* configure.ac (HAVE_GAS_CFI_DIRECTIVE): Always test for assembler
[official-gcc.git] / gcc / tree-ssa-propagate.c
blob611f2b2847d181a9253fe1b3cdcf9e7c1c0ba150
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
41 #include "varray.h"
42 #include "vec.h"
43 #include "value-prof.h"
44 #include "gimple.h"
46 /* This file implements a generic value propagation engine based on
47 the same propagation used by the SSA-CCP algorithm [1].
49 Propagation is performed by simulating the execution of every
50 statement that produces the value being propagated. Simulation
51 proceeds as follows:
53 1- Initially, all edges of the CFG are marked not executable and
54 the CFG worklist is seeded with all the statements in the entry
55 basic block (block 0).
57 2- Every statement S is simulated with a call to the call-back
58 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
59 results:
61 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
62 interest and does not affect any of the work lists.
64 SSA_PROP_VARYING: The value produced by S cannot be determined
65 at compile time. Further simulation of S is not required.
66 If S is a conditional jump, all the outgoing edges for the
67 block are considered executable and added to the work
68 list.
70 SSA_PROP_INTERESTING: S produces a value that can be computed
71 at compile time. Its result can be propagated into the
72 statements that feed from S. Furthermore, if S is a
73 conditional jump, only the edge known to be taken is added
74 to the work list. Edges that are known not to execute are
75 never simulated.
77 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
78 return value from SSA_PROP_VISIT_PHI has the same semantics as
79 described in #2.
81 4- Three work lists are kept. Statements are only added to these
82 lists if they produce one of SSA_PROP_INTERESTING or
83 SSA_PROP_VARYING.
85 CFG_BLOCKS contains the list of blocks to be simulated.
86 Blocks are added to this list if their incoming edges are
87 found executable.
89 VARYING_SSA_EDGES contains the list of statements that feed
90 from statements that produce an SSA_PROP_VARYING result.
91 These are simulated first to speed up processing.
93 INTERESTING_SSA_EDGES contains the list of statements that
94 feed from statements that produce an SSA_PROP_INTERESTING
95 result.
97 5- Simulation terminates when all three work lists are drained.
99 Before calling ssa_propagate, it is important to clear
100 prop_simulate_again_p for all the statements in the program that
101 should be simulated. This initialization allows an implementation
102 to specify which statements should never be simulated.
104 It is also important to compute def-use information before calling
105 ssa_propagate.
107 References:
109 [1] Constant propagation with conditional branches,
110 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
112 [2] Building an Optimizing Compiler,
113 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
115 [3] Advanced Compiler Design and Implementation,
116 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
118 /* Function pointers used to parameterize the propagation engine. */
119 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
120 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
122 /* Keep track of statements that have been added to one of the SSA
123 edges worklists. This flag is used to avoid visiting statements
124 unnecessarily when draining an SSA edge worklist. If while
125 simulating a basic block, we find a statement with
126 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
127 processing from visiting it again.
129 NOTE: users of the propagation engine are not allowed to use
130 the GF_PLF_1 flag. */
131 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
133 /* A bitmap to keep track of executable blocks in the CFG. */
134 static sbitmap executable_blocks;
136 /* Array of control flow edges on the worklist. */
137 static VEC(basic_block,heap) *cfg_blocks;
139 static unsigned int cfg_blocks_num = 0;
140 static int cfg_blocks_tail;
141 static int cfg_blocks_head;
143 static sbitmap bb_in_list;
145 /* Worklist of SSA edges which will need reexamination as their
146 definition has changed. SSA edges are def-use edges in the SSA
147 web. For each D-U edge, we store the target statement or PHI node
148 U. */
149 static GTY(()) VEC(gimple,gc) *interesting_ssa_edges;
151 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
152 list of SSA edges is split into two. One contains all SSA edges
153 who need to be reexamined because their lattice value changed to
154 varying (this worklist), and the other contains all other SSA edges
155 to be reexamined (INTERESTING_SSA_EDGES).
157 Since most values in the program are VARYING, the ideal situation
158 is to move them to that lattice value as quickly as possible.
159 Thus, it doesn't make sense to process any other type of lattice
160 value until all VARYING values are propagated fully, which is one
161 thing using the VARYING worklist achieves. In addition, if we
162 don't use a separate worklist for VARYING edges, we end up with
163 situations where lattice values move from
164 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
165 static GTY(()) VEC(gimple,gc) *varying_ssa_edges;
168 /* Return true if the block worklist empty. */
170 static inline bool
171 cfg_blocks_empty_p (void)
173 return (cfg_blocks_num == 0);
177 /* Add a basic block to the worklist. The block must not be already
178 in the worklist, and it must not be the ENTRY or EXIT block. */
180 static void
181 cfg_blocks_add (basic_block bb)
183 bool head = false;
185 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
186 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
188 if (cfg_blocks_empty_p ())
190 cfg_blocks_tail = cfg_blocks_head = 0;
191 cfg_blocks_num = 1;
193 else
195 cfg_blocks_num++;
196 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
198 /* We have to grow the array now. Adjust to queue to occupy
199 the full space of the original array. We do not need to
200 initialize the newly allocated portion of the array
201 because we keep track of CFG_BLOCKS_HEAD and
202 CFG_BLOCKS_HEAD. */
203 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
204 cfg_blocks_head = 0;
205 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
207 /* Minor optimization: we prefer to see blocks with more
208 predecessors later, because there is more of a chance that
209 the incoming edges will be executable. */
210 else if (EDGE_COUNT (bb->preds)
211 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
212 cfg_blocks_head)->preds))
213 cfg_blocks_tail = ((cfg_blocks_tail + 1)
214 % VEC_length (basic_block, cfg_blocks));
215 else
217 if (cfg_blocks_head == 0)
218 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
219 --cfg_blocks_head;
220 head = true;
224 VEC_replace (basic_block, cfg_blocks,
225 head ? cfg_blocks_head : cfg_blocks_tail,
226 bb);
227 SET_BIT (bb_in_list, bb->index);
231 /* Remove a block from the worklist. */
233 static basic_block
234 cfg_blocks_get (void)
236 basic_block bb;
238 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
240 gcc_assert (!cfg_blocks_empty_p ());
241 gcc_assert (bb);
243 cfg_blocks_head = ((cfg_blocks_head + 1)
244 % VEC_length (basic_block, cfg_blocks));
245 --cfg_blocks_num;
246 RESET_BIT (bb_in_list, bb->index);
248 return bb;
252 /* We have just defined a new value for VAR. If IS_VARYING is true,
253 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
254 them to INTERESTING_SSA_EDGES. */
256 static void
257 add_ssa_edge (tree var, bool is_varying)
259 imm_use_iterator iter;
260 use_operand_p use_p;
262 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
264 gimple use_stmt = USE_STMT (use_p);
266 if (prop_simulate_again_p (use_stmt)
267 && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST))
269 gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true);
270 if (is_varying)
271 VEC_safe_push (gimple, gc, varying_ssa_edges, use_stmt);
272 else
273 VEC_safe_push (gimple, gc, interesting_ssa_edges, use_stmt);
279 /* Add edge E to the control flow worklist. */
281 static void
282 add_control_edge (edge e)
284 basic_block bb = e->dest;
285 if (bb == EXIT_BLOCK_PTR)
286 return;
288 /* If the edge had already been executed, skip it. */
289 if (e->flags & EDGE_EXECUTABLE)
290 return;
292 e->flags |= EDGE_EXECUTABLE;
294 /* If the block is already in the list, we're done. */
295 if (TEST_BIT (bb_in_list, bb->index))
296 return;
298 cfg_blocks_add (bb);
300 if (dump_file && (dump_flags & TDF_DETAILS))
301 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
302 e->src->index, e->dest->index);
306 /* Simulate the execution of STMT and update the work lists accordingly. */
308 static void
309 simulate_stmt (gimple stmt)
311 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
312 edge taken_edge = NULL;
313 tree output_name = NULL_TREE;
315 /* Don't bother visiting statements that are already
316 considered varying by the propagator. */
317 if (!prop_simulate_again_p (stmt))
318 return;
320 if (gimple_code (stmt) == GIMPLE_PHI)
322 val = ssa_prop_visit_phi (stmt);
323 output_name = gimple_phi_result (stmt);
325 else
326 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
328 if (val == SSA_PROP_VARYING)
330 prop_set_simulate_again (stmt, false);
332 /* If the statement produced a new varying value, add the SSA
333 edges coming out of OUTPUT_NAME. */
334 if (output_name)
335 add_ssa_edge (output_name, true);
337 /* If STMT transfers control out of its basic block, add
338 all outgoing edges to the work list. */
339 if (stmt_ends_bb_p (stmt))
341 edge e;
342 edge_iterator ei;
343 basic_block bb = gimple_bb (stmt);
344 FOR_EACH_EDGE (e, ei, bb->succs)
345 add_control_edge (e);
348 else if (val == SSA_PROP_INTERESTING)
350 /* If the statement produced new value, add the SSA edges coming
351 out of OUTPUT_NAME. */
352 if (output_name)
353 add_ssa_edge (output_name, false);
355 /* If we know which edge is going to be taken out of this block,
356 add it to the CFG work list. */
357 if (taken_edge)
358 add_control_edge (taken_edge);
362 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
363 drain. This pops statements off the given WORKLIST and processes
364 them until there are no more statements on WORKLIST.
365 We take a pointer to WORKLIST because it may be reallocated when an
366 SSA edge is added to it in simulate_stmt. */
368 static void
369 process_ssa_edge_worklist (VEC(gimple,gc) **worklist)
371 /* Drain the entire worklist. */
372 while (VEC_length (gimple, *worklist) > 0)
374 basic_block bb;
376 /* Pull the statement to simulate off the worklist. */
377 gimple stmt = VEC_pop (gimple, *worklist);
379 /* If this statement was already visited by simulate_block, then
380 we don't need to visit it again here. */
381 if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
382 continue;
384 /* STMT is no longer in a worklist. */
385 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
387 if (dump_file && (dump_flags & TDF_DETAILS))
389 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
390 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
393 bb = gimple_bb (stmt);
395 /* PHI nodes are always visited, regardless of whether or not
396 the destination block is executable. Otherwise, visit the
397 statement only if its block is marked executable. */
398 if (gimple_code (stmt) == GIMPLE_PHI
399 || TEST_BIT (executable_blocks, bb->index))
400 simulate_stmt (stmt);
405 /* Simulate the execution of BLOCK. Evaluate the statement associated
406 with each variable reference inside the block. */
408 static void
409 simulate_block (basic_block block)
411 gimple_stmt_iterator gsi;
413 /* There is nothing to do for the exit block. */
414 if (block == EXIT_BLOCK_PTR)
415 return;
417 if (dump_file && (dump_flags & TDF_DETAILS))
418 fprintf (dump_file, "\nSimulating block %d\n", block->index);
420 /* Always simulate PHI nodes, even if we have simulated this block
421 before. */
422 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
423 simulate_stmt (gsi_stmt (gsi));
425 /* If this is the first time we've simulated this block, then we
426 must simulate each of its statements. */
427 if (!TEST_BIT (executable_blocks, block->index))
429 gimple_stmt_iterator j;
430 unsigned int normal_edge_count;
431 edge e, normal_edge;
432 edge_iterator ei;
434 /* Note that we have simulated this block. */
435 SET_BIT (executable_blocks, block->index);
437 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
439 gimple stmt = gsi_stmt (j);
441 /* If this statement is already in the worklist then
442 "cancel" it. The reevaluation implied by the worklist
443 entry will produce the same value we generate here and
444 thus reevaluating it again from the worklist is
445 pointless. */
446 if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
447 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
449 simulate_stmt (stmt);
452 /* We can not predict when abnormal edges will be executed, so
453 once a block is considered executable, we consider any
454 outgoing abnormal edges as executable.
456 At the same time, if this block has only one successor that is
457 reached by non-abnormal edges, then add that successor to the
458 worklist. */
459 normal_edge_count = 0;
460 normal_edge = NULL;
461 FOR_EACH_EDGE (e, ei, block->succs)
463 if (e->flags & EDGE_ABNORMAL)
464 add_control_edge (e);
465 else
467 normal_edge_count++;
468 normal_edge = e;
472 if (normal_edge_count == 1)
473 add_control_edge (normal_edge);
478 /* Initialize local data structures and work lists. */
480 static void
481 ssa_prop_init (void)
483 edge e;
484 edge_iterator ei;
485 basic_block bb;
486 size_t i;
488 /* Worklists of SSA edges. */
489 interesting_ssa_edges = VEC_alloc (gimple, gc, 20);
490 varying_ssa_edges = VEC_alloc (gimple, gc, 20);
492 executable_blocks = sbitmap_alloc (last_basic_block);
493 sbitmap_zero (executable_blocks);
495 bb_in_list = sbitmap_alloc (last_basic_block);
496 sbitmap_zero (bb_in_list);
498 if (dump_file && (dump_flags & TDF_DETAILS))
499 dump_immediate_uses (dump_file);
501 cfg_blocks = VEC_alloc (basic_block, heap, 20);
502 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
504 /* Initialize the values for every SSA_NAME. */
505 for (i = 1; i < num_ssa_names; i++)
506 if (ssa_name (i))
507 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
509 /* Initially assume that every edge in the CFG is not executable.
510 (including the edges coming out of ENTRY_BLOCK_PTR). */
511 FOR_ALL_BB (bb)
513 gimple_stmt_iterator si;
515 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
516 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
518 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
519 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
521 FOR_EACH_EDGE (e, ei, bb->succs)
522 e->flags &= ~EDGE_EXECUTABLE;
525 /* Seed the algorithm by adding the successors of the entry block to the
526 edge worklist. */
527 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
528 add_control_edge (e);
532 /* Free allocated storage. */
534 static void
535 ssa_prop_fini (void)
537 VEC_free (gimple, gc, interesting_ssa_edges);
538 VEC_free (gimple, gc, varying_ssa_edges);
539 VEC_free (basic_block, heap, cfg_blocks);
540 cfg_blocks = NULL;
541 sbitmap_free (bb_in_list);
542 sbitmap_free (executable_blocks);
546 /* Return true if EXPR is an acceptable right-hand-side for a
547 GIMPLE assignment. We validate the entire tree, not just
548 the root node, thus catching expressions that embed complex
549 operands that are not permitted in GIMPLE. This function
550 is needed because the folding routines in fold-const.c
551 may return such expressions in some cases, e.g., an array
552 access with an embedded index addition. It may make more
553 sense to have folding routines that are sensitive to the
554 constraints on GIMPLE operands, rather than abandoning any
555 any attempt to fold if the usual folding turns out to be too
556 aggressive. */
558 bool
559 valid_gimple_rhs_p (tree expr)
561 enum tree_code code = TREE_CODE (expr);
563 switch (TREE_CODE_CLASS (code))
565 case tcc_declaration:
566 if (!is_gimple_variable (expr))
567 return false;
568 break;
570 case tcc_constant:
571 /* All constants are ok. */
572 break;
574 case tcc_binary:
575 case tcc_comparison:
576 if (!is_gimple_val (TREE_OPERAND (expr, 0))
577 || !is_gimple_val (TREE_OPERAND (expr, 1)))
578 return false;
579 break;
581 case tcc_unary:
582 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
583 return false;
584 break;
586 case tcc_expression:
587 switch (code)
589 case ADDR_EXPR:
591 tree t;
592 if (is_gimple_min_invariant (expr))
593 return true;
594 t = TREE_OPERAND (expr, 0);
595 while (handled_component_p (t))
597 /* ??? More checks needed, see the GIMPLE verifier. */
598 if ((TREE_CODE (t) == ARRAY_REF
599 || TREE_CODE (t) == ARRAY_RANGE_REF)
600 && !is_gimple_val (TREE_OPERAND (t, 1)))
601 return false;
602 t = TREE_OPERAND (t, 0);
604 if (!is_gimple_id (t))
605 return false;
607 break;
609 case TRUTH_NOT_EXPR:
610 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
611 return false;
612 break;
614 case TRUTH_AND_EXPR:
615 case TRUTH_XOR_EXPR:
616 case TRUTH_OR_EXPR:
617 if (!is_gimple_val (TREE_OPERAND (expr, 0))
618 || !is_gimple_val (TREE_OPERAND (expr, 1)))
619 return false;
620 break;
622 case EXC_PTR_EXPR:
623 case FILTER_EXPR:
624 break;
626 default:
627 return false;
629 break;
631 case tcc_vl_exp:
632 return false;
634 case tcc_exceptional:
635 if (code != SSA_NAME)
636 return false;
637 break;
639 default:
640 return false;
643 return true;
647 /* Return true if EXPR is a CALL_EXPR suitable for representation
648 as a single GIMPLE_CALL statement. If the arguments require
649 further gimplification, return false. */
651 bool
652 valid_gimple_call_p (tree expr)
654 unsigned i, nargs;
656 if (TREE_CODE (expr) != CALL_EXPR)
657 return false;
659 nargs = call_expr_nargs (expr);
660 for (i = 0; i < nargs; i++)
661 if (! is_gimple_operand (CALL_EXPR_ARG (expr, i)))
662 return false;
664 return true;
668 /* Make SSA names defined by OLD_STMT point to NEW_STMT
669 as their defining statement. */
671 void
672 move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt)
674 tree var;
675 ssa_op_iter iter;
677 if (gimple_in_ssa_p (cfun))
679 /* Make defined SSA_NAMEs point to the new
680 statement as their definition. */
681 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
683 if (TREE_CODE (var) == SSA_NAME)
684 SSA_NAME_DEF_STMT (var) = new_stmt;
690 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
691 value of EXPR, which is expected to be the result of folding the
692 call. This can only be done if EXPR is a CALL_EXPR with valid
693 GIMPLE operands as arguments, or if it is a suitable RHS expression
694 for a GIMPLE_ASSIGN. More complex expressions will require
695 gimplification, which will introduce addtional statements. In this
696 event, no update is performed, and the function returns false.
697 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
698 replace the statement at *SI_P with an entirely new statement.
699 The new statement need not be a call, e.g., if the original call
700 folded to a constant. */
702 bool
703 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
705 tree lhs;
707 gimple stmt = gsi_stmt (*si_p);
709 gcc_assert (is_gimple_call (stmt));
711 lhs = gimple_call_lhs (stmt);
713 if (valid_gimple_call_p (expr))
715 /* The call has simplified to another call. */
716 tree fn = CALL_EXPR_FN (expr);
717 unsigned i;
718 unsigned nargs = call_expr_nargs (expr);
719 VEC(tree, heap) *args = NULL;
720 gimple new_stmt;
722 if (nargs > 0)
724 args = VEC_alloc (tree, heap, nargs);
725 VEC_safe_grow (tree, heap, args, nargs);
727 for (i = 0; i < nargs; i++)
728 VEC_replace (tree, args, i, CALL_EXPR_ARG (expr, i));
731 new_stmt = gimple_build_call_vec (fn, args);
732 gimple_call_set_lhs (new_stmt, lhs);
733 copy_virtual_operands (new_stmt, stmt);
734 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
735 gimple_set_location (new_stmt, gimple_location (stmt));
736 gsi_replace (si_p, new_stmt, false);
737 VEC_free (tree, heap, args);
739 return true;
741 else if (valid_gimple_rhs_p (expr))
743 gimple new_stmt;
745 /* The call has simplified to an expression
746 that cannot be represented as a GIMPLE_CALL. */
747 if (lhs)
749 /* A value is expected.
750 Introduce a new GIMPLE_ASSIGN statement. */
751 STRIP_USELESS_TYPE_CONVERSION (expr);
752 new_stmt = gimple_build_assign (lhs, expr);
753 copy_virtual_operands (new_stmt, stmt);
754 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
756 else if (!TREE_SIDE_EFFECTS (expr))
758 /* No value is expected, and EXPR has no effect.
759 Replace it with an empty statement. */
760 new_stmt = gimple_build_nop ();
762 else
764 /* No value is expected, but EXPR has an effect,
765 e.g., it could be a reference to a volatile
766 variable. Create an assignment statement
767 with a dummy (unused) lhs variable. */
768 STRIP_USELESS_TYPE_CONVERSION (expr);
769 lhs = create_tmp_var (TREE_TYPE (expr), NULL);
770 new_stmt = gimple_build_assign (lhs, expr);
771 add_referenced_var (lhs);
772 lhs = make_ssa_name (lhs, new_stmt);
773 gimple_assign_set_lhs (new_stmt, lhs);
774 copy_virtual_operands (new_stmt, stmt);
775 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
777 gimple_set_location (new_stmt, gimple_location (stmt));
778 gsi_replace (si_p, new_stmt, false);
779 return true;
781 else
782 /* The call simplified to an expression that is
783 not a valid GIMPLE RHS. */
784 return false;
788 /* Entry point to the propagation engine.
790 VISIT_STMT is called for every statement visited.
791 VISIT_PHI is called for every PHI node visited. */
793 void
794 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
795 ssa_prop_visit_phi_fn visit_phi)
797 ssa_prop_visit_stmt = visit_stmt;
798 ssa_prop_visit_phi = visit_phi;
800 ssa_prop_init ();
802 /* Iterate until the worklists are empty. */
803 while (!cfg_blocks_empty_p ()
804 || VEC_length (gimple, interesting_ssa_edges) > 0
805 || VEC_length (gimple, varying_ssa_edges) > 0)
807 if (!cfg_blocks_empty_p ())
809 /* Pull the next block to simulate off the worklist. */
810 basic_block dest_block = cfg_blocks_get ();
811 simulate_block (dest_block);
814 /* In order to move things to varying as quickly as
815 possible,process the VARYING_SSA_EDGES worklist first. */
816 process_ssa_edge_worklist (&varying_ssa_edges);
818 /* Now process the INTERESTING_SSA_EDGES worklist. */
819 process_ssa_edge_worklist (&interesting_ssa_edges);
822 ssa_prop_fini ();
826 /* Return the first VDEF operand for STMT. */
828 tree
829 first_vdef (gimple stmt)
831 ssa_op_iter iter;
832 tree op;
834 /* Simply return the first operand we arrive at. */
835 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
836 return (op);
838 gcc_unreachable ();
842 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
843 is a non-volatile pointer dereference, a structure reference or a
844 reference to a single _DECL. Ignore volatile memory references
845 because they are not interesting for the optimizers. */
847 bool
848 stmt_makes_single_load (gimple stmt)
850 tree rhs;
852 if (gimple_code (stmt) != GIMPLE_ASSIGN)
853 return false;
855 /* Only a GIMPLE_SINGLE_RHS assignment may have a
856 declaration or reference as its RHS. */
857 if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
858 != GIMPLE_SINGLE_RHS)
859 return false;
861 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF|SSA_OP_VUSE))
862 return false;
864 rhs = gimple_assign_rhs1 (stmt);
866 return (!TREE_THIS_VOLATILE (rhs)
867 && (DECL_P (rhs)
868 || REFERENCE_CLASS_P (rhs)));
872 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
873 is a non-volatile pointer dereference, a structure reference or a
874 reference to a single _DECL. Ignore volatile memory references
875 because they are not interesting for the optimizers. */
877 bool
878 stmt_makes_single_store (gimple stmt)
880 tree lhs;
882 if (gimple_code (stmt) != GIMPLE_ASSIGN
883 && gimple_code (stmt) != GIMPLE_CALL)
884 return false;
886 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
887 return false;
889 lhs = gimple_get_lhs (stmt);
891 /* A call statement may have a null LHS. */
892 if (!lhs)
893 return false;
895 return (!TREE_THIS_VOLATILE (lhs)
896 && (DECL_P (lhs)
897 || REFERENCE_CLASS_P (lhs)));
901 /* If STMT makes a single memory load and all the virtual use operands
902 have the same value in array VALUES, return it. Otherwise, return
903 NULL. */
905 prop_value_t *
906 get_value_loaded_by (gimple stmt, prop_value_t *values)
908 ssa_op_iter i;
909 tree vuse;
910 prop_value_t *prev_val = NULL;
911 prop_value_t *val = NULL;
913 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
915 val = &values[SSA_NAME_VERSION (vuse)];
916 if (prev_val && prev_val->value != val->value)
917 return NULL;
918 prev_val = val;
921 return val;
925 /* Propagation statistics. */
926 struct prop_stats_d
928 long num_const_prop;
929 long num_copy_prop;
930 long num_pred_folded;
931 long num_dce;
934 static struct prop_stats_d prop_stats;
936 /* Replace USE references in statement STMT with the values stored in
937 PROP_VALUE. Return true if at least one reference was replaced. */
939 static bool
940 replace_uses_in (gimple stmt, prop_value_t *prop_value)
942 bool replaced = false;
943 use_operand_p use;
944 ssa_op_iter iter;
946 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
948 tree tuse = USE_FROM_PTR (use);
949 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
951 if (val == tuse || val == NULL_TREE)
952 continue;
954 if (gimple_code (stmt) == GIMPLE_ASM
955 && !may_propagate_copy_into_asm (tuse))
956 continue;
958 if (!may_propagate_copy (tuse, val))
959 continue;
961 if (TREE_CODE (val) != SSA_NAME)
962 prop_stats.num_const_prop++;
963 else
964 prop_stats.num_copy_prop++;
966 propagate_value (use, val);
968 replaced = true;
971 return replaced;
975 /* Replace the VUSE references in statement STMT with the values
976 stored in PROP_VALUE. Return true if a reference was replaced.
978 Replacing VUSE operands is slightly more complex than replacing
979 regular USEs. We are only interested in two types of replacements
980 here:
982 1- If the value to be replaced is a constant or an SSA name for a
983 GIMPLE register, then we are making a copy/constant propagation
984 from a memory store. For instance,
986 # a_3 = VDEF <a_2>
987 a.b = x_1;
989 # VUSE <a_3>
990 y_4 = a.b;
992 This replacement is only possible iff STMT is an assignment
993 whose RHS is identical to the LHS of the statement that created
994 the VUSE(s) that we are replacing. Otherwise, we may do the
995 wrong replacement:
997 # a_3 = VDEF <a_2>
998 # b_5 = VDEF <b_4>
999 *p = 10;
1001 # VUSE <b_5>
1002 x_8 = b;
1004 Even though 'b_5' acquires the value '10' during propagation,
1005 there is no way for the propagator to tell whether the
1006 replacement is correct in every reached use, because values are
1007 computed at definition sites. Therefore, when doing final
1008 substitution of propagated values, we have to check each use
1009 site. Since the RHS of STMT ('b') is different from the LHS of
1010 the originating statement ('*p'), we cannot replace 'b' with
1011 '10'.
1013 Similarly, when merging values from PHI node arguments,
1014 propagators need to take care not to merge the same values
1015 stored in different locations:
1017 if (...)
1018 # a_3 = VDEF <a_2>
1019 a.b = 3;
1020 else
1021 # a_4 = VDEF <a_2>
1022 a.c = 3;
1023 # a_5 = PHI <a_3, a_4>
1025 It would be wrong to propagate '3' into 'a_5' because that
1026 operation merges two stores to different memory locations.
1029 2- If the value to be replaced is an SSA name for a virtual
1030 register, then we simply replace each VUSE operand with its
1031 value from PROP_VALUE. This is the same replacement done by
1032 replace_uses_in. */
1034 static bool
1035 replace_vuses_in (gimple stmt, prop_value_t *prop_value)
1037 bool replaced = false;
1038 ssa_op_iter iter;
1039 use_operand_p vuse;
1041 if (stmt_makes_single_load (stmt))
1043 /* If STMT is an assignment whose RHS is a single memory load,
1044 see if we are trying to propagate a constant or a GIMPLE
1045 register (case #1 above). */
1046 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
1047 tree rhs = gimple_assign_rhs1 (stmt);
1049 if (val
1050 && val->value
1051 && (is_gimple_reg (val->value)
1052 || is_gimple_min_invariant (val->value))
1053 && simple_cst_equal (rhs, val->mem_ref) == 1)
1055 /* We can only perform the substitution if the load is done
1056 from the same memory location as the original store.
1057 Since we already know that there are no intervening
1058 stores between DEF_STMT and STMT, we only need to check
1059 that the RHS of STMT is the same as the memory reference
1060 propagated together with the value. */
1061 gimple_assign_set_rhs1 (stmt, val->value);
1063 if (TREE_CODE (val->value) != SSA_NAME)
1064 prop_stats.num_const_prop++;
1065 else
1066 prop_stats.num_copy_prop++;
1068 /* Since we have replaced the whole RHS of STMT, there
1069 is no point in checking the other VUSEs, as they will
1070 all have the same value. */
1071 return true;
1075 /* Otherwise, the values for every VUSE operand must be other
1076 SSA_NAMEs that can be propagated into STMT. */
1077 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1079 tree var = USE_FROM_PTR (vuse);
1080 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1082 if (val == NULL_TREE || var == val)
1083 continue;
1085 /* Constants and copies propagated between real and virtual
1086 operands are only possible in the cases handled above. They
1087 should be ignored in any other context. */
1088 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1089 continue;
1091 propagate_value (vuse, val);
1092 prop_stats.num_copy_prop++;
1093 replaced = true;
1096 return replaced;
1100 /* Replace propagated values into all the arguments for PHI using the
1101 values from PROP_VALUE. */
1103 static void
1104 replace_phi_args_in (gimple phi, prop_value_t *prop_value)
1106 size_t i;
1107 bool replaced = false;
1109 if (dump_file && (dump_flags & TDF_DETAILS))
1111 fprintf (dump_file, "Folding PHI node: ");
1112 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1115 for (i = 0; i < gimple_phi_num_args (phi); i++)
1117 tree arg = gimple_phi_arg_def (phi, i);
1119 if (TREE_CODE (arg) == SSA_NAME)
1121 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1123 if (val && val != arg && may_propagate_copy (arg, val))
1125 if (TREE_CODE (val) != SSA_NAME)
1126 prop_stats.num_const_prop++;
1127 else
1128 prop_stats.num_copy_prop++;
1130 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1131 replaced = true;
1133 /* If we propagated a copy and this argument flows
1134 through an abnormal edge, update the replacement
1135 accordingly. */
1136 if (TREE_CODE (val) == SSA_NAME
1137 && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL)
1138 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1143 if (dump_file && (dump_flags & TDF_DETAILS))
1145 if (!replaced)
1146 fprintf (dump_file, "No folding possible\n");
1147 else
1149 fprintf (dump_file, "Folded into: ");
1150 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1151 fprintf (dump_file, "\n");
1157 /* If the statement pointed by SI has a predicate whose value can be
1158 computed using the value range information computed by VRP, compute
1159 its value and return true. Otherwise, return false. */
1161 static bool
1162 fold_predicate_in (gimple_stmt_iterator *si)
1164 bool assignment_p = false;
1165 tree val;
1166 gimple stmt = gsi_stmt (*si);
1168 if (is_gimple_assign (stmt)
1169 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
1171 assignment_p = true;
1172 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
1173 gimple_assign_rhs1 (stmt),
1174 gimple_assign_rhs2 (stmt),
1175 stmt);
1177 else if (gimple_code (stmt) == GIMPLE_COND)
1178 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
1179 gimple_cond_lhs (stmt),
1180 gimple_cond_rhs (stmt),
1181 stmt);
1182 else
1183 return false;
1186 if (val)
1188 if (assignment_p)
1189 val = fold_convert (gimple_expr_type (stmt), val);
1191 if (dump_file)
1193 fprintf (dump_file, "Folding predicate ");
1194 print_gimple_expr (dump_file, stmt, 0, 0);
1195 fprintf (dump_file, " to ");
1196 print_generic_expr (dump_file, val, 0);
1197 fprintf (dump_file, "\n");
1200 prop_stats.num_pred_folded++;
1202 if (is_gimple_assign (stmt))
1203 gimple_assign_set_rhs_from_tree (si, val);
1204 else
1206 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
1207 if (integer_zerop (val))
1208 gimple_cond_make_false (stmt);
1209 else if (integer_onep (val))
1210 gimple_cond_make_true (stmt);
1211 else
1212 gcc_unreachable ();
1215 return true;
1218 return false;
1222 /* Perform final substitution and folding of propagated values.
1224 PROP_VALUE[I] contains the single value that should be substituted
1225 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1226 substituted.
1228 If USE_RANGES_P is true, statements that contain predicate
1229 expressions are evaluated with a call to vrp_evaluate_conditional.
1230 This will only give meaningful results when called from tree-vrp.c
1231 (the information used by vrp_evaluate_conditional is built by the
1232 VRP pass).
1234 Return TRUE when something changed. */
1236 bool
1237 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1239 basic_block bb;
1240 bool something_changed = false;
1242 if (prop_value == NULL && !use_ranges_p)
1243 return false;
1245 if (dump_file && (dump_flags & TDF_DETAILS))
1246 fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
1248 memset (&prop_stats, 0, sizeof (prop_stats));
1250 /* Substitute values in every statement of every basic block. */
1251 FOR_EACH_BB (bb)
1253 gimple_stmt_iterator i;
1255 /* Propagate known values into PHI nodes. */
1256 if (prop_value)
1257 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
1258 replace_phi_args_in (gsi_stmt (i), prop_value);
1260 /* Propagate known values into stmts. Do a backward walk to expose
1261 more trivially deletable stmts. */
1262 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1264 bool did_replace;
1265 gimple stmt = gsi_stmt (i);
1266 enum gimple_code code = gimple_code (stmt);
1268 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1269 range information for names and they are discarded
1270 afterwards. */
1272 if (code == GIMPLE_ASSIGN
1273 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
1275 gsi_prev (&i);
1276 continue;
1279 /* No point propagating into a stmt whose result is not used,
1280 but instead we might be able to remove a trivially dead stmt. */
1281 if (gimple_get_lhs (stmt)
1282 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1283 && has_zero_uses (gimple_get_lhs (stmt))
1284 && !stmt_could_throw_p (stmt)
1285 && !gimple_has_side_effects (stmt))
1287 gimple_stmt_iterator i2;
1289 if (dump_file && dump_flags & TDF_DETAILS)
1291 fprintf (dump_file, "Removing dead stmt ");
1292 print_gimple_stmt (dump_file, stmt, 0, 0);
1293 fprintf (dump_file, "\n");
1295 prop_stats.num_dce++;
1296 gsi_prev (&i);
1297 i2 = gsi_for_stmt (stmt);
1298 gsi_remove (&i2, true);
1299 release_defs (stmt);
1300 continue;
1303 /* Record the state of the statement before replacements. */
1304 push_stmt_changes (gsi_stmt_ptr (&i));
1306 /* Replace the statement with its folded version and mark it
1307 folded. */
1308 did_replace = false;
1309 if (dump_file && (dump_flags & TDF_DETAILS))
1311 fprintf (dump_file, "Folding statement: ");
1312 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1315 /* If we have range information, see if we can fold
1316 predicate expressions. */
1317 if (use_ranges_p)
1319 did_replace = fold_predicate_in (&i);
1320 /* fold_predicate_in should not have reallocated STMT. */
1321 gcc_assert (gsi_stmt (i) == stmt);
1324 if (prop_value)
1326 /* Only replace real uses if we couldn't fold the
1327 statement using value range information (value range
1328 information is not collected on virtuals, so we only
1329 need to check this for real uses). */
1330 if (!did_replace)
1331 did_replace |= replace_uses_in (stmt, prop_value);
1333 did_replace |= replace_vuses_in (stmt, prop_value);
1336 /* If we made a replacement, fold and cleanup the statement. */
1337 if (did_replace)
1339 gimple old_stmt = stmt;
1341 fold_stmt (&i);
1342 stmt = gsi_stmt (i);
1344 /* If we cleaned up EH information from the statement,
1345 remove EH edges. */
1346 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1347 gimple_purge_dead_eh_edges (bb);
1349 if (is_gimple_assign (stmt)
1350 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1351 == GIMPLE_SINGLE_RHS))
1353 tree rhs = gimple_assign_rhs1 (stmt);
1355 if (TREE_CODE (rhs) == ADDR_EXPR)
1356 recompute_tree_invariant_for_addr_expr (rhs);
1359 /* Determine what needs to be done to update the SSA form. */
1360 pop_stmt_changes (gsi_stmt_ptr (&i));
1361 something_changed = true;
1363 else
1365 /* The statement was not modified, discard the change buffer. */
1366 discard_stmt_changes (gsi_stmt_ptr (&i));
1369 if (dump_file && (dump_flags & TDF_DETAILS))
1371 if (did_replace)
1373 fprintf (dump_file, "Folded into: ");
1374 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1375 fprintf (dump_file, "\n");
1377 else
1378 fprintf (dump_file, "Not folded\n");
1381 /* Some statements may be simplified using ranges. For
1382 example, division may be replaced by shifts, modulo
1383 replaced with bitwise and, etc. Do this after
1384 substituting constants, folding, etc so that we're
1385 presented with a fully propagated, canonicalized
1386 statement. */
1387 if (use_ranges_p)
1388 simplify_stmt_using_ranges (stmt);
1390 gsi_prev (&i);
1394 statistics_counter_event (cfun, "Constants propagated",
1395 prop_stats.num_const_prop);
1396 statistics_counter_event (cfun, "Copies propagated",
1397 prop_stats.num_copy_prop);
1398 statistics_counter_event (cfun, "Predicates folded",
1399 prop_stats.num_pred_folded);
1400 statistics_counter_event (cfun, "Statements deleted",
1401 prop_stats.num_dce);
1402 return something_changed;
1405 #include "gt-tree-ssa-propagate.h"