the enumeration
15330 type declared by:
15332 @smallexample @c ada
15333    type Color is (Red, Green, Blue);
15334 @end smallexample
15336 @noindent
15337 8 bits is sufficient to store all values of the type, so by default, objects
15338 of type @code{Color} will be represented using 8 bits.  However, normal C
15339 convention is to use 32 bits for all enum values in C, since enum values
15340 are essentially of type int.  If pragma @code{Convention C} is specified for an
15341 Ada enumeration type, then the size is modified as necessary (usually to
15342 32 bits) to be consistent with the C convention for enum values.
15344 Note that this treatment applies only to types. If Convention C is given for
15345 an enumeration object, where the enumeration type is not Convention C, then
15346 Object_Size bits are allocated. For example, for a normal enumeration type,
15347 with less than 256 elements, only 8 bits will be allocated for the object.
15348 Since this may be a surprise in terms of what C expects, GNAT will issue a
15349 warning in this situation. The warning can be suppressed by giving an explicit
15350 size clause specifying the desired size.
15352 @item Convention C/Fortran and Boolean types
15353 In C, the usual convention for boolean values, that is values used for
15354 conditions, is that zero represents false, and nonzero values represent
15355 true.  In Ada, the normal convention is that two specific values, typically
15356 0/1, are used to represent false/true respectively.
15358 Fortran has a similar convention for @code{LOGICAL} values (any nonzero
15359 value represents true).
15361 To accommodate the Fortran and C conventions, if a pragma Convention specifies
15362 C or Fortran convention for a derived Boolean, as in the following example:
15364 @smallexample @c ada
15365    type C_Switch is new Boolean;
15366    pragma Convention (C, C_Switch);
15367 @end smallexample
15369 @noindent
15370 then the GNAT generated code will treat any nonzero value as true.  For truth
15371 values generated by GNAT, the conventional value 1 will be used for True, but
15372 when one of these values is read, any nonzero value is treated as True.
15374 @item Access types on OpenVMS
15375 For 64-bit OpenVMS systems, access types (other than those for unconstrained
15376 arrays) are 64-bits long. An exception to this rule is for the case of
15377 C-convention access types where there is no explicit size clause present (or
15378 inherited for derived types). In this case, GNAT chooses to make these
15379 pointers 32-bits, which provides an easier path for migration of 32-bit legacy
15380 code. size clause specifying 64-bits must be used to obtain a 64-bit pointer.
15382 @end itemize
15384 @node Determining the Representations chosen by GNAT
15385 @section Determining the Representations chosen by GNAT
15386 @cindex Representation, determination of
15387 @cindex @option{-gnatR} switch
15389 @noindent
15390 Although the descriptions in this section are intended to be complete, it is
15391 often easier to simply experiment to see what GNAT accepts and what the
15392 effect is on the layout of types and objects.
15394 As required by the Ada RM, if a representation clause is not accepted, then
15395 it must be rejected as illegal by the compiler.  However, when a
15396 representation clause or pragma is accepted, there can still be questions
15397 of what the compiler actually does.  For example, if a partial record
15398 representation clause specifies the location of some components and not
15399 others, then where are the non-specified components placed? Or if pragma
15400 @code{Pack} is used on a record, then exactly where are the resulting
15401 fields placed? The section on pragma @code{Pack} in this chapter can be
15402 used to answer the second question, but it is often easier to just see
15403 what the compiler does.
15405 For this purpose, GNAT provides the option @option{-gnatR}.  If you compile
15406 with this option, then the compiler will output information on the actual
15407 representations chosen, in a format similar to source representation
15408 clauses.  For example, if we compile the package:
15410 @smallexample @c ada
15411 package q is
15412    type r (x : boolean) is tagged record
15413       case x is
15414          when True => S : String (1 .. 100);
15415          when False => null;
15416       end case;
15417    end record;
15419    type r2 is new r (false) with record
15420       y2 : integer;
15421    end record;
15423    for r2 use record
15424       y2 at 16 range 0 .. 31;
15425    end record;
15427    type x is record
15428       y : character;
15429    end record;
15431    type x1 is array (1 .. 10) of x;
15432    for x1'component_size use 11;
15434    type ia is access integer;
15436    type Rb1 is array (1 .. 13) of Boolean;
15437    pragma Pack (rb1);
15439    type Rb2 is array (1 .. 65) of Boolean;
15440    pragma Pack (rb2);
15442    type x2 is record
15443       l1 : Boolean;
15444       l2 : Duration;
15445       l3 : Float;
15446       l4 : Boolean;
15447       l5 : Rb1;
15448       l6 : Rb2;
15449    end record;
15450    pragma Pack (x2);
15451 end q;
15452 @end smallexample
15454 @noindent
15455 using the switch @option{-gnatR} we obtain the following output:
15457 @smallexample
15458 Representation information for unit q
15459 -------------------------------------
15461 for r'Size use ??;
15462 for r'Alignment use 4;
15463 for r use record
15464    x    at 4 range  0 .. 7;
15465    _tag at 0 range  0 .. 31;
15466    s    at 5 range  0 .. 799;
15467 end record;
15469 for r2'Size use 160;
15470 for r2'Alignment use 4;
15471 for r2 use record
15472    x       at  4 range  0 .. 7;
15473    _tag    at  0 range  0 .. 31;
15474    _parent at  0 range  0 .. 63;
15475    y2      at 16 range  0 .. 31;
15476 end record;
15478 for x'Size use 8;
15479 for x'Alignment use 1;
15480 for x use record
15481    y at 0 range  0 .. 7;
15482 end record;
15484 for x1'Size use 112;
15485 for x1'Alignment use 1;
15486 for x1'Component_Size use 11;
15488 for rb1'Size use 13;
15489 for rb1'Alignment use 2;
15490 for rb1'Component_Size use 1;
15492 for rb2'Size use 72;
15493 for rb2'Alignment use 1;
15494 for rb2'Component_Size use 1;
15496 for x2'Size use 224;
15497 for x2'Alignment use 4;
15498 for x2 use record
15499    l1 at  0 range  0 .. 0;
15500    l2 at  0 range  1 .. 64;
15501    l3 at 12 range  0 .. 31;
15502    l4 at 16 range  0 .. 0;
15503    l5 at 16 range  1 .. 13;
15504    l6 at 18 range  0 .. 71;
15505 end record;
15506 @end smallexample
15508 @noindent
15509 The Size values are actually the Object_Size, i.e.@: the default size that
15510 will be allocated for objects of the type.
15511 The ?? size for type r indicates that we have a variant record, and the
15512 actual size of objects will depend on the discriminant value.
15514 The Alignment values show the actual alignment chosen by the compiler
15515 for each record or array type.
15517 The record representation clause for type r shows where all fields
15518 are placed, including the compiler generated tag field (whose location
15519 cannot be controlled by the programmer).
15521 The record representation clause for the type extension r2 shows all the
15522 fields present, including the parent field, which is a copy of the fields
15523 of the parent type of r2, i.e.@: r1.
15525 The component size and size clauses for types rb1 and rb2 show
15526 the exact effect of pragma @code{Pack} on these arrays, and the record
15527 representation clause for type x2 shows how pragma @code{Pack} affects
15528 this record type.
15530 In some cases, it may be useful to cut and paste the representation clauses
15531 generated by the compiler into the original source to fix and guarantee
15532 the actual representation to be used.
15534 @node Standard Library Routines
15535 @chapter Standard Library Routines
15537 @noindent
15538 The Ada Reference Manual contains in Annex A a full description of an
15539 extensive set of standard library routines that can be used in any Ada
15540 program, and which must be provided by all Ada compilers.  They are
15541 analogous to the standard C library used by C programs.
15543 GNAT implements all of the facilities described in annex A, and for most
15544 purposes the description in the Ada Reference Manual, or appropriate Ada
15545 text book, will be sufficient for making use of these facilities.
15547 In the case of the input-output facilities,
15548 @xref{The Implementation of Standard I/O},
15549 gives details on exactly how GNAT interfaces to the
15550 file system.  For the remaining packages, the Ada Reference Manual
15551 should be sufficient.  The following is a list of the packages included,
15552 together with a brief description of the functionality that is provided.
15554 For completeness, references are included to other predefined library
15555 routines defined in other sections of the Ada Reference Manual (these are
15556 cross-indexed from Annex A).
15558 @table @code
15559 @item Ada (A.2)
15560 This is a parent package for all the standard library packages.  It is
15561 usually included implicitly in your program, and itself contains no
15562 useful data or routines.
15564 @item Ada.Calendar (9.6)
15565 @code{Calendar} provides time of day access, and routines for
15566 manipulating times and durations.
15568 @item Ada.Characters (A.3.1)
15569 This is a dummy parent package that contains no useful entities
15571 @item Ada.Characters.Handling (A.3.2)
15572 This package provides some basic character handling capabilities,
15573 including classification functions for classes of characters (e.g.@: test
15574 for letters, or digits).
15576 @item Ada.Characters.Latin_1 (A.3.3)
15577 This package includes a complete set of definitions of the characters
15578 that appear in type CHARACTER@.  It is useful for writing programs that
15579 will run in international environments.  For example, if you want an
15580 upper case E with an acute accent in a string, it is often better to use
15581 the definition of @code{UC_E_Acute} in this package.  Then your program
15582 will print in an understandable manner even if your environment does not
15583 support these extended characters.
15585 @item Ada.Command_Line (A.15)
15586 This package provides access to the command line parameters and the name
15587 of the current program (analogous to the use of @code{argc} and @code{argv}
15588 in C), and also allows the exit status for the program to be set in a
15589 system-independent manner.
15591 @item Ada.Decimal (F.2)
15592 This package provides constants describing the range of decimal numbers
15593 implemented, and also a decimal divide routine (analogous to the COBOL
15594 verb DIVIDE @dots{} GIVING @dots{} REMAINDER @dots{})
15596 @item Ada.Direct_IO (A.8.4)
15597 This package provides input-output using a model of a set of records of
15598 fixed-length, containing an arbitrary definite Ada type, indexed by an
15599 integer record number.
15601 @item Ada.Dynamic_Priorities (D.5)
15602 This package allows the priorities of a task to be adjusted dynamically
15603 as the task is running.
15605 @item Ada.Exceptions (11.4.1)
15606 This package provides additional information on exceptions, and also
15607 contains facilities for treating exceptions as data objects, and raising
15608 exceptions with associated messages.
15610 @item Ada.Finalization (7.6)
15611 This package contains the declarations and subprograms to support the
15612 use of controlled types, providing for automatic initialization and
15613 finalization (analogous to the constructors and destructors of C++)
15615 @item Ada.Interrupts (C.3.2)
15616 This package provides facilities for interfacing to interrupts, which
15617 includes the set of signals or conditions that can be raised and
15618 recognized as interrupts.
15620 @item Ada.Interrupts.Names (C.3.2)
15621 This package provides the set of interrupt names (actually signal
15622 or condition names) that can be handled by GNAT@.
15624 @item Ada.IO_Exceptions (A.13)
15625 This package defines the set of exceptions that can be raised by use of
15626 the standard IO packages.
15628 @item Ada.Numerics
15629 This package contains some standard constants and exceptions used
15630 throughout the numerics packages.  Note that the constants pi and e are
15631 defined here, and it is better to use these definitions than rolling
15632 your own.
15634 @item Ada.Numerics.Complex_Elementary_Functions
15635 Provides the implementation of standard elementary functions (such as
15636 log and trigonometric functions) operating on complex numbers using the
15637 standard @code{Float} and the @code{Complex} and @code{Imaginary} types
15638 created by the package @code{Numerics.Complex_Types}.
15640 @item Ada.Numerics.Complex_Types
15641 This is a predefined instantiation of
15642 @code{Numerics.Generic_Complex_Types} using @code{Standard.Float} to
15643 build the type @code{Complex} and @code{Imaginary}.
15645 @item Ada.Numerics.Discrete_Random
15646 This generic package provides a random number generator suitable for generating
15647 uniformly distributed values of a specified discrete subtype.
15649 @item Ada.Numerics.Float_Random
15650 This package provides a random number generator suitable for generating
15651 uniformly distributed floating point values in the unit interval.
15653 @item Ada.Numerics.Generic_Complex_Elementary_Functions
15654 This is a generic version of the package that provides the
15655 implementation of standard elementary functions (such as log and
15656 trigonometric functions) for an arbitrary complex type.
15658 The following predefined instantiations of this package are provided:
15660 @table @code
15661 @item Short_Float
15662 @code{Ada.Numerics.Short_Complex_Elementary_Functions}
15663 @item Float
15664 @code{Ada.Numerics.Complex_Elementary_Functions}
15665 @item Long_Float
15666 @code{Ada.Numerics.Long_Complex_Elementary_Functions}
15667 @end table
15669 @item Ada.Numerics.Generic_Complex_Types
15670 This is a generic package that allows the creation of complex types,
15671 with associated complex arithmetic operations.
15673 The following predefined instantiations of this package exist
15674 @table @code
15675 @item Short_Float
15676 @code{Ada.Numerics.Short_Complex_Complex_Types}
15677 @item Float
15678 @code{Ada.Numerics.Complex_Complex_Types}
15679 @item Long_Float
15680 @code{Ada.Numerics.Long_Complex_Complex_Types}
15681 @end table
15683 @item Ada.Numerics.Generic_Elementary_Functions
15684 This is a generic package that provides the implementation of standard
15685 elementary functions (such as log an trigonometric functions) for an
15686 arbitrary float type.
15688 The following predefined instantiations of this package exist
15690 @table @code
15691 @item Short_Float
15692 @code{Ada.Numerics.Short_Elementary_Functions}
15693 @item Float
15694 @code{Ada.Numerics.Elementary_Functions}
15695 @item Long_Float
15696 @code{Ada.Numerics.Long_Elementary_Functions}
15697 @end table
15699 @item Ada.Real_Time (D.8)
15700 This package provides facilities similar to those of @code{Calendar}, but
15701 operating with a finer clock suitable for real time control. Note that
15702 annex D requires that there be no backward clock jumps, and GNAT generally
15703 guarantees this behavior, but of course if the external clock on which
15704 the GNAT runtime depends is deliberately reset by some external event,
15705 then such a backward jump may occur.
15707 @item Ada.Sequential_IO (A.8.1)
15708 This package provides input-output facilities for sequential files,
15709 which can contain a sequence of values of a single type, which can be
15710 any Ada type, including indefinite (unconstrained) types.
15712 @item Ada.Storage_IO (A.9)
15713 This package provides a facility for mapping arbitrary Ada types to and
15714 from a storage buffer.  It is primarily intended for the creation of new
15715 IO packages.
15717 @item Ada.Streams (13.13.1)
15718 This is a generic package that provides the basic support for the
15719 concept of streams as used by the stream attributes (@code{Input},
15720 @code{Output}, @code{Read} and @code{Write}).
15722 @item Ada.Streams.Stream_IO (A.12.1)
15723 This package is a specialization of the type @code{Streams} defined in
15724 package @code{Streams} together with a set of operations providing
15725 Stream_IO capability.  The Stream_IO model permits both random and
15726 sequential access to a file which can contain an arbitrary set of values
15727 of one or more Ada types.
15729 @item Ada.Strings (A.4.1)
15730 This package provides some basic constants used by the string handling
15731 packages.
15733 @item Ada.Strings.Bounded (A.4.4)
15734 This package provides facilities for handling variable length
15735 strings.  The bounded model requires a maximum length.  It is thus
15736 somewhat more limited than the unbounded model, but avoids the use of
15737 dynamic allocation or finalization.
15739 @item Ada.Strings.Fixed (A.4.3)
15740 This package provides facilities for handling fixed length strings.
15742 @item Ada.Strings.Maps (A.4.2)
15743 This package provides facilities for handling character mappings and
15744 arbitrarily defined subsets of characters.  For instance it is useful in
15745 defining specialized translation tables.
15747 @item Ada.Strings.Maps.Constants (A.4.6)
15748 This package provides a standard set of predefined mappings and
15749 predefined character sets.  For example, the standard upper to lower case
15750 conversion table is found in this package.  Note that upper to lower case
15751 conversion is non-trivial if you want to take the entire set of
15752 characters, including extended characters like E with an acute accent,
15753 into account.  You should use the mappings in this package (rather than
15754 adding 32 yourself) to do case mappings.
15756 @item Ada.Strings.Unbounded (A.4.5)
15757 This package provides facilities for handling variable length
15758 strings.  The unbounded model allows arbitrary length strings, but
15759 requires the use of dynamic allocation and finalization.
15761 @item Ada.Strings.Wide_Bounded (A.4.7)
15762 @itemx Ada.Strings.Wide_Fixed (A.4.7)
15763 @itemx Ada.Strings.Wide_Maps (A.4.7)
15764 @itemx Ada.Strings.Wide_Maps.Constants (A.4.7)
15765 @itemx Ada.Strings.Wide_Unbounded (A.4.7)
15766 These packages provide analogous capabilities to the corresponding
15767 packages without @samp{Wide_} in the name, but operate with the types
15768 @code{Wide_String} and @code{Wide_Character} instead of @code{String}
15769 and @code{Character}.
15771 @item Ada.Strings.Wide_Wide_Bounded (A.4.7)
15772 @itemx Ada.Strings.Wide_Wide_Fixed (A.4.7)
15773 @itemx Ada.Strings.Wide_Wide_Maps (A.4.7)
15774 @itemx Ada.Strings.Wide_Wide_Maps.Constants (A.4.7)
15775 @itemx Ada.Strings.Wide_Wide_Unbounded (A.4.7)
15776 These packages provide analogous capabilities to the corresponding
15777 packages without @samp{Wide_} in the name, but operate with the types
15778 @code{Wide_Wide_String} and @code{Wide_Wide_Character} instead
15779 of @code{String} and @code{Character}.
15781 @item Ada.Synchronous_Task_Control (D.10)
15782 This package provides some standard facilities for controlling task
15783 communication in a synchronous manner.
15785 @item Ada.Tags
15786 This package contains definitions for manipulation of the tags of tagged
15787 values.
15789 @item Ada.Task_Attributes
15790 This package provides the capability of associating arbitrary
15791 task-specific data with separate tasks.
15793 @item Ada.Text_IO
15794 This package provides basic text input-output capabilities for
15795 character, string and numeric data.  The subpackages of this
15796 package are listed next.
15798 @item Ada.Text_IO.Decimal_IO
15799 Provides input-output facilities for decimal fixed-point types
15801 @item Ada.Text_IO.Enumeration_IO
15802 Provides input-output facilities for enumeration types.
15804 @item Ada.Text_IO.Fixed_IO
15805 Provides input-output facilities for ordinary fixed-point types.
15807 @item Ada.Text_IO.Float_IO
15808 Provides input-output facilities for float types.  The following
15809 predefined instantiations of this generic package are available:
15811 @table @code
15812 @item Short_Float
15813 @code{Short_Float_Text_IO}
15814 @item Float
15815 @code{Float_Text_IO}
15816 @item Long_Float
15817 @code{Long_Float_Text_IO}
15818 @end table
15820 @item Ada.Text_IO.Integer_IO
15821 Provides input-output facilities for integer types.  The following
15822 predefined instantiations of this generic package are available:
15824 @table @code
15825 @item Short_Short_Integer
15826 @code{Ada.Short_Short_Integer_Text_IO}
15827 @item Short_Integer
15828 @code{Ada.Short_Integer_Text_IO}
15829 @item Integer
15830 @code{Ada.Integer_Text_IO}
15831 @item Long_Integer
15832 @code{Ada.Long_Integer_Text_IO}
15833 @item Long_Long_Integer
15834 @code{Ada.Long_Long_Integer_Text_IO}
15835 @end table
15837 @item Ada.Text_IO.Modular_IO
15838 Provides input-output facilities for modular (unsigned) types
15840 @item Ada.Text_IO.Complex_IO (G.1.3)
15841 This package provides basic text input-output capabilities for complex
15842 data.
15844 @item Ada.Text_IO.Editing (F.3.3)
15845 This package contains routines for edited output, analogous to the use
15846 of pictures in COBOL@.  The picture formats used by this package are a
15847 close copy of the facility in COBOL@.
15849 @item Ada.Text_IO.Text_Streams (A.12.2)
15850 This package provides a facility that allows Text_IO files to be treated
15851 as streams, so that the stream attributes can be used for writing
15852 arbitrary data, including binary data, to Text_IO files.
15854 @item Ada.Unchecked_Conversion (13.9)
15855 This generic package allows arbitrary conversion from one type to
15856 another of the same size, providing for breaking the type safety in
15857 special circumstances.
15859 If the types have the same Size (more accurately the same Value_Size),
15860 then the effect is simply to transfer the bits from the source to the
15861 target type without any modification.  This usage is well defined, and
15862 for simple types whose representation is typically the same across
15863 all implementations, gives a portable method of performing such
15864 conversions.
15866 If the types do not have the same size, then the result is implementation
15867 defined, and thus may be non-portable.  The following describes how GNAT
15868 handles such unchecked conversion cases.
15870 If the types are of different sizes, and are both discrete types, then
15871 the effect is of a normal type conversion without any constraint checking.
15872 In particular if the result type has a larger size, the result will be
15873 zero or sign extended.  If the result type has a smaller size, the result
15874 will be truncated by ignoring high order bits.
15876 If the types are of different sizes, and are not both discrete types,
15877 then the conversion works as though pointers were created to the source
15878 and target, and the pointer value is converted.  The effect is that bits
15879 are copied from successive low order storage units and bits of the source
15880 up to the length of the target type.
15882 A warning is issued if the lengths differ, since the effect in this
15883 case is implementation dependent, and the above behavior may not match
15884 that of some other compiler.
15886 A pointer to one type may be converted to a pointer to another type using
15887 unchecked conversion.  The only case in which the effect is undefined is
15888 when one or both pointers are pointers to unconstrained array types.  In
15889 this case, the bounds information may get incorrectly transferred, and in
15890 particular, GNAT uses double size pointers for such types, and it is
15891 meaningless to convert between such pointer types.  GNAT will issue a
15892 warning if the alignment of the target designated type is more strict
15893 than the alignment of the source designated type (since the result may
15894 be unaligned in this case).
15896 A pointer other than a pointer to an unconstrained array type may be
15897 converted to and from System.Address.  Such usage is common in Ada 83
15898 programs, but note that Ada.Address_To_Access_Conversions is the
15899 preferred method of performing such conversions in Ada 95 and Ada 2005.
15900 Neither
15901 unchecked conversion nor Ada.Address_To_Access_Conversions should be
15902 used in conjunction with pointers to unconstrained objects, since
15903 the bounds information cannot be handled correctly in this case.
15905 @item Ada.Unchecked_Deallocation (13.11.2)
15906 This generic package allows explicit freeing of storage previously
15907 allocated by use of an allocator.
15909 @item Ada.Wide_Text_IO (A.11)
15910 This package is similar to @code{Ada.Text_IO}, except that the external
15911 file supports wide character representations, and the internal types are
15912 @code{Wide_Character} and @code{Wide_String} instead of @code{Character}
15913 and @code{String}.  It contains generic subpackages listed next.
15915 @item Ada.Wide_Text_IO.Decimal_IO
15916 Provides input-output facilities for decimal fixed-point types
15918 @item Ada.Wide_Text_IO.Enumeration_IO
15919 Provides input-output facilities for enumeration types.
15921 @item Ada.Wide_Text_IO.Fixed_IO
15922 Provides input-output facilities for ordinary fixed-point types.
15924 @item Ada.Wide_Text_IO.Float_IO
15925 Provides input-output facilities for float types.  The following
15926 predefined instantiations of this generic package are available:
15928 @table @code
15929 @item Short_Float
15930 @code{Short_Float_Wide_Text_IO}
15931 @item Float
15932 @code{Float_Wide_Text_IO}
15933 @item Long_Float
15934 @code{Long_Float_Wide_Text_IO}
15935 @end table
15937 @item Ada.Wide_Text_IO.Integer_IO
15938 Provides input-output facilities for integer types.  The following
15939 predefined instantiations of this generic package are available:
15941 @table @code
15942 @item Short_Short_Integer
15943 @code{Ada.Short_Short_Integer_Wide_Text_IO}
15944 @item Short_Integer
15945 @code{Ada.Short_Integer_Wide_Text_IO}
15946 @item Integer
15947 @code{Ada.Integer_Wide_Text_IO}
15948 @item Long_Integer
15949 @code{Ada.Long_Integer_Wide_Text_IO}
15950 @item Long_Long_Integer
15951 @code{Ada.Long_Long_Integer_Wide_Text_IO}
15952 @end table
15954 @item Ada.Wide_Text_IO.Modular_IO
15955 Provides input-output facilities for modular (unsigned) types
15957 @item Ada.Wide_Text_IO.Complex_IO (G.1.3)
15958 This package is similar to @code{Ada.Text_IO.Complex_IO}, except that the
15959 external file supports wide character representations.
15961 @item Ada.Wide_Text_IO.Editing (F.3.4)
15962 This package is similar to @code{Ada.Text_IO.Editing}, except that the
15963 types are @code{Wide_Character} and @code{Wide_String} instead of
15964 @code{Character} and @code{String}.
15966 @item Ada.Wide_Text_IO.Streams (A.12.3)
15967 This package is similar to @code{Ada.Text_IO.Streams}, except that the
15968 types are @code{Wide_Character} and @code{Wide_String} instead of
15969 @code{Character} and @code{String}.
15971 @item Ada.Wide_Wide_Text_IO (A.11)
15972 This package is similar to @code{Ada.Text_IO}, except that the external
15973 file supports wide character representations, and the internal types are
15974 @code{Wide_Character} and @code{Wide_String} instead of @code{Character}
15975 and @code{String}.  It contains generic subpackages listed next.
15977 @item Ada.Wide_Wide_Text_IO.Decimal_IO
15978 Provides input-output facilities for decimal fixed-point types
15980 @item Ada.Wide_Wide_Text_IO.Enumeration_IO
15981 Provides input-output facilities for enumeration types.
15983 @item Ada.Wide_Wide_Text_IO.Fixed_IO
15984 Provides input-output facilities for ordinary fixed-point types.
15986 @item Ada.Wide_Wide_Text_IO.Float_IO
15987 Provides input-output facilities for float types.  The following
15988 predefined instantiations of this generic package are available:
15990 @table @code
15991 @item Short_Float
15992 @code{Short_Float_Wide_Wide_Text_IO}
15993 @item Float
15994 @code{Float_Wide_Wide_Text_IO}
15995 @item Long_Float
15996 @code{Long_Float_Wide_Wide_Text_IO}
15997 @end table
15999 @item Ada.Wide_Wide_Text_IO.Integer_IO
16000 Provides input-output facilities for integer types.  The following
16001 predefined instantiations of this generic package are available:
16003 @table @code
16004 @item Short_Short_Integer
16005 @code{Ada.Short_Short_Integer_Wide_Wide_Text_IO}
16006 @item Short_Integer
16007 @code{Ada.Short_Integer_Wide_Wide_Text_IO}
16008 @item Integer
16009 @code{Ada.Integer_Wide_Wide_Text_IO}
16010 @item Long_Integer
16011 @code{Ada.Long_Integer_Wide_Wide_Text_IO}
16012 @item Long_Long_Integer
16013 @code{Ada.Long_Long_Integer_Wide_Wide_Text_IO}
16014 @end table
16016 @item Ada.Wide_Wide_Text_IO.Modular_IO
16017 Provides input-output facilities for modular (unsigned) types
16019 @item Ada.Wide_Wide_Text_IO.Complex_IO (G.1.3)
16020 This package is similar to @code{Ada.Text_IO.Complex_IO}, except that the
16021 external file supports wide character representations.
16023 @item Ada.Wide_Wide_Text_IO.Editing (F.3.4)
16024 This package is similar to @code{Ada.Text_IO.Editing}, except that the
16025 types are @code{Wide_Character} and @code{Wide_String} instead of
16026 @code{Character} and @code{String}.
16028 @item Ada.Wide_Wide_Text_IO.Streams (A.12.3)
16029 This package is similar to @code{Ada.Text_IO.Streams}, except that the
16030 types are @code{Wide_Character} and @code{Wide_String} instead of
16031 @code{Character} and @code{String}.
16032 @end table
16034 @node The Implementation of Standard I/O
16035 @chapter The Implementation of Standard I/O
16037 @noindent
16038 GNAT implements all the required input-output facilities described in
16039 A.6 through A.14.  These sections of the Ada Reference Manual describe the
16040 required behavior of these packages from the Ada point of view, and if
16041 you are writing a portable Ada program that does not need to know the
16042 exact manner in which Ada maps to the outside world when it comes to
16043 reading or writing external files, then you do not need to read this
16044 chapter.  As long as your files are all regular files (not pipes or
16045 devices), and as long as you write and read the files only from Ada, the
16046 description in the Ada Reference Manual is sufficient.
16048 However, if you want to do input-output to pipes or other devices, such
16049 as the keyboard or screen, or if the files you are dealing with are
16050 either generated by some other language, or to be read by some other
16051 language, then you need to know more about the details of how the GNAT
16052 implementation of these input-output facilities behaves.
16054 In this chapter we give a detailed description of exactly how GNAT
16055 interfaces to the file system.  As always, the sources of the system are
16056 available to you for answering questions at an even more detailed level,
16057 but for most purposes the information in this chapter will suffice.
16059 Another reason that you may need to know more about how input-output is
16060 implemented arises when you have a program written in mixed languages
16061 where, for example, files are shared between the C and Ada sections of
16062 the same program.  GNAT provides some additional facilities, in the form
16063 of additional child library packages, that facilitate this sharing, and
16064 these additional facilities are also described in this chapter.
16066 @menu
16067 * Standard I/O Packages::
16068 * FORM Strings::
16069 * Direct_IO::
16070 * Sequential_IO::
16071 * Text_IO::
16072 * Wide_Text_IO::
16073 * Wide_Wide_Text_IO::
16074 * Stream_IO::
16075 * Text Translation::
16076 * Shared Files::
16077 * Filenames encoding::
16078 * Open Modes::
16079 * Operations on C Streams::
16080 * Interfacing to C Streams::
16081 @end menu
16083 @node Standard I/O Packages
16084 @section Standard I/O Packages
16086 @noindent
16087 The Standard I/O packages described in Annex A for
16089 @itemize @bullet
16090 @item
16091 Ada.Text_IO
16092 @item
16093 Ada.Text_IO.Complex_IO
16094 @item
16095 Ada.Text_IO.Text_Streams
16096 @item
16097 Ada.Wide_Text_IO
16098 @item
16099 Ada.Wide_Text_IO.Complex_IO
16100 @item
16101 Ada.Wide_Text_IO.Text_Streams
16102 @item
16103 Ada.Wide_Wide_Text_IO
16104 @item
16105 Ada.Wide_Wide_Text_IO.Complex_IO
16106 @item
16107 Ada.Wide_Wide_Text_IO.Text_Streams
16108 @item
16109 Ada.Stream_IO
16110 @item
16111 Ada.Sequential_IO
16112 @item
16113 Ada.Direct_IO
16114 @end itemize
16116 @noindent
16117 are implemented using the C
16118 library streams facility; where
16120 @itemize @bullet
16121 @item
16122 All files are opened using @code{fopen}.
16123 @item
16124 All input/output operations use @code{fread}/@code{fwrite}.
16125 @end itemize
16127 @noindent
16128 There is no internal buffering of any kind at the Ada library level. The only
16129 buffering is that provided at the system level in the implementation of the
16130 library routines that support streams. This facilitates shared use of these
16131 streams by mixed language programs. Note though that system level buffering is
16132 explicitly enabled at elaboration of the standard I/O packages and that can
16133 have an impact on mixed language programs, in particular those using I/O before
16134 calling the Ada elaboration routine (e.g.@: adainit). It is recommended to call
16135 the Ada elaboration routine before performing any I/O or when impractical,
16136 flush the common I/O streams and in particular Standard_Output before
16137 elaborating the Ada code.
16139 @node FORM Strings
16140 @section FORM Strings
16142 @noindent
16143 The format of a FORM string in GNAT is:
16145 @smallexample
16146 "keyword=value,keyword=value,@dots{},keyword=value"
16147 @end smallexample
16149 @noindent
16150 where letters may be in upper or lower case, and there are no spaces
16151 between values.  The order of the entries is not important.  Currently
16152 the following keywords defined.
16154 @smallexample
16155 TEXT_TRANSLATION=[YES|NO]
16156 SHARED=[YES|NO]
16157 WCEM=[n|h|u|s|e|8|b]
16158 ENCODING=[UTF8|8BITS]
16159 @end smallexample
16161 @noindent
16162 The use of these parameters is described later in this section. If an
16163 unrecognized keyword appears in a form string, it is silently ignored
16164 and not considered invalid.
16166 @noindent
16167 For OpenVMS additional FORM string keywords are available for use with
16168 RMS services.  The syntax is:
16170 @smallexample
16171 VMS_RMS_Keys=(keyword=value,@dots{},keyword=value)
16172 @end smallexample
16174 @noindent
16175 The following RMS keywords and values are currently defined:
16177 @smallexample
16178 Context=Force_Stream_Mode|Force_Record_Mode
16179 @end smallexample
16181 @noindent
16182 VMS RMS keys are silently ignored on non-VMS systems.  On OpenVMS
16183 unimplented RMS keywords, values, or invalid syntax will raise Use_Error.
16185 @node Direct_IO
16186 @section Direct_IO
16188 @noindent
16189 Direct_IO can only be instantiated for definite types.  This is a
16190 restriction of the Ada language, which means that the records are fixed
16191 length (the length being determined by @code{@var{type}'Size}, rounded
16192 up to the next storage unit boundary if necessary).
16194 The records of a Direct_IO file are simply written to the file in index
16195 sequence, with the first record starting at offset zero, and subsequent
16196 records following.  There is no control information of any kind.  For
16197 example, if 32-bit integers are being written, each record takes
16198 4-bytes, so the record at index @var{K} starts at offset
16199 (@var{K}@minus{}1)*4.
16201 There is no limit on the size of Direct_IO files, they are expanded as
16202 necessary to accommodate whatever records are written to the file.
16204 @node Sequential_IO
16205 @section Sequential_IO
16207 @noindent
16208 Sequential_IO may be instantiated with either a definite (constrained)
16209 or indefinite (unconstrained) type.
16211 For the definite type case, the elements written to the file are simply
16212 the memory images of the data values with no control information of any
16213 kind.  The resulting file should be read using the same type, no validity
16214 checking is performed on input.
16216 For the indefinite type case, the elements written consist of two
16217 parts.  First is the size of the data item, written as the memory image
16218 of a @code{Interfaces.C.size_t} value, followed by the memory image of
16219 the data value.  The resulting file can only be read using the same
16220 (unconstrained) type.  Normal assignment checks are performed on these
16221 read operations, and if these checks fail, @code{Data_Error} is
16222 raised.  In particular, in the array case, the lengths must match, and in
16223 the variant record case, if the variable for a particular read operation
16224 is constrained, the discriminants must match.
16226 Note that it is not possible to use Sequential_IO to write variable
16227 length array items, and then read the data back into different length
16228 arrays.  For example, the following will raise @code{Data_Error}:
16230 @smallexample @c ada
16231  package IO is new Sequential_IO (String);
16232  F : IO.File_Type;
16233  S : String (1..4);
16234  @dots{}
16235  IO.Create (F)
16236  IO.Write (F, "hello!")
16237  IO.Reset (F, Mode=>In_File);
16238  IO.Read (F, S);
16239  Put_Line (S);
16241 @end smallexample
16243 @noindent
16244 On some Ada implementations, this will print @code{hell}, but the program is
16245 clearly incorrect, since there is only one element in the file, and that
16246 element is the string @code{hello!}.
16248 In Ada 95 and Ada 2005, this kind of behavior can be legitimately achieved
16249 using Stream_IO, and this is the preferred mechanism.  In particular, the
16250 above program fragment rewritten to use Stream_IO will work correctly.
16252 @node Text_IO
16253 @section Text_IO
16255 @noindent
16256 Text_IO files consist of a stream of characters containing the following
16257 special control characters:
16259 @smallexample
16260 LF (line feed, 16#0A#) Line Mark
16261 FF (form feed, 16#0C#) Page Mark
16262 @end smallexample
16264 @noindent
16265 A canonical Text_IO file is defined as one in which the following
16266 conditions are met:
16268 @itemize @bullet
16269 @item
16270 The character @code{LF} is used only as a line mark, i.e.@: to mark the end
16271 of the line.
16273 @item
16274 The character @code{FF} is used only as a page mark, i.e.@: to mark the
16275 end of a page and consequently can appear only immediately following a
16276 @code{LF} (line mark) character.
16278 @item
16279 The file ends with either @code{LF} (line mark) or @code{LF}-@code{FF}
16280 (line mark, page mark).  In the former case, the page mark is implicitly
16281 assumed to be present.
16282 @end itemize
16284 @noindent
16285 A file written using Text_IO will be in canonical form provided that no
16286 explicit @code{LF} or @code{FF} characters are written using @code{Put}
16287 or @code{Put_Line}.  There will be no @code{FF} character at the end of
16288 the file unless an explicit @code{New_Page} operation was performed
16289 before closing the file.
16291 A canonical Text_IO file that is a regular file (i.e., not a device or a
16292 pipe) can be read using any of the routines in Text_IO@.  The
16293 semantics in this case will be exactly as defined in the Ada Reference
16294 Manual, and all the routines in Text_IO are fully implemented.
16296 A text file that does not meet the requirements for a canonical Text_IO
16297 file has one of the following:
16299 @itemize @bullet
16300 @item
16301 The file contains @code{FF} characters not immediately following a
16302 @code{LF} character.
16304 @item
16305 The file contains @code{LF} or @code{FF} characters written by
16306 @code{Put} or @code{Put_Line}, which are not logically considered to be
16307 line marks or page marks.
16309 @item
16310 The file ends in a character other than @code{LF} or @code{FF},
16311 i.e.@: there is no explicit line mark or page mark at the end of the file.
16312 @end itemize
16314 @noindent
16315 Text_IO can be used to read such non-standard text files but subprograms
16316 to do with line or page numbers do not have defined meanings.  In
16317 particular, a @code{FF} character that does not follow a @code{LF}
16318 character may or may not be treated as a page mark from the point of
16319 view of page and line numbering.  Every @code{LF} character is considered
16320 to end a line, and there is an implied @code{LF} character at the end of
16321 the file.
16323 @menu
16324 * Text_IO Stream Pointer Positioning::
16325 * Text_IO Reading and Writing Non-Regular Files::
16326 * Get_Immediate::
16327 * Treating Text_IO Files as Streams::
16328 * Text_IO Extensions::
16329 * Text_IO Facilities for Unbounded Strings::
16330 @end menu
16332 @node Text_IO Stream Pointer Positioning
16333 @subsection Stream Pointer Positioning
16335 @noindent
16336 @code{Ada.Text_IO} has a definition of current position for a file that
16337 is being read.  No internal buffering occurs in Text_IO, and usually the
16338 physical position in the stream used to implement the file corresponds
16339 to this logical position defined by Text_IO@.  There are two exceptions:
16341 @itemize @bullet
16342 @item
16343 After a call to @code{End_Of_Page} that returns @code{True}, the stream
16344 is positioned past the @code{LF} (line mark) that precedes the page
16345 mark.  Text_IO maintains an internal flag so that subsequent read
16346 operations properly handle the logical position which is unchanged by
16347 the @code{End_Of_Page} call.
16349 @item
16350 After a call to @code{End_Of_File} that returns @code{True}, if the
16351 Text_IO file was positioned before the line mark at the end of file
16352 before the call, then the logical position is unchanged, but the stream
16353 is physically positioned right at the end of file (past the line mark,
16354 and past a possible page mark following the line mark.  Again Text_IO
16355 maintains internal flags so that subsequent read operations properly
16356 handle the logical position.
16357 @end itemize
16359 @noindent
16360 These discrepancies have no effect on the observable behavior of
16361 Text_IO, but if a single Ada stream is shared between a C program and
16362 Ada program, or shared (using @samp{shared=yes} in the form string)
16363 between two Ada files, then the difference may be observable in some
16364 situations.
16366 @node Text_IO Reading and Writing Non-Regular Files
16367 @subsection Reading and Writing Non-Regular Files
16369 @noindent
16370 A non-regular file is a device (such as a keyboard), or a pipe.  Text_IO
16371 can be used for reading and writing.  Writing is not affected and the
16372 sequence of characters output is identical to the normal file case, but
16373 for reading, the behavior of Text_IO is modified to avoid undesirable
16374 look-ahead as follows:
16376 An input file that is not a regular file is considered to have no page
16377 marks.  Any @code{Ascii.FF} characters (the character normally used for a
16378 page mark) appearing in the file are considered to be data
16379 characters.  In particular:
16381 @itemize @bullet
16382 @item
16383 @code{Get_Line} and @code{Skip_Line} do not test for a page mark
16384 following a line mark.  If a page mark appears, it will be treated as a
16385 data character.
16387 @item
16388 This avoids the need to wait for an extra character to be typed or
16389 entered from the pipe to complete one of these operations.
16391 @item
16392 @code{End_Of_Page} always returns @code{False}
16394 @item
16395 @code{End_Of_File} will return @code{False} if there is a page mark at
16396 the end of the file.
16397 @end itemize
16399 @noindent
16400 Output to non-regular files is the same as for regular files.  Page marks
16401 may be written to non-regular files using @code{New_Page}, but as noted
16402 above they will not be treated as page marks on input if the output is
16403 piped to another Ada program.
16405 Another important discrepancy when reading non-regular files is that the end
16406 of file indication is not ``sticky''.  If an end of file is entered, e.g.@: by
16407 pressing the @key{EOT} key,
16408 then end of file
16409 is signaled once (i.e.@: the test @code{End_Of_File}
16410 will yield @code{True}, or a read will
16411 raise @code{End_Error}), but then reading can resume
16412 to read data past that end of
16413 file indication, until another end of file indication is entered.
16415 @node Get_Immediate
16416 @subsection Get_Immediate
16417 @cindex Get_Immediate
16419 @noindent
16420 Get_Immediate returns the next character (including control characters)
16421 from the input file.  In particular, Get_Immediate will return LF or FF
16422 characters used as line marks or page marks.  Such operations leave the
16423 file positioned past the control character, and it is thus not treated
16424 as having its normal function.  This means that page, line and column
16425 counts after this kind of Get_Immediate call are set as though the mark
16426 did not occur.  In the case where a Get_Immediate leaves the file
16427 positioned between the line mark and page mark (which is not normally
16428 possible), it is undefined whether the FF character will be treated as a
16429 page mark.
16431 @node Treating Text_IO Files as Streams
16432 @subsection Treating Text_IO Files as Streams
16433 @cindex Stream files
16435 @noindent
16436 The package @code{Text_IO.Streams} allows a Text_IO file to be treated
16437 as a stream.  Data written to a Text_IO file in this stream mode is
16438 binary data.  If this binary data contains bytes 16#0A# (@code{LF}) or
16439 16#0C# (@code{FF}), the resulting file may have non-standard
16440 format.  Similarly if read operations are used to read from a Text_IO
16441 file treated as a stream, then @code{LF} and @code{FF} characters may be
16442 skipped and the effect is similar to that described above for
16443 @code{Get_Immediate}.
16445 @node Text_IO Extensions
16446 @subsection Text_IO Extensions
16447 @cindex Text_IO extensions
16449 @noindent
16450 A package GNAT.IO_Aux in the GNAT library provides some useful extensions
16451 to the standard @code{Text_IO} package:
16453 @itemize @bullet
16454 @item function File_Exists (Name : String) return Boolean;
16455 Determines if a file of the given name exists.
16457 @item function Get_Line return String;
16458 Reads a string from the standard input file.  The value returned is exactly
16459 the length of the line that was read.
16461 @item function Get_Line (File : Ada.Text_IO.File_Type) return String;
16462 Similar, except that the parameter File specifies the file from which
16463 the string is to be read.
16465 @end itemize
16467 @node Text_IO Facilities for Unbounded Strings
16468 @subsection Text_IO Facilities for Unbounded Strings
16469 @cindex Text_IO for unbounded strings
16470 @cindex Unbounded_String, Text_IO operations
16472 @noindent
16473 The package @code{Ada.Strings.Unbounded.Text_IO}
16474 in library files @code{a-suteio.ads/adb} contains some GNAT-specific
16475 subprograms useful for Text_IO operations on unbounded strings:
16477 @itemize @bullet
16479 @item function Get_Line (File : File_Type) return Unbounded_String;
16480 Reads a line from the specified file
16481 and returns the result as an unbounded string.
16483 @item procedure Put (File : File_Type; U : Unbounded_String);
16484 Writes the value of the given unbounded string to the specified file
16485 Similar to the effect of
16486 @code{Put (To_String (U))} except that an extra copy is avoided.
16488 @item procedure Put_Line (File : File_Type; U : Unbounded_String);
16489 Writes the value of the given unbounded string to the specified file,
16490 followed by a @code{New_Line}.
16491 Similar to the effect of @code{Put_Line (To_String (U))} except
16492 that an extra copy is avoided.
16493 @end itemize
16495 @noindent
16496 In the above procedures, @code{File} is of type @code{Ada.Text_IO.File_Type}
16497 and is optional.  If the parameter is omitted, then the standard input or
16498 output file is referenced as appropriate.
16500 The package @code{Ada.Strings.Wide_Unbounded.Wide_Text_IO} in library
16501 files @file{a-swuwti.ads} and @file{a-swuwti.adb} provides similar extended
16502 @code{Wide_Text_IO} functionality for unbounded wide strings.
16504 The package @code{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} in library
16505 files @file{a-szuzti.ads} and @file{a-szuzti.adb} provides similar extended
16506 @code{Wide_Wide_Text_IO} functionality for unbounded wide wide strings.
16508 @node Wide_Text_IO
16509 @section Wide_Text_IO
16511 @noindent
16512 @code{Wide_Text_IO} is similar in most respects to Text_IO, except that
16513 both input and output files may contain special sequences that represent
16514 wide character values.  The encoding scheme for a given file may be
16515 specified using a FORM parameter:
16517 @smallexample
16518 WCEM=@var{x}
16519 @end smallexample
16521 @noindent
16522 as part of the FORM string (WCEM = wide character encoding method),
16523 where @var{x} is one of the following characters
16525 @table @samp
16526 @item h
16527 Hex ESC encoding
16528 @item u
16529 Upper half encoding
16530 @item s
16531 Shift-JIS encoding
16532 @item e
16533 EUC Encoding
16534 @item 8
16535 UTF-8 encoding
16536 @item b
16537 Brackets encoding
16538 @end table
16540 @noindent
16541 The encoding methods match those that
16542 can be used in a source
16543 program, but there is no requirement that the encoding method used for
16544 the source program be the same as the encoding method used for files,
16545 and different files may use different encoding methods.
16547 The default encoding method for the standard files, and for opened files
16548 for which no WCEM parameter is given in the FORM string matches the
16549 wide character encoding specified for the main program (the default
16550 being brackets encoding if no coding method was specified with -gnatW).
16552 @table @asis
16553 @item Hex Coding
16554 In this encoding, a wide character is represented by a five character
16555 sequence:
16557 @smallexample
16558 ESC a b c d
16559 @end smallexample
16561 @noindent
16562 where @var{a}, @var{b}, @var{c}, @var{d} are the four hexadecimal
16563 characters (using upper case letters) of the wide character code.  For
16564 example, ESC A345 is used to represent the wide character with code
16565 16#A345#.  This scheme is compatible with use of the full
16566 @code{Wide_Character} set.
16568 @item Upper Half Coding
16569 The wide character with encoding 16#abcd#, where the upper bit is on
16570 (i.e.@: a is in the range 8-F) is represented as two bytes 16#ab# and
16571 16#cd#.  The second byte may never be a format control character, but is
16572 not required to be in the upper half.  This method can be also used for
16573 shift-JIS or EUC where the internal coding matches the external coding.
16575 @item Shift JIS Coding
16576 A wide character is represented by a two character sequence 16#ab# and
16577 16#cd#, with the restrictions described for upper half encoding as
16578 described above.  The internal character code is the corresponding JIS
16579 character according to the standard algorithm for Shift-JIS
16580 conversion.  Only characters defined in the JIS code set table can be
16581 used with this encoding method.
16583 @item EUC Coding
16584 A wide character is represented by a two character sequence 16#ab# and
16585 16#cd#, with both characters being in the upper half.  The internal
16586 character code is the corresponding JIS character according to the EUC
16587 encoding algorithm.  Only characters defined in the JIS code set table
16588 can be used with this encoding method.
16590 @item UTF-8 Coding
16591 A wide character is represented using
16592 UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
16593 10646-1/Am.2.  Depending on the character value, the representation
16594 is a one, two, or three byte sequence:
16596 @smallexample
16597 16#0000#-16#007f#: 2#0xxxxxxx#
16598 16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#
16599 16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
16600 @end smallexample
16602 @noindent
16603 where the @var{xxx} bits correspond to the left-padded bits of the
16604 16-bit character value.  Note that all lower half ASCII characters
16605 are represented as ASCII bytes and all upper half characters and
16606 other wide characters are represented as sequences of upper-half
16607 (The full UTF-8 scheme allows for encoding 31-bit characters as
16608 6-byte sequences, but in this implementation, all UTF-8 sequences
16609 of four or more bytes length will raise a Constraint_Error, as
16610 will all invalid UTF-8 sequences.)
16612 @item Brackets Coding
16613 In this encoding, a wide character is represented by the following eight
16614 character sequence:
16616 @smallexample
16617 [ " a b c d " ]
16618 @end smallexample
16620 @noindent
16621 where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
16622 characters (using uppercase letters) of the wide character code.  For
16623 example, @code{["A345"]} is used to represent the wide character with code
16624 @code{16#A345#}.
16625 This scheme is compatible with use of the full Wide_Character set.
16626 On input, brackets coding can also be used for upper half characters,
16627 e.g.@: @code{["C1"]} for lower case a.  However, on output, brackets notation
16628 is only used for wide characters with a code greater than @code{16#FF#}.
16630 Note that brackets coding is not normally used in the context of
16631 Wide_Text_IO or Wide_Wide_Text_IO, since it is really just designed as
16632 a portable way of encoding source files. In the context of Wide_Text_IO
16633 or Wide_Wide_Text_IO, it can only be used if the file does not contain
16634 any instance of the left bracket character other than to encode wide
16635 character values using the brackets encoding method. In practice it is
16636 expected that some standard wide character encoding method such
16637 as UTF-8 will be used for text input output.
16639 If brackets notation is used, then any occurrence of a left bracket
16640 in the input file which is not the start of a valid wide character
16641 sequence will cause Constraint_Error to be raised. It is possible to
16642 encode a left bracket as ["5B"] and Wide_Text_IO and Wide_Wide_Text_IO
16643 input will interpret this as a left bracket.
16645 However, when a left bracket is output, it will be output as a left bracket
16646 and not as ["5B"]. We make this decision because for normal use of
16647 Wide_Text_IO for outputting messages, it is unpleasant to clobber left
16648 brackets. For example, if we write:
16650 @smallexample
16651    Put_Line ("Start of output [first run]");
16652 @end smallexample
16654 @noindent
16655 we really do not want to have the left bracket in this message clobbered so
16656 that the output reads:
16658 @smallexample
16659    Start of output ["5B"]first run]
16660 @end smallexample
16662 @noindent
16663 In practice brackets encoding is reasonably useful for normal Put_Line use
16664 since we won't get confused between left brackets and wide character
16665 sequences in the output. But for input, or when files are written out
16666 and read back in, it really makes better sense to use one of the standard
16667 encoding methods such as UTF-8.
16669 @end table
16671 @noindent
16672 For the coding schemes other than UTF-8, Hex, or Brackets encoding,
16673 not all wide character
16674 values can be represented.  An attempt to output a character that cannot
16675 be represented using the encoding scheme for the file causes
16676 Constraint_Error to be raised.  An invalid wide character sequence on
16677 input also causes Constraint_Error to be raised.
16679 @menu
16680 * Wide_Text_IO Stream Pointer Positioning::
16681 * Wide_Text_IO Reading and Writing Non-Regular Files::
16682 @end menu
16684 @node Wide_Text_IO Stream Pointer Positioning
16685 @subsection Stream Pointer Positioning
16687 @noindent
16688 @code{Ada.Wide_Text_IO} is similar to @code{Ada.Text_IO} in its handling
16689 of stream pointer positioning (@pxref{Text_IO}).  There is one additional
16690 case:
16692 If @code{Ada.Wide_Text_IO.Look_Ahead} reads a character outside the
16693 normal lower ASCII set (i.e.@: a character in the range:
16695 @smallexample @c ada
16696 Wide_Character'Val (16#0080#) .. Wide_Character'Val (16#FFFF#)
16697 @end smallexample
16699 @noindent
16700 then although the logical position of the file pointer is unchanged by
16701 the @code{Look_Ahead} call, the stream is physically positioned past the
16702 wide character sequence.  Again this is to avoid the need for buffering
16703 or backup, and all @code{Wide_Text_IO} routines check the internal
16704 indication that this situation has occurred so that this is not visible
16705 to a normal program using @code{Wide_Text_IO}.  However, this discrepancy
16706 can be observed if the wide text file shares a stream with another file.
16708 @node Wide_Text_IO Reading and Writing Non-Regular Files
16709 @subsection Reading and Writing Non-Regular Files
16711 @noindent
16712 As in the case of Text_IO, when a non-regular file is read, it is
16713 assumed that the file contains no page marks (any form characters are
16714 treated as data characters), and @code{End_Of_Page} always returns
16715 @code{False}.  Similarly, the end of file indication is not sticky, so
16716 it is possible to read beyond an end of file.
16718 @node Wide_Wide_Text_IO
16719 @section Wide_Wide_Text_IO
16721 @noindent
16722 @code{Wide_Wide_Text_IO} is similar in most respects to Text_IO, except that
16723 both input and output files may contain special sequences that represent
16724 wide wide character values.  The encoding scheme for a given file may be
16725 specified using a FORM parameter:
16727 @smallexample
16728 WCEM=@var{x}
16729 @end smallexample
16731 @noindent
16732 as part of the FORM string (WCEM = wide character encoding method),
16733 where @var{x} is one of the following characters
16735 @table @samp
16736 @item h
16737 Hex ESC encoding
16738 @item u
16739 Upper half encoding
16740 @item s
16741 Shift-JIS encoding
16742 @item e
16743 EUC Encoding
16744 @item 8
16745 UTF-8 encoding
16746 @item b
16747 Brackets encoding
16748 @end table
16750 @noindent
16751 The encoding methods match those that
16752 can be used in a source
16753 program, but there is no requirement that the encoding method used for
16754 the source program be the same as the encoding method used for files,
16755 and different files may use different encoding methods.
16757 The default encoding method for the standard files, and for opened files
16758 for which no WCEM parameter is given in the FORM string matches the
16759 wide character encoding specified for the main program (the default
16760 being brackets encoding if no coding method was specified with -gnatW).
16762 @table @asis
16764 @item UTF-8 Coding
16765 A wide character is represented using
16766 UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
16767 10646-1/Am.2.  Depending on the character value, the representation
16768 is a one, two, three, or four byte sequence:
16770 @smallexample
16771 16#000000#-16#00007f#: 2#0xxxxxxx#
16772 16#000080#-16#0007ff#: 2#110xxxxx# 2#10xxxxxx#
16773 16#000800#-16#00ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
16774 16#010000#-16#10ffff#: 2#11110xxx# 2#10xxxxxx# 2#10xxxxxx# 2#10xxxxxx#
16775 @end smallexample
16777 @noindent
16778 where the @var{xxx} bits correspond to the left-padded bits of the
16779 21-bit character value.  Note that all lower half ASCII characters
16780 are represented as ASCII bytes and all upper half characters and
16781 other wide characters are represented as sequences of upper-half
16782 characters.
16784 @item Brackets Coding
16785 In this encoding, a wide wide character is represented by the following eight
16786 character sequence if is in wide character range
16788 @smallexample
16789 [ " a b c d " ]
16790 @end smallexample
16792 and by the following ten character sequence if not
16794 @smallexample
16795 [ " a b c d e f " ]
16796 @end smallexample
16798 @noindent
16799 where @code{a}, @code{b}, @code{c}, @code{d}, @code{e}, and @code{f}
16800 are the four or six hexadecimal
16801 characters (using uppercase letters) of the wide wide character code.  For
16802 example, @code{["01A345"]} is used to represent the wide wide character
16803 with code @code{16#01A345#}.
16805 This scheme is compatible with use of the full Wide_Wide_Character set.
16806 On input, brackets coding can also be used for upper half characters,
16807 e.g.@: @code{["C1"]} for lower case a.  However, on output, brackets notation
16808 is only used for wide characters with a code greater than @code{16#FF#}.
16810 @end table
16812 @noindent
16813 If is also possible to use the other Wide_Character encoding methods,
16814 such as Shift-JIS, but the other schemes cannot support the full range
16815 of wide wide characters.
16816 An attempt to output a character that cannot
16817 be represented using the encoding scheme for the file causes
16818 Constraint_Error to be raised.  An invalid wide character sequence on
16819 input also causes Constraint_Error to be raised.
16821 @menu
16822 * Wide_Wide_Text_IO Stream Pointer Positioning::
16823 * Wide_Wide_Text_IO Reading and Writing Non-Regular Files::
16824 @end menu
16826 @node Wide_Wide_Text_IO Stream Pointer Positioning
16827 @subsection Stream Pointer Positioning
16829 @noindent
16830 @code{Ada.Wide_Wide_Text_IO} is similar to @code{Ada.Text_IO} in its handling
16831 of stream pointer positioning (@pxref{Text_IO}).  There is one additional
16832 case:
16834 If @code{Ada.Wide_Wide_Text_IO.Look_Ahead} reads a character outside the
16835 normal lower ASCII set (i.e.@: a character in the range:
16837 @smallexample @c ada
16838 Wide_Wide_Character'Val (16#0080#) .. Wide_Wide_Character'Val (16#10FFFF#)
16839 @end smallexample
16841 @noindent
16842 then although the logical position of the file pointer is unchanged by
16843 the @code{Look_Ahead} call, the stream is physically positioned past the
16844 wide character sequence.  Again this is to avoid the need for buffering
16845 or backup, and all @code{Wide_Wide_Text_IO} routines check the internal
16846 indication that this situation has occurred so that this is not visible
16847 to a normal program using @code{Wide_Wide_Text_IO}.  However, this discrepancy
16848 can be observed if the wide text file shares a stream with another file.
16850 @node Wide_Wide_Text_IO Reading and Writing Non-Regular Files
16851 @subsection Reading and Writing Non-Regular Files
16853 @noindent
16854 As in the case of Text_IO, when a non-regular file is read, it is
16855 assumed that the file contains no page marks (any form characters are
16856 treated as data characters), and @code{End_Of_Page} always returns
16857 @code{False}.  Similarly, the end of file indication is not sticky, so
16858 it is possible to read beyond an end of file.
16860 @node Stream_IO
16861 @section Stream_IO
16863 @noindent
16864 A stream file is a sequence of bytes, where individual elements are
16865 written to the file as described in the Ada Reference Manual.  The type
16866 @code{Stream_Element} is simply a byte.  There are two ways to read or
16867 write a stream file.
16869 @itemize @bullet
16870 @item
16871 The operations @code{Read} and @code{Write} directly read or write a
16872 sequence of stream elements with no control information.
16874 @item
16875 The stream attributes applied to a stream file transfer data in the
16876 manner described for stream attributes.
16877 @end itemize
16879 @node Text Translation
16880 @section Text Translation
16882 @noindent
16883 @samp{Text_Translation=@var{xxx}} may be used as the Form parameter
16884 passed to Text_IO.Create and Text_IO.Open:
16885 @samp{Text_Translation=@var{Yes}} is the default, which means to
16886 translate LF to/from CR/LF on Windows systems.
16887 @samp{Text_Translation=@var{No}} disables this translation; i.e. it
16888 uses binary mode. For output files, @samp{Text_Translation=@var{No}}
16889 may be used to create Unix-style files on
16890 Windows. @samp{Text_Translation=@var{xxx}} has no effect on Unix
16891 systems.
16893 @node Shared Files
16894 @section Shared Files
16896 @noindent
16897 Section A.14 of the Ada Reference Manual allows implementations to
16898 provide a wide variety of behavior if an attempt is made to access the
16899 same external file with two or more internal files.
16901 To provide a full range of functionality, while at the same time
16902 minimizing the problems of portability caused by this implementation
16903 dependence, GNAT handles file sharing as follows:
16905 @itemize @bullet
16906 @item
16907 In the absence of a @samp{shared=@var{xxx}} form parameter, an attempt
16908 to open two or more files with the same full name is considered an error
16909 and is not supported.  The exception @code{Use_Error} will be
16910 raised.  Note that a file that is not explicitly closed by the program
16911 remains open until the program terminates.
16913 @item
16914 If the form parameter @samp{shared=no} appears in the form string, the
16915 file can be opened or created with its own separate stream identifier,
16916 regardless of whether other files sharing the same external file are
16917 opened.  The exact effect depends on how the C stream routines handle
16918 multiple accesses to the same external files using separate streams.
16920 @item
16921 If the form parameter @samp{shared=yes} appears in the form string for
16922 each of two or more files opened using the same full name, the same
16923 stream is shared between these files, and the semantics are as described
16924 in Ada Reference Manual, Section A.14.
16925 @end itemize
16927 @noindent
16928 When a program that opens multiple files with the same name is ported
16929 from another Ada compiler to GNAT, the effect will be that
16930 @code{Use_Error} is raised.
16932 The documentation of the original compiler and the documentation of the
16933 program should then be examined to determine if file sharing was
16934 expected, and @samp{shared=@var{xxx}} parameters added to @code{Open}
16935 and @code{Create} calls as required.
16937 When a program is ported from GNAT to some other Ada compiler, no
16938 special attention is required unless the @samp{shared=@var{xxx}} form
16939 parameter is used in the program.  In this case, you must examine the
16940 documentation of the new compiler to see if it supports the required
16941 file sharing semantics, and form strings modified appropriately.  Of
16942 course it may be the case that the program cannot be ported if the
16943 target compiler does not support the required functionality.  The best
16944 approach in writing portable code is to avoid file sharing (and hence
16945 the use of the @samp{shared=@var{xxx}} parameter in the form string)
16946 completely.
16948 One common use of file sharing in Ada 83 is the use of instantiations of
16949 Sequential_IO on the same file with different types, to achieve
16950 heterogeneous input-output.  Although this approach will work in GNAT if
16951 @samp{shared=yes} is specified, it is preferable in Ada to use Stream_IO
16952 for this purpose (using the stream attributes)
16954 @node Filenames encoding
16955 @section Filenames encoding
16957 @noindent
16958 An encoding form parameter can be used to specify the filename
16959 encoding @samp{encoding=@var{xxx}}.
16961 @itemize @bullet
16962 @item
16963 If the form parameter @samp{encoding=utf8} appears in the form string, the
16964 filename must be encoded in UTF-8.
16966 @item
16967 If the form parameter @samp{encoding=8bits} appears in the form
16968 string, the filename must be a standard 8bits string.
16969 @end itemize
16971 In the absence of a @samp{encoding=@var{xxx}} form parameter, the
16972 encoding is controlled by the @samp{GNAT_CODE_PAGE} environment
16973 variable. And if not set @samp{utf8} is assumed.
16975 @table @samp
16976 @item CP_ACP
16977 The current system Windows ANSI code page.
16978 @item CP_UTF8
16979 UTF-8 encoding
16980 @end table
16982 This encoding form parameter is only supported on the Windows
16983 platform. On the other Operating Systems the run-time is supporting
16984 UTF-8 natively.
16986 @node Open Modes
16987 @section Open Modes
16989 @noindent
16990 @code{Open} and @code{Create} calls result in a call to @code{fopen}
16991 using the mode shown in the following table:
16993 @sp 2
16994 @center @code{Open} and @code{Create} Call Modes
16995 @smallexample
16996                                @b{OPEN }           @b{CREATE}
16997 Append_File                    "r+"             "w+"
16998 In_File                        "r"              "w+"
16999 Out_File (Direct_IO)           "r+"             "w"
17000 Out_File (all other cases)     "w"              "w"
17001 Inout_File                     "r+"             "w+"
17002 @end smallexample
17004 @noindent
17005 If text file translation is required, then either @samp{b} or @samp{t}
17006 is added to the mode, depending on the setting of Text.  Text file
17007 translation refers to the mapping of CR/LF sequences in an external file
17008 to LF characters internally.  This mapping only occurs in DOS and
17009 DOS-like systems, and is not relevant to other systems.
17011 A special case occurs with Stream_IO@.  As shown in the above table, the
17012 file is initially opened in @samp{r} or @samp{w} mode for the
17013 @code{In_File} and @code{Out_File} cases.  If a @code{Set_Mode} operation
17014 subsequently requires switching from reading to writing or vice-versa,
17015 then the file is reopened in @samp{r+} mode to permit the required operation.
17017 @node Operations on C Streams
17018 @section Operations on C Streams
17019 The package @code{Interfaces.C_Streams} provides an Ada program with direct
17020 access to the C library functions for operations on C streams:
17022 @smallexample @c adanocomment
17023 package Interfaces.C_Streams is
17024   -- Note: the reason we do not use the types that are in
17025   -- Interfaces.C is that we want to avoid dragging in the
17026   -- code in this unit if possible.
17027   subtype chars is System.Address;
17028   -- Pointer to null-terminated array of characters
17029   subtype FILEs is System.Address;
17030   -- Corresponds to the C type FILE*
17031   subtype voids is System.Address;
17032   -- Corresponds to the C type void*
17033   subtype int is Integer;
17034   subtype long is Long_Integer;
17035   -- Note: the above types are subtypes deliberately, and it
17036   -- is part of this spec that the above correspondences are
17037   -- guaranteed.  This means that it is legitimate to, for
17038   -- example, use Integer instead of int.  We provide these
17039   -- synonyms for clarity, but in some cases it may be
17040   -- convenient to use the underlying types (for example to
17041   -- avoid an unnecessary dependency of a spec on the spec
17042   -- of this unit).
17043   type size_t is mod 2 ** Standard'Address_Size;
17044   NULL_Stream : constant FILEs;
17045   -- Value returned (NULL in C) to indicate an
17046   -- fdopen/fopen/tmpfile error
17047   ----------------------------------
17048   -- Constants Defined in stdio.h --
17049   ----------------------------------
17050   EOF : constant int;
17051   -- Used by a number of routines to indicate error or
17052   -- end of file
17053   IOFBF : constant int;
17054   IOLBF : constant int;
17055   IONBF : constant int;
17056   -- Used to indicate buffering mode for setvbuf call
17057   SEEK_CUR : constant int;
17058   SEEK_END : constant int;
17059   SEEK_SET : constant int;
17060   -- Used to indicate origin for fseek call
17061   function stdin return FILEs;
17062   function stdout return FILEs;
17063   function stderr return FILEs;
17064   -- Streams associated with standard files
17065   --------------------------
17066   -- Standard C functions --
17067   --------------------------
17068   -- The functions selected below are ones that are
17069   -- available in UNIX (but not necessarily in ANSI C).
17070   -- These are very thin interfaces
17071   -- which copy exactly the C headers.  For more
17072   -- documentation on these functions, see the Microsoft C
17073   -- "Run-Time Library Reference" (Microsoft Press, 1990,
17074   -- ISBN 1-55615-225-6), which includes useful information
17075   -- on system compatibility.
17076   procedure clearerr (stream : FILEs);
17077   function fclose (stream : FILEs) return int;
17078   function fdopen (handle : int; mode : chars) return FILEs;
17079   function feof (stream : FILEs) return int;
17080   function ferror (stream : FILEs) return int;
17081   function fflush (stream : FILEs) return int;
17082   function fgetc (stream : FILEs) return int;
17083   function fgets (strng : chars; n : int; stream : FILEs)
17084       return chars;
17085   function fileno (stream : FILEs) return int;
17086   function fopen (filename : chars; Mode : chars)
17087       return FILEs;
17088   -- Note: to maintain target independence, use
17089   -- text_translation_required, a boolean variable defined in
17090   -- a-sysdep.c to deal with the target dependent text
17091   -- translation requirement.  If this variable is set,
17092   -- then  b/t should be appended to the standard mode
17093   -- argument to set the text translation mode off or on
17094   -- as required.
17095   function fputc (C : int; stream : FILEs) return int;
17096   function fputs (Strng : chars; Stream : FILEs) return int;
17097   function fread
17098      (buffer : voids;
17099       size : size_t;
17100       count : size_t;
17101       stream : FILEs)
17102       return size_t;
17103   function freopen
17104      (filename : chars;
17105       mode : chars;
17106       stream : FILEs)
17107       return FILEs;
17108   function fseek
17109      (stream : FILEs;
17110       offset : long;
17111       origin : int)
17112       return int;
17113   function ftell (stream : FILEs) return long;
17114   function fwrite
17115      (buffer : voids;
17116       size : size_t;
17117       count : size_t;
17118       stream : FILEs)
17119       return size_t;
17120   function isatty (handle : int) return int;
17121   procedure mktemp (template : chars);
17122   -- The return value (which is just a pointer to template)
17123   -- is discarded
17124   procedure rewind (stream : FILEs);
17125   function rmtmp return int;
17126   function setvbuf
17127      (stream : FILEs;
17128       buffer : chars;
17129       mode : int;
17130       size : size_t)
17131       return int;
17133   function tmpfile return FILEs;
17134   function ungetc (c : int; stream : FILEs) return int;
17135   function unlink (filename : chars) return int;
17136   ---------------------
17137   -- Extra functions --
17138   ---------------------
17139   -- These functions supply slightly thicker bindings than
17140   -- those above.  They are derived from functions in the
17141   -- C Run-Time Library, but may do a bit more work than
17142   -- just directly calling one of the Library functions.
17143   function is_regular_file (handle : int) return int;
17144   -- Tests if given handle is for a regular file (result 1)
17145   -- or for a non-regular file (pipe or device, result 0).
17146   ---------------------------------
17147   -- Control of Text/Binary Mode --
17148   ---------------------------------
17149   -- If text_translation_required is true, then the following
17150   -- functions may be used to dynamically switch a file from
17151   -- binary to text mode or vice versa.  These functions have
17152   -- no effect if text_translation_required is false (i.e.@: in
17153   -- normal UNIX mode).  Use fileno to get a stream handle.
17154   procedure set_binary_mode (handle : int);
17155   procedure set_text_mode (handle : int);
17156   ----------------------------
17157   -- Full Path Name support --
17158   ----------------------------
17159   procedure full_name (nam : chars; buffer : chars);
17160   -- Given a NUL terminated string representing a file
17161   -- name, returns in buffer a NUL terminated string
17162   -- representing the full path name for the file name.
17163   -- On systems where it is relevant the   drive is also
17164   -- part of the full path name.  It is the responsibility
17165   -- of the caller to pass an actual parameter for buffer
17166   -- that is big enough for any full path name.  Use
17167   -- max_path_len given below as the size of buffer.
17168   max_path_len : integer;
17169   -- Maximum length of an allowable full path name on the
17170   -- system, including a terminating NUL character.
17171 end Interfaces.C_Streams;
17172 @end smallexample
17174 @node Interfacing to C Streams
17175 @section Interfacing to C Streams
17177 @noindent
17178 The packages in this section permit interfacing Ada files to C Stream
17179 operations.
17181 @smallexample @c ada
17182  with Interfaces.C_Streams;
17183  package Ada.Sequential_IO.C_Streams is
17184     function C_Stream (F : File_Type)
17185        return Interfaces.C_Streams.FILEs;
17186     procedure Open
17187       (File : in out File_Type;
17188        Mode : in File_Mode;
17189        C_Stream : in Interfaces.C_Streams.FILEs;
17190        Form : in String := "");
17191  end Ada.Sequential_IO.C_Streams;
17193   with Interfaces.C_Streams;
17194   package Ada.Direct_IO.C_Streams is
17195      function C_Stream (F : File_Type)
17196         return Interfaces.C_Streams.FILEs;
17197      procedure Open
17198        (File : in out File_Type;
17199         Mode : in File_Mode;
17200         C_Stream : in Interfaces.C_Streams.FILEs;
17201         Form : in String := "");
17202   end Ada.Direct_IO.C_Streams;
17204   with Interfaces.C_Streams;
17205   package Ada.Text_IO.C_Streams is
17206      function C_Stream (F : File_Type)
17207         return Interfaces.C_Streams.FILEs;
17208      procedure Open
17209        (File : in out File_Type;
17210         Mode : in File_Mode;
17211         C_Stream : in Interfaces.C_Streams.FILEs;
17212         Form : in String := "");
17213   end Ada.Text_IO.C_Streams;
17215   with Interfaces.C_Streams;
17216   package Ada.Wide_Text_IO.C_Streams is
17217      function C_Stream (F : File_Type)
17218         return Interfaces.C_Streams.FILEs;
17219      procedure Open
17220        (File : in out File_Type;
17221         Mode : in File_Mode;
17222         C_Stream : in Interfaces.C_Streams.FILEs;
17223         Form : in String := "");
17224  end Ada.Wide_Text_IO.C_Streams;
17226   with Interfaces.C_Streams;
17227   package Ada.Wide_Wide_Text_IO.C_Streams is
17228      function C_Stream (F : File_Type)
17229         return Interfaces.C_Streams.FILEs;
17230      procedure Open
17231        (File : in out File_Type;
17232         Mode : in File_Mode;
17233         C_Stream : in Interfaces.C_Streams.FILEs;
17234         Form : in String := "");
17235  end Ada.Wide_Wide_Text_IO.C_Streams;
17237  with Interfaces.C_Streams;
17238  package Ada.Stream_IO.C_Streams is
17239     function C_Stream (F : File_Type)
17240        return Interfaces.C_Streams.FILEs;
17241     procedure Open
17242       (File : in out File_Type;
17243        Mode : in File_Mode;
17244        C_Stream : in Interfaces.C_Streams.FILEs;
17245        Form : in String := "");
17246  end Ada.Stream_IO.C_Streams;
17247 @end smallexample
17249 @noindent
17250 In each of these six packages, the @code{C_Stream} function obtains the
17251 @code{FILE} pointer from a currently opened Ada file.  It is then
17252 possible to use the @code{Interfaces.C_Streams} package to operate on
17253 this stream, or the stream can be passed to a C program which can
17254 operate on it directly.  Of course the program is responsible for
17255 ensuring that only appropriate sequences of operations are executed.
17257 One particular use of relevance to an Ada program is that the
17258 @code{setvbuf} function can be used to control the buffering of the
17259 stream used by an Ada file.  In the absence of such a call the standard
17260 default buffering is used.
17262 The @code{Open} procedures in these packages open a file giving an
17263 existing C Stream instead of a file name.  Typically this stream is
17264 imported from a C program, allowing an Ada file to operate on an
17265 existing C file.
17267 @node The GNAT Library
17268 @chapter The GNAT Library
17270 @noindent
17271 The GNAT library contains a number of general and special purpose packages.
17272 It represents functionality that the GNAT developers have found useful, and
17273 which is made available to GNAT users.  The packages described here are fully
17274 supported, and upwards compatibility will be maintained in future releases,
17275 so you can use these facilities with the confidence that the same functionality
17276 will be available in future releases.
17278 The chapter here simply gives a brief summary of the facilities available.
17279 The full documentation is found in the spec file for the package.  The full
17280 sources of these library packages, including both spec and body, are provided
17281 with all GNAT releases.  For example, to find out the full specifications of
17282 the SPITBOL pattern matching capability, including a full tutorial and
17283 extensive examples, look in the @file{g-spipat.ads} file in the library.
17285 For each entry here, the package name (as it would appear in a @code{with}
17286 clause) is given, followed by the name of the corresponding spec file in
17287 parentheses.  The packages are children in four hierarchies, @code{Ada},
17288 @code{Interfaces}, @code{System}, and @code{GNAT}, the latter being a
17289 GNAT-specific hierarchy.
17291 Note that an application program should only use packages in one of these
17292 four hierarchies if the package is defined in the Ada Reference Manual,
17293 or is listed in this section of the GNAT Programmers Reference Manual.
17294 All other units should be considered internal implementation units and
17295 should not be directly @code{with}'ed by application code.  The use of
17296 a @code{with} statement that references one of these internal implementation
17297 units makes an application potentially dependent on changes in versions
17298 of GNAT, and will generate a warning message.
17300 @menu
17301 * Ada.Characters.Latin_9 (a-chlat9.ads)::
17302 * Ada.Characters.Wide_Latin_1 (a-cwila1.ads)::
17303 * Ada.Characters.Wide_Latin_9 (a-cwila9.ads)::
17304 * Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads)::
17305 * Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads)::
17306 * Ada.Containers.Formal_Doubly_Linked_Lists (a-cfdlli.ads)::
17307 * Ada.Containers.Formal_Hashed_Maps (a-cfhama.ads)::
17308 * Ada.Containers.Formal_Hashed_Sets (a-cfhase.ads)::
17309 * Ada.Containers.Formal_Ordered_Maps (a-cforma.ads)::
17310 * Ada.Containers.Formal_Ordered_Sets (a-cforse.ads)::
17311 * Ada.Containers.Formal_Vectors (a-cofove.ads)::
17312 * Ada.Command_Line.Environment (a-colien.ads)::
17313 * Ada.Command_Line.Remove (a-colire.ads)::
17314 * Ada.Command_Line.Response_File (a-clrefi.ads)::
17315 * Ada.Direct_IO.C_Streams (a-diocst.ads)::
17316 * Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads)::
17317 * Ada.Exceptions.Last_Chance_Handler (a-elchha.ads)::
17318 * Ada.Exceptions.Traceback (a-exctra.ads)::
17319 * Ada.Sequential_IO.C_Streams (a-siocst.ads)::
17320 * Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads)::
17321 * Ada.Strings.Unbounded.Text_IO (a-suteio.ads)::
17322 * Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads)::
17323 * Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads)::
17324 * Ada.Text_IO.C_Streams (a-tiocst.ads)::
17325 * Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads)::
17326 * Ada.Wide_Characters.Unicode (a-wichun.ads)::
17327 * Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads)::
17328 * Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads)::
17329 * Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads)::
17330 * Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads)::
17331 * Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads)::
17332 * GNAT.Altivec (g-altive.ads)::
17333 * GNAT.Altivec.Conversions (g-altcon.ads)::
17334 * GNAT.Altivec.Vector_Operations (g-alveop.ads)::
17335 * GNAT.Altivec.Vector_Types (g-alvety.ads)::
17336 * GNAT.Altivec.Vector_Views (g-alvevi.ads)::
17337 * GNAT.Array_Split (g-arrspl.ads)::
17338 * GNAT.AWK (g-awk.ads)::
17339 * GNAT.Bounded_Buffers (g-boubuf.ads)::
17340 * GNAT.Bounded_Mailboxes (g-boumai.ads)::
17341 * GNAT.Bubble_Sort (g-bubsor.ads)::
17342 * GNAT.Bubble_Sort_A (g-busora.ads)::
17343 * GNAT.Bubble_Sort_G (g-busorg.ads)::
17344 * GNAT.Byte_Order_Mark (g-byorma.ads)::
17345 * GNAT.Byte_Swapping (g-bytswa.ads)::
17346 * GNAT.Calendar (g-calend.ads)::
17347 * GNAT.Calendar.Time_IO (g-catiio.ads)::
17348 * GNAT.Case_Util (g-casuti.ads)::
17349 * GNAT.CGI (g-cgi.ads)::
17350 * GNAT.CGI.Cookie (g-cgicoo.ads)::
17351 * GNAT.CGI.Debug (g-cgideb.ads)::
17352 * GNAT.Command_Line (g-comlin.ads)::
17353 * GNAT.Compiler_Version (g-comver.ads)::
17354 * GNAT.Ctrl_C (g-ctrl_c.ads)::
17355 * GNAT.CRC32 (g-crc32.ads)::
17356 * GNAT.Current_Exception (g-curexc.ads)::
17357 * GNAT.Debug_Pools (g-debpoo.ads)::
17358 * GNAT.Debug_Utilities (g-debuti.ads)::
17359 * GNAT.Decode_String (g-decstr.ads)::
17360 * GNAT.Decode_UTF8_String (g-deutst.ads)::
17361 * GNAT.Directory_Operations (g-dirope.ads)::
17362 * GNAT.Directory_Operations.Iteration (g-diopit.ads)::
17363 * GNAT.Dynamic_HTables (g-dynhta.ads)::
17364 * GNAT.Dynamic_Tables (g-dyntab.ads)::
17365 * GNAT.Encode_String (g-encstr.ads)::
17366 * GNAT.Encode_UTF8_String (g-enutst.ads)::
17367 * GNAT.Exception_Actions (g-excact.ads)::
17368 * GNAT.Exception_Traces (g-exctra.ads)::
17369 * GNAT.Exceptions (g-except.ads)::
17370 * GNAT.Expect (g-expect.ads)::
17371 * GNAT.Expect.TTY (g-exptty.ads)::
17372 * GNAT.Float_Control (g-flocon.ads)::
17373 * GNAT.Heap_Sort (g-heasor.ads)::
17374 * GNAT.Heap_Sort_A (g-hesora.ads)::
17375 * GNAT.Heap_Sort_G (g-hesorg.ads)::
17376 * GNAT.HTable (g-htable.ads)::
17377 * GNAT.IO (g-io.ads)::
17378 * GNAT.IO_Aux (g-io_aux.ads)::
17379 * GNAT.Lock_Files (g-locfil.ads)::
17380 * GNAT.MBBS_Discrete_Random (g-mbdira.ads)::
17381 * GNAT.MBBS_Float_Random (g-mbflra.ads)::
17382 * GNAT.MD5 (g-md5.ads)::
17383 * GNAT.Memory_Dump (g-memdum.ads)::
17384 * GNAT.Most_Recent_Exception (g-moreex.ads)::
17385 * GNAT.OS_Lib (g-os_lib.ads)::
17386 * GNAT.Perfect_Hash_Generators (g-pehage.ads)::
17387 * GNAT.Random_Numbers (g-rannum.ads)::
17388 * GNAT.Regexp (g-regexp.ads)::
17389 * GNAT.Registry (g-regist.ads)::
17390 * GNAT.Regpat (g-regpat.ads)::
17391 * GNAT.Secondary_Stack_Info (g-sestin.ads)::
17392 * GNAT.Semaphores (g-semaph.ads)::
17393 * GNAT.Serial_Communications (g-sercom.ads)::
17394 * GNAT.SHA1 (g-sha1.ads)::
17395 * GNAT.SHA224 (g-sha224.ads)::
17396 * GNAT.SHA256 (g-sha256.ads)::
17397 * GNAT.SHA384 (g-sha384.ads)::
17398 * GNAT.SHA512 (g-sha512.ads)::
17399 * GNAT.Signals (g-signal.ads)::
17400 * GNAT.Sockets (g-socket.ads)::
17401 * GNAT.Source_Info (g-souinf.ads)::
17402 * GNAT.Spelling_Checker (g-speche.ads)::
17403 * GNAT.Spelling_Checker_Generic (g-spchge.ads)::
17404 * GNAT.Spitbol.Patterns (g-spipat.ads)::
17405 * GNAT.Spitbol (g-spitbo.ads)::
17406 * GNAT.Spitbol.Table_Boolean (g-sptabo.ads)::
17407 * GNAT.Spitbol.Table_Integer (g-sptain.ads)::
17408 * GNAT.Spitbol.Table_VString (g-sptavs.ads)::
17409 * GNAT.SSE (g-sse.ads)::
17410 * GNAT.SSE.Vector_Types (g-ssvety.ads)::
17411 * GNAT.Strings (g-string.ads)::
17412 * GNAT.String_Split (g-strspl.ads)::
17413 * GNAT.Table (g-table.ads)::
17414 * GNAT.Task_Lock (g-tasloc.ads)::
17415 * GNAT.Threads (g-thread.ads)::
17416 * GNAT.Time_Stamp (g-timsta.ads)::
17417 * GNAT.Traceback (g-traceb.ads)::
17418 * GNAT.Traceback.Symbolic (g-trasym.ads)::
17419 * GNAT.UTF_32 (g-utf_32.ads)::
17420 * GNAT.UTF_32_Spelling_Checker (g-u3spch.ads)::
17421 * GNAT.Wide_Spelling_Checker (g-wispch.ads)::
17422 * GNAT.Wide_String_Split (g-wistsp.ads)::
17423 * GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads)::
17424 * GNAT.Wide_Wide_String_Split (g-zistsp.ads)::
17425 * Interfaces.C.Extensions (i-cexten.ads)::
17426 * Interfaces.C.Streams (i-cstrea.ads)::
17427 * Interfaces.CPP (i-cpp.ads)::
17428 * Interfaces.Packed_Decimal (i-pacdec.ads)::
17429 * Interfaces.VxWorks (i-vxwork.ads)::
17430 * Interfaces.VxWorks.IO (i-vxwoio.ads)::
17431 * System.Address_Image (s-addima.ads)::
17432 * System.Assertions (s-assert.ads)::
17433 * System.Memory (s-memory.ads)::
17434 * System.Multiprocessors (s-multip.ads)::
17435 * System.Multiprocessors.Dispatching_Domains (s-mudido.ads)::
17436 * System.Partition_Interface (s-parint.ads)::
17437 * System.Pool_Global (s-pooglo.ads)::
17438 * System.Pool_Local (s-pooloc.ads)::
17439 * System.Restrictions (s-restri.ads)::
17440 * System.Rident (s-rident.ads)::
17441 * System.Strings.Stream_Ops (s-ststop.ads)::
17442 * System.Task_Info (s-tasinf.ads)::
17443 * System.Wch_Cnv (s-wchcnv.ads)::
17444 * System.Wch_Con (s-wchcon.ads)::
17445 @end menu
17447 @node Ada.Characters.Latin_9 (a-chlat9.ads)
17448 @section @code{Ada.Characters.Latin_9} (@file{a-chlat9.ads})
17449 @cindex @code{Ada.Characters.Latin_9} (@file{a-chlat9.ads})
17450 @cindex Latin_9 constants for Character
17452 @noindent
17453 This child of @code{Ada.Characters}
17454 provides a set of definitions corresponding to those in the
17455 RM-defined package @code{Ada.Characters.Latin_1} but with the
17456 few modifications required for @code{Latin-9}
17457 The provision of such a package
17458 is specifically authorized by the Ada Reference Manual
17459 (RM A.3.3(27)).
17461 @node Ada.Characters.Wide_Latin_1 (a-cwila1.ads)
17462 @section @code{Ada.Characters.Wide_Latin_1} (@file{a-cwila1.ads})
17463 @cindex @code{Ada.Characters.Wide_Latin_1} (@file{a-cwila1.ads})
17464 @cindex Latin_1 constants for Wide_Character
17466 @noindent
17467 This child of @code{Ada.Characters}
17468 provides a set of definitions corresponding to those in the
17469 RM-defined package @code{Ada.Characters.Latin_1} but with the
17470 types of the constants being @code{Wide_Character}
17471 instead of @code{Character}.  The provision of such a package
17472 is specifically authorized by the Ada Reference Manual
17473 (RM A.3.3(27)).
17475 @node Ada.Characters.Wide_Latin_9 (a-cwila9.ads)
17476 @section @code{Ada.Characters.Wide_Latin_9} (@file{a-cwila1.ads})
17477 @cindex @code{Ada.Characters.Wide_Latin_9} (@file{a-cwila1.ads})
17478 @cindex Latin_9 constants for Wide_Character
17480 @noindent
17481 This child of @code{Ada.Characters}
17482 provides a set of definitions corresponding to those in the
17483 GNAT defined package @code{Ada.Characters.Latin_9} but with the
17484 types of the constants being @code{Wide_Character}
17485 instead of @code{Character}.  The provision of such a package
17486 is specifically authorized by the Ada Reference Manual
17487 (RM A.3.3(27)).
17489 @node Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads)
17490 @section @code{Ada.Characters.Wide_Wide_Latin_1} (@file{a-chzla1.ads})
17491 @cindex @code{Ada.Characters.Wide_Wide_Latin_1} (@file{a-chzla1.ads})
17492 @cindex Latin_1 constants for Wide_Wide_Character
17494 @noindent
17495 This child of @code{Ada.Characters}
17496 provides a set of definitions corresponding to those in the
17497 RM-defined package @code{Ada.Characters.Latin_1} but with the
17498 types of the constants being @code{Wide_Wide_Character}
17499 instead of @code{Character}.  The provision of such a package
17500 is specifically authorized by the Ada Reference Manual
17501 (RM A.3.3(27)).
17503 @node Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads)
17504 @section @code{Ada.Characters.Wide_Wide_Latin_9} (@file{a-chzla9.ads})
17505 @cindex @code{Ada.Characters.Wide_Wide_Latin_9} (@file{a-chzla9.ads})
17506 @cindex Latin_9 constants for Wide_Wide_Character
17508 @noindent
17509 This child of @code{Ada.Characters}
17510 provides a set of definitions corresponding to those in the
17511 GNAT defined package @code{Ada.Characters.Latin_9} but with the
17512 types of the constants being @code{Wide_Wide_Character}
17513 instead of @code{Character}.  The provision of such a package
17514 is specifically authorized by the Ada Reference Manual
17515 (RM A.3.3(27)).
17517 @node Ada.Containers.Formal_Doubly_Linked_Lists (a-cfdlli.ads)
17518 @section @code{Ada.Containers.Formal_Doubly_Linked_Lists} (@file{a-cfdlli.ads})
17519 @cindex @code{Ada.Containers.Formal_Doubly_Linked_Lists} (@file{a-cfdlli.ads})
17520 @cindex Formal container for doubly linked lists
17522 @noindent
17523 This child of @code{Ada.Containers} defines a modified version of the
17524 Ada 2005 container for doubly linked lists, meant to facilitate formal
17525 verification of code using such containers. The specification of this
17526 unit is compatible with SPARK 2014.
17528 Note that although this container was designed with formal verification
17529 in mind, it may well be generally useful in that it is a simplified more
17530 efficient version than the one defined in the standard. In particular it
17531 does not have the complex overhead required to detect cursor tampering.
17533 @node Ada.Containers.Formal_Hashed_Maps (a-cfhama.ads)
17534 @section @code{Ada.Containers.Formal_Hashed_Maps} (@file{a-cfhama.ads})
17535 @cindex @code{Ada.Containers.Formal_Hashed_Maps} (@file{a-cfhama.ads})
17536 @cindex Formal container for hashed maps
17538 @noindent
17539 This child of @code{Ada.Containers} defines a modified version of the
17540 Ada 2005 container for hashed maps, meant to facilitate formal
17541 verification of code using such containers. The specification of this
17542 unit is compatible with SPARK 2014.
17544 Note that although this container was designed with formal verification
17545 in mind, it may well be generally useful in that it is a simplified more
17546 efficient version than the one defined in the standard. In particular it
17547 does not have the complex overhead required to detect cursor tampering.
17549 @node Ada.Containers.Formal_Hashed_Sets (a-cfhase.ads)
17550 @section @code{Ada.Containers.Formal_Hashed_Sets} (@file{a-cfhase.ads})
17551 @cindex @code{Ada.Containers.Formal_Hashed_Sets} (@file{a-cfhase.ads})
17552 @cindex Formal container for hashed sets
17554 @noindent
17555 This child of @code{Ada.Containers} defines a modified version of the
17556 Ada 2005 container for hashed sets, meant to facilitate formal
17557 verification of code using such containers. The specification of this
17558 unit is compatible with SPARK 2014.
17560 Note that although this container was designed with formal verification
17561 in mind, it may well be generally useful in that it is a simplified more
17562 efficient version than the one defined in the standard. In particular it
17563 does not have the complex overhead required to detect cursor tampering.
17565 @node Ada.Containers.Formal_Ordered_Maps (a-cforma.ads)
17566 @section @code{Ada.Containers.Formal_Ordered_Maps} (@file{a-cforma.ads})
17567 @cindex @code{Ada.Containers.Formal_Ordered_Maps} (@file{a-cforma.ads})
17568 @cindex Formal container for ordered maps
17570 @noindent
17571 This child of @code{Ada.Containers} defines a modified version of the
17572 Ada 2005 container for ordered maps, meant to facilitate formal
17573 verification of code using such containers. The specification of this
17574 unit is compatible with SPARK 2014.
17576 Note that although this container was designed with formal verification
17577 in mind, it may well be generally useful in that it is a simplified more
17578 efficient version than the one defined in the standard. In particular it
17579 does not have the complex overhead required to detect cursor tampering.
17581 @node Ada.Containers.Formal_Ordered_Sets (a-cforse.ads)
17582 @section @code{Ada.Containers.Formal_Ordered_Sets} (@file{a-cforse.ads})
17583 @cindex @code{Ada.Containers.Formal_Ordered_Sets} (@file{a-cforse.ads})
17584 @cindex Formal container for ordered sets
17586 @noindent
17587 This child of @code{Ada.Containers} defines a modified version of the
17588 Ada 2005 container for ordered sets, meant to facilitate formal
17589 verification of code using such containers. The specification of this
17590 unit is compatible with SPARK 2014.
17592 Note that although this container was designed with formal verification
17593 in mind, it may well be generally useful in that it is a simplified more
17594 efficient version than the one defined in the standard. In particular it
17595 does not have the complex overhead required to detect cursor tampering.
17597 @node Ada.Containers.Formal_Vectors (a-cofove.ads)
17598 @section @code{Ada.Containers.Formal_Vectors} (@file{a-cofove.ads})
17599 @cindex @code{Ada.Containers.Formal_Vectors} (@file{a-cofove.ads})
17600 @cindex Formal container for vectors
17602 @noindent
17603 This child of @code{Ada.Containers} defines a modified version of the
17604 Ada 2005 container for vectors, meant to facilitate formal
17605 verification of code using such containers. The specification of this
17606 unit is compatible with SPARK 2014.
17608 Note that although this container was designed with formal verification
17609 in mind, it may well be generally useful in that it is a simplified more
17610 efficient version than the one defined in the standard. In particular it
17611 does not have the complex overhead required to detect cursor tampering.
17613 @node Ada.Command_Line.Environment (a-colien.ads)
17614 @section @code{Ada.Command_Line.Environment} (@file{a-colien.ads})
17615 @cindex @code{Ada.Command_Line.Environment} (@file{a-colien.ads})
17616 @cindex Environment entries
17618 @noindent
17619 This child of @code{Ada.Command_Line}
17620 provides a mechanism for obtaining environment values on systems
17621 where this concept makes sense.
17623 @node Ada.Command_Line.Remove (a-colire.ads)
17624 @section @code{Ada.Command_Line.Remove} (@file{a-colire.ads})
17625 @cindex @code{Ada.Command_Line.Remove} (@file{a-colire.ads})
17626 @cindex Removing command line arguments
17627 @cindex Command line, argument removal
17629 @noindent
17630 This child of @code{Ada.Command_Line}
17631 provides a mechanism for logically removing
17632 arguments from the argument list.  Once removed, an argument is not visible
17633 to further calls on the subprograms in @code{Ada.Command_Line} will not
17634 see the removed argument.
17636 @node Ada.Command_Line.Response_File (a-clrefi.ads)
17637 @section @code{Ada.Command_Line.Response_File} (@file{a-clrefi.ads})
17638 @cindex @code{Ada.Command_Line.Response_File} (@file{a-clrefi.ads})
17639 @cindex Response file for command line
17640 @cindex Command line, response file
17641 @cindex Command line, handling long command lines
17643 @noindent
17644 This child of @code{Ada.Command_Line} provides a mechanism facilities for
17645 getting command line arguments from a text file, called a "response file".
17646 Using a response file allow passing a set of arguments to an executable longer
17647 than the maximum allowed by the system on the command line.
17649 @node Ada.Direct_IO.C_Streams (a-diocst.ads)
17650 @section @code{Ada.Direct_IO.C_Streams} (@file{a-diocst.ads})
17651 @cindex @code{Ada.Direct_IO.C_Streams} (@file{a-diocst.ads})
17652 @cindex C Streams, Interfacing with Direct_IO
17654 @noindent
17655 This package provides subprograms that allow interfacing between
17656 C streams and @code{Direct_IO}.  The stream identifier can be
17657 extracted from a file opened on the Ada side, and an Ada file
17658 can be constructed from a stream opened on the C side.
17660 @node Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads)
17661 @section @code{Ada.Exceptions.Is_Null_Occurrence} (@file{a-einuoc.ads})
17662 @cindex @code{Ada.Exceptions.Is_Null_Occurrence} (@file{a-einuoc.ads})
17663 @cindex Null_Occurrence, testing for
17665 @noindent
17666 This child subprogram provides a way of testing for the null
17667 exception occurrence (@code{Null_Occurrence}) without raising
17668 an exception.
17670 @node Ada.Exceptions.Last_Chance_Handler (a-elchha.ads)
17671 @section @code{Ada.Exceptions.Last_Chance_Handler} (@file{a-elchha.ads})
17672 @cindex @code{Ada.Exceptions.Last_Chance_Handler} (@file{a-elchha.ads})
17673 @cindex Null_Occurrence, testing for
17675 @noindent
17676 This child subprogram is used for handling otherwise unhandled
17677 exceptions (hence the name last chance), and perform clean ups before
17678 terminating the program. Note that this subprogram never returns.
17680 @node Ada.Exceptions.Traceback (a-exctra.ads)
17681 @section @code{Ada.Exceptions.Traceback} (@file{a-exctra.ads})
17682 @cindex @code{Ada.Exceptions.Traceback} (@file{a-exctra.ads})
17683 @cindex Traceback for Exception Occurrence
17685 @noindent
17686 This child package provides the subprogram (@code{Tracebacks}) to
17687 give a traceback array of addresses based on an exception
17688 occurrence.
17690 @node Ada.Sequential_IO.C_Streams (a-siocst.ads)
17691 @section @code{Ada.Sequential_IO.C_Streams} (@file{a-siocst.ads})
17692 @cindex @code{Ada.Sequential_IO.C_Streams} (@file{a-siocst.ads})
17693 @cindex C Streams, Interfacing with Sequential_IO
17695 @noindent
17696 This package provides subprograms that allow interfacing between
17697 C streams and @code{Sequential_IO}.  The stream identifier can be
17698 extracted from a file opened on the Ada side, and an Ada file
17699 can be constructed from a stream opened on the C side.
17701 @node Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads)
17702 @section @code{Ada.Streams.Stream_IO.C_Streams} (@file{a-ssicst.ads})
17703 @cindex @code{Ada.Streams.Stream_IO.C_Streams} (@file{a-ssicst.ads})
17704 @cindex C Streams, Interfacing with Stream_IO
17706 @noindent
17707 This package provides subprograms that allow interfacing between
17708 C streams and @code{Stream_IO}.  The stream identifier can be
17709 extracted from a file opened on the Ada side, and an Ada file
17710 can be constructed from a stream opened on the C side.
17712 @node Ada.Strings.Unbounded.Text_IO (a-suteio.ads)
17713 @section @code{Ada.Strings.Unbounded.Text_IO} (@file{a-suteio.ads})
17714 @cindex @code{Ada.Strings.Unbounded.Text_IO} (@file{a-suteio.ads})
17715 @cindex @code{Unbounded_String}, IO support
17716 @cindex @code{Text_IO}, extensions for unbounded strings
17718 @noindent
17719 This package provides subprograms for Text_IO for unbounded
17720 strings, avoiding the necessity for an intermediate operation
17721 with ordinary strings.
17723 @node Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads)
17724 @section @code{Ada.Strings.Wide_Unbounded.Wide_Text_IO} (@file{a-swuwti.ads})
17725 @cindex @code{Ada.Strings.Wide_Unbounded.Wide_Text_IO} (@file{a-swuwti.ads})
17726 @cindex @code{Unbounded_Wide_String}, IO support
17727 @cindex @code{Text_IO}, extensions for unbounded wide strings
17729 @noindent
17730 This package provides subprograms for Text_IO for unbounded
17731 wide strings, avoiding the necessity for an intermediate operation
17732 with ordinary wide strings.
17734 @node Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads)
17735 @section @code{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} (@file{a-szuzti.ads})
17736 @cindex @code{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} (@file{a-szuzti.ads})
17737 @cindex @code{Unbounded_Wide_Wide_String}, IO support
17738 @cindex @code{Text_IO}, extensions for unbounded wide wide strings
17740 @noindent
17741 This package provides subprograms for Text_IO for unbounded
17742 wide wide strings, avoiding the necessity for an intermediate operation
17743 with ordinary wide wide strings.
17745 @node Ada.Text_IO.C_Streams (a-tiocst.ads)
17746 @section @code{Ada.Text_IO.C_Streams} (@file{a-tiocst.ads})
17747 @cindex @code{Ada.Text_IO.C_Streams} (@file{a-tiocst.ads})
17748 @cindex C Streams, Interfacing with @code{Text_IO}
17750 @noindent
17751 This package provides subprograms that allow interfacing between
17752 C streams and @code{Text_IO}.  The stream identifier can be
17753 extracted from a file opened on the Ada side, and an Ada file
17754 can be constructed from a stream opened on the C side.
17756 @node Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads)
17757 @section @code{Ada.Text_IO.Reset_Standard_Files} (@file{a-tirsfi.ads})
17758 @cindex @code{Ada.Text_IO.Reset_Standard_Files} (@file{a-tirsfi.ads})
17759 @cindex @code{Text_IO} resetting standard files
17761 @noindent
17762 This procedure is used to reset the status of the standard files used
17763 by Ada.Text_IO.  This is useful in a situation (such as a restart in an
17764 embedded application) where the status of the files may change during
17765 execution (for example a standard input file may be redefined to be
17766 interactive).
17768 @node Ada.Wide_Characters.Unicode (a-wichun.ads)
17769 @section @code{Ada.Wide_Characters.Unicode} (@file{a-wichun.ads})
17770 @cindex @code{Ada.Wide_Characters.Unicode} (@file{a-wichun.ads})
17771 @cindex Unicode categorization, Wide_Character
17773 @noindent
17774 This package provides subprograms that allow categorization of
17775 Wide_Character values according to Unicode categories.
17777 @node Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads)
17778 @section @code{Ada.Wide_Text_IO.C_Streams} (@file{a-wtcstr.ads})
17779 @cindex @code{Ada.Wide_Text_IO.C_Streams} (@file{a-wtcstr.ads})
17780 @cindex C Streams, Interfacing with @code{Wide_Text_IO}
17782 @noindent
17783 This package provides subprograms that allow interfacing between
17784 C streams and @code{Wide_Text_IO}.  The stream identifier can be
17785 extracted from a file opened on the Ada side, and an Ada file
17786 can be constructed from a stream opened on the C side.
17788 @node Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads)
17789 @section @code{Ada.Wide_Text_IO.Reset_Standard_Files} (@file{a-wrstfi.ads})
17790 @cindex @code{Ada.Wide_Text_IO.Reset_Standard_Files} (@file{a-wrstfi.ads})
17791 @cindex @code{Wide_Text_IO} resetting standard files
17793 @noindent
17794 This procedure is used to reset the status of the standard files used
17795 by Ada.Wide_Text_IO.  This is useful in a situation (such as a restart in an
17796 embedded application) where the status of the files may change during
17797 execution (for example a standard input file may be redefined to be
17798 interactive).
17800 @node Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads)
17801 @section @code{Ada.Wide_Wide_Characters.Unicode} (@file{a-zchuni.ads})
17802 @cindex @code{Ada.Wide_Wide_Characters.Unicode} (@file{a-zchuni.ads})
17803 @cindex Unicode categorization, Wide_Wide_Character
17805 @noindent
17806 This package provides subprograms that allow categorization of
17807 Wide_Wide_Character values according to Unicode categories.
17809 @node Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads)
17810 @section @code{Ada.Wide_Wide_Text_IO.C_Streams} (@file{a-ztcstr.ads})
17811 @cindex @code{Ada.Wide_Wide_Text_IO.C_Streams} (@file{a-ztcstr.ads})
17812 @cindex C Streams, Interfacing with @code{Wide_Wide_Text_IO}
17814 @noindent
17815 This package provides subprograms that allow interfacing between
17816 C streams and @code{Wide_Wide_Text_IO}.  The stream identifier can be
17817 extracted from a file opened on the Ada side, and an Ada file
17818 can be constructed from a stream opened on the C side.
17820 @node Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads)
17821 @section @code{Ada.Wide_Wide_Text_IO.Reset_Standard_Files} (@file{a-zrstfi.ads})
17822 @cindex @code{Ada.Wide_Wide_Text_IO.Reset_Standard_Files} (@file{a-zrstfi.ads})
17823 @cindex @code{Wide_Wide_Text_IO} resetting standard files
17825 @noindent
17826 This procedure is used to reset the status of the standard files used
17827 by Ada.Wide_Wide_Text_IO. This is useful in a situation (such as a
17828 restart in an embedded application) where the status of the files may
17829 change during execution (for example a standard input file may be
17830 redefined to be interactive).
17832 @node GNAT.Altivec (g-altive.ads)
17833 @section @code{GNAT.Altivec} (@file{g-altive.ads})
17834 @cindex @code{GNAT.Altivec} (@file{g-altive.ads})
17835 @cindex AltiVec
17837 @noindent
17838 This is the root package of the GNAT AltiVec binding. It provides
17839 definitions of constants and types common to all the versions of the
17840 binding.
17842 @node GNAT.Altivec.Conversions (g-altcon.ads)
17843 @section @code{GNAT.Altivec.Conversions} (@file{g-altcon.ads})
17844 @cindex @code{GNAT.Altivec.Conversions} (@file{g-altcon.ads})
17845 @cindex AltiVec
17847 @noindent
17848 This package provides the Vector/View conversion routines.
17850 @node GNAT.Altivec.Vector_Operations (g-alveop.ads)
17851 @section @code{GNAT.Altivec.Vector_Operations} (@file{g-alveop.ads})
17852 @cindex @code{GNAT.Altivec.Vector_Operations} (@file{g-alveop.ads})
17853 @cindex AltiVec
17855 @noindent
17856 This package exposes the Ada interface to the AltiVec operations on
17857 vector objects. A soft emulation is included by default in the GNAT
17858 library. The hard binding is provided as a separate package. This unit
17859 is common to both bindings.
17861 @node GNAT.Altivec.Vector_Types (g-alvety.ads)
17862 @section @code{GNAT.Altivec.Vector_Types} (@file{g-alvety.ads})
17863 @cindex @code{GNAT.Altivec.Vector_Types} (@file{g-alvety.ads})
17864 @cindex AltiVec
17866 @noindent
17867 This package exposes the various vector types part of the Ada binding
17868 to AltiVec facilities.
17870 @node GNAT.Altivec.Vector_Views (g-alvevi.ads)
17871 @section @code{GNAT.Altivec.Vector_Views} (@file{g-alvevi.ads})
17872 @cindex @code{GNAT.Altivec.Vector_Views} (@file{g-alvevi.ads})
17873 @cindex AltiVec
17875 @noindent
17876 This package provides public 'View' data types from/to which private
17877 vector representations can be converted via
17878 GNAT.Altivec.Conversions. This allows convenient access to individual
17879 vector elements and provides a simple way to initialize vector
17880 objects.
17882 @node GNAT.Array_Split (g-arrspl.ads)
17883 @section @code{GNAT.Array_Split} (@file{g-arrspl.ads})
17884 @cindex @code{GNAT.Array_Split} (@file{g-arrspl.ads})
17885 @cindex Array splitter
17887 @noindent
17888 Useful array-manipulation routines: given a set of separators, split
17889 an array wherever the separators appear, and provide direct access
17890 to the resulting slices.
17892 @node GNAT.AWK (g-awk.ads)
17893 @section @code{GNAT.AWK} (@file{g-awk.ads})
17894 @cindex @code{GNAT.AWK} (@file{g-awk.ads})
17895 @cindex Parsing
17896 @cindex AWK
17898 @noindent
17899 Provides AWK-like parsing functions, with an easy interface for parsing one
17900 or more files containing formatted data.  The file is viewed as a database
17901 where each record is a line and a field is a data element in this line.
17903 @node GNAT.Bounded_Buffers (g-boubuf.ads)
17904 @section @code{GNAT.Bounded_Buffers} (@file{g-boubuf.ads})
17905 @cindex @code{GNAT.Bounded_Buffers} (@file{g-boubuf.ads})
17906 @cindex Parsing
17907 @cindex Bounded Buffers
17909 @noindent
17910 Provides a concurrent generic bounded buffer abstraction.  Instances are
17911 useful directly or as parts of the implementations of other abstractions,
17912 such as mailboxes.
17914 @node GNAT.Bounded_Mailboxes (g-boumai.ads)
17915 @section @code{GNAT.Bounded_Mailboxes} (@file{g-boumai.ads})
17916 @cindex @code{GNAT.Bounded_Mailboxes} (@file{g-boumai.ads})
17917 @cindex Parsing
17918 @cindex Mailboxes
17920 @noindent
17921 Provides a thread-safe asynchronous intertask mailbox communication facility.
17923 @node GNAT.Bubble_Sort (g-bubsor.ads)
17924 @section @code{GNAT.Bubble_Sort} (@file{g-bubsor.ads})
17925 @cindex @code{GNAT.Bubble_Sort} (@file{g-bubsor.ads})
17926 @cindex Sorting
17927 @cindex Bubble sort
17929 @noindent
17930 Provides a general implementation of bubble sort usable for sorting arbitrary
17931 data items.  Exchange and comparison procedures are provided by passing
17932 access-to-procedure values.
17934 @node GNAT.Bubble_Sort_A (g-busora.ads)
17935 @section @code{GNAT.Bubble_Sort_A} (@file{g-busora.ads})
17936 @cindex @code{GNAT.Bubble_Sort_A} (@file{g-busora.ads})
17937 @cindex Sorting
17938 @cindex Bubble sort
17940 @noindent
17941 Provides a general implementation of bubble sort usable for sorting arbitrary
17942 data items.  Move and comparison procedures are provided by passing
17943 access-to-procedure values. This is an older version, retained for
17944 compatibility. Usually @code{GNAT.Bubble_Sort} will be preferable.
17946 @node GNAT.Bubble_Sort_G (g-busorg.ads)
17947 @section @code{GNAT.Bubble_Sort_G} (@file{g-busorg.ads})
17948 @cindex @code{GNAT.Bubble_Sort_G} (@file{g-busorg.ads})
17949 @cindex Sorting
17950 @cindex Bubble sort
17952 @noindent
17953 Similar to @code{Bubble_Sort_A} except that the move and sorting procedures
17954 are provided as generic parameters, this improves efficiency, especially
17955 if the procedures can be inlined, at the expense of duplicating code for
17956 multiple instantiations.
17958 @node GNAT.Byte_Order_Mark (g-byorma.ads)
17959 @section @code{GNAT.Byte_Order_Mark} (@file{g-byorma.ads})
17960 @cindex @code{GNAT.Byte_Order_Mark} (@file{g-byorma.ads})
17961 @cindex UTF-8 representation
17962 @cindex Wide characte representations
17964 @noindent
17965 Provides a routine which given a string, reads the start of the string to
17966 see whether it is one of the standard byte order marks (BOM's) which signal
17967 the encoding of the string. The routine includes detection of special XML
17968 sequences for various UCS input formats.
17970 @node GNAT.Byte_Swapping (g-bytswa.ads)
17971 @section @code{GNAT.Byte_Swapping} (@file{g-bytswa.ads})
17972 @cindex @code{GNAT.Byte_Swapping} (@file{g-bytswa.ads})
17973 @cindex Byte swapping
17974 @cindex Endianness
17976 @noindent
17977 General routines for swapping the bytes in 2-, 4-, and 8-byte quantities.
17978 Machine-specific implementations are available in some cases.
17980 @node GNAT.Calendar (g-calend.ads)
17981 @section @code{GNAT.Calendar} (@file{g-calend.ads})
17982 @cindex @code{GNAT.Calendar} (@file{g-calend.ads})
17983 @cindex @code{Calendar}
17985 @noindent
17986 Extends the facilities provided by @code{Ada.Calendar} to include handling
17987 of days of the week, an extended @code{Split} and @code{Time_Of} capability.
17988 Also provides conversion of @code{Ada.Calendar.Time} values to and from the
17989 C @code{timeval} format.
17991 @node GNAT.Calendar.Time_IO (g-catiio.ads)
17992 @section @code{GNAT.Calendar.Time_IO} (@file{g-catiio.ads})
17993 @cindex @code{Calendar}
17994 @cindex Time
17995 @cindex @code{GNAT.Calendar.Time_IO} (@file{g-catiio.ads})
17997 @node GNAT.CRC32 (g-crc32.ads)
17998 @section @code{GNAT.CRC32} (@file{g-crc32.ads})
17999 @cindex @code{GNAT.CRC32} (@file{g-crc32.ads})
18000 @cindex CRC32
18001 @cindex Cyclic Redundancy Check
18003 @noindent
18004 This package implements the CRC-32 algorithm.  For a full description
18005 of this algorithm see
18006 ``Computation of Cyclic Redundancy Checks via Table Look-Up'',
18007 @cite{Communications of the ACM}, Vol.@: 31 No.@: 8, pp.@: 1008-1013,
18008 Aug.@: 1988.  Sarwate, D.V@.
18010 @node GNAT.Case_Util (g-casuti.ads)
18011 @section @code{GNAT.Case_Util} (@file{g-casuti.ads})
18012 @cindex @code{GNAT.Case_Util} (@file{g-casuti.ads})
18013 @cindex Casing utilities
18014 @cindex Character handling (@code{GNAT.Case_Util})
18016 @noindent
18017 A set of simple routines for handling upper and lower casing of strings
18018 without the overhead of the full casing tables
18019 in @code{Ada.Characters.Handling}.
18021 @node GNAT.CGI (g-cgi.ads)
18022 @section @code{GNAT.CGI} (@file{g-cgi.ads})
18023 @cindex @code{GNAT.CGI} (@file{g-cgi.ads})
18024 @cindex CGI (Common Gateway Interface)
18026 @noindent
18027 This is a package for interfacing a GNAT program with a Web server via the
18028 Common Gateway Interface (CGI)@.  Basically this package parses the CGI
18029 parameters, which are a set of key/value pairs sent by the Web server.  It
18030 builds a table whose index is the key and provides some services to deal
18031 with this table.
18033 @node GNAT.CGI.Cookie (g-cgicoo.ads)
18034 @section @code{GNAT.CGI.Cookie} (@file{g-cgicoo.ads})
18035 @cindex @code{GNAT.CGI.Cookie} (@file{g-cgicoo.ads})
18036 @cindex CGI (Common Gateway Interface) cookie support
18037 @cindex Cookie support in CGI
18039 @noindent
18040 This is a package to interface a GNAT program with a Web server via the
18041 Common Gateway Interface (CGI).  It exports services to deal with Web
18042 cookies (piece of information kept in the Web client software).
18044 @node GNAT.CGI.Debug (g-cgideb.ads)
18045 @section @code{GNAT.CGI.Debug} (@file{g-cgideb.ads})
18046 @cindex @code{GNAT.CGI.Debug} (@file{g-cgideb.ads})
18047 @cindex CGI (Common Gateway Interface) debugging
18049 @noindent
18050 This is a package to help debugging CGI (Common Gateway Interface)
18051 programs written in Ada.
18053 @node GNAT.Command_Line (g-comlin.ads)
18054 @section @code{GNAT.Command_Line} (@file{g-comlin.ads})
18055 @cindex @code{GNAT.Command_Line} (@file{g-comlin.ads})
18056 @cindex Command line
18058 @noindent
18059 Provides a high level interface to @code{Ada.Command_Line} facilities,
18060 including the ability to scan for named switches with optional parameters
18061 and expand file names using wild card notations.
18063 @node GNAT.Compiler_Version (g-comver.ads)
18064 @section @code{GNAT.Compiler_Version} (@file{g-comver.ads})
18065 @cindex @code{GNAT.Compiler_Version} (@file{g-comver.ads})
18066 @cindex Compiler Version
18067 @cindex Version, of compiler
18069 @noindent
18070 Provides a routine for obtaining the version of the compiler used to
18071 compile the program. More accurately this is the version of the binder
18072 used to bind the program (this will normally be the same as the version
18073 of the compiler if a consistent tool set is used to compile all units
18074 of a partition).
18076 @node GNAT.Ctrl_C (g-ctrl_c.ads)
18077 @section @code{GNAT.Ctrl_C} (@file{g-ctrl_c.ads})
18078 @cindex @code{GNAT.Ctrl_C} (@file{g-ctrl_c.ads})
18079 @cindex Interrupt
18081 @noindent
18082 Provides a simple interface to handle Ctrl-C keyboard events.
18084 @node GNAT.Current_Exception (g-curexc.ads)
18085 @section @code{GNAT.Current_Exception} (@file{g-curexc.ads})
18086 @cindex @code{GNAT.Current_Exception} (@file{g-curexc.ads})
18087 @cindex Current exception
18088 @cindex Exception retrieval
18090 @noindent
18091 Provides access to information on the current exception that has been raised
18092 without the need for using the Ada 95 / Ada 2005 exception choice parameter
18093 specification syntax.
18094 This is particularly useful in simulating typical facilities for
18095 obtaining information about exceptions provided by Ada 83 compilers.
18097 @node GNAT.Debug_Pools (g-debpoo.ads)
18098 @section @code{GNAT.Debug_Pools} (@file{g-debpoo.ads})
18099 @cindex @code{GNAT.Debug_Pools} (@file{g-debpoo.ads})
18100 @cindex Debugging
18101 @cindex Debug pools
18102 @cindex Memory corruption debugging
18104 @noindent
18105 Provide a debugging storage pools that helps tracking memory corruption
18106 problems.  @xref{The GNAT Debug Pool Facility,,, gnat_ugn,
18107 @value{EDITION} User's Guide}.
18109 @node GNAT.Debug_Utilities (g-debuti.ads)
18110 @section @code{GNAT.Debug_Utilities} (@file{g-debuti.ads})
18111 @cindex @code{GNAT.Debug_Utilities} (@file{g-debuti.ads})
18112 @cindex Debugging
18114 @noindent
18115 Provides a few useful utilities for debugging purposes, including conversion
18116 to and from string images of address values. Supports both C and Ada formats
18117 for hexadecimal literals.
18119 @node GNAT.Decode_String (g-decstr.ads)
18120 @section @code{GNAT.Decode_String} (@file{g-decstr.ads})
18121 @cindex @code{GNAT.Decode_String} (@file{g-decstr.ads})
18122 @cindex Decoding strings
18123 @cindex String decoding
18124 @cindex Wide character encoding
18125 @cindex UTF-8
18126 @cindex Unicode
18128 @noindent
18129 A generic package providing routines for decoding wide character and wide wide
18130 character strings encoded as sequences of 8-bit characters using a specified
18131 encoding method. Includes validation routines, and also routines for stepping
18132 to next or previous encoded character in an encoded string.
18133 Useful in conjunction with Unicode character coding. Note there is a
18134 preinstantiation for UTF-8. See next entry.
18136 @node GNAT.Decode_UTF8_String (g-deutst.ads)
18137 @section @code{GNAT.Decode_UTF8_String} (@file{g-deutst.ads})
18138 @cindex @code{GNAT.Decode_UTF8_String} (@file{g-deutst.ads})
18139 @cindex Decoding strings
18140 @cindex Decoding UTF-8 strings
18141 @cindex UTF-8 string decoding
18142 @cindex Wide character decoding
18143 @cindex UTF-8
18144 @cindex Unicode
18146 @noindent
18147 A preinstantiation of GNAT.Decode_Strings for UTF-8 encoding.
18149 @node GNAT.Directory_Operations (g-dirope.ads)
18150 @section @code{GNAT.Directory_Operations} (@file{g-dirope.ads})
18151 @cindex @code{GNAT.Directory_Operations} (@file{g-dirope.ads})
18152 @cindex Directory operations
18154 @noindent
18155 Provides a set of routines for manipulating directories, including changing
18156 the current directory, making new directories, and scanning the files in a
18157 directory.
18159 @node GNAT.Directory_Operations.Iteration (g-diopit.ads)
18160 @section @code{GNAT.Directory_Operations.Iteration} (@file{g-diopit.ads})
18161 @cindex @code{GNAT.Directory_Operations.Iteration} (@file{g-diopit.ads})
18162 @cindex Directory operations iteration
18164 @noindent
18165 A child unit of GNAT.Directory_Operations providing additional operations
18166 for iterating through directories.
18168 @node GNAT.Dynamic_HTables (g-dynhta.ads)
18169 @section @code{GNAT.Dynamic_HTables} (@file{g-dynhta.ads})
18170 @cindex @code{GNAT.Dynamic_HTables} (@file{g-dynhta.ads})
18171 @cindex Hash tables
18173 @noindent
18174 A generic implementation of hash tables that can be used to hash arbitrary
18175 data.  Provided in two forms, a simple form with built in hash functions,
18176 and a more complex form in which the hash function is supplied.
18178 @noindent
18179 This package provides a facility similar to that of @code{GNAT.HTable},
18180 except that this package declares a type that can be used to define
18181 dynamic instances of the hash table, while an instantiation of
18182 @code{GNAT.HTable} creates a single instance of the hash table.
18184 @node GNAT.Dynamic_Tables (g-dyntab.ads)
18185 @section @code{GNAT.Dynamic_Tables} (@file{g-dyntab.ads})
18186 @cindex @code{GNAT.Dynamic_Tables} (@file{g-dyntab.ads})
18187 @cindex Table implementation
18188 @cindex Arrays, extendable
18190 @noindent
18191 A generic package providing a single dimension array abstraction where the
18192 length of the array can be dynamically modified.
18194 @noindent
18195 This package provides a facility similar to that of @code{GNAT.Table},
18196 except that this package declares a type that can be used to define
18197 dynamic instances of the table, while an instantiation of
18198 @code{GNAT.Table} creates a single instance of the table type.
18200 @node GNAT.Encode_String (g-encstr.ads)
18201 @section @code{GNAT.Encode_String} (@file{g-encstr.ads})
18202 @cindex @code{GNAT.Encode_String} (@file{g-encstr.ads})
18203 @cindex Encoding strings
18204 @cindex String encoding
18205 @cindex Wide character encoding
18206 @cindex UTF-8
18207 @cindex Unicode
18209 @noindent
18210 A generic package providing routines for encoding wide character and wide
18211 wide character strings as sequences of 8-bit characters using a specified
18212 encoding method. Useful in conjunction with Unicode character coding.
18213 Note there is a preinstantiation for UTF-8. See next entry.
18215 @node GNAT.Encode_UTF8_String (g-enutst.ads)
18216 @section @code{GNAT.Encode_UTF8_String} (@file{g-enutst.ads})
18217 @cindex @code{GNAT.Encode_UTF8_String} (@file{g-enutst.ads})
18218 @cindex Encoding strings
18219 @cindex Encoding UTF-8 strings
18220 @cindex UTF-8 string encoding
18221 @cindex Wide character encoding
18222 @cindex UTF-8
18223 @cindex Unicode
18225 @noindent
18226 A preinstantiation of GNAT.Encode_Strings for UTF-8 encoding.
18228 @node GNAT.Exception_Actions (g-excact.ads)
18229 @section @code{GNAT.Exception_Actions} (@file{g-excact.ads})
18230 @cindex @code{GNAT.Exception_Actions} (@file{g-excact.ads})
18231 @cindex Exception actions
18233 @noindent
18234 Provides callbacks when an exception is raised. Callbacks can be registered
18235 for specific exceptions, or when any exception is raised. This
18236 can be used for instance to force a core dump to ease debugging.
18238 @node GNAT.Exception_Traces (g-exctra.ads)
18239 @section @code{GNAT.Exception_Traces} (@file{g-exctra.ads})
18240 @cindex @code{GNAT.Exception_Traces} (@file{g-exctra.ads})
18241 @cindex Exception traces
18242 @cindex Debugging
18244 @noindent
18245 Provides an interface allowing to control automatic output upon exception
18246 occurrences.
18248 @node GNAT.Exceptions (g-except.ads)
18249 @section @code{GNAT.Exceptions} (@file{g-expect.ads})
18250 @cindex @code{GNAT.Exceptions} (@file{g-expect.ads})
18251 @cindex Exceptions, Pure
18252 @cindex Pure packages, exceptions
18254 @noindent
18255 Normally it is not possible to raise an exception with
18256 a message from a subprogram in a pure package, since the
18257 necessary types and subprograms are in @code{Ada.Exceptions}
18258 which is not a pure unit. @code{GNAT.Exceptions} provides a
18259 facility for getting around this limitation for a few
18260 predefined exceptions, and for example allow raising
18261 @code{Constraint_Error} with a message from a pure subprogram.
18263 @node GNAT.Expect (g-expect.ads)
18264 @section @code{GNAT.Expect} (@file{g-expect.ads})
18265 @cindex @code{GNAT.Expect} (@file{g-expect.ads})
18267 @noindent
18268 Provides a set of subprograms similar to what is available
18269 with the standard Tcl Expect tool.
18270 It allows you to easily spawn and communicate with an external process.
18271 You can send commands or inputs to the process, and compare the output
18272 with some expected regular expression. Currently @code{GNAT.Expect}
18273 is implemented on all native GNAT ports except for OpenVMS@.
18274 It is not implemented for cross ports, and in particular is not
18275 implemented for VxWorks or LynxOS@.
18277 @node GNAT.Expect.TTY (g-exptty.ads)
18278 @section @code{GNAT.Expect.TTY} (@file{g-exptty.ads})
18279 @cindex @code{GNAT.Expect.TTY} (@file{g-exptty.ads})
18281 @noindent
18282 As GNAT.Expect but using pseudo-terminal.
18283 Currently @code{GNAT.Expect.TTY} is implemented on all native GNAT
18284 ports except for OpenVMS@. It is not implemented for cross ports, and
18285 in particular is not implemented for VxWorks or LynxOS@.
18287 @node GNAT.Float_Control (g-flocon.ads)
18288 @section @code{GNAT.Float_Control} (@file{g-flocon.ads})
18289 @cindex @code{GNAT.Float_Control} (@file{g-flocon.ads})
18290 @cindex Floating-Point Processor
18292 @noindent
18293 Provides an interface for resetting the floating-point processor into the
18294 mode required for correct semantic operation in Ada.  Some third party
18295 library calls may cause this mode to be modified, and the Reset procedure
18296 in this package can be used to reestablish the required mode.
18298 @node GNAT.Heap_Sort (g-heasor.ads)
18299 @section @code{GNAT.Heap_Sort} (@file{g-heasor.ads})
18300 @cindex @code{GNAT.Heap_Sort} (@file{g-heasor.ads})
18301 @cindex Sorting
18303 @noindent
18304 Provides a general implementation of heap sort usable for sorting arbitrary
18305 data items. Exchange and comparison procedures are provided by passing
18306 access-to-procedure values.  The algorithm used is a modified heap sort
18307 that performs approximately N*log(N) comparisons in the worst case.
18309 @node GNAT.Heap_Sort_A (g-hesora.ads)
18310 @section @code{GNAT.Heap_Sort_A} (@file{g-hesora.ads})
18311 @cindex @code{GNAT.Heap_Sort_A} (@file{g-hesora.ads})
18312 @cindex Sorting
18314 @noindent
18315 Provides a general implementation of heap sort usable for sorting arbitrary
18316 data items. Move and comparison procedures are provided by passing
18317 access-to-procedure values.  The algorithm used is a modified heap sort
18318 that performs approximately N*log(N) comparisons in the worst case.
18319 This differs from @code{GNAT.Heap_Sort} in having a less convenient
18320 interface, but may be slightly more efficient.
18322 @node GNAT.Heap_Sort_G (g-hesorg.ads)
18323 @section @code{GNAT.Heap_Sort_G} (@file{g-hesorg.ads})
18324 @cindex @code{GNAT.Heap_Sort_G} (@file{g-hesorg.ads})
18325 @cindex Sorting
18327 @noindent
18328 Similar to @code{Heap_Sort_A} except that the move and sorting procedures
18329 are provided as generic parameters, this improves efficiency, especially
18330 if the procedures can be inlined, at the expense of duplicating code for
18331 multiple instantiations.
18333 @node GNAT.HTable (g-htable.ads)
18334 @section @code{GNAT.HTable} (@file{g-htable.ads})
18335 @cindex @code{GNAT.HTable} (@file{g-htable.ads})
18336 @cindex Hash tables
18338 @noindent
18339 A generic implementation of hash tables that can be used to hash arbitrary
18340 data.  Provides two approaches, one a simple static approach, and the other
18341 allowing arbitrary dynamic hash tables.
18343 @node GNAT.IO (g-io.ads)
18344 @section @code{GNAT.IO} (@file{g-io.ads})
18345 @cindex @code{GNAT.IO} (@file{g-io.ads})
18346 @cindex Simple I/O
18347 @cindex Input/Output facilities
18349 @noindent
18350 A simple preelaborable input-output package that provides a subset of
18351 simple Text_IO functions for reading characters and strings from
18352 Standard_Input, and writing characters, strings and integers to either
18353 Standard_Output or Standard_Error.
18355 @node GNAT.IO_Aux (g-io_aux.ads)
18356 @section @code{GNAT.IO_Aux} (@file{g-io_aux.ads})
18357 @cindex @code{GNAT.IO_Aux} (@file{g-io_aux.ads})
18358 @cindex Text_IO
18359 @cindex Input/Output facilities
18361 Provides some auxiliary functions for use with Text_IO, including a test
18362 for whether a file exists, and functions for reading a line of text.
18364 @node GNAT.Lock_Files (g-locfil.ads)
18365 @section @code{GNAT.Lock_Files} (@file{g-locfil.ads})
18366 @cindex @code{GNAT.Lock_Files} (@file{g-locfil.ads})
18367 @cindex File locking
18368 @cindex Locking using files
18370 @noindent
18371 Provides a general interface for using files as locks.  Can be used for
18372 providing program level synchronization.
18374 @node GNAT.MBBS_Discrete_Random (g-mbdira.ads)
18375 @section @code{GNAT.MBBS_Discrete_Random} (@file{g-mbdira.ads})
18376 @cindex @code{GNAT.MBBS_Discrete_Random} (@file{g-mbdira.ads})
18377 @cindex Random number generation
18379 @noindent
18380 The original implementation of @code{Ada.Numerics.Discrete_Random}.  Uses
18381 a modified version of the Blum-Blum-Shub generator.
18383 @node GNAT.MBBS_Float_Random (g-mbflra.ads)
18384 @section @code{GNAT.MBBS_Float_Random} (@file{g-mbflra.ads})
18385 @cindex @code{GNAT.MBBS_Float_Random} (@file{g-mbflra.ads})
18386 @cindex Random number generation
18388 @noindent
18389 The original implementation of @code{Ada.Numerics.Float_Random}.  Uses
18390 a modified version of the Blum-Blum-Shub generator.
18392 @node GNAT.MD5 (g-md5.ads)
18393 @section @code{GNAT.MD5} (@file{g-md5.ads})
18394 @cindex @code{GNAT.MD5} (@file{g-md5.ads})
18395 @cindex Message Digest MD5
18397 @noindent
18398 Implements the MD5 Message-Digest Algorithm as described in RFC 1321.
18400 @node GNAT.Memory_Dump (g-memdum.ads)
18401 @section @code{GNAT.Memory_Dump} (@file{g-memdum.ads})
18402 @cindex @code{GNAT.Memory_Dump} (@file{g-memdum.ads})
18403 @cindex Dump Memory
18405 @noindent
18406 Provides a convenient routine for dumping raw memory to either the
18407 standard output or standard error files. Uses GNAT.IO for actual
18408 output.
18410 @node GNAT.Most_Recent_Exception (g-moreex.ads)
18411 @section @code{GNAT.Most_Recent_Exception} (@file{g-moreex.ads})
18412 @cindex @code{GNAT.Most_Recent_Exception} (@file{g-moreex.ads})
18413 @cindex Exception, obtaining most recent
18415 @noindent
18416 Provides access to the most recently raised exception.  Can be used for
18417 various logging purposes, including duplicating functionality of some
18418 Ada 83 implementation dependent extensions.
18420 @node GNAT.OS_Lib (g-os_lib.ads)
18421 @section @code{GNAT.OS_Lib} (@file{g-os_lib.ads})
18422 @cindex @code{GNAT.OS_Lib} (@file{g-os_lib.ads})
18423 @cindex Operating System interface
18424 @cindex Spawn capability
18426 @noindent
18427 Provides a range of target independent operating system interface functions,
18428 including time/date management, file operations, subprocess management,
18429 including a portable spawn procedure, and access to environment variables
18430 and error return codes.
18432 @node GNAT.Perfect_Hash_Generators (g-pehage.ads)
18433 @section @code{GNAT.Perfect_Hash_Generators} (@file{g-pehage.ads})
18434 @cindex @code{GNAT.Perfect_Hash_Generators} (@file{g-pehage.ads})
18435 @cindex Hash functions
18437 @noindent
18438 Provides a generator of static minimal perfect hash functions. No
18439 collisions occur and each item can be retrieved from the table in one
18440 probe (perfect property). The hash table size corresponds to the exact
18441 size of the key set and no larger (minimal property). The key set has to
18442 be know in advance (static property). The hash functions are also order
18443 preserving. If w2 is inserted after w1 in the generator, their
18444 hashcode are in the same order. These hashing functions are very
18445 convenient for use with realtime applications.
18447 @node GNAT.Random_Numbers (g-rannum.ads)
18448 @section @code{GNAT.Random_Numbers} (@file{g-rannum.ads})
18449 @cindex @code{GNAT.Random_Numbers} (@file{g-rannum.ads})
18450 @cindex Random number generation
18452 @noindent
18453 Provides random number capabilities which extend those available in the
18454 standard Ada library and are more convenient to use.
18456 @node GNAT.Regexp (g-regexp.ads)
18457 @section @code{GNAT.Regexp} (@file{g-regexp.ads})
18458 @cindex @code{GNAT.Regexp} (@file{g-regexp.ads})
18459 @cindex Regular expressions
18460 @cindex Pattern matching
18462 @noindent
18463 A simple implementation of regular expressions, using a subset of regular
18464 expression syntax copied from familiar Unix style utilities.  This is the
18465 simples of the three pattern matching packages provided, and is particularly
18466 suitable for ``file globbing'' applications.
18468 @node GNAT.Registry (g-regist.ads)
18469 @section @code{GNAT.Registry} (@file{g-regist.ads})
18470 @cindex @code{GNAT.Registry} (@file{g-regist.ads})
18471 @cindex Windows Registry
18473 @noindent
18474 This is a high level binding to the Windows registry.  It is possible to
18475 do simple things like reading a key value, creating a new key.  For full
18476 registry API, but at a lower level of abstraction, refer to the Win32.Winreg
18477 package provided with the Win32Ada binding
18479 @node GNAT.Regpat (g-regpat.ads)
18480 @section @code{GNAT.Regpat} (@file{g-regpat.ads})
18481 @cindex @code{GNAT.Regpat} (@file{g-regpat.ads})
18482 @cindex Regular expressions
18483 @cindex Pattern matching
18485 @noindent
18486 A complete implementation of Unix-style regular expression matching, copied
18487 from the original V7 style regular expression library written in C by
18488 Henry Spencer (and binary compatible with this C library).
18490 @node GNAT.Secondary_Stack_Info (g-sestin.ads)
18491 @section @code{GNAT.Secondary_Stack_Info} (@file{g-sestin.ads})
18492 @cindex @code{GNAT.Secondary_Stack_Info} (@file{g-sestin.ads})
18493 @cindex Secondary Stack Info
18495 @noindent
18496 Provide the capability to query the high water mark of the current task's
18497 secondary stack.
18499 @node GNAT.Semaphores (g-semaph.ads)
18500 @section @code{GNAT.Semaphores} (@file{g-semaph.ads})
18501 @cindex @code{GNAT.Semaphores} (@file{g-semaph.ads})
18502 @cindex Semaphores
18504 @noindent
18505 Provides classic counting and binary semaphores using protected types.
18507 @node GNAT.Serial_Communications (g-sercom.ads)
18508 @section @code{GNAT.Serial_Communications} (@file{g-sercom.ads})
18509 @cindex @code{GNAT.Serial_Communications} (@file{g-sercom.ads})
18510 @cindex Serial_Communications
18512 @noindent
18513 Provides a simple interface to send and receive data over a serial
18514 port. This is only supported on GNU/Linux and Windows.
18516 @node GNAT.SHA1 (g-sha1.ads)
18517 @section @code{GNAT.SHA1} (@file{g-sha1.ads})
18518 @cindex @code{GNAT.SHA1} (@file{g-sha1.ads})
18519 @cindex Secure Hash Algorithm SHA-1
18521 @noindent
18522 Implements the SHA-1 Secure Hash Algorithm as described in FIPS PUB 180-3
18523 and RFC 3174.
18525 @node GNAT.SHA224 (g-sha224.ads)
18526 @section @code{GNAT.SHA224} (@file{g-sha224.ads})
18527 @cindex @code{GNAT.SHA224} (@file{g-sha224.ads})
18528 @cindex Secure Hash Algorithm SHA-224
18530 @noindent
18531 Implements the SHA-224 Secure Hash Algorithm as described in FIPS PUB 180-3.
18533 @node GNAT.SHA256 (g-sha256.ads)
18534 @section @code{GNAT.SHA256} (@file{g-sha256.ads})
18535 @cindex @code{GNAT.SHA256} (@file{g-sha256.ads})
18536 @cindex Secure Hash Algorithm SHA-256
18538 @noindent
18539 Implements the SHA-256 Secure Hash Algorithm as described in FIPS PUB 180-3.
18541 @node GNAT.SHA384 (g-sha384.ads)
18542 @section @code{GNAT.SHA384} (@file{g-sha384.ads})
18543 @cindex @code{GNAT.SHA384} (@file{g-sha384.ads})
18544 @cindex Secure Hash Algorithm SHA-384
18546 @noindent
18547 Implements the SHA-384 Secure Hash Algorithm as described in FIPS PUB 180-3.
18549 @node GNAT.SHA512 (g-sha512.ads)
18550 @section @code{GNAT.SHA512} (@file{g-sha512.ads})
18551 @cindex @code{GNAT.SHA512} (@file{g-sha512.ads})
18552 @cindex Secure Hash Algorithm SHA-512
18554 @noindent
18555 Implements the SHA-512 Secure Hash Algorithm as described in FIPS PUB 180-3.
18557 @node GNAT.Signals (g-signal.ads)
18558 @section @code{GNAT.Signals} (@file{g-signal.ads})
18559 @cindex @code{GNAT.Signals} (@file{g-signal.ads})
18560 @cindex Signals
18562 @noindent
18563 Provides the ability to manipulate the blocked status of signals on supported
18564 targets.
18566 @node GNAT.Sockets (g-socket.ads)
18567 @section @code{GNAT.Sockets} (@file{g-socket.ads})
18568 @cindex @code{GNAT.Sockets} (@file{g-socket.ads})
18569 @cindex Sockets
18571 @noindent
18572 A high level and portable interface to develop sockets based applications.
18573 This package is based on the sockets thin binding found in
18574 @code{GNAT.Sockets.Thin}. Currently @code{GNAT.Sockets} is implemented
18575 on all native GNAT ports except for OpenVMS@.  It is not implemented
18576 for the LynxOS@ cross port.
18578 @node GNAT.Source_Info (g-souinf.ads)
18579 @section @code{GNAT.Source_Info} (@file{g-souinf.ads})
18580 @cindex @code{GNAT.Source_Info} (@file{g-souinf.ads})
18581 @cindex Source Information
18583 @noindent
18584 Provides subprograms that give access to source code information known at
18585 compile time, such as the current file name and line number.
18587 @node GNAT.Spelling_Checker (g-speche.ads)
18588 @section @code{GNAT.Spelling_Checker} (@file{g-speche.ads})
18589 @cindex @code{GNAT.Spelling_Checker} (@file{g-speche.ads})
18590 @cindex Spell checking
18592 @noindent
18593 Provides a function for determining whether one string is a plausible
18594 near misspelling of another string.
18596 @node GNAT.Spelling_Checker_Generic (g-spchge.ads)
18597 @section @code{GNAT.Spelling_Checker_Generic} (@file{g-spchge.ads})
18598 @cindex @code{GNAT.Spelling_Checker_Generic} (@file{g-spchge.ads})
18599 @cindex Spell checking
18601 @noindent
18602 Provides a generic function that can be instantiated with a string type for
18603 determining whether one string is a plausible near misspelling of another
18604 string.
18606 @node GNAT.Spitbol.Patterns (g-spipat.ads)
18607 @section @code{GNAT.Spitbol.Patterns} (@file{g-spipat.ads})
18608 @cindex @code{GNAT.Spitbol.Patterns} (@file{g-spipat.ads})
18609 @cindex SPITBOL pattern matching
18610 @cindex Pattern matching
18612 @noindent
18613 A complete implementation of SNOBOL4 style pattern matching.  This is the
18614 most elaborate of the pattern matching packages provided.  It fully duplicates
18615 the SNOBOL4 dynamic pattern construction and matching capabilities, using the
18616 efficient algorithm developed by Robert Dewar for the SPITBOL system.
18618 @node GNAT.Spitbol (g-spitbo.ads)
18619 @section @code{GNAT.Spitbol} (@file{g-spitbo.ads})
18620 @cindex @code{GNAT.Spitbol} (@file{g-spitbo.ads})
18621 @cindex SPITBOL interface
18623 @noindent
18624 The top level package of the collection of SPITBOL-style functionality, this
18625 package provides basic SNOBOL4 string manipulation functions, such as
18626 Pad, Reverse, Trim, Substr capability, as well as a generic table function
18627 useful for constructing arbitrary mappings from strings in the style of
18628 the SNOBOL4 TABLE function.
18630 @node GNAT.Spitbol.Table_Boolean (g-sptabo.ads)
18631 @section @code{GNAT.Spitbol.Table_Boolean} (@file{g-sptabo.ads})
18632 @cindex @code{GNAT.Spitbol.Table_Boolean} (@file{g-sptabo.ads})
18633 @cindex Sets of strings
18634 @cindex SPITBOL Tables
18636 @noindent
18637 A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table}
18638 for type @code{Standard.Boolean}, giving an implementation of sets of
18639 string values.
18641 @node GNAT.Spitbol.Table_Integer (g-sptain.ads)
18642 @section @code{GNAT.Spitbol.Table_Integer} (@file{g-sptain.ads})
18643 @cindex @code{GNAT.Spitbol.Table_Integer} (@file{g-sptain.ads})
18644 @cindex Integer maps
18645 @cindex Maps
18646 @cindex SPITBOL Tables
18648 @noindent
18649 A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table}
18650 for type @code{Standard.Integer}, giving an implementation of maps
18651 from string to integer values.
18653 @node GNAT.Spitbol.Table_VString (g-sptavs.ads)
18654 @section @code{GNAT.Spitbol.Table_VString} (@file{g-sptavs.ads})
18655 @cindex @code{GNAT.Spitbol.Table_VString} (@file{g-sptavs.ads})
18656 @cindex String maps
18657 @cindex Maps
18658 @cindex SPITBOL Tables
18660 @noindent
18661 A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table} for
18662 a variable length string type, giving an implementation of general
18663 maps from strings to strings.
18665 @node GNAT.SSE (g-sse.ads)
18666 @section @code{GNAT.SSE} (@file{g-sse.ads})
18667 @cindex @code{GNAT.SSE} (@file{g-sse.ads})
18669 @noindent
18670 Root of a set of units aimed at offering Ada bindings to a subset of
18671 the Intel(r) Streaming SIMD Extensions with GNAT on the x86 family of
18672 targets.  It exposes vector component types together with a general
18673 introduction to the binding contents and use.
18675 @node GNAT.SSE.Vector_Types (g-ssvety.ads)
18676 @section @code{GNAT.SSE.Vector_Types} (@file{g-ssvety.ads})
18677 @cindex @code{GNAT.SSE.Vector_Types} (@file{g-ssvety.ads})
18679 @noindent
18680 SSE vector types for use with SSE related intrinsics.
18682 @node GNAT.Strings (g-string.ads)
18683 @section @code{GNAT.Strings} (@file{g-string.ads})
18684 @cindex @code{GNAT.Strings} (@file{g-string.ads})
18686 @noindent
18687 Common String access types and related subprograms. Basically it
18688 defines a string access and an array of string access types.
18690 @node GNAT.String_Split (g-strspl.ads)
18691 @section @code{GNAT.String_Split} (@file{g-strspl.ads})
18692 @cindex @code{GNAT.String_Split} (@file{g-strspl.ads})
18693 @cindex String splitter
18695 @noindent
18696 Useful string manipulation routines: given a set of separators, split
18697 a string wherever the separators appear, and provide direct access
18698 to the resulting slices. This package is instantiated from
18699 @code{GNAT.Array_Split}.
18701 @node GNAT.Table (g-table.ads)
18702 @section @code{GNAT.Table} (@file{g-table.ads})
18703 @cindex @code{GNAT.Table} (@file{g-table.ads})
18704 @cindex Table implementation
18705 @cindex Arrays, extendable
18707 @noindent
18708 A generic package providing a single dimension array abstraction where the
18709 length of the array can be dynamically modified.
18711 @noindent
18712 This package provides a facility similar to that of @code{GNAT.Dynamic_Tables},
18713 except that this package declares a single instance of the table type,
18714 while an instantiation of @code{GNAT.Dynamic_Tables} creates a type that can be
18715 used to define dynamic instances of the table.
18717 @node GNAT.Task_Lock (g-tasloc.ads)
18718 @section @code{GNAT.Task_Lock} (@file{g-tasloc.ads})
18719 @cindex @code{GNAT.Task_Lock} (@file{g-tasloc.ads})
18720 @cindex Task synchronization
18721 @cindex Task locking
18722 @cindex Locking
18724 @noindent
18725 A very simple facility for locking and unlocking sections of code using a
18726 single global task lock.  Appropriate for use in situations where contention
18727 between tasks is very rarely expected.
18729 @node GNAT.Time_Stamp (g-timsta.ads)
18730 @section @code{GNAT.Time_Stamp} (@file{g-timsta.ads})
18731 @cindex @code{GNAT.Time_Stamp} (@file{g-timsta.ads})
18732 @cindex Time stamp
18733 @cindex Current time
18735 @noindent
18736 Provides a simple function that returns a string YYYY-MM-DD HH:MM:SS.SS that
18737 represents the current date and time in ISO 8601 format. This is a very simple
18738 routine with minimal code and there are no dependencies on any other unit.
18740 @node GNAT.Threads (g-thread.ads)
18741 @section @code{GNAT.Threads} (@file{g-thread.ads})
18742 @cindex @code{GNAT.Threads} (@file{g-thread.ads})
18743 @cindex Foreign threads
18744 @cindex Threads, foreign
18746 @noindent
18747 Provides facilities for dealing with foreign threads which need to be known
18748 by the GNAT run-time system. Consult the documentation of this package for
18749 further details if your program has threads that are created by a non-Ada
18750 environment which then accesses Ada code.
18752 @node GNAT.Traceback (g-traceb.ads)
18753 @section @code{GNAT.Traceback} (@file{g-traceb.ads})
18754 @cindex @code{GNAT.Traceback} (@file{g-traceb.ads})
18755 @cindex Trace back facilities
18757 @noindent
18758 Provides a facility for obtaining non-symbolic traceback information, useful
18759 in various debugging situations.
18761 @node GNAT.Traceback.Symbolic (g-trasym.ads)
18762 @section @code{GNAT.Traceback.Symbolic} (@file{g-trasym.ads})
18763 @cindex @code{GNAT.Traceback.Symbolic} (@file{g-trasym.ads})
18764 @cindex Trace back facilities
18766 @node GNAT.UTF_32 (g-utf_32.ads)
18767 @section @code{GNAT.UTF_32} (@file{g-table.ads})
18768 @cindex @code{GNAT.UTF_32} (@file{g-table.ads})
18769 @cindex Wide character codes
18771 @noindent
18772 This is a package intended to be used in conjunction with the
18773 @code{Wide_Character} type in Ada 95 and the
18774 @code{Wide_Wide_Character} type in Ada 2005 (available
18775 in @code{GNAT} in Ada 2005 mode). This package contains
18776 Unicode categorization routines, as well as lexical
18777 categorization routines corresponding to the Ada 2005
18778 lexical rules for identifiers and strings, and also a
18779 lower case to upper case fold routine corresponding to
18780 the Ada 2005 rules for identifier equivalence.
18782 @node GNAT.UTF_32_Spelling_Checker (g-u3spch.ads)
18783 @section @code{GNAT.Wide_Spelling_Checker} (@file{g-u3spch.ads})
18784 @cindex @code{GNAT.Wide_Spelling_Checker} (@file{g-u3spch.ads})
18785 @cindex Spell checking
18787 @noindent
18788 Provides a function for determining whether one wide wide string is a plausible
18789 near misspelling of another wide wide string, where the strings are represented
18790 using the UTF_32_String type defined in System.Wch_Cnv.
18792 @node GNAT.Wide_Spelling_Checker (g-wispch.ads)
18793 @section @code{GNAT.Wide_Spelling_Checker} (@file{g-wispch.ads})
18794 @cindex @code{GNAT.Wide_Spelling_Checker} (@file{g-wispch.ads})
18795 @cindex Spell checking
18797 @noindent
18798 Provides a function for determining whether one wide string is a plausible
18799 near misspelling of another wide string.
18801 @node GNAT.Wide_String_Split (g-wistsp.ads)
18802 @section @code{GNAT.Wide_String_Split} (@file{g-wistsp.ads})
18803 @cindex @code{GNAT.Wide_String_Split} (@file{g-wistsp.ads})
18804 @cindex Wide_String splitter
18806 @noindent
18807 Useful wide string manipulation routines: given a set of separators, split
18808 a wide string wherever the separators appear, and provide direct access
18809 to the resulting slices. This package is instantiated from
18810 @code{GNAT.Array_Split}.
18812 @node GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads)
18813 @section @code{GNAT.Wide_Wide_Spelling_Checker} (@file{g-zspche.ads})
18814 @cindex @code{GNAT.Wide_Wide_Spelling_Checker} (@file{g-zspche.ads})
18815 @cindex Spell checking
18817 @noindent
18818 Provides a function for determining whether one wide wide string is a plausible
18819 near misspelling of another wide wide string.
18821 @node GNAT.Wide_Wide_String_Split (g-zistsp.ads)
18822 @section @code{GNAT.Wide_Wide_String_Split} (@file{g-zistsp.ads})
18823 @cindex @code{GNAT.Wide_Wide_String_Split} (@file{g-zistsp.ads})
18824 @cindex Wide_Wide_String splitter
18826 @noindent
18827 Useful wide wide string manipulation routines: given a set of separators, split
18828 a wide wide string wherever the separators appear, and provide direct access
18829 to the resulting slices. This package is instantiated from
18830 @code{GNAT.Array_Split}.
18832 @node Interfaces.C.Extensions (i-cexten.ads)
18833 @section @code{Interfaces.C.Extensions} (@file{i-cexten.ads})
18834 @cindex @code{Interfaces.C.Extensions} (@file{i-cexten.ads})
18836 @noindent
18837 This package contains additional C-related definitions, intended
18838 for use with either manually or automatically generated bindings
18839 to C libraries.
18841 @node Interfaces.C.Streams (i-cstrea.ads)
18842 @section @code{Interfaces.C.Streams} (@file{i-cstrea.ads})
18843 @cindex @code{Interfaces.C.Streams} (@file{i-cstrea.ads})
18844 @cindex  C streams, interfacing
18846 @noindent
18847 This package is a binding for the most commonly used operations
18848 on C streams.
18850 @node Interfaces.CPP (i-cpp.ads)
18851 @section @code{Interfaces.CPP} (@file{i-cpp.ads})
18852 @cindex @code{Interfaces.CPP} (@file{i-cpp.ads})
18853 @cindex  C++ interfacing
18854 @cindex  Interfacing, to C++
18856 @noindent
18857 This package provides facilities for use in interfacing to C++.  It
18858 is primarily intended to be used in connection with automated tools
18859 for the generation of C++ interfaces.
18861 @node Interfaces.Packed_Decimal (i-pacdec.ads)
18862 @section @code{Interfaces.Packed_Decimal} (@file{i-pacdec.ads})
18863 @cindex @code{Interfaces.Packed_Decimal} (@file{i-pacdec.ads})
18864 @cindex  IBM Packed Format
18865 @cindex  Packed Decimal
18867 @noindent
18868 This package provides a set of routines for conversions to and
18869 from a packed decimal format compatible with that used on IBM
18870 mainframes.
18872 @node Interfaces.VxWorks (i-vxwork.ads)
18873 @section @code{Interfaces.VxWorks} (@file{i-vxwork.ads})
18874 @cindex @code{Interfaces.VxWorks} (@file{i-vxwork.ads})
18875 @cindex Interfacing to VxWorks
18876 @cindex VxWorks, interfacing
18878 @noindent
18879 This package provides a limited binding to the VxWorks API.
18880 In particular, it interfaces with the
18881 VxWorks hardware interrupt facilities.
18883 @node Interfaces.VxWorks.IO (i-vxwoio.ads)
18884 @section @code{Interfaces.VxWorks.IO} (@file{i-vxwoio.ads})
18885 @cindex @code{Interfaces.VxWorks.IO} (@file{i-vxwoio.ads})
18886 @cindex Interfacing to VxWorks' I/O
18887 @cindex VxWorks, I/O interfacing
18888 @cindex VxWorks, Get_Immediate
18889 @cindex Get_Immediate, VxWorks
18891 @noindent
18892 This package provides a binding to the ioctl (IO/Control)
18893 function of VxWorks, defining a set of option values and
18894 function codes. A particular use of this package is
18895 to enable the use of Get_Immediate under VxWorks.
18897 @node System.Address_Image (s-addima.ads)
18898 @section @code{System.Address_Image} (@file{s-addima.ads})
18899 @cindex @code{System.Address_Image} (@file{s-addima.ads})
18900 @cindex Address image
18901 @cindex Image, of an address
18903 @noindent
18904 This function provides a useful debugging
18905 function that gives an (implementation dependent)
18906 string which identifies an address.
18908 @node System.Assertions (s-assert.ads)
18909 @section @code{System.Assertions} (@file{s-assert.ads})
18910 @cindex @code{System.Assertions} (@file{s-assert.ads})
18911 @cindex Assertions
18912 @cindex Assert_Failure, exception
18914 @noindent
18915 This package provides the declaration of the exception raised
18916 by an run-time assertion failure, as well as the routine that
18917 is used internally to raise this assertion.
18919 @node System.Memory (s-memory.ads)
18920 @section @code{System.Memory} (@file{s-memory.ads})
18921 @cindex @code{System.Memory} (@file{s-memory.ads})
18922 @cindex Memory allocation
18924 @noindent
18925 This package provides the interface to the low level routines used
18926 by the generated code for allocation and freeing storage for the
18927 default storage pool (analogous to the C routines malloc and free.
18928 It also provides a reallocation interface analogous to the C routine
18929 realloc. The body of this unit may be modified to provide alternative
18930 allocation mechanisms for the default pool, and in addition, direct
18931 calls to this unit may be made for low level allocation uses (for
18932 example see the body of @code{GNAT.Tables}).
18934 @node System.Multiprocessors (s-multip.ads)
18935 @section @code{System.Multiprocessors} (@file{s-multip.ads})
18936 @cindex @code{System.Multiprocessors} (@file{s-multip.ads})
18937 @cindex Multiprocessor interface
18938 This is an Ada 2012 unit defined in the Ada 2012 Reference Manual, but
18939 in GNAT we also make it available in Ada 95 and Ada 2005 (where it is
18940 technically an implementation-defined addition).
18942 @node System.Multiprocessors.Dispatching_Domains (s-mudido.ads)
18943 @section @code{System.Multiprocessors.Dispatching_Domains} (@file{s-mudido.ads})
18944 @cindex @code{System.Multiprocessors.Dispatching_Domains} (@file{s-mudido.ads})
18945 @cindex Multiprocessor interface
18946 This is an Ada 2012 unit defined in the Ada 2012 Reference Manual, but
18947 in GNAT we also make it available in Ada 95 and Ada 2005 (where it is
18948 technically an implementation-defined addition).
18950 @node System.Partition_Interface (s-parint.ads)
18951 @section @code{System.Partition_Interface} (@file{s-parint.ads})
18952 @cindex @code{System.Partition_Interface} (@file{s-parint.ads})
18953 @cindex Partition interfacing functions
18955 @noindent
18956 This package provides facilities for partition interfacing.  It
18957 is used primarily in a distribution context when using Annex E
18958 with @code{GLADE}.
18960 @node System.Pool_Global (s-pooglo.ads)
18961 @section @code{System.Pool_Global} (@file{s-pooglo.ads})
18962 @cindex @code{System.Pool_Global} (@file{s-pooglo.ads})
18963 @cindex Storage pool, global
18964 @cindex Global storage pool
18966 @noindent
18967 This package provides a storage pool that is equivalent to the default
18968 storage pool used for access types for which no pool is specifically
18969 declared. It uses malloc/free to allocate/free and does not attempt to
18970 do any automatic reclamation.
18972 @node System.Pool_Local (s-pooloc.ads)
18973 @section @code{System.Pool_Local} (@file{s-pooloc.ads})
18974 @cindex @code{System.Pool_Local} (@file{s-pooloc.ads})
18975 @cindex Storage pool, local
18976 @cindex Local storage pool
18978 @noindent
18979 This package provides a storage pool that is intended for use with locally
18980 defined access types. It uses malloc/free for allocate/free, and maintains
18981 a list of allocated blocks, so that all storage allocated for the pool can
18982 be freed automatically when the pool is finalized.
18984 @node System.Restrictions (s-restri.ads)
18985 @section @code{System.Restrictions} (@file{s-restri.ads})
18986 @cindex @code{System.Restrictions} (@file{s-restri.ads})
18987 @cindex Run-time restrictions access
18989 @noindent
18990 This package provides facilities for accessing at run time
18991 the status of restrictions specified at compile time for
18992 the partition. Information is available both with regard
18993 to actual restrictions specified, and with regard to
18994 compiler determined information on which restrictions
18995 are violated by one or more packages in the partition.
18997 @node System.Rident (s-rident.ads)
18998 @section @code{System.Rident} (@file{s-rident.ads})
18999 @cindex @code{System.Rident} (@file{s-rident.ads})
19000 @cindex Restrictions definitions
19002 @noindent
19003 This package provides definitions of the restrictions
19004 identifiers supported by GNAT, and also the format of
19005 the restrictions provided in package System.Restrictions.
19006 It is not normally necessary to @code{with} this generic package
19007 since the necessary instantiation is included in
19008 package System.Restrictions.
19010 @node System.Strings.Stream_Ops (s-ststop.ads)
19011 @section @code{System.Strings.Stream_Ops} (@file{s-ststop.ads})
19012 @cindex @code{System.Strings.Stream_Ops} (@file{s-ststop.ads})
19013 @cindex Stream operations
19014 @cindex String stream operations
19016 @noindent
19017 This package provides a set of stream subprograms for standard string types.
19018 It is intended primarily to support implicit use of such subprograms when
19019 stream attributes are applied to string types, but the subprograms in this
19020 package can be used directly by application programs.
19022 @node System.Task_Info (s-tasinf.ads)
19023 @section @code{System.Task_Info} (@file{s-tasinf.ads})
19024 @cindex @code{System.Task_Info} (@file{s-tasinf.ads})
19025 @cindex Task_Info pragma
19027 @noindent
19028 This package provides target dependent functionality that is used
19029 to support the @code{Task_Info} pragma
19031 @node System.Wch_Cnv (s-wchcnv.ads)
19032 @section @code{System.Wch_Cnv} (@file{s-wchcnv.ads})
19033 @cindex @code{System.Wch_Cnv} (@file{s-wchcnv.ads})
19034 @cindex Wide Character, Representation
19035 @cindex Wide String, Conversion
19036 @cindex Representation of wide characters
19038 @noindent
19039 This package provides routines for converting between
19040 wide and wide wide characters and a representation as a value of type
19041 @code{Standard.String}, using a specified wide character
19042 encoding method.  It uses definitions in
19043 package @code{System.Wch_Con}.
19045 @node System.Wch_Con (s-wchcon.ads)
19046 @section @code{System.Wch_Con} (@file{s-wchcon.ads})
19047 @cindex @code{System.Wch_Con} (@file{s-wchcon.ads})
19049 @noindent
19050 This package provides definitions and descriptions of
19051 the various methods used for encoding wide characters
19052 in ordinary strings.  These definitions are used by
19053 the package @code{System.Wch_Cnv}.
19055 @node Interfacing to Other Languages
19056 @chapter Interfacing to Other Languages
19057 @noindent
19058 The facilities in annex B of the Ada Reference Manual are fully
19059 implemented in GNAT, and in addition, a full interface to C++ is
19060 provided.
19062 @menu
19063 * Interfacing to C::
19064 * Interfacing to C++::
19065 * Interfacing to COBOL::
19066 * Interfacing to Fortran::
19067 * Interfacing to non-GNAT Ada code::
19068 @end menu
19070 @node Interfacing to C
19071 @section Interfacing to C
19073 @noindent
19074 Interfacing to C with GNAT can use one of two approaches:
19076 @itemize @bullet
19077 @item
19078 The types in the package @code{Interfaces.C} may be used.
19079 @item
19080 Standard Ada types may be used directly.  This may be less portable to
19081 other compilers, but will work on all GNAT compilers, which guarantee
19082 correspondence between the C and Ada types.
19083 @end itemize
19085 @noindent
19086 Pragma @code{Convention C} may be applied to Ada types, but mostly has no
19087 effect, since this is the default.  The following table shows the
19088 correspondence between Ada scalar types and the corresponding C types.
19090 @table @code
19091 @item Integer
19092 @code{int}
19093 @item Short_Integer
19094 @code{short}
19095 @item Short_Short_Integer
19096 @code{signed char}
19097 @item Long_Integer
19098 @code{long}
19099 @item Long_Long_Integer
19100 @code{long long}
19101 @item Short_Float
19102 @code{float}
19103 @item Float
19104 @code{float}
19105 @item Long_Float
19106 @code{double}
19107 @item Long_Long_Float
19108 This is the longest floating-point type supported by the hardware.
19109 @end table
19111 @noindent
19112 Additionally, there are the following general correspondences between Ada
19113 and C types:
19114 @itemize @bullet
19115 @item
19116 Ada enumeration types map to C enumeration types directly if pragma
19117 @code{Convention C} is specified, which causes them to have int
19118 length.  Without pragma @code{Convention C}, Ada enumeration types map to
19119 8, 16, or 32 bits (i.e.@: C types @code{signed char}, @code{short},
19120 @code{int}, respectively) depending on the number of values passed.
19121 This is the only case in which pragma @code{Convention C} affects the
19122 representation of an Ada type.
19124 @item
19125 Ada access types map to C pointers, except for the case of pointers to
19126 unconstrained types in Ada, which have no direct C equivalent.
19128 @item
19129 Ada arrays map directly to C arrays.
19131 @item
19132 Ada records map directly to C structures.
19134 @item
19135 Packed Ada records map to C structures where all members are bit fields
19136 of the length corresponding to the @code{@var{type}'Size} value in Ada.
19137 @end itemize
19139 @node Interfacing to C++
19140 @section Interfacing to C++
19142 @noindent
19143 The interface to C++ makes use of the following pragmas, which are
19144 primarily intended to be constructed automatically using a binding generator
19145 tool, although it is possible to construct them by hand.
19147 Using these pragmas it is possible to achieve complete
19148 inter-operability between Ada tagged types and C++ class definitions.
19149 See @ref{Implementation Defined Pragmas}, for more details.
19151 @table @code
19152 @item pragma CPP_Class ([Entity =>] @var{LOCAL_NAME})
19153 The argument denotes an entity in the current declarative region that is
19154 declared as a tagged or untagged record type. It indicates that the type
19155 corresponds to an externally declared C++ class type, and is to be laid
19156 out the same way that C++ would lay out the type.
19158 Note: Pragma @code{CPP_Class} is currently obsolete. It is supported
19159 for backward compatibility but its functionality is available
19160 using pragma @code{Import} with @code{Convention} = @code{CPP}.
19162 @item pragma CPP_Constructor ([Entity =>] @var{LOCAL_NAME})
19163 This pragma identifies an imported function (imported in the usual way
19164 with pragma @code{Import}) as corresponding to a C++ constructor.
19165 @end table
19167 A few restrictions are placed on the use of the @code{Access} attribute
19168 in conjunction with subprograms subject to convention @code{CPP}: the
19169 attribute may be used neither on primitive operations of a tagged
19170 record type with convention @code{CPP}, imported or not, nor on
19171 subprograms imported with pragma @code{CPP_Constructor}.
19173 In addition, C++ exceptions are propagated and can be handled in an
19174 @code{others} choice of an exception handler. The corresponding Ada
19175 occurrence has no message, and the simple name of the exception identity
19176 contains @samp{Foreign_Exception}. Finalization and awaiting dependent
19177 tasks works properly when such foreign exceptions are propagated.
19179 It is also possible to import a C++ exception using the following syntax:
19181 @smallexample @c ada
19182 LOCAL_NAME : exception;
19183 pragma Import (Cpp,
19184   [Entity =>] LOCAL_NAME,
19185   [External_Name =>] static_string_EXPRESSION);
19186 @end smallexample
19188 @noindent
19189 The @code{External_Name} is the name of the C++ RTTI symbol. You can then
19190 cover a specific C++ exception in an exception handler.
19192 @node Interfacing to COBOL
19193 @section Interfacing to COBOL
19195 @noindent
19196 Interfacing to COBOL is achieved as described in section B.4 of
19197 the Ada Reference Manual.
19199 @node Interfacing to Fortran
19200 @section Interfacing to Fortran
19202 @noindent
19203 Interfacing to Fortran is achieved as described in section B.5 of the
19204 Ada Reference Manual.  The pragma @code{Convention Fortran}, applied to a
19205 multi-dimensional array causes the array to be stored in column-major
19206 order as required for convenient interface to Fortran.
19208 @node Interfacing to non-GNAT Ada code
19209 @section Interfacing to non-GNAT Ada code
19211 It is possible to specify the convention @code{Ada} in a pragma
19212 @code{Import} or pragma @code{Export}.  However this refers to
19213 the calling conventions used by GNAT, which may or may not be
19214 similar enough to those used by some other Ada 83 / Ada 95 / Ada 2005
19215 compiler to allow interoperation.
19217 If arguments types are kept simple, and if the foreign compiler generally
19218 follows system calling conventions, then it may be possible to integrate
19219 files compiled by other Ada compilers, provided that the elaboration
19220 issues are adequately addressed (for example by eliminating the
19221 need for any load time elaboration).
19223 In particular, GNAT running on VMS is designed to
19224 be highly compatible with the DEC Ada 83 compiler, so this is one
19225 case in which it is possible to import foreign units of this type,
19226 provided that the data items passed are restricted to simple scalar
19227 values or simple record types without variants, or simple array
19228 types with fixed bounds.
19230 @node Specialized Needs Annexes
19231 @chapter Specialized Needs Annexes
19233 @noindent
19234 Ada 95 and Ada 2005 define a number of Specialized Needs Annexes, which are not
19235 required in all implementations.  However, as described in this chapter,
19236 GNAT implements all of these annexes:
19238 @table @asis
19239 @item Systems Programming (Annex C)
19240 The Systems Programming Annex is fully implemented.
19242 @item Real-Time Systems (Annex D)
19243 The Real-Time Systems Annex is fully implemented.
19245 @item Distributed Systems (Annex E)
19246 Stub generation is fully implemented in the GNAT compiler.  In addition,
19247 a complete compatible PCS is available as part of the GLADE system,
19248 a separate product.  When the two
19249 products are used in conjunction, this annex is fully implemented.
19251 @item Information Systems (Annex F)
19252 The Information Systems annex is fully implemented.
19254 @item Numerics (Annex G)
19255 The Numerics Annex is fully implemented.
19257 @item Safety and Security / High-Integrity Systems (Annex H)
19258 The Safety and Security Annex (termed the High-Integrity Systems Annex
19259 in Ada 2005) is fully implemented.
19260 @end table
19262 @node Implementation of Specific Ada Features
19263 @chapter Implementation of Specific Ada Features
19265 @noindent
19266 This chapter describes the GNAT implementation of several Ada language
19267 facilities.
19269 @menu
19270 * Machine Code Insertions::
19271 * GNAT Implementation of Tasking::
19272 * GNAT Implementation of Shared Passive Packages::
19273 * Code Generation for Array Aggregates::
19274 * The Size of Discriminated Records with Default Discriminants::
19275 * Strict Conformance to the Ada Reference Manual::
19276 @end menu
19278 @node Machine Code Insertions
19279 @section Machine Code Insertions
19280 @cindex Machine Code insertions
19282 @noindent
19283 Package @code{Machine_Code} provides machine code support as described
19284 in the Ada Reference Manual in two separate forms:
19285 @itemize @bullet
19286 @item
19287 Machine code statements, consisting of qualified expressions that
19288 fit the requirements of RM section 13.8.
19289 @item
19290 An intrinsic callable procedure, providing an alternative mechanism of
19291 including machine instructions in a subprogram.
19292 @end itemize
19294 @noindent
19295 The two features are similar, and both are closely related to the mechanism
19296 provided by the asm instruction in the GNU C compiler.  Full understanding
19297 and use of the facilities in this package requires understanding the asm
19298 instruction, see @ref{Extended Asm,, Assembler Instructions with C Expression
19299 Operands, gcc, Using the GNU Compiler Collection (GCC)}.
19301 Calls to the function @code{Asm} and the procedure @code{Asm} have identical
19302 semantic restrictions and effects as described below.  Both are provided so
19303 that the procedure call can be used as a statement, and the function call
19304 can be used to form a code_statement.
19306 The first example given in the GCC documentation is the C @code{asm}
19307 instruction:
19308 @smallexample
19309    asm ("fsinx %1 %0" : "=f" (result) : "f" (angle));
19310 @end smallexample
19312 @noindent
19313 The equivalent can be written for GNAT as:
19315 @smallexample @c ada
19316 Asm ("fsinx %1 %0",
19317      My_Float'Asm_Output ("=f", result),
19318      My_Float'Asm_Input  ("f",  angle));
19319 @end smallexample
19321 @noindent
19322 The first argument to @code{Asm} is the assembler template, and is
19323 identical to what is used in GNU C@.  This string must be a static
19324 expression.  The second argument is the output operand list.  It is
19325 either a single @code{Asm_Output} attribute reference, or a list of such
19326 references enclosed in parentheses (technically an array aggregate of
19327 such references).
19329 The @code{Asm_Output} attribute denotes a function that takes two
19330 parameters.  The first is a string, the second is the name of a variable
19331 of the type designated by the attribute prefix.  The first (string)
19332 argument is required to be a static expression and designates the
19333 constraint for the parameter (e.g.@: what kind of register is
19334 required).  The second argument is the variable to be updated with the
19335 result.  The possible values for constraint are the same as those used in
19336 the RTL, and are dependent on the configuration file used to build the
19337 GCC back end.  If there are no output operands, then this argument may
19338 either be omitted, or explicitly given as @code{No_Output_Operands}.
19340 The second argument of @code{@var{my_float}'Asm_Output} functions as
19341 though it were an @code{out} parameter, which is a little curious, but
19342 all names have the form of expressions, so there is no syntactic
19343 irregularity, even though normally functions would not be permitted
19344 @code{out} parameters.  The third argument is the list of input
19345 operands.  It is either a single @code{Asm_Input} attribute reference, or
19346 a list of such references enclosed in parentheses (technically an array
19347 aggregate of such references).
19349 The @code{Asm_Input} attribute denotes a function that takes two
19350 parameters.  The first is a string, the second is an expression of the
19351 type designated by the prefix.  The first (string) argument is required
19352 to be a static expression, and is the constraint for the parameter,
19353 (e.g.@: what kind of register is required).  The second argument is the
19354 value to be used as the input argument.  The possible values for the
19355 constant are the same as those used in the RTL, and are dependent on
19356 the configuration file used to built the GCC back end.
19358 If there are no input operands, this argument may either be omitted, or
19359 explicitly given as @code{No_Input_Operands}.  The fourth argument, not
19360 present in the above example, is a list of register names, called the
19361 @dfn{clobber} argument.  This argument, if given, must be a static string
19362 expression, and is a space or comma separated list of names of registers
19363 that must be considered destroyed as a result of the @code{Asm} call.  If
19364 this argument is the null string (the default value), then the code
19365 generator assumes that no additional registers are destroyed.
19367 The fifth argument, not present in the above example, called the
19368 @dfn{volatile} argument, is by default @code{False}.  It can be set to
19369 the literal value @code{True} to indicate to the code generator that all
19370 optimizations with respect to the instruction specified should be
19371 suppressed, and that in particular, for an instruction that has outputs,
19372 the instruction will still be generated, even if none of the outputs are
19373 used.  @xref{Extended Asm,, Assembler Instructions with C Expression Operands,
19374 gcc, Using the GNU Compiler Collection (GCC)}, for the full description.
19375 Generally it is strongly advisable to use Volatile for any ASM statement
19376 that is missing either input or output operands, or when two or more ASM
19377 statements appear in sequence, to avoid unwanted optimizations. A warning
19378 is generated if this advice is not followed.
19380 The @code{Asm} subprograms may be used in two ways.  First the procedure
19381 forms can be used anywhere a procedure call would be valid, and
19382 correspond to what the RM calls ``intrinsic'' routines.  Such calls can
19383 be used to intersperse machine instructions with other Ada statements.
19384 Second, the function forms, which return a dummy value of the limited
19385 private type @code{Asm_Insn}, can be used in code statements, and indeed
19386 this is the only context where such calls are allowed.  Code statements
19387 appear as aggregates of the form:
19389 @smallexample @c ada
19390 Asm_Insn'(Asm (@dots{}));
19391 Asm_Insn'(Asm_Volatile (@dots{}));
19392 @end smallexample
19394 @noindent
19395 In accordance with RM rules, such code statements are allowed only
19396 within subprograms whose entire body consists of such statements.  It is
19397 not permissible to intermix such statements with other Ada statements.
19399 Typically the form using intrinsic procedure calls is more convenient
19400 and more flexible.  The code statement form is provided to meet the RM
19401 suggestion that such a facility should be made available.  The following
19402 is the exact syntax of the call to @code{Asm}. As usual, if named notation
19403 is used, the arguments may be given in arbitrary order, following the
19404 normal rules for use of positional and named arguments)
19406 @smallexample
19407 ASM_CALL ::= Asm (
19408                  [Template =>] static_string_EXPRESSION
19409                [,[Outputs  =>] OUTPUT_OPERAND_LIST      ]
19410                [,[Inputs   =>] INPUT_OPERAND_LIST       ]
19411                [,[Clobber  =>] static_string_EXPRESSION ]
19412                [,[Volatile =>] static_boolean_EXPRESSION] )
19414 OUTPUT_OPERAND_LIST ::=
19415   [PREFIX.]No_Output_Operands
19416 | OUTPUT_OPERAND_ATTRIBUTE
19417 | (OUTPUT_OPERAND_ATTRIBUTE @{,OUTPUT_OPERAND_ATTRIBUTE@})
19419 OUTPUT_OPERAND_ATTRIBUTE ::=
19420   SUBTYPE_MARK'Asm_Output (static_string_EXPRESSION, NAME)
19422 INPUT_OPERAND_LIST ::=
19423   [PREFIX.]No_Input_Operands
19424 | INPUT_OPERAND_ATTRIBUTE
19425 | (INPUT_OPERAND_ATTRIBUTE @{,INPUT_OPERAND_ATTRIBUTE@})
19427 INPUT_OPERAND_ATTRIBUTE ::=
19428   SUBTYPE_MARK'Asm_Input (static_string_EXPRESSION, EXPRESSION)
19429 @end smallexample
19431 @noindent
19432 The identifiers @code{No_Input_Operands} and @code{No_Output_Operands}
19433 are declared in the package @code{Machine_Code} and must be referenced
19434 according to normal visibility rules. In particular if there is no
19435 @code{use} clause for this package, then appropriate package name
19436 qualification is required.
19438 @node GNAT Implementation of Tasking
19439 @section GNAT Implementation of Tasking
19441 @noindent
19442 This chapter outlines the basic GNAT approach to tasking (in particular,
19443 a multi-layered library for portability) and discusses issues related
19444 to compliance with the Real-Time Systems Annex.
19446 @menu
19447 * Mapping Ada Tasks onto the Underlying Kernel Threads::
19448 * Ensuring Compliance with the Real-Time Annex::
19449 @end menu
19451 @node Mapping Ada Tasks onto the Underlying Kernel Threads
19452 @subsection Mapping Ada Tasks onto the Underlying Kernel Threads
19454 @noindent
19455 GNAT's run-time support comprises two layers:
19457 @itemize @bullet
19458 @item GNARL (GNAT Run-time Layer)
19459 @item GNULL (GNAT Low-level Library)
19460 @end itemize
19462 @noindent
19463 In GNAT, Ada's tasking services rely on a platform and OS independent
19464 layer known as GNARL@.  This code is responsible for implementing the
19465 correct semantics of Ada's task creation, rendezvous, protected
19466 operations etc.
19468 GNARL decomposes Ada's tasking semantics into simpler lower level
19469 operations such as create a thread, set the priority of a thread,
19470 yield, create a lock, lock/unlock, etc.  The spec for these low-level
19471 operations constitutes GNULLI, the GNULL Interface.  This interface is
19472 directly inspired from the POSIX real-time API@.
19474 If the underlying executive or OS implements the POSIX standard
19475 faithfully, the GNULL Interface maps as is to the services offered by
19476 the underlying kernel.  Otherwise, some target dependent glue code maps
19477 the services offered by the underlying kernel to the semantics expected
19478 by GNARL@.
19480 Whatever the underlying OS (VxWorks, UNIX, Windows, etc.) the
19481 key point is that each Ada task is mapped on a thread in the underlying
19482 kernel.  For example, in the case of VxWorks, one Ada task = one VxWorks task.
19484 In addition Ada task priorities map onto the underlying thread priorities.
19485 Mapping Ada tasks onto the underlying kernel threads has several advantages:
19487 @itemize @bullet
19488 @item
19489 The underlying scheduler is used to schedule the Ada tasks.  This
19490 makes Ada tasks as efficient as kernel threads from a scheduling
19491 standpoint.
19493 @item
19494 Interaction with code written in C containing threads is eased
19495 since at the lowest level Ada tasks and C threads map onto the same
19496 underlying kernel concept.
19498 @item
19499 When an Ada task is blocked during I/O the remaining Ada tasks are
19500 able to proceed.
19502 @item
19503 On multiprocessor systems Ada tasks can execute in parallel.
19504 @end itemize
19506 @noindent
19507 Some threads libraries offer a mechanism to fork a new process, with the
19508 child process duplicating the threads from the parent.
19509 GNAT does not
19510 support this functionality when the parent contains more than one task.
19511 @cindex Forking a new process
19513 @node Ensuring Compliance with the Real-Time Annex
19514 @subsection Ensuring Compliance with the Real-Time Annex
19515 @cindex Real-Time Systems Annex compliance
19517 @noindent
19518 Although mapping Ada tasks onto
19519 the underlying threads has significant advantages, it does create some
19520 complications when it comes to respecting the scheduling semantics
19521 specified in the real-time annex (Annex D).
19523 For instance the Annex D requirement for the @code{FIFO_Within_Priorities}
19524 scheduling policy states:
19526 @quotation
19527 @emph{When the active priority of a ready task that is not running
19528 changes, or the setting of its base priority takes effect, the
19529 task is removed from the ready queue for its old active priority
19530 and is added at the tail of the ready queue for its new active
19531 priority, except in the case where the active priority is lowered
19532 due to the loss of inherited priority, in which case the task is
19533 added at the head of the ready queue for its new active priority.}
19534 @end quotation
19536 @noindent
19537 While most kernels do put tasks at the end of the priority queue when
19538 a task changes its priority, (which respects the main
19539 FIFO_Within_Priorities requirement), almost none keep a thread at the
19540 beginning of its priority queue when its priority drops from the loss
19541 of inherited priority.
19543 As a result most vendors have provided incomplete Annex D implementations.
19545 The GNAT run-time, has a nice cooperative solution to this problem
19546 which ensures that accurate FIFO_Within_Priorities semantics are
19547 respected.
19549 The principle is as follows.  When an Ada task T is about to start
19550 running, it checks whether some other Ada task R with the same
19551 priority as T has been suspended due to the loss of priority
19552 inheritance.  If this is the case, T yields and is placed at the end of
19553 its priority queue.  When R arrives at the front of the queue it
19554 executes.
19556 Note that this simple scheme preserves the relative order of the tasks
19557 that were ready to execute in the priority queue where R has been
19558 placed at the end.
19560 @node GNAT Implementation of Shared Passive Packages
19561 @section GNAT Implementation of Shared Passive Packages
19562 @cindex Shared passive packages
19564 @noindent
19565 GNAT fully implements the pragma @code{Shared_Passive} for
19566 @cindex pragma @code{Shared_Passive}
19567 the purpose of designating shared passive packages.
19568 This allows the use of passive partitions in the
19569 context described in the Ada Reference Manual; i.e., for communication
19570 between separate partitions of a distributed application using the
19571 features in Annex E.
19572 @cindex Annex E
19573 @cindex Distribution Systems Annex
19575 However, the implementation approach used by GNAT provides for more
19576 extensive usage as follows:
19578 @table @emph
19579 @item Communication between separate programs
19581 This allows separate programs to access the data in passive
19582 partitions, using protected objects for synchronization where
19583 needed. The only requirement is that the two programs have a
19584 common shared file system. It is even possible for programs
19585 running on different machines with different architectures
19586 (e.g.@: different endianness) to communicate via the data in
19587 a passive partition.
19589 @item Persistence between program runs
19591 The data in a passive package can persist from one run of a
19592 program to another, so that a later program sees the final
19593 values stored by a previous run of the same program.
19595 @end table
19597 @noindent
19598 The implementation approach used is to store the data in files. A
19599 separate stream file is created for each object in the package, and
19600 an access to an object causes the corresponding file to be read or
19601 written.
19603 The environment variable @code{SHARED_MEMORY_DIRECTORY} should be
19604 @cindex @code{SHARED_MEMORY_DIRECTORY} environment variable
19605 set to the directory to be used for these files.
19606 The files in this directory
19607 have names that correspond to their fully qualified names. For
19608 example, if we have the package
19610 @smallexample @c ada
19611 package X is
19612   pragma Shared_Passive (X);
19613   Y : Integer;
19614   Z : Float;
19615 end X;
19616 @end smallexample
19618 @noindent
19619 and the environment variable is set to @code{/stemp/}, then the files created
19620 will have the names:
19622 @smallexample
19623 /stemp/x.y
19624 /stemp/x.z
19625 @end smallexample
19627 @noindent
19628 These files are created when a value is initially written to the object, and
19629 the files are retained until manually deleted. This provides the persistence
19630 semantics. If no file exists, it means that no partition has assigned a value
19631 to the variable; in this case the initial value declared in the package
19632 will be used. This model ensures that there are no issues in synchronizing
19633 the elaboration process, since elaboration of passive packages elaborates the
19634 initial values, but does not create the files.
19636 The files are written using normal @code{Stream_IO} access.
19637 If you want to be able
19638 to communicate between programs or partitions running on different
19639 architectures, then you should use the XDR versions of the stream attribute
19640 routines, since these are architecture independent.
19642 If active synchronization is required for access to the variables in the
19643 shared passive package, then as described in the Ada Reference Manual, the
19644 package may contain protected objects used for this purpose. In this case
19645 a lock file (whose name is @file{___lock} (three underscores)
19646 is created in the shared memory directory.
19647 @cindex @file{___lock} file (for shared passive packages)
19648 This is used to provide the required locking
19649 semantics for proper protected object synchronization.
19651 As of January 2003, GNAT supports shared passive packages on all platforms
19652 except for OpenVMS.
19654 @node Code Generation for Array Aggregates
19655 @section Code Generation for Array Aggregates
19657 @menu
19658 * Static constant aggregates with static bounds::
19659 * Constant aggregates with unconstrained nominal types::
19660 * Aggregates with static bounds::
19661 * Aggregates with non-static bounds::
19662 * Aggregates in assignment statements::
19663 @end menu
19665 @noindent
19666 Aggregates have a rich syntax and allow the user to specify the values of
19667 complex data structures by means of a single construct.  As a result, the
19668 code generated for aggregates can be quite complex and involve loops, case
19669 statements and multiple assignments.  In the simplest cases, however, the
19670 compiler will recognize aggregates whose components and constraints are
19671 fully static, and in those cases the compiler will generate little or no
19672 executable code.  The following is an outline of the code that GNAT generates
19673 for various aggregate constructs.  For further details, you will find it
19674 useful to examine the output produced by the -gnatG flag to see the expanded
19675 source that is input to the code generator.  You may also want to examine
19676 the assembly code generated at various levels of optimization.
19678 The code generated for aggregates depends on the context, the component values,
19679 and the type.  In the context of an object declaration the code generated is
19680 generally simpler than in the case of an assignment.  As a general rule, static
19681 component values and static subtypes also lead to simpler code.
19683 @node Static constant aggregates with static bounds
19684 @subsection Static constant aggregates with static bounds
19686 @noindent
19687 For the declarations:
19688 @smallexample @c ada
19689     type One_Dim is array (1..10) of integer;
19690     ar0 : constant One_Dim := (1, 2, 3, 4, 5, 6, 7, 8, 9, 0);
19691 @end smallexample
19693 @noindent
19694 GNAT generates no executable code: the constant ar0 is placed in static memory.
19695 The same is true for constant aggregates with named associations:
19697 @smallexample @c ada
19698     Cr1 : constant One_Dim := (4 => 16, 2 => 4, 3 => 9, 1 => 1, 5 .. 10 => 0);
19699     Cr3 : constant One_Dim := (others => 7777);
19700 @end smallexample
19702 @noindent
19703 The same is true for multidimensional constant arrays such as:
19705 @smallexample @c ada
19706     type two_dim is array (1..3, 1..3) of integer;
19707     Unit : constant two_dim := ( (1,0,0), (0,1,0), (0,0,1));
19708 @end smallexample
19710 @noindent
19711 The same is true for arrays of one-dimensional arrays: the following are
19712 static:
19714 @smallexample @c ada
19715 type ar1b  is array (1..3) of boolean;
19716 type ar_ar is array (1..3) of ar1b;
19717 None  : constant ar1b := (others => false);     --  fully static
19718 None2 : constant ar_ar := (1..3 => None);       --  fully static
19719 @end smallexample
19721 @noindent
19722 However, for multidimensional aggregates with named associations, GNAT will
19723 generate assignments and loops, even if all associations are static.  The
19724 following two declarations generate a loop for the first dimension, and
19725 individual component assignments for the second dimension:
19727 @smallexample @c ada
19728 Zero1: constant two_dim := (1..3 => (1..3 => 0));
19729 Zero2: constant two_dim := (others => (others => 0));
19730 @end smallexample
19732 @node Constant aggregates with unconstrained nominal types
19733 @subsection Constant aggregates with unconstrained nominal types
19735 @noindent
19736 In such cases the aggregate itself establishes the subtype, so that
19737 associations with @code{others} cannot be used.  GNAT determines the
19738 bounds for the actual subtype of the aggregate, and allocates the
19739 aggregate statically as well.  No code is generated for the following:
19741 @smallexample @c ada
19742     type One_Unc is array (natural range <>) of integer;
19743     Cr_Unc : constant One_Unc := (12,24,36);
19744 @end smallexample
19746 @node Aggregates with static bounds
19747 @subsection Aggregates with static bounds
19749 @noindent
19750 In all previous examples the aggregate was the initial (and immutable) value
19751 of a constant.  If the aggregate initializes a variable, then code is generated
19752 for it as a combination of individual assignments and loops over the target
19753 object.  The declarations
19755 @smallexample @c ada
19756        Cr_Var1 : One_Dim := (2, 5, 7, 11, 0, 0, 0, 0, 0, 0);
19757        Cr_Var2 : One_Dim := (others > -1);
19758 @end smallexample
19760 @noindent
19761 generate the equivalent of
19763 @smallexample @c ada
19764        Cr_Var1 (1) := 2;
19765        Cr_Var1 (2) := 3;
19766        Cr_Var1 (3) := 5;
19767        Cr_Var1 (4) := 11;
19769        for I in Cr_Var2'range loop
19770           Cr_Var2 (I) := -1;
19771        end loop;
19772 @end smallexample
19774 @node Aggregates with non-static bounds
19775 @subsection Aggregates with non-static bounds
19777 @noindent
19778 If the bounds of the aggregate are not statically compatible with the bounds
19779 of the nominal subtype  of the target, then constraint checks have to be
19780 generated on the bounds.  For a multidimensional array, constraint checks may
19781 have to be applied to sub-arrays individually, if they do not have statically
19782 compatible subtypes.
19784 @node Aggregates in assignment statements
19785 @subsection Aggregates in assignment statements
19787 @noindent
19788 In general, aggregate assignment requires the construction of a temporary,
19789 and a copy from the temporary to the target of the assignment.  This is because
19790 it is not always possible to convert the assignment into a series of individual
19791 component assignments.  For example, consider the simple case:
19793 @smallexample @c ada
19794         A := (A(2), A(1));
19795 @end smallexample
19797 @noindent
19798 This cannot be converted into:
19800 @smallexample @c ada
19801         A(1) := A(2);
19802         A(2) := A(1);
19803 @end smallexample
19805 @noindent
19806 So the aggregate has to be built first in a separate location, and then
19807 copied into the target.  GNAT recognizes simple cases where this intermediate
19808 step is not required, and the assignments can be performed in place, directly
19809 into the target.  The following sufficient criteria are applied:
19811 @itemize @bullet
19812 @item
19813 The bounds of the aggregate are static, and the associations are static.
19814 @item
19815 The components of the aggregate are static constants, names of
19816 simple variables that are not renamings, or expressions not involving
19817 indexed components whose operands obey these rules.
19818 @end itemize
19820 @noindent
19821 If any of these conditions are violated, the aggregate will be built in
19822 a temporary (created either by the front-end or the code generator) and then
19823 that temporary will be copied onto the target.
19825 @node The Size of Discriminated Records with Default Discriminants
19826 @section The Size of Discriminated Records with Default Discriminants
19828 @noindent
19829 If a discriminated type @code{T} has discriminants with default values, it is
19830 possible to declare an object of this type without providing an explicit
19831 constraint:
19833 @smallexample @c ada
19834 @group
19835 type Size is range 1..100;
19837 type Rec (D : Size := 15) is record
19838    Name : String (1..D);
19839 end T;
19841 Word : Rec;
19842 @end group
19843 @end smallexample
19845 @noindent
19846 Such an object is said to be @emph{unconstrained}.
19847 The discriminant of the object
19848 can be modified by a full assignment to the object, as long as it preserves the
19849 relation between the value of the discriminant, and the value of the components
19850 that depend on it:
19852 @smallexample @c ada
19853 @group
19854 Word := (3, "yes");
19856 Word := (5, "maybe");
19858 Word := (5, "no"); -- raises Constraint_Error
19859 @end group
19860 @end smallexample
19862 @noindent
19863 In order to support this behavior efficiently, an unconstrained object is
19864 given the maximum size that any value of the type requires. In the case
19865 above, @code{Word} has storage for the discriminant and for
19866 a @code{String} of length 100.
19867 It is important to note that unconstrained objects do not require dynamic
19868 allocation. It would be an improper implementation to place on the heap those
19869 components whose size depends on discriminants. (This improper implementation
19870 was used by some Ada83 compilers, where the @code{Name} component above
19871 would have
19872 been stored as a pointer to a dynamic string). Following the principle that
19873 dynamic storage management should never be introduced implicitly,
19874 an Ada compiler should reserve the full size for an unconstrained declared
19875 object, and place it on the stack.
19877 This maximum size approach
19878 has been a source of surprise to some users, who expect the default
19879 values of the discriminants to determine the size reserved for an
19880 unconstrained object: ``If the default is 15, why should the object occupy
19881 a larger size?''
19882 The answer, of course, is that the discriminant may be later modified,
19883 and its full range of values must be taken into account. This is why the
19884 declaration:
19886 @smallexample
19887 @group
19888 type Rec (D : Positive := 15) is record
19889    Name : String (1..D);
19890 end record;
19892 Too_Large : Rec;
19893 @end group
19894 @end smallexample
19896 @noindent
19897 is flagged by the compiler with a warning:
19898 an attempt to create @code{Too_Large} will raise @code{Storage_Error},
19899 because the required size includes @code{Positive'Last}
19900 bytes. As the first example indicates, the proper approach is to declare an
19901 index type of ``reasonable'' range so that unconstrained objects are not too
19902 large.
19904 One final wrinkle: if the object is declared to be @code{aliased}, or if it is
19905 created in the heap by means of an allocator, then it is @emph{not}
19906 unconstrained:
19907 it is constrained by the default values of the discriminants, and those values
19908 cannot be modified by full assignment. This is because in the presence of
19909 aliasing all views of the object (which may be manipulated by different tasks,
19910 say) must be consistent, so it is imperative that the object, once created,
19911 remain invariant.
19913 @node Strict Conformance to the Ada Reference Manual
19914 @section Strict Conformance to the Ada Reference Manual
19916 @noindent
19917 The dynamic semantics defined by the Ada Reference Manual impose a set of
19918 run-time checks to be generated. By default, the GNAT compiler will insert many
19919 run-time checks into the compiled code, including most of those required by the
19920 Ada Reference Manual. However, there are three checks that are not enabled
19921 in the default mode for efficiency reasons: arithmetic overflow checking for
19922 integer operations (including division by zero), checks for access before
19923 elaboration on subprogram calls, and stack overflow checking (most operating
19924 systems do not perform this check by default).
19926 Strict conformance to the Ada Reference Manual can be achieved by adding
19927 three compiler options for overflow checking for integer operations
19928 (@option{-gnato}), dynamic checks for access-before-elaboration on subprogram
19929 calls and generic instantiations (@option{-gnatE}), and stack overflow
19930 checking (@option{-fstack-check}).
19932 Note that the result of a floating point arithmetic operation in overflow and
19933 invalid situations, when the @code{Machine_Overflows} attribute of the result
19934 type is @code{False}, is to generate IEEE NaN and infinite values. This is the
19935 case for machines compliant with the IEEE floating-point standard, but on
19936 machines that are not fully compliant with this standard, such as Alpha, the
19937 @option{-mieee} compiler flag must be used for achieving IEEE confirming
19938 behavior (although at the cost of a significant performance penalty), so
19939 infinite and NaN values are properly generated.
19942 @node Implementation of Ada 2012 Features
19943 @chapter Implementation of Ada 2012 Features
19944 @cindex Ada 2012 implementation status
19946 This chapter contains a complete list of Ada 2012 features that have been
19947 implemented as of GNAT version 6.4. Generally, these features are only
19948 available if the @option{-gnat12} (Ada 2012 features enabled) flag is set
19949 @cindex @option{-gnat12} option
19950 or if the configuration pragma @code{Ada_2012} is used.
19951 @cindex pragma @code{Ada_2012}
19952 @cindex configuration pragma @code{Ada_2012}
19953 @cindex @code{Ada_2012} configuration pragma
19954 However, new pragmas, attributes, and restrictions are
19955 unconditionally available, since the Ada 95 standard allows the addition of
19956 new pragmas, attributes, and restrictions (there are exceptions, which are
19957 documented in the individual descriptions), and also certain packages
19958 were made available in earlier versions of Ada.
19960 An ISO date (YYYY-MM-DD) appears in parentheses on the description line.
19961 This date shows the implementation date of the feature. Any wavefront
19962 subsequent to this date will contain the indicated feature, as will any
19963 subsequent releases. A date of 0000-00-00 means that GNAT has always
19964 implemented the feature, or implemented it as soon as it appeared as a
19965 binding interpretation.
19967 Each feature corresponds to an Ada Issue (``AI'') approved by the Ada
19968 standardization group (ISO/IEC JTC1/SC22/WG9) for inclusion in Ada 2012.
19969 The features are ordered based on the relevant sections of the Ada
19970 Reference Manual (``RM'').  When a given AI relates to multiple points
19971 in the RM, the earliest is used.
19973 A complete description of the AIs may be found in
19974 @url{www.ada-auth.org/ai05-summary.html}.
19976 @itemize @bullet
19978 @item
19979 @emph{AI-0176 Quantified expressions (2010-09-29)}
19980 @cindex AI-0176 (Ada 2012 feature)
19982 @noindent
19983   Both universally and existentially quantified expressions are implemented.
19984   They use the new syntax for iterators proposed in AI05-139-2, as well as
19985   the standard Ada loop syntax.
19987 @noindent
19988   RM References:  1.01.04 (12)   2.09 (2/2)   4.04 (7)   4.05.09 (0)
19990 @item
19991 @emph{AI-0079 Allow @i{other_format} characters in source (2010-07-10)}
19992 @cindex AI-0079 (Ada 2012 feature)
19994 @noindent
19995   Wide characters in the unicode category @i{other_format} are now allowed in
19996   source programs between tokens, but not within a token such as an identifier.
19998 @noindent
19999   RM References:  2.01 (4/2)   2.02 (7)
20001 @item
20002 @emph{AI-0091 Do not allow @i{other_format} in identifiers (0000-00-00)}
20003 @cindex AI-0091 (Ada 2012 feature)
20005 @noindent
20006   Wide characters in the unicode category @i{other_format} are not permitted
20007   within  an identifier, since this can be a security problem. The error
20008   message for this case has been improved to be more specific, but GNAT has
20009   never allowed such characters to appear in identifiers.
20011 @noindent
20012   RM References:  2.03 (3.1/2)   2.03 (4/2)   2.03 (5/2)   2.03 (5.1/2)   2.03 (5.2/2)   2.03 (5.3/2)   2.09 (2/2)
20014 @item
20015 @emph{AI-0100 Placement of pragmas  (2010-07-01)}
20016 @cindex AI-0100 (Ada 2012 feature)
20018 @noindent
20019   This AI is an earlier version of AI-163. It simplifies the rules
20020   for legal placement of pragmas. In the case of lists that allow pragmas, if
20021   the list may have no elements, then the list may consist solely of pragmas.
20023 @noindent
20024   RM References:  2.08 (7)
20026 @item
20027 @emph{AI-0163 Pragmas in place of null (2010-07-01)}
20028 @cindex AI-0163 (Ada 2012 feature)
20030 @noindent
20031   A statement sequence may be composed entirely of pragmas. It is no longer
20032   necessary to add a dummy @code{null} statement to make the sequence legal.
20034 @noindent
20035   RM References:  2.08 (7)   2.08 (16)
20038 @item
20039 @emph{AI-0080 ``View of'' not needed if clear from context (0000-00-00)}
20040 @cindex AI-0080 (Ada 2012 feature)
20042 @noindent
20043   This is an editorial change only, described as non-testable in the AI.
20045 @noindent
20046   RM References:  3.01 (7)
20049 @item
20050 @emph{AI-0183 Aspect specifications (2010-08-16)}
20051 @cindex AI-0183 (Ada 2012 feature)
20053 @noindent
20054   Aspect specifications have been fully implemented except for pre and post-
20055   conditions, and type invariants, which have their own separate AI's. All
20056   forms of declarations listed in the AI are supported. The following is a
20057   list of the aspects supported (with GNAT implementation aspects marked)
20059 @multitable {@code{Preelaborable_Initialization}} {--GNAT}
20060 @item @code{Ada_2005} @tab                      -- GNAT
20061 @item @code{Ada_2012} @tab                      -- GNAT
20062 @item @code{Address} @tab
20063 @item @code{Alignment} @tab
20064 @item @code{Atomic} @tab
20065 @item @code{Atomic_Components} @tab
20066 @item @code{Bit_Order} @tab
20067 @item @code{Component_Size} @tab
20068 @item @code{Contract_Cases} @tab                -- GNAT
20069 @item @code{Discard_Names} @tab
20070 @item @code{External_Tag} @tab
20071 @item @code{Favor_Top_Level} @tab               -- GNAT
20072 @item @code{Inline} @tab
20073 @item @code{Inline_Always} @tab                 -- GNAT
20074 @item @code{Invariant} @tab                     -- GNAT
20075 @item @code{Machine_Radix} @tab
20076 @item @code{No_Return} @tab
20077 @item @code{Object_Size} @tab                   -- GNAT
20078 @item @code{Pack} @tab
20079 @item @code{Persistent_BSS} @tab                -- GNAT
20080 @item @code{Post} @tab
20081 @item @code{Pre} @tab
20082 @item @code{Predicate} @tab
20083 @item @code{Preelaborable_Initialization} @tab
20084 @item @code{Pure_Function} @tab                 -- GNAT
20085 @item @code{Remote_Access_Type} @tab            -- GNAT
20086 @item @code{Shared} @tab                        -- GNAT
20087 @item @code{Size} @tab
20088 @item @code{Storage_Pool} @tab
20089 @item @code{Storage_Size} @tab
20090 @item @code{Stream_Size} @tab
20091 @item @code{Suppress} @tab
20092 @item @code{Suppress_Debug_Info} @tab           -- GNAT
20093 @item @code{Test_Case} @tab                     -- GNAT
20094 @item @code{Type_Invariant} @tab
20095 @item @code{Unchecked_Union} @tab
20096 @item @code{Universal_Aliasing} @tab            -- GNAT
20097 @item @code{Unmodified} @tab                    -- GNAT
20098 @item @code{Unreferenced} @tab                  -- GNAT
20099 @item @code{Unreferenced_Objects} @tab          -- GNAT
20100 @item @code{Unsuppress} @tab
20101 @item @code{Value_Size} @tab                    -- GNAT
20102 @item @code{Volatile} @tab
20103 @item @code{Volatile_Components}
20104 @item @code{Warnings} @tab                      -- GNAT
20105 @end multitable
20107 @noindent
20108   Note that for aspects with an expression, e.g. @code{Size}, the expression is
20109   treated like a default expression (visibility is analyzed at the point of
20110   occurrence of the aspect, but evaluation of the expression occurs at the
20111   freeze point of the entity involved).
20113 @noindent
20114   RM References:  3.02.01 (3)   3.02.02 (2)   3.03.01 (2/2)   3.08 (6)
20115   3.09.03 (1.1/2)   6.01 (2/2)   6.07 (2/2)   9.05.02 (2/2)   7.01 (3)   7.03
20116   (2)   7.03 (3)   9.01 (2/2)   9.01 (3/2)   9.04 (2/2)   9.04 (3/2)
20117   9.05.02 (2/2)   11.01 (2)   12.01 (3)   12.03 (2/2)   12.04 (2/2)   12.05 (2)
20118   12.06 (2.1/2)   12.06 (2.2/2)   12.07 (2)   13.01 (0.1/2)   13.03 (5/1)
20119   13.03.01 (0)
20122 @item
20123 @emph{AI-0128 Inequality is a primitive operation (0000-00-00)}
20124 @cindex AI-0128 (Ada 2012 feature)
20126 @noindent
20127   If an equality operator ("=") is declared for a type, then the implicitly
20128   declared inequality operator ("/=") is a primitive operation of the type.
20129   This is the only reasonable interpretation, and is the one always implemented
20130   by GNAT, but the RM was not entirely clear in making this point.
20132 @noindent
20133   RM References:  3.02.03 (6)   6.06 (6)
20135 @item
20136 @emph{AI-0003 Qualified expressions as names (2010-07-11)}
20137 @cindex AI-0003 (Ada 2012 feature)
20139 @noindent
20140    In Ada 2012, a qualified expression is considered to be syntactically a name,
20141    meaning that constructs such as @code{A'(F(X)).B} are now legal. This is
20142    useful in disambiguating some cases of overloading.
20144 @noindent
20145   RM References:  3.03 (11)   3.03 (21)   4.01 (2)   4.04 (7)   4.07 (3)
20146   5.04 (7)
20148 @item
20149 @emph{AI-0120 Constant instance of protected object (0000-00-00)}
20150 @cindex AI-0120 (Ada 2012 feature)
20152 @noindent
20153   This is an RM editorial change only. The section that lists objects that are
20154   constant failed to include the current instance of a protected object
20155   within a protected function. This has always been treated as a constant
20156   in GNAT.
20158 @noindent
20159   RM References:  3.03 (21)
20161 @item
20162 @emph{AI-0008 General access to constrained objects (0000-00-00)}
20163 @cindex AI-0008 (Ada 2012 feature)
20165 @noindent
20166   The wording in the RM implied that if you have a general access to a
20167   constrained object, it could be used to modify the discriminants. This was
20168   obviously not intended. @code{Constraint_Error} should be raised, and GNAT
20169   has always done so in this situation.
20171 @noindent
20172   RM References:  3.03 (23)   3.10.02 (26/2)   4.01 (9)   6.04.01 (17)   8.05.01 (5/2)
20175 @item
20176 @emph{AI-0093 Additional rules use immutably limited (0000-00-00)}
20177 @cindex AI-0093 (Ada 2012 feature)
20179 @noindent
20180   This is an editorial change only, to make more widespread use of the Ada 2012
20181   ``immutably limited''.
20183 @noindent
20184   RM References:  3.03 (23.4/3)
20188 @item
20189 @emph{AI-0096 Deriving from formal private types (2010-07-20)}
20190 @cindex AI-0096 (Ada 2012 feature)
20192 @noindent
20193   In general it is illegal for a type derived from a formal limited type to be
20194   nonlimited.  This AI makes an exception to this rule: derivation is legal
20195   if it appears in the private part of the generic, and the formal type is not
20196   tagged. If the type is tagged, the legality check must be applied to the
20197   private part of the package.
20199 @noindent
20200   RM References:  3.04 (5.1/2)   6.02 (7)
20203 @item
20204 @emph{AI-0181 Soft hyphen is a non-graphic character (2010-07-23)}
20205 @cindex AI-0181 (Ada 2012 feature)
20207 @noindent
20208   From Ada 2005 on, soft hyphen is considered a non-graphic character, which
20209   means that it has a special name (@code{SOFT_HYPHEN}) in conjunction with the
20210   @code{Image} and @code{Value} attributes for the character types. Strictly
20211   speaking this is an inconsistency with Ada 95, but in practice the use of
20212   these attributes is so obscure that it will not cause problems.
20214 @noindent
20215   RM References:  3.05.02 (2/2)   A.01 (35/2)   A.03.03 (21)
20218 @item
20219 @emph{AI-0182 Additional forms for @code{Character'Value} (0000-00-00)}
20220 @cindex AI-0182 (Ada 2012 feature)
20222 @noindent
20223   This AI allows @code{Character'Value} to accept the string @code{'?'} where
20224   @code{?} is any character including non-graphic control characters. GNAT has
20225   always accepted such strings. It also allows strings such as
20226   @code{HEX_00000041} to be accepted, but GNAT does not take advantage of this
20227   permission and raises @code{Constraint_Error}, as is certainly still
20228   permitted.
20230 @noindent
20231   RM References:  3.05 (56/2)
20234 @item
20235 @emph{AI-0214 Defaulted discriminants for limited tagged (2010-10-01)}
20236 @cindex AI-0214 (Ada 2012 feature)
20238 @noindent
20239   Ada 2012 relaxes the restriction that forbids discriminants of tagged types
20240   to have default expressions by allowing them when the type is limited. It
20241   is often useful to define a default value for a discriminant even though
20242   it can't be changed by assignment.
20244 @noindent
20245   RM References:  3.07 (9.1/2)   3.07.02 (3)
20248 @item
20249 @emph{AI-0102 Some implicit conversions are illegal (0000-00-00)}
20250 @cindex AI-0102 (Ada 2012 feature)
20252 @noindent
20253   It is illegal to assign an anonymous access constant to an anonymous access
20254   variable. The RM did not have a clear rule to prevent this, but GNAT has
20255   always generated an error for this usage.
20257 @noindent
20258   RM References:  3.07 (16)   3.07.01 (9)   6.04.01 (6)   8.06 (27/2)
20261 @item
20262 @emph{AI-0158 Generalizing membership tests (2010-09-16)}
20263 @cindex AI-0158 (Ada 2012 feature)
20265 @noindent
20266   This AI extends the syntax of membership tests to simplify complex conditions
20267   that can be expressed as membership in a subset of values of any type. It
20268   introduces syntax for a list of expressions that may be used in loop contexts
20269   as well.
20271 @noindent
20272   RM References:  3.08.01 (5)   4.04 (3)   4.05.02 (3)   4.05.02 (5)   4.05.02 (27)
20275 @item
20276 @emph{AI-0173 Testing if tags represent abstract types (2010-07-03)}
20277 @cindex AI-0173 (Ada 2012 feature)
20279 @noindent
20280   The function @code{Ada.Tags.Type_Is_Abstract} returns @code{True} if invoked
20281   with the tag of an abstract type, and @code{False} otherwise.
20283 @noindent
20284   RM References:  3.09 (7.4/2)   3.09 (12.4/2)
20288 @item
20289 @emph{AI-0076 function with controlling result (0000-00-00)}
20290 @cindex AI-0076 (Ada 2012 feature)
20292 @noindent
20293   This is an editorial change only. The RM defines calls with controlling
20294   results, but uses the term ``function with controlling result'' without an
20295   explicit definition.
20297 @noindent
20298   RM References:  3.09.02 (2/2)
20301 @item
20302 @emph{AI-0126 Dispatching with no declared operation (0000-00-00)}
20303 @cindex AI-0126 (Ada 2012 feature)
20305 @noindent
20306   This AI clarifies dispatching rules, and simply confirms that dispatching
20307   executes the operation of the parent type when there is no explicitly or
20308   implicitly declared operation for the descendant type. This has always been
20309   the case in all versions of GNAT.
20311 @noindent
20312   RM References:  3.09.02 (20/2)   3.09.02 (20.1/2)   3.09.02 (20.2/2)
20315 @item
20316 @emph{AI-0097 Treatment of abstract null extension (2010-07-19)}
20317 @cindex AI-0097 (Ada 2012 feature)
20319 @noindent
20320   The RM as written implied that in some cases it was possible to create an
20321   object of an abstract type, by having an abstract extension inherit a non-
20322   abstract constructor from its parent type. This mistake has been corrected
20323   in GNAT and in the RM, and this construct is now illegal.
20325 @noindent
20326   RM References:  3.09.03 (4/2)
20329 @item
20330 @emph{AI-0203 Extended return cannot be abstract (0000-00-00)}
20331 @cindex AI-0203 (Ada 2012 feature)
20333 @noindent
20334   A return_subtype_indication cannot denote an abstract subtype. GNAT has never
20335   permitted such usage.
20337 @noindent
20338   RM References:  3.09.03 (8/3)
20341 @item
20342 @emph{AI-0198 Inheriting abstract operators  (0000-00-00)}
20343 @cindex AI-0198 (Ada 2012 feature)
20345 @noindent
20346   This AI resolves a conflict between two rules involving inherited abstract
20347   operations and predefined operators. If a derived numeric type inherits
20348   an abstract operator, it overrides the predefined one. This interpretation
20349   was always the one implemented in GNAT.
20351 @noindent
20352   RM References:  3.09.03 (4/3)
20354 @item
20355 @emph{AI-0073 Functions returning abstract types (2010-07-10)}
20356 @cindex AI-0073 (Ada 2012 feature)
20358 @noindent
20359   This AI covers a number of issues regarding returning abstract types. In
20360   particular generic functions cannot have abstract result types or access
20361   result types designated an abstract type. There are some other cases which
20362   are detailed in the AI. Note that this binding interpretation has not been
20363   retrofitted to operate before Ada 2012 mode, since it caused a significant
20364   number of regressions.
20366 @noindent
20367   RM References:  3.09.03 (8)   3.09.03 (10)   6.05 (8/2)
20370 @item
20371 @emph{AI-0070 Elaboration of interface types (0000-00-00)}
20372 @cindex AI-0070 (Ada 2012 feature)
20374 @noindent
20375   This is an editorial change only, there are no testable consequences short of
20376   checking for the absence of generated code for an interface declaration.
20378 @noindent
20379   RM References:  3.09.04 (18/2)
20382 @item
20383 @emph{AI-0208 Characteristics of incomplete views (0000-00-00)}
20384 @cindex AI-0208 (Ada 2012 feature)
20386 @noindent
20387   The wording in the Ada 2005 RM concerning characteristics of incomplete views
20388   was incorrect and implied that some programs intended to be legal were now
20389   illegal. GNAT had never considered such programs illegal, so it has always
20390   implemented the intent of this AI.
20392 @noindent
20393   RM References:  3.10.01 (2.4/2)   3.10.01 (2.6/2)
20396 @item
20397 @emph{AI-0162 Incomplete type completed by partial view (2010-09-15)}
20398 @cindex AI-0162 (Ada 2012 feature)
20400 @noindent
20401   Incomplete types are made more useful by allowing them to be completed by
20402   private types and private extensions.
20404 @noindent
20405   RM References:  3.10.01 (2.5/2)   3.10.01 (2.6/2)   3.10.01 (3)   3.10.01 (4/2)
20409 @item
20410 @emph{AI-0098 Anonymous subprogram access restrictions (0000-00-00)}
20411 @cindex AI-0098 (Ada 2012 feature)
20413 @noindent
20414   An unintentional omission in the RM implied some inconsistent restrictions on
20415   the use of anonymous access to subprogram values. These restrictions were not
20416   intentional, and have never been enforced by GNAT.
20418 @noindent
20419   RM References:  3.10.01 (6)   3.10.01 (9.2/2)
20422 @item
20423 @emph{AI-0199 Aggregate with anonymous access components (2010-07-14)}
20424 @cindex AI-0199 (Ada 2012 feature)
20426 @noindent
20427   A choice list in a record aggregate can include several components of
20428   (distinct) anonymous access types as long as they have matching designated
20429   subtypes.
20431 @noindent
20432   RM References:  4.03.01 (16)
20435 @item
20436 @emph{AI-0220 Needed components for aggregates (0000-00-00)}
20437 @cindex AI-0220 (Ada 2012 feature)
20439 @noindent
20440   This AI addresses a wording problem in the RM that appears to permit some
20441   complex cases of aggregates with non-static discriminants. GNAT has always
20442   implemented the intended semantics.
20444 @noindent
20445   RM References:  4.03.01 (17)
20447 @item
20448 @emph{AI-0147 Conditional expressions (2009-03-29)}
20449 @cindex AI-0147 (Ada 2012 feature)
20451 @noindent
20452   Conditional expressions are permitted. The form of such an expression is:
20454 @smallexample
20455     (@b{if} @i{expr} @b{then} @i{expr} @{@b{elsif} @i{expr} @b{then} @i{expr}@} [@b{else} @i{expr}])
20456 @end smallexample
20458   The parentheses can be omitted in contexts where parentheses are present
20459   anyway, such as subprogram arguments and pragma arguments. If the @b{else}
20460   clause is omitted, @b{else True} is assumed;
20461   thus @code{(@b{if} A @b{then} B)} is a way to conveniently represent
20462   @emph{(A implies B)} in standard logic.
20464 @noindent
20465   RM References:  4.03.03 (15)   4.04 (1)   4.04 (7)   4.05.07 (0)   4.07 (2)
20466   4.07 (3)   4.09 (12)   4.09 (33)   5.03 (3)   5.03 (4)   7.05 (2.1/2)
20469 @item
20470 @emph{AI-0037 Out-of-range box associations in aggregate (0000-00-00)}
20471 @cindex AI-0037 (Ada 2012 feature)
20473 @noindent
20474   This AI confirms that an association of the form @code{Indx => <>} in an
20475   array aggregate must raise @code{Constraint_Error} if @code{Indx}
20476   is out of range. The RM specified a range check on other associations, but
20477   not when the value of the association was defaulted. GNAT has always inserted
20478   a constraint check on the index value.
20480 @noindent
20481   RM References:  4.03.03 (29)
20484 @item
20485 @emph{AI-0123 Composability of equality (2010-04-13)}
20486 @cindex AI-0123 (Ada 2012 feature)
20488 @noindent
20489   Equality of untagged record composes, so that the predefined equality for a
20490   composite type that includes a component of some untagged record type
20491   @code{R} uses the equality operation of @code{R} (which may be user-defined
20492   or predefined). This makes the behavior of untagged records identical to that
20493   of tagged types in this respect.
20495   This change is an incompatibility with previous versions of Ada, but it
20496   corrects a non-uniformity that was often a source of confusion. Analysis of
20497   a large number of industrial programs indicates that in those rare cases
20498   where a composite type had an untagged record component with a user-defined
20499   equality, either there was no use of the composite equality, or else the code
20500   expected the same composability as for tagged types, and thus had a bug that
20501   would be fixed by this change.
20503 @noindent
20504   RM References:  4.05.02 (9.7/2)   4.05.02 (14)   4.05.02 (15)   4.05.02 (24)
20505   8.05.04 (8)
20508 @item
20509 @emph{AI-0088 The value of exponentiation (0000-00-00)}
20510 @cindex AI-0088 (Ada 2012 feature)
20512 @noindent
20513   This AI clarifies the equivalence rule given for the dynamic semantics of
20514   exponentiation: the value of the operation can be obtained by repeated
20515   multiplication, but the operation can be implemented otherwise (for example
20516   using the familiar divide-by-two-and-square algorithm, even if this is less
20517   accurate), and does not imply repeated reads of a volatile base.
20519 @noindent
20520   RM References:  4.05.06 (11)
20522 @item
20523 @emph{AI-0188 Case expressions (2010-01-09)}
20524 @cindex AI-0188 (Ada 2012 feature)
20526 @noindent
20527   Case expressions are permitted. This allows use of constructs such as:
20528 @smallexample
20529   X := (@b{case} Y @b{is when} 1 => 2, @b{when} 2 => 3, @b{when others} => 31)
20530 @end smallexample
20532 @noindent
20533   RM References:  4.05.07 (0)   4.05.08 (0)   4.09 (12)   4.09 (33)
20535 @item
20536 @emph{AI-0104 Null exclusion and uninitialized allocator (2010-07-15)}
20537 @cindex AI-0104 (Ada 2012 feature)
20539 @noindent
20540   The assignment @code{Ptr := @b{new not null} Some_Ptr;} will raise
20541   @code{Constraint_Error} because the default value of the allocated object is
20542   @b{null}. This useless construct is illegal in Ada 2012.
20544 @noindent
20545   RM References:  4.08 (2)
20547 @item
20548 @emph{AI-0157 Allocation/Deallocation from empty pool (2010-07-11)}
20549 @cindex AI-0157 (Ada 2012 feature)
20551 @noindent
20552   Allocation and Deallocation from an empty storage pool (i.e. allocation or
20553   deallocation of a pointer for which a static storage size clause of zero
20554   has been given) is now illegal and is detected as such. GNAT
20555   previously gave a warning but not an error.
20557 @noindent
20558   RM References:  4.08 (5.3/2)   13.11.02 (4)   13.11.02 (17)
20560 @item
20561 @emph{AI-0179 Statement not required after label (2010-04-10)}
20562 @cindex AI-0179 (Ada 2012 feature)
20564 @noindent
20565   It is not necessary to have a statement following a label, so a label
20566   can appear at the end of a statement sequence without the need for putting a
20567   null statement afterwards, but it is not allowable to have only labels and
20568   no real statements in a statement sequence.
20570 @noindent
20571   RM References:  5.01 (2)
20574 @item
20575 @emph{AI-139-2 Syntactic sugar for iterators (2010-09-29)}
20576 @cindex AI-139-2 (Ada 2012 feature)
20578 @noindent
20579   The new syntax for iterating over arrays and containers is now implemented.
20580   Iteration over containers is for now limited to read-only iterators. Only
20581   default iterators are supported, with the syntax:  @code{@b{for} Elem @b{of} C}.
20583 @noindent
20584   RM References:  5.05
20586 @item
20587 @emph{AI-0134 Profiles must match for full conformance (0000-00-00)}
20588 @cindex AI-0134 (Ada 2012 feature)
20590 @noindent
20591   For full conformance, the profiles of anonymous-access-to-subprogram
20592   parameters must match. GNAT has always enforced this rule.
20594 @noindent
20595   RM References:  6.03.01 (18)
20597 @item
20598 @emph{AI-0207 Mode conformance and access constant (0000-00-00)}
20599 @cindex AI-0207 (Ada 2012 feature)
20601 @noindent
20602   This AI confirms that access_to_constant indication must match for mode
20603   conformance. This was implemented in GNAT when the qualifier was originally
20604   introduced in Ada 2005.
20606 @noindent
20607   RM References:  6.03.01 (16/2)
20610 @item
20611 @emph{AI-0046 Null exclusion match for full conformance (2010-07-17)}
20612 @cindex AI-0046 (Ada 2012 feature)
20614 @noindent
20615   For full conformance, in the case of access parameters, the null exclusion
20616   must match (either both or neither must have @code{@b{not null}}).
20618 @noindent
20619   RM References:  6.03.02 (18)
20622 @item
20623 @emph{AI-0118 The association of parameter associations (0000-00-00)}
20624 @cindex AI-0118 (Ada 2012 feature)
20626 @noindent
20627   This AI clarifies the rules for named associations in subprogram calls and
20628   generic instantiations. The rules have been in place since Ada 83.
20630 @noindent
20631   RM References:  6.04.01 (2)   12.03 (9)
20634 @item
20635 @emph{AI-0196 Null exclusion tests for out parameters (0000-00-00)}
20636 @cindex AI-0196 (Ada 2012 feature)
20638 @noindent
20639   Null exclusion checks are not made for @code{@b{out}} parameters when
20640   evaluating the actual parameters. GNAT has never generated these checks.
20642 @noindent
20643   RM References:  6.04.01 (13)
20645 @item
20646 @emph{AI-0015 Constant return objects (0000-00-00)}
20647 @cindex AI-0015 (Ada 2012 feature)
20649 @noindent
20650   The return object declared in an @i{extended_return_statement} may be
20651   declared constant. This was always intended, and GNAT has always allowed it.
20653 @noindent
20654   RM References:  6.05 (2.1/2)   3.03 (10/2)   3.03 (21)   6.05 (5/2)
20655   6.05 (5.7/2)
20658 @item
20659 @emph{AI-0032 Extended return for class-wide functions (0000-00-00)}
20660 @cindex AI-0032 (Ada 2012 feature)
20662 @noindent
20663   If a function returns a class-wide type, the object of an extended return
20664   statement can be declared with a specific type that is covered by the class-
20665   wide type. This has been implemented in GNAT since the introduction of
20666   extended returns. Note AI-0103 complements this AI by imposing matching
20667   rules for constrained return types.
20669 @noindent
20670   RM References:  6.05 (5.2/2)   6.05 (5.3/2)   6.05 (5.6/2)   6.05 (5.8/2)
20671   6.05 (8/2)
20673 @item
20674 @emph{AI-0103 Static matching for extended return (2010-07-23)}
20675 @cindex AI-0103 (Ada 2012 feature)
20677 @noindent
20678   If the return subtype of a function is an elementary type or a constrained
20679   type, the subtype indication in an extended return statement must match
20680   statically this return subtype.
20682 @noindent
20683   RM References:  6.05 (5.2/2)
20686 @item
20687 @emph{AI-0058 Abnormal completion of an extended return (0000-00-00)}
20688 @cindex AI-0058 (Ada 2012 feature)
20690 @noindent
20691   The RM had some incorrect wording implying wrong treatment of abnormal
20692   completion in an extended return. GNAT has always implemented the intended
20693   correct semantics as described by this AI.
20695 @noindent
20696   RM References:  6.05 (22/2)
20699 @item
20700 @emph{AI-0050 Raising Constraint_Error early for function call (0000-00-00)}
20701 @cindex AI-0050 (Ada 2012 feature)
20703 @noindent
20704   The implementation permissions for raising @code{Constraint_Error} early on a function call when it was clear an exception would be raised were over-permissive and allowed mishandling of discriminants in some cases. GNAT did
20705   not take advantage of these incorrect permissions in any case.
20707 @noindent
20708   RM References:  6.05 (24/2)
20711 @item
20712 @emph{AI-0125 Nonoverridable operations of an ancestor (2010-09-28)}
20713 @cindex AI-0125 (Ada 2012 feature)
20715 @noindent
20716   In Ada 2012, the declaration of a primitive operation of a type extension
20717   or private extension can also override an inherited primitive that is not
20718   visible at the point of this declaration.
20720 @noindent
20721   RM References:  7.03.01 (6)   8.03 (23)   8.03.01 (5/2)   8.03.01 (6/2)
20723 @item
20724 @emph{AI-0062 Null exclusions and deferred constants (0000-00-00)}
20725 @cindex AI-0062 (Ada 2012 feature)
20727 @noindent
20728   A full constant may have a null exclusion even if its associated deferred
20729   constant does not. GNAT has always allowed this.
20731 @noindent
20732   RM References:  7.04 (6/2)   7.04 (7.1/2)
20735 @item
20736 @emph{AI-0178 Incomplete views are limited (0000-00-00)}
20737 @cindex AI-0178 (Ada 2012 feature)
20739 @noindent
20740   This AI clarifies the role of incomplete views and plugs an omission in the
20741   RM. GNAT always correctly restricted the use of incomplete views and types.
20743 @noindent
20744   RM References:  7.05 (3/2)   7.05 (6/2)
20746 @item
20747 @emph{AI-0087 Actual for formal nonlimited derived type (2010-07-15)}
20748 @cindex AI-0087 (Ada 2012 feature)
20750 @noindent
20751   The actual for a formal nonlimited derived type cannot be limited. In
20752   particular, a formal derived type that extends a limited interface but which
20753   is not explicitly limited cannot be instantiated with a limited type.
20755 @noindent
20756   RM References:  7.05 (5/2)   12.05.01 (5.1/2)
20758 @item
20759 @emph{AI-0099 Tag determines whether finalization needed (0000-00-00)}
20760 @cindex AI-0099 (Ada 2012 feature)
20762 @noindent
20763   This AI clarifies that ``needs finalization'' is part of dynamic semantics,
20764   and therefore depends on the run-time characteristics of an object (i.e. its
20765   tag) and not on its nominal type. As the AI indicates: ``we do not expect
20766   this to affect any implementation''.
20768 @noindent
20769   RM References:  7.06.01 (6)   7.06.01 (7)   7.06.01 (8)   7.06.01 (9/2)
20773 @item
20774 @emph{AI-0064 Redundant finalization rule (0000-00-00)}
20775 @cindex AI-0064 (Ada 2012 feature)
20777 @noindent
20778   This is an editorial change only. The intended behavior is already checked
20779   by an existing ACATS test, which GNAT has always executed correctly.
20781 @noindent
20782   RM References:  7.06.01 (17.1/1)
20784 @item
20785 @emph{AI-0026 Missing rules for Unchecked_Union (2010-07-07)}
20786 @cindex AI-0026 (Ada 2012 feature)
20788 @noindent
20789   Record representation clauses concerning Unchecked_Union types cannot mention
20790   the discriminant of the type. The type of a component declared in the variant
20791   part of an Unchecked_Union cannot be controlled, have controlled components,
20792   nor have protected or task parts. If an Unchecked_Union type is declared
20793   within the body of a generic unit or its descendants, then the type of a
20794   component declared in the variant part cannot be a formal private type or a
20795   formal private extension declared within the same generic unit.
20797 @noindent
20798   RM References:  7.06 (9.4/2)   B.03.03 (9/2)   B.03.03 (10/2)
20801 @item
20802 @emph{AI-0205 Extended return declares visible name (0000-00-00)}
20803 @cindex AI-0205 (Ada 2012 feature)
20805 @noindent
20806   This AI corrects a simple omission in the RM. Return objects have always
20807   been visible within an extended return statement.
20809 @noindent
20810   RM References:  8.03 (17)
20813 @item
20814 @emph{AI-0042 Overriding versus implemented-by (0000-00-00)}
20815 @cindex AI-0042 (Ada 2012 feature)
20817 @noindent
20818   This AI fixes a wording gap in the RM. An operation of a synchronized
20819   interface can be implemented by a protected or task entry, but the abstract
20820   operation is not being overridden in the usual sense, and it must be stated
20821   separately that this implementation is legal. This has always been the case
20822   in GNAT.
20824 @noindent
20825   RM References:  9.01 (9.2/2)   9.04 (11.1/2)
20827 @item
20828 @emph{AI-0030 Requeue on synchronized interfaces (2010-07-19)}
20829 @cindex AI-0030 (Ada 2012 feature)
20831 @noindent
20832   Requeue is permitted to a protected, synchronized or task interface primitive
20833   providing it is known that the overriding operation is an entry. Otherwise
20834   the requeue statement has the same effect as a procedure call. Use of pragma
20835   @code{Implemented} provides a way to impose a static requirement on the
20836   overriding operation by adhering to one of the implementation kinds: entry,
20837   protected procedure or any of the above.
20839 @noindent
20840   RM References:  9.05 (9)   9.05.04 (2)   9.05.04 (3)   9.05.04 (5)
20841   9.05.04 (6)   9.05.04 (7)   9.05.04 (12)
20844 @item
20845 @emph{AI-0201 Independence of atomic object components (2010-07-22)}
20846 @cindex AI-0201 (Ada 2012 feature)
20848 @noindent
20849   If an Atomic object has a pragma @code{Pack} or a @code{Component_Size}
20850   attribute, then individual components may not be addressable by independent
20851   tasks. However, if the representation clause has no effect (is confirming),
20852   then independence is not compromised. Furthermore, in GNAT, specification of
20853   other appropriately addressable component sizes (e.g. 16 for 8-bit
20854   characters) also preserves independence. GNAT now gives very clear warnings
20855   both for the declaration of such a type, and for any assignment to its components.
20857 @noindent
20858   RM References:  9.10 (1/3)   C.06 (22/2)   C.06 (23/2)
20860 @item
20861 @emph{AI-0009 Pragma Independent[_Components] (2010-07-23)}
20862 @cindex AI-0009 (Ada 2012 feature)
20864 @noindent
20865   This AI introduces the new pragmas @code{Independent} and
20866   @code{Independent_Components},
20867   which control guaranteeing independence of access to objects and components.
20868   The AI also requires independence not unaffected by confirming rep clauses.
20870 @noindent
20871   RM References:  9.10 (1)   13.01 (15/1)   13.02 (9)   13.03 (13)   C.06 (2)
20872   C.06 (4)   C.06 (6)   C.06 (9)   C.06 (13)   C.06 (14)
20875 @item
20876 @emph{AI-0072 Task signalling using 'Terminated (0000-00-00)}
20877 @cindex AI-0072 (Ada 2012 feature)
20879 @noindent
20880   This AI clarifies that task signalling for reading @code{'Terminated} only
20881   occurs if the result is True. GNAT semantics has always been consistent with
20882   this notion of task signalling.
20884 @noindent
20885   RM References:  9.10 (6.1/1)
20887 @item
20888 @emph{AI-0108 Limited incomplete view and discriminants (0000-00-00)}
20889 @cindex AI-0108 (Ada 2012 feature)
20891 @noindent
20892   This AI confirms that an incomplete type from a limited view does not have
20893   discriminants. This has always been the case in GNAT.
20895 @noindent
20896   RM References:  10.01.01 (12.3/2)
20898 @item
20899 @emph{AI-0129 Limited views and incomplete types (0000-00-00)}
20900 @cindex AI-0129 (Ada 2012 feature)
20902 @noindent
20903   This AI clarifies the description of limited views: a limited view of a
20904   package includes only one view of a type that has an incomplete declaration
20905   and a full declaration (there is no possible ambiguity in a client package).
20906   This AI also fixes an omission: a nested package in the private part has no
20907   limited view. GNAT always implemented this correctly.
20909 @noindent
20910   RM References:  10.01.01 (12.2/2)   10.01.01 (12.3/2)
20914 @item
20915 @emph{AI-0077 Limited withs and scope of declarations (0000-00-00)}
20916 @cindex AI-0077 (Ada 2012 feature)
20918 @noindent
20919   This AI clarifies that a declaration does not include a context clause,
20920   and confirms that it is illegal to have a context in which both a limited
20921   and a nonlimited view of a package are accessible. Such double visibility
20922   was always rejected by GNAT.
20924 @noindent
20925   RM References:  10.01.02 (12/2)   10.01.02 (21/2)   10.01.02 (22/2)
20927 @item
20928 @emph{AI-0122 Private with and children of generics (0000-00-00)}
20929 @cindex AI-0122 (Ada 2012 feature)
20931 @noindent
20932   This AI clarifies the visibility of private children of generic units within
20933   instantiations of a parent. GNAT has always handled this correctly.
20935 @noindent
20936   RM References:  10.01.02 (12/2)
20940 @item
20941 @emph{AI-0040 Limited with clauses on descendant (0000-00-00)}
20942 @cindex AI-0040 (Ada 2012 feature)
20944 @noindent
20945   This AI confirms that a limited with clause in a child unit cannot name
20946   an ancestor of the unit. This has always been checked in GNAT.
20948 @noindent
20949   RM References:  10.01.02 (20/2)
20951 @item
20952 @emph{AI-0132 Placement of library unit pragmas (0000-00-00)}
20953 @cindex AI-0132 (Ada 2012 feature)
20955 @noindent
20956   This AI fills a gap in the description of library unit pragmas. The pragma
20957   clearly must apply to a library unit, even if it does not carry the name
20958   of the enclosing unit. GNAT has always enforced the required check.
20960 @noindent
20961   RM References:  10.01.05 (7)
20964 @item
20965 @emph{AI-0034 Categorization of limited views (0000-00-00)}
20966 @cindex AI-0034 (Ada 2012 feature)
20968 @noindent
20969   The RM makes certain limited with clauses illegal because of categorization
20970   considerations, when the corresponding normal with would be legal. This is
20971   not intended, and GNAT has always implemented the recommended behavior.
20973 @noindent
20974   RM References:  10.02.01 (11/1)   10.02.01 (17/2)
20977 @item
20978 @emph{AI-0035 Inconsistencies with Pure units (0000-00-00)}
20979 @cindex AI-0035 (Ada 2012 feature)
20981 @noindent
20982   This AI remedies some inconsistencies in the legality rules for Pure units.
20983   Derived access types are legal in a pure unit (on the assumption that the
20984   rule for a zero storage pool size has been enforced on the ancestor type).
20985   The rules are enforced in generic instances and in subunits. GNAT has always
20986   implemented the recommended behavior.
20988 @noindent
20989   RM References:  10.02.01 (15.1/2)   10.02.01 (15.4/2)   10.02.01 (15.5/2)   10.02.01 (17/2)
20992 @item
20993 @emph{AI-0219 Pure permissions and limited parameters (2010-05-25)}
20994 @cindex AI-0219 (Ada 2012 feature)
20996 @noindent
20997   This AI refines the rules for the cases with limited parameters which do not
20998   allow the implementations to omit ``redundant''. GNAT now properly conforms
20999   to the requirements of this binding interpretation.
21001 @noindent
21002   RM References:  10.02.01 (18/2)
21004 @item
21005 @emph{AI-0043 Rules about raising exceptions (0000-00-00)}
21006 @cindex AI-0043 (Ada 2012 feature)
21008 @noindent
21009   This AI covers various omissions in the RM regarding the raising of
21010   exceptions. GNAT has always implemented the intended semantics.
21012 @noindent
21013   RM References:  11.04.01 (10.1/2)   11 (2)
21016 @item
21017 @emph{AI-0200 Mismatches in formal package declarations (0000-00-00)}
21018 @cindex AI-0200 (Ada 2012 feature)
21020 @noindent
21021   This AI plugs a gap in the RM which appeared to allow some obviously intended
21022   illegal instantiations. GNAT has never allowed these instantiations.
21024 @noindent
21025   RM References:  12.07 (16)
21028 @item
21029 @emph{AI-0112 Detection of duplicate pragmas (2010-07-24)}
21030 @cindex AI-0112 (Ada 2012 feature)
21032 @noindent
21033   This AI concerns giving names to various representation aspects, but the
21034   practical effect is simply to make the use of duplicate
21035   @code{Atomic}[@code{_Components}],
21036   @code{Volatile}[@code{_Components}] and
21037   @code{Independent}[@code{_Components}] pragmas illegal, and GNAT
21038   now performs this required check.
21040 @noindent
21041   RM References:  13.01 (8)
21043 @item
21044 @emph{AI-0106 No representation pragmas on generic formals (0000-00-00)}
21045 @cindex AI-0106 (Ada 2012 feature)
21047 @noindent
21048   The RM appeared to allow representation pragmas on generic formal parameters,
21049   but this was not intended, and GNAT has never permitted this usage.
21051 @noindent
21052   RM References:  13.01 (9.1/1)
21055 @item
21056 @emph{AI-0012 Pack/Component_Size for aliased/atomic (2010-07-15)}
21057 @cindex AI-0012 (Ada 2012 feature)
21059 @noindent
21060   It is now illegal to give an inappropriate component size or a pragma
21061   @code{Pack} that attempts to change the component size in the case of atomic
21062   or aliased components. Previously GNAT ignored such an attempt with a
21063   warning.
21065 @noindent
21066   RM References:  13.02 (6.1/2)   13.02 (7)   C.06 (10)   C.06 (11)   C.06 (21)
21069 @item
21070 @emph{AI-0039 Stream attributes cannot be dynamic (0000-00-00)}
21071 @cindex AI-0039 (Ada 2012 feature)
21073 @noindent
21074   The RM permitted the use of dynamic expressions (such as @code{ptr.@b{all})}
21075   for stream attributes, but these were never useful and are now illegal. GNAT
21076   has always regarded such expressions as illegal.
21078 @noindent
21079   RM References:  13.03 (4)   13.03 (6)   13.13.02 (38/2)
21082 @item
21083 @emph{AI-0095 Address of intrinsic subprograms (0000-00-00)}
21084 @cindex AI-0095 (Ada 2012 feature)
21086 @noindent
21087   The prefix of @code{'Address} cannot statically denote a subprogram with
21088   convention @code{Intrinsic}. The use of the @code{Address} attribute raises
21089   @code{Program_Error} if the prefix denotes a subprogram with convention
21090   @code{Intrinsic}.
21092 @noindent
21093   RM References:  13.03 (11/1)
21096 @item
21097 @emph{AI-0116 Alignment of class-wide objects (0000-00-00)}
21098 @cindex AI-0116 (Ada 2012 feature)
21100 @noindent
21101   This AI requires that the alignment of a class-wide object be no greater
21102   than the alignment of any type in the class. GNAT has always followed this
21103   recommendation.
21105 @noindent
21106   RM References:  13.03 (29)   13.11 (16)
21109 @item
21110 @emph{AI-0146 Type invariants (2009-09-21)}
21111 @cindex AI-0146 (Ada 2012 feature)
21113 @noindent
21114   Type invariants may be specified for private types using the aspect notation.
21115   Aspect @code{Type_Invariant} may be specified for any private type,
21116   @code{Type_Invariant'Class} can
21117   only be specified for tagged types, and is inherited by any descendent of the
21118   tagged types. The invariant is a boolean expression that is tested for being
21119   true in the following situations: conversions to the private type, object
21120   declarations for the private type that are default initialized, and
21121   [@b{in}] @b{out}
21122   parameters and returned result on return from any primitive operation for
21123   the type that is visible to a client.
21124   GNAT defines the synonyms @code{Invariant} for @code{Type_Invariant} and
21125   @code{Invariant'Class} for @code{Type_Invariant'Class}.
21127 @noindent
21128   RM References:  13.03.03 (00)
21130 @item
21131 @emph{AI-0078 Relax Unchecked_Conversion alignment rules (0000-00-00)}
21132 @cindex AI-0078 (Ada 2012 feature)
21134 @noindent
21135   In Ada 2012, compilers are required to support unchecked conversion where the
21136   target alignment is a multiple of the source alignment. GNAT always supported
21137   this case (and indeed all cases of differing alignments, doing copies where
21138   required if the alignment was reduced).
21140 @noindent
21141   RM References:  13.09 (7)
21144 @item
21145 @emph{AI-0195 Invalid value handling is implementation defined (2010-07-03)}
21146 @cindex AI-0195 (Ada 2012 feature)
21148 @noindent
21149   The handling of invalid values is now designated to be implementation
21150   defined. This is a documentation change only, requiring Annex M in the GNAT
21151   Reference Manual to document this handling.
21152   In GNAT, checks for invalid values are made
21153   only when necessary to avoid erroneous behavior. Operations like assignments
21154   which cannot cause erroneous behavior ignore the possibility of invalid
21155   values and do not do a check. The date given above applies only to the
21156   documentation change, this behavior has always been implemented by GNAT.
21158 @noindent
21159   RM References:  13.09.01 (10)
21161 @item
21162 @emph{AI-0193 Alignment of allocators (2010-09-16)}
21163 @cindex AI-0193 (Ada 2012 feature)
21165 @noindent
21166   This AI introduces a new attribute @code{Max_Alignment_For_Allocation},
21167   analogous to @code{Max_Size_In_Storage_Elements}, but for alignment instead
21168   of size.
21170 @noindent
21171   RM References:  13.11 (16)   13.11 (21)   13.11.01 (0)   13.11.01 (1)
21172   13.11.01 (2)   13.11.01 (3)
21175 @item
21176 @emph{AI-0177 Parameterized expressions (2010-07-10)}
21177 @cindex AI-0177 (Ada 2012 feature)
21179 @noindent
21180   The new Ada 2012 notion of parameterized expressions is implemented. The form
21181   is:
21182 @smallexample
21183   @i{function specification} @b{is} (@i{expression})
21184 @end smallexample
21186 @noindent
21187   This is exactly equivalent to the
21188   corresponding function body that returns the expression, but it can appear
21189   in a package spec. Note that the expression must be parenthesized.
21191 @noindent
21192   RM References:  13.11.01 (3/2)
21194 @item
21195 @emph{AI-0033 Attach/Interrupt_Handler in generic (2010-07-24)}
21196 @cindex AI-0033 (Ada 2012 feature)
21198 @noindent
21199   Neither of these two pragmas may appear within a generic template, because
21200   the generic might be instantiated at other than the library level.
21202 @noindent
21203   RM References:  13.11.02 (16)   C.03.01 (7/2)   C.03.01 (8/2)
21206 @item
21207 @emph{AI-0161 Restriction No_Default_Stream_Attributes (2010-09-11)}
21208 @cindex AI-0161 (Ada 2012 feature)
21210 @noindent
21211   A new restriction @code{No_Default_Stream_Attributes} prevents the use of any
21212   of the default stream attributes for elementary types. If this restriction is
21213   in force, then it is necessary to provide explicit subprograms for any
21214   stream attributes used.
21216 @noindent
21217   RM References:  13.12.01 (4/2)   13.13.02 (40/2)   13.13.02 (52/2)
21219 @item
21220 @emph{AI-0194 Value of Stream_Size attribute (0000-00-00)}
21221 @cindex AI-0194 (Ada 2012 feature)
21223 @noindent
21224   The @code{Stream_Size} attribute returns the default number of bits in the
21225   stream representation of the given type.
21226   This value is not affected by the presence
21227   of stream subprogram attributes for the type. GNAT has always implemented
21228   this interpretation.
21230 @noindent
21231   RM References:  13.13.02 (1.2/2)
21233 @item
21234 @emph{AI-0109 Redundant check in S'Class'Input (0000-00-00)}
21235 @cindex AI-0109 (Ada 2012 feature)
21237 @noindent
21238   This AI is an editorial change only. It removes the need for a tag check
21239   that can never fail.
21241 @noindent
21242   RM References:  13.13.02 (34/2)
21244 @item
21245 @emph{AI-0007 Stream read and private scalar types (0000-00-00)}
21246 @cindex AI-0007 (Ada 2012 feature)
21248 @noindent
21249   The RM as written appeared to limit the possibilities of declaring read
21250   attribute procedures for private scalar types. This limitation was not
21251   intended, and has never been enforced by GNAT.
21253 @noindent
21254   RM References:  13.13.02 (50/2)   13.13.02 (51/2)
21257 @item
21258 @emph{AI-0065 Remote access types and external streaming (0000-00-00)}
21259 @cindex AI-0065 (Ada 2012 feature)
21261 @noindent
21262   This AI clarifies the fact that all remote access types support external
21263   streaming. This fixes an obvious oversight in the definition of the
21264   language, and GNAT always implemented the intended correct rules.
21266 @noindent
21267   RM References:  13.13.02 (52/2)
21269 @item
21270 @emph{AI-0019 Freezing of primitives for tagged types (0000-00-00)}
21271 @cindex AI-0019 (Ada 2012 feature)
21273 @noindent
21274   The RM suggests that primitive subprograms of a specific tagged type are
21275   frozen when the tagged type is frozen. This would be an incompatible change
21276   and is not intended. GNAT has never attempted this kind of freezing and its
21277   behavior is consistent with the recommendation of this AI.
21279 @noindent
21280   RM References:  13.14 (2)   13.14 (3/1)   13.14 (8.1/1)   13.14 (10)   13.14 (14)   13.14 (15.1/2)
21282 @item
21283 @emph{AI-0017 Freezing and incomplete types (0000-00-00)}
21284 @cindex AI-0017 (Ada 2012 feature)
21286 @noindent
21287   So-called ``Taft-amendment types'' (i.e., types that are completed in package
21288   bodies) are not frozen by the occurrence of bodies in the
21289   enclosing declarative part. GNAT always implemented this properly.
21291 @noindent
21292   RM References:  13.14 (3/1)
21295 @item
21296 @emph{AI-0060 Extended definition of remote access types (0000-00-00)}
21297 @cindex AI-0060 (Ada 2012 feature)
21299 @noindent
21300   This AI extends the definition of remote access types to include access
21301   to limited, synchronized, protected or task class-wide interface types.
21302   GNAT already implemented this extension.
21304 @noindent
21305   RM References:  A (4)   E.02.02 (9/1)   E.02.02 (9.2/1)   E.02.02 (14/2)   E.02.02 (18)
21307 @item
21308 @emph{AI-0114 Classification of letters (0000-00-00)}
21309 @cindex AI-0114 (Ada 2012 feature)
21311 @noindent
21312   The code points 170 (@code{FEMININE ORDINAL INDICATOR}),
21313   181 (@code{MICRO SIGN}), and
21314   186 (@code{MASCULINE ORDINAL INDICATOR}) are technically considered
21315   lower case letters by Unicode.
21316   However, they are not allowed in identifiers, and they
21317   return @code{False} to @code{Ada.Characters.Handling.Is_Letter/Is_Lower}.
21318   This behavior is consistent with that defined in Ada 95.
21320 @noindent
21321   RM References:  A.03.02 (59)   A.04.06 (7)
21324 @item
21325 @emph{AI-0185 Ada.Wide_[Wide_]Characters.Handling (2010-07-06)}
21326 @cindex AI-0185 (Ada 2012 feature)
21328 @noindent
21329   Two new packages @code{Ada.Wide_[Wide_]Characters.Handling} provide
21330   classification functions for @code{Wide_Character} and
21331   @code{Wide_Wide_Character}, as well as providing
21332   case folding routines for @code{Wide_[Wide_]Character} and
21333   @code{Wide_[Wide_]String}.
21335 @noindent
21336   RM References:  A.03.05 (0)   A.03.06 (0)
21339 @item
21340 @emph{AI-0031 Add From parameter to Find_Token (2010-07-25)}
21341 @cindex AI-0031 (Ada 2012 feature)
21343 @noindent
21344   A new version of @code{Find_Token} is added to all relevant string packages,
21345   with an extra parameter @code{From}. Instead of starting at the first
21346   character of the string, the search for a matching Token starts at the
21347   character indexed by the value of @code{From}.
21348   These procedures are available in all versions of Ada
21349   but if used in versions earlier than Ada 2012 they will generate a warning
21350   that an Ada 2012 subprogram is being used.
21352 @noindent
21353   RM References:  A.04.03 (16)   A.04.03 (67)   A.04.03 (68/1)   A.04.04 (51)
21354   A.04.05 (46)
21357 @item
21358 @emph{AI-0056 Index on null string returns zero (0000-00-00)}
21359 @cindex AI-0056 (Ada 2012 feature)
21361 @noindent
21362   The wording in the Ada 2005 RM implied an incompatible handling of the
21363   @code{Index} functions, resulting in raising an exception instead of
21364   returning zero in some situations.
21365   This was not intended and has been corrected.
21366   GNAT always returned zero, and is thus consistent with this AI.
21368 @noindent
21369   RM References:  A.04.03 (56.2/2)   A.04.03 (58.5/2)
21372 @item
21373 @emph{AI-0137 String encoding package (2010-03-25)}
21374 @cindex AI-0137 (Ada 2012 feature)
21376 @noindent
21377   The packages @code{Ada.Strings.UTF_Encoding}, together with its child
21378   packages, @code{Conversions}, @code{Strings}, @code{Wide_Strings},
21379   and @code{Wide_Wide_Strings} have been
21380   implemented. These packages (whose documentation can be found in the spec
21381   files @file{a-stuten.ads}, @file{a-suenco.ads}, @file{a-suenst.ads},
21382   @file{a-suewst.ads}, @file{a-suezst.ads}) allow encoding and decoding of
21383   @code{String}, @code{Wide_String}, and @code{Wide_Wide_String}
21384   values using UTF coding schemes (including UTF-8, UTF-16LE, UTF-16BE, and
21385   UTF-16), as well as conversions between the different UTF encodings. With
21386   the exception of @code{Wide_Wide_Strings}, these packages are available in
21387   Ada 95 and Ada 2005 mode as well as Ada 2012 mode.
21388   The @code{Wide_Wide_Strings package}
21389   is available in Ada 2005 mode as well as Ada 2012 mode (but not in Ada 95
21390   mode since it uses @code{Wide_Wide_Character}).
21392 @noindent
21393   RM References:  A.04.11
21395 @item
21396 @emph{AI-0038 Minor errors in Text_IO (0000-00-00)}
21397 @cindex AI-0038 (Ada 2012 feature)
21399 @noindent
21400   These are minor errors in the description on three points. The intent on
21401   all these points has always been clear, and GNAT has always implemented the
21402   correct intended semantics.
21404 @noindent
21405   RM References:  A.10.05 (37)   A.10.07 (8/1)   A.10.07 (10)   A.10.07 (12)   A.10.08 (10)   A.10.08 (24)
21407 @item
21408 @emph{AI-0044 Restrictions on container instantiations (0000-00-00)}
21409 @cindex AI-0044 (Ada 2012 feature)
21411 @noindent
21412   This AI places restrictions on allowed instantiations of generic containers.
21413   These restrictions are not checked by the compiler, so there is nothing to
21414   change in the implementation. This affects only the RM documentation.
21416 @noindent
21417   RM References:  A.18 (4/2)   A.18.02 (231/2)   A.18.03 (145/2)   A.18.06 (56/2)   A.18.08 (66/2)   A.18.09 (79/2)   A.18.26 (5/2)   A.18.26 (9/2)
21419 @item
21420 @emph{AI-0127 Adding Locale Capabilities (2010-09-29)}
21421 @cindex AI-0127 (Ada 2012 feature)
21423 @noindent
21424   This package provides an interface for identifying the current locale.
21426 @noindent
21427   RM References:  A.19    A.19.01    A.19.02    A.19.03    A.19.05    A.19.06
21428   A.19.07    A.19.08    A.19.09    A.19.10    A.19.11    A.19.12    A.19.13
21432 @item
21433 @emph{AI-0002 Export C with unconstrained arrays (0000-00-00)}
21434 @cindex AI-0002 (Ada 2012 feature)
21436 @noindent
21437   The compiler is not required to support exporting an Ada subprogram with
21438   convention C if there are parameters or a return type of an unconstrained
21439   array type (such as @code{String}). GNAT allows such declarations but
21440   generates warnings. It is possible, but complicated, to write the
21441   corresponding C code and certainly such code would be specific to GNAT and
21442   non-portable.
21444 @noindent
21445   RM References:  B.01 (17)   B.03 (62)   B.03 (71.1/2)
21448 @item
21449 @emph{AI-0216 No_Task_Hierarchy forbids local tasks (0000-00-00)}
21450 @cindex AI05-0216 (Ada 2012 feature)
21452 @noindent
21453   It is clearly the intention that @code{No_Task_Hierarchy} is intended to
21454   forbid tasks declared locally within subprograms, or functions returning task
21455   objects, and that is the implementation that GNAT has always provided.
21456   However the language in the RM was not sufficiently clear on this point.
21457   Thus this is a documentation change in the RM only.
21459 @noindent
21460   RM References:  D.07 (3/3)
21462 @item
21463 @emph{AI-0211 No_Relative_Delays forbids Set_Handler use (2010-07-09)}
21464 @cindex AI-0211 (Ada 2012 feature)
21466 @noindent
21467   The restriction @code{No_Relative_Delays} forbids any calls to the subprogram
21468   @code{Ada.Real_Time.Timing_Events.Set_Handler}.
21470 @noindent
21471   RM References:  D.07 (5)   D.07 (10/2)   D.07 (10.4/2)   D.07 (10.7/2)
21473 @item
21474 @emph{AI-0190 pragma Default_Storage_Pool (2010-09-15)}
21475 @cindex AI-0190 (Ada 2012 feature)
21477 @noindent
21478   This AI introduces a new pragma @code{Default_Storage_Pool}, which can be
21479   used to control storage pools globally.
21480   In particular, you can force every access
21481   type that is used for allocation (@b{new}) to have an explicit storage pool,
21482   or you can declare a pool globally to be used for all access types that lack
21483   an explicit one.
21485 @noindent
21486   RM References:  D.07 (8)
21488 @item
21489 @emph{AI-0189 No_Allocators_After_Elaboration (2010-01-23)}
21490 @cindex AI-0189 (Ada 2012 feature)
21492 @noindent
21493   This AI introduces a new restriction @code{No_Allocators_After_Elaboration},
21494   which says that no dynamic allocation will occur once elaboration is
21495   completed.
21496   In general this requires a run-time check, which is not required, and which
21497   GNAT does not attempt. But the static cases of allocators in a task body or
21498   in the body of the main program are detected and flagged at compile or bind
21499   time.
21501 @noindent
21502   RM References:  D.07 (19.1/2)   H.04 (23.3/2)
21504 @item
21505 @emph{AI-0171 Pragma CPU and Ravenscar Profile (2010-09-24)}
21506 @cindex AI-0171 (Ada 2012 feature)
21508 @noindent
21509   A new package @code{System.Multiprocessors} is added, together with the
21510   definition of pragma @code{CPU} for controlling task affinity. A new no
21511   dependence restriction, on @code{System.Multiprocessors.Dispatching_Domains},
21512   is added to the Ravenscar profile.
21514 @noindent
21515   RM References:  D.13.01 (4/2)   D.16
21518 @item
21519 @emph{AI-0210 Correct Timing_Events metric (0000-00-00)}
21520 @cindex AI-0210 (Ada 2012 feature)
21522 @noindent
21523   This is a documentation only issue regarding wording of metric requirements,
21524   that does not affect the implementation of the compiler.
21526 @noindent
21527   RM References:  D.15 (24/2)
21530 @item
21531 @emph{AI-0206 Remote types packages and preelaborate (2010-07-24)}
21532 @cindex AI-0206 (Ada 2012 feature)
21534 @noindent
21535   Remote types packages are now allowed to depend on preelaborated packages.
21536   This was formerly considered illegal.
21538 @noindent
21539   RM References:  E.02.02 (6)
21543 @item
21544 @emph{AI-0152 Restriction No_Anonymous_Allocators (2010-09-08)}
21545 @cindex AI-0152 (Ada 2012 feature)
21547 @noindent
21548   Restriction @code{No_Anonymous_Allocators} prevents the use of allocators
21549   where the type of the returned value is an anonymous access type.
21551 @noindent
21552   RM References:  H.04 (8/1)
21553 @end itemize
21556 @node Obsolescent Features
21557 @chapter Obsolescent Features
21559 @noindent
21560 This chapter describes features that are provided by GNAT, but are
21561 considered obsolescent since there are preferred ways of achieving
21562 the same effect. These features are provided solely for historical
21563 compatibility purposes.
21565 @menu
21566 * pragma No_Run_Time::
21567 * pragma Ravenscar::
21568 * pragma Restricted_Run_Time::
21569 @end menu
21571 @node pragma No_Run_Time
21572 @section pragma No_Run_Time
21574 The pragma @code{No_Run_Time} is used to achieve an affect similar
21575 to the use of the "Zero Foot Print" configurable run time, but without
21576 requiring a specially configured run time. The result of using this
21577 pragma, which must be used for all units in a partition, is to restrict
21578 the use of any language features requiring run-time support code. The
21579 preferred usage is to use an appropriately configured run-time that
21580 includes just those features that are to be made accessible.
21582 @node pragma Ravenscar
21583 @section pragma Ravenscar
21585 The pragma @code{Ravenscar} has exactly the same effect as pragma
21586 @code{Profile (Ravenscar)}. The latter usage is preferred since it
21587 is part of the new Ada 2005 standard.
21589 @node pragma Restricted_Run_Time
21590 @section pragma Restricted_Run_Time
21592 The pragma @code{Restricted_Run_Time} has exactly the same effect as
21593 pragma @code{Profile (Restricted)}. The latter usage is
21594 preferred since the Ada 2005 pragma @code{Profile} is intended for
21595 this kind of implementation dependent addition.
21597 @include fdl.texi
21598 @c GNU Free Documentation License
21600 @node Index,,GNU Free Documentation License, Top
21601 @unnumbered Index
21603 @printindex cp
21605 @contents
21607 @bye
21608 tablishes the following set of restrictions:
21609 Pragma Shared