* config/sh/sh.c (sh_gimplify_va_arg_expr): Don't call
[official-gcc.git] / gcc / ada / a-crbtgk.ads
blobb2c21cdb0dfdbe3fb8e73f5c6eadbb36cc54cddf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_KEYS --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 2004-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 -- Tree_Type is used to implement ordered containers. This package declares
31 -- the tree operations that depend on keys.
33 with Ada.Containers.Red_Black_Trees.Generic_Operations;
35 generic
36 with package Tree_Operations is new Generic_Operations (<>);
38 use Tree_Operations.Tree_Types;
40 type Key_Type (<>) is limited private;
42 with function Is_Less_Key_Node
43 (L : Key_Type;
44 R : Node_Access) return Boolean;
46 with function Is_Greater_Key_Node
47 (L : Key_Type;
48 R : Node_Access) return Boolean;
50 package Ada.Containers.Red_Black_Trees.Generic_Keys is
51 pragma Pure;
53 generic
54 with function New_Node return Node_Access;
55 procedure Generic_Insert_Post
56 (Tree : in out Tree_Type;
57 Y : Node_Access;
58 Before : Boolean;
59 Z : out Node_Access);
60 -- Completes an insertion after the insertion position has been
61 -- determined. On output Z contains a pointer to the newly inserted
62 -- node, allocated using New_Node. If Tree is busy then
63 -- Program_Error is raised. If Y is null, then Tree must be empty.
64 -- Otherwise Y denotes the insertion position, and Before specifies
65 -- whether the new node is Y's left (True) or right (False) child.
67 generic
68 with procedure Insert_Post
69 (T : in out Tree_Type;
70 Y : Node_Access;
71 B : Boolean;
72 Z : out Node_Access);
74 procedure Generic_Conditional_Insert
75 (Tree : in out Tree_Type;
76 Key : Key_Type;
77 Node : out Node_Access;
78 Inserted : out Boolean);
79 -- Inserts a new node in Tree, but only if the tree does not already
80 -- contain Key. Generic_Conditional_Insert first searches for a key
81 -- equivalent to Key in Tree. If an equivalent key is found, then on
82 -- output Node designates the node with that key and Inserted is
83 -- False; there is no allocation and Tree is not modified. Otherwise
84 -- Node designates a new node allocated using Insert_Post, and
85 -- Inserted is True.
87 generic
88 with procedure Insert_Post
89 (T : in out Tree_Type;
90 Y : Node_Access;
91 B : Boolean;
92 Z : out Node_Access);
94 procedure Generic_Unconditional_Insert
95 (Tree : in out Tree_Type;
96 Key : Key_Type;
97 Node : out Node_Access);
98 -- Inserts a new node in Tree. On output Node designates the new
99 -- node, which is allocated using Insert_Post. The node is inserted
100 -- immediately after already-existing equivalent keys.
102 generic
103 with procedure Insert_Post
104 (T : in out Tree_Type;
105 Y : Node_Access;
106 B : Boolean;
107 Z : out Node_Access);
109 with procedure Unconditional_Insert_Sans_Hint
110 (Tree : in out Tree_Type;
111 Key : Key_Type;
112 Node : out Node_Access);
114 procedure Generic_Unconditional_Insert_With_Hint
115 (Tree : in out Tree_Type;
116 Hint : Node_Access;
117 Key : Key_Type;
118 Node : out Node_Access);
119 -- Inserts a new node in Tree near position Hint, to avoid having to
120 -- search from the root for the insertion position. If Hint is null
121 -- then Generic_Unconditional_Insert_With_Hint attempts to insert
122 -- the new node after Tree.Last. If Hint is non-null then if Key is
123 -- less than Hint, it attempts to insert the new node immediately
124 -- prior to Hint. Otherwise it attempts to insert the node
125 -- immediately following Hint. We say "attempts" above to emphasize
126 -- that insertions always preserve invariants with respect to key
127 -- order, even when there's a hint. So if Key can't be inserted
128 -- immediately near Hint, then the new node is inserted in the
129 -- normal way, by searching for the correct position starting from
130 -- the root.
132 generic
133 with procedure Insert_Post
134 (T : in out Tree_Type;
135 Y : Node_Access;
136 B : Boolean;
137 Z : out Node_Access);
139 with procedure Conditional_Insert_Sans_Hint
140 (Tree : in out Tree_Type;
141 Key : Key_Type;
142 Node : out Node_Access;
143 Inserted : out Boolean);
145 procedure Generic_Conditional_Insert_With_Hint
146 (Tree : in out Tree_Type;
147 Position : Node_Access; -- the hint
148 Key : Key_Type;
149 Node : out Node_Access;
150 Inserted : out Boolean);
151 -- Inserts a new node in Tree if the tree does not already contain
152 -- Key, using Position as a hint about where to insert the new node.
153 -- See Generic_Unconditional_Insert_With_Hint for more details about
154 -- hint semantics.
156 function Find
157 (Tree : Tree_Type;
158 Key : Key_Type) return Node_Access;
159 -- Searches Tree for the smallest node equivalent to Key
161 function Ceiling
162 (Tree : Tree_Type;
163 Key : Key_Type) return Node_Access;
164 -- Searches Tree for the smallest node equal to or greater than Key
166 function Floor
167 (Tree : Tree_Type;
168 Key : Key_Type) return Node_Access;
169 -- Searches Tree for the largest node less than or equal to Key
171 function Upper_Bound
172 (Tree : Tree_Type;
173 Key : Key_Type) return Node_Access;
174 -- Searches Tree for the smallest node greater than Key
176 generic
177 with procedure Process (Node : Node_Access);
178 procedure Generic_Iteration
179 (Tree : Tree_Type;
180 Key : Key_Type);
181 -- Calls Process for each node in Tree equivalent to Key, in order
182 -- from earliest in range to latest.
184 generic
185 with procedure Process (Node : Node_Access);
186 procedure Generic_Reverse_Iteration
187 (Tree : Tree_Type;
188 Key : Key_Type);
189 -- Calls Process for each node in Tree equivalent to Key, but in
190 -- order from largest in range to earliest.
192 end Ada.Containers.Red_Black_Trees.Generic_Keys;