* configure.ac (HAVE_GAS_CFI_DIRECTIVE): Always test for assembler
[official-gcc.git] / gcc / dse.c
blob992332663772774e6d568ce5e5946a96fef5f2e1
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #undef BASELINE
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hashtab.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "df.h"
37 #include "cselib.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
41 #include "alias.h"
42 #include "insn-config.h"
43 #include "expr.h"
44 #include "recog.h"
45 #include "dse.h"
46 #include "optabs.h"
47 #include "dbgcnt.h"
49 /* This file contains three techniques for performing Dead Store
50 Elimination (dse).
52 * The first technique performs dse locally on any base address. It
53 is based on the cselib which is a local value numbering technique.
54 This technique is local to a basic block but deals with a fairly
55 general addresses.
57 * The second technique performs dse globally but is restricted to
58 base addresses that are either constant or are relative to the
59 frame_pointer.
61 * The third technique, (which is only done after register allocation)
62 processes the spill spill slots. This differs from the second
63 technique because it takes advantage of the fact that spilling is
64 completely free from the effects of aliasing.
66 Logically, dse is a backwards dataflow problem. A store can be
67 deleted if it if cannot be reached in the backward direction by any
68 use of the value being stored. However, the local technique uses a
69 forwards scan of the basic block because cselib requires that the
70 block be processed in that order.
72 The pass is logically broken into 7 steps:
74 0) Initialization.
76 1) The local algorithm, as well as scanning the insns for the two
77 global algorithms.
79 2) Analysis to see if the global algs are necessary. In the case
80 of stores base on a constant address, there must be at least two
81 stores to that address, to make it possible to delete some of the
82 stores. In the case of stores off of the frame or spill related
83 stores, only one store to an address is necessary because those
84 stores die at the end of the function.
86 3) Set up the global dataflow equations based on processing the
87 info parsed in the first step.
89 4) Solve the dataflow equations.
91 5) Delete the insns that the global analysis has indicated are
92 unnecessary.
94 6) Cleanup.
96 This step uses cselib and canon_rtx to build the largest expression
97 possible for each address. This pass is a forwards pass through
98 each basic block. From the point of view of the global technique,
99 the first pass could examine a block in either direction. The
100 forwards ordering is to accommodate cselib.
102 We a simplifying assumption: addresses fall into four broad
103 categories:
105 1) base has rtx_varies_p == false, offset is constant.
106 2) base has rtx_varies_p == false, offset variable.
107 3) base has rtx_varies_p == true, offset constant.
108 4) base has rtx_varies_p == true, offset variable.
110 The local passes are able to process all 4 kinds of addresses. The
111 global pass only handles (1).
113 The global problem is formulated as follows:
115 A store, S1, to address A, where A is not relative to the stack
116 frame, can be eliminated if all paths from S1 to the end of the
117 of the function contain another store to A before a read to A.
119 If the address A is relative to the stack frame, a store S2 to A
120 can be eliminated if there are no paths from S1 that reach the
121 end of the function that read A before another store to A. In
122 this case S2 can be deleted if there are paths to from S2 to the
123 end of the function that have no reads or writes to A. This
124 second case allows stores to the stack frame to be deleted that
125 would otherwise die when the function returns. This cannot be
126 done if stores_off_frame_dead_at_return is not true. See the doc
127 for that variable for when this variable is false.
129 The global problem is formulated as a backwards set union
130 dataflow problem where the stores are the gens and reads are the
131 kills. Set union problems are rare and require some special
132 handling given our representation of bitmaps. A straightforward
133 implementation of requires a lot of bitmaps filled with 1s.
134 These are expensive and cumbersome in our bitmap formulation so
135 care has been taken to avoid large vectors filled with 1s. See
136 the comments in bb_info and in the dataflow confluence functions
137 for details.
139 There are two places for further enhancements to this algorithm:
141 1) The original dse which was embedded in a pass called flow also
142 did local address forwarding. For example in
144 A <- r100
145 ... <- A
147 flow would replace the right hand side of the second insn with a
148 reference to r100. Most of the information is available to add this
149 to this pass. It has not done it because it is a lot of work in
150 the case that either r100 is assigned to between the first and
151 second insn and/or the second insn is a load of part of the value
152 stored by the first insn.
154 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
155 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
156 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
157 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
159 2) The cleaning up of spill code is quite profitable. It currently
160 depends on reading tea leaves and chicken entrails left by reload.
161 This pass depends on reload creating a singleton alias set for each
162 spill slot and telling the next dse pass which of these alias sets
163 are the singletons. Rather than analyze the addresses of the
164 spills, dse's spill processing just does analysis of the loads and
165 stores that use those alias sets. There are three cases where this
166 falls short:
168 a) Reload sometimes creates the slot for one mode of access, and
169 then inserts loads and/or stores for a smaller mode. In this
170 case, the current code just punts on the slot. The proper thing
171 to do is to back out and use one bit vector position for each
172 byte of the entity associated with the slot. This depends on
173 KNOWING that reload always generates the accesses for each of the
174 bytes in some canonical (read that easy to understand several
175 passes after reload happens) way.
177 b) Reload sometimes decides that spill slot it allocated was not
178 large enough for the mode and goes back and allocates more slots
179 with the same mode and alias set. The backout in this case is a
180 little more graceful than (a). In this case the slot is unmarked
181 as being a spill slot and if final address comes out to be based
182 off the frame pointer, the global algorithm handles this slot.
184 c) For any pass that may prespill, there is currently no
185 mechanism to tell the dse pass that the slot being used has the
186 special properties that reload uses. It may be that all that is
187 required is to have those passes make the same calls that reload
188 does, assuming that the alias sets can be manipulated in the same
189 way. */
191 /* There are limits to the size of constant offsets we model for the
192 global problem. There are certainly test cases, that exceed this
193 limit, however, it is unlikely that there are important programs
194 that really have constant offsets this size. */
195 #define MAX_OFFSET (64 * 1024)
198 static bitmap scratch = NULL;
199 struct insn_info;
201 /* This structure holds information about a candidate store. */
202 struct store_info
205 /* False means this is a clobber. */
206 bool is_set;
208 /* The id of the mem group of the base address. If rtx_varies_p is
209 true, this is -1. Otherwise, it is the index into the group
210 table. */
211 int group_id;
213 /* This is the cselib value. */
214 cselib_val *cse_base;
216 /* This canonized mem. */
217 rtx mem;
219 /* The result of get_addr on mem. */
220 rtx mem_addr;
222 /* If this is non-zero, it is the alias set of a spill location. */
223 alias_set_type alias_set;
225 /* The offset of the first and byte before the last byte associated
226 with the operation. */
227 int begin, end;
229 /* An bitmask as wide as the number of bytes in the word that
230 contains a 1 if the byte may be needed. The store is unused if
231 all of the bits are 0. */
232 unsigned HOST_WIDE_INT positions_needed;
234 /* The next store info for this insn. */
235 struct store_info *next;
237 /* The right hand side of the store. This is used if there is a
238 subsequent reload of the mems address somewhere later in the
239 basic block. */
240 rtx rhs;
243 /* Return a bitmask with the first N low bits set. */
245 static unsigned HOST_WIDE_INT
246 lowpart_bitmask (int n)
248 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
249 return mask >> (HOST_BITS_PER_WIDE_INT - n);
252 typedef struct store_info *store_info_t;
253 static alloc_pool cse_store_info_pool;
254 static alloc_pool rtx_store_info_pool;
256 /* This structure holds information about a load. These are only
257 built for rtx bases. */
258 struct read_info
260 /* The id of the mem group of the base address. */
261 int group_id;
263 /* If this is non-zero, it is the alias set of a spill location. */
264 alias_set_type alias_set;
266 /* The offset of the first and byte after the last byte associated
267 with the operation. If begin == end == 0, the read did not have
268 a constant offset. */
269 int begin, end;
271 /* The mem being read. */
272 rtx mem;
274 /* The next read_info for this insn. */
275 struct read_info *next;
277 typedef struct read_info *read_info_t;
278 static alloc_pool read_info_pool;
281 /* One of these records is created for each insn. */
283 struct insn_info
285 /* Set true if the insn contains a store but the insn itself cannot
286 be deleted. This is set if the insn is a parallel and there is
287 more than one non dead output or if the insn is in some way
288 volatile. */
289 bool cannot_delete;
291 /* This field is only used by the global algorithm. It is set true
292 if the insn contains any read of mem except for a (1). This is
293 also set if the insn is a call or has a clobber mem. If the insn
294 contains a wild read, the use_rec will be null. */
295 bool wild_read;
297 /* This field is only used for the processing of const functions.
298 These functions cannot read memory, but they can read the stack
299 because that is where they may get their parms. We need to be
300 this conservative because, like the store motion pass, we don't
301 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
302 Moreover, we need to distinguish two cases:
303 1. Before reload (register elimination), the stores related to
304 outgoing arguments are stack pointer based and thus deemed
305 of non-constant base in this pass. This requires special
306 handling but also means that the frame pointer based stores
307 need not be killed upon encountering a const function call.
308 2. After reload, the stores related to outgoing arguments can be
309 either stack pointer or hard frame pointer based. This means
310 that we have no other choice than also killing all the frame
311 pointer based stores upon encountering a const function call.
312 This field is set after reload for const function calls. Having
313 this set is less severe than a wild read, it just means that all
314 the frame related stores are killed rather than all the stores. */
315 bool frame_read;
317 /* This field is only used for the processing of const functions.
318 It is set if the insn may contain a stack pointer based store. */
319 bool stack_pointer_based;
321 /* This is true if any of the sets within the store contains a
322 cselib base. Such stores can only be deleted by the local
323 algorithm. */
324 bool contains_cselib_groups;
326 /* The insn. */
327 rtx insn;
329 /* The list of mem sets or mem clobbers that are contained in this
330 insn. If the insn is deletable, it contains only one mem set.
331 But it could also contain clobbers. Insns that contain more than
332 one mem set are not deletable, but each of those mems are here in
333 order to provide info to delete other insns. */
334 store_info_t store_rec;
336 /* The linked list of mem uses in this insn. Only the reads from
337 rtx bases are listed here. The reads to cselib bases are
338 completely processed during the first scan and so are never
339 created. */
340 read_info_t read_rec;
342 /* The prev insn in the basic block. */
343 struct insn_info * prev_insn;
345 /* The linked list of insns that are in consideration for removal in
346 the forwards pass thru the basic block. This pointer may be
347 trash as it is not cleared when a wild read occurs. The only
348 time it is guaranteed to be correct is when the traversal starts
349 at active_local_stores. */
350 struct insn_info * next_local_store;
353 typedef struct insn_info *insn_info_t;
354 static alloc_pool insn_info_pool;
356 /* The linked list of stores that are under consideration in this
357 basic block. */
358 static insn_info_t active_local_stores;
360 struct bb_info
363 /* Pointer to the insn info for the last insn in the block. These
364 are linked so this is how all of the insns are reached. During
365 scanning this is the current insn being scanned. */
366 insn_info_t last_insn;
368 /* The info for the global dataflow problem. */
371 /* This is set if the transfer function should and in the wild_read
372 bitmap before applying the kill and gen sets. That vector knocks
373 out most of the bits in the bitmap and thus speeds up the
374 operations. */
375 bool apply_wild_read;
377 /* The set of store positions that exist in this block before a wild read. */
378 bitmap gen;
380 /* The set of load positions that exist in this block above the
381 same position of a store. */
382 bitmap kill;
384 /* The set of stores that reach the top of the block without being
385 killed by a read.
387 Do not represent the in if it is all ones. Note that this is
388 what the bitvector should logically be initialized to for a set
389 intersection problem. However, like the kill set, this is too
390 expensive. So initially, the in set will only be created for the
391 exit block and any block that contains a wild read. */
392 bitmap in;
394 /* The set of stores that reach the bottom of the block from it's
395 successors.
397 Do not represent the in if it is all ones. Note that this is
398 what the bitvector should logically be initialized to for a set
399 intersection problem. However, like the kill and in set, this is
400 too expensive. So what is done is that the confluence operator
401 just initializes the vector from one of the out sets of the
402 successors of the block. */
403 bitmap out;
406 typedef struct bb_info *bb_info_t;
407 static alloc_pool bb_info_pool;
409 /* Table to hold all bb_infos. */
410 static bb_info_t *bb_table;
412 /* There is a group_info for each rtx base that is used to reference
413 memory. There are also not many of the rtx bases because they are
414 very limited in scope. */
416 struct group_info
418 /* The actual base of the address. */
419 rtx rtx_base;
421 /* The sequential id of the base. This allows us to have a
422 canonical ordering of these that is not based on addresses. */
423 int id;
425 /* A mem wrapped around the base pointer for the group in order to
426 do read dependency. */
427 rtx base_mem;
429 /* Canonized version of base_mem, most likely the same thing. */
430 rtx canon_base_mem;
432 /* These two sets of two bitmaps are used to keep track of how many
433 stores are actually referencing that position from this base. We
434 only do this for rtx bases as this will be used to assign
435 positions in the bitmaps for the global problem. Bit N is set in
436 store1 on the first store for offset N. Bit N is set in store2
437 for the second store to offset N. This is all we need since we
438 only care about offsets that have two or more stores for them.
440 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
441 for 0 and greater offsets.
443 There is one special case here, for stores into the stack frame,
444 we will or store1 into store2 before deciding which stores look
445 at globally. This is because stores to the stack frame that have
446 no other reads before the end of the function can also be
447 deleted. */
448 bitmap store1_n, store1_p, store2_n, store2_p;
450 /* The positions in this bitmap have the same assignments as the in,
451 out, gen and kill bitmaps. This bitmap is all zeros except for
452 the positions that are occupied by stores for this group. */
453 bitmap group_kill;
455 /* True if there are any positions that are to be processed
456 globally. */
457 bool process_globally;
459 /* True if the base of this group is either the frame_pointer or
460 hard_frame_pointer. */
461 bool frame_related;
463 /* The offset_map is used to map the offsets from this base into
464 positions in the global bitmaps. It is only created after all of
465 the all of stores have been scanned and we know which ones we
466 care about. */
467 int *offset_map_n, *offset_map_p;
468 int offset_map_size_n, offset_map_size_p;
470 typedef struct group_info *group_info_t;
471 typedef const struct group_info *const_group_info_t;
472 static alloc_pool rtx_group_info_pool;
474 /* Tables of group_info structures, hashed by base value. */
475 static htab_t rtx_group_table;
477 /* Index into the rtx_group_vec. */
478 static int rtx_group_next_id;
480 DEF_VEC_P(group_info_t);
481 DEF_VEC_ALLOC_P(group_info_t,heap);
483 static VEC(group_info_t,heap) *rtx_group_vec;
486 /* This structure holds the set of changes that are being deferred
487 when removing read operation. See replace_read. */
488 struct deferred_change
491 /* The mem that is being replaced. */
492 rtx *loc;
494 /* The reg it is being replaced with. */
495 rtx reg;
497 struct deferred_change *next;
500 typedef struct deferred_change *deferred_change_t;
501 static alloc_pool deferred_change_pool;
503 static deferred_change_t deferred_change_list = NULL;
505 /* This are used to hold the alias sets of spill variables. Since
506 these are never aliased and there may be a lot of them, it makes
507 sense to treat them specially. This bitvector is only allocated in
508 calls from dse_record_singleton_alias_set which currently is only
509 made during reload1. So when dse is called before reload this
510 mechanism does nothing. */
512 static bitmap clear_alias_sets = NULL;
514 /* The set of clear_alias_sets that have been disqualified because
515 there are loads or stores using a different mode than the alias set
516 was registered with. */
517 static bitmap disqualified_clear_alias_sets = NULL;
519 /* The group that holds all of the clear_alias_sets. */
520 static group_info_t clear_alias_group;
522 /* The modes of the clear_alias_sets. */
523 static htab_t clear_alias_mode_table;
525 /* Hash table element to look up the mode for an alias set. */
526 struct clear_alias_mode_holder
528 alias_set_type alias_set;
529 enum machine_mode mode;
532 static alloc_pool clear_alias_mode_pool;
534 /* This is true except if cfun->stdarg -- i.e. we cannot do
535 this for vararg functions because they play games with the frame. */
536 static bool stores_off_frame_dead_at_return;
538 /* Counter for stats. */
539 static int globally_deleted;
540 static int locally_deleted;
541 static int spill_deleted;
543 static bitmap all_blocks;
545 /* The number of bits used in the global bitmaps. */
546 static unsigned int current_position;
549 static bool gate_dse (void);
550 static bool gate_dse1 (void);
551 static bool gate_dse2 (void);
554 /*----------------------------------------------------------------------------
555 Zeroth step.
557 Initialization.
558 ----------------------------------------------------------------------------*/
560 /* Hashtable callbacks for maintaining the "bases" field of
561 store_group_info, given that the addresses are function invariants. */
563 static int
564 clear_alias_mode_eq (const void *p1, const void *p2)
566 const struct clear_alias_mode_holder * h1
567 = (const struct clear_alias_mode_holder *) p1;
568 const struct clear_alias_mode_holder * h2
569 = (const struct clear_alias_mode_holder *) p2;
570 return h1->alias_set == h2->alias_set;
574 static hashval_t
575 clear_alias_mode_hash (const void *p)
577 const struct clear_alias_mode_holder *holder
578 = (const struct clear_alias_mode_holder *) p;
579 return holder->alias_set;
583 /* Find the entry associated with ALIAS_SET. */
585 static struct clear_alias_mode_holder *
586 clear_alias_set_lookup (alias_set_type alias_set)
588 struct clear_alias_mode_holder tmp_holder;
589 void **slot;
591 tmp_holder.alias_set = alias_set;
592 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
593 gcc_assert (*slot);
595 return (struct clear_alias_mode_holder *) *slot;
599 /* Hashtable callbacks for maintaining the "bases" field of
600 store_group_info, given that the addresses are function invariants. */
602 static int
603 invariant_group_base_eq (const void *p1, const void *p2)
605 const_group_info_t gi1 = (const_group_info_t) p1;
606 const_group_info_t gi2 = (const_group_info_t) p2;
607 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
611 static hashval_t
612 invariant_group_base_hash (const void *p)
614 const_group_info_t gi = (const_group_info_t) p;
615 int do_not_record;
616 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
620 /* Get the GROUP for BASE. Add a new group if it is not there. */
622 static group_info_t
623 get_group_info (rtx base)
625 struct group_info tmp_gi;
626 group_info_t gi;
627 void **slot;
629 if (base)
631 /* Find the store_base_info structure for BASE, creating a new one
632 if necessary. */
633 tmp_gi.rtx_base = base;
634 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
635 gi = (group_info_t) *slot;
637 else
639 if (!clear_alias_group)
641 clear_alias_group = gi =
642 (group_info_t) pool_alloc (rtx_group_info_pool);
643 memset (gi, 0, sizeof (struct group_info));
644 gi->id = rtx_group_next_id++;
645 gi->store1_n = BITMAP_ALLOC (NULL);
646 gi->store1_p = BITMAP_ALLOC (NULL);
647 gi->store2_n = BITMAP_ALLOC (NULL);
648 gi->store2_p = BITMAP_ALLOC (NULL);
649 gi->group_kill = BITMAP_ALLOC (NULL);
650 gi->process_globally = false;
651 gi->offset_map_size_n = 0;
652 gi->offset_map_size_p = 0;
653 gi->offset_map_n = NULL;
654 gi->offset_map_p = NULL;
655 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
657 return clear_alias_group;
660 if (gi == NULL)
662 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
663 gi->rtx_base = base;
664 gi->id = rtx_group_next_id++;
665 gi->base_mem = gen_rtx_MEM (QImode, base);
666 gi->canon_base_mem = canon_rtx (gi->base_mem);
667 gi->store1_n = BITMAP_ALLOC (NULL);
668 gi->store1_p = BITMAP_ALLOC (NULL);
669 gi->store2_n = BITMAP_ALLOC (NULL);
670 gi->store2_p = BITMAP_ALLOC (NULL);
671 gi->group_kill = BITMAP_ALLOC (NULL);
672 gi->process_globally = false;
673 gi->frame_related =
674 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
675 gi->offset_map_size_n = 0;
676 gi->offset_map_size_p = 0;
677 gi->offset_map_n = NULL;
678 gi->offset_map_p = NULL;
679 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
682 return gi;
686 /* Initialization of data structures. */
688 static void
689 dse_step0 (void)
691 locally_deleted = 0;
692 globally_deleted = 0;
693 spill_deleted = 0;
695 scratch = BITMAP_ALLOC (NULL);
697 rtx_store_info_pool
698 = create_alloc_pool ("rtx_store_info_pool",
699 sizeof (struct store_info), 100);
700 read_info_pool
701 = create_alloc_pool ("read_info_pool",
702 sizeof (struct read_info), 100);
703 insn_info_pool
704 = create_alloc_pool ("insn_info_pool",
705 sizeof (struct insn_info), 100);
706 bb_info_pool
707 = create_alloc_pool ("bb_info_pool",
708 sizeof (struct bb_info), 100);
709 rtx_group_info_pool
710 = create_alloc_pool ("rtx_group_info_pool",
711 sizeof (struct group_info), 100);
712 deferred_change_pool
713 = create_alloc_pool ("deferred_change_pool",
714 sizeof (struct deferred_change), 10);
716 rtx_group_table = htab_create (11, invariant_group_base_hash,
717 invariant_group_base_eq, NULL);
719 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
720 rtx_group_next_id = 0;
722 stores_off_frame_dead_at_return = !cfun->stdarg;
724 init_alias_analysis ();
726 if (clear_alias_sets)
727 clear_alias_group = get_group_info (NULL);
728 else
729 clear_alias_group = NULL;
734 /*----------------------------------------------------------------------------
735 First step.
737 Scan all of the insns. Any random ordering of the blocks is fine.
738 Each block is scanned in forward order to accommodate cselib which
739 is used to remove stores with non-constant bases.
740 ----------------------------------------------------------------------------*/
742 /* Delete all of the store_info recs from INSN_INFO. */
744 static void
745 free_store_info (insn_info_t insn_info)
747 store_info_t store_info = insn_info->store_rec;
748 while (store_info)
750 store_info_t next = store_info->next;
751 if (store_info->cse_base)
752 pool_free (cse_store_info_pool, store_info);
753 else
754 pool_free (rtx_store_info_pool, store_info);
755 store_info = next;
758 insn_info->cannot_delete = true;
759 insn_info->contains_cselib_groups = false;
760 insn_info->store_rec = NULL;
764 struct insn_size {
765 int size;
766 rtx insn;
770 /* Add an insn to do the add inside a x if it is a
771 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
772 the size of the mode of the MEM that this is inside of. */
774 static int
775 replace_inc_dec (rtx *r, void *d)
777 rtx x = *r;
778 struct insn_size *data = (struct insn_size *)d;
779 switch (GET_CODE (x))
781 case PRE_INC:
782 case POST_INC:
784 rtx r1 = XEXP (x, 0);
785 rtx c = gen_int_mode (Pmode, data->size);
786 emit_insn_before (gen_rtx_SET (Pmode, r1,
787 gen_rtx_PLUS (Pmode, r1, c)),
788 data->insn);
789 return -1;
792 case PRE_DEC:
793 case POST_DEC:
795 rtx r1 = XEXP (x, 0);
796 rtx c = gen_int_mode (Pmode, -data->size);
797 emit_insn_before (gen_rtx_SET (Pmode, r1,
798 gen_rtx_PLUS (Pmode, r1, c)),
799 data->insn);
800 return -1;
803 case PRE_MODIFY:
804 case POST_MODIFY:
806 /* We can reuse the add because we are about to delete the
807 insn that contained it. */
808 rtx add = XEXP (x, 0);
809 rtx r1 = XEXP (add, 0);
810 emit_insn_before (gen_rtx_SET (Pmode, r1, add), data->insn);
811 return -1;
814 default:
815 return 0;
820 /* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
821 and generate an add to replace that. */
823 static int
824 replace_inc_dec_mem (rtx *r, void *d)
826 rtx x = *r;
827 if (x != NULL_RTX && MEM_P (x))
829 struct insn_size data;
831 data.size = GET_MODE_SIZE (GET_MODE (x));
832 data.insn = (rtx) d;
834 for_each_rtx (&XEXP (x, 0), replace_inc_dec, &data);
836 return -1;
838 return 0;
841 /* Before we delete INSN, make sure that the auto inc/dec, if it is
842 there, is split into a separate insn. */
844 static void
845 check_for_inc_dec (rtx insn)
847 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
848 if (note)
849 for_each_rtx (&insn, replace_inc_dec_mem, insn);
853 /* Delete the insn and free all of the fields inside INSN_INFO. */
855 static void
856 delete_dead_store_insn (insn_info_t insn_info)
858 read_info_t read_info;
860 if (!dbg_cnt (dse))
861 return;
863 check_for_inc_dec (insn_info->insn);
864 if (dump_file)
866 fprintf (dump_file, "Locally deleting insn %d ",
867 INSN_UID (insn_info->insn));
868 if (insn_info->store_rec->alias_set)
869 fprintf (dump_file, "alias set %d\n",
870 (int) insn_info->store_rec->alias_set);
871 else
872 fprintf (dump_file, "\n");
875 free_store_info (insn_info);
876 read_info = insn_info->read_rec;
878 while (read_info)
880 read_info_t next = read_info->next;
881 pool_free (read_info_pool, read_info);
882 read_info = next;
884 insn_info->read_rec = NULL;
886 delete_insn (insn_info->insn);
887 locally_deleted++;
888 insn_info->insn = NULL;
890 insn_info->wild_read = false;
894 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
895 OFFSET and WIDTH. */
897 static void
898 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
900 HOST_WIDE_INT i;
902 if ((offset > -MAX_OFFSET) && (offset < MAX_OFFSET))
903 for (i=offset; i<offset+width; i++)
905 bitmap store1;
906 bitmap store2;
907 int ai;
908 if (i < 0)
910 store1 = group->store1_n;
911 store2 = group->store2_n;
912 ai = -i;
914 else
916 store1 = group->store1_p;
917 store2 = group->store2_p;
918 ai = i;
921 if (bitmap_bit_p (store1, ai))
922 bitmap_set_bit (store2, ai);
923 else
925 bitmap_set_bit (store1, ai);
926 if (i < 0)
928 if (group->offset_map_size_n < ai)
929 group->offset_map_size_n = ai;
931 else
933 if (group->offset_map_size_p < ai)
934 group->offset_map_size_p = ai;
941 /* Set the BB_INFO so that the last insn is marked as a wild read. */
943 static void
944 add_wild_read (bb_info_t bb_info)
946 insn_info_t insn_info = bb_info->last_insn;
947 read_info_t *ptr = &insn_info->read_rec;
949 while (*ptr)
951 read_info_t next = (*ptr)->next;
952 if ((*ptr)->alias_set == 0)
954 pool_free (read_info_pool, *ptr);
955 *ptr = next;
957 else
958 ptr = &(*ptr)->next;
960 insn_info->wild_read = true;
961 active_local_stores = NULL;
965 /* Return true if X is a constant or one of the registers that behave
966 as a constant over the life of a function. This is equivalent to
967 !rtx_varies_p for memory addresses. */
969 static bool
970 const_or_frame_p (rtx x)
972 switch (GET_CODE (x))
974 case MEM:
975 return MEM_READONLY_P (x);
977 case CONST:
978 case CONST_INT:
979 case CONST_DOUBLE:
980 case CONST_VECTOR:
981 case SYMBOL_REF:
982 case LABEL_REF:
983 return true;
985 case REG:
986 /* Note that we have to test for the actual rtx used for the frame
987 and arg pointers and not just the register number in case we have
988 eliminated the frame and/or arg pointer and are using it
989 for pseudos. */
990 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
991 /* The arg pointer varies if it is not a fixed register. */
992 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
993 || x == pic_offset_table_rtx)
994 return true;
995 return false;
997 default:
998 return false;
1002 /* Take all reasonable action to put the address of MEM into the form
1003 that we can do analysis on.
1005 The gold standard is to get the address into the form: address +
1006 OFFSET where address is something that rtx_varies_p considers a
1007 constant. When we can get the address in this form, we can do
1008 global analysis on it. Note that for constant bases, address is
1009 not actually returned, only the group_id. The address can be
1010 obtained from that.
1012 If that fails, we try cselib to get a value we can at least use
1013 locally. If that fails we return false.
1015 The GROUP_ID is set to -1 for cselib bases and the index of the
1016 group for non_varying bases.
1018 FOR_READ is true if this is a mem read and false if not. */
1020 static bool
1021 canon_address (rtx mem,
1022 alias_set_type *alias_set_out,
1023 int *group_id,
1024 HOST_WIDE_INT *offset,
1025 cselib_val **base)
1027 rtx mem_address = XEXP (mem, 0);
1028 rtx expanded_address, address;
1029 /* Make sure that cselib is has initialized all of the operands of
1030 the address before asking it to do the subst. */
1032 if (clear_alias_sets)
1034 /* If this is a spill, do not do any further processing. */
1035 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1036 if (dump_file)
1037 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1038 if (bitmap_bit_p (clear_alias_sets, alias_set))
1040 struct clear_alias_mode_holder *entry
1041 = clear_alias_set_lookup (alias_set);
1043 /* If the modes do not match, we cannot process this set. */
1044 if (entry->mode != GET_MODE (mem))
1046 if (dump_file)
1047 fprintf (dump_file,
1048 "disqualifying alias set %d, (%s) != (%s)\n",
1049 (int) alias_set, GET_MODE_NAME (entry->mode),
1050 GET_MODE_NAME (GET_MODE (mem)));
1052 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1053 return false;
1056 *alias_set_out = alias_set;
1057 *group_id = clear_alias_group->id;
1058 return true;
1062 *alias_set_out = 0;
1064 cselib_lookup (mem_address, Pmode, 1);
1066 if (dump_file)
1068 fprintf (dump_file, " mem: ");
1069 print_inline_rtx (dump_file, mem_address, 0);
1070 fprintf (dump_file, "\n");
1073 /* Use cselib to replace all of the reg references with the full
1074 expression. This will take care of the case where we have
1076 r_x = base + offset;
1077 val = *r_x;
1079 by making it into
1081 val = *(base + offset);
1084 expanded_address = cselib_expand_value_rtx (mem_address, scratch, 5);
1086 /* If this fails, just go with the mem_address. */
1087 if (!expanded_address)
1088 expanded_address = mem_address;
1090 /* Split the address into canonical BASE + OFFSET terms. */
1091 address = canon_rtx (expanded_address);
1093 *offset = 0;
1095 if (dump_file)
1097 fprintf (dump_file, "\n after cselib_expand address: ");
1098 print_inline_rtx (dump_file, expanded_address, 0);
1099 fprintf (dump_file, "\n");
1101 fprintf (dump_file, "\n after canon_rtx address: ");
1102 print_inline_rtx (dump_file, address, 0);
1103 fprintf (dump_file, "\n");
1106 if (GET_CODE (address) == CONST)
1107 address = XEXP (address, 0);
1109 if (GET_CODE (address) == PLUS && GET_CODE (XEXP (address, 1)) == CONST_INT)
1111 *offset = INTVAL (XEXP (address, 1));
1112 address = XEXP (address, 0);
1115 if (const_or_frame_p (address))
1117 group_info_t group = get_group_info (address);
1119 if (dump_file)
1120 fprintf (dump_file, " gid=%d offset=%d \n", group->id, (int)*offset);
1121 *base = NULL;
1122 *group_id = group->id;
1124 else
1126 *base = cselib_lookup (address, Pmode, true);
1127 *group_id = -1;
1129 if (*base == NULL)
1131 if (dump_file)
1132 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1133 return false;
1135 if (dump_file)
1136 fprintf (dump_file, " varying cselib base=%d offset = %d\n",
1137 (*base)->value, (int)*offset);
1139 return true;
1143 /* Clear the rhs field from the active_local_stores array. */
1145 static void
1146 clear_rhs_from_active_local_stores (void)
1148 insn_info_t ptr = active_local_stores;
1150 while (ptr)
1152 store_info_t store_info = ptr->store_rec;
1153 /* Skip the clobbers. */
1154 while (!store_info->is_set)
1155 store_info = store_info->next;
1157 store_info->rhs = NULL;
1159 ptr = ptr->next_local_store;
1164 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1165 there is a candidate store, after adding it to the appropriate
1166 local store group if so. */
1168 static int
1169 record_store (rtx body, bb_info_t bb_info)
1171 rtx mem;
1172 HOST_WIDE_INT offset = 0;
1173 HOST_WIDE_INT width = 0;
1174 alias_set_type spill_alias_set;
1175 insn_info_t insn_info = bb_info->last_insn;
1176 store_info_t store_info = NULL;
1177 int group_id;
1178 cselib_val *base = NULL;
1179 insn_info_t ptr, last;
1180 bool store_is_unused;
1182 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1183 return 0;
1185 /* If this is not used, then this cannot be used to keep the insn
1186 from being deleted. On the other hand, it does provide something
1187 that can be used to prove that another store is dead. */
1188 store_is_unused
1189 = (find_reg_note (insn_info->insn, REG_UNUSED, body) != NULL);
1191 /* Check whether that value is a suitable memory location. */
1192 mem = SET_DEST (body);
1193 if (!MEM_P (mem))
1195 /* If the set or clobber is unused, then it does not effect our
1196 ability to get rid of the entire insn. */
1197 if (!store_is_unused)
1198 insn_info->cannot_delete = true;
1199 return 0;
1202 /* At this point we know mem is a mem. */
1203 if (GET_MODE (mem) == BLKmode)
1205 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1207 if (dump_file)
1208 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1209 add_wild_read (bb_info);
1210 insn_info->cannot_delete = true;
1212 else if (!store_is_unused)
1214 /* If the set or clobber is unused, then it does not effect our
1215 ability to get rid of the entire insn. */
1216 insn_info->cannot_delete = true;
1217 clear_rhs_from_active_local_stores ();
1219 return 0;
1222 /* We can still process a volatile mem, we just cannot delete it. */
1223 if (MEM_VOLATILE_P (mem))
1224 insn_info->cannot_delete = true;
1226 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1228 clear_rhs_from_active_local_stores ();
1229 return 0;
1232 width = GET_MODE_SIZE (GET_MODE (mem));
1234 if (spill_alias_set)
1236 bitmap store1 = clear_alias_group->store1_p;
1237 bitmap store2 = clear_alias_group->store2_p;
1239 if (bitmap_bit_p (store1, spill_alias_set))
1240 bitmap_set_bit (store2, spill_alias_set);
1241 else
1242 bitmap_set_bit (store1, spill_alias_set);
1244 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1245 clear_alias_group->offset_map_size_p = spill_alias_set;
1247 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1249 if (dump_file)
1250 fprintf (dump_file, " processing spill store %d(%s)\n",
1251 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1253 else if (group_id >= 0)
1255 /* In the restrictive case where the base is a constant or the
1256 frame pointer we can do global analysis. */
1258 group_info_t group
1259 = VEC_index (group_info_t, rtx_group_vec, group_id);
1261 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1262 set_usage_bits (group, offset, width);
1264 if (dump_file)
1265 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1266 group_id, (int)offset, (int)(offset+width));
1268 else
1270 rtx base_term = find_base_term (XEXP (mem, 0));
1271 if (!base_term
1272 || (GET_CODE (base_term) == ADDRESS
1273 && GET_MODE (base_term) == Pmode
1274 && XEXP (base_term, 0) == stack_pointer_rtx))
1275 insn_info->stack_pointer_based = true;
1276 insn_info->contains_cselib_groups = true;
1278 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1279 group_id = -1;
1281 if (dump_file)
1282 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1283 (int)offset, (int)(offset+width));
1286 /* Check to see if this stores causes some other stores to be
1287 dead. */
1288 ptr = active_local_stores;
1289 last = NULL;
1291 while (ptr)
1293 insn_info_t next = ptr->next_local_store;
1294 store_info_t s_info = ptr->store_rec;
1295 bool del = true;
1297 /* Skip the clobbers. We delete the active insn if this insn
1298 shadows the set. To have been put on the active list, it
1299 has exactly on set. */
1300 while (!s_info->is_set)
1301 s_info = s_info->next;
1303 if (s_info->alias_set != spill_alias_set)
1304 del = false;
1305 else if (s_info->alias_set)
1307 struct clear_alias_mode_holder *entry
1308 = clear_alias_set_lookup (s_info->alias_set);
1309 /* Generally, spills cannot be processed if and of the
1310 references to the slot have a different mode. But if
1311 we are in the same block and mode is exactly the same
1312 between this store and one before in the same block,
1313 we can still delete it. */
1314 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1315 && (GET_MODE (mem) == entry->mode))
1317 del = true;
1318 s_info->positions_needed = (unsigned HOST_WIDE_INT) 0;
1320 if (dump_file)
1321 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1322 INSN_UID (ptr->insn), (int) s_info->alias_set);
1324 else if ((s_info->group_id == group_id)
1325 && (s_info->cse_base == base))
1327 HOST_WIDE_INT i;
1328 if (dump_file)
1329 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1330 INSN_UID (ptr->insn), s_info->group_id,
1331 (int)s_info->begin, (int)s_info->end);
1332 for (i = offset; i < offset+width; i++)
1333 if (i >= s_info->begin && i < s_info->end)
1334 s_info->positions_needed
1335 &= ~(((unsigned HOST_WIDE_INT) 1) << (i - s_info->begin));
1337 else if (s_info->rhs)
1338 /* Need to see if it is possible for this store to overwrite
1339 the value of store_info. If it is, set the rhs to NULL to
1340 keep it from being used to remove a load. */
1342 if (canon_true_dependence (s_info->mem,
1343 GET_MODE (s_info->mem),
1344 s_info->mem_addr,
1345 mem, rtx_varies_p))
1346 s_info->rhs = NULL;
1349 /* An insn can be deleted if every position of every one of
1350 its s_infos is zero. */
1351 if (s_info->positions_needed != (unsigned HOST_WIDE_INT) 0)
1352 del = false;
1354 if (del)
1356 insn_info_t insn_to_delete = ptr;
1358 if (last)
1359 last->next_local_store = ptr->next_local_store;
1360 else
1361 active_local_stores = ptr->next_local_store;
1363 delete_dead_store_insn (insn_to_delete);
1365 else
1366 last = ptr;
1368 ptr = next;
1371 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1373 /* Finish filling in the store_info. */
1374 store_info->next = insn_info->store_rec;
1375 insn_info->store_rec = store_info;
1376 store_info->mem = canon_rtx (mem);
1377 store_info->alias_set = spill_alias_set;
1378 store_info->mem_addr = get_addr (XEXP (mem, 0));
1379 store_info->cse_base = base;
1380 store_info->positions_needed = lowpart_bitmask (width);
1381 store_info->group_id = group_id;
1382 store_info->begin = offset;
1383 store_info->end = offset + width;
1384 store_info->is_set = GET_CODE (body) == SET;
1386 if (store_info->is_set
1387 /* No place to keep the value after ra. */
1388 && !reload_completed
1389 && (REG_P (SET_SRC (body))
1390 || GET_CODE (SET_SRC (body)) == SUBREG
1391 || CONSTANT_P (SET_SRC (body)))
1392 /* Sometimes the store and reload is used for truncation and
1393 rounding. */
1394 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1395 store_info->rhs = SET_SRC (body);
1396 else
1397 store_info->rhs = NULL;
1399 /* If this is a clobber, we return 0. We will only be able to
1400 delete this insn if there is only one store USED store, but we
1401 can use the clobber to delete other stores earlier. */
1402 return store_info->is_set ? 1 : 0;
1406 static void
1407 dump_insn_info (const char * start, insn_info_t insn_info)
1409 fprintf (dump_file, "%s insn=%d %s\n", start,
1410 INSN_UID (insn_info->insn),
1411 insn_info->store_rec ? "has store" : "naked");
1415 /* If the modes are different and the value's source and target do not
1416 line up, we need to extract the value from lower part of the rhs of
1417 the store, shift it, and then put it into a form that can be shoved
1418 into the read_insn. This function generates a right SHIFT of a
1419 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1420 shift sequence is returned or NULL if we failed to find a
1421 shift. */
1423 static rtx
1424 find_shift_sequence (int access_size,
1425 store_info_t store_info,
1426 read_info_t read_info,
1427 int shift)
1429 enum machine_mode store_mode = GET_MODE (store_info->mem);
1430 enum machine_mode read_mode = GET_MODE (read_info->mem);
1431 enum machine_mode new_mode;
1432 rtx read_reg = NULL;
1434 /* Some machines like the x86 have shift insns for each size of
1435 operand. Other machines like the ppc or the ia-64 may only have
1436 shift insns that shift values within 32 or 64 bit registers.
1437 This loop tries to find the smallest shift insn that will right
1438 justify the value we want to read but is available in one insn on
1439 the machine. */
1441 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1442 MODE_INT);
1443 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1444 new_mode = GET_MODE_WIDER_MODE (new_mode))
1446 rtx target, new_reg, shift_seq, insn, new_lhs;
1447 int cost, offset;
1449 /* Try a wider mode if truncating the store mode to NEW_MODE
1450 requires a real instruction. */
1451 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1452 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode),
1453 GET_MODE_BITSIZE (store_mode)))
1454 continue;
1456 /* Also try a wider mode if the necessary punning is either not
1457 desirable or not possible. */
1458 if (!CONSTANT_P (store_info->rhs)
1459 && !MODES_TIEABLE_P (new_mode, store_mode))
1460 continue;
1461 offset = subreg_lowpart_offset (new_mode, store_mode);
1462 new_lhs = simplify_gen_subreg (new_mode, copy_rtx (store_info->rhs),
1463 store_mode, offset);
1464 if (new_lhs == NULL_RTX)
1465 continue;
1467 new_reg = gen_reg_rtx (new_mode);
1469 start_sequence ();
1471 /* In theory we could also check for an ashr. Ian Taylor knows
1472 of one dsp where the cost of these two was not the same. But
1473 this really is a rare case anyway. */
1474 target = expand_binop (new_mode, lshr_optab, new_reg,
1475 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1477 shift_seq = get_insns ();
1478 end_sequence ();
1480 if (target != new_reg || shift_seq == NULL)
1481 continue;
1483 cost = 0;
1484 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1485 if (INSN_P (insn))
1486 cost += insn_rtx_cost (PATTERN (insn));
1488 /* The computation up to here is essentially independent
1489 of the arguments and could be precomputed. It may
1490 not be worth doing so. We could precompute if
1491 worthwhile or at least cache the results. The result
1492 technically depends on both SHIFT and ACCESS_SIZE,
1493 but in practice the answer will depend only on ACCESS_SIZE. */
1495 if (cost > COSTS_N_INSNS (1))
1496 continue;
1498 /* We found an acceptable shift. Generate a move to
1499 take the value from the store and put it into the
1500 shift pseudo, then shift it, then generate another
1501 move to put in into the target of the read. */
1502 emit_move_insn (new_reg, new_lhs);
1503 emit_insn (shift_seq);
1504 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1505 break;
1508 return read_reg;
1512 /* Take a sequence of:
1513 A <- r1
1515 ... <- A
1517 and change it into
1518 r2 <- r1
1519 A <- r1
1521 ... <- r2
1525 r3 <- extract (r1)
1526 r3 <- r3 >> shift
1527 r2 <- extract (r3)
1528 ... <- r2
1532 r2 <- extract (r1)
1533 ... <- r2
1535 Depending on the alignment and the mode of the store and
1536 subsequent load.
1539 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1540 and READ_INSN are for the read. Return true if the replacement
1541 went ok. */
1543 static bool
1544 replace_read (store_info_t store_info, insn_info_t store_insn,
1545 read_info_t read_info, insn_info_t read_insn, rtx *loc)
1547 enum machine_mode store_mode = GET_MODE (store_info->mem);
1548 enum machine_mode read_mode = GET_MODE (read_info->mem);
1549 int shift;
1550 int access_size; /* In bytes. */
1551 rtx insns, read_reg;
1553 if (!dbg_cnt (dse))
1554 return false;
1556 /* To get here the read is within the boundaries of the write so
1557 shift will never be negative. Start out with the shift being in
1558 bytes. */
1559 if (BYTES_BIG_ENDIAN)
1560 shift = store_info->end - read_info->end;
1561 else
1562 shift = read_info->begin - store_info->begin;
1564 access_size = shift + GET_MODE_SIZE (read_mode);
1566 /* From now on it is bits. */
1567 shift *= BITS_PER_UNIT;
1569 /* Create a sequence of instructions to set up the read register.
1570 This sequence goes immediately before the store and its result
1571 is read by the load.
1573 We need to keep this in perspective. We are replacing a read
1574 with a sequence of insns, but the read will almost certainly be
1575 in cache, so it is not going to be an expensive one. Thus, we
1576 are not willing to do a multi insn shift or worse a subroutine
1577 call to get rid of the read. */
1578 if (dump_file)
1579 fprintf (dump_file, "trying to replace %smode load in insn %d"
1580 " from %smode store in insn %d\n",
1581 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1582 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1583 start_sequence ();
1584 if (shift)
1585 read_reg = find_shift_sequence (access_size, store_info, read_info, shift);
1586 else
1587 read_reg = extract_low_bits (read_mode, store_mode,
1588 copy_rtx (store_info->rhs));
1589 if (read_reg == NULL_RTX)
1591 end_sequence ();
1592 if (dump_file)
1593 fprintf (dump_file, " -- could not extract bits of stored value\n");
1594 return false;
1596 /* Force the value into a new register so that it won't be clobbered
1597 between the store and the load. */
1598 read_reg = copy_to_mode_reg (read_mode, read_reg);
1599 insns = get_insns ();
1600 end_sequence ();
1602 if (validate_change (read_insn->insn, loc, read_reg, 0))
1604 deferred_change_t deferred_change =
1605 (deferred_change_t) pool_alloc (deferred_change_pool);
1607 /* Insert this right before the store insn where it will be safe
1608 from later insns that might change it before the read. */
1609 emit_insn_before (insns, store_insn->insn);
1611 /* And now for the kludge part: cselib croaks if you just
1612 return at this point. There are two reasons for this:
1614 1) Cselib has an idea of how many pseudos there are and
1615 that does not include the new ones we just added.
1617 2) Cselib does not know about the move insn we added
1618 above the store_info, and there is no way to tell it
1619 about it, because it has "moved on".
1621 Problem (1) is fixable with a certain amount of engineering.
1622 Problem (2) is requires starting the bb from scratch. This
1623 could be expensive.
1625 So we are just going to have to lie. The move/extraction
1626 insns are not really an issue, cselib did not see them. But
1627 the use of the new pseudo read_insn is a real problem because
1628 cselib has not scanned this insn. The way that we solve this
1629 problem is that we are just going to put the mem back for now
1630 and when we are finished with the block, we undo this. We
1631 keep a table of mems to get rid of. At the end of the basic
1632 block we can put them back. */
1634 *loc = read_info->mem;
1635 deferred_change->next = deferred_change_list;
1636 deferred_change_list = deferred_change;
1637 deferred_change->loc = loc;
1638 deferred_change->reg = read_reg;
1640 /* Get rid of the read_info, from the point of view of the
1641 rest of dse, play like this read never happened. */
1642 read_insn->read_rec = read_info->next;
1643 pool_free (read_info_pool, read_info);
1644 if (dump_file)
1646 fprintf (dump_file, " -- replaced the loaded MEM with ");
1647 print_simple_rtl (dump_file, read_reg);
1648 fprintf (dump_file, "\n");
1650 return true;
1652 else
1654 if (dump_file)
1656 fprintf (dump_file, " -- replacing the loaded MEM with ");
1657 print_simple_rtl (dump_file, read_reg);
1658 fprintf (dump_file, " led to an invalid instruction\n");
1660 return false;
1664 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
1665 if LOC is a mem and if it is look at the address and kill any
1666 appropriate stores that may be active. */
1668 static int
1669 check_mem_read_rtx (rtx *loc, void *data)
1671 rtx mem = *loc;
1672 bb_info_t bb_info;
1673 insn_info_t insn_info;
1674 HOST_WIDE_INT offset = 0;
1675 HOST_WIDE_INT width = 0;
1676 alias_set_type spill_alias_set = 0;
1677 cselib_val *base = NULL;
1678 int group_id;
1679 read_info_t read_info;
1681 if (!mem || !MEM_P (mem))
1682 return 0;
1684 bb_info = (bb_info_t) data;
1685 insn_info = bb_info->last_insn;
1687 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
1688 || (MEM_VOLATILE_P (mem)))
1690 if (dump_file)
1691 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
1692 add_wild_read (bb_info);
1693 insn_info->cannot_delete = true;
1694 return 0;
1697 /* If it is reading readonly mem, then there can be no conflict with
1698 another write. */
1699 if (MEM_READONLY_P (mem))
1700 return 0;
1702 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1704 if (dump_file)
1705 fprintf (dump_file, " adding wild read, canon_address failure.\n");
1706 add_wild_read (bb_info);
1707 return 0;
1710 if (GET_MODE (mem) == BLKmode)
1711 width = -1;
1712 else
1713 width = GET_MODE_SIZE (GET_MODE (mem));
1715 read_info = (read_info_t) pool_alloc (read_info_pool);
1716 read_info->group_id = group_id;
1717 read_info->mem = mem;
1718 read_info->alias_set = spill_alias_set;
1719 read_info->begin = offset;
1720 read_info->end = offset + width;
1721 read_info->next = insn_info->read_rec;
1722 insn_info->read_rec = read_info;
1724 /* We ignore the clobbers in store_info. The is mildly aggressive,
1725 but there really should not be a clobber followed by a read. */
1727 if (spill_alias_set)
1729 insn_info_t i_ptr = active_local_stores;
1730 insn_info_t last = NULL;
1732 if (dump_file)
1733 fprintf (dump_file, " processing spill load %d\n",
1734 (int) spill_alias_set);
1736 while (i_ptr)
1738 store_info_t store_info = i_ptr->store_rec;
1740 /* Skip the clobbers. */
1741 while (!store_info->is_set)
1742 store_info = store_info->next;
1744 if (store_info->alias_set == spill_alias_set)
1746 if (dump_file)
1747 dump_insn_info ("removing from active", i_ptr);
1749 if (last)
1750 last->next_local_store = i_ptr->next_local_store;
1751 else
1752 active_local_stores = i_ptr->next_local_store;
1754 else
1755 last = i_ptr;
1756 i_ptr = i_ptr->next_local_store;
1759 else if (group_id >= 0)
1761 /* This is the restricted case where the base is a constant or
1762 the frame pointer and offset is a constant. */
1763 insn_info_t i_ptr = active_local_stores;
1764 insn_info_t last = NULL;
1766 if (dump_file)
1768 if (width == -1)
1769 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
1770 group_id);
1771 else
1772 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
1773 group_id, (int)offset, (int)(offset+width));
1776 while (i_ptr)
1778 bool remove = false;
1779 store_info_t store_info = i_ptr->store_rec;
1781 /* Skip the clobbers. */
1782 while (!store_info->is_set)
1783 store_info = store_info->next;
1785 /* There are three cases here. */
1786 if (store_info->group_id < 0)
1787 /* We have a cselib store followed by a read from a
1788 const base. */
1789 remove
1790 = canon_true_dependence (store_info->mem,
1791 GET_MODE (store_info->mem),
1792 store_info->mem_addr,
1793 mem, rtx_varies_p);
1795 else if (group_id == store_info->group_id)
1797 /* This is a block mode load. We may get lucky and
1798 canon_true_dependence may save the day. */
1799 if (width == -1)
1800 remove
1801 = canon_true_dependence (store_info->mem,
1802 GET_MODE (store_info->mem),
1803 store_info->mem_addr,
1804 mem, rtx_varies_p);
1806 /* If this read is just reading back something that we just
1807 stored, rewrite the read. */
1808 else
1810 if (store_info->rhs
1811 && (offset >= store_info->begin)
1812 && (offset + width <= store_info->end))
1814 unsigned HOST_WIDE_INT mask
1815 = (lowpart_bitmask (width)
1816 << (offset - store_info->begin));
1818 if ((store_info->positions_needed & mask) == mask
1819 && replace_read (store_info, i_ptr,
1820 read_info, insn_info, loc))
1821 return 0;
1823 /* The bases are the same, just see if the offsets
1824 overlap. */
1825 if ((offset < store_info->end)
1826 && (offset + width > store_info->begin))
1827 remove = true;
1831 /* else
1832 The else case that is missing here is that the
1833 bases are constant but different. There is nothing
1834 to do here because there is no overlap. */
1836 if (remove)
1838 if (dump_file)
1839 dump_insn_info ("removing from active", i_ptr);
1841 if (last)
1842 last->next_local_store = i_ptr->next_local_store;
1843 else
1844 active_local_stores = i_ptr->next_local_store;
1846 else
1847 last = i_ptr;
1848 i_ptr = i_ptr->next_local_store;
1851 else
1853 insn_info_t i_ptr = active_local_stores;
1854 insn_info_t last = NULL;
1855 if (dump_file)
1857 fprintf (dump_file, " processing cselib load mem:");
1858 print_inline_rtx (dump_file, mem, 0);
1859 fprintf (dump_file, "\n");
1862 while (i_ptr)
1864 bool remove = false;
1865 store_info_t store_info = i_ptr->store_rec;
1867 if (dump_file)
1868 fprintf (dump_file, " processing cselib load against insn %d\n",
1869 INSN_UID (i_ptr->insn));
1871 /* Skip the clobbers. */
1872 while (!store_info->is_set)
1873 store_info = store_info->next;
1875 /* If this read is just reading back something that we just
1876 stored, rewrite the read. */
1877 if (store_info->rhs
1878 && store_info->group_id == -1
1879 && store_info->cse_base == base
1880 && (offset >= store_info->begin)
1881 && (offset + width <= store_info->end))
1883 unsigned HOST_WIDE_INT mask
1884 = (lowpart_bitmask (width)
1885 << (offset - store_info->begin));
1887 if ((store_info->positions_needed & mask) == mask
1888 && replace_read (store_info, i_ptr,
1889 read_info, insn_info, loc))
1890 return 0;
1893 if (!store_info->alias_set)
1894 remove = canon_true_dependence (store_info->mem,
1895 GET_MODE (store_info->mem),
1896 store_info->mem_addr,
1897 mem, rtx_varies_p);
1899 if (remove)
1901 if (dump_file)
1902 dump_insn_info ("removing from active", i_ptr);
1904 if (last)
1905 last->next_local_store = i_ptr->next_local_store;
1906 else
1907 active_local_stores = i_ptr->next_local_store;
1909 else
1910 last = i_ptr;
1911 i_ptr = i_ptr->next_local_store;
1914 return 0;
1917 /* A for_each_rtx callback in which DATA points the INSN_INFO for
1918 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
1919 true for any part of *LOC. */
1921 static void
1922 check_mem_read_use (rtx *loc, void *data)
1924 for_each_rtx (loc, check_mem_read_rtx, data);
1927 /* Apply record_store to all candidate stores in INSN. Mark INSN
1928 if some part of it is not a candidate store and assigns to a
1929 non-register target. */
1931 static void
1932 scan_insn (bb_info_t bb_info, rtx insn)
1934 rtx body;
1935 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
1936 int mems_found = 0;
1937 memset (insn_info, 0, sizeof (struct insn_info));
1939 if (dump_file)
1940 fprintf (dump_file, "\n**scanning insn=%d\n",
1941 INSN_UID (insn));
1943 insn_info->prev_insn = bb_info->last_insn;
1944 insn_info->insn = insn;
1945 bb_info->last_insn = insn_info;
1948 /* Cselib clears the table for this case, so we have to essentially
1949 do the same. */
1950 if (NONJUMP_INSN_P (insn)
1951 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1952 && MEM_VOLATILE_P (PATTERN (insn)))
1954 add_wild_read (bb_info);
1955 insn_info->cannot_delete = true;
1956 return;
1959 /* Look at all of the uses in the insn. */
1960 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
1962 if (CALL_P (insn))
1964 insn_info->cannot_delete = true;
1966 /* Const functions cannot do anything bad i.e. read memory,
1967 however, they can read their parameters which may have
1968 been pushed onto the stack. */
1969 if (RTL_CONST_CALL_P (insn))
1971 insn_info_t i_ptr = active_local_stores;
1972 insn_info_t last = NULL;
1974 if (dump_file)
1975 fprintf (dump_file, "const call %d\n", INSN_UID (insn));
1977 /* See the head comment of the frame_read field. */
1978 if (reload_completed)
1979 insn_info->frame_read = true;
1981 /* Loop over the active stores and remove those which are
1982 killed by the const function call. */
1983 while (i_ptr)
1985 bool remove_store = false;
1987 /* The stack pointer based stores are always killed. */
1988 if (i_ptr->stack_pointer_based)
1989 remove_store = true;
1991 /* If the frame is read, the frame related stores are killed. */
1992 else if (insn_info->frame_read)
1994 store_info_t store_info = i_ptr->store_rec;
1996 /* Skip the clobbers. */
1997 while (!store_info->is_set)
1998 store_info = store_info->next;
2000 if (store_info->group_id >= 0
2001 && VEC_index (group_info_t, rtx_group_vec,
2002 store_info->group_id)->frame_related)
2003 remove_store = true;
2006 if (remove_store)
2008 if (dump_file)
2009 dump_insn_info ("removing from active", i_ptr);
2011 if (last)
2012 last->next_local_store = i_ptr->next_local_store;
2013 else
2014 active_local_stores = i_ptr->next_local_store;
2016 else
2017 last = i_ptr;
2019 i_ptr = i_ptr->next_local_store;
2023 else
2024 /* Every other call, including pure functions, may read memory. */
2025 add_wild_read (bb_info);
2027 return;
2030 /* Assuming that there are sets in these insns, we cannot delete
2031 them. */
2032 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2033 || volatile_refs_p (PATTERN (insn))
2034 || (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
2035 || (RTX_FRAME_RELATED_P (insn))
2036 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2037 insn_info->cannot_delete = true;
2039 body = PATTERN (insn);
2040 if (GET_CODE (body) == PARALLEL)
2042 int i;
2043 for (i = 0; i < XVECLEN (body, 0); i++)
2044 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2046 else
2047 mems_found += record_store (body, bb_info);
2049 if (dump_file)
2050 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2051 mems_found, insn_info->cannot_delete ? "true" : "false");
2053 /* If we found some sets of mems, and the insn has not been marked
2054 cannot delete, add it into the active_local_stores so that it can
2055 be locally deleted if found dead. Otherwise mark it as cannot
2056 delete. This simplifies the processing later. */
2057 if (mems_found == 1 && !insn_info->cannot_delete)
2059 insn_info->next_local_store = active_local_stores;
2060 active_local_stores = insn_info;
2062 else
2063 insn_info->cannot_delete = true;
2067 /* Remove BASE from the set of active_local_stores. This is a
2068 callback from cselib that is used to get rid of the stores in
2069 active_local_stores. */
2071 static void
2072 remove_useless_values (cselib_val *base)
2074 insn_info_t insn_info = active_local_stores;
2075 insn_info_t last = NULL;
2077 while (insn_info)
2079 store_info_t store_info = insn_info->store_rec;
2080 bool del = false;
2082 /* If ANY of the store_infos match the cselib group that is
2083 being deleted, then the insn can not be deleted. */
2084 while (store_info)
2086 if ((store_info->group_id == -1)
2087 && (store_info->cse_base == base))
2089 del = true;
2090 break;
2092 store_info = store_info->next;
2095 if (del)
2097 if (last)
2098 last->next_local_store = insn_info->next_local_store;
2099 else
2100 active_local_stores = insn_info->next_local_store;
2101 free_store_info (insn_info);
2103 else
2104 last = insn_info;
2106 insn_info = insn_info->next_local_store;
2111 /* Do all of step 1. */
2113 static void
2114 dse_step1 (void)
2116 basic_block bb;
2118 cselib_init (false);
2119 all_blocks = BITMAP_ALLOC (NULL);
2120 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2121 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2123 FOR_ALL_BB (bb)
2125 insn_info_t ptr;
2126 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2128 memset (bb_info, 0, sizeof (struct bb_info));
2129 bitmap_set_bit (all_blocks, bb->index);
2131 bb_table[bb->index] = bb_info;
2132 cselib_discard_hook = remove_useless_values;
2134 if (bb->index >= NUM_FIXED_BLOCKS)
2136 rtx insn;
2138 cse_store_info_pool
2139 = create_alloc_pool ("cse_store_info_pool",
2140 sizeof (struct store_info), 100);
2141 active_local_stores = NULL;
2142 cselib_clear_table ();
2144 /* Scan the insns. */
2145 FOR_BB_INSNS (bb, insn)
2147 if (INSN_P (insn))
2148 scan_insn (bb_info, insn);
2149 cselib_process_insn (insn);
2152 /* This is something of a hack, because the global algorithm
2153 is supposed to take care of the case where stores go dead
2154 at the end of the function. However, the global
2155 algorithm must take a more conservative view of block
2156 mode reads than the local alg does. So to get the case
2157 where you have a store to the frame followed by a non
2158 overlapping block more read, we look at the active local
2159 stores at the end of the function and delete all of the
2160 frame and spill based ones. */
2161 if (stores_off_frame_dead_at_return
2162 && (EDGE_COUNT (bb->succs) == 0
2163 || (single_succ_p (bb)
2164 && single_succ (bb) == EXIT_BLOCK_PTR
2165 && ! crtl->calls_eh_return)))
2167 insn_info_t i_ptr = active_local_stores;
2168 while (i_ptr)
2170 store_info_t store_info = i_ptr->store_rec;
2172 /* Skip the clobbers. */
2173 while (!store_info->is_set)
2174 store_info = store_info->next;
2175 if (store_info->alias_set)
2176 delete_dead_store_insn (i_ptr);
2177 else
2178 if (store_info->group_id >= 0)
2180 group_info_t group
2181 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2182 if (group->frame_related)
2183 delete_dead_store_insn (i_ptr);
2186 i_ptr = i_ptr->next_local_store;
2190 /* Get rid of the loads that were discovered in
2191 replace_read. Cselib is finished with this block. */
2192 while (deferred_change_list)
2194 deferred_change_t next = deferred_change_list->next;
2196 /* There is no reason to validate this change. That was
2197 done earlier. */
2198 *deferred_change_list->loc = deferred_change_list->reg;
2199 pool_free (deferred_change_pool, deferred_change_list);
2200 deferred_change_list = next;
2203 /* Get rid of all of the cselib based store_infos in this
2204 block and mark the containing insns as not being
2205 deletable. */
2206 ptr = bb_info->last_insn;
2207 while (ptr)
2209 if (ptr->contains_cselib_groups)
2210 free_store_info (ptr);
2211 ptr = ptr->prev_insn;
2214 free_alloc_pool (cse_store_info_pool);
2218 cselib_finish ();
2219 htab_empty (rtx_group_table);
2223 /*----------------------------------------------------------------------------
2224 Second step.
2226 Assign each byte position in the stores that we are going to
2227 analyze globally to a position in the bitmaps. Returns true if
2228 there are any bit positions assigned.
2229 ----------------------------------------------------------------------------*/
2231 static void
2232 dse_step2_init (void)
2234 unsigned int i;
2235 group_info_t group;
2237 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2239 /* For all non stack related bases, we only consider a store to
2240 be deletable if there are two or more stores for that
2241 position. This is because it takes one store to make the
2242 other store redundant. However, for the stores that are
2243 stack related, we consider them if there is only one store
2244 for the position. We do this because the stack related
2245 stores can be deleted if their is no read between them and
2246 the end of the function.
2248 To make this work in the current framework, we take the stack
2249 related bases add all of the bits from store1 into store2.
2250 This has the effect of making the eligible even if there is
2251 only one store. */
2253 if (stores_off_frame_dead_at_return && group->frame_related)
2255 bitmap_ior_into (group->store2_n, group->store1_n);
2256 bitmap_ior_into (group->store2_p, group->store1_p);
2257 if (dump_file)
2258 fprintf (dump_file, "group %d is frame related ", i);
2261 group->offset_map_size_n++;
2262 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2263 group->offset_map_size_p++;
2264 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2265 group->process_globally = false;
2266 if (dump_file)
2268 fprintf (dump_file, "group %d(%d+%d): ", i,
2269 (int)bitmap_count_bits (group->store2_n),
2270 (int)bitmap_count_bits (group->store2_p));
2271 bitmap_print (dump_file, group->store2_n, "n ", " ");
2272 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2278 /* Init the offset tables for the normal case. */
2280 static bool
2281 dse_step2_nospill (void)
2283 unsigned int i;
2284 group_info_t group;
2285 /* Position 0 is unused because 0 is used in the maps to mean
2286 unused. */
2287 current_position = 1;
2289 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2291 bitmap_iterator bi;
2292 unsigned int j;
2294 if (group == clear_alias_group)
2295 continue;
2297 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2298 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2299 bitmap_clear (group->group_kill);
2301 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2303 bitmap_set_bit (group->group_kill, current_position);
2304 group->offset_map_n[j] = current_position++;
2305 group->process_globally = true;
2307 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2309 bitmap_set_bit (group->group_kill, current_position);
2310 group->offset_map_p[j] = current_position++;
2311 group->process_globally = true;
2314 return current_position != 1;
2318 /* Init the offset tables for the spill case. */
2320 static bool
2321 dse_step2_spill (void)
2323 unsigned int j;
2324 group_info_t group = clear_alias_group;
2325 bitmap_iterator bi;
2327 /* Position 0 is unused because 0 is used in the maps to mean
2328 unused. */
2329 current_position = 1;
2331 if (dump_file)
2333 bitmap_print (dump_file, clear_alias_sets,
2334 "clear alias sets ", "\n");
2335 bitmap_print (dump_file, disqualified_clear_alias_sets,
2336 "disqualified clear alias sets ", "\n");
2339 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2340 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2341 bitmap_clear (group->group_kill);
2343 /* Remove the disqualified positions from the store2_p set. */
2344 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
2346 /* We do not need to process the store2_n set because
2347 alias_sets are always positive. */
2348 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2350 bitmap_set_bit (group->group_kill, current_position);
2351 group->offset_map_p[j] = current_position++;
2352 group->process_globally = true;
2355 return current_position != 1;
2360 /*----------------------------------------------------------------------------
2361 Third step.
2363 Build the bit vectors for the transfer functions.
2364 ----------------------------------------------------------------------------*/
2367 /* Note that this is NOT a general purpose function. Any mem that has
2368 an alias set registered here expected to be COMPLETELY unaliased:
2369 i.e it's addresses are not and need not be examined.
2371 It is known that all references to this address will have this
2372 alias set and there are NO other references to this address in the
2373 function.
2375 Currently the only place that is known to be clean enough to use
2376 this interface is the code that assigns the spill locations.
2378 All of the mems that have alias_sets registered are subjected to a
2379 very powerful form of dse where function calls, volatile reads and
2380 writes, and reads from random location are not taken into account.
2382 It is also assumed that these locations go dead when the function
2383 returns. This assumption could be relaxed if there were found to
2384 be places that this assumption was not correct.
2386 The MODE is passed in and saved. The mode of each load or store to
2387 a mem with ALIAS_SET is checked against MEM. If the size of that
2388 load or store is different from MODE, processing is halted on this
2389 alias set. For the vast majority of aliases sets, all of the loads
2390 and stores will use the same mode. But vectors are treated
2391 differently: the alias set is established for the entire vector,
2392 but reload will insert loads and stores for individual elements and
2393 we do not necessarily have the information to track those separate
2394 elements. So when we see a mode mismatch, we just bail. */
2397 void
2398 dse_record_singleton_alias_set (alias_set_type alias_set,
2399 enum machine_mode mode)
2401 struct clear_alias_mode_holder tmp_holder;
2402 struct clear_alias_mode_holder *entry;
2403 void **slot;
2405 /* If we are not going to run dse, we need to return now or there
2406 will be problems with allocating the bitmaps. */
2407 if ((!gate_dse()) || !alias_set)
2408 return;
2410 if (!clear_alias_sets)
2412 clear_alias_sets = BITMAP_ALLOC (NULL);
2413 disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
2414 clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
2415 clear_alias_mode_eq, NULL);
2416 clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
2417 sizeof (struct clear_alias_mode_holder), 100);
2420 bitmap_set_bit (clear_alias_sets, alias_set);
2422 tmp_holder.alias_set = alias_set;
2424 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
2425 gcc_assert (*slot == NULL);
2427 *slot = entry =
2428 (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
2429 entry->alias_set = alias_set;
2430 entry->mode = mode;
2434 /* Remove ALIAS_SET from the sets of stack slots being considered. */
2436 void
2437 dse_invalidate_singleton_alias_set (alias_set_type alias_set)
2439 if ((!gate_dse()) || !alias_set)
2440 return;
2442 bitmap_clear_bit (clear_alias_sets, alias_set);
2446 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2447 there, return 0. */
2449 static int
2450 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2452 if (offset < 0)
2454 HOST_WIDE_INT offset_p = -offset;
2455 if (offset_p >= group_info->offset_map_size_n)
2456 return 0;
2457 return group_info->offset_map_n[offset_p];
2459 else
2461 if (offset >= group_info->offset_map_size_p)
2462 return 0;
2463 return group_info->offset_map_p[offset];
2468 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2469 may be NULL. */
2471 static void
2472 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2474 while (store_info)
2476 HOST_WIDE_INT i;
2477 group_info_t group_info
2478 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2479 if (group_info->process_globally)
2480 for (i = store_info->begin; i < store_info->end; i++)
2482 int index = get_bitmap_index (group_info, i);
2483 if (index != 0)
2485 bitmap_set_bit (gen, index);
2486 if (kill)
2487 bitmap_clear_bit (kill, index);
2490 store_info = store_info->next;
2495 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2496 may be NULL. */
2498 static void
2499 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
2501 while (store_info)
2503 if (store_info->alias_set)
2505 int index = get_bitmap_index (clear_alias_group,
2506 store_info->alias_set);
2507 if (index != 0)
2509 bitmap_set_bit (gen, index);
2510 if (kill)
2511 bitmap_clear_bit (kill, index);
2514 store_info = store_info->next;
2519 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2520 may be NULL. */
2522 static void
2523 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
2525 read_info_t read_info = insn_info->read_rec;
2526 int i;
2527 group_info_t group;
2529 /* If this insn reads the frame, kill all the frame related stores. */
2530 if (insn_info->frame_read)
2532 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2533 if (group->process_globally && group->frame_related)
2535 if (kill)
2536 bitmap_ior_into (kill, group->group_kill);
2537 bitmap_and_compl_into (gen, group->group_kill);
2541 while (read_info)
2543 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2545 if (group->process_globally)
2547 if (i == read_info->group_id)
2549 if (read_info->begin > read_info->end)
2551 /* Begin > end for block mode reads. */
2552 if (kill)
2553 bitmap_ior_into (kill, group->group_kill);
2554 bitmap_and_compl_into (gen, group->group_kill);
2556 else
2558 /* The groups are the same, just process the
2559 offsets. */
2560 HOST_WIDE_INT j;
2561 for (j = read_info->begin; j < read_info->end; j++)
2563 int index = get_bitmap_index (group, j);
2564 if (index != 0)
2566 if (kill)
2567 bitmap_set_bit (kill, index);
2568 bitmap_clear_bit (gen, index);
2573 else
2575 /* The groups are different, if the alias sets
2576 conflict, clear the entire group. We only need
2577 to apply this test if the read_info is a cselib
2578 read. Anything with a constant base cannot alias
2579 something else with a different constant
2580 base. */
2581 if ((read_info->group_id < 0)
2582 && canon_true_dependence (group->base_mem,
2583 QImode,
2584 group->canon_base_mem,
2585 read_info->mem, rtx_varies_p))
2587 if (kill)
2588 bitmap_ior_into (kill, group->group_kill);
2589 bitmap_and_compl_into (gen, group->group_kill);
2595 read_info = read_info->next;
2599 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2600 may be NULL. */
2602 static void
2603 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
2605 while (read_info)
2607 if (read_info->alias_set)
2609 int index = get_bitmap_index (clear_alias_group,
2610 read_info->alias_set);
2611 if (index != 0)
2613 if (kill)
2614 bitmap_set_bit (kill, index);
2615 bitmap_clear_bit (gen, index);
2619 read_info = read_info->next;
2624 /* Return the insn in BB_INFO before the first wild read or if there
2625 are no wild reads in the block, return the last insn. */
2627 static insn_info_t
2628 find_insn_before_first_wild_read (bb_info_t bb_info)
2630 insn_info_t insn_info = bb_info->last_insn;
2631 insn_info_t last_wild_read = NULL;
2633 while (insn_info)
2635 if (insn_info->wild_read)
2637 last_wild_read = insn_info->prev_insn;
2638 /* Block starts with wild read. */
2639 if (!last_wild_read)
2640 return NULL;
2643 insn_info = insn_info->prev_insn;
2646 if (last_wild_read)
2647 return last_wild_read;
2648 else
2649 return bb_info->last_insn;
2653 /* Scan the insns in BB_INFO starting at PTR and going to the top of
2654 the block in order to build the gen and kill sets for the block.
2655 We start at ptr which may be the last insn in the block or may be
2656 the first insn with a wild read. In the latter case we are able to
2657 skip the rest of the block because it just does not matter:
2658 anything that happens is hidden by the wild read. */
2660 static void
2661 dse_step3_scan (bool for_spills, basic_block bb)
2663 bb_info_t bb_info = bb_table[bb->index];
2664 insn_info_t insn_info;
2666 if (for_spills)
2667 /* There are no wild reads in the spill case. */
2668 insn_info = bb_info->last_insn;
2669 else
2670 insn_info = find_insn_before_first_wild_read (bb_info);
2672 /* In the spill case or in the no_spill case if there is no wild
2673 read in the block, we will need a kill set. */
2674 if (insn_info == bb_info->last_insn)
2676 if (bb_info->kill)
2677 bitmap_clear (bb_info->kill);
2678 else
2679 bb_info->kill = BITMAP_ALLOC (NULL);
2681 else
2682 if (bb_info->kill)
2683 BITMAP_FREE (bb_info->kill);
2685 while (insn_info)
2687 /* There may have been code deleted by the dce pass run before
2688 this phase. */
2689 if (insn_info->insn && INSN_P (insn_info->insn))
2691 /* Process the read(s) last. */
2692 if (for_spills)
2694 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
2695 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
2697 else
2699 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
2700 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
2704 insn_info = insn_info->prev_insn;
2709 /* Set the gen set of the exit block, and also any block with no
2710 successors that does not have a wild read. */
2712 static void
2713 dse_step3_exit_block_scan (bb_info_t bb_info)
2715 /* The gen set is all 0's for the exit block except for the
2716 frame_pointer_group. */
2718 if (stores_off_frame_dead_at_return)
2720 unsigned int i;
2721 group_info_t group;
2723 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2725 if (group->process_globally && group->frame_related)
2726 bitmap_ior_into (bb_info->gen, group->group_kill);
2732 /* Find all of the blocks that are not backwards reachable from the
2733 exit block or any block with no successors (BB). These are the
2734 infinite loops or infinite self loops. These blocks will still
2735 have their bits set in UNREACHABLE_BLOCKS. */
2737 static void
2738 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
2740 edge e;
2741 edge_iterator ei;
2743 if (TEST_BIT (unreachable_blocks, bb->index))
2745 RESET_BIT (unreachable_blocks, bb->index);
2746 FOR_EACH_EDGE (e, ei, bb->preds)
2748 mark_reachable_blocks (unreachable_blocks, e->src);
2753 /* Build the transfer functions for the function. */
2755 static void
2756 dse_step3 (bool for_spills)
2758 basic_block bb;
2759 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
2760 sbitmap_iterator sbi;
2761 bitmap all_ones = NULL;
2762 unsigned int i;
2764 sbitmap_ones (unreachable_blocks);
2766 FOR_ALL_BB (bb)
2768 bb_info_t bb_info = bb_table[bb->index];
2769 if (bb_info->gen)
2770 bitmap_clear (bb_info->gen);
2771 else
2772 bb_info->gen = BITMAP_ALLOC (NULL);
2774 if (bb->index == ENTRY_BLOCK)
2776 else if (bb->index == EXIT_BLOCK)
2777 dse_step3_exit_block_scan (bb_info);
2778 else
2779 dse_step3_scan (for_spills, bb);
2780 if (EDGE_COUNT (bb->succs) == 0)
2781 mark_reachable_blocks (unreachable_blocks, bb);
2783 /* If this is the second time dataflow is run, delete the old
2784 sets. */
2785 if (bb_info->in)
2786 BITMAP_FREE (bb_info->in);
2787 if (bb_info->out)
2788 BITMAP_FREE (bb_info->out);
2791 /* For any block in an infinite loop, we must initialize the out set
2792 to all ones. This could be expensive, but almost never occurs in
2793 practice. However, it is common in regression tests. */
2794 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
2796 if (bitmap_bit_p (all_blocks, i))
2798 bb_info_t bb_info = bb_table[i];
2799 if (!all_ones)
2801 unsigned int j;
2802 group_info_t group;
2804 all_ones = BITMAP_ALLOC (NULL);
2805 for (j = 0; VEC_iterate (group_info_t, rtx_group_vec, j, group); j++)
2806 bitmap_ior_into (all_ones, group->group_kill);
2808 if (!bb_info->out)
2810 bb_info->out = BITMAP_ALLOC (NULL);
2811 bitmap_copy (bb_info->out, all_ones);
2816 if (all_ones)
2817 BITMAP_FREE (all_ones);
2818 sbitmap_free (unreachable_blocks);
2823 /*----------------------------------------------------------------------------
2824 Fourth step.
2826 Solve the bitvector equations.
2827 ----------------------------------------------------------------------------*/
2830 /* Confluence function for blocks with no successors. Create an out
2831 set from the gen set of the exit block. This block logically has
2832 the exit block as a successor. */
2836 static void
2837 dse_confluence_0 (basic_block bb)
2839 bb_info_t bb_info = bb_table[bb->index];
2841 if (bb->index == EXIT_BLOCK)
2842 return;
2844 if (!bb_info->out)
2846 bb_info->out = BITMAP_ALLOC (NULL);
2847 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
2851 /* Propagate the information from the in set of the dest of E to the
2852 out set of the src of E. If the various in or out sets are not
2853 there, that means they are all ones. */
2855 static void
2856 dse_confluence_n (edge e)
2858 bb_info_t src_info = bb_table[e->src->index];
2859 bb_info_t dest_info = bb_table[e->dest->index];
2861 if (dest_info->in)
2863 if (src_info->out)
2864 bitmap_and_into (src_info->out, dest_info->in);
2865 else
2867 src_info->out = BITMAP_ALLOC (NULL);
2868 bitmap_copy (src_info->out, dest_info->in);
2874 /* Propagate the info from the out to the in set of BB_INDEX's basic
2875 block. There are three cases:
2877 1) The block has no kill set. In this case the kill set is all
2878 ones. It does not matter what the out set of the block is, none of
2879 the info can reach the top. The only thing that reaches the top is
2880 the gen set and we just copy the set.
2882 2) There is a kill set but no out set and bb has successors. In
2883 this case we just return. Eventually an out set will be created and
2884 it is better to wait than to create a set of ones.
2886 3) There is both a kill and out set. We apply the obvious transfer
2887 function.
2890 static bool
2891 dse_transfer_function (int bb_index)
2893 bb_info_t bb_info = bb_table[bb_index];
2895 if (bb_info->kill)
2897 if (bb_info->out)
2899 /* Case 3 above. */
2900 if (bb_info->in)
2901 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
2902 bb_info->out, bb_info->kill);
2903 else
2905 bb_info->in = BITMAP_ALLOC (NULL);
2906 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
2907 bb_info->out, bb_info->kill);
2908 return true;
2911 else
2912 /* Case 2 above. */
2913 return false;
2915 else
2917 /* Case 1 above. If there is already an in set, nothing
2918 happens. */
2919 if (bb_info->in)
2920 return false;
2921 else
2923 bb_info->in = BITMAP_ALLOC (NULL);
2924 bitmap_copy (bb_info->in, bb_info->gen);
2925 return true;
2930 /* Solve the dataflow equations. */
2932 static void
2933 dse_step4 (void)
2935 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
2936 dse_confluence_n, dse_transfer_function,
2937 all_blocks, df_get_postorder (DF_BACKWARD),
2938 df_get_n_blocks (DF_BACKWARD));
2939 if (dump_file)
2941 basic_block bb;
2943 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
2944 FOR_ALL_BB (bb)
2946 bb_info_t bb_info = bb_table[bb->index];
2948 df_print_bb_index (bb, dump_file);
2949 if (bb_info->in)
2950 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
2951 else
2952 fprintf (dump_file, " in: *MISSING*\n");
2953 if (bb_info->gen)
2954 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
2955 else
2956 fprintf (dump_file, " gen: *MISSING*\n");
2957 if (bb_info->kill)
2958 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
2959 else
2960 fprintf (dump_file, " kill: *MISSING*\n");
2961 if (bb_info->out)
2962 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
2963 else
2964 fprintf (dump_file, " out: *MISSING*\n\n");
2971 /*----------------------------------------------------------------------------
2972 Fifth step.
2974 Delete the stores that can only be deleted using the global information.
2975 ----------------------------------------------------------------------------*/
2978 static void
2979 dse_step5_nospill (void)
2981 basic_block bb;
2982 FOR_EACH_BB (bb)
2984 bb_info_t bb_info = bb_table[bb->index];
2985 insn_info_t insn_info = bb_info->last_insn;
2986 bitmap v = bb_info->out;
2988 while (insn_info)
2990 bool deleted = false;
2991 if (dump_file && insn_info->insn)
2993 fprintf (dump_file, "starting to process insn %d\n",
2994 INSN_UID (insn_info->insn));
2995 bitmap_print (dump_file, v, " v: ", "\n");
2998 /* There may have been code deleted by the dce pass run before
2999 this phase. */
3000 if (insn_info->insn
3001 && INSN_P (insn_info->insn)
3002 && (!insn_info->cannot_delete)
3003 && (!bitmap_empty_p (v)))
3005 store_info_t store_info = insn_info->store_rec;
3007 /* Try to delete the current insn. */
3008 deleted = true;
3010 /* Skip the clobbers. */
3011 while (!store_info->is_set)
3012 store_info = store_info->next;
3014 if (store_info->alias_set)
3015 deleted = false;
3016 else
3018 HOST_WIDE_INT i;
3019 group_info_t group_info
3020 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3022 for (i = store_info->begin; i < store_info->end; i++)
3024 int index = get_bitmap_index (group_info, i);
3026 if (dump_file)
3027 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3028 if (index == 0 || !bitmap_bit_p (v, index))
3030 if (dump_file)
3031 fprintf (dump_file, "failing at i = %d\n", (int)i);
3032 deleted = false;
3033 break;
3037 if (deleted)
3039 if (dbg_cnt (dse))
3041 check_for_inc_dec (insn_info->insn);
3042 delete_insn (insn_info->insn);
3043 insn_info->insn = NULL;
3044 globally_deleted++;
3048 /* We do want to process the local info if the insn was
3049 deleted. For instance, if the insn did a wild read, we
3050 no longer need to trash the info. */
3051 if (insn_info->insn
3052 && INSN_P (insn_info->insn)
3053 && (!deleted))
3055 scan_stores_nospill (insn_info->store_rec, v, NULL);
3056 if (insn_info->wild_read)
3058 if (dump_file)
3059 fprintf (dump_file, "wild read\n");
3060 bitmap_clear (v);
3062 else if (insn_info->read_rec)
3064 if (dump_file)
3065 fprintf (dump_file, "regular read\n");
3066 scan_reads_nospill (insn_info, v, NULL);
3070 insn_info = insn_info->prev_insn;
3076 static void
3077 dse_step5_spill (void)
3079 basic_block bb;
3080 FOR_EACH_BB (bb)
3082 bb_info_t bb_info = bb_table[bb->index];
3083 insn_info_t insn_info = bb_info->last_insn;
3084 bitmap v = bb_info->out;
3086 while (insn_info)
3088 bool deleted = false;
3089 /* There may have been code deleted by the dce pass run before
3090 this phase. */
3091 if (insn_info->insn
3092 && INSN_P (insn_info->insn)
3093 && (!insn_info->cannot_delete)
3094 && (!bitmap_empty_p (v)))
3096 /* Try to delete the current insn. */
3097 store_info_t store_info = insn_info->store_rec;
3098 deleted = true;
3100 while (store_info)
3102 if (store_info->alias_set)
3104 int index = get_bitmap_index (clear_alias_group,
3105 store_info->alias_set);
3106 if (index == 0 || !bitmap_bit_p (v, index))
3108 deleted = false;
3109 break;
3112 else
3113 deleted = false;
3114 store_info = store_info->next;
3116 if (deleted && dbg_cnt (dse))
3118 if (dump_file)
3119 fprintf (dump_file, "Spill deleting insn %d\n",
3120 INSN_UID (insn_info->insn));
3121 check_for_inc_dec (insn_info->insn);
3122 delete_insn (insn_info->insn);
3123 spill_deleted++;
3124 insn_info->insn = NULL;
3128 if (insn_info->insn
3129 && INSN_P (insn_info->insn)
3130 && (!deleted))
3132 scan_stores_spill (insn_info->store_rec, v, NULL);
3133 scan_reads_spill (insn_info->read_rec, v, NULL);
3136 insn_info = insn_info->prev_insn;
3143 /*----------------------------------------------------------------------------
3144 Sixth step.
3146 Destroy everything left standing.
3147 ----------------------------------------------------------------------------*/
3149 static void
3150 dse_step6 (bool global_done)
3152 unsigned int i;
3153 group_info_t group;
3154 basic_block bb;
3156 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3158 free (group->offset_map_n);
3159 free (group->offset_map_p);
3160 BITMAP_FREE (group->store1_n);
3161 BITMAP_FREE (group->store1_p);
3162 BITMAP_FREE (group->store2_n);
3163 BITMAP_FREE (group->store2_p);
3164 BITMAP_FREE (group->group_kill);
3167 if (global_done)
3168 FOR_ALL_BB (bb)
3170 bb_info_t bb_info = bb_table[bb->index];
3171 BITMAP_FREE (bb_info->gen);
3172 if (bb_info->kill)
3173 BITMAP_FREE (bb_info->kill);
3174 if (bb_info->in)
3175 BITMAP_FREE (bb_info->in);
3176 if (bb_info->out)
3177 BITMAP_FREE (bb_info->out);
3180 if (clear_alias_sets)
3182 BITMAP_FREE (clear_alias_sets);
3183 BITMAP_FREE (disqualified_clear_alias_sets);
3184 free_alloc_pool (clear_alias_mode_pool);
3185 htab_delete (clear_alias_mode_table);
3188 end_alias_analysis ();
3189 free (bb_table);
3190 htab_delete (rtx_group_table);
3191 VEC_free (group_info_t, heap, rtx_group_vec);
3192 BITMAP_FREE (all_blocks);
3193 BITMAP_FREE (scratch);
3195 free_alloc_pool (rtx_store_info_pool);
3196 free_alloc_pool (read_info_pool);
3197 free_alloc_pool (insn_info_pool);
3198 free_alloc_pool (bb_info_pool);
3199 free_alloc_pool (rtx_group_info_pool);
3200 free_alloc_pool (deferred_change_pool);
3204 /* -------------------------------------------------------------------------
3206 ------------------------------------------------------------------------- */
3208 /* Callback for running pass_rtl_dse. */
3210 static unsigned int
3211 rest_of_handle_dse (void)
3213 bool did_global = false;
3215 df_set_flags (DF_DEFER_INSN_RESCAN);
3217 dse_step0 ();
3218 dse_step1 ();
3219 dse_step2_init ();
3220 if (dse_step2_nospill ())
3222 df_set_flags (DF_LR_RUN_DCE);
3223 df_analyze ();
3224 did_global = true;
3225 if (dump_file)
3226 fprintf (dump_file, "doing global processing\n");
3227 dse_step3 (false);
3228 dse_step4 ();
3229 dse_step5_nospill ();
3232 /* For the instance of dse that runs after reload, we make a special
3233 pass to process the spills. These are special in that they are
3234 totally transparent, i.e, there is no aliasing issues that need
3235 to be considered. This means that the wild reads that kill
3236 everything else do not apply here. */
3237 if (clear_alias_sets && dse_step2_spill ())
3239 if (!did_global)
3241 df_set_flags (DF_LR_RUN_DCE);
3242 df_analyze ();
3244 did_global = true;
3245 if (dump_file)
3246 fprintf (dump_file, "doing global spill processing\n");
3247 dse_step3 (true);
3248 dse_step4 ();
3249 dse_step5_spill ();
3252 dse_step6 (did_global);
3254 if (dump_file)
3255 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3256 locally_deleted, globally_deleted, spill_deleted);
3257 return 0;
3260 static bool
3261 gate_dse (void)
3263 return gate_dse1 () || gate_dse2 ();
3266 static bool
3267 gate_dse1 (void)
3269 return optimize > 0 && flag_dse
3270 && dbg_cnt (dse1);
3273 static bool
3274 gate_dse2 (void)
3276 return optimize > 0 && flag_dse
3277 && dbg_cnt (dse2);
3280 struct rtl_opt_pass pass_rtl_dse1 =
3283 RTL_PASS,
3284 "dse1", /* name */
3285 gate_dse1, /* gate */
3286 rest_of_handle_dse, /* execute */
3287 NULL, /* sub */
3288 NULL, /* next */
3289 0, /* static_pass_number */
3290 TV_DSE1, /* tv_id */
3291 0, /* properties_required */
3292 0, /* properties_provided */
3293 0, /* properties_destroyed */
3294 0, /* todo_flags_start */
3295 TODO_dump_func |
3296 TODO_df_finish | TODO_verify_rtl_sharing |
3297 TODO_ggc_collect /* todo_flags_finish */
3301 struct rtl_opt_pass pass_rtl_dse2 =
3304 RTL_PASS,
3305 "dse2", /* name */
3306 gate_dse2, /* gate */
3307 rest_of_handle_dse, /* execute */
3308 NULL, /* sub */
3309 NULL, /* next */
3310 0, /* static_pass_number */
3311 TV_DSE2, /* tv_id */
3312 0, /* properties_required */
3313 0, /* properties_provided */
3314 0, /* properties_destroyed */
3315 0, /* todo_flags_start */
3316 TODO_dump_func |
3317 TODO_df_finish | TODO_verify_rtl_sharing |
3318 TODO_ggc_collect /* todo_flags_finish */