Fix a date.
[official-gcc.git] / gcc / function.c
blobda78d3fe022be49f50f56bf53371297549ea4770
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
148 struct temp_slot GTY(())
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
185 /* Forward declarations. */
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 gcc_unreachable ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context)
245 struct function *p;
247 if (context)
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
265 lang_hooks.function.enter_nested (p);
267 cfun = 0;
270 void
271 push_function_context (void)
273 push_function_context_to (current_function_decl);
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 struct function *p = outer_function_chain;
284 cfun = p;
285 outer_function_chain = p->outer;
287 current_function_decl = p->decl;
288 reg_renumber = 0;
290 lang_hooks.function.leave_nested (p);
292 /* Reset variables that have known state during rtx generation. */
293 virtuals_instantiated = 0;
294 generating_concat_p = 1;
297 void
298 pop_function_context (void)
300 pop_function_context_from (current_function_decl);
303 /* Clear out all parts of the state in F that can safely be discarded
304 after the function has been parsed, but not compiled, to let
305 garbage collection reclaim the memory. */
307 void
308 free_after_parsing (struct function *f)
310 /* f->expr->forced_labels is used by code generation. */
311 /* f->emit->regno_reg_rtx is used by code generation. */
312 /* f->varasm is used by code generation. */
313 /* f->eh->eh_return_stub_label is used by code generation. */
315 lang_hooks.function.final (f);
318 /* Clear out all parts of the state in F that can safely be discarded
319 after the function has been compiled, to let garbage collection
320 reclaim the memory. */
322 void
323 free_after_compilation (struct function *f)
325 f->eh = NULL;
326 f->expr = NULL;
327 f->emit = NULL;
328 f->varasm = NULL;
329 f->machine = NULL;
331 f->x_avail_temp_slots = NULL;
332 f->x_used_temp_slots = NULL;
333 f->arg_offset_rtx = NULL;
334 f->return_rtx = NULL;
335 f->internal_arg_pointer = NULL;
336 f->x_nonlocal_goto_handler_labels = NULL;
337 f->x_return_label = NULL;
338 f->x_naked_return_label = NULL;
339 f->x_stack_slot_list = NULL;
340 f->x_tail_recursion_reentry = NULL;
341 f->x_arg_pointer_save_area = NULL;
342 f->x_parm_birth_insn = NULL;
343 f->original_arg_vector = NULL;
344 f->original_decl_initial = NULL;
345 f->epilogue_delay_list = NULL;
348 /* Allocate fixed slots in the stack frame of the current function. */
350 /* Return size needed for stack frame based on slots so far allocated in
351 function F.
352 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
353 the caller may have to do that. */
355 HOST_WIDE_INT
356 get_func_frame_size (struct function *f)
358 #ifdef FRAME_GROWS_DOWNWARD
359 return -f->x_frame_offset;
360 #else
361 return f->x_frame_offset;
362 #endif
365 /* Return size needed for stack frame based on slots so far allocated.
366 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
367 the caller may have to do that. */
368 HOST_WIDE_INT
369 get_frame_size (void)
371 return get_func_frame_size (cfun);
374 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
375 with machine mode MODE.
377 ALIGN controls the amount of alignment for the address of the slot:
378 0 means according to MODE,
379 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
380 -2 means use BITS_PER_UNIT,
381 positive specifies alignment boundary in bits.
383 We do not round to stack_boundary here.
385 FUNCTION specifies the function to allocate in. */
387 static rtx
388 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
389 struct function *function)
391 rtx x, addr;
392 int bigend_correction = 0;
393 unsigned int alignment;
394 int frame_off, frame_alignment, frame_phase;
396 if (align == 0)
398 tree type;
400 if (mode == BLKmode)
401 alignment = BIGGEST_ALIGNMENT;
402 else
403 alignment = GET_MODE_ALIGNMENT (mode);
405 /* Allow the target to (possibly) increase the alignment of this
406 stack slot. */
407 type = lang_hooks.types.type_for_mode (mode, 0);
408 if (type)
409 alignment = LOCAL_ALIGNMENT (type, alignment);
411 alignment /= BITS_PER_UNIT;
413 else if (align == -1)
415 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
416 size = CEIL_ROUND (size, alignment);
418 else if (align == -2)
419 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
420 else
421 alignment = align / BITS_PER_UNIT;
423 #ifdef FRAME_GROWS_DOWNWARD
424 function->x_frame_offset -= size;
425 #endif
427 /* Ignore alignment we can't do with expected alignment of the boundary. */
428 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
429 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
431 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
432 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
434 /* Calculate how many bytes the start of local variables is off from
435 stack alignment. */
436 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
437 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
438 frame_phase = frame_off ? frame_alignment - frame_off : 0;
440 /* Round the frame offset to the specified alignment. The default is
441 to always honor requests to align the stack but a port may choose to
442 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
443 if (STACK_ALIGNMENT_NEEDED
444 || mode != BLKmode
445 || size != 0)
447 /* We must be careful here, since FRAME_OFFSET might be negative and
448 division with a negative dividend isn't as well defined as we might
449 like. So we instead assume that ALIGNMENT is a power of two and
450 use logical operations which are unambiguous. */
451 #ifdef FRAME_GROWS_DOWNWARD
452 function->x_frame_offset
453 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
454 (unsigned HOST_WIDE_INT) alignment)
455 + frame_phase);
456 #else
457 function->x_frame_offset
458 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
459 (unsigned HOST_WIDE_INT) alignment)
460 + frame_phase);
461 #endif
464 /* On a big-endian machine, if we are allocating more space than we will use,
465 use the least significant bytes of those that are allocated. */
466 if (BYTES_BIG_ENDIAN && mode != BLKmode)
467 bigend_correction = size - GET_MODE_SIZE (mode);
469 /* If we have already instantiated virtual registers, return the actual
470 address relative to the frame pointer. */
471 if (function == cfun && virtuals_instantiated)
472 addr = plus_constant (frame_pointer_rtx,
473 trunc_int_for_mode
474 (frame_offset + bigend_correction
475 + STARTING_FRAME_OFFSET, Pmode));
476 else
477 addr = plus_constant (virtual_stack_vars_rtx,
478 trunc_int_for_mode
479 (function->x_frame_offset + bigend_correction,
480 Pmode));
482 #ifndef FRAME_GROWS_DOWNWARD
483 function->x_frame_offset += size;
484 #endif
486 x = gen_rtx_MEM (mode, addr);
488 function->x_stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
491 return x;
494 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
495 current function. */
498 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
500 return assign_stack_local_1 (mode, size, align, cfun);
504 /* Removes temporary slot TEMP from LIST. */
506 static void
507 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
509 if (temp->next)
510 temp->next->prev = temp->prev;
511 if (temp->prev)
512 temp->prev->next = temp->next;
513 else
514 *list = temp->next;
516 temp->prev = temp->next = NULL;
519 /* Inserts temporary slot TEMP to LIST. */
521 static void
522 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
524 temp->next = *list;
525 if (*list)
526 (*list)->prev = temp;
527 temp->prev = NULL;
528 *list = temp;
531 /* Returns the list of used temp slots at LEVEL. */
533 static struct temp_slot **
534 temp_slots_at_level (int level)
537 if (!used_temp_slots)
538 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
540 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
541 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
543 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
546 /* Returns the maximal temporary slot level. */
548 static int
549 max_slot_level (void)
551 if (!used_temp_slots)
552 return -1;
554 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
557 /* Moves temporary slot TEMP to LEVEL. */
559 static void
560 move_slot_to_level (struct temp_slot *temp, int level)
562 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
563 insert_slot_to_list (temp, temp_slots_at_level (level));
564 temp->level = level;
567 /* Make temporary slot TEMP available. */
569 static void
570 make_slot_available (struct temp_slot *temp)
572 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
573 insert_slot_to_list (temp, &avail_temp_slots);
574 temp->in_use = 0;
575 temp->level = -1;
578 /* Allocate a temporary stack slot and record it for possible later
579 reuse.
581 MODE is the machine mode to be given to the returned rtx.
583 SIZE is the size in units of the space required. We do no rounding here
584 since assign_stack_local will do any required rounding.
586 KEEP is 1 if this slot is to be retained after a call to
587 free_temp_slots. Automatic variables for a block are allocated
588 with this flag. KEEP values of 2 or 3 were needed respectively
589 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
590 or for SAVE_EXPRs, but they are now unused and will abort.
592 TYPE is the type that will be used for the stack slot. */
595 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
596 tree type)
598 unsigned int align;
599 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
600 rtx slot;
602 /* If SIZE is -1 it means that somebody tried to allocate a temporary
603 of a variable size. */
604 gcc_assert (size != -1);
606 /* These are now unused. */
607 gcc_assert (keep <= 1);
609 if (mode == BLKmode)
610 align = BIGGEST_ALIGNMENT;
611 else
612 align = GET_MODE_ALIGNMENT (mode);
614 if (! type)
615 type = lang_hooks.types.type_for_mode (mode, 0);
617 if (type)
618 align = LOCAL_ALIGNMENT (type, align);
620 /* Try to find an available, already-allocated temporary of the proper
621 mode which meets the size and alignment requirements. Choose the
622 smallest one with the closest alignment. */
623 for (p = avail_temp_slots; p; p = p->next)
625 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
626 && objects_must_conflict_p (p->type, type)
627 && (best_p == 0 || best_p->size > p->size
628 || (best_p->size == p->size && best_p->align > p->align)))
630 if (p->align == align && p->size == size)
632 selected = p;
633 cut_slot_from_list (selected, &avail_temp_slots);
634 best_p = 0;
635 break;
637 best_p = p;
641 /* Make our best, if any, the one to use. */
642 if (best_p)
644 selected = best_p;
645 cut_slot_from_list (selected, &avail_temp_slots);
647 /* If there are enough aligned bytes left over, make them into a new
648 temp_slot so that the extra bytes don't get wasted. Do this only
649 for BLKmode slots, so that we can be sure of the alignment. */
650 if (GET_MODE (best_p->slot) == BLKmode)
652 int alignment = best_p->align / BITS_PER_UNIT;
653 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
655 if (best_p->size - rounded_size >= alignment)
657 p = ggc_alloc (sizeof (struct temp_slot));
658 p->in_use = p->addr_taken = 0;
659 p->size = best_p->size - rounded_size;
660 p->base_offset = best_p->base_offset + rounded_size;
661 p->full_size = best_p->full_size - rounded_size;
662 p->slot = gen_rtx_MEM (BLKmode,
663 plus_constant (XEXP (best_p->slot, 0),
664 rounded_size));
665 p->align = best_p->align;
666 p->address = 0;
667 p->type = best_p->type;
668 insert_slot_to_list (p, &avail_temp_slots);
670 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
671 stack_slot_list);
673 best_p->size = rounded_size;
674 best_p->full_size = rounded_size;
679 /* If we still didn't find one, make a new temporary. */
680 if (selected == 0)
682 HOST_WIDE_INT frame_offset_old = frame_offset;
684 p = ggc_alloc (sizeof (struct temp_slot));
686 /* We are passing an explicit alignment request to assign_stack_local.
687 One side effect of that is assign_stack_local will not round SIZE
688 to ensure the frame offset remains suitably aligned.
690 So for requests which depended on the rounding of SIZE, we go ahead
691 and round it now. We also make sure ALIGNMENT is at least
692 BIGGEST_ALIGNMENT. */
693 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
694 p->slot = assign_stack_local (mode,
695 (mode == BLKmode
696 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
697 : size),
698 align);
700 p->align = align;
702 /* The following slot size computation is necessary because we don't
703 know the actual size of the temporary slot until assign_stack_local
704 has performed all the frame alignment and size rounding for the
705 requested temporary. Note that extra space added for alignment
706 can be either above or below this stack slot depending on which
707 way the frame grows. We include the extra space if and only if it
708 is above this slot. */
709 #ifdef FRAME_GROWS_DOWNWARD
710 p->size = frame_offset_old - frame_offset;
711 #else
712 p->size = size;
713 #endif
715 /* Now define the fields used by combine_temp_slots. */
716 #ifdef FRAME_GROWS_DOWNWARD
717 p->base_offset = frame_offset;
718 p->full_size = frame_offset_old - frame_offset;
719 #else
720 p->base_offset = frame_offset_old;
721 p->full_size = frame_offset - frame_offset_old;
722 #endif
723 p->address = 0;
725 selected = p;
728 p = selected;
729 p->in_use = 1;
730 p->addr_taken = 0;
731 p->type = type;
732 p->level = temp_slot_level;
733 p->keep = keep;
735 pp = temp_slots_at_level (p->level);
736 insert_slot_to_list (p, pp);
738 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
739 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
742 /* If we know the alias set for the memory that will be used, use
743 it. If there's no TYPE, then we don't know anything about the
744 alias set for the memory. */
745 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
746 set_mem_align (slot, align);
748 /* If a type is specified, set the relevant flags. */
749 if (type != 0)
751 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
752 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
755 return slot;
758 /* Allocate a temporary stack slot and record it for possible later
759 reuse. First three arguments are same as in preceding function. */
762 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
764 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
767 /* Assign a temporary.
768 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
769 and so that should be used in error messages. In either case, we
770 allocate of the given type.
771 KEEP is as for assign_stack_temp.
772 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
773 it is 0 if a register is OK.
774 DONT_PROMOTE is 1 if we should not promote values in register
775 to wider modes. */
778 assign_temp (tree type_or_decl, int keep, int memory_required,
779 int dont_promote ATTRIBUTE_UNUSED)
781 tree type, decl;
782 enum machine_mode mode;
783 #ifdef PROMOTE_MODE
784 int unsignedp;
785 #endif
787 if (DECL_P (type_or_decl))
788 decl = type_or_decl, type = TREE_TYPE (decl);
789 else
790 decl = NULL, type = type_or_decl;
792 mode = TYPE_MODE (type);
793 #ifdef PROMOTE_MODE
794 unsignedp = TYPE_UNSIGNED (type);
795 #endif
797 if (mode == BLKmode || memory_required)
799 HOST_WIDE_INT size = int_size_in_bytes (type);
800 tree size_tree;
801 rtx tmp;
803 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
804 problems with allocating the stack space. */
805 if (size == 0)
806 size = 1;
808 /* Unfortunately, we don't yet know how to allocate variable-sized
809 temporaries. However, sometimes we have a fixed upper limit on
810 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
811 instead. This is the case for Chill variable-sized strings. */
812 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
813 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
814 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
815 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
817 /* If we still haven't been able to get a size, see if the language
818 can compute a maximum size. */
819 if (size == -1
820 && (size_tree = lang_hooks.types.max_size (type)) != 0
821 && host_integerp (size_tree, 1))
822 size = tree_low_cst (size_tree, 1);
824 /* The size of the temporary may be too large to fit into an integer. */
825 /* ??? Not sure this should happen except for user silliness, so limit
826 this to things that aren't compiler-generated temporaries. The
827 rest of the time we'll abort in assign_stack_temp_for_type. */
828 if (decl && size == -1
829 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
831 error ("%Jsize of variable %qD is too large", decl, decl);
832 size = 1;
835 tmp = assign_stack_temp_for_type (mode, size, keep, type);
836 return tmp;
839 #ifdef PROMOTE_MODE
840 if (! dont_promote)
841 mode = promote_mode (type, mode, &unsignedp, 0);
842 #endif
844 return gen_reg_rtx (mode);
847 /* Combine temporary stack slots which are adjacent on the stack.
849 This allows for better use of already allocated stack space. This is only
850 done for BLKmode slots because we can be sure that we won't have alignment
851 problems in this case. */
853 static void
854 combine_temp_slots (void)
856 struct temp_slot *p, *q, *next, *next_q;
857 int num_slots;
859 /* We can't combine slots, because the information about which slot
860 is in which alias set will be lost. */
861 if (flag_strict_aliasing)
862 return;
864 /* If there are a lot of temp slots, don't do anything unless
865 high levels of optimization. */
866 if (! flag_expensive_optimizations)
867 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
868 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
869 return;
871 for (p = avail_temp_slots; p; p = next)
873 int delete_p = 0;
875 next = p->next;
877 if (GET_MODE (p->slot) != BLKmode)
878 continue;
880 for (q = p->next; q; q = next_q)
882 int delete_q = 0;
884 next_q = q->next;
886 if (GET_MODE (q->slot) != BLKmode)
887 continue;
889 if (p->base_offset + p->full_size == q->base_offset)
891 /* Q comes after P; combine Q into P. */
892 p->size += q->size;
893 p->full_size += q->full_size;
894 delete_q = 1;
896 else if (q->base_offset + q->full_size == p->base_offset)
898 /* P comes after Q; combine P into Q. */
899 q->size += p->size;
900 q->full_size += p->full_size;
901 delete_p = 1;
902 break;
904 if (delete_q)
905 cut_slot_from_list (q, &avail_temp_slots);
908 /* Either delete P or advance past it. */
909 if (delete_p)
910 cut_slot_from_list (p, &avail_temp_slots);
914 /* Find the temp slot corresponding to the object at address X. */
916 static struct temp_slot *
917 find_temp_slot_from_address (rtx x)
919 struct temp_slot *p;
920 rtx next;
921 int i;
923 for (i = max_slot_level (); i >= 0; i--)
924 for (p = *temp_slots_at_level (i); p; p = p->next)
926 if (XEXP (p->slot, 0) == x
927 || p->address == x
928 || (GET_CODE (x) == PLUS
929 && XEXP (x, 0) == virtual_stack_vars_rtx
930 && GET_CODE (XEXP (x, 1)) == CONST_INT
931 && INTVAL (XEXP (x, 1)) >= p->base_offset
932 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
933 return p;
935 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
936 for (next = p->address; next; next = XEXP (next, 1))
937 if (XEXP (next, 0) == x)
938 return p;
941 /* If we have a sum involving a register, see if it points to a temp
942 slot. */
943 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
944 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
945 return p;
946 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
947 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
948 return p;
950 return 0;
953 /* Indicate that NEW is an alternate way of referring to the temp slot
954 that previously was known by OLD. */
956 void
957 update_temp_slot_address (rtx old, rtx new)
959 struct temp_slot *p;
961 if (rtx_equal_p (old, new))
962 return;
964 p = find_temp_slot_from_address (old);
966 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
967 is a register, see if one operand of the PLUS is a temporary
968 location. If so, NEW points into it. Otherwise, if both OLD and
969 NEW are a PLUS and if there is a register in common between them.
970 If so, try a recursive call on those values. */
971 if (p == 0)
973 if (GET_CODE (old) != PLUS)
974 return;
976 if (REG_P (new))
978 update_temp_slot_address (XEXP (old, 0), new);
979 update_temp_slot_address (XEXP (old, 1), new);
980 return;
982 else if (GET_CODE (new) != PLUS)
983 return;
985 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
986 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
987 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
988 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
989 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
990 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
991 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
992 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
994 return;
997 /* Otherwise add an alias for the temp's address. */
998 else if (p->address == 0)
999 p->address = new;
1000 else
1002 if (GET_CODE (p->address) != EXPR_LIST)
1003 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1005 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1009 /* If X could be a reference to a temporary slot, mark the fact that its
1010 address was taken. */
1012 void
1013 mark_temp_addr_taken (rtx x)
1015 struct temp_slot *p;
1017 if (x == 0)
1018 return;
1020 /* If X is not in memory or is at a constant address, it cannot be in
1021 a temporary slot. */
1022 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1023 return;
1025 p = find_temp_slot_from_address (XEXP (x, 0));
1026 if (p != 0)
1027 p->addr_taken = 1;
1030 /* If X could be a reference to a temporary slot, mark that slot as
1031 belonging to the to one level higher than the current level. If X
1032 matched one of our slots, just mark that one. Otherwise, we can't
1033 easily predict which it is, so upgrade all of them. Kept slots
1034 need not be touched.
1036 This is called when an ({...}) construct occurs and a statement
1037 returns a value in memory. */
1039 void
1040 preserve_temp_slots (rtx x)
1042 struct temp_slot *p = 0, *next;
1044 /* If there is no result, we still might have some objects whose address
1045 were taken, so we need to make sure they stay around. */
1046 if (x == 0)
1048 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1050 next = p->next;
1052 if (p->addr_taken)
1053 move_slot_to_level (p, temp_slot_level - 1);
1056 return;
1059 /* If X is a register that is being used as a pointer, see if we have
1060 a temporary slot we know it points to. To be consistent with
1061 the code below, we really should preserve all non-kept slots
1062 if we can't find a match, but that seems to be much too costly. */
1063 if (REG_P (x) && REG_POINTER (x))
1064 p = find_temp_slot_from_address (x);
1066 /* If X is not in memory or is at a constant address, it cannot be in
1067 a temporary slot, but it can contain something whose address was
1068 taken. */
1069 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1071 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1073 next = p->next;
1075 if (p->addr_taken)
1076 move_slot_to_level (p, temp_slot_level - 1);
1079 return;
1082 /* First see if we can find a match. */
1083 if (p == 0)
1084 p = find_temp_slot_from_address (XEXP (x, 0));
1086 if (p != 0)
1088 /* Move everything at our level whose address was taken to our new
1089 level in case we used its address. */
1090 struct temp_slot *q;
1092 if (p->level == temp_slot_level)
1094 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1096 next = q->next;
1098 if (p != q && q->addr_taken)
1099 move_slot_to_level (q, temp_slot_level - 1);
1102 move_slot_to_level (p, temp_slot_level - 1);
1103 p->addr_taken = 0;
1105 return;
1108 /* Otherwise, preserve all non-kept slots at this level. */
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1111 next = p->next;
1113 if (!p->keep)
1114 move_slot_to_level (p, temp_slot_level - 1);
1118 /* Free all temporaries used so far. This is normally called at the
1119 end of generating code for a statement. */
1121 void
1122 free_temp_slots (void)
1124 struct temp_slot *p, *next;
1126 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1128 next = p->next;
1130 if (!p->keep)
1131 make_slot_available (p);
1134 combine_temp_slots ();
1137 /* Push deeper into the nesting level for stack temporaries. */
1139 void
1140 push_temp_slots (void)
1142 temp_slot_level++;
1145 /* Pop a temporary nesting level. All slots in use in the current level
1146 are freed. */
1148 void
1149 pop_temp_slots (void)
1151 struct temp_slot *p, *next;
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1155 next = p->next;
1156 make_slot_available (p);
1159 combine_temp_slots ();
1161 temp_slot_level--;
1164 /* Initialize temporary slots. */
1166 void
1167 init_temp_slots (void)
1169 /* We have not allocated any temporaries yet. */
1170 avail_temp_slots = 0;
1171 used_temp_slots = 0;
1172 temp_slot_level = 0;
1175 /* These routines are responsible for converting virtual register references
1176 to the actual hard register references once RTL generation is complete.
1178 The following four variables are used for communication between the
1179 routines. They contain the offsets of the virtual registers from their
1180 respective hard registers. */
1182 static int in_arg_offset;
1183 static int var_offset;
1184 static int dynamic_offset;
1185 static int out_arg_offset;
1186 static int cfa_offset;
1188 /* In most machines, the stack pointer register is equivalent to the bottom
1189 of the stack. */
1191 #ifndef STACK_POINTER_OFFSET
1192 #define STACK_POINTER_OFFSET 0
1193 #endif
1195 /* If not defined, pick an appropriate default for the offset of dynamically
1196 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1197 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1199 #ifndef STACK_DYNAMIC_OFFSET
1201 /* The bottom of the stack points to the actual arguments. If
1202 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1203 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1204 stack space for register parameters is not pushed by the caller, but
1205 rather part of the fixed stack areas and hence not included in
1206 `current_function_outgoing_args_size'. Nevertheless, we must allow
1207 for it when allocating stack dynamic objects. */
1209 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1210 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1211 ((ACCUMULATE_OUTGOING_ARGS \
1212 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1213 + (STACK_POINTER_OFFSET)) \
1215 #else
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1218 + (STACK_POINTER_OFFSET))
1219 #endif
1220 #endif
1222 /* On most machines, the CFA coincides with the first incoming parm. */
1224 #ifndef ARG_POINTER_CFA_OFFSET
1225 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1226 #endif
1229 /* Pass through the INSNS of function FNDECL and convert virtual register
1230 references to hard register references. */
1232 void
1233 instantiate_virtual_regs (void)
1235 rtx insn;
1237 /* Compute the offsets to use for this function. */
1238 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1239 var_offset = STARTING_FRAME_OFFSET;
1240 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1241 out_arg_offset = STACK_POINTER_OFFSET;
1242 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1244 /* Scan all variables and parameters of this function. For each that is
1245 in memory, instantiate all virtual registers if the result is a valid
1246 address. If not, we do it later. That will handle most uses of virtual
1247 regs on many machines. */
1248 instantiate_decls (current_function_decl, 1);
1250 /* Initialize recognition, indicating that volatile is OK. */
1251 init_recog ();
1253 /* Scan through all the insns, instantiating every virtual register still
1254 present. */
1255 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1256 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1257 || GET_CODE (insn) == CALL_INSN)
1259 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1260 if (INSN_DELETED_P (insn))
1261 continue;
1262 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1263 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1264 if (GET_CODE (insn) == CALL_INSN)
1265 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1266 NULL_RTX, 0);
1268 /* Past this point all ASM statements should match. Verify that
1269 to avoid failures later in the compilation process. */
1270 if (asm_noperands (PATTERN (insn)) >= 0
1271 && ! check_asm_operands (PATTERN (insn)))
1272 instantiate_virtual_regs_lossage (insn);
1275 /* Now instantiate the remaining register equivalences for debugging info.
1276 These will not be valid addresses. */
1277 instantiate_decls (current_function_decl, 0);
1279 /* Indicate that, from now on, assign_stack_local should use
1280 frame_pointer_rtx. */
1281 virtuals_instantiated = 1;
1284 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1285 all virtual registers in their DECL_RTL's.
1287 If VALID_ONLY, do this only if the resulting address is still valid.
1288 Otherwise, always do it. */
1290 static void
1291 instantiate_decls (tree fndecl, int valid_only)
1293 tree decl;
1295 /* Process all parameters of the function. */
1296 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1298 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1299 HOST_WIDE_INT size_rtl;
1301 instantiate_decl (DECL_RTL (decl), size, valid_only);
1303 /* If the parameter was promoted, then the incoming RTL mode may be
1304 larger than the declared type size. We must use the larger of
1305 the two sizes. */
1306 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1307 size = MAX (size_rtl, size);
1308 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1311 /* Now process all variables defined in the function or its subblocks. */
1312 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1315 /* Subroutine of instantiate_decls: Process all decls in the given
1316 BLOCK node and all its subblocks. */
1318 static void
1319 instantiate_decls_1 (tree let, int valid_only)
1321 tree t;
1323 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1324 if (DECL_RTL_SET_P (t))
1325 instantiate_decl (DECL_RTL (t),
1326 int_size_in_bytes (TREE_TYPE (t)),
1327 valid_only);
1329 /* Process all subblocks. */
1330 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1331 instantiate_decls_1 (t, valid_only);
1334 /* Subroutine of the preceding procedures: Given RTL representing a
1335 decl and the size of the object, do any instantiation required.
1337 If VALID_ONLY is nonzero, it means that the RTL should only be
1338 changed if the new address is valid. */
1340 static void
1341 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1343 enum machine_mode mode;
1344 rtx addr;
1346 if (x == 0)
1347 return;
1349 /* If this is a CONCAT, recurse for the pieces. */
1350 if (GET_CODE (x) == CONCAT)
1352 instantiate_decl (XEXP (x, 0), size / 2, valid_only);
1353 instantiate_decl (XEXP (x, 1), size / 2, valid_only);
1354 return;
1357 /* If this is not a MEM, no need to do anything. Similarly if the
1358 address is a constant or a register that is not a virtual register. */
1359 if (!MEM_P (x))
1360 return;
1362 addr = XEXP (x, 0);
1363 if (CONSTANT_P (addr)
1364 || (REG_P (addr)
1365 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1366 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1367 return;
1369 /* If we should only do this if the address is valid, copy the address.
1370 We need to do this so we can undo any changes that might make the
1371 address invalid. This copy is unfortunate, but probably can't be
1372 avoided. */
1374 if (valid_only)
1375 addr = copy_rtx (addr);
1377 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1379 if (valid_only && size >= 0)
1381 unsigned HOST_WIDE_INT decl_size = size;
1383 /* Now verify that the resulting address is valid for every integer or
1384 floating-point mode up to and including SIZE bytes long. We do this
1385 since the object might be accessed in any mode and frame addresses
1386 are shared. */
1388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1389 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1390 mode = GET_MODE_WIDER_MODE (mode))
1391 if (! memory_address_p (mode, addr))
1392 return;
1394 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1395 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1396 mode = GET_MODE_WIDER_MODE (mode))
1397 if (! memory_address_p (mode, addr))
1398 return;
1401 /* Put back the address now that we have updated it and we either know
1402 it is valid or we don't care whether it is valid. */
1404 XEXP (x, 0) = addr;
1407 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1408 is a virtual register, return the equivalent hard register and set the
1409 offset indirectly through the pointer. Otherwise, return 0. */
1411 static rtx
1412 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1414 rtx new;
1415 HOST_WIDE_INT offset;
1417 if (x == virtual_incoming_args_rtx)
1418 new = arg_pointer_rtx, offset = in_arg_offset;
1419 else if (x == virtual_stack_vars_rtx)
1420 new = frame_pointer_rtx, offset = var_offset;
1421 else if (x == virtual_stack_dynamic_rtx)
1422 new = stack_pointer_rtx, offset = dynamic_offset;
1423 else if (x == virtual_outgoing_args_rtx)
1424 new = stack_pointer_rtx, offset = out_arg_offset;
1425 else if (x == virtual_cfa_rtx)
1426 new = arg_pointer_rtx, offset = cfa_offset;
1427 else
1428 return 0;
1430 *poffset = offset;
1431 return new;
1435 /* Called when instantiate_virtual_regs has failed to update the instruction.
1436 Usually this means that non-matching instruction has been emit, however for
1437 asm statements it may be the problem in the constraints. */
1438 static void
1439 instantiate_virtual_regs_lossage (rtx insn)
1441 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1442 error_for_asm (insn, "impossible constraint in %<asm%>");
1443 delete_insn (insn);
1445 /* Given a pointer to a piece of rtx and an optional pointer to the
1446 containing object, instantiate any virtual registers present in it.
1448 If EXTRA_INSNS, we always do the replacement and generate
1449 any extra insns before OBJECT. If it zero, we do nothing if replacement
1450 is not valid.
1452 Return 1 if we either had nothing to do or if we were able to do the
1453 needed replacement. Return 0 otherwise; we only return zero if
1454 EXTRA_INSNS is zero.
1456 We first try some simple transformations to avoid the creation of extra
1457 pseudos. */
1459 static int
1460 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1462 rtx x;
1463 RTX_CODE code;
1464 rtx new = 0;
1465 HOST_WIDE_INT offset = 0;
1466 rtx temp;
1467 rtx seq;
1468 int i, j;
1469 const char *fmt;
1471 /* Re-start here to avoid recursion in common cases. */
1472 restart:
1474 x = *loc;
1475 if (x == 0)
1476 return 1;
1478 /* We may have detected and deleted invalid asm statements. */
1479 if (object && INSN_P (object) && INSN_DELETED_P (object))
1480 return 1;
1482 code = GET_CODE (x);
1484 /* Check for some special cases. */
1485 switch (code)
1487 case CONST_INT:
1488 case CONST_DOUBLE:
1489 case CONST_VECTOR:
1490 case CONST:
1491 case SYMBOL_REF:
1492 case CODE_LABEL:
1493 case PC:
1494 case CC0:
1495 case ASM_INPUT:
1496 case ADDR_VEC:
1497 case ADDR_DIFF_VEC:
1498 case RETURN:
1499 return 1;
1501 case SET:
1502 /* We are allowed to set the virtual registers. This means that
1503 the actual register should receive the source minus the
1504 appropriate offset. This is used, for example, in the handling
1505 of non-local gotos. */
1506 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1508 rtx src = SET_SRC (x);
1510 /* We are setting the register, not using it, so the relevant
1511 offset is the negative of the offset to use were we using
1512 the register. */
1513 offset = - offset;
1514 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1516 /* The only valid sources here are PLUS or REG. Just do
1517 the simplest possible thing to handle them. */
1518 if (!REG_P (src) && GET_CODE (src) != PLUS)
1520 instantiate_virtual_regs_lossage (object);
1521 return 1;
1524 start_sequence ();
1525 if (!REG_P (src))
1526 temp = force_operand (src, NULL_RTX);
1527 else
1528 temp = src;
1529 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1530 seq = get_insns ();
1531 end_sequence ();
1533 emit_insn_before (seq, object);
1534 SET_DEST (x) = new;
1536 if (! validate_change (object, &SET_SRC (x), temp, 0)
1537 || ! extra_insns)
1538 instantiate_virtual_regs_lossage (object);
1540 return 1;
1543 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1544 loc = &SET_SRC (x);
1545 goto restart;
1547 case PLUS:
1548 /* Handle special case of virtual register plus constant. */
1549 if (CONSTANT_P (XEXP (x, 1)))
1551 rtx old, new_offset;
1553 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1554 if (GET_CODE (XEXP (x, 0)) == PLUS)
1556 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1558 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1559 extra_insns);
1560 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1562 else
1564 loc = &XEXP (x, 0);
1565 goto restart;
1569 #ifdef POINTERS_EXTEND_UNSIGNED
1570 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1571 we can commute the PLUS and SUBREG because pointers into the
1572 frame are well-behaved. */
1573 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1574 && GET_CODE (XEXP (x, 1)) == CONST_INT
1575 && 0 != (new
1576 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1577 &offset))
1578 && validate_change (object, loc,
1579 plus_constant (gen_lowpart (ptr_mode,
1580 new),
1581 offset
1582 + INTVAL (XEXP (x, 1))),
1584 return 1;
1585 #endif
1586 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1588 /* We know the second operand is a constant. Unless the
1589 first operand is a REG (which has been already checked),
1590 it needs to be checked. */
1591 if (!REG_P (XEXP (x, 0)))
1593 loc = &XEXP (x, 0);
1594 goto restart;
1596 return 1;
1599 new_offset = plus_constant (XEXP (x, 1), offset);
1601 /* If the new constant is zero, try to replace the sum with just
1602 the register. */
1603 if (new_offset == const0_rtx
1604 && validate_change (object, loc, new, 0))
1605 return 1;
1607 /* Next try to replace the register and new offset.
1608 There are two changes to validate here and we can't assume that
1609 in the case of old offset equals new just changing the register
1610 will yield a valid insn. In the interests of a little efficiency,
1611 however, we only call validate change once (we don't queue up the
1612 changes and then call apply_change_group). */
1614 old = XEXP (x, 0);
1615 if (offset == 0
1616 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1617 : (XEXP (x, 0) = new,
1618 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1620 if (! extra_insns)
1622 XEXP (x, 0) = old;
1623 return 0;
1626 /* Otherwise copy the new constant into a register and replace
1627 constant with that register. */
1628 temp = gen_reg_rtx (Pmode);
1629 XEXP (x, 0) = new;
1630 if (validate_change (object, &XEXP (x, 1), temp, 0))
1631 emit_insn_before (gen_move_insn (temp, new_offset), object);
1632 else
1634 /* If that didn't work, replace this expression with a
1635 register containing the sum. */
1637 XEXP (x, 0) = old;
1638 new = gen_rtx_PLUS (Pmode, new, new_offset);
1640 start_sequence ();
1641 temp = force_operand (new, NULL_RTX);
1642 seq = get_insns ();
1643 end_sequence ();
1645 emit_insn_before (seq, object);
1646 if (! validate_change (object, loc, temp, 0)
1647 && ! validate_replace_rtx (x, temp, object))
1649 instantiate_virtual_regs_lossage (object);
1650 return 1;
1655 return 1;
1658 /* Fall through to generic two-operand expression case. */
1659 case EXPR_LIST:
1660 case CALL:
1661 case COMPARE:
1662 case MINUS:
1663 case MULT:
1664 case DIV: case UDIV:
1665 case MOD: case UMOD:
1666 case AND: case IOR: case XOR:
1667 case ROTATERT: case ROTATE:
1668 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1669 case NE: case EQ:
1670 case GE: case GT: case GEU: case GTU:
1671 case LE: case LT: case LEU: case LTU:
1672 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1673 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1674 loc = &XEXP (x, 0);
1675 goto restart;
1677 case MEM:
1678 /* Most cases of MEM that convert to valid addresses have already been
1679 handled by our scan of decls. The only special handling we
1680 need here is to make a copy of the rtx to ensure it isn't being
1681 shared if we have to change it to a pseudo.
1683 If the rtx is a simple reference to an address via a virtual register,
1684 it can potentially be shared. In such cases, first try to make it
1685 a valid address, which can also be shared. Otherwise, copy it and
1686 proceed normally.
1688 First check for common cases that need no processing. These are
1689 usually due to instantiation already being done on a previous instance
1690 of a shared rtx. */
1692 temp = XEXP (x, 0);
1693 if (CONSTANT_ADDRESS_P (temp)
1694 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1695 || temp == arg_pointer_rtx
1696 #endif
1697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1698 || temp == hard_frame_pointer_rtx
1699 #endif
1700 || temp == frame_pointer_rtx)
1701 return 1;
1703 if (GET_CODE (temp) == PLUS
1704 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1705 && (XEXP (temp, 0) == frame_pointer_rtx
1706 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1707 || XEXP (temp, 0) == hard_frame_pointer_rtx
1708 #endif
1709 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1710 || XEXP (temp, 0) == arg_pointer_rtx
1711 #endif
1713 return 1;
1715 if (temp == virtual_stack_vars_rtx
1716 || temp == virtual_incoming_args_rtx
1717 || (GET_CODE (temp) == PLUS
1718 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1719 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1720 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1722 /* This MEM may be shared. If the substitution can be done without
1723 the need to generate new pseudos, we want to do it in place
1724 so all copies of the shared rtx benefit. The call below will
1725 only make substitutions if the resulting address is still
1726 valid.
1728 Note that we cannot pass X as the object in the recursive call
1729 since the insn being processed may not allow all valid
1730 addresses. However, if we were not passed on object, we can
1731 only modify X without copying it if X will have a valid
1732 address.
1734 ??? Also note that this can still lose if OBJECT is an insn that
1735 has less restrictions on an address that some other insn.
1736 In that case, we will modify the shared address. This case
1737 doesn't seem very likely, though. One case where this could
1738 happen is in the case of a USE or CLOBBER reference, but we
1739 take care of that below. */
1741 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1742 object ? object : x, 0))
1743 return 1;
1745 /* Otherwise make a copy and process that copy. We copy the entire
1746 RTL expression since it might be a PLUS which could also be
1747 shared. */
1748 *loc = x = copy_rtx (x);
1751 /* Fall through to generic unary operation case. */
1752 case PREFETCH:
1753 case SUBREG:
1754 case STRICT_LOW_PART:
1755 case NEG: case NOT:
1756 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1757 case SIGN_EXTEND: case ZERO_EXTEND:
1758 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1759 case FLOAT: case FIX:
1760 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1761 case ABS:
1762 case SQRT:
1763 case FFS:
1764 case CLZ: case CTZ:
1765 case POPCOUNT: case PARITY:
1766 /* These case either have just one operand or we know that we need not
1767 check the rest of the operands. */
1768 loc = &XEXP (x, 0);
1769 goto restart;
1771 case USE:
1772 case CLOBBER:
1773 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1774 go ahead and make the invalid one, but do it to a copy. For a REG,
1775 just make the recursive call, since there's no chance of a problem. */
1777 if ((MEM_P (XEXP (x, 0))
1778 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1780 || (REG_P (XEXP (x, 0))
1781 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1782 return 1;
1784 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1785 loc = &XEXP (x, 0);
1786 goto restart;
1788 case REG:
1789 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1790 in front of this insn and substitute the temporary. */
1791 if ((new = instantiate_new_reg (x, &offset)) != 0)
1793 temp = plus_constant (new, offset);
1794 if (!validate_change (object, loc, temp, 0))
1796 if (! extra_insns)
1797 return 0;
1799 start_sequence ();
1800 temp = force_operand (temp, NULL_RTX);
1801 seq = get_insns ();
1802 end_sequence ();
1804 emit_insn_before (seq, object);
1805 if (! validate_change (object, loc, temp, 0)
1806 && ! validate_replace_rtx (x, temp, object))
1807 instantiate_virtual_regs_lossage (object);
1811 return 1;
1813 default:
1814 break;
1817 /* Scan all subexpressions. */
1818 fmt = GET_RTX_FORMAT (code);
1819 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1820 if (*fmt == 'e')
1822 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1823 return 0;
1825 else if (*fmt == 'E')
1826 for (j = 0; j < XVECLEN (x, i); j++)
1827 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1828 extra_insns))
1829 return 0;
1831 return 1;
1834 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1835 This means a type for which function calls must pass an address to the
1836 function or get an address back from the function.
1837 EXP may be a type node or an expression (whose type is tested). */
1840 aggregate_value_p (tree exp, tree fntype)
1842 int i, regno, nregs;
1843 rtx reg;
1845 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1847 if (fntype)
1848 switch (TREE_CODE (fntype))
1850 case CALL_EXPR:
1851 fntype = get_callee_fndecl (fntype);
1852 fntype = fntype ? TREE_TYPE (fntype) : 0;
1853 break;
1854 case FUNCTION_DECL:
1855 fntype = TREE_TYPE (fntype);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 gcc_unreachable ();
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1870 /* If the front end has decided that this needs to be passed by
1871 reference, do so. */
1872 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1873 && DECL_BY_REFERENCE (exp))
1874 return 1;
1875 if (targetm.calls.return_in_memory (type, fntype))
1876 return 1;
1877 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1878 and thus can't be returned in registers. */
1879 if (TREE_ADDRESSABLE (type))
1880 return 1;
1881 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1882 return 1;
1883 /* Make sure we have suitable call-clobbered regs to return
1884 the value in; if not, we must return it in memory. */
1885 reg = hard_function_value (type, 0, 0);
1887 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1888 it is OK. */
1889 if (!REG_P (reg))
1890 return 0;
1892 regno = REGNO (reg);
1893 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1894 for (i = 0; i < nregs; i++)
1895 if (! call_used_regs[regno + i])
1896 return 1;
1897 return 0;
1900 /* Return true if we should assign DECL a pseudo register; false if it
1901 should live on the local stack. */
1903 bool
1904 use_register_for_decl (tree decl)
1906 /* Honor volatile. */
1907 if (TREE_SIDE_EFFECTS (decl))
1908 return false;
1910 /* Honor addressability. */
1911 if (TREE_ADDRESSABLE (decl))
1912 return false;
1914 /* Only register-like things go in registers. */
1915 if (DECL_MODE (decl) == BLKmode)
1916 return false;
1918 /* If -ffloat-store specified, don't put explicit float variables
1919 into registers. */
1920 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1921 propagates values across these stores, and it probably shouldn't. */
1922 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1923 return false;
1925 /* Compiler-generated temporaries can always go in registers. */
1926 if (DECL_ARTIFICIAL (decl))
1927 return true;
1929 return (optimize || DECL_REGISTER (decl));
1932 /* Return true if TYPE should be passed by invisible reference. */
1934 bool
1935 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1936 tree type, bool named_arg)
1938 if (type)
1940 /* If this type contains non-trivial constructors, then it is
1941 forbidden for the middle-end to create any new copies. */
1942 if (TREE_ADDRESSABLE (type))
1943 return true;
1945 /* GCC post 3.4 passes *all* variable sized types by reference. */
1946 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1947 return true;
1950 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1953 /* Return true if TYPE, which is passed by reference, should be callee
1954 copied instead of caller copied. */
1956 bool
1957 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1958 tree type, bool named_arg)
1960 if (type && TREE_ADDRESSABLE (type))
1961 return false;
1962 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1965 /* Structures to communicate between the subroutines of assign_parms.
1966 The first holds data persistent across all parameters, the second
1967 is cleared out for each parameter. */
1969 struct assign_parm_data_all
1971 CUMULATIVE_ARGS args_so_far;
1972 struct args_size stack_args_size;
1973 tree function_result_decl;
1974 tree orig_fnargs;
1975 rtx conversion_insns;
1976 HOST_WIDE_INT pretend_args_size;
1977 HOST_WIDE_INT extra_pretend_bytes;
1978 int reg_parm_stack_space;
1981 struct assign_parm_data_one
1983 tree nominal_type;
1984 tree passed_type;
1985 rtx entry_parm;
1986 rtx stack_parm;
1987 enum machine_mode nominal_mode;
1988 enum machine_mode passed_mode;
1989 enum machine_mode promoted_mode;
1990 struct locate_and_pad_arg_data locate;
1991 int partial;
1992 BOOL_BITFIELD named_arg : 1;
1993 BOOL_BITFIELD last_named : 1;
1994 BOOL_BITFIELD passed_pointer : 1;
1995 BOOL_BITFIELD on_stack : 1;
1996 BOOL_BITFIELD loaded_in_reg : 1;
1999 /* A subroutine of assign_parms. Initialize ALL. */
2001 static void
2002 assign_parms_initialize_all (struct assign_parm_data_all *all)
2004 tree fntype;
2006 memset (all, 0, sizeof (*all));
2008 fntype = TREE_TYPE (current_function_decl);
2010 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2011 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2012 #else
2013 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2014 current_function_decl, -1);
2015 #endif
2017 #ifdef REG_PARM_STACK_SPACE
2018 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2019 #endif
2022 /* If ARGS contains entries with complex types, split the entry into two
2023 entries of the component type. Return a new list of substitutions are
2024 needed, else the old list. */
2026 static tree
2027 split_complex_args (tree args)
2029 tree p;
2031 /* Before allocating memory, check for the common case of no complex. */
2032 for (p = args; p; p = TREE_CHAIN (p))
2034 tree type = TREE_TYPE (p);
2035 if (TREE_CODE (type) == COMPLEX_TYPE
2036 && targetm.calls.split_complex_arg (type))
2037 goto found;
2039 return args;
2041 found:
2042 args = copy_list (args);
2044 for (p = args; p; p = TREE_CHAIN (p))
2046 tree type = TREE_TYPE (p);
2047 if (TREE_CODE (type) == COMPLEX_TYPE
2048 && targetm.calls.split_complex_arg (type))
2050 tree decl;
2051 tree subtype = TREE_TYPE (type);
2053 /* Rewrite the PARM_DECL's type with its component. */
2054 TREE_TYPE (p) = subtype;
2055 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2056 DECL_MODE (p) = VOIDmode;
2057 DECL_SIZE (p) = NULL;
2058 DECL_SIZE_UNIT (p) = NULL;
2059 layout_decl (p, 0);
2061 /* Build a second synthetic decl. */
2062 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2063 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2064 layout_decl (decl, 0);
2066 /* Splice it in; skip the new decl. */
2067 TREE_CHAIN (decl) = TREE_CHAIN (p);
2068 TREE_CHAIN (p) = decl;
2069 p = decl;
2073 return args;
2076 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2077 the hidden struct return argument, and (abi willing) complex args.
2078 Return the new parameter list. */
2080 static tree
2081 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2083 tree fndecl = current_function_decl;
2084 tree fntype = TREE_TYPE (fndecl);
2085 tree fnargs = DECL_ARGUMENTS (fndecl);
2087 /* If struct value address is treated as the first argument, make it so. */
2088 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2089 && ! current_function_returns_pcc_struct
2090 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2092 tree type = build_pointer_type (TREE_TYPE (fntype));
2093 tree decl;
2095 decl = build_decl (PARM_DECL, NULL_TREE, type);
2096 DECL_ARG_TYPE (decl) = type;
2097 DECL_ARTIFICIAL (decl) = 1;
2099 TREE_CHAIN (decl) = fnargs;
2100 fnargs = decl;
2101 all->function_result_decl = decl;
2104 all->orig_fnargs = fnargs;
2106 /* If the target wants to split complex arguments into scalars, do so. */
2107 if (targetm.calls.split_complex_arg)
2108 fnargs = split_complex_args (fnargs);
2110 return fnargs;
2113 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2114 data for the parameter. Incorporate ABI specifics such as pass-by-
2115 reference and type promotion. */
2117 static void
2118 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2119 struct assign_parm_data_one *data)
2121 tree nominal_type, passed_type;
2122 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2124 memset (data, 0, sizeof (*data));
2126 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2127 if (current_function_stdarg)
2129 tree tem;
2130 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2131 if (DECL_NAME (tem))
2132 break;
2133 if (tem == 0)
2134 data->last_named = true;
2137 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2138 most machines, if this is a varargs/stdarg function, then we treat
2139 the last named arg as if it were anonymous too. */
2140 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2141 data->named_arg = 1;
2142 else
2143 data->named_arg = !data->last_named;
2145 nominal_type = TREE_TYPE (parm);
2146 passed_type = DECL_ARG_TYPE (parm);
2148 /* Look out for errors propagating this far. Also, if the parameter's
2149 type is void then its value doesn't matter. */
2150 if (TREE_TYPE (parm) == error_mark_node
2151 /* This can happen after weird syntax errors
2152 or if an enum type is defined among the parms. */
2153 || TREE_CODE (parm) != PARM_DECL
2154 || passed_type == NULL
2155 || VOID_TYPE_P (nominal_type))
2157 nominal_type = passed_type = void_type_node;
2158 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2159 goto egress;
2162 /* Find mode of arg as it is passed, and mode of arg as it should be
2163 during execution of this function. */
2164 passed_mode = TYPE_MODE (passed_type);
2165 nominal_mode = TYPE_MODE (nominal_type);
2167 /* If the parm is to be passed as a transparent union, use the type of
2168 the first field for the tests below. We have already verified that
2169 the modes are the same. */
2170 if (DECL_TRANSPARENT_UNION (parm)
2171 || (TREE_CODE (passed_type) == UNION_TYPE
2172 && TYPE_TRANSPARENT_UNION (passed_type)))
2173 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2175 /* See if this arg was passed by invisible reference. */
2176 if (pass_by_reference (&all->args_so_far, passed_mode,
2177 passed_type, data->named_arg))
2179 passed_type = nominal_type = build_pointer_type (passed_type);
2180 data->passed_pointer = true;
2181 passed_mode = nominal_mode = Pmode;
2184 /* Find mode as it is passed by the ABI. */
2185 promoted_mode = passed_mode;
2186 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2188 int unsignedp = TYPE_UNSIGNED (passed_type);
2189 promoted_mode = promote_mode (passed_type, promoted_mode,
2190 &unsignedp, 1);
2193 egress:
2194 data->nominal_type = nominal_type;
2195 data->passed_type = passed_type;
2196 data->nominal_mode = nominal_mode;
2197 data->passed_mode = passed_mode;
2198 data->promoted_mode = promoted_mode;
2201 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2203 static void
2204 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2205 struct assign_parm_data_one *data, bool no_rtl)
2207 int varargs_pretend_bytes = 0;
2209 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2210 data->promoted_mode,
2211 data->passed_type,
2212 &varargs_pretend_bytes, no_rtl);
2214 /* If the back-end has requested extra stack space, record how much is
2215 needed. Do not change pretend_args_size otherwise since it may be
2216 nonzero from an earlier partial argument. */
2217 if (varargs_pretend_bytes > 0)
2218 all->pretend_args_size = varargs_pretend_bytes;
2221 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2222 the incoming location of the current parameter. */
2224 static void
2225 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2226 struct assign_parm_data_one *data)
2228 HOST_WIDE_INT pretend_bytes = 0;
2229 rtx entry_parm;
2230 bool in_regs;
2232 if (data->promoted_mode == VOIDmode)
2234 data->entry_parm = data->stack_parm = const0_rtx;
2235 return;
2238 #ifdef FUNCTION_INCOMING_ARG
2239 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2240 data->passed_type, data->named_arg);
2241 #else
2242 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2243 data->passed_type, data->named_arg);
2244 #endif
2246 if (entry_parm == 0)
2247 data->promoted_mode = data->passed_mode;
2249 /* Determine parm's home in the stack, in case it arrives in the stack
2250 or we should pretend it did. Compute the stack position and rtx where
2251 the argument arrives and its size.
2253 There is one complexity here: If this was a parameter that would
2254 have been passed in registers, but wasn't only because it is
2255 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2256 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2257 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2258 as it was the previous time. */
2259 in_regs = entry_parm != 0;
2260 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2261 in_regs = true;
2262 #endif
2263 if (!in_regs && !data->named_arg)
2265 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2267 rtx tem;
2268 #ifdef FUNCTION_INCOMING_ARG
2269 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2270 data->passed_type, true);
2271 #else
2272 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2273 data->passed_type, true);
2274 #endif
2275 in_regs = tem != NULL;
2279 /* If this parameter was passed both in registers and in the stack, use
2280 the copy on the stack. */
2281 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2282 data->passed_type))
2283 entry_parm = 0;
2285 if (entry_parm)
2287 int partial;
2289 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2290 data->promoted_mode,
2291 data->passed_type,
2292 data->named_arg);
2293 data->partial = partial;
2295 /* The caller might already have allocated stack space for the
2296 register parameters. */
2297 if (partial != 0 && all->reg_parm_stack_space == 0)
2299 /* Part of this argument is passed in registers and part
2300 is passed on the stack. Ask the prologue code to extend
2301 the stack part so that we can recreate the full value.
2303 PRETEND_BYTES is the size of the registers we need to store.
2304 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2305 stack space that the prologue should allocate.
2307 Internally, gcc assumes that the argument pointer is aligned
2308 to STACK_BOUNDARY bits. This is used both for alignment
2309 optimizations (see init_emit) and to locate arguments that are
2310 aligned to more than PARM_BOUNDARY bits. We must preserve this
2311 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2312 a stack boundary. */
2314 /* We assume at most one partial arg, and it must be the first
2315 argument on the stack. */
2316 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2318 pretend_bytes = partial * UNITS_PER_WORD;
2319 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2321 /* We want to align relative to the actual stack pointer, so
2322 don't include this in the stack size until later. */
2323 all->extra_pretend_bytes = all->pretend_args_size;
2327 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2328 entry_parm ? data->partial : 0, current_function_decl,
2329 &all->stack_args_size, &data->locate);
2331 /* Adjust offsets to include the pretend args. */
2332 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2333 data->locate.slot_offset.constant += pretend_bytes;
2334 data->locate.offset.constant += pretend_bytes;
2336 data->entry_parm = entry_parm;
2339 /* A subroutine of assign_parms. If there is actually space on the stack
2340 for this parm, count it in stack_args_size and return true. */
2342 static bool
2343 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2344 struct assign_parm_data_one *data)
2346 /* Trivially true if we've no incoming register. */
2347 if (data->entry_parm == NULL)
2349 /* Also true if we're partially in registers and partially not,
2350 since we've arranged to drop the entire argument on the stack. */
2351 else if (data->partial != 0)
2353 /* Also true if the target says that it's passed in both registers
2354 and on the stack. */
2355 else if (GET_CODE (data->entry_parm) == PARALLEL
2356 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2358 /* Also true if the target says that there's stack allocated for
2359 all register parameters. */
2360 else if (all->reg_parm_stack_space > 0)
2362 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2363 else
2364 return false;
2366 all->stack_args_size.constant += data->locate.size.constant;
2367 if (data->locate.size.var)
2368 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2370 return true;
2373 /* A subroutine of assign_parms. Given that this parameter is allocated
2374 stack space by the ABI, find it. */
2376 static void
2377 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2379 rtx offset_rtx, stack_parm;
2380 unsigned int align, boundary;
2382 /* If we're passing this arg using a reg, make its stack home the
2383 aligned stack slot. */
2384 if (data->entry_parm)
2385 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2386 else
2387 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2389 stack_parm = current_function_internal_arg_pointer;
2390 if (offset_rtx != const0_rtx)
2391 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2392 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2394 set_mem_attributes (stack_parm, parm, 1);
2396 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2397 align = 0;
2399 /* If we're padding upward, we know that the alignment of the slot
2400 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2401 intentionally forcing upward padding. Otherwise we have to come
2402 up with a guess at the alignment based on OFFSET_RTX. */
2403 if (data->locate.where_pad == upward || data->entry_parm)
2404 align = boundary;
2405 else if (GET_CODE (offset_rtx) == CONST_INT)
2407 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2408 align = align & -align;
2410 if (align > 0)
2411 set_mem_align (stack_parm, align);
2413 if (data->entry_parm)
2414 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2416 data->stack_parm = stack_parm;
2419 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2420 always valid and contiguous. */
2422 static void
2423 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2425 rtx entry_parm = data->entry_parm;
2426 rtx stack_parm = data->stack_parm;
2428 /* If this parm was passed part in regs and part in memory, pretend it
2429 arrived entirely in memory by pushing the register-part onto the stack.
2430 In the special case of a DImode or DFmode that is split, we could put
2431 it together in a pseudoreg directly, but for now that's not worth
2432 bothering with. */
2433 if (data->partial != 0)
2435 /* Handle calls that pass values in multiple non-contiguous
2436 locations. The Irix 6 ABI has examples of this. */
2437 if (GET_CODE (entry_parm) == PARALLEL)
2438 emit_group_store (validize_mem (stack_parm), entry_parm,
2439 data->passed_type,
2440 int_size_in_bytes (data->passed_type));
2441 else
2442 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2443 data->partial);
2445 entry_parm = stack_parm;
2448 /* If we didn't decide this parm came in a register, by default it came
2449 on the stack. */
2450 else if (entry_parm == NULL)
2451 entry_parm = stack_parm;
2453 /* When an argument is passed in multiple locations, we can't make use
2454 of this information, but we can save some copying if the whole argument
2455 is passed in a single register. */
2456 else if (GET_CODE (entry_parm) == PARALLEL
2457 && data->nominal_mode != BLKmode
2458 && data->passed_mode != BLKmode)
2460 size_t i, len = XVECLEN (entry_parm, 0);
2462 for (i = 0; i < len; i++)
2463 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2464 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2465 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2466 == data->passed_mode)
2467 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2469 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2470 break;
2474 data->entry_parm = entry_parm;
2477 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2478 always valid and properly aligned. */
2481 static void
2482 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2484 rtx stack_parm = data->stack_parm;
2486 /* If we can't trust the parm stack slot to be aligned enough for its
2487 ultimate type, don't use that slot after entry. We'll make another
2488 stack slot, if we need one. */
2489 if (STRICT_ALIGNMENT && stack_parm
2490 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2491 stack_parm = NULL;
2493 /* If parm was passed in memory, and we need to convert it on entry,
2494 don't store it back in that same slot. */
2495 else if (data->entry_parm == stack_parm
2496 && data->nominal_mode != BLKmode
2497 && data->nominal_mode != data->passed_mode)
2498 stack_parm = NULL;
2500 data->stack_parm = stack_parm;
2503 /* A subroutine of assign_parms. Return true if the current parameter
2504 should be stored as a BLKmode in the current frame. */
2506 static bool
2507 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2509 if (data->nominal_mode == BLKmode)
2510 return true;
2511 if (GET_CODE (data->entry_parm) == PARALLEL)
2512 return true;
2514 #ifdef BLOCK_REG_PADDING
2515 /* Only assign_parm_setup_block knows how to deal with register arguments
2516 that are padded at the least significant end. */
2517 if (REG_P (data->entry_parm)
2518 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2519 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2520 == (BYTES_BIG_ENDIAN ? upward : downward)))
2521 return true;
2522 #endif
2524 return false;
2527 /* A subroutine of assign_parms. Arrange for the parameter to be
2528 present and valid in DATA->STACK_RTL. */
2530 static void
2531 assign_parm_setup_block (struct assign_parm_data_all *all,
2532 tree parm, struct assign_parm_data_one *data)
2534 rtx entry_parm = data->entry_parm;
2535 rtx stack_parm = data->stack_parm;
2537 if (GET_CODE (entry_parm) == PARALLEL)
2538 entry_parm = emit_group_move_into_temps (entry_parm);
2540 /* If we've a non-block object that's nevertheless passed in parts,
2541 reconstitute it in register operations rather than on the stack. */
2542 if (GET_CODE (entry_parm) == PARALLEL
2543 && data->nominal_mode != BLKmode
2544 && XVECLEN (entry_parm, 0) > 1
2545 && use_register_for_decl (parm))
2547 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2549 push_to_sequence (all->conversion_insns);
2551 /* For values returned in multiple registers, handle possible
2552 incompatible calls to emit_group_store.
2554 For example, the following would be invalid, and would have to
2555 be fixed by the conditional below:
2557 emit_group_store ((reg:SF), (parallel:DF))
2558 emit_group_store ((reg:SI), (parallel:DI))
2560 An example of this are doubles in e500 v2:
2561 (parallel:DF (expr_list (reg:SI) (const_int 0))
2562 (expr_list (reg:SI) (const_int 4))). */
2563 if (data->nominal_mode != data->passed_mode)
2565 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2566 emit_group_store (t, entry_parm, NULL_TREE,
2567 GET_MODE_SIZE (GET_MODE (entry_parm)));
2568 convert_move (parmreg, t, 0);
2570 else
2571 emit_group_store (parmreg, entry_parm, data->nominal_type,
2572 int_size_in_bytes (data->nominal_type));
2574 all->conversion_insns = get_insns ();
2575 end_sequence ();
2577 SET_DECL_RTL (parm, parmreg);
2578 return;
2581 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2582 calls that pass values in multiple non-contiguous locations. */
2583 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2585 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2586 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2587 rtx mem;
2589 /* Note that we will be storing an integral number of words.
2590 So we have to be careful to ensure that we allocate an
2591 integral number of words. We do this below in the
2592 assign_stack_local if space was not allocated in the argument
2593 list. If it was, this will not work if PARM_BOUNDARY is not
2594 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2595 if it becomes a problem. Exception is when BLKmode arrives
2596 with arguments not conforming to word_mode. */
2598 if (stack_parm == 0)
2600 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2601 data->stack_parm = stack_parm;
2602 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2603 set_mem_attributes (stack_parm, parm, 1);
2605 else if (GET_CODE (entry_parm) == PARALLEL)
2607 else
2608 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2610 mem = validize_mem (stack_parm);
2612 /* Handle values in multiple non-contiguous locations. */
2613 if (GET_CODE (entry_parm) == PARALLEL)
2615 push_to_sequence (all->conversion_insns);
2616 emit_group_store (mem, entry_parm, data->passed_type, size);
2617 all->conversion_insns = get_insns ();
2618 end_sequence ();
2621 else if (size == 0)
2624 /* If SIZE is that of a mode no bigger than a word, just use
2625 that mode's store operation. */
2626 else if (size <= UNITS_PER_WORD)
2628 enum machine_mode mode
2629 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2631 if (mode != BLKmode
2632 #ifdef BLOCK_REG_PADDING
2633 && (size == UNITS_PER_WORD
2634 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2635 != (BYTES_BIG_ENDIAN ? upward : downward)))
2636 #endif
2639 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2640 emit_move_insn (change_address (mem, mode, 0), reg);
2643 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2644 machine must be aligned to the left before storing
2645 to memory. Note that the previous test doesn't
2646 handle all cases (e.g. SIZE == 3). */
2647 else if (size != UNITS_PER_WORD
2648 #ifdef BLOCK_REG_PADDING
2649 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2650 == downward)
2651 #else
2652 && BYTES_BIG_ENDIAN
2653 #endif
2656 rtx tem, x;
2657 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2658 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2660 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2661 build_int_cst (NULL_TREE, by),
2662 NULL_RTX, 1);
2663 tem = change_address (mem, word_mode, 0);
2664 emit_move_insn (tem, x);
2666 else
2667 move_block_from_reg (REGNO (entry_parm), mem,
2668 size_stored / UNITS_PER_WORD);
2670 else
2671 move_block_from_reg (REGNO (entry_parm), mem,
2672 size_stored / UNITS_PER_WORD);
2675 SET_DECL_RTL (parm, stack_parm);
2678 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2679 parameter. Get it there. Perform all ABI specified conversions. */
2681 static void
2682 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2683 struct assign_parm_data_one *data)
2685 rtx parmreg;
2686 enum machine_mode promoted_nominal_mode;
2687 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2688 bool did_conversion = false;
2690 /* Store the parm in a pseudoregister during the function, but we may
2691 need to do it in a wider mode. */
2693 promoted_nominal_mode
2694 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2696 parmreg = gen_reg_rtx (promoted_nominal_mode);
2698 if (!DECL_ARTIFICIAL (parm))
2699 mark_user_reg (parmreg);
2701 /* If this was an item that we received a pointer to,
2702 set DECL_RTL appropriately. */
2703 if (data->passed_pointer)
2705 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2706 set_mem_attributes (x, parm, 1);
2707 SET_DECL_RTL (parm, x);
2709 else
2710 SET_DECL_RTL (parm, parmreg);
2712 /* Copy the value into the register. */
2713 if (data->nominal_mode != data->passed_mode
2714 || promoted_nominal_mode != data->promoted_mode)
2716 int save_tree_used;
2718 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2719 mode, by the caller. We now have to convert it to
2720 NOMINAL_MODE, if different. However, PARMREG may be in
2721 a different mode than NOMINAL_MODE if it is being stored
2722 promoted.
2724 If ENTRY_PARM is a hard register, it might be in a register
2725 not valid for operating in its mode (e.g., an odd-numbered
2726 register for a DFmode). In that case, moves are the only
2727 thing valid, so we can't do a convert from there. This
2728 occurs when the calling sequence allow such misaligned
2729 usages.
2731 In addition, the conversion may involve a call, which could
2732 clobber parameters which haven't been copied to pseudo
2733 registers yet. Therefore, we must first copy the parm to
2734 a pseudo reg here, and save the conversion until after all
2735 parameters have been moved. */
2737 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2739 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2741 push_to_sequence (all->conversion_insns);
2742 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2744 if (GET_CODE (tempreg) == SUBREG
2745 && GET_MODE (tempreg) == data->nominal_mode
2746 && REG_P (SUBREG_REG (tempreg))
2747 && data->nominal_mode == data->passed_mode
2748 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2749 && GET_MODE_SIZE (GET_MODE (tempreg))
2750 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2752 /* The argument is already sign/zero extended, so note it
2753 into the subreg. */
2754 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2755 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2758 /* TREE_USED gets set erroneously during expand_assignment. */
2759 save_tree_used = TREE_USED (parm);
2760 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2761 TREE_USED (parm) = save_tree_used;
2762 all->conversion_insns = get_insns ();
2763 end_sequence ();
2765 did_conversion = true;
2767 else
2768 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2770 /* If we were passed a pointer but the actual value can safely live
2771 in a register, put it in one. */
2772 if (data->passed_pointer
2773 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2774 /* If by-reference argument was promoted, demote it. */
2775 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2776 || use_register_for_decl (parm)))
2778 /* We can't use nominal_mode, because it will have been set to
2779 Pmode above. We must use the actual mode of the parm. */
2780 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2781 mark_user_reg (parmreg);
2783 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2785 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2786 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2788 push_to_sequence (all->conversion_insns);
2789 emit_move_insn (tempreg, DECL_RTL (parm));
2790 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2791 emit_move_insn (parmreg, tempreg);
2792 all->conversion_insns = get_insns ();
2793 end_sequence ();
2795 did_conversion = true;
2797 else
2798 emit_move_insn (parmreg, DECL_RTL (parm));
2800 SET_DECL_RTL (parm, parmreg);
2802 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2803 now the parm. */
2804 data->stack_parm = NULL;
2807 /* If we are passed an arg by reference and it is our responsibility
2808 to make a copy, do it now.
2809 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2810 original argument, so we must recreate them in the call to
2811 FUNCTION_ARG_CALLEE_COPIES. */
2812 /* ??? Later add code to handle the case that if the argument isn't
2813 modified, don't do the copy. */
2815 else if (data->passed_pointer)
2817 tree type = TREE_TYPE (data->passed_type);
2819 if (reference_callee_copied (&all->args_so_far, TYPE_MODE (type),
2820 type, data->named_arg))
2822 rtx copy;
2824 /* This sequence may involve a library call perhaps clobbering
2825 registers that haven't been copied to pseudos yet. */
2827 push_to_sequence (all->conversion_insns);
2829 if (!COMPLETE_TYPE_P (type)
2830 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2832 /* This is a variable sized object. */
2833 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2834 TYPE_ALIGN (type));
2835 copy = gen_rtx_MEM (BLKmode, copy);
2837 else
2838 copy = assign_stack_temp (TYPE_MODE (type),
2839 int_size_in_bytes (type), 1);
2840 set_mem_attributes (copy, parm, 1);
2842 store_expr (parm, copy, 0);
2843 emit_move_insn (parmreg, XEXP (copy, 0));
2844 all->conversion_insns = get_insns ();
2845 end_sequence ();
2847 did_conversion = true;
2851 /* Mark the register as eliminable if we did no conversion and it was
2852 copied from memory at a fixed offset, and the arg pointer was not
2853 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2854 offset formed an invalid address, such memory-equivalences as we
2855 make here would screw up life analysis for it. */
2856 if (data->nominal_mode == data->passed_mode
2857 && !did_conversion
2858 && data->stack_parm != 0
2859 && MEM_P (data->stack_parm)
2860 && data->locate.offset.var == 0
2861 && reg_mentioned_p (virtual_incoming_args_rtx,
2862 XEXP (data->stack_parm, 0)))
2864 rtx linsn = get_last_insn ();
2865 rtx sinsn, set;
2867 /* Mark complex types separately. */
2868 if (GET_CODE (parmreg) == CONCAT)
2870 enum machine_mode submode
2871 = GET_MODE_INNER (GET_MODE (parmreg));
2872 int regnor = REGNO (gen_realpart (submode, parmreg));
2873 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2874 rtx stackr = gen_realpart (submode, data->stack_parm);
2875 rtx stacki = gen_imagpart (submode, data->stack_parm);
2877 /* Scan backwards for the set of the real and
2878 imaginary parts. */
2879 for (sinsn = linsn; sinsn != 0;
2880 sinsn = prev_nonnote_insn (sinsn))
2882 set = single_set (sinsn);
2883 if (set == 0)
2884 continue;
2886 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2887 REG_NOTES (sinsn)
2888 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2889 REG_NOTES (sinsn));
2890 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2891 REG_NOTES (sinsn)
2892 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2893 REG_NOTES (sinsn));
2896 else if ((set = single_set (linsn)) != 0
2897 && SET_DEST (set) == parmreg)
2898 REG_NOTES (linsn)
2899 = gen_rtx_EXPR_LIST (REG_EQUIV,
2900 data->stack_parm, REG_NOTES (linsn));
2903 /* For pointer data type, suggest pointer register. */
2904 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2905 mark_reg_pointer (parmreg,
2906 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2909 /* A subroutine of assign_parms. Allocate stack space to hold the current
2910 parameter. Get it there. Perform all ABI specified conversions. */
2912 static void
2913 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2914 struct assign_parm_data_one *data)
2916 /* Value must be stored in the stack slot STACK_PARM during function
2917 execution. */
2919 if (data->promoted_mode != data->nominal_mode)
2921 /* Conversion is required. */
2922 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2924 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2926 push_to_sequence (all->conversion_insns);
2927 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2928 TYPE_UNSIGNED (TREE_TYPE (parm)));
2930 if (data->stack_parm)
2931 /* ??? This may need a big-endian conversion on sparc64. */
2932 data->stack_parm
2933 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2935 all->conversion_insns = get_insns ();
2936 end_sequence ();
2939 if (data->entry_parm != data->stack_parm)
2941 if (data->stack_parm == 0)
2943 data->stack_parm
2944 = assign_stack_local (GET_MODE (data->entry_parm),
2945 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2947 set_mem_attributes (data->stack_parm, parm, 1);
2950 if (data->promoted_mode != data->nominal_mode)
2952 push_to_sequence (all->conversion_insns);
2953 emit_move_insn (validize_mem (data->stack_parm),
2954 validize_mem (data->entry_parm));
2955 all->conversion_insns = get_insns ();
2956 end_sequence ();
2958 else
2959 emit_move_insn (validize_mem (data->stack_parm),
2960 validize_mem (data->entry_parm));
2963 SET_DECL_RTL (parm, data->stack_parm);
2966 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2967 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2969 static void
2970 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2972 tree parm;
2974 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2976 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2977 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2979 rtx tmp, real, imag;
2980 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2982 real = DECL_RTL (fnargs);
2983 imag = DECL_RTL (TREE_CHAIN (fnargs));
2984 if (inner != GET_MODE (real))
2986 real = gen_lowpart_SUBREG (inner, real);
2987 imag = gen_lowpart_SUBREG (inner, imag);
2989 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2990 SET_DECL_RTL (parm, tmp);
2992 real = DECL_INCOMING_RTL (fnargs);
2993 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2994 if (inner != GET_MODE (real))
2996 real = gen_lowpart_SUBREG (inner, real);
2997 imag = gen_lowpart_SUBREG (inner, imag);
2999 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3000 set_decl_incoming_rtl (parm, tmp);
3001 fnargs = TREE_CHAIN (fnargs);
3003 else
3005 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3006 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
3008 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3009 instead of the copy of decl, i.e. FNARGS. */
3010 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3011 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3014 fnargs = TREE_CHAIN (fnargs);
3018 /* Assign RTL expressions to the function's parameters. This may involve
3019 copying them into registers and using those registers as the DECL_RTL. */
3021 static void
3022 assign_parms (tree fndecl)
3024 struct assign_parm_data_all all;
3025 tree fnargs, parm;
3026 rtx internal_arg_pointer;
3027 int varargs_setup = 0;
3029 /* If the reg that the virtual arg pointer will be translated into is
3030 not a fixed reg or is the stack pointer, make a copy of the virtual
3031 arg pointer, and address parms via the copy. The frame pointer is
3032 considered fixed even though it is not marked as such.
3034 The second time through, simply use ap to avoid generating rtx. */
3036 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3037 || ! (fixed_regs[ARG_POINTER_REGNUM]
3038 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3039 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3040 else
3041 internal_arg_pointer = virtual_incoming_args_rtx;
3042 current_function_internal_arg_pointer = internal_arg_pointer;
3044 assign_parms_initialize_all (&all);
3045 fnargs = assign_parms_augmented_arg_list (&all);
3047 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3049 struct assign_parm_data_one data;
3051 /* Extract the type of PARM; adjust it according to ABI. */
3052 assign_parm_find_data_types (&all, parm, &data);
3054 /* Early out for errors and void parameters. */
3055 if (data.passed_mode == VOIDmode)
3057 SET_DECL_RTL (parm, const0_rtx);
3058 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3059 continue;
3062 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3063 for the unnamed dummy argument following the last named argument.
3064 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3065 we only want to do this when we get to the actual last named
3066 argument, which will be the first time LAST_NAMED gets set. */
3067 if (data.last_named && !varargs_setup)
3069 varargs_setup = true;
3070 assign_parms_setup_varargs (&all, &data, false);
3073 /* Find out where the parameter arrives in this function. */
3074 assign_parm_find_entry_rtl (&all, &data);
3076 /* Find out where stack space for this parameter might be. */
3077 if (assign_parm_is_stack_parm (&all, &data))
3079 assign_parm_find_stack_rtl (parm, &data);
3080 assign_parm_adjust_entry_rtl (&data);
3083 /* Record permanently how this parm was passed. */
3084 set_decl_incoming_rtl (parm, data.entry_parm);
3086 /* Update info on where next arg arrives in registers. */
3087 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3088 data.passed_type, data.named_arg);
3090 assign_parm_adjust_stack_rtl (&data);
3092 if (assign_parm_setup_block_p (&data))
3093 assign_parm_setup_block (&all, parm, &data);
3094 else if (data.passed_pointer || use_register_for_decl (parm))
3095 assign_parm_setup_reg (&all, parm, &data);
3096 else
3097 assign_parm_setup_stack (&all, parm, &data);
3100 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3101 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3103 /* Output all parameter conversion instructions (possibly including calls)
3104 now that all parameters have been copied out of hard registers. */
3105 emit_insn (all.conversion_insns);
3107 /* If we are receiving a struct value address as the first argument, set up
3108 the RTL for the function result. As this might require code to convert
3109 the transmitted address to Pmode, we do this here to ensure that possible
3110 preliminary conversions of the address have been emitted already. */
3111 if (all.function_result_decl)
3113 tree result = DECL_RESULT (current_function_decl);
3114 rtx addr = DECL_RTL (all.function_result_decl);
3115 rtx x;
3117 if (DECL_BY_REFERENCE (result))
3118 x = addr;
3119 else
3121 addr = convert_memory_address (Pmode, addr);
3122 x = gen_rtx_MEM (DECL_MODE (result), addr);
3123 set_mem_attributes (x, result, 1);
3125 SET_DECL_RTL (result, x);
3128 /* We have aligned all the args, so add space for the pretend args. */
3129 current_function_pretend_args_size = all.pretend_args_size;
3130 all.stack_args_size.constant += all.extra_pretend_bytes;
3131 current_function_args_size = all.stack_args_size.constant;
3133 /* Adjust function incoming argument size for alignment and
3134 minimum length. */
3136 #ifdef REG_PARM_STACK_SPACE
3137 current_function_args_size = MAX (current_function_args_size,
3138 REG_PARM_STACK_SPACE (fndecl));
3139 #endif
3141 current_function_args_size
3142 = ((current_function_args_size + STACK_BYTES - 1)
3143 / STACK_BYTES) * STACK_BYTES;
3145 #ifdef ARGS_GROW_DOWNWARD
3146 current_function_arg_offset_rtx
3147 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3148 : expand_expr (size_diffop (all.stack_args_size.var,
3149 size_int (-all.stack_args_size.constant)),
3150 NULL_RTX, VOIDmode, 0));
3151 #else
3152 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3153 #endif
3155 /* See how many bytes, if any, of its args a function should try to pop
3156 on return. */
3158 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3159 current_function_args_size);
3161 /* For stdarg.h function, save info about
3162 regs and stack space used by the named args. */
3164 current_function_args_info = all.args_so_far;
3166 /* Set the rtx used for the function return value. Put this in its
3167 own variable so any optimizers that need this information don't have
3168 to include tree.h. Do this here so it gets done when an inlined
3169 function gets output. */
3171 current_function_return_rtx
3172 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3173 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3175 /* If scalar return value was computed in a pseudo-reg, or was a named
3176 return value that got dumped to the stack, copy that to the hard
3177 return register. */
3178 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3180 tree decl_result = DECL_RESULT (fndecl);
3181 rtx decl_rtl = DECL_RTL (decl_result);
3183 if (REG_P (decl_rtl)
3184 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3185 : DECL_REGISTER (decl_result))
3187 rtx real_decl_rtl;
3189 #ifdef FUNCTION_OUTGOING_VALUE
3190 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3191 fndecl);
3192 #else
3193 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3194 fndecl);
3195 #endif
3196 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3197 /* The delay slot scheduler assumes that current_function_return_rtx
3198 holds the hard register containing the return value, not a
3199 temporary pseudo. */
3200 current_function_return_rtx = real_decl_rtl;
3205 /* Indicate whether REGNO is an incoming argument to the current function
3206 that was promoted to a wider mode. If so, return the RTX for the
3207 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3208 that REGNO is promoted from and whether the promotion was signed or
3209 unsigned. */
3212 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3214 tree arg;
3216 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3217 arg = TREE_CHAIN (arg))
3218 if (REG_P (DECL_INCOMING_RTL (arg))
3219 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3220 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3222 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3223 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3225 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3226 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3227 && mode != DECL_MODE (arg))
3229 *pmode = DECL_MODE (arg);
3230 *punsignedp = unsignedp;
3231 return DECL_INCOMING_RTL (arg);
3235 return 0;
3239 /* Compute the size and offset from the start of the stacked arguments for a
3240 parm passed in mode PASSED_MODE and with type TYPE.
3242 INITIAL_OFFSET_PTR points to the current offset into the stacked
3243 arguments.
3245 The starting offset and size for this parm are returned in
3246 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3247 nonzero, the offset is that of stack slot, which is returned in
3248 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3249 padding required from the initial offset ptr to the stack slot.
3251 IN_REGS is nonzero if the argument will be passed in registers. It will
3252 never be set if REG_PARM_STACK_SPACE is not defined.
3254 FNDECL is the function in which the argument was defined.
3256 There are two types of rounding that are done. The first, controlled by
3257 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3258 list to be aligned to the specific boundary (in bits). This rounding
3259 affects the initial and starting offsets, but not the argument size.
3261 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3262 optionally rounds the size of the parm to PARM_BOUNDARY. The
3263 initial offset is not affected by this rounding, while the size always
3264 is and the starting offset may be. */
3266 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3267 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3268 callers pass in the total size of args so far as
3269 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3271 void
3272 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3273 int partial, tree fndecl ATTRIBUTE_UNUSED,
3274 struct args_size *initial_offset_ptr,
3275 struct locate_and_pad_arg_data *locate)
3277 tree sizetree;
3278 enum direction where_pad;
3279 int boundary;
3280 int reg_parm_stack_space = 0;
3281 int part_size_in_regs;
3283 #ifdef REG_PARM_STACK_SPACE
3284 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3286 /* If we have found a stack parm before we reach the end of the
3287 area reserved for registers, skip that area. */
3288 if (! in_regs)
3290 if (reg_parm_stack_space > 0)
3292 if (initial_offset_ptr->var)
3294 initial_offset_ptr->var
3295 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3296 ssize_int (reg_parm_stack_space));
3297 initial_offset_ptr->constant = 0;
3299 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3300 initial_offset_ptr->constant = reg_parm_stack_space;
3303 #endif /* REG_PARM_STACK_SPACE */
3305 part_size_in_regs = 0;
3306 if (reg_parm_stack_space == 0)
3307 part_size_in_regs = ((partial * UNITS_PER_WORD)
3308 / (PARM_BOUNDARY / BITS_PER_UNIT)
3309 * (PARM_BOUNDARY / BITS_PER_UNIT));
3311 sizetree
3312 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3313 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3314 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3315 locate->where_pad = where_pad;
3317 #ifdef ARGS_GROW_DOWNWARD
3318 locate->slot_offset.constant = -initial_offset_ptr->constant;
3319 if (initial_offset_ptr->var)
3320 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3321 initial_offset_ptr->var);
3324 tree s2 = sizetree;
3325 if (where_pad != none
3326 && (!host_integerp (sizetree, 1)
3327 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3328 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3329 SUB_PARM_SIZE (locate->slot_offset, s2);
3332 locate->slot_offset.constant += part_size_in_regs;
3334 if (!in_regs
3335 #ifdef REG_PARM_STACK_SPACE
3336 || REG_PARM_STACK_SPACE (fndecl) > 0
3337 #endif
3339 pad_to_arg_alignment (&locate->slot_offset, boundary,
3340 &locate->alignment_pad);
3342 locate->size.constant = (-initial_offset_ptr->constant
3343 - locate->slot_offset.constant);
3344 if (initial_offset_ptr->var)
3345 locate->size.var = size_binop (MINUS_EXPR,
3346 size_binop (MINUS_EXPR,
3347 ssize_int (0),
3348 initial_offset_ptr->var),
3349 locate->slot_offset.var);
3351 /* Pad_below needs the pre-rounded size to know how much to pad
3352 below. */
3353 locate->offset = locate->slot_offset;
3354 if (where_pad == downward)
3355 pad_below (&locate->offset, passed_mode, sizetree);
3357 #else /* !ARGS_GROW_DOWNWARD */
3358 if (!in_regs
3359 #ifdef REG_PARM_STACK_SPACE
3360 || REG_PARM_STACK_SPACE (fndecl) > 0
3361 #endif
3363 pad_to_arg_alignment (initial_offset_ptr, boundary,
3364 &locate->alignment_pad);
3365 locate->slot_offset = *initial_offset_ptr;
3367 #ifdef PUSH_ROUNDING
3368 if (passed_mode != BLKmode)
3369 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3370 #endif
3372 /* Pad_below needs the pre-rounded size to know how much to pad below
3373 so this must be done before rounding up. */
3374 locate->offset = locate->slot_offset;
3375 if (where_pad == downward)
3376 pad_below (&locate->offset, passed_mode, sizetree);
3378 if (where_pad != none
3379 && (!host_integerp (sizetree, 1)
3380 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3381 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3383 ADD_PARM_SIZE (locate->size, sizetree);
3385 locate->size.constant -= part_size_in_regs;
3386 #endif /* ARGS_GROW_DOWNWARD */
3389 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3390 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3392 static void
3393 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3394 struct args_size *alignment_pad)
3396 tree save_var = NULL_TREE;
3397 HOST_WIDE_INT save_constant = 0;
3398 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3399 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3401 #ifdef SPARC_STACK_BOUNDARY_HACK
3402 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3403 higher than the real alignment of %sp. However, when it does this,
3404 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3405 This is a temporary hack while the sparc port is fixed. */
3406 if (SPARC_STACK_BOUNDARY_HACK)
3407 sp_offset = 0;
3408 #endif
3410 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3412 save_var = offset_ptr->var;
3413 save_constant = offset_ptr->constant;
3416 alignment_pad->var = NULL_TREE;
3417 alignment_pad->constant = 0;
3419 if (boundary > BITS_PER_UNIT)
3421 if (offset_ptr->var)
3423 tree sp_offset_tree = ssize_int (sp_offset);
3424 tree offset = size_binop (PLUS_EXPR,
3425 ARGS_SIZE_TREE (*offset_ptr),
3426 sp_offset_tree);
3427 #ifdef ARGS_GROW_DOWNWARD
3428 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3429 #else
3430 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3431 #endif
3433 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3434 /* ARGS_SIZE_TREE includes constant term. */
3435 offset_ptr->constant = 0;
3436 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3437 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3438 save_var);
3440 else
3442 offset_ptr->constant = -sp_offset +
3443 #ifdef ARGS_GROW_DOWNWARD
3444 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3445 #else
3446 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3447 #endif
3448 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3449 alignment_pad->constant = offset_ptr->constant - save_constant;
3454 static void
3455 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3457 if (passed_mode != BLKmode)
3459 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3460 offset_ptr->constant
3461 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3462 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3463 - GET_MODE_SIZE (passed_mode));
3465 else
3467 if (TREE_CODE (sizetree) != INTEGER_CST
3468 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3470 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3471 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3472 /* Add it in. */
3473 ADD_PARM_SIZE (*offset_ptr, s2);
3474 SUB_PARM_SIZE (*offset_ptr, sizetree);
3479 /* Walk the tree of blocks describing the binding levels within a function
3480 and warn about variables the might be killed by setjmp or vfork.
3481 This is done after calling flow_analysis and before global_alloc
3482 clobbers the pseudo-regs to hard regs. */
3484 void
3485 setjmp_vars_warning (tree block)
3487 tree decl, sub;
3489 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3491 if (TREE_CODE (decl) == VAR_DECL
3492 && DECL_RTL_SET_P (decl)
3493 && REG_P (DECL_RTL (decl))
3494 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3495 warning ("%Jvariable %qD might be clobbered by %<longjmp%>"
3496 " or %<vfork%>",
3497 decl, decl);
3500 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3501 setjmp_vars_warning (sub);
3504 /* Do the appropriate part of setjmp_vars_warning
3505 but for arguments instead of local variables. */
3507 void
3508 setjmp_args_warning (void)
3510 tree decl;
3511 for (decl = DECL_ARGUMENTS (current_function_decl);
3512 decl; decl = TREE_CHAIN (decl))
3513 if (DECL_RTL (decl) != 0
3514 && REG_P (DECL_RTL (decl))
3515 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3516 warning ("%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3517 decl, decl);
3521 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3522 and create duplicate blocks. */
3523 /* ??? Need an option to either create block fragments or to create
3524 abstract origin duplicates of a source block. It really depends
3525 on what optimization has been performed. */
3527 void
3528 reorder_blocks (void)
3530 tree block = DECL_INITIAL (current_function_decl);
3531 varray_type block_stack;
3533 if (block == NULL_TREE)
3534 return;
3536 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3538 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3539 clear_block_marks (block);
3541 /* Prune the old trees away, so that they don't get in the way. */
3542 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3543 BLOCK_CHAIN (block) = NULL_TREE;
3545 /* Recreate the block tree from the note nesting. */
3546 reorder_blocks_1 (get_insns (), block, &block_stack);
3547 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3549 /* Remove deleted blocks from the block fragment chains. */
3550 reorder_fix_fragments (block);
3553 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3555 void
3556 clear_block_marks (tree block)
3558 while (block)
3560 TREE_ASM_WRITTEN (block) = 0;
3561 clear_block_marks (BLOCK_SUBBLOCKS (block));
3562 block = BLOCK_CHAIN (block);
3566 static void
3567 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3569 rtx insn;
3571 for (insn = insns; insn; insn = NEXT_INSN (insn))
3573 if (NOTE_P (insn))
3575 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3577 tree block = NOTE_BLOCK (insn);
3579 /* If we have seen this block before, that means it now
3580 spans multiple address regions. Create a new fragment. */
3581 if (TREE_ASM_WRITTEN (block))
3583 tree new_block = copy_node (block);
3584 tree origin;
3586 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3587 ? BLOCK_FRAGMENT_ORIGIN (block)
3588 : block);
3589 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3590 BLOCK_FRAGMENT_CHAIN (new_block)
3591 = BLOCK_FRAGMENT_CHAIN (origin);
3592 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3594 NOTE_BLOCK (insn) = new_block;
3595 block = new_block;
3598 BLOCK_SUBBLOCKS (block) = 0;
3599 TREE_ASM_WRITTEN (block) = 1;
3600 /* When there's only one block for the entire function,
3601 current_block == block and we mustn't do this, it
3602 will cause infinite recursion. */
3603 if (block != current_block)
3605 BLOCK_SUPERCONTEXT (block) = current_block;
3606 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3607 BLOCK_SUBBLOCKS (current_block) = block;
3608 current_block = block;
3610 VARRAY_PUSH_TREE (*p_block_stack, block);
3612 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3614 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3615 VARRAY_POP (*p_block_stack);
3616 BLOCK_SUBBLOCKS (current_block)
3617 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3618 current_block = BLOCK_SUPERCONTEXT (current_block);
3624 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3625 appears in the block tree, select one of the fragments to become
3626 the new origin block. */
3628 static void
3629 reorder_fix_fragments (tree block)
3631 while (block)
3633 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3634 tree new_origin = NULL_TREE;
3636 if (dup_origin)
3638 if (! TREE_ASM_WRITTEN (dup_origin))
3640 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3642 /* Find the first of the remaining fragments. There must
3643 be at least one -- the current block. */
3644 while (! TREE_ASM_WRITTEN (new_origin))
3645 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3646 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3649 else if (! dup_origin)
3650 new_origin = block;
3652 /* Re-root the rest of the fragments to the new origin. In the
3653 case that DUP_ORIGIN was null, that means BLOCK was the origin
3654 of a chain of fragments and we want to remove those fragments
3655 that didn't make it to the output. */
3656 if (new_origin)
3658 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3659 tree chain = *pp;
3661 while (chain)
3663 if (TREE_ASM_WRITTEN (chain))
3665 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3666 *pp = chain;
3667 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3669 chain = BLOCK_FRAGMENT_CHAIN (chain);
3671 *pp = NULL_TREE;
3674 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3675 block = BLOCK_CHAIN (block);
3679 /* Reverse the order of elements in the chain T of blocks,
3680 and return the new head of the chain (old last element). */
3682 tree
3683 blocks_nreverse (tree t)
3685 tree prev = 0, decl, next;
3686 for (decl = t; decl; decl = next)
3688 next = BLOCK_CHAIN (decl);
3689 BLOCK_CHAIN (decl) = prev;
3690 prev = decl;
3692 return prev;
3695 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3696 non-NULL, list them all into VECTOR, in a depth-first preorder
3697 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3698 blocks. */
3700 static int
3701 all_blocks (tree block, tree *vector)
3703 int n_blocks = 0;
3705 while (block)
3707 TREE_ASM_WRITTEN (block) = 0;
3709 /* Record this block. */
3710 if (vector)
3711 vector[n_blocks] = block;
3713 ++n_blocks;
3715 /* Record the subblocks, and their subblocks... */
3716 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3717 vector ? vector + n_blocks : 0);
3718 block = BLOCK_CHAIN (block);
3721 return n_blocks;
3724 /* Return a vector containing all the blocks rooted at BLOCK. The
3725 number of elements in the vector is stored in N_BLOCKS_P. The
3726 vector is dynamically allocated; it is the caller's responsibility
3727 to call `free' on the pointer returned. */
3729 static tree *
3730 get_block_vector (tree block, int *n_blocks_p)
3732 tree *block_vector;
3734 *n_blocks_p = all_blocks (block, NULL);
3735 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3736 all_blocks (block, block_vector);
3738 return block_vector;
3741 static GTY(()) int next_block_index = 2;
3743 /* Set BLOCK_NUMBER for all the blocks in FN. */
3745 void
3746 number_blocks (tree fn)
3748 int i;
3749 int n_blocks;
3750 tree *block_vector;
3752 /* For SDB and XCOFF debugging output, we start numbering the blocks
3753 from 1 within each function, rather than keeping a running
3754 count. */
3755 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3756 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3757 next_block_index = 1;
3758 #endif
3760 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3762 /* The top-level BLOCK isn't numbered at all. */
3763 for (i = 1; i < n_blocks; ++i)
3764 /* We number the blocks from two. */
3765 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3767 free (block_vector);
3769 return;
3772 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3774 tree
3775 debug_find_var_in_block_tree (tree var, tree block)
3777 tree t;
3779 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3780 if (t == var)
3781 return block;
3783 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3785 tree ret = debug_find_var_in_block_tree (var, t);
3786 if (ret)
3787 return ret;
3790 return NULL_TREE;
3793 /* Allocate a function structure for FNDECL and set its contents
3794 to the defaults. */
3796 void
3797 allocate_struct_function (tree fndecl)
3799 tree result;
3800 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3802 cfun = ggc_alloc_cleared (sizeof (struct function));
3804 cfun->stack_alignment_needed = STACK_BOUNDARY;
3805 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3807 current_function_funcdef_no = funcdef_no++;
3809 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3811 init_eh_for_function ();
3813 lang_hooks.function.init (cfun);
3814 if (init_machine_status)
3815 cfun->machine = (*init_machine_status) ();
3817 if (fndecl == NULL)
3818 return;
3820 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3821 cfun->decl = fndecl;
3823 result = DECL_RESULT (fndecl);
3824 if (aggregate_value_p (result, fndecl))
3826 #ifdef PCC_STATIC_STRUCT_RETURN
3827 current_function_returns_pcc_struct = 1;
3828 #endif
3829 current_function_returns_struct = 1;
3832 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3834 current_function_stdarg
3835 = (fntype
3836 && TYPE_ARG_TYPES (fntype) != 0
3837 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3838 != void_type_node));
3841 /* Reset cfun, and other non-struct-function variables to defaults as
3842 appropriate for emitting rtl at the start of a function. */
3844 static void
3845 prepare_function_start (tree fndecl)
3847 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3848 cfun = DECL_STRUCT_FUNCTION (fndecl);
3849 else
3850 allocate_struct_function (fndecl);
3851 init_emit ();
3852 init_varasm_status (cfun);
3853 init_expr ();
3855 cse_not_expected = ! optimize;
3857 /* Caller save not needed yet. */
3858 caller_save_needed = 0;
3860 /* We haven't done register allocation yet. */
3861 reg_renumber = 0;
3863 /* Indicate that we have not instantiated virtual registers yet. */
3864 virtuals_instantiated = 0;
3866 /* Indicate that we want CONCATs now. */
3867 generating_concat_p = 1;
3869 /* Indicate we have no need of a frame pointer yet. */
3870 frame_pointer_needed = 0;
3873 /* Initialize the rtl expansion mechanism so that we can do simple things
3874 like generate sequences. This is used to provide a context during global
3875 initialization of some passes. */
3876 void
3877 init_dummy_function_start (void)
3879 prepare_function_start (NULL);
3882 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3883 and initialize static variables for generating RTL for the statements
3884 of the function. */
3886 void
3887 init_function_start (tree subr)
3889 prepare_function_start (subr);
3891 /* Prevent ever trying to delete the first instruction of a
3892 function. Also tell final how to output a linenum before the
3893 function prologue. Note linenums could be missing, e.g. when
3894 compiling a Java .class file. */
3895 if (! DECL_IS_BUILTIN (subr))
3896 emit_line_note (DECL_SOURCE_LOCATION (subr));
3898 /* Make sure first insn is a note even if we don't want linenums.
3899 This makes sure the first insn will never be deleted.
3900 Also, final expects a note to appear there. */
3901 emit_note (NOTE_INSN_DELETED);
3903 /* Warn if this value is an aggregate type,
3904 regardless of which calling convention we are using for it. */
3905 if (warn_aggregate_return
3906 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3907 warning ("function returns an aggregate");
3910 /* Make sure all values used by the optimization passes have sane
3911 defaults. */
3912 void
3913 init_function_for_compilation (void)
3915 reg_renumber = 0;
3917 /* No prologue/epilogue insns yet. */
3918 VARRAY_GROW (prologue, 0);
3919 VARRAY_GROW (epilogue, 0);
3920 VARRAY_GROW (sibcall_epilogue, 0);
3923 /* Expand a call to __main at the beginning of a possible main function. */
3925 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3926 #undef HAS_INIT_SECTION
3927 #define HAS_INIT_SECTION
3928 #endif
3930 void
3931 expand_main_function (void)
3933 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3934 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3936 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3937 rtx tmp, seq;
3939 start_sequence ();
3940 /* Forcibly align the stack. */
3941 #ifdef STACK_GROWS_DOWNWARD
3942 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3943 stack_pointer_rtx, 1, OPTAB_WIDEN);
3944 #else
3945 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3946 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3947 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3948 stack_pointer_rtx, 1, OPTAB_WIDEN);
3949 #endif
3950 if (tmp != stack_pointer_rtx)
3951 emit_move_insn (stack_pointer_rtx, tmp);
3953 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3954 tmp = force_reg (Pmode, const0_rtx);
3955 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3956 seq = get_insns ();
3957 end_sequence ();
3959 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3960 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3961 break;
3962 if (tmp)
3963 emit_insn_before (seq, tmp);
3964 else
3965 emit_insn (seq);
3967 #endif
3969 #ifndef HAS_INIT_SECTION
3970 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3971 #endif
3974 /* The PENDING_SIZES represent the sizes of variable-sized types.
3975 Create RTL for the various sizes now (using temporary variables),
3976 so that we can refer to the sizes from the RTL we are generating
3977 for the current function. The PENDING_SIZES are a TREE_LIST. The
3978 TREE_VALUE of each node is a SAVE_EXPR. */
3980 static void
3981 expand_pending_sizes (tree pending_sizes)
3983 tree tem;
3985 /* Evaluate now the sizes of any types declared among the arguments. */
3986 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3987 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3990 /* Start the RTL for a new function, and set variables used for
3991 emitting RTL.
3992 SUBR is the FUNCTION_DECL node.
3993 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3994 the function's parameters, which must be run at any return statement. */
3996 void
3997 expand_function_start (tree subr)
3999 /* Make sure volatile mem refs aren't considered
4000 valid operands of arithmetic insns. */
4001 init_recog_no_volatile ();
4003 current_function_profile
4004 = (profile_flag
4005 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4007 current_function_limit_stack
4008 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4010 /* Make the label for return statements to jump to. Do not special
4011 case machines with special return instructions -- they will be
4012 handled later during jump, ifcvt, or epilogue creation. */
4013 return_label = gen_label_rtx ();
4015 /* Initialize rtx used to return the value. */
4016 /* Do this before assign_parms so that we copy the struct value address
4017 before any library calls that assign parms might generate. */
4019 /* Decide whether to return the value in memory or in a register. */
4020 if (aggregate_value_p (DECL_RESULT (subr), subr))
4022 /* Returning something that won't go in a register. */
4023 rtx value_address = 0;
4025 #ifdef PCC_STATIC_STRUCT_RETURN
4026 if (current_function_returns_pcc_struct)
4028 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4029 value_address = assemble_static_space (size);
4031 else
4032 #endif
4034 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4035 /* Expect to be passed the address of a place to store the value.
4036 If it is passed as an argument, assign_parms will take care of
4037 it. */
4038 if (sv)
4040 value_address = gen_reg_rtx (Pmode);
4041 emit_move_insn (value_address, sv);
4044 if (value_address)
4046 rtx x = value_address;
4047 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4049 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4050 set_mem_attributes (x, DECL_RESULT (subr), 1);
4052 SET_DECL_RTL (DECL_RESULT (subr), x);
4055 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4056 /* If return mode is void, this decl rtl should not be used. */
4057 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4058 else
4060 /* Compute the return values into a pseudo reg, which we will copy
4061 into the true return register after the cleanups are done. */
4063 /* In order to figure out what mode to use for the pseudo, we
4064 figure out what the mode of the eventual return register will
4065 actually be, and use that. */
4066 rtx hard_reg
4067 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4068 subr, 1);
4070 /* Structures that are returned in registers are not aggregate_value_p,
4071 so we may see a PARALLEL or a REG. */
4072 if (REG_P (hard_reg))
4073 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4074 else
4076 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4077 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4080 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4081 result to the real return register(s). */
4082 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4085 /* Initialize rtx for parameters and local variables.
4086 In some cases this requires emitting insns. */
4087 assign_parms (subr);
4089 /* If function gets a static chain arg, store it. */
4090 if (cfun->static_chain_decl)
4092 tree parm = cfun->static_chain_decl;
4093 rtx local = gen_reg_rtx (Pmode);
4095 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4096 SET_DECL_RTL (parm, local);
4097 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4099 emit_move_insn (local, static_chain_incoming_rtx);
4102 /* If the function receives a non-local goto, then store the
4103 bits we need to restore the frame pointer. */
4104 if (cfun->nonlocal_goto_save_area)
4106 tree t_save;
4107 rtx r_save;
4109 /* ??? We need to do this save early. Unfortunately here is
4110 before the frame variable gets declared. Help out... */
4111 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4113 t_save = build4 (ARRAY_REF, ptr_type_node,
4114 cfun->nonlocal_goto_save_area,
4115 integer_zero_node, NULL_TREE, NULL_TREE);
4116 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4117 r_save = convert_memory_address (Pmode, r_save);
4119 emit_move_insn (r_save, virtual_stack_vars_rtx);
4120 update_nonlocal_goto_save_area ();
4123 /* The following was moved from init_function_start.
4124 The move is supposed to make sdb output more accurate. */
4125 /* Indicate the beginning of the function body,
4126 as opposed to parm setup. */
4127 emit_note (NOTE_INSN_FUNCTION_BEG);
4129 if (!NOTE_P (get_last_insn ()))
4130 emit_note (NOTE_INSN_DELETED);
4131 parm_birth_insn = get_last_insn ();
4133 if (current_function_profile)
4135 #ifdef PROFILE_HOOK
4136 PROFILE_HOOK (current_function_funcdef_no);
4137 #endif
4140 /* After the display initializations is where the tail-recursion label
4141 should go, if we end up needing one. Ensure we have a NOTE here
4142 since some things (like trampolines) get placed before this. */
4143 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4145 /* Evaluate now the sizes of any types declared among the arguments. */
4146 expand_pending_sizes (nreverse (get_pending_sizes ()));
4148 /* Make sure there is a line number after the function entry setup code. */
4149 force_next_line_note ();
4152 /* Undo the effects of init_dummy_function_start. */
4153 void
4154 expand_dummy_function_end (void)
4156 /* End any sequences that failed to be closed due to syntax errors. */
4157 while (in_sequence_p ())
4158 end_sequence ();
4160 /* Outside function body, can't compute type's actual size
4161 until next function's body starts. */
4163 free_after_parsing (cfun);
4164 free_after_compilation (cfun);
4165 cfun = 0;
4168 /* Call DOIT for each hard register used as a return value from
4169 the current function. */
4171 void
4172 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4174 rtx outgoing = current_function_return_rtx;
4176 if (! outgoing)
4177 return;
4179 if (REG_P (outgoing))
4180 (*doit) (outgoing, arg);
4181 else if (GET_CODE (outgoing) == PARALLEL)
4183 int i;
4185 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4187 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4189 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4190 (*doit) (x, arg);
4195 static void
4196 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4198 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4201 void
4202 clobber_return_register (void)
4204 diddle_return_value (do_clobber_return_reg, NULL);
4206 /* In case we do use pseudo to return value, clobber it too. */
4207 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4209 tree decl_result = DECL_RESULT (current_function_decl);
4210 rtx decl_rtl = DECL_RTL (decl_result);
4211 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4213 do_clobber_return_reg (decl_rtl, NULL);
4218 static void
4219 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4221 emit_insn (gen_rtx_USE (VOIDmode, reg));
4224 void
4225 use_return_register (void)
4227 diddle_return_value (do_use_return_reg, NULL);
4230 /* Possibly warn about unused parameters. */
4231 void
4232 do_warn_unused_parameter (tree fn)
4234 tree decl;
4236 for (decl = DECL_ARGUMENTS (fn);
4237 decl; decl = TREE_CHAIN (decl))
4238 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4239 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4240 warning ("%Junused parameter %qD", decl, decl);
4243 static GTY(()) rtx initial_trampoline;
4245 /* Generate RTL for the end of the current function. */
4247 void
4248 expand_function_end (void)
4250 rtx clobber_after;
4252 /* If arg_pointer_save_area was referenced only from a nested
4253 function, we will not have initialized it yet. Do that now. */
4254 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4255 get_arg_pointer_save_area (cfun);
4257 /* If we are doing stack checking and this function makes calls,
4258 do a stack probe at the start of the function to ensure we have enough
4259 space for another stack frame. */
4260 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4262 rtx insn, seq;
4264 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4265 if (CALL_P (insn))
4267 start_sequence ();
4268 probe_stack_range (STACK_CHECK_PROTECT,
4269 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4270 seq = get_insns ();
4271 end_sequence ();
4272 emit_insn_before (seq, tail_recursion_reentry);
4273 break;
4277 /* Possibly warn about unused parameters.
4278 When frontend does unit-at-a-time, the warning is already
4279 issued at finalization time. */
4280 if (warn_unused_parameter
4281 && !lang_hooks.callgraph.expand_function)
4282 do_warn_unused_parameter (current_function_decl);
4284 /* End any sequences that failed to be closed due to syntax errors. */
4285 while (in_sequence_p ())
4286 end_sequence ();
4288 clear_pending_stack_adjust ();
4289 do_pending_stack_adjust ();
4291 /* @@@ This is a kludge. We want to ensure that instructions that
4292 may trap are not moved into the epilogue by scheduling, because
4293 we don't always emit unwind information for the epilogue.
4294 However, not all machine descriptions define a blockage insn, so
4295 emit an ASM_INPUT to act as one. */
4296 if (flag_non_call_exceptions)
4297 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4299 /* Mark the end of the function body.
4300 If control reaches this insn, the function can drop through
4301 without returning a value. */
4302 emit_note (NOTE_INSN_FUNCTION_END);
4304 /* Must mark the last line number note in the function, so that the test
4305 coverage code can avoid counting the last line twice. This just tells
4306 the code to ignore the immediately following line note, since there
4307 already exists a copy of this note somewhere above. This line number
4308 note is still needed for debugging though, so we can't delete it. */
4309 if (flag_test_coverage)
4310 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4312 /* Output a linenumber for the end of the function.
4313 SDB depends on this. */
4314 force_next_line_note ();
4315 emit_line_note (input_location);
4317 /* Before the return label (if any), clobber the return
4318 registers so that they are not propagated live to the rest of
4319 the function. This can only happen with functions that drop
4320 through; if there had been a return statement, there would
4321 have either been a return rtx, or a jump to the return label.
4323 We delay actual code generation after the current_function_value_rtx
4324 is computed. */
4325 clobber_after = get_last_insn ();
4327 /* Output the label for the actual return from the function. */
4328 emit_label (return_label);
4330 /* Let except.c know where it should emit the call to unregister
4331 the function context for sjlj exceptions. */
4332 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4333 sjlj_emit_function_exit_after (get_last_insn ());
4335 /* If we had calls to alloca, and this machine needs
4336 an accurate stack pointer to exit the function,
4337 insert some code to save and restore the stack pointer. */
4338 if (! EXIT_IGNORE_STACK
4339 && current_function_calls_alloca)
4341 rtx tem = 0;
4343 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4344 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4347 /* If scalar return value was computed in a pseudo-reg, or was a named
4348 return value that got dumped to the stack, copy that to the hard
4349 return register. */
4350 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4352 tree decl_result = DECL_RESULT (current_function_decl);
4353 rtx decl_rtl = DECL_RTL (decl_result);
4355 if (REG_P (decl_rtl)
4356 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4357 : DECL_REGISTER (decl_result))
4359 rtx real_decl_rtl = current_function_return_rtx;
4361 /* This should be set in assign_parms. */
4362 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4364 /* If this is a BLKmode structure being returned in registers,
4365 then use the mode computed in expand_return. Note that if
4366 decl_rtl is memory, then its mode may have been changed,
4367 but that current_function_return_rtx has not. */
4368 if (GET_MODE (real_decl_rtl) == BLKmode)
4369 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4371 /* If a named return value dumped decl_return to memory, then
4372 we may need to re-do the PROMOTE_MODE signed/unsigned
4373 extension. */
4374 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4376 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4378 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4379 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4380 &unsignedp, 1);
4382 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4384 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4386 /* If expand_function_start has created a PARALLEL for decl_rtl,
4387 move the result to the real return registers. Otherwise, do
4388 a group load from decl_rtl for a named return. */
4389 if (GET_CODE (decl_rtl) == PARALLEL)
4390 emit_group_move (real_decl_rtl, decl_rtl);
4391 else
4392 emit_group_load (real_decl_rtl, decl_rtl,
4393 TREE_TYPE (decl_result),
4394 int_size_in_bytes (TREE_TYPE (decl_result)));
4396 else
4397 emit_move_insn (real_decl_rtl, decl_rtl);
4401 /* If returning a structure, arrange to return the address of the value
4402 in a place where debuggers expect to find it.
4404 If returning a structure PCC style,
4405 the caller also depends on this value.
4406 And current_function_returns_pcc_struct is not necessarily set. */
4407 if (current_function_returns_struct
4408 || current_function_returns_pcc_struct)
4410 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4411 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4412 rtx outgoing;
4414 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4415 type = TREE_TYPE (type);
4416 else
4417 value_address = XEXP (value_address, 0);
4419 #ifdef FUNCTION_OUTGOING_VALUE
4420 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4421 current_function_decl);
4422 #else
4423 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4424 current_function_decl);
4425 #endif
4427 /* Mark this as a function return value so integrate will delete the
4428 assignment and USE below when inlining this function. */
4429 REG_FUNCTION_VALUE_P (outgoing) = 1;
4431 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4432 value_address = convert_memory_address (GET_MODE (outgoing),
4433 value_address);
4435 emit_move_insn (outgoing, value_address);
4437 /* Show return register used to hold result (in this case the address
4438 of the result. */
4439 current_function_return_rtx = outgoing;
4442 /* If this is an implementation of throw, do what's necessary to
4443 communicate between __builtin_eh_return and the epilogue. */
4444 expand_eh_return ();
4446 /* Emit the actual code to clobber return register. */
4448 rtx seq;
4450 start_sequence ();
4451 clobber_return_register ();
4452 expand_naked_return ();
4453 seq = get_insns ();
4454 end_sequence ();
4456 emit_insn_after (seq, clobber_after);
4459 /* Output the label for the naked return from the function. */
4460 emit_label (naked_return_label);
4462 /* ??? This should no longer be necessary since stupid is no longer with
4463 us, but there are some parts of the compiler (eg reload_combine, and
4464 sh mach_dep_reorg) that still try and compute their own lifetime info
4465 instead of using the general framework. */
4466 use_return_register ();
4470 get_arg_pointer_save_area (struct function *f)
4472 rtx ret = f->x_arg_pointer_save_area;
4474 if (! ret)
4476 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4477 f->x_arg_pointer_save_area = ret;
4480 if (f == cfun && ! f->arg_pointer_save_area_init)
4482 rtx seq;
4484 /* Save the arg pointer at the beginning of the function. The
4485 generated stack slot may not be a valid memory address, so we
4486 have to check it and fix it if necessary. */
4487 start_sequence ();
4488 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4489 seq = get_insns ();
4490 end_sequence ();
4492 push_topmost_sequence ();
4493 emit_insn_after (seq, get_insns ());
4494 pop_topmost_sequence ();
4497 return ret;
4500 /* Extend a vector that records the INSN_UIDs of INSNS
4501 (a list of one or more insns). */
4503 static void
4504 record_insns (rtx insns, varray_type *vecp)
4506 int i, len;
4507 rtx tmp;
4509 tmp = insns;
4510 len = 0;
4511 while (tmp != NULL_RTX)
4513 len++;
4514 tmp = NEXT_INSN (tmp);
4517 i = VARRAY_SIZE (*vecp);
4518 VARRAY_GROW (*vecp, i + len);
4519 tmp = insns;
4520 while (tmp != NULL_RTX)
4522 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4523 i++;
4524 tmp = NEXT_INSN (tmp);
4528 /* Set the locator of the insn chain starting at INSN to LOC. */
4529 static void
4530 set_insn_locators (rtx insn, int loc)
4532 while (insn != NULL_RTX)
4534 if (INSN_P (insn))
4535 INSN_LOCATOR (insn) = loc;
4536 insn = NEXT_INSN (insn);
4540 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4541 be running after reorg, SEQUENCE rtl is possible. */
4543 static int
4544 contains (rtx insn, varray_type vec)
4546 int i, j;
4548 if (NONJUMP_INSN_P (insn)
4549 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4551 int count = 0;
4552 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4553 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4554 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4555 count++;
4556 return count;
4558 else
4560 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4561 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4562 return 1;
4564 return 0;
4568 prologue_epilogue_contains (rtx insn)
4570 if (contains (insn, prologue))
4571 return 1;
4572 if (contains (insn, epilogue))
4573 return 1;
4574 return 0;
4578 sibcall_epilogue_contains (rtx insn)
4580 if (sibcall_epilogue)
4581 return contains (insn, sibcall_epilogue);
4582 return 0;
4585 #ifdef HAVE_return
4586 /* Insert gen_return at the end of block BB. This also means updating
4587 block_for_insn appropriately. */
4589 static void
4590 emit_return_into_block (basic_block bb, rtx line_note)
4592 emit_jump_insn_after (gen_return (), BB_END (bb));
4593 if (line_note)
4594 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4596 #endif /* HAVE_return */
4598 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4600 /* These functions convert the epilogue into a variant that does not modify the
4601 stack pointer. This is used in cases where a function returns an object
4602 whose size is not known until it is computed. The called function leaves the
4603 object on the stack, leaves the stack depressed, and returns a pointer to
4604 the object.
4606 What we need to do is track all modifications and references to the stack
4607 pointer, deleting the modifications and changing the references to point to
4608 the location the stack pointer would have pointed to had the modifications
4609 taken place.
4611 These functions need to be portable so we need to make as few assumptions
4612 about the epilogue as we can. However, the epilogue basically contains
4613 three things: instructions to reset the stack pointer, instructions to
4614 reload registers, possibly including the frame pointer, and an
4615 instruction to return to the caller.
4617 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4618 We also make no attempt to validate the insns we make since if they are
4619 invalid, we probably can't do anything valid. The intent is that these
4620 routines get "smarter" as more and more machines start to use them and
4621 they try operating on different epilogues.
4623 We use the following structure to track what the part of the epilogue that
4624 we've already processed has done. We keep two copies of the SP equivalence,
4625 one for use during the insn we are processing and one for use in the next
4626 insn. The difference is because one part of a PARALLEL may adjust SP
4627 and the other may use it. */
4629 struct epi_info
4631 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4632 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4633 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4634 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4635 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4636 should be set to once we no longer need
4637 its value. */
4638 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4639 for registers. */
4642 static void handle_epilogue_set (rtx, struct epi_info *);
4643 static void update_epilogue_consts (rtx, rtx, void *);
4644 static void emit_equiv_load (struct epi_info *);
4646 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4647 no modifications to the stack pointer. Return the new list of insns. */
4649 static rtx
4650 keep_stack_depressed (rtx insns)
4652 int j;
4653 struct epi_info info;
4654 rtx insn, next;
4656 /* If the epilogue is just a single instruction, it must be OK as is. */
4657 if (NEXT_INSN (insns) == NULL_RTX)
4658 return insns;
4660 /* Otherwise, start a sequence, initialize the information we have, and
4661 process all the insns we were given. */
4662 start_sequence ();
4664 info.sp_equiv_reg = stack_pointer_rtx;
4665 info.sp_offset = 0;
4666 info.equiv_reg_src = 0;
4668 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4669 info.const_equiv[j] = 0;
4671 insn = insns;
4672 next = NULL_RTX;
4673 while (insn != NULL_RTX)
4675 next = NEXT_INSN (insn);
4677 if (!INSN_P (insn))
4679 add_insn (insn);
4680 insn = next;
4681 continue;
4684 /* If this insn references the register that SP is equivalent to and
4685 we have a pending load to that register, we must force out the load
4686 first and then indicate we no longer know what SP's equivalent is. */
4687 if (info.equiv_reg_src != 0
4688 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4690 emit_equiv_load (&info);
4691 info.sp_equiv_reg = 0;
4694 info.new_sp_equiv_reg = info.sp_equiv_reg;
4695 info.new_sp_offset = info.sp_offset;
4697 /* If this is a (RETURN) and the return address is on the stack,
4698 update the address and change to an indirect jump. */
4699 if (GET_CODE (PATTERN (insn)) == RETURN
4700 || (GET_CODE (PATTERN (insn)) == PARALLEL
4701 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4703 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4704 rtx base = 0;
4705 HOST_WIDE_INT offset = 0;
4706 rtx jump_insn, jump_set;
4708 /* If the return address is in a register, we can emit the insn
4709 unchanged. Otherwise, it must be a MEM and we see what the
4710 base register and offset are. In any case, we have to emit any
4711 pending load to the equivalent reg of SP, if any. */
4712 if (REG_P (retaddr))
4714 emit_equiv_load (&info);
4715 add_insn (insn);
4716 insn = next;
4717 continue;
4719 else
4721 rtx ret_ptr;
4722 gcc_assert (MEM_P (retaddr));
4724 ret_ptr = XEXP (retaddr, 0);
4726 if (REG_P (ret_ptr))
4728 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4729 offset = 0;
4731 else
4733 gcc_assert (GET_CODE (ret_ptr) == PLUS
4734 && REG_P (XEXP (ret_ptr, 0))
4735 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4736 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4737 offset = INTVAL (XEXP (ret_ptr, 1));
4741 /* If the base of the location containing the return pointer
4742 is SP, we must update it with the replacement address. Otherwise,
4743 just build the necessary MEM. */
4744 retaddr = plus_constant (base, offset);
4745 if (base == stack_pointer_rtx)
4746 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4747 plus_constant (info.sp_equiv_reg,
4748 info.sp_offset));
4750 retaddr = gen_rtx_MEM (Pmode, retaddr);
4752 /* If there is a pending load to the equivalent register for SP
4753 and we reference that register, we must load our address into
4754 a scratch register and then do that load. */
4755 if (info.equiv_reg_src
4756 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4758 unsigned int regno;
4759 rtx reg;
4761 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4762 if (HARD_REGNO_MODE_OK (regno, Pmode)
4763 && !fixed_regs[regno]
4764 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4765 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4766 regno)
4767 && !refers_to_regno_p (regno,
4768 regno + hard_regno_nregs[regno]
4769 [Pmode],
4770 info.equiv_reg_src, NULL)
4771 && info.const_equiv[regno] == 0)
4772 break;
4774 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4776 reg = gen_rtx_REG (Pmode, regno);
4777 emit_move_insn (reg, retaddr);
4778 retaddr = reg;
4781 emit_equiv_load (&info);
4782 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4784 /* Show the SET in the above insn is a RETURN. */
4785 jump_set = single_set (jump_insn);
4786 gcc_assert (jump_set);
4787 SET_IS_RETURN_P (jump_set) = 1;
4790 /* If SP is not mentioned in the pattern and its equivalent register, if
4791 any, is not modified, just emit it. Otherwise, if neither is set,
4792 replace the reference to SP and emit the insn. If none of those are
4793 true, handle each SET individually. */
4794 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4795 && (info.sp_equiv_reg == stack_pointer_rtx
4796 || !reg_set_p (info.sp_equiv_reg, insn)))
4797 add_insn (insn);
4798 else if (! reg_set_p (stack_pointer_rtx, insn)
4799 && (info.sp_equiv_reg == stack_pointer_rtx
4800 || !reg_set_p (info.sp_equiv_reg, insn)))
4802 int changed;
4804 changed = validate_replace_rtx (stack_pointer_rtx,
4805 plus_constant (info.sp_equiv_reg,
4806 info.sp_offset),
4807 insn);
4808 gcc_assert (changed);
4810 add_insn (insn);
4812 else if (GET_CODE (PATTERN (insn)) == SET)
4813 handle_epilogue_set (PATTERN (insn), &info);
4814 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4816 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4817 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4818 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4820 else
4821 add_insn (insn);
4823 info.sp_equiv_reg = info.new_sp_equiv_reg;
4824 info.sp_offset = info.new_sp_offset;
4826 /* Now update any constants this insn sets. */
4827 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4828 insn = next;
4831 insns = get_insns ();
4832 end_sequence ();
4833 return insns;
4836 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4837 structure that contains information about what we've seen so far. We
4838 process this SET by either updating that data or by emitting one or
4839 more insns. */
4841 static void
4842 handle_epilogue_set (rtx set, struct epi_info *p)
4844 /* First handle the case where we are setting SP. Record what it is being
4845 set from. If unknown, abort. */
4846 if (reg_set_p (stack_pointer_rtx, set))
4848 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4850 if (GET_CODE (SET_SRC (set)) == PLUS)
4852 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4853 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4854 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4855 else
4857 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4858 && (REGNO (XEXP (SET_SRC (set), 1))
4859 < FIRST_PSEUDO_REGISTER)
4860 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4861 p->new_sp_offset
4862 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4865 else
4866 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4868 /* If we are adjusting SP, we adjust from the old data. */
4869 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4871 p->new_sp_equiv_reg = p->sp_equiv_reg;
4872 p->new_sp_offset += p->sp_offset;
4875 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4877 return;
4880 /* Next handle the case where we are setting SP's equivalent register.
4881 If we already have a value to set it to, abort. We could update, but
4882 there seems little point in handling that case. Note that we have
4883 to allow for the case where we are setting the register set in
4884 the previous part of a PARALLEL inside a single insn. But use the
4885 old offset for any updates within this insn. We must allow for the case
4886 where the register is being set in a different (usually wider) mode than
4887 Pmode). */
4888 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4890 gcc_assert (!p->equiv_reg_src
4891 && REG_P (p->new_sp_equiv_reg)
4892 && REG_P (SET_DEST (set))
4893 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4894 <= BITS_PER_WORD)
4895 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4896 p->equiv_reg_src
4897 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4898 plus_constant (p->sp_equiv_reg,
4899 p->sp_offset));
4902 /* Otherwise, replace any references to SP in the insn to its new value
4903 and emit the insn. */
4904 else
4906 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4907 plus_constant (p->sp_equiv_reg,
4908 p->sp_offset));
4909 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4910 plus_constant (p->sp_equiv_reg,
4911 p->sp_offset));
4912 emit_insn (set);
4916 /* Update the tracking information for registers set to constants. */
4918 static void
4919 update_epilogue_consts (rtx dest, rtx x, void *data)
4921 struct epi_info *p = (struct epi_info *) data;
4922 rtx new;
4924 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4925 return;
4927 /* If we are either clobbering a register or doing a partial set,
4928 show we don't know the value. */
4929 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4930 p->const_equiv[REGNO (dest)] = 0;
4932 /* If we are setting it to a constant, record that constant. */
4933 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4934 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4936 /* If this is a binary operation between a register we have been tracking
4937 and a constant, see if we can compute a new constant value. */
4938 else if (ARITHMETIC_P (SET_SRC (x))
4939 && REG_P (XEXP (SET_SRC (x), 0))
4940 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4941 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4942 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4943 && 0 != (new = simplify_binary_operation
4944 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4945 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4946 XEXP (SET_SRC (x), 1)))
4947 && GET_CODE (new) == CONST_INT)
4948 p->const_equiv[REGNO (dest)] = new;
4950 /* Otherwise, we can't do anything with this value. */
4951 else
4952 p->const_equiv[REGNO (dest)] = 0;
4955 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4957 static void
4958 emit_equiv_load (struct epi_info *p)
4960 if (p->equiv_reg_src != 0)
4962 rtx dest = p->sp_equiv_reg;
4964 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4965 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4966 REGNO (p->sp_equiv_reg));
4968 emit_move_insn (dest, p->equiv_reg_src);
4969 p->equiv_reg_src = 0;
4972 #endif
4974 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4975 this into place with notes indicating where the prologue ends and where
4976 the epilogue begins. Update the basic block information when possible. */
4978 void
4979 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4981 int inserted = 0;
4982 edge e;
4983 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4984 rtx seq;
4985 #endif
4986 #ifdef HAVE_prologue
4987 rtx prologue_end = NULL_RTX;
4988 #endif
4989 #if defined (HAVE_epilogue) || defined(HAVE_return)
4990 rtx epilogue_end = NULL_RTX;
4991 #endif
4992 edge_iterator ei;
4994 #ifdef HAVE_prologue
4995 if (HAVE_prologue)
4997 start_sequence ();
4998 seq = gen_prologue ();
4999 emit_insn (seq);
5001 /* Retain a map of the prologue insns. */
5002 record_insns (seq, &prologue);
5003 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5005 seq = get_insns ();
5006 end_sequence ();
5007 set_insn_locators (seq, prologue_locator);
5009 /* Can't deal with multiple successors of the entry block
5010 at the moment. Function should always have at least one
5011 entry point. */
5012 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
5014 insert_insn_on_edge (seq, EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
5015 inserted = 1;
5017 #endif
5019 /* If the exit block has no non-fake predecessors, we don't need
5020 an epilogue. */
5021 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5022 if ((e->flags & EDGE_FAKE) == 0)
5023 break;
5024 if (e == NULL)
5025 goto epilogue_done;
5027 #ifdef HAVE_return
5028 if (optimize && HAVE_return)
5030 /* If we're allowed to generate a simple return instruction,
5031 then by definition we don't need a full epilogue. Examine
5032 the block that falls through to EXIT. If it does not
5033 contain any code, examine its predecessors and try to
5034 emit (conditional) return instructions. */
5036 basic_block last;
5037 rtx label;
5039 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5040 if (e->flags & EDGE_FALLTHRU)
5041 break;
5042 if (e == NULL)
5043 goto epilogue_done;
5044 last = e->src;
5046 /* Verify that there are no active instructions in the last block. */
5047 label = BB_END (last);
5048 while (label && !LABEL_P (label))
5050 if (active_insn_p (label))
5051 break;
5052 label = PREV_INSN (label);
5055 if (BB_HEAD (last) == label && LABEL_P (label))
5057 edge_iterator ei2;
5058 rtx epilogue_line_note = NULL_RTX;
5060 /* Locate the line number associated with the closing brace,
5061 if we can find one. */
5062 for (seq = get_last_insn ();
5063 seq && ! active_insn_p (seq);
5064 seq = PREV_INSN (seq))
5065 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5067 epilogue_line_note = seq;
5068 break;
5071 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5073 basic_block bb = e->src;
5074 rtx jump;
5076 if (bb == ENTRY_BLOCK_PTR)
5078 ei_next (&ei2);
5079 continue;
5082 jump = BB_END (bb);
5083 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5085 ei_next (&ei2);
5086 continue;
5089 /* If we have an unconditional jump, we can replace that
5090 with a simple return instruction. */
5091 if (simplejump_p (jump))
5093 emit_return_into_block (bb, epilogue_line_note);
5094 delete_insn (jump);
5097 /* If we have a conditional jump, we can try to replace
5098 that with a conditional return instruction. */
5099 else if (condjump_p (jump))
5101 if (! redirect_jump (jump, 0, 0))
5103 ei_next (&ei2);
5104 continue;
5107 /* If this block has only one successor, it both jumps
5108 and falls through to the fallthru block, so we can't
5109 delete the edge. */
5110 if (EDGE_COUNT (bb->succs) == 1)
5112 ei_next (&ei2);
5113 continue;
5116 else
5118 ei_next (&ei2);
5119 continue;
5122 /* Fix up the CFG for the successful change we just made. */
5123 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5126 /* Emit a return insn for the exit fallthru block. Whether
5127 this is still reachable will be determined later. */
5129 emit_barrier_after (BB_END (last));
5130 emit_return_into_block (last, epilogue_line_note);
5131 epilogue_end = BB_END (last);
5132 EDGE_SUCC (last, 0)->flags &= ~EDGE_FALLTHRU;
5133 goto epilogue_done;
5136 #endif
5137 /* Find the edge that falls through to EXIT. Other edges may exist
5138 due to RETURN instructions, but those don't need epilogues.
5139 There really shouldn't be a mixture -- either all should have
5140 been converted or none, however... */
5142 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5143 if (e->flags & EDGE_FALLTHRU)
5144 break;
5145 if (e == NULL)
5146 goto epilogue_done;
5148 #ifdef HAVE_epilogue
5149 if (HAVE_epilogue)
5151 start_sequence ();
5152 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5154 seq = gen_epilogue ();
5156 #ifdef INCOMING_RETURN_ADDR_RTX
5157 /* If this function returns with the stack depressed and we can support
5158 it, massage the epilogue to actually do that. */
5159 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5160 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5161 seq = keep_stack_depressed (seq);
5162 #endif
5164 emit_jump_insn (seq);
5166 /* Retain a map of the epilogue insns. */
5167 record_insns (seq, &epilogue);
5168 set_insn_locators (seq, epilogue_locator);
5170 seq = get_insns ();
5171 end_sequence ();
5173 insert_insn_on_edge (seq, e);
5174 inserted = 1;
5176 else
5177 #endif
5179 basic_block cur_bb;
5181 if (! next_active_insn (BB_END (e->src)))
5182 goto epilogue_done;
5183 /* We have a fall-through edge to the exit block, the source is not
5184 at the end of the function, and there will be an assembler epilogue
5185 at the end of the function.
5186 We can't use force_nonfallthru here, because that would try to
5187 use return. Inserting a jump 'by hand' is extremely messy, so
5188 we take advantage of cfg_layout_finalize using
5189 fixup_fallthru_exit_predecessor. */
5190 cfg_layout_initialize (0);
5191 FOR_EACH_BB (cur_bb)
5192 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5193 cur_bb->rbi->next = cur_bb->next_bb;
5194 cfg_layout_finalize ();
5196 epilogue_done:
5198 if (inserted)
5199 commit_edge_insertions ();
5201 #ifdef HAVE_sibcall_epilogue
5202 /* Emit sibling epilogues before any sibling call sites. */
5203 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5205 basic_block bb = e->src;
5206 rtx insn = BB_END (bb);
5207 rtx i;
5208 rtx newinsn;
5210 if (!CALL_P (insn)
5211 || ! SIBLING_CALL_P (insn))
5213 ei_next (&ei);
5214 continue;
5217 start_sequence ();
5218 emit_insn (gen_sibcall_epilogue ());
5219 seq = get_insns ();
5220 end_sequence ();
5222 /* Retain a map of the epilogue insns. Used in life analysis to
5223 avoid getting rid of sibcall epilogue insns. Do this before we
5224 actually emit the sequence. */
5225 record_insns (seq, &sibcall_epilogue);
5226 set_insn_locators (seq, epilogue_locator);
5228 i = PREV_INSN (insn);
5229 newinsn = emit_insn_before (seq, insn);
5230 ei_next (&ei);
5232 #endif
5234 #ifdef HAVE_prologue
5235 /* This is probably all useless now that we use locators. */
5236 if (prologue_end)
5238 rtx insn, prev;
5240 /* GDB handles `break f' by setting a breakpoint on the first
5241 line note after the prologue. Which means (1) that if
5242 there are line number notes before where we inserted the
5243 prologue we should move them, and (2) we should generate a
5244 note before the end of the first basic block, if there isn't
5245 one already there.
5247 ??? This behavior is completely broken when dealing with
5248 multiple entry functions. We simply place the note always
5249 into first basic block and let alternate entry points
5250 to be missed.
5253 for (insn = prologue_end; insn; insn = prev)
5255 prev = PREV_INSN (insn);
5256 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5258 /* Note that we cannot reorder the first insn in the
5259 chain, since rest_of_compilation relies on that
5260 remaining constant. */
5261 if (prev == NULL)
5262 break;
5263 reorder_insns (insn, insn, prologue_end);
5267 /* Find the last line number note in the first block. */
5268 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5269 insn != prologue_end && insn;
5270 insn = PREV_INSN (insn))
5271 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5272 break;
5274 /* If we didn't find one, make a copy of the first line number
5275 we run across. */
5276 if (! insn)
5278 for (insn = next_active_insn (prologue_end);
5279 insn;
5280 insn = PREV_INSN (insn))
5281 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5283 emit_note_copy_after (insn, prologue_end);
5284 break;
5288 #endif
5289 #ifdef HAVE_epilogue
5290 if (epilogue_end)
5292 rtx insn, next;
5294 /* Similarly, move any line notes that appear after the epilogue.
5295 There is no need, however, to be quite so anal about the existence
5296 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5297 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5298 info generation. */
5299 for (insn = epilogue_end; insn; insn = next)
5301 next = NEXT_INSN (insn);
5302 if (NOTE_P (insn)
5303 && (NOTE_LINE_NUMBER (insn) > 0
5304 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5305 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5306 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5309 #endif
5312 /* Reposition the prologue-end and epilogue-begin notes after instruction
5313 scheduling and delayed branch scheduling. */
5315 void
5316 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5318 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5319 rtx insn, last, note;
5320 int len;
5322 if ((len = VARRAY_SIZE (prologue)) > 0)
5324 last = 0, note = 0;
5326 /* Scan from the beginning until we reach the last prologue insn.
5327 We apparently can't depend on basic_block_{head,end} after
5328 reorg has run. */
5329 for (insn = f; insn; insn = NEXT_INSN (insn))
5331 if (NOTE_P (insn))
5333 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5334 note = insn;
5336 else if (contains (insn, prologue))
5338 last = insn;
5339 if (--len == 0)
5340 break;
5344 if (last)
5346 /* Find the prologue-end note if we haven't already, and
5347 move it to just after the last prologue insn. */
5348 if (note == 0)
5350 for (note = last; (note = NEXT_INSN (note));)
5351 if (NOTE_P (note)
5352 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5353 break;
5356 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5357 if (LABEL_P (last))
5358 last = NEXT_INSN (last);
5359 reorder_insns (note, note, last);
5363 if ((len = VARRAY_SIZE (epilogue)) > 0)
5365 last = 0, note = 0;
5367 /* Scan from the end until we reach the first epilogue insn.
5368 We apparently can't depend on basic_block_{head,end} after
5369 reorg has run. */
5370 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5372 if (NOTE_P (insn))
5374 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5375 note = insn;
5377 else if (contains (insn, epilogue))
5379 last = insn;
5380 if (--len == 0)
5381 break;
5385 if (last)
5387 /* Find the epilogue-begin note if we haven't already, and
5388 move it to just before the first epilogue insn. */
5389 if (note == 0)
5391 for (note = insn; (note = PREV_INSN (note));)
5392 if (NOTE_P (note)
5393 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5394 break;
5397 if (PREV_INSN (last) != note)
5398 reorder_insns (note, note, PREV_INSN (last));
5401 #endif /* HAVE_prologue or HAVE_epilogue */
5404 /* Called once, at initialization, to initialize function.c. */
5406 void
5407 init_function_once (void)
5409 VARRAY_INT_INIT (prologue, 0, "prologue");
5410 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5411 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5414 /* Resets insn_block_boundaries array. */
5416 void
5417 reset_block_changes (void)
5419 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5420 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5423 /* Record the boundary for BLOCK. */
5424 void
5425 record_block_change (tree block)
5427 int i, n;
5428 tree last_block;
5430 if (!block)
5431 return;
5433 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5434 VARRAY_POP (cfun->ib_boundaries_block);
5435 n = get_max_uid ();
5436 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5437 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5439 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5442 /* Finishes record of boundaries. */
5443 void finalize_block_changes (void)
5445 record_block_change (DECL_INITIAL (current_function_decl));
5448 /* For INSN return the BLOCK it belongs to. */
5449 void
5450 check_block_change (rtx insn, tree *block)
5452 unsigned uid = INSN_UID (insn);
5454 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5455 return;
5457 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5460 /* Releases the ib_boundaries_block records. */
5461 void
5462 free_block_changes (void)
5464 cfun->ib_boundaries_block = NULL;
5467 /* Returns the name of the current function. */
5468 const char *
5469 current_function_name (void)
5471 return lang_hooks.decl_printable_name (cfun->decl, 2);
5474 #include "gt-function.h"