* config/sh/sh.c (sh_gimplify_va_arg_expr): Don't call
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob68305d6e80cd42a2bae7653a401553acda72cfff
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Expander; use Expander;
31 with Exp_Util; use Exp_Util;
32 with Freeze; use Freeze;
33 with Lib; use Lib;
34 with Lib.Xref; use Lib.Xref;
35 with Namet; use Namet;
36 with Nlists; use Nlists;
37 with Nmake; use Nmake;
38 with Opt; use Opt;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Case; use Sem_Case;
43 with Sem_Ch3; use Sem_Ch3;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Disp; use Sem_Disp;
46 with Sem_Elab; use Sem_Elab;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Sinfo; use Sinfo;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Uintp; use Uintp;
59 package body Sem_Ch5 is
61 Unblocked_Exit_Count : Nat := 0;
62 -- This variable is used when processing if statements, case statements,
63 -- and block statements. It counts the number of exit points that are not
64 -- blocked by unconditional transfer instructions: for IF and CASE, these
65 -- are the branches of the conditional; for a block, they are the statement
66 -- sequence of the block, and the statement sequences of any exception
67 -- handlers that are part of the block. When processing is complete, if
68 -- this count is zero, it means that control cannot fall through the IF,
69 -- CASE or block statement. This is used for the generation of warning
70 -- messages. This variable is recursively saved on entry to processing the
71 -- construct, and restored on exit.
73 ------------------------
74 -- Analyze_Assignment --
75 ------------------------
77 procedure Analyze_Assignment (N : Node_Id) is
78 Lhs : constant Node_Id := Name (N);
79 Rhs : constant Node_Id := Expression (N);
80 T1 : Entity_Id;
81 T2 : Entity_Id;
82 Decl : Node_Id;
84 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
85 -- N is the node for the left hand side of an assignment, and it is not
86 -- a variable. This routine issues an appropriate diagnostic.
88 procedure Kill_Lhs;
89 -- This is called to kill current value settings of a simple variable
90 -- on the left hand side. We call it if we find any error in analyzing
91 -- the assignment, and at the end of processing before setting any new
92 -- current values in place.
94 procedure Set_Assignment_Type
95 (Opnd : Node_Id;
96 Opnd_Type : in out Entity_Id);
97 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
98 -- is the nominal subtype. This procedure is used to deal with cases
99 -- where the nominal subtype must be replaced by the actual subtype.
101 -------------------------------
102 -- Diagnose_Non_Variable_Lhs --
103 -------------------------------
105 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
106 begin
107 -- Not worth posting another error if left hand side already
108 -- flagged as being illegal in some respect.
110 if Error_Posted (N) then
111 return;
113 -- Some special bad cases of entity names
115 elsif Is_Entity_Name (N) then
116 declare
117 Ent : constant Entity_Id := Entity (N);
119 begin
120 if Ekind (Ent) = E_In_Parameter then
121 Error_Msg_N
122 ("assignment to IN mode parameter not allowed", N);
124 -- Renamings of protected private components are turned into
125 -- constants when compiling a protected function. In the case
126 -- of single protected types, the private component appears
127 -- directly.
129 elsif (Is_Prival (Ent)
130 and then
131 (Ekind (Current_Scope) = E_Function
132 or else Ekind (Enclosing_Dynamic_Scope (
133 Current_Scope)) = E_Function))
134 or else
135 (Ekind (Ent) = E_Component
136 and then Is_Protected_Type (Scope (Ent)))
137 then
138 Error_Msg_N
139 ("protected function cannot modify protected object", N);
141 elsif Ekind (Ent) = E_Loop_Parameter then
142 Error_Msg_N
143 ("assignment to loop parameter not allowed", N);
145 else
146 Error_Msg_N
147 ("left hand side of assignment must be a variable", N);
148 end if;
149 end;
151 -- For indexed components or selected components, test prefix
153 elsif Nkind (N) = N_Indexed_Component then
154 Diagnose_Non_Variable_Lhs (Prefix (N));
156 -- Another special case for assignment to discriminant
158 elsif Nkind (N) = N_Selected_Component then
159 if Present (Entity (Selector_Name (N)))
160 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
161 then
162 Error_Msg_N
163 ("assignment to discriminant not allowed", N);
164 else
165 Diagnose_Non_Variable_Lhs (Prefix (N));
166 end if;
168 else
169 -- If we fall through, we have no special message to issue!
171 Error_Msg_N ("left hand side of assignment must be a variable", N);
172 end if;
173 end Diagnose_Non_Variable_Lhs;
175 --------------
176 -- Kill_LHS --
177 --------------
179 procedure Kill_Lhs is
180 begin
181 if Is_Entity_Name (Lhs) then
182 declare
183 Ent : constant Entity_Id := Entity (Lhs);
184 begin
185 if Present (Ent) then
186 Kill_Current_Values (Ent);
187 end if;
188 end;
189 end if;
190 end Kill_Lhs;
192 -------------------------
193 -- Set_Assignment_Type --
194 -------------------------
196 procedure Set_Assignment_Type
197 (Opnd : Node_Id;
198 Opnd_Type : in out Entity_Id)
200 begin
201 Require_Entity (Opnd);
203 -- If the assignment operand is an in-out or out parameter, then we
204 -- get the actual subtype (needed for the unconstrained case).
205 -- If the operand is the actual in an entry declaration, then within
206 -- the accept statement it is replaced with a local renaming, which
207 -- may also have an actual subtype.
209 if Is_Entity_Name (Opnd)
210 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
211 or else Ekind (Entity (Opnd)) =
212 E_In_Out_Parameter
213 or else Ekind (Entity (Opnd)) =
214 E_Generic_In_Out_Parameter
215 or else
216 (Ekind (Entity (Opnd)) = E_Variable
217 and then Nkind (Parent (Entity (Opnd))) =
218 N_Object_Renaming_Declaration
219 and then Nkind (Parent (Parent (Entity (Opnd)))) =
220 N_Accept_Statement))
221 then
222 Opnd_Type := Get_Actual_Subtype (Opnd);
224 -- If assignment operand is a component reference, then we get the
225 -- actual subtype of the component for the unconstrained case.
227 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
228 and then not Is_Unchecked_Union (Opnd_Type)
229 then
230 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
232 if Present (Decl) then
233 Insert_Action (N, Decl);
234 Mark_Rewrite_Insertion (Decl);
235 Analyze (Decl);
236 Opnd_Type := Defining_Identifier (Decl);
237 Set_Etype (Opnd, Opnd_Type);
238 Freeze_Itype (Opnd_Type, N);
240 elsif Is_Constrained (Etype (Opnd)) then
241 Opnd_Type := Etype (Opnd);
242 end if;
244 -- For slice, use the constrained subtype created for the slice
246 elsif Nkind (Opnd) = N_Slice then
247 Opnd_Type := Etype (Opnd);
248 end if;
249 end Set_Assignment_Type;
251 -- Start of processing for Analyze_Assignment
253 begin
254 Mark_Coextensions (N, Rhs);
256 Analyze (Rhs);
257 Analyze (Lhs);
259 -- Start type analysis for assignment
261 T1 := Etype (Lhs);
263 -- In the most general case, both Lhs and Rhs can be overloaded, and we
264 -- must compute the intersection of the possible types on each side.
266 if Is_Overloaded (Lhs) then
267 declare
268 I : Interp_Index;
269 It : Interp;
271 begin
272 T1 := Any_Type;
273 Get_First_Interp (Lhs, I, It);
275 while Present (It.Typ) loop
276 if Has_Compatible_Type (Rhs, It.Typ) then
277 if T1 /= Any_Type then
279 -- An explicit dereference is overloaded if the prefix
280 -- is. Try to remove the ambiguity on the prefix, the
281 -- error will be posted there if the ambiguity is real.
283 if Nkind (Lhs) = N_Explicit_Dereference then
284 declare
285 PI : Interp_Index;
286 PI1 : Interp_Index := 0;
287 PIt : Interp;
288 Found : Boolean;
290 begin
291 Found := False;
292 Get_First_Interp (Prefix (Lhs), PI, PIt);
294 while Present (PIt.Typ) loop
295 if Is_Access_Type (PIt.Typ)
296 and then Has_Compatible_Type
297 (Rhs, Designated_Type (PIt.Typ))
298 then
299 if Found then
300 PIt :=
301 Disambiguate (Prefix (Lhs),
302 PI1, PI, Any_Type);
304 if PIt = No_Interp then
305 Error_Msg_N
306 ("ambiguous left-hand side"
307 & " in assignment", Lhs);
308 exit;
309 else
310 Resolve (Prefix (Lhs), PIt.Typ);
311 end if;
313 exit;
314 else
315 Found := True;
316 PI1 := PI;
317 end if;
318 end if;
320 Get_Next_Interp (PI, PIt);
321 end loop;
322 end;
324 else
325 Error_Msg_N
326 ("ambiguous left-hand side in assignment", Lhs);
327 exit;
328 end if;
329 else
330 T1 := It.Typ;
331 end if;
332 end if;
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
338 if T1 = Any_Type then
339 Error_Msg_N
340 ("no valid types for left-hand side for assignment", Lhs);
341 Kill_Lhs;
342 return;
343 end if;
344 end if;
346 -- The resulting assignment type is T1, so now we will resolve the
347 -- left hand side of the assignment using this determined type.
349 Resolve (Lhs, T1);
351 -- Cases where Lhs is not a variable
353 if not Is_Variable (Lhs) then
355 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of
356 -- a protected object.
358 declare
359 Ent : Entity_Id;
360 S : Entity_Id;
362 begin
363 if Ada_Version >= Ada_2005 then
365 -- Handle chains of renamings
367 Ent := Lhs;
368 while Nkind (Ent) in N_Has_Entity
369 and then Present (Entity (Ent))
370 and then Present (Renamed_Object (Entity (Ent)))
371 loop
372 Ent := Renamed_Object (Entity (Ent));
373 end loop;
375 if (Nkind (Ent) = N_Attribute_Reference
376 and then Attribute_Name (Ent) = Name_Priority)
378 -- Renamings of the attribute Priority applied to protected
379 -- objects have been previously expanded into calls to the
380 -- Get_Ceiling run-time subprogram.
382 or else
383 (Nkind (Ent) = N_Function_Call
384 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
385 or else
386 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
387 then
388 -- The enclosing subprogram cannot be a protected function
390 S := Current_Scope;
391 while not (Is_Subprogram (S)
392 and then Convention (S) = Convention_Protected)
393 and then S /= Standard_Standard
394 loop
395 S := Scope (S);
396 end loop;
398 if Ekind (S) = E_Function
399 and then Convention (S) = Convention_Protected
400 then
401 Error_Msg_N
402 ("protected function cannot modify protected object",
403 Lhs);
404 end if;
406 -- Changes of the ceiling priority of the protected object
407 -- are only effective if the Ceiling_Locking policy is in
408 -- effect (AARM D.5.2 (5/2)).
410 if Locking_Policy /= 'C' then
411 Error_Msg_N ("assignment to the attribute PRIORITY has " &
412 "no effect?", Lhs);
413 Error_Msg_N ("\since no Locking_Policy has been " &
414 "specified", Lhs);
415 end if;
417 return;
418 end if;
419 end if;
420 end;
422 Diagnose_Non_Variable_Lhs (Lhs);
423 return;
425 -- Error of assigning to limited type. We do however allow this in
426 -- certain cases where the front end generates the assignments.
428 elsif Is_Limited_Type (T1)
429 and then not Assignment_OK (Lhs)
430 and then not Assignment_OK (Original_Node (Lhs))
431 and then not Is_Value_Type (T1)
432 then
433 -- CPP constructors can only be called in declarations
435 if Is_CPP_Constructor_Call (Rhs) then
436 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
437 else
438 Error_Msg_N
439 ("left hand of assignment must not be limited type", Lhs);
440 Explain_Limited_Type (T1, Lhs);
441 end if;
442 return;
444 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
445 -- abstract. This is only checked when the assignment Comes_From_Source,
446 -- because in some cases the expander generates such assignments (such
447 -- in the _assign operation for an abstract type).
449 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
450 Error_Msg_N
451 ("target of assignment operation must not be abstract", Lhs);
452 end if;
454 -- Resolution may have updated the subtype, in case the left-hand
455 -- side is a private protected component. Use the correct subtype
456 -- to avoid scoping issues in the back-end.
458 T1 := Etype (Lhs);
460 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
461 -- type. For example:
463 -- limited with P;
464 -- package Pkg is
465 -- type Acc is access P.T;
466 -- end Pkg;
468 -- with Pkg; use Acc;
469 -- procedure Example is
470 -- A, B : Acc;
471 -- begin
472 -- A.all := B.all; -- ERROR
473 -- end Example;
475 if Nkind (Lhs) = N_Explicit_Dereference
476 and then Ekind (T1) = E_Incomplete_Type
477 then
478 Error_Msg_N ("invalid use of incomplete type", Lhs);
479 Kill_Lhs;
480 return;
481 end if;
483 -- Now we can complete the resolution of the right hand side
485 Set_Assignment_Type (Lhs, T1);
486 Resolve (Rhs, T1);
488 -- This is the point at which we check for an unset reference
490 Check_Unset_Reference (Rhs);
491 Check_Unprotected_Access (Lhs, Rhs);
493 -- Remaining steps are skipped if Rhs was syntactically in error
495 if Rhs = Error then
496 Kill_Lhs;
497 return;
498 end if;
500 T2 := Etype (Rhs);
502 if not Covers (T1, T2) then
503 Wrong_Type (Rhs, Etype (Lhs));
504 Kill_Lhs;
505 return;
506 end if;
508 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
509 -- types, use the non-limited view if available
511 if Nkind (Rhs) = N_Explicit_Dereference
512 and then Ekind (T2) = E_Incomplete_Type
513 and then Is_Tagged_Type (T2)
514 and then Present (Non_Limited_View (T2))
515 then
516 T2 := Non_Limited_View (T2);
517 end if;
519 Set_Assignment_Type (Rhs, T2);
521 if Total_Errors_Detected /= 0 then
522 if No (T1) then
523 T1 := Any_Type;
524 end if;
526 if No (T2) then
527 T2 := Any_Type;
528 end if;
529 end if;
531 if T1 = Any_Type or else T2 = Any_Type then
532 Kill_Lhs;
533 return;
534 end if;
536 -- If the rhs is class-wide or dynamically tagged, then require the lhs
537 -- to be class-wide. The case where the rhs is a dynamically tagged call
538 -- to a dispatching operation with a controlling access result is
539 -- excluded from this check, since the target has an access type (and
540 -- no tag propagation occurs in that case).
542 if (Is_Class_Wide_Type (T2)
543 or else (Is_Dynamically_Tagged (Rhs)
544 and then not Is_Access_Type (T1)))
545 and then not Is_Class_Wide_Type (T1)
546 then
547 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
549 elsif Is_Class_Wide_Type (T1)
550 and then not Is_Class_Wide_Type (T2)
551 and then not Is_Tag_Indeterminate (Rhs)
552 and then not Is_Dynamically_Tagged (Rhs)
553 then
554 Error_Msg_N ("dynamically tagged expression required!", Rhs);
555 end if;
557 -- Propagate the tag from a class-wide target to the rhs when the rhs
558 -- is a tag-indeterminate call.
560 if Is_Tag_Indeterminate (Rhs) then
561 if Is_Class_Wide_Type (T1) then
562 Propagate_Tag (Lhs, Rhs);
564 elsif Nkind (Rhs) = N_Function_Call
565 and then Is_Entity_Name (Name (Rhs))
566 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
567 then
568 Error_Msg_N
569 ("call to abstract function must be dispatching", Name (Rhs));
571 elsif Nkind (Rhs) = N_Qualified_Expression
572 and then Nkind (Expression (Rhs)) = N_Function_Call
573 and then Is_Entity_Name (Name (Expression (Rhs)))
574 and then
575 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
576 then
577 Error_Msg_N
578 ("call to abstract function must be dispatching",
579 Name (Expression (Rhs)));
580 end if;
581 end if;
583 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
584 -- apply an implicit conversion of the rhs to that type to force
585 -- appropriate static and run-time accessibility checks. This applies
586 -- as well to anonymous access-to-subprogram types that are component
587 -- subtypes or formal parameters.
589 if Ada_Version >= Ada_2005
590 and then Is_Access_Type (T1)
591 then
592 if Is_Local_Anonymous_Access (T1)
593 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
594 then
595 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
596 Analyze_And_Resolve (Rhs, T1);
597 end if;
598 end if;
600 -- Ada 2005 (AI-231): Assignment to not null variable
602 if Ada_Version >= Ada_2005
603 and then Can_Never_Be_Null (T1)
604 and then not Assignment_OK (Lhs)
605 then
606 -- Case where we know the right hand side is null
608 if Known_Null (Rhs) then
609 Apply_Compile_Time_Constraint_Error
610 (N => Rhs,
611 Msg => "(Ada 2005) null not allowed in null-excluding objects?",
612 Reason => CE_Null_Not_Allowed);
614 -- We still mark this as a possible modification, that's necessary
615 -- to reset Is_True_Constant, and desirable for xref purposes.
617 Note_Possible_Modification (Lhs, Sure => True);
618 return;
620 -- If we know the right hand side is non-null, then we convert to the
621 -- target type, since we don't need a run time check in that case.
623 elsif not Can_Never_Be_Null (T2) then
624 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
625 Analyze_And_Resolve (Rhs, T1);
626 end if;
627 end if;
629 if Is_Scalar_Type (T1) then
630 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
632 -- For array types, verify that lengths match. If the right hand side
633 -- if a function call that has been inlined, the assignment has been
634 -- rewritten as a block, and the constraint check will be applied to the
635 -- assignment within the block.
637 elsif Is_Array_Type (T1)
638 and then
639 (Nkind (Rhs) /= N_Type_Conversion
640 or else Is_Constrained (Etype (Rhs)))
641 and then
642 (Nkind (Rhs) /= N_Function_Call
643 or else Nkind (N) /= N_Block_Statement)
644 then
645 -- Assignment verifies that the length of the Lsh and Rhs are equal,
646 -- but of course the indexes do not have to match. If the right-hand
647 -- side is a type conversion to an unconstrained type, a length check
648 -- is performed on the expression itself during expansion. In rare
649 -- cases, the redundant length check is computed on an index type
650 -- with a different representation, triggering incorrect code in
651 -- the back end.
653 Apply_Length_Check (Rhs, Etype (Lhs));
655 else
656 -- Discriminant checks are applied in the course of expansion
658 null;
659 end if;
661 -- Note: modifications of the Lhs may only be recorded after
662 -- checks have been applied.
664 Note_Possible_Modification (Lhs, Sure => True);
665 Check_Order_Dependence;
667 -- ??? a real accessibility check is needed when ???
669 -- Post warning for redundant assignment or variable to itself
671 if Warn_On_Redundant_Constructs
673 -- We only warn for source constructs
675 and then Comes_From_Source (N)
677 -- Where the object is the same on both sides
679 and then Same_Object (Lhs, Original_Node (Rhs))
681 -- But exclude the case where the right side was an operation
682 -- that got rewritten (e.g. JUNK + K, where K was known to be
683 -- zero). We don't want to warn in such a case, since it is
684 -- reasonable to write such expressions especially when K is
685 -- defined symbolically in some other package.
687 and then Nkind (Original_Node (Rhs)) not in N_Op
688 then
689 if Nkind (Lhs) in N_Has_Entity then
690 Error_Msg_NE -- CODEFIX
691 ("?useless assignment of & to itself!", N, Entity (Lhs));
692 else
693 Error_Msg_N -- CODEFIX
694 ("?useless assignment of object to itself!", N);
695 end if;
696 end if;
698 -- Check for non-allowed composite assignment
700 if not Support_Composite_Assign_On_Target
701 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
702 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
703 then
704 Error_Msg_CRT ("composite assignment", N);
705 end if;
707 -- Check elaboration warning for left side if not in elab code
709 if not In_Subprogram_Or_Concurrent_Unit then
710 Check_Elab_Assign (Lhs);
711 end if;
713 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
714 -- assignment is a source assignment in the extended main source unit.
715 -- We are not interested in any reference information outside this
716 -- context, or in compiler generated assignment statements.
718 if Comes_From_Source (N)
719 and then In_Extended_Main_Source_Unit (Lhs)
720 then
721 Set_Referenced_Modified (Lhs, Out_Param => False);
722 end if;
724 -- Final step. If left side is an entity, then we may be able to
725 -- reset the current tracked values to new safe values. We only have
726 -- something to do if the left side is an entity name, and expansion
727 -- has not modified the node into something other than an assignment,
728 -- and of course we only capture values if it is safe to do so.
730 if Is_Entity_Name (Lhs)
731 and then Nkind (N) = N_Assignment_Statement
732 then
733 declare
734 Ent : constant Entity_Id := Entity (Lhs);
736 begin
737 if Safe_To_Capture_Value (N, Ent) then
739 -- If simple variable on left side, warn if this assignment
740 -- blots out another one (rendering it useless) and note
741 -- location of assignment in case no one references value.
742 -- We only do this for source assignments, otherwise we can
743 -- generate bogus warnings when an assignment is rewritten as
744 -- another assignment, and gets tied up with itself.
746 -- Note: we don't use Record_Last_Assignment here, because we
747 -- have lots of other stuff to do under control of this test.
749 if Warn_On_Modified_Unread
750 and then Is_Assignable (Ent)
751 and then Comes_From_Source (N)
752 and then In_Extended_Main_Source_Unit (Ent)
753 then
754 Warn_On_Useless_Assignment (Ent, N);
755 Set_Last_Assignment (Ent, Lhs);
756 end if;
758 -- If we are assigning an access type and the left side is an
759 -- entity, then make sure that the Is_Known_[Non_]Null flags
760 -- properly reflect the state of the entity after assignment.
762 if Is_Access_Type (T1) then
763 if Known_Non_Null (Rhs) then
764 Set_Is_Known_Non_Null (Ent, True);
766 elsif Known_Null (Rhs)
767 and then not Can_Never_Be_Null (Ent)
768 then
769 Set_Is_Known_Null (Ent, True);
771 else
772 Set_Is_Known_Null (Ent, False);
774 if not Can_Never_Be_Null (Ent) then
775 Set_Is_Known_Non_Null (Ent, False);
776 end if;
777 end if;
779 -- For discrete types, we may be able to set the current value
780 -- if the value is known at compile time.
782 elsif Is_Discrete_Type (T1)
783 and then Compile_Time_Known_Value (Rhs)
784 then
785 Set_Current_Value (Ent, Rhs);
786 else
787 Set_Current_Value (Ent, Empty);
788 end if;
790 -- If not safe to capture values, kill them
792 else
793 Kill_Lhs;
794 end if;
795 end;
796 end if;
797 end Analyze_Assignment;
799 -----------------------------
800 -- Analyze_Block_Statement --
801 -----------------------------
803 procedure Analyze_Block_Statement (N : Node_Id) is
804 Decls : constant List_Id := Declarations (N);
805 Id : constant Node_Id := Identifier (N);
806 HSS : constant Node_Id := Handled_Statement_Sequence (N);
808 begin
809 -- If no handled statement sequence is present, things are really
810 -- messed up, and we just return immediately (this is a defence
811 -- against previous errors).
813 if No (HSS) then
814 return;
815 end if;
817 -- Normal processing with HSS present
819 declare
820 EH : constant List_Id := Exception_Handlers (HSS);
821 Ent : Entity_Id := Empty;
822 S : Entity_Id;
824 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
825 -- Recursively save value of this global, will be restored on exit
827 begin
828 -- Initialize unblocked exit count for statements of begin block
829 -- plus one for each exception handler that is present.
831 Unblocked_Exit_Count := 1;
833 if Present (EH) then
834 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
835 end if;
837 -- If a label is present analyze it and mark it as referenced
839 if Present (Id) then
840 Analyze (Id);
841 Ent := Entity (Id);
843 -- An error defense. If we have an identifier, but no entity,
844 -- then something is wrong. If we have previous errors, then
845 -- just remove the identifier and continue, otherwise raise
846 -- an exception.
848 if No (Ent) then
849 if Total_Errors_Detected /= 0 then
850 Set_Identifier (N, Empty);
851 else
852 raise Program_Error;
853 end if;
855 else
856 Set_Ekind (Ent, E_Block);
857 Generate_Reference (Ent, N, ' ');
858 Generate_Definition (Ent);
860 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
861 Set_Label_Construct (Parent (Ent), N);
862 end if;
863 end if;
864 end if;
866 -- If no entity set, create a label entity
868 if No (Ent) then
869 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
870 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
871 Set_Parent (Ent, N);
872 end if;
874 Set_Etype (Ent, Standard_Void_Type);
875 Set_Block_Node (Ent, Identifier (N));
876 Push_Scope (Ent);
878 if Present (Decls) then
879 Analyze_Declarations (Decls);
880 Check_Completion;
881 Inspect_Deferred_Constant_Completion (Decls);
882 end if;
884 Analyze (HSS);
885 Process_End_Label (HSS, 'e', Ent);
887 -- If exception handlers are present, then we indicate that
888 -- enclosing scopes contain a block with handlers. We only
889 -- need to mark non-generic scopes.
891 if Present (EH) then
892 S := Scope (Ent);
893 loop
894 Set_Has_Nested_Block_With_Handler (S);
895 exit when Is_Overloadable (S)
896 or else Ekind (S) = E_Package
897 or else Is_Generic_Unit (S);
898 S := Scope (S);
899 end loop;
900 end if;
902 Check_References (Ent);
903 Warn_On_Useless_Assignments (Ent);
904 End_Scope;
906 if Unblocked_Exit_Count = 0 then
907 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
908 Check_Unreachable_Code (N);
909 else
910 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
911 end if;
912 end;
913 end Analyze_Block_Statement;
915 ----------------------------
916 -- Analyze_Case_Statement --
917 ----------------------------
919 procedure Analyze_Case_Statement (N : Node_Id) is
920 Exp : Node_Id;
921 Exp_Type : Entity_Id;
922 Exp_Btype : Entity_Id;
923 Last_Choice : Nat;
924 Dont_Care : Boolean;
925 Others_Present : Boolean;
927 pragma Warnings (Off, Last_Choice);
928 pragma Warnings (Off, Dont_Care);
929 -- Don't care about assigned values
931 Statements_Analyzed : Boolean := False;
932 -- Set True if at least some statement sequences get analyzed.
933 -- If False on exit, means we had a serious error that prevented
934 -- full analysis of the case statement, and as a result it is not
935 -- a good idea to output warning messages about unreachable code.
937 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
938 -- Recursively save value of this global, will be restored on exit
940 procedure Non_Static_Choice_Error (Choice : Node_Id);
941 -- Error routine invoked by the generic instantiation below when
942 -- the case statement has a non static choice.
944 procedure Process_Statements (Alternative : Node_Id);
945 -- Analyzes all the statements associated with a case alternative.
946 -- Needed by the generic instantiation below.
948 package Case_Choices_Processing is new
949 Generic_Choices_Processing
950 (Get_Alternatives => Alternatives,
951 Get_Choices => Discrete_Choices,
952 Process_Empty_Choice => No_OP,
953 Process_Non_Static_Choice => Non_Static_Choice_Error,
954 Process_Associated_Node => Process_Statements);
955 use Case_Choices_Processing;
956 -- Instantiation of the generic choice processing package
958 -----------------------------
959 -- Non_Static_Choice_Error --
960 -----------------------------
962 procedure Non_Static_Choice_Error (Choice : Node_Id) is
963 begin
964 Flag_Non_Static_Expr
965 ("choice given in case statement is not static!", Choice);
966 end Non_Static_Choice_Error;
968 ------------------------
969 -- Process_Statements --
970 ------------------------
972 procedure Process_Statements (Alternative : Node_Id) is
973 Choices : constant List_Id := Discrete_Choices (Alternative);
974 Ent : Entity_Id;
976 begin
977 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
978 Statements_Analyzed := True;
980 -- An interesting optimization. If the case statement expression
981 -- is a simple entity, then we can set the current value within
982 -- an alternative if the alternative has one possible value.
984 -- case N is
985 -- when 1 => alpha
986 -- when 2 | 3 => beta
987 -- when others => gamma
989 -- Here we know that N is initially 1 within alpha, but for beta
990 -- and gamma, we do not know anything more about the initial value.
992 if Is_Entity_Name (Exp) then
993 Ent := Entity (Exp);
995 if Ekind_In (Ent, E_Variable,
996 E_In_Out_Parameter,
997 E_Out_Parameter)
998 then
999 if List_Length (Choices) = 1
1000 and then Nkind (First (Choices)) in N_Subexpr
1001 and then Compile_Time_Known_Value (First (Choices))
1002 then
1003 Set_Current_Value (Entity (Exp), First (Choices));
1004 end if;
1006 Analyze_Statements (Statements (Alternative));
1008 -- After analyzing the case, set the current value to empty
1009 -- since we won't know what it is for the next alternative
1010 -- (unless reset by this same circuit), or after the case.
1012 Set_Current_Value (Entity (Exp), Empty);
1013 return;
1014 end if;
1015 end if;
1017 -- Case where expression is not an entity name of a variable
1019 Analyze_Statements (Statements (Alternative));
1020 end Process_Statements;
1022 -- Start of processing for Analyze_Case_Statement
1024 begin
1025 Unblocked_Exit_Count := 0;
1026 Exp := Expression (N);
1027 Analyze (Exp);
1029 -- The expression must be of any discrete type. In rare cases, the
1030 -- expander constructs a case statement whose expression has a private
1031 -- type whose full view is discrete. This can happen when generating
1032 -- a stream operation for a variant type after the type is frozen,
1033 -- when the partial of view of the type of the discriminant is private.
1034 -- In that case, use the full view to analyze case alternatives.
1036 if not Is_Overloaded (Exp)
1037 and then not Comes_From_Source (N)
1038 and then Is_Private_Type (Etype (Exp))
1039 and then Present (Full_View (Etype (Exp)))
1040 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1041 then
1042 Resolve (Exp, Etype (Exp));
1043 Exp_Type := Full_View (Etype (Exp));
1045 else
1046 Analyze_And_Resolve (Exp, Any_Discrete);
1047 Exp_Type := Etype (Exp);
1048 end if;
1050 Check_Unset_Reference (Exp);
1051 Exp_Btype := Base_Type (Exp_Type);
1053 -- The expression must be of a discrete type which must be determinable
1054 -- independently of the context in which the expression occurs, but
1055 -- using the fact that the expression must be of a discrete type.
1056 -- Moreover, the type this expression must not be a character literal
1057 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1059 -- If error already reported by Resolve, nothing more to do
1061 if Exp_Btype = Any_Discrete
1062 or else Exp_Btype = Any_Type
1063 then
1064 return;
1066 elsif Exp_Btype = Any_Character then
1067 Error_Msg_N
1068 ("character literal as case expression is ambiguous", Exp);
1069 return;
1071 elsif Ada_Version = Ada_83
1072 and then (Is_Generic_Type (Exp_Btype)
1073 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1074 then
1075 Error_Msg_N
1076 ("(Ada 83) case expression cannot be of a generic type", Exp);
1077 return;
1078 end if;
1080 -- If the case expression is a formal object of mode in out, then
1081 -- treat it as having a nonstatic subtype by forcing use of the base
1082 -- type (which has to get passed to Check_Case_Choices below). Also
1083 -- use base type when the case expression is parenthesized.
1085 if Paren_Count (Exp) > 0
1086 or else (Is_Entity_Name (Exp)
1087 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1088 then
1089 Exp_Type := Exp_Btype;
1090 end if;
1092 -- Call instantiated Analyze_Choices which does the rest of the work
1094 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
1096 if Exp_Type = Universal_Integer and then not Others_Present then
1097 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1098 end if;
1100 -- If all our exits were blocked by unconditional transfers of control,
1101 -- then the entire CASE statement acts as an unconditional transfer of
1102 -- control, so treat it like one, and check unreachable code. Skip this
1103 -- test if we had serious errors preventing any statement analysis.
1105 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1106 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1107 Check_Unreachable_Code (N);
1108 else
1109 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1110 end if;
1112 if not Expander_Active
1113 and then Compile_Time_Known_Value (Expression (N))
1114 and then Serious_Errors_Detected = 0
1115 then
1116 declare
1117 Chosen : constant Node_Id := Find_Static_Alternative (N);
1118 Alt : Node_Id;
1120 begin
1121 Alt := First (Alternatives (N));
1122 while Present (Alt) loop
1123 if Alt /= Chosen then
1124 Remove_Warning_Messages (Statements (Alt));
1125 end if;
1127 Next (Alt);
1128 end loop;
1129 end;
1130 end if;
1131 end Analyze_Case_Statement;
1133 ----------------------------
1134 -- Analyze_Exit_Statement --
1135 ----------------------------
1137 -- If the exit includes a name, it must be the name of a currently open
1138 -- loop. Otherwise there must be an innermost open loop on the stack,
1139 -- to which the statement implicitly refers.
1141 procedure Analyze_Exit_Statement (N : Node_Id) is
1142 Target : constant Node_Id := Name (N);
1143 Cond : constant Node_Id := Condition (N);
1144 Scope_Id : Entity_Id;
1145 U_Name : Entity_Id;
1146 Kind : Entity_Kind;
1148 begin
1149 if No (Cond) then
1150 Check_Unreachable_Code (N);
1151 end if;
1153 if Present (Target) then
1154 Analyze (Target);
1155 U_Name := Entity (Target);
1157 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1158 Error_Msg_N ("invalid loop name in exit statement", N);
1159 return;
1160 else
1161 Set_Has_Exit (U_Name);
1162 end if;
1164 else
1165 U_Name := Empty;
1166 end if;
1168 for J in reverse 0 .. Scope_Stack.Last loop
1169 Scope_Id := Scope_Stack.Table (J).Entity;
1170 Kind := Ekind (Scope_Id);
1172 if Kind = E_Loop
1173 and then (No (Target) or else Scope_Id = U_Name) then
1174 Set_Has_Exit (Scope_Id);
1175 exit;
1177 elsif Kind = E_Block
1178 or else Kind = E_Loop
1179 or else Kind = E_Return_Statement
1180 then
1181 null;
1183 else
1184 Error_Msg_N
1185 ("cannot exit from program unit or accept statement", N);
1186 return;
1187 end if;
1188 end loop;
1190 -- Verify that if present the condition is a Boolean expression
1192 if Present (Cond) then
1193 Analyze_And_Resolve (Cond, Any_Boolean);
1194 Check_Unset_Reference (Cond);
1195 end if;
1197 -- Chain exit statement to associated loop entity
1199 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1200 Set_First_Exit_Statement (Scope_Id, N);
1202 -- Since the exit may take us out of a loop, any previous assignment
1203 -- statement is not useless, so clear last assignment indications. It
1204 -- is OK to keep other current values, since if the exit statement
1205 -- does not exit, then the current values are still valid.
1207 Kill_Current_Values (Last_Assignment_Only => True);
1208 end Analyze_Exit_Statement;
1210 ----------------------------
1211 -- Analyze_Goto_Statement --
1212 ----------------------------
1214 procedure Analyze_Goto_Statement (N : Node_Id) is
1215 Label : constant Node_Id := Name (N);
1216 Scope_Id : Entity_Id;
1217 Label_Scope : Entity_Id;
1218 Label_Ent : Entity_Id;
1220 begin
1221 Check_Unreachable_Code (N);
1222 Kill_Current_Values (Last_Assignment_Only => True);
1224 Analyze (Label);
1225 Label_Ent := Entity (Label);
1227 -- Ignore previous error
1229 if Label_Ent = Any_Id then
1230 return;
1232 -- We just have a label as the target of a goto
1234 elsif Ekind (Label_Ent) /= E_Label then
1235 Error_Msg_N ("target of goto statement must be a label", Label);
1236 return;
1238 -- Check that the target of the goto is reachable according to Ada
1239 -- scoping rules. Note: the special gotos we generate for optimizing
1240 -- local handling of exceptions would violate these rules, but we mark
1241 -- such gotos as analyzed when built, so this code is never entered.
1243 elsif not Reachable (Label_Ent) then
1244 Error_Msg_N ("target of goto statement is not reachable", Label);
1245 return;
1246 end if;
1248 -- Here if goto passes initial validity checks
1250 Label_Scope := Enclosing_Scope (Label_Ent);
1252 for J in reverse 0 .. Scope_Stack.Last loop
1253 Scope_Id := Scope_Stack.Table (J).Entity;
1255 if Label_Scope = Scope_Id
1256 or else (Ekind (Scope_Id) /= E_Block
1257 and then Ekind (Scope_Id) /= E_Loop
1258 and then Ekind (Scope_Id) /= E_Return_Statement)
1259 then
1260 if Scope_Id /= Label_Scope then
1261 Error_Msg_N
1262 ("cannot exit from program unit or accept statement", N);
1263 end if;
1265 return;
1266 end if;
1267 end loop;
1269 raise Program_Error;
1270 end Analyze_Goto_Statement;
1272 --------------------------
1273 -- Analyze_If_Statement --
1274 --------------------------
1276 -- A special complication arises in the analysis of if statements
1278 -- The expander has circuitry to completely delete code that it
1279 -- can tell will not be executed (as a result of compile time known
1280 -- conditions). In the analyzer, we ensure that code that will be
1281 -- deleted in this manner is analyzed but not expanded. This is
1282 -- obviously more efficient, but more significantly, difficulties
1283 -- arise if code is expanded and then eliminated (e.g. exception
1284 -- table entries disappear). Similarly, itypes generated in deleted
1285 -- code must be frozen from start, because the nodes on which they
1286 -- depend will not be available at the freeze point.
1288 procedure Analyze_If_Statement (N : Node_Id) is
1289 E : Node_Id;
1291 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1292 -- Recursively save value of this global, will be restored on exit
1294 Save_In_Deleted_Code : Boolean;
1296 Del : Boolean := False;
1297 -- This flag gets set True if a True condition has been found,
1298 -- which means that remaining ELSE/ELSIF parts are deleted.
1300 procedure Analyze_Cond_Then (Cnode : Node_Id);
1301 -- This is applied to either the N_If_Statement node itself or
1302 -- to an N_Elsif_Part node. It deals with analyzing the condition
1303 -- and the THEN statements associated with it.
1305 -----------------------
1306 -- Analyze_Cond_Then --
1307 -----------------------
1309 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1310 Cond : constant Node_Id := Condition (Cnode);
1311 Tstm : constant List_Id := Then_Statements (Cnode);
1313 begin
1314 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1315 Analyze_And_Resolve (Cond, Any_Boolean);
1316 Check_Unset_Reference (Cond);
1317 Set_Current_Value_Condition (Cnode);
1319 -- If already deleting, then just analyze then statements
1321 if Del then
1322 Analyze_Statements (Tstm);
1324 -- Compile time known value, not deleting yet
1326 elsif Compile_Time_Known_Value (Cond) then
1327 Save_In_Deleted_Code := In_Deleted_Code;
1329 -- If condition is True, then analyze the THEN statements
1330 -- and set no expansion for ELSE and ELSIF parts.
1332 if Is_True (Expr_Value (Cond)) then
1333 Analyze_Statements (Tstm);
1334 Del := True;
1335 Expander_Mode_Save_And_Set (False);
1336 In_Deleted_Code := True;
1338 -- If condition is False, analyze THEN with expansion off
1340 else -- Is_False (Expr_Value (Cond))
1341 Expander_Mode_Save_And_Set (False);
1342 In_Deleted_Code := True;
1343 Analyze_Statements (Tstm);
1344 Expander_Mode_Restore;
1345 In_Deleted_Code := Save_In_Deleted_Code;
1346 end if;
1348 -- Not known at compile time, not deleting, normal analysis
1350 else
1351 Analyze_Statements (Tstm);
1352 end if;
1353 end Analyze_Cond_Then;
1355 -- Start of Analyze_If_Statement
1357 begin
1358 -- Initialize exit count for else statements. If there is no else
1359 -- part, this count will stay non-zero reflecting the fact that the
1360 -- uncovered else case is an unblocked exit.
1362 Unblocked_Exit_Count := 1;
1363 Analyze_Cond_Then (N);
1365 -- Now to analyze the elsif parts if any are present
1367 if Present (Elsif_Parts (N)) then
1368 E := First (Elsif_Parts (N));
1369 while Present (E) loop
1370 Analyze_Cond_Then (E);
1371 Next (E);
1372 end loop;
1373 end if;
1375 if Present (Else_Statements (N)) then
1376 Analyze_Statements (Else_Statements (N));
1377 end if;
1379 -- If all our exits were blocked by unconditional transfers of control,
1380 -- then the entire IF statement acts as an unconditional transfer of
1381 -- control, so treat it like one, and check unreachable code.
1383 if Unblocked_Exit_Count = 0 then
1384 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1385 Check_Unreachable_Code (N);
1386 else
1387 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1388 end if;
1390 if Del then
1391 Expander_Mode_Restore;
1392 In_Deleted_Code := Save_In_Deleted_Code;
1393 end if;
1395 if not Expander_Active
1396 and then Compile_Time_Known_Value (Condition (N))
1397 and then Serious_Errors_Detected = 0
1398 then
1399 if Is_True (Expr_Value (Condition (N))) then
1400 Remove_Warning_Messages (Else_Statements (N));
1402 if Present (Elsif_Parts (N)) then
1403 E := First (Elsif_Parts (N));
1404 while Present (E) loop
1405 Remove_Warning_Messages (Then_Statements (E));
1406 Next (E);
1407 end loop;
1408 end if;
1410 else
1411 Remove_Warning_Messages (Then_Statements (N));
1412 end if;
1413 end if;
1414 end Analyze_If_Statement;
1416 ----------------------------------------
1417 -- Analyze_Implicit_Label_Declaration --
1418 ----------------------------------------
1420 -- An implicit label declaration is generated in the innermost
1421 -- enclosing declarative part. This is done for labels as well as
1422 -- block and loop names.
1424 -- Note: any changes in this routine may need to be reflected in
1425 -- Analyze_Label_Entity.
1427 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1428 Id : constant Node_Id := Defining_Identifier (N);
1429 begin
1430 Enter_Name (Id);
1431 Set_Ekind (Id, E_Label);
1432 Set_Etype (Id, Standard_Void_Type);
1433 Set_Enclosing_Scope (Id, Current_Scope);
1434 end Analyze_Implicit_Label_Declaration;
1436 ------------------------------
1437 -- Analyze_Iteration_Scheme --
1438 ------------------------------
1440 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1442 procedure Process_Bounds (R : Node_Id);
1443 -- If the iteration is given by a range, create temporaries and
1444 -- assignment statements block to capture the bounds and perform
1445 -- required finalization actions in case a bound includes a function
1446 -- call that uses the temporary stack. We first pre-analyze a copy of
1447 -- the range in order to determine the expected type, and analyze and
1448 -- resolve the original bounds.
1450 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1451 -- If the bounds are given by a 'Range reference on a function call
1452 -- that returns a controlled array, introduce an explicit declaration
1453 -- to capture the bounds, so that the function result can be finalized
1454 -- in timely fashion.
1456 --------------------
1457 -- Process_Bounds --
1458 --------------------
1460 procedure Process_Bounds (R : Node_Id) is
1461 Loc : constant Source_Ptr := Sloc (N);
1462 R_Copy : constant Node_Id := New_Copy_Tree (R);
1463 Lo : constant Node_Id := Low_Bound (R);
1464 Hi : constant Node_Id := High_Bound (R);
1465 New_Lo_Bound : Node_Id;
1466 New_Hi_Bound : Node_Id;
1467 Typ : Entity_Id;
1468 Save_Analysis : Boolean;
1470 function One_Bound
1471 (Original_Bound : Node_Id;
1472 Analyzed_Bound : Node_Id) return Node_Id;
1473 -- Capture value of bound and return captured value
1475 ---------------
1476 -- One_Bound --
1477 ---------------
1479 function One_Bound
1480 (Original_Bound : Node_Id;
1481 Analyzed_Bound : Node_Id) return Node_Id
1483 Assign : Node_Id;
1484 Id : Entity_Id;
1485 Decl : Node_Id;
1487 begin
1488 -- If the bound is a constant or an object, no need for a separate
1489 -- declaration. If the bound is the result of previous expansion
1490 -- it is already analyzed and should not be modified. Note that
1491 -- the Bound will be resolved later, if needed, as part of the
1492 -- call to Make_Index (literal bounds may need to be resolved to
1493 -- type Integer).
1495 if Analyzed (Original_Bound) then
1496 return Original_Bound;
1498 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
1499 N_Character_Literal)
1500 or else Is_Entity_Name (Analyzed_Bound)
1501 then
1502 Analyze_And_Resolve (Original_Bound, Typ);
1503 return Original_Bound;
1504 end if;
1506 -- Here we need to capture the value
1508 Analyze_And_Resolve (Original_Bound, Typ);
1510 Id := Make_Temporary (Loc, 'S', Original_Bound);
1512 -- Normally, the best approach is simply to generate a constant
1513 -- declaration that captures the bound. However, there is a nasty
1514 -- case where this is wrong. If the bound is complex, and has a
1515 -- possible use of the secondary stack, we need to generate a
1516 -- separate assignment statement to ensure the creation of a block
1517 -- which will release the secondary stack.
1519 -- We prefer the constant declaration, since it leaves us with a
1520 -- proper trace of the value, useful in optimizations that get rid
1521 -- of junk range checks.
1523 -- Probably we want something like the Side_Effect_Free routine
1524 -- in Exp_Util, but for now, we just optimize the cases of 'Last
1525 -- and 'First applied to an entity, since these are the important
1526 -- cases for range check optimizations.
1528 if Nkind (Original_Bound) = N_Attribute_Reference
1529 and then (Attribute_Name (Original_Bound) = Name_First
1530 or else
1531 Attribute_Name (Original_Bound) = Name_Last)
1532 and then Is_Entity_Name (Prefix (Original_Bound))
1533 then
1534 Decl :=
1535 Make_Object_Declaration (Loc,
1536 Defining_Identifier => Id,
1537 Constant_Present => True,
1538 Object_Definition => New_Occurrence_Of (Typ, Loc),
1539 Expression => Relocate_Node (Original_Bound));
1541 -- Insert declaration at proper place. If loop comes from an
1542 -- enclosing quantified expression, the insertion point is
1543 -- arbitrarily far up in the tree.
1545 Insert_Action (Parent (N), Decl);
1546 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1547 return Expression (Decl);
1548 end if;
1550 -- Here we make a declaration with a separate assignment
1551 -- statement, and insert before loop header.
1553 Decl :=
1554 Make_Object_Declaration (Loc,
1555 Defining_Identifier => Id,
1556 Object_Definition => New_Occurrence_Of (Typ, Loc));
1558 Assign :=
1559 Make_Assignment_Statement (Loc,
1560 Name => New_Occurrence_Of (Id, Loc),
1561 Expression => Relocate_Node (Original_Bound));
1563 Insert_Actions (Parent (N), New_List (Decl, Assign));
1565 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1567 if Nkind (Assign) = N_Assignment_Statement then
1568 return Expression (Assign);
1569 else
1570 return Original_Bound;
1571 end if;
1572 end One_Bound;
1574 -- Start of processing for Process_Bounds
1576 begin
1577 -- Determine expected type of range by analyzing separate copy
1578 -- Do the analysis and resolution of the copy of the bounds with
1579 -- expansion disabled, to prevent the generation of finalization
1580 -- actions on each bound. This prevents memory leaks when the
1581 -- bounds contain calls to functions returning controlled arrays.
1583 Set_Parent (R_Copy, Parent (R));
1584 Save_Analysis := Full_Analysis;
1585 Full_Analysis := False;
1586 Expander_Mode_Save_And_Set (False);
1588 Analyze (R_Copy);
1590 if Is_Overloaded (R_Copy) then
1592 -- Apply preference rules for range of predefined integer types,
1593 -- or diagnose true ambiguity.
1595 declare
1596 I : Interp_Index;
1597 It : Interp;
1598 Found : Entity_Id := Empty;
1600 begin
1601 Get_First_Interp (R_Copy, I, It);
1602 while Present (It.Typ) loop
1603 if Is_Discrete_Type (It.Typ) then
1604 if No (Found) then
1605 Found := It.Typ;
1606 else
1607 if Scope (Found) = Standard_Standard then
1608 null;
1610 elsif Scope (It.Typ) = Standard_Standard then
1611 Found := It.Typ;
1613 else
1614 -- Both of them are user-defined
1616 Error_Msg_N
1617 ("ambiguous bounds in range of iteration",
1618 R_Copy);
1619 Error_Msg_N ("\possible interpretations:", R_Copy);
1620 Error_Msg_NE ("\\} ", R_Copy, Found);
1621 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
1622 exit;
1623 end if;
1624 end if;
1625 end if;
1627 Get_Next_Interp (I, It);
1628 end loop;
1629 end;
1630 end if;
1632 Resolve (R_Copy);
1633 Expander_Mode_Restore;
1634 Full_Analysis := Save_Analysis;
1636 Typ := Etype (R_Copy);
1638 -- If the type of the discrete range is Universal_Integer, then
1639 -- the bound's type must be resolved to Integer, and any object
1640 -- used to hold the bound must also have type Integer, unless the
1641 -- literal bounds are constant-folded expressions that carry a user-
1642 -- defined type.
1644 if Typ = Universal_Integer then
1645 if Nkind (Lo) = N_Integer_Literal
1646 and then Present (Etype (Lo))
1647 and then Scope (Etype (Lo)) /= Standard_Standard
1648 then
1649 Typ := Etype (Lo);
1651 elsif Nkind (Hi) = N_Integer_Literal
1652 and then Present (Etype (Hi))
1653 and then Scope (Etype (Hi)) /= Standard_Standard
1654 then
1655 Typ := Etype (Hi);
1657 else
1658 Typ := Standard_Integer;
1659 end if;
1660 end if;
1662 Set_Etype (R, Typ);
1664 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1665 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1667 -- Propagate staticness to loop range itself, in case the
1668 -- corresponding subtype is static.
1670 if New_Lo_Bound /= Lo
1671 and then Is_Static_Expression (New_Lo_Bound)
1672 then
1673 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1674 end if;
1676 if New_Hi_Bound /= Hi
1677 and then Is_Static_Expression (New_Hi_Bound)
1678 then
1679 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1680 end if;
1681 end Process_Bounds;
1683 --------------------------------------
1684 -- Check_Controlled_Array_Attribute --
1685 --------------------------------------
1687 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1688 begin
1689 if Nkind (DS) = N_Attribute_Reference
1690 and then Is_Entity_Name (Prefix (DS))
1691 and then Ekind (Entity (Prefix (DS))) = E_Function
1692 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1693 and then
1694 Is_Controlled (
1695 Component_Type (Etype (Entity (Prefix (DS)))))
1696 and then Expander_Active
1697 then
1698 declare
1699 Loc : constant Source_Ptr := Sloc (N);
1700 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1701 Indx : constant Entity_Id :=
1702 Base_Type (Etype (First_Index (Arr)));
1703 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1704 Decl : Node_Id;
1706 begin
1707 Decl :=
1708 Make_Subtype_Declaration (Loc,
1709 Defining_Identifier => Subt,
1710 Subtype_Indication =>
1711 Make_Subtype_Indication (Loc,
1712 Subtype_Mark => New_Reference_To (Indx, Loc),
1713 Constraint =>
1714 Make_Range_Constraint (Loc,
1715 Relocate_Node (DS))));
1716 Insert_Before (Parent (N), Decl);
1717 Analyze (Decl);
1719 Rewrite (DS,
1720 Make_Attribute_Reference (Loc,
1721 Prefix => New_Reference_To (Subt, Loc),
1722 Attribute_Name => Attribute_Name (DS)));
1723 Analyze (DS);
1724 end;
1725 end if;
1726 end Check_Controlled_Array_Attribute;
1728 -- Start of processing for Analyze_Iteration_Scheme
1730 begin
1731 -- If this is a rewritten quantified expression, the iteration
1732 -- scheme has been analyzed already. Do no repeat analysis because
1733 -- the loop variable is already declared.
1735 if Analyzed (N) then
1736 return;
1737 end if;
1739 -- For an infinite loop, there is no iteration scheme
1741 if No (N) then
1742 return;
1743 end if;
1745 -- Iteration scheme is present
1747 declare
1748 Cond : constant Node_Id := Condition (N);
1750 begin
1751 -- For WHILE loop, verify that the condition is a Boolean
1752 -- expression and resolve and check it.
1754 if Present (Cond) then
1755 Analyze_And_Resolve (Cond, Any_Boolean);
1756 Check_Unset_Reference (Cond);
1757 Set_Current_Value_Condition (N);
1758 return;
1760 elsif Present (Iterator_Specification (N)) then
1761 Analyze_Iterator_Specification (Iterator_Specification (N));
1763 -- Else we have a FOR loop
1765 else
1766 declare
1767 LP : constant Node_Id := Loop_Parameter_Specification (N);
1768 Id : constant Entity_Id := Defining_Identifier (LP);
1769 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1771 begin
1772 Enter_Name (Id);
1774 -- We always consider the loop variable to be referenced,
1775 -- since the loop may be used just for counting purposes.
1777 Generate_Reference (Id, N, ' ');
1779 -- Check for the case of loop variable hiding a local variable
1780 -- (used later on to give a nice warning if the hidden variable
1781 -- is never assigned).
1783 declare
1784 H : constant Entity_Id := Homonym (Id);
1785 begin
1786 if Present (H)
1787 and then Enclosing_Dynamic_Scope (H) =
1788 Enclosing_Dynamic_Scope (Id)
1789 and then Ekind (H) = E_Variable
1790 and then Is_Discrete_Type (Etype (H))
1791 then
1792 Set_Hiding_Loop_Variable (H, Id);
1793 end if;
1794 end;
1796 -- Now analyze the subtype definition. If it is a range, create
1797 -- temporaries for bounds.
1799 if Nkind (DS) = N_Range
1800 and then Expander_Active
1801 then
1802 Process_Bounds (DS);
1804 -- Not a range or expander not active (is that right???)
1806 else
1807 Analyze (DS);
1809 if Nkind (DS) = N_Function_Call
1810 or else
1811 (Is_Entity_Name (DS)
1812 and then not Is_Type (Entity (DS)))
1813 then
1814 -- This is an iterator specification. Rewrite as such
1815 -- and analyze.
1817 declare
1818 I_Spec : constant Node_Id :=
1819 Make_Iterator_Specification (Sloc (LP),
1820 Defining_Identifier =>
1821 Relocate_Node (Id),
1822 Name =>
1823 Relocate_Node (DS),
1824 Subtype_Indication =>
1825 Empty,
1826 Reverse_Present =>
1827 Reverse_Present (LP));
1828 begin
1829 Set_Iterator_Specification (N, I_Spec);
1830 Set_Loop_Parameter_Specification (N, Empty);
1831 Analyze_Iterator_Specification (I_Spec);
1832 return;
1833 end;
1834 end if;
1835 end if;
1837 if DS = Error then
1838 return;
1839 end if;
1841 -- Some additional checks if we are iterating through a type
1843 if Is_Entity_Name (DS)
1844 and then Present (Entity (DS))
1845 and then Is_Type (Entity (DS))
1846 then
1847 -- The subtype indication may denote the completion of an
1848 -- incomplete type declaration.
1850 if Ekind (Entity (DS)) = E_Incomplete_Type then
1851 Set_Entity (DS, Get_Full_View (Entity (DS)));
1852 Set_Etype (DS, Entity (DS));
1853 end if;
1855 -- Attempt to iterate through non-static predicate
1857 if Is_Discrete_Type (Entity (DS))
1858 and then Present (Predicate_Function (Entity (DS)))
1859 and then No (Static_Predicate (Entity (DS)))
1860 then
1861 Bad_Predicated_Subtype_Use
1862 ("cannot use subtype& with non-static "
1863 & "predicate for loop iteration", DS, Entity (DS));
1864 end if;
1865 end if;
1867 -- Error if not discrete type
1869 if not Is_Discrete_Type (Etype (DS)) then
1870 Wrong_Type (DS, Any_Discrete);
1871 Set_Etype (DS, Any_Type);
1872 end if;
1874 Check_Controlled_Array_Attribute (DS);
1876 Make_Index (DS, LP);
1878 Set_Ekind (Id, E_Loop_Parameter);
1879 Set_Etype (Id, Etype (DS));
1881 -- Treat a range as an implicit reference to the type, to
1882 -- inhibit spurious warnings.
1884 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
1885 Set_Is_Known_Valid (Id, True);
1887 -- The loop is not a declarative part, so the only entity
1888 -- declared "within" must be frozen explicitly.
1890 declare
1891 Flist : constant List_Id := Freeze_Entity (Id, N);
1892 begin
1893 if Is_Non_Empty_List (Flist) then
1894 Insert_Actions (N, Flist);
1895 end if;
1896 end;
1898 -- Check for null or possibly null range and issue warning. We
1899 -- suppress such messages in generic templates and instances,
1900 -- because in practice they tend to be dubious in these cases.
1902 if Nkind (DS) = N_Range and then Comes_From_Source (N) then
1903 declare
1904 L : constant Node_Id := Low_Bound (DS);
1905 H : constant Node_Id := High_Bound (DS);
1907 begin
1908 -- If range of loop is null, issue warning
1910 if Compile_Time_Compare
1911 (L, H, Assume_Valid => True) = GT
1912 then
1913 -- Suppress the warning if inside a generic template
1914 -- or instance, since in practice they tend to be
1915 -- dubious in these cases since they can result from
1916 -- intended parametrization.
1918 if not Inside_A_Generic
1919 and then not In_Instance
1920 then
1921 -- Specialize msg if invalid values could make
1922 -- the loop non-null after all.
1924 if Compile_Time_Compare
1925 (L, H, Assume_Valid => False) = GT
1926 then
1927 Error_Msg_N
1928 ("?loop range is null, loop will not execute",
1929 DS);
1931 -- Since we know the range of the loop is
1932 -- null, set the appropriate flag to remove
1933 -- the loop entirely during expansion.
1935 Set_Is_Null_Loop (Parent (N));
1937 -- Here is where the loop could execute because
1938 -- of invalid values, so issue appropriate
1939 -- message and in this case we do not set the
1940 -- Is_Null_Loop flag since the loop may execute.
1942 else
1943 Error_Msg_N
1944 ("?loop range may be null, "
1945 & "loop may not execute",
1946 DS);
1947 Error_Msg_N
1948 ("?can only execute if invalid values "
1949 & "are present",
1950 DS);
1951 end if;
1952 end if;
1954 -- In either case, suppress warnings in the body of
1955 -- the loop, since it is likely that these warnings
1956 -- will be inappropriate if the loop never actually
1957 -- executes, which is likely.
1959 Set_Suppress_Loop_Warnings (Parent (N));
1961 -- The other case for a warning is a reverse loop
1962 -- where the upper bound is the integer literal zero
1963 -- or one, and the lower bound can be positive.
1965 -- For example, we have
1967 -- for J in reverse N .. 1 loop
1969 -- In practice, this is very likely to be a case of
1970 -- reversing the bounds incorrectly in the range.
1972 elsif Reverse_Present (LP)
1973 and then Nkind (Original_Node (H)) =
1974 N_Integer_Literal
1975 and then (Intval (Original_Node (H)) = Uint_0
1976 or else
1977 Intval (Original_Node (H)) = Uint_1)
1978 then
1979 Error_Msg_N ("?loop range may be null", DS);
1980 Error_Msg_N ("\?bounds may be wrong way round", DS);
1981 end if;
1982 end;
1983 end if;
1984 end;
1985 end if;
1986 end;
1987 end Analyze_Iteration_Scheme;
1989 -------------------------------------
1990 -- Analyze_Iterator_Specification --
1991 -------------------------------------
1993 procedure Analyze_Iterator_Specification (N : Node_Id) is
1994 Def_Id : constant Node_Id := Defining_Identifier (N);
1995 Subt : constant Node_Id := Subtype_Indication (N);
1996 Container : constant Node_Id := Name (N);
1998 Ent : Entity_Id;
1999 Typ : Entity_Id;
2001 begin
2002 Enter_Name (Def_Id);
2003 Set_Ekind (Def_Id, E_Variable);
2005 if Present (Subt) then
2006 Analyze (Subt);
2007 end if;
2009 Analyze_And_Resolve (Container);
2010 Typ := Etype (Container);
2012 if Is_Array_Type (Typ) then
2013 if Of_Present (N) then
2014 Set_Etype (Def_Id, Component_Type (Typ));
2015 else
2016 Error_Msg_N
2017 ("to iterate over the elements of an array, use OF", N);
2018 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2019 end if;
2021 -- Iteration over a container
2023 else
2024 Set_Ekind (Def_Id, E_Loop_Parameter);
2026 if Of_Present (N) then
2028 -- Find the Element_Type in the package instance that defines the
2029 -- container type.
2031 Ent := First_Entity (Scope (Typ));
2032 while Present (Ent) loop
2033 if Chars (Ent) = Name_Element_Type then
2034 Set_Etype (Def_Id, Ent);
2035 exit;
2036 end if;
2038 Next_Entity (Ent);
2039 end loop;
2041 else
2042 -- Find the Cursor type in similar fashion
2044 Ent := First_Entity (Scope (Typ));
2045 while Present (Ent) loop
2046 if Chars (Ent) = Name_Cursor then
2047 Set_Etype (Def_Id, Ent);
2048 exit;
2049 end if;
2051 Next_Entity (Ent);
2052 end loop;
2053 end if;
2054 end if;
2055 end Analyze_Iterator_Specification;
2057 -------------------
2058 -- Analyze_Label --
2059 -------------------
2061 -- Note: the semantic work required for analyzing labels (setting them as
2062 -- reachable) was done in a prepass through the statements in the block,
2063 -- so that forward gotos would be properly handled. See Analyze_Statements
2064 -- for further details. The only processing required here is to deal with
2065 -- optimizations that depend on an assumption of sequential control flow,
2066 -- since of course the occurrence of a label breaks this assumption.
2068 procedure Analyze_Label (N : Node_Id) is
2069 pragma Warnings (Off, N);
2070 begin
2071 Kill_Current_Values;
2072 end Analyze_Label;
2074 --------------------------
2075 -- Analyze_Label_Entity --
2076 --------------------------
2078 procedure Analyze_Label_Entity (E : Entity_Id) is
2079 begin
2080 Set_Ekind (E, E_Label);
2081 Set_Etype (E, Standard_Void_Type);
2082 Set_Enclosing_Scope (E, Current_Scope);
2083 Set_Reachable (E, True);
2084 end Analyze_Label_Entity;
2086 ----------------------------
2087 -- Analyze_Loop_Statement --
2088 ----------------------------
2090 procedure Analyze_Loop_Statement (N : Node_Id) is
2091 Loop_Statement : constant Node_Id := N;
2093 Id : constant Node_Id := Identifier (Loop_Statement);
2094 Iter : constant Node_Id := Iteration_Scheme (Loop_Statement);
2095 Ent : Entity_Id;
2097 begin
2098 if Present (Id) then
2100 -- Make name visible, e.g. for use in exit statements. Loop
2101 -- labels are always considered to be referenced.
2103 Analyze (Id);
2104 Ent := Entity (Id);
2106 -- Guard against serious error (typically, a scope mismatch when
2107 -- semantic analysis is requested) by creating loop entity to
2108 -- continue analysis.
2110 if No (Ent) then
2111 if Total_Errors_Detected /= 0 then
2112 Ent :=
2113 New_Internal_Entity
2114 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2115 else
2116 raise Program_Error;
2117 end if;
2119 else
2120 Generate_Reference (Ent, Loop_Statement, ' ');
2121 Generate_Definition (Ent);
2123 -- If we found a label, mark its type. If not, ignore it, since it
2124 -- means we have a conflicting declaration, which would already
2125 -- have been diagnosed at declaration time. Set Label_Construct
2126 -- of the implicit label declaration, which is not created by the
2127 -- parser for generic units.
2129 if Ekind (Ent) = E_Label then
2130 Set_Ekind (Ent, E_Loop);
2132 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2133 Set_Label_Construct (Parent (Ent), Loop_Statement);
2134 end if;
2135 end if;
2136 end if;
2138 -- Case of no identifier present
2140 else
2141 Ent :=
2142 New_Internal_Entity
2143 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2144 Set_Etype (Ent, Standard_Void_Type);
2145 Set_Parent (Ent, Loop_Statement);
2146 end if;
2148 -- Kill current values on entry to loop, since statements in body of
2149 -- loop may have been executed before the loop is entered. Similarly we
2150 -- kill values after the loop, since we do not know that the body of the
2151 -- loop was executed.
2153 Kill_Current_Values;
2154 Push_Scope (Ent);
2155 Analyze_Iteration_Scheme (Iter);
2156 Analyze_Statements (Statements (Loop_Statement));
2157 Process_End_Label (Loop_Statement, 'e', Ent);
2158 End_Scope;
2159 Kill_Current_Values;
2161 -- Check for infinite loop. Skip check for generated code, since it
2162 -- justs waste time and makes debugging the routine called harder.
2164 -- Note that we have to wait till the body of the loop is fully analyzed
2165 -- before making this call, since Check_Infinite_Loop_Warning relies on
2166 -- being able to use semantic visibility information to find references.
2168 if Comes_From_Source (N) then
2169 Check_Infinite_Loop_Warning (N);
2170 end if;
2172 -- Code after loop is unreachable if the loop has no WHILE or FOR
2173 -- and contains no EXIT statements within the body of the loop.
2175 if No (Iter) and then not Has_Exit (Ent) then
2176 Check_Unreachable_Code (N);
2177 end if;
2178 end Analyze_Loop_Statement;
2180 ----------------------------
2181 -- Analyze_Null_Statement --
2182 ----------------------------
2184 -- Note: the semantics of the null statement is implemented by a single
2185 -- null statement, too bad everything isn't as simple as this!
2187 procedure Analyze_Null_Statement (N : Node_Id) is
2188 pragma Warnings (Off, N);
2189 begin
2190 null;
2191 end Analyze_Null_Statement;
2193 ------------------------
2194 -- Analyze_Statements --
2195 ------------------------
2197 procedure Analyze_Statements (L : List_Id) is
2198 S : Node_Id;
2199 Lab : Entity_Id;
2201 begin
2202 -- The labels declared in the statement list are reachable from
2203 -- statements in the list. We do this as a prepass so that any
2204 -- goto statement will be properly flagged if its target is not
2205 -- reachable. This is not required, but is nice behavior!
2207 S := First (L);
2208 while Present (S) loop
2209 if Nkind (S) = N_Label then
2210 Analyze (Identifier (S));
2211 Lab := Entity (Identifier (S));
2213 -- If we found a label mark it as reachable
2215 if Ekind (Lab) = E_Label then
2216 Generate_Definition (Lab);
2217 Set_Reachable (Lab);
2219 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2220 Set_Label_Construct (Parent (Lab), S);
2221 end if;
2223 -- If we failed to find a label, it means the implicit declaration
2224 -- of the label was hidden. A for-loop parameter can do this to
2225 -- a label with the same name inside the loop, since the implicit
2226 -- label declaration is in the innermost enclosing body or block
2227 -- statement.
2229 else
2230 Error_Msg_Sloc := Sloc (Lab);
2231 Error_Msg_N
2232 ("implicit label declaration for & is hidden#",
2233 Identifier (S));
2234 end if;
2235 end if;
2237 Next (S);
2238 end loop;
2240 -- Perform semantic analysis on all statements
2242 Conditional_Statements_Begin;
2244 S := First (L);
2245 while Present (S) loop
2246 Analyze (S);
2247 Next (S);
2248 end loop;
2250 Conditional_Statements_End;
2252 -- Make labels unreachable. Visibility is not sufficient, because
2253 -- labels in one if-branch for example are not reachable from the
2254 -- other branch, even though their declarations are in the enclosing
2255 -- declarative part.
2257 S := First (L);
2258 while Present (S) loop
2259 if Nkind (S) = N_Label then
2260 Set_Reachable (Entity (Identifier (S)), False);
2261 end if;
2263 Next (S);
2264 end loop;
2265 end Analyze_Statements;
2267 ----------------------------
2268 -- Check_Unreachable_Code --
2269 ----------------------------
2271 procedure Check_Unreachable_Code (N : Node_Id) is
2272 Error_Loc : Source_Ptr;
2273 P : Node_Id;
2275 begin
2276 if Is_List_Member (N)
2277 and then Comes_From_Source (N)
2278 then
2279 declare
2280 Nxt : Node_Id;
2282 begin
2283 Nxt := Original_Node (Next (N));
2285 -- If a label follows us, then we never have dead code, since
2286 -- someone could branch to the label, so we just ignore it.
2288 if Nkind (Nxt) = N_Label then
2289 return;
2291 -- Otherwise see if we have a real statement following us
2293 elsif Present (Nxt)
2294 and then Comes_From_Source (Nxt)
2295 and then Is_Statement (Nxt)
2296 then
2297 -- Special very annoying exception. If we have a return that
2298 -- follows a raise, then we allow it without a warning, since
2299 -- the Ada RM annoyingly requires a useless return here!
2301 if Nkind (Original_Node (N)) /= N_Raise_Statement
2302 or else Nkind (Nxt) /= N_Simple_Return_Statement
2303 then
2304 -- The rather strange shenanigans with the warning message
2305 -- here reflects the fact that Kill_Dead_Code is very good
2306 -- at removing warnings in deleted code, and this is one
2307 -- warning we would prefer NOT to have removed.
2309 Error_Loc := Sloc (Nxt);
2311 -- If we have unreachable code, analyze and remove the
2312 -- unreachable code, since it is useless and we don't
2313 -- want to generate junk warnings.
2315 -- We skip this step if we are not in code generation mode.
2316 -- This is the one case where we remove dead code in the
2317 -- semantics as opposed to the expander, and we do not want
2318 -- to remove code if we are not in code generation mode,
2319 -- since this messes up the ASIS trees.
2321 -- Note that one might react by moving the whole circuit to
2322 -- exp_ch5, but then we lose the warning in -gnatc mode.
2324 if Operating_Mode = Generate_Code then
2325 loop
2326 Nxt := Next (N);
2328 -- Quit deleting when we have nothing more to delete
2329 -- or if we hit a label (since someone could transfer
2330 -- control to a label, so we should not delete it).
2332 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2334 -- Statement/declaration is to be deleted
2336 Analyze (Nxt);
2337 Remove (Nxt);
2338 Kill_Dead_Code (Nxt);
2339 end loop;
2340 end if;
2342 -- Now issue the warning
2344 Error_Msg ("?unreachable code!", Error_Loc);
2345 end if;
2347 -- If the unconditional transfer of control instruction is
2348 -- the last statement of a sequence, then see if our parent
2349 -- is one of the constructs for which we count unblocked exits,
2350 -- and if so, adjust the count.
2352 else
2353 P := Parent (N);
2355 -- Statements in THEN part or ELSE part of IF statement
2357 if Nkind (P) = N_If_Statement then
2358 null;
2360 -- Statements in ELSIF part of an IF statement
2362 elsif Nkind (P) = N_Elsif_Part then
2363 P := Parent (P);
2364 pragma Assert (Nkind (P) = N_If_Statement);
2366 -- Statements in CASE statement alternative
2368 elsif Nkind (P) = N_Case_Statement_Alternative then
2369 P := Parent (P);
2370 pragma Assert (Nkind (P) = N_Case_Statement);
2372 -- Statements in body of block
2374 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2375 and then Nkind (Parent (P)) = N_Block_Statement
2376 then
2377 null;
2379 -- Statements in exception handler in a block
2381 elsif Nkind (P) = N_Exception_Handler
2382 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2383 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2384 then
2385 null;
2387 -- None of these cases, so return
2389 else
2390 return;
2391 end if;
2393 -- This was one of the cases we are looking for (i.e. the
2394 -- parent construct was IF, CASE or block) so decrement count.
2396 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2397 end if;
2398 end;
2399 end if;
2400 end Check_Unreachable_Code;
2402 end Sem_Ch5;