./
[official-gcc.git] / gcc / regclass.c
blob78951cfd3dac4909a32f2b37a9bde3ed54089674
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "timevar.h"
48 #include "hashtab.h"
50 static void init_reg_sets_1 (void);
51 static void init_reg_autoinc (void);
53 /* If we have auto-increment or auto-decrement and we can have secondary
54 reloads, we are not allowed to use classes requiring secondary
55 reloads for pseudos auto-incremented since reload can't handle it. */
57 #ifdef AUTO_INC_DEC
58 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
59 #define FORBIDDEN_INC_DEC_CLASSES
60 #endif
61 #endif
63 /* Register tables used by many passes. */
65 /* Indexed by hard register number, contains 1 for registers
66 that are fixed use (stack pointer, pc, frame pointer, etc.).
67 These are the registers that cannot be used to allocate
68 a pseudo reg for general use. */
70 char fixed_regs[FIRST_PSEUDO_REGISTER];
72 /* Same info as a HARD_REG_SET. */
74 HARD_REG_SET fixed_reg_set;
76 /* Data for initializing the above. */
78 static const char initial_fixed_regs[] = FIXED_REGISTERS;
80 /* Indexed by hard register number, contains 1 for registers
81 that are fixed use or are clobbered by function calls.
82 These are the registers that cannot be used to allocate
83 a pseudo reg whose life crosses calls unless we are able
84 to save/restore them across the calls. */
86 char call_used_regs[FIRST_PSEUDO_REGISTER];
88 /* Same info as a HARD_REG_SET. */
90 HARD_REG_SET call_used_reg_set;
92 /* HARD_REG_SET of registers we want to avoid caller saving. */
93 HARD_REG_SET losing_caller_save_reg_set;
95 /* Data for initializing the above. */
97 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
99 /* This is much like call_used_regs, except it doesn't have to
100 be a superset of FIXED_REGISTERS. This vector indicates
101 what is really call clobbered, and is used when defining
102 regs_invalidated_by_call. */
104 #ifdef CALL_REALLY_USED_REGISTERS
105 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
106 #endif
108 #ifdef CALL_REALLY_USED_REGISTERS
109 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
110 #else
111 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
112 #endif
115 /* Indexed by hard register number, contains 1 for registers that are
116 fixed use or call used registers that cannot hold quantities across
117 calls even if we are willing to save and restore them. call fixed
118 registers are a subset of call used registers. */
120 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
122 /* The same info as a HARD_REG_SET. */
124 HARD_REG_SET call_fixed_reg_set;
126 /* Number of non-fixed registers. */
128 int n_non_fixed_regs;
130 /* Indexed by hard register number, contains 1 for registers
131 that are being used for global register decls.
132 These must be exempt from ordinary flow analysis
133 and are also considered fixed. */
135 char global_regs[FIRST_PSEUDO_REGISTER];
137 /* Contains 1 for registers that are set or clobbered by calls. */
138 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
139 for someone's bright idea to have call_used_regs strictly include
140 fixed_regs. Which leaves us guessing as to the set of fixed_regs
141 that are actually preserved. We know for sure that those associated
142 with the local stack frame are safe, but scant others. */
144 HARD_REG_SET regs_invalidated_by_call;
146 /* Table of register numbers in the order in which to try to use them. */
147 #ifdef REG_ALLOC_ORDER
148 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
150 /* The inverse of reg_alloc_order. */
151 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
152 #endif
154 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
156 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
158 /* The same information, but as an array of unsigned ints. We copy from
159 these unsigned ints to the table above. We do this so the tm.h files
160 do not have to be aware of the wordsize for machines with <= 64 regs.
161 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
163 #define N_REG_INTS \
164 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
166 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
167 = REG_CLASS_CONTENTS;
169 /* For each reg class, number of regs it contains. */
171 unsigned int reg_class_size[N_REG_CLASSES];
173 /* For each reg class, table listing all the containing classes. */
175 static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
177 /* For each reg class, table listing all the classes contained in it. */
179 static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
181 /* For each pair of reg classes,
182 a largest reg class contained in their union. */
184 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
186 /* For each pair of reg classes,
187 the smallest reg class containing their union. */
189 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
191 /* Array containing all of the register names. */
193 const char * reg_names[] = REGISTER_NAMES;
195 /* Array containing all of the register class names. */
197 const char * reg_class_names[] = REG_CLASS_NAMES;
199 /* For each hard register, the widest mode object that it can contain.
200 This will be a MODE_INT mode if the register can hold integers. Otherwise
201 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
202 register. */
204 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
206 /* 1 if there is a register of given mode. */
208 bool have_regs_of_mode [MAX_MACHINE_MODE];
210 /* 1 if class does contain register of given mode. */
212 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
214 /* Maximum cost of moving from a register in one class to a register in
215 another class. Based on REGISTER_MOVE_COST. */
217 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
219 /* Similar, but here we don't have to move if the first index is a subset
220 of the second so in that case the cost is zero. */
222 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
224 /* Similar, but here we don't have to move if the first index is a superset
225 of the second so in that case the cost is zero. */
227 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
229 #ifdef FORBIDDEN_INC_DEC_CLASSES
231 /* These are the classes that regs which are auto-incremented or decremented
232 cannot be put in. */
234 static int forbidden_inc_dec_class[N_REG_CLASSES];
236 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
237 context. */
239 static char *in_inc_dec;
241 #endif /* FORBIDDEN_INC_DEC_CLASSES */
243 /* Sample MEM values for use by memory_move_secondary_cost. */
245 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
247 /* Linked list of reg_info structures allocated for reg_n_info array.
248 Grouping all of the allocated structures together in one lump
249 means only one call to bzero to clear them, rather than n smaller
250 calls. */
251 struct reg_info_data {
252 struct reg_info_data *next; /* next set of reg_info structures */
253 size_t min_index; /* minimum index # */
254 size_t max_index; /* maximum index # */
255 char used_p; /* nonzero if this has been used previously */
256 reg_info data[1]; /* beginning of the reg_info data */
259 static struct reg_info_data *reg_info_head;
261 /* No more global register variables may be declared; true once
262 regclass has been initialized. */
264 static int no_global_reg_vars = 0;
266 /* Specify number of hard registers given machine mode occupy. */
267 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
269 /* Function called only once to initialize the above data on reg usage.
270 Once this is done, various switches may override. */
272 void
273 init_reg_sets (void)
275 int i, j;
277 /* First copy the register information from the initial int form into
278 the regsets. */
280 for (i = 0; i < N_REG_CLASSES; i++)
282 CLEAR_HARD_REG_SET (reg_class_contents[i]);
284 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
285 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
286 if (int_reg_class_contents[i][j / 32]
287 & ((unsigned) 1 << (j % 32)))
288 SET_HARD_REG_BIT (reg_class_contents[i], j);
291 /* Sanity check: make sure the target macros FIXED_REGISTERS and
292 CALL_USED_REGISTERS had the right number of initializers. */
293 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
294 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
296 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
297 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
298 memset (global_regs, 0, sizeof global_regs);
300 #ifdef REG_ALLOC_ORDER
301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
302 inv_reg_alloc_order[reg_alloc_order[i]] = i;
303 #endif
306 /* After switches have been processed, which perhaps alter
307 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
309 static void
310 init_reg_sets_1 (void)
312 unsigned int i, j;
313 unsigned int /* enum machine_mode */ m;
315 /* This macro allows the fixed or call-used registers
316 and the register classes to depend on target flags. */
318 #ifdef CONDITIONAL_REGISTER_USAGE
319 CONDITIONAL_REGISTER_USAGE;
320 #endif
322 /* Compute number of hard regs in each class. */
324 memset (reg_class_size, 0, sizeof reg_class_size);
325 for (i = 0; i < N_REG_CLASSES; i++)
326 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
327 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
328 reg_class_size[i]++;
330 /* Initialize the table of subunions.
331 reg_class_subunion[I][J] gets the largest-numbered reg-class
332 that is contained in the union of classes I and J. */
334 for (i = 0; i < N_REG_CLASSES; i++)
336 for (j = 0; j < N_REG_CLASSES; j++)
338 HARD_REG_SET c;
339 int k;
341 COPY_HARD_REG_SET (c, reg_class_contents[i]);
342 IOR_HARD_REG_SET (c, reg_class_contents[j]);
343 for (k = 0; k < N_REG_CLASSES; k++)
345 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
346 subclass1);
347 continue;
349 subclass1:
350 /* Keep the largest subclass. */ /* SPEE 900308 */
351 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
352 reg_class_contents[(int) reg_class_subunion[i][j]],
353 subclass2);
354 reg_class_subunion[i][j] = (enum reg_class) k;
355 subclass2:
361 /* Initialize the table of superunions.
362 reg_class_superunion[I][J] gets the smallest-numbered reg-class
363 containing the union of classes I and J. */
365 for (i = 0; i < N_REG_CLASSES; i++)
367 for (j = 0; j < N_REG_CLASSES; j++)
369 HARD_REG_SET c;
370 int k;
372 COPY_HARD_REG_SET (c, reg_class_contents[i]);
373 IOR_HARD_REG_SET (c, reg_class_contents[j]);
374 for (k = 0; k < N_REG_CLASSES; k++)
375 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
377 superclass:
378 reg_class_superunion[i][j] = (enum reg_class) k;
382 /* Initialize the tables of subclasses and superclasses of each reg class.
383 First clear the whole table, then add the elements as they are found. */
385 for (i = 0; i < N_REG_CLASSES; i++)
387 for (j = 0; j < N_REG_CLASSES; j++)
389 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
390 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
394 for (i = 0; i < N_REG_CLASSES; i++)
396 if (i == (int) NO_REGS)
397 continue;
399 for (j = i + 1; j < N_REG_CLASSES; j++)
401 enum reg_class *p;
403 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
404 subclass);
405 continue;
406 subclass:
407 /* Reg class I is a subclass of J.
408 Add J to the table of superclasses of I. */
409 p = &reg_class_superclasses[i][0];
410 while (*p != LIM_REG_CLASSES) p++;
411 *p = (enum reg_class) j;
412 /* Add I to the table of superclasses of J. */
413 p = &reg_class_subclasses[j][0];
414 while (*p != LIM_REG_CLASSES) p++;
415 *p = (enum reg_class) i;
419 /* Initialize "constant" tables. */
421 CLEAR_HARD_REG_SET (fixed_reg_set);
422 CLEAR_HARD_REG_SET (call_used_reg_set);
423 CLEAR_HARD_REG_SET (call_fixed_reg_set);
424 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
426 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
428 n_non_fixed_regs = 0;
430 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
432 /* call_used_regs must include fixed_regs. */
433 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
434 #ifdef CALL_REALLY_USED_REGISTERS
435 /* call_used_regs must include call_really_used_regs. */
436 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
437 #endif
439 if (fixed_regs[i])
440 SET_HARD_REG_BIT (fixed_reg_set, i);
441 else
442 n_non_fixed_regs++;
444 if (call_used_regs[i])
445 SET_HARD_REG_BIT (call_used_reg_set, i);
446 if (call_fixed_regs[i])
447 SET_HARD_REG_BIT (call_fixed_reg_set, i);
448 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
449 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
451 /* There are a couple of fixed registers that we know are safe to
452 exclude from being clobbered by calls:
454 The frame pointer is always preserved across calls. The arg pointer
455 is if it is fixed. The stack pointer usually is, unless
456 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
457 If we are generating PIC code, the PIC offset table register is
458 preserved across calls, though the target can override that. */
460 if (i == STACK_POINTER_REGNUM)
462 else if (global_regs[i])
463 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
464 else if (i == FRAME_POINTER_REGNUM)
466 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
467 else if (i == HARD_FRAME_POINTER_REGNUM)
469 #endif
470 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
471 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
473 #endif
474 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
475 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
477 #endif
478 else if (CALL_REALLY_USED_REGNO_P (i))
479 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
482 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
483 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
484 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
485 for (i = 0; i < N_REG_CLASSES; i++)
486 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
487 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
488 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
489 && HARD_REGNO_MODE_OK (j, m))
491 contains_reg_of_mode [i][m] = 1;
492 have_regs_of_mode [m] = 1;
493 break;
496 /* Initialize the move cost table. Find every subset of each class
497 and take the maximum cost of moving any subset to any other. */
499 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
500 if (have_regs_of_mode [m])
502 for (i = 0; i < N_REG_CLASSES; i++)
503 if (contains_reg_of_mode [i][m])
504 for (j = 0; j < N_REG_CLASSES; j++)
506 int cost;
507 enum reg_class *p1, *p2;
509 if (!contains_reg_of_mode [j][m])
511 move_cost[m][i][j] = 65536;
512 may_move_in_cost[m][i][j] = 65536;
513 may_move_out_cost[m][i][j] = 65536;
515 else
517 cost = REGISTER_MOVE_COST (m, i, j);
519 for (p2 = &reg_class_subclasses[j][0];
520 *p2 != LIM_REG_CLASSES;
521 p2++)
522 if (*p2 != i && contains_reg_of_mode [*p2][m])
523 cost = MAX (cost, move_cost [m][i][*p2]);
525 for (p1 = &reg_class_subclasses[i][0];
526 *p1 != LIM_REG_CLASSES;
527 p1++)
528 if (*p1 != j && contains_reg_of_mode [*p1][m])
529 cost = MAX (cost, move_cost [m][*p1][j]);
531 move_cost[m][i][j] = cost;
533 if (reg_class_subset_p (i, j))
534 may_move_in_cost[m][i][j] = 0;
535 else
536 may_move_in_cost[m][i][j] = cost;
538 if (reg_class_subset_p (j, i))
539 may_move_out_cost[m][i][j] = 0;
540 else
541 may_move_out_cost[m][i][j] = cost;
544 else
545 for (j = 0; j < N_REG_CLASSES; j++)
547 move_cost[m][i][j] = 65536;
548 may_move_in_cost[m][i][j] = 65536;
549 may_move_out_cost[m][i][j] = 65536;
554 /* Compute the table of register modes.
555 These values are used to record death information for individual registers
556 (as opposed to a multi-register mode). */
558 void
559 init_reg_modes_once (void)
561 int i, j;
563 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
564 for (j = 0; j < MAX_MACHINE_MODE; j++)
565 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
567 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
569 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
571 /* If we couldn't find a valid mode, just use the previous mode.
572 ??? One situation in which we need to do this is on the mips where
573 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
574 to use DF mode for the even registers and VOIDmode for the odd
575 (for the cpu models where the odd ones are inaccessible). */
576 if (reg_raw_mode[i] == VOIDmode)
577 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
581 /* Finish initializing the register sets and
582 initialize the register modes. */
584 void
585 init_regs (void)
587 /* This finishes what was started by init_reg_sets, but couldn't be done
588 until after register usage was specified. */
589 init_reg_sets_1 ();
591 init_reg_autoinc ();
594 /* Initialize some fake stack-frame MEM references for use in
595 memory_move_secondary_cost. */
597 void
598 init_fake_stack_mems (void)
600 #ifdef HAVE_SECONDARY_RELOADS
602 int i;
604 for (i = 0; i < MAX_MACHINE_MODE; i++)
605 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
607 #endif
610 #ifdef HAVE_SECONDARY_RELOADS
612 /* Compute extra cost of moving registers to/from memory due to reloads.
613 Only needed if secondary reloads are required for memory moves. */
616 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
618 enum reg_class altclass;
619 int partial_cost = 0;
620 /* We need a memory reference to feed to SECONDARY... macros. */
621 /* mem may be unused even if the SECONDARY_ macros are defined. */
622 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
625 if (in)
627 #ifdef SECONDARY_INPUT_RELOAD_CLASS
628 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
629 #else
630 altclass = NO_REGS;
631 #endif
633 else
635 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
636 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
637 #else
638 altclass = NO_REGS;
639 #endif
642 if (altclass == NO_REGS)
643 return 0;
645 if (in)
646 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
647 else
648 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
650 if (class == altclass)
651 /* This isn't simply a copy-to-temporary situation. Can't guess
652 what it is, so MEMORY_MOVE_COST really ought not to be calling
653 here in that case.
655 I'm tempted to put in an assert here, but returning this will
656 probably only give poor estimates, which is what we would've
657 had before this code anyways. */
658 return partial_cost;
660 /* Check if the secondary reload register will also need a
661 secondary reload. */
662 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
664 #endif
666 /* Return a machine mode that is legitimate for hard reg REGNO and large
667 enough to save nregs. If we can't find one, return VOIDmode.
668 If CALL_SAVED is true, only consider modes that are call saved. */
670 enum machine_mode
671 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
672 unsigned int nregs, bool call_saved)
674 unsigned int /* enum machine_mode */ m;
675 enum machine_mode found_mode = VOIDmode, mode;
677 /* We first look for the largest integer mode that can be validly
678 held in REGNO. If none, we look for the largest floating-point mode.
679 If we still didn't find a valid mode, try CCmode. */
681 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
682 mode != VOIDmode;
683 mode = GET_MODE_WIDER_MODE (mode))
684 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
685 && HARD_REGNO_MODE_OK (regno, mode)
686 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
687 found_mode = mode;
689 if (found_mode != VOIDmode)
690 return found_mode;
692 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
693 mode != VOIDmode;
694 mode = GET_MODE_WIDER_MODE (mode))
695 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
696 && HARD_REGNO_MODE_OK (regno, mode)
697 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
698 found_mode = mode;
700 if (found_mode != VOIDmode)
701 return found_mode;
703 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
704 mode != VOIDmode;
705 mode = GET_MODE_WIDER_MODE (mode))
706 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
707 && HARD_REGNO_MODE_OK (regno, mode)
708 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
709 found_mode = mode;
711 if (found_mode != VOIDmode)
712 return found_mode;
714 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
715 mode != VOIDmode;
716 mode = GET_MODE_WIDER_MODE (mode))
717 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
718 && HARD_REGNO_MODE_OK (regno, mode)
719 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
720 found_mode = mode;
722 if (found_mode != VOIDmode)
723 return found_mode;
725 /* Iterate over all of the CCmodes. */
726 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
728 mode = (enum machine_mode) m;
729 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
730 && HARD_REGNO_MODE_OK (regno, mode)
731 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
732 return mode;
735 /* We can't find a mode valid for this register. */
736 return VOIDmode;
739 /* Specify the usage characteristics of the register named NAME.
740 It should be a fixed register if FIXED and a
741 call-used register if CALL_USED. */
743 void
744 fix_register (const char *name, int fixed, int call_used)
746 int i;
748 /* Decode the name and update the primary form of
749 the register info. */
751 if ((i = decode_reg_name (name)) >= 0)
753 if ((i == STACK_POINTER_REGNUM
754 #ifdef HARD_FRAME_POINTER_REGNUM
755 || i == HARD_FRAME_POINTER_REGNUM
756 #else
757 || i == FRAME_POINTER_REGNUM
758 #endif
760 && (fixed == 0 || call_used == 0))
762 static const char * const what_option[2][2] = {
763 { "call-saved", "call-used" },
764 { "no-such-option", "fixed" }};
766 error ("can't use '%s' as a %s register", name,
767 what_option[fixed][call_used]);
769 else
771 fixed_regs[i] = fixed;
772 call_used_regs[i] = call_used;
773 #ifdef CALL_REALLY_USED_REGISTERS
774 if (fixed == 0)
775 call_really_used_regs[i] = call_used;
776 #endif
779 else
781 warning ("unknown register name: %s", name);
785 /* Mark register number I as global. */
787 void
788 globalize_reg (int i)
790 if (fixed_regs[i] == 0 && no_global_reg_vars)
791 error ("global register variable follows a function definition");
793 if (global_regs[i])
795 warning ("register used for two global register variables");
796 return;
799 if (call_used_regs[i] && ! fixed_regs[i])
800 warning ("call-clobbered register used for global register variable");
802 global_regs[i] = 1;
804 /* If we're globalizing the frame pointer, we need to set the
805 appropriate regs_invalidated_by_call bit, even if it's already
806 set in fixed_regs. */
807 if (i != STACK_POINTER_REGNUM)
808 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
810 /* If already fixed, nothing else to do. */
811 if (fixed_regs[i])
812 return;
814 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
815 #ifdef CALL_REALLY_USED_REGISTERS
816 call_really_used_regs[i] = 1;
817 #endif
818 n_non_fixed_regs--;
820 SET_HARD_REG_BIT (fixed_reg_set, i);
821 SET_HARD_REG_BIT (call_used_reg_set, i);
822 SET_HARD_REG_BIT (call_fixed_reg_set, i);
825 /* Now the data and code for the `regclass' pass, which happens
826 just before local-alloc. */
828 /* The `costs' struct records the cost of using a hard register of each class
829 and of using memory for each pseudo. We use this data to set up
830 register class preferences. */
832 struct costs
834 int cost[N_REG_CLASSES];
835 int mem_cost;
838 /* Structure used to record preferences of given pseudo. */
839 struct reg_pref
841 /* (enum reg_class) prefclass is the preferred class. */
842 char prefclass;
844 /* altclass is a register class that we should use for allocating
845 pseudo if no register in the preferred class is available.
846 If no register in this class is available, memory is preferred.
848 It might appear to be more general to have a bitmask of classes here,
849 but since it is recommended that there be a class corresponding to the
850 union of most major pair of classes, that generality is not required. */
851 char altclass;
854 /* Record the cost of each class for each pseudo. */
856 static struct costs *costs;
858 /* Initialized once, and used to initialize cost values for each insn. */
860 static struct costs init_cost;
862 /* Record preferences of each pseudo.
863 This is available after `regclass' is run. */
865 static struct reg_pref *reg_pref;
867 /* Allocated buffers for reg_pref. */
869 static struct reg_pref *reg_pref_buffer;
871 /* Frequency of executions of current insn. */
873 static int frequency;
875 static rtx scan_one_insn (rtx, int);
876 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
877 static void dump_regclass (FILE *);
878 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
879 const char **, rtx, struct costs *,
880 struct reg_pref *);
881 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
882 static void record_address_regs (rtx, enum reg_class, int);
883 #ifdef FORBIDDEN_INC_DEC_CLASSES
884 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
885 #endif
886 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
888 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
889 This function is sometimes called before the info has been computed.
890 When that happens, just return GENERAL_REGS, which is innocuous. */
892 enum reg_class
893 reg_preferred_class (int regno)
895 if (reg_pref == 0)
896 return GENERAL_REGS;
897 return (enum reg_class) reg_pref[regno].prefclass;
900 enum reg_class
901 reg_alternate_class (int regno)
903 if (reg_pref == 0)
904 return ALL_REGS;
906 return (enum reg_class) reg_pref[regno].altclass;
909 /* Initialize some global data for this pass. */
911 void
912 regclass_init (void)
914 int i;
916 init_cost.mem_cost = 10000;
917 for (i = 0; i < N_REG_CLASSES; i++)
918 init_cost.cost[i] = 10000;
920 /* This prevents dump_flow_info from losing if called
921 before regclass is run. */
922 reg_pref = NULL;
924 /* No more global register variables may be declared. */
925 no_global_reg_vars = 1;
928 /* Dump register costs. */
929 static void
930 dump_regclass (FILE *dump)
932 int i;
933 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
935 int /* enum reg_class */ class;
936 if (REG_N_REFS (i))
938 fprintf (dump, " Register %i costs:", i);
939 for (class = 0; class < (int) N_REG_CLASSES; class++)
940 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
941 #ifdef FORBIDDEN_INC_DEC_CLASSES
942 && (!in_inc_dec[i]
943 || !forbidden_inc_dec_class[(enum reg_class) class])
944 #endif
945 #ifdef CANNOT_CHANGE_MODE_CLASS
946 && ! invalid_mode_change_p (i, (enum reg_class) class,
947 PSEUDO_REGNO_MODE (i))
948 #endif
950 fprintf (dump, " %s:%i", reg_class_names[class],
951 costs[i].cost[(enum reg_class) class]);
952 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
958 /* Calculate the costs of insn operands. */
960 static void
961 record_operand_costs (rtx insn, struct costs *op_costs,
962 struct reg_pref *reg_pref)
964 const char *constraints[MAX_RECOG_OPERANDS];
965 enum machine_mode modes[MAX_RECOG_OPERANDS];
966 int i;
968 for (i = 0; i < recog_data.n_operands; i++)
970 constraints[i] = recog_data.constraints[i];
971 modes[i] = recog_data.operand_mode[i];
974 /* If we get here, we are set up to record the costs of all the
975 operands for this insn. Start by initializing the costs.
976 Then handle any address registers. Finally record the desired
977 classes for any pseudos, doing it twice if some pair of
978 operands are commutative. */
980 for (i = 0; i < recog_data.n_operands; i++)
982 op_costs[i] = init_cost;
984 if (GET_CODE (recog_data.operand[i]) == SUBREG)
985 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
987 if (MEM_P (recog_data.operand[i]))
988 record_address_regs (XEXP (recog_data.operand[i], 0),
989 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
990 else if (constraints[i][0] == 'p'
991 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
992 record_address_regs (recog_data.operand[i],
993 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
996 /* Check for commutative in a separate loop so everything will
997 have been initialized. We must do this even if one operand
998 is a constant--see addsi3 in m68k.md. */
1000 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1001 if (constraints[i][0] == '%')
1003 const char *xconstraints[MAX_RECOG_OPERANDS];
1004 int j;
1006 /* Handle commutative operands by swapping the constraints.
1007 We assume the modes are the same. */
1009 for (j = 0; j < recog_data.n_operands; j++)
1010 xconstraints[j] = constraints[j];
1012 xconstraints[i] = constraints[i+1];
1013 xconstraints[i+1] = constraints[i];
1014 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1015 recog_data.operand, modes,
1016 xconstraints, insn, op_costs, reg_pref);
1019 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1020 recog_data.operand, modes,
1021 constraints, insn, op_costs, reg_pref);
1024 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1025 time it would save code to put a certain register in a certain class.
1026 PASS, when nonzero, inhibits some optimizations which need only be done
1027 once.
1028 Return the last insn processed, so that the scan can be continued from
1029 there. */
1031 static rtx
1032 scan_one_insn (rtx insn, int pass)
1034 enum rtx_code pat_code;
1035 rtx set, note;
1036 int i, j;
1037 struct costs op_costs[MAX_RECOG_OPERANDS];
1039 if (!INSN_P (insn))
1040 return insn;
1042 pat_code = GET_CODE (PATTERN (insn));
1043 if (pat_code == USE
1044 || pat_code == CLOBBER
1045 || pat_code == ASM_INPUT
1046 || pat_code == ADDR_VEC
1047 || pat_code == ADDR_DIFF_VEC)
1048 return insn;
1050 set = single_set (insn);
1051 extract_insn (insn);
1053 /* If this insn loads a parameter from its stack slot, then
1054 it represents a savings, rather than a cost, if the
1055 parameter is stored in memory. Record this fact. */
1057 if (set != 0 && REG_P (SET_DEST (set))
1058 && MEM_P (SET_SRC (set))
1059 && (note = find_reg_note (insn, REG_EQUIV,
1060 NULL_RTX)) != 0
1061 && MEM_P (XEXP (note, 0)))
1063 costs[REGNO (SET_DEST (set))].mem_cost
1064 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1065 GENERAL_REGS, 1)
1066 * frequency);
1067 record_address_regs (XEXP (SET_SRC (set), 0),
1068 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1069 return insn;
1072 /* Improve handling of two-address insns such as
1073 (set X (ashift CONST Y)) where CONST must be made to
1074 match X. Change it into two insns: (set X CONST)
1075 (set X (ashift X Y)). If we left this for reloading, it
1076 would probably get three insns because X and Y might go
1077 in the same place. This prevents X and Y from receiving
1078 the same hard reg.
1080 We can only do this if the modes of operands 0 and 1
1081 (which might not be the same) are tieable and we only need
1082 do this during our first pass. */
1084 if (pass == 0 && optimize
1085 && recog_data.n_operands >= 3
1086 && recog_data.constraints[1][0] == '0'
1087 && recog_data.constraints[1][1] == 0
1088 && CONSTANT_P (recog_data.operand[1])
1089 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1090 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1091 && REG_P (recog_data.operand[0])
1092 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1093 recog_data.operand_mode[1]))
1095 rtx previnsn = prev_real_insn (insn);
1096 rtx dest
1097 = gen_lowpart (recog_data.operand_mode[1],
1098 recog_data.operand[0]);
1099 rtx newinsn
1100 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1102 /* If this insn was the start of a basic block,
1103 include the new insn in that block.
1104 We need not check for code_label here;
1105 while a basic block can start with a code_label,
1106 INSN could not be at the beginning of that block. */
1107 if (previnsn == 0 || JUMP_P (previnsn))
1109 basic_block b;
1110 FOR_EACH_BB (b)
1111 if (insn == BB_HEAD (b))
1112 BB_HEAD (b) = newinsn;
1115 /* This makes one more setting of new insns's dest. */
1116 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1117 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1118 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1120 *recog_data.operand_loc[1] = recog_data.operand[0];
1121 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1122 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1123 for (i = recog_data.n_dups - 1; i >= 0; i--)
1124 if (recog_data.dup_num[i] == 1)
1126 *recog_data.dup_loc[i] = recog_data.operand[0];
1127 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1128 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1131 return PREV_INSN (newinsn);
1134 record_operand_costs (insn, op_costs, reg_pref);
1136 /* Now add the cost for each operand to the total costs for
1137 its register. */
1139 for (i = 0; i < recog_data.n_operands; i++)
1140 if (REG_P (recog_data.operand[i])
1141 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1143 int regno = REGNO (recog_data.operand[i]);
1144 struct costs *p = &costs[regno], *q = &op_costs[i];
1146 p->mem_cost += q->mem_cost * frequency;
1147 for (j = 0; j < N_REG_CLASSES; j++)
1148 p->cost[j] += q->cost[j] * frequency;
1151 return insn;
1154 /* Initialize information about which register classes can be used for
1155 pseudos that are auto-incremented or auto-decremented. */
1157 static void
1158 init_reg_autoinc (void)
1160 #ifdef FORBIDDEN_INC_DEC_CLASSES
1161 int i;
1163 for (i = 0; i < N_REG_CLASSES; i++)
1165 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1166 enum machine_mode m;
1167 int j;
1169 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1170 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1172 REGNO (r) = j;
1174 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1175 m = (enum machine_mode) ((int) m + 1))
1176 if (HARD_REGNO_MODE_OK (j, m))
1178 PUT_MODE (r, m);
1180 /* If a register is not directly suitable for an
1181 auto-increment or decrement addressing mode and
1182 requires secondary reloads, disallow its class from
1183 being used in such addresses. */
1185 if ((0
1186 #ifdef SECONDARY_RELOAD_CLASS
1187 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1188 != NO_REGS)
1189 #else
1190 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1191 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1192 != NO_REGS)
1193 #endif
1194 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1195 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1196 != NO_REGS)
1197 #endif
1198 #endif
1200 && ! auto_inc_dec_reg_p (r, m))
1201 forbidden_inc_dec_class[i] = 1;
1205 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1208 /* This is a pass of the compiler that scans all instructions
1209 and calculates the preferred class for each pseudo-register.
1210 This information can be accessed later by calling `reg_preferred_class'.
1211 This pass comes just before local register allocation. */
1213 void
1214 regclass (rtx f, int nregs, FILE *dump)
1216 rtx insn;
1217 int i;
1218 int pass;
1220 init_recog ();
1222 costs = xmalloc (nregs * sizeof (struct costs));
1224 #ifdef FORBIDDEN_INC_DEC_CLASSES
1226 in_inc_dec = xmalloc (nregs);
1228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1230 /* Normally we scan the insns once and determine the best class to use for
1231 each register. However, if -fexpensive_optimizations are on, we do so
1232 twice, the second time using the tentative best classes to guide the
1233 selection. */
1235 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1237 basic_block bb;
1239 if (dump)
1240 fprintf (dump, "\n\nPass %i\n\n",pass);
1241 /* Zero out our accumulation of the cost of each class for each reg. */
1243 memset (costs, 0, nregs * sizeof (struct costs));
1245 #ifdef FORBIDDEN_INC_DEC_CLASSES
1246 memset (in_inc_dec, 0, nregs);
1247 #endif
1249 /* Scan the instructions and record each time it would
1250 save code to put a certain register in a certain class. */
1252 if (!optimize)
1254 frequency = REG_FREQ_MAX;
1255 for (insn = f; insn; insn = NEXT_INSN (insn))
1256 insn = scan_one_insn (insn, pass);
1258 else
1259 FOR_EACH_BB (bb)
1261 /* Show that an insn inside a loop is likely to be executed three
1262 times more than insns outside a loop. This is much more
1263 aggressive than the assumptions made elsewhere and is being
1264 tried as an experiment. */
1265 frequency = REG_FREQ_FROM_BB (bb);
1266 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1268 insn = scan_one_insn (insn, pass);
1269 if (insn == BB_END (bb))
1270 break;
1274 /* Now for each register look at how desirable each class is
1275 and find which class is preferred. Store that in
1276 `prefclass'. Record in `altclass' the largest register
1277 class any of whose registers is better than memory. */
1279 if (pass == 0)
1280 reg_pref = reg_pref_buffer;
1282 if (dump)
1284 dump_regclass (dump);
1285 fprintf (dump,"\n");
1287 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1289 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1290 enum reg_class best = ALL_REGS, alt = NO_REGS;
1291 /* This is an enum reg_class, but we call it an int
1292 to save lots of casts. */
1293 int class;
1294 struct costs *p = &costs[i];
1296 /* In non-optimizing compilation REG_N_REFS is not initialized
1297 yet. */
1298 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1299 continue;
1301 for (class = (int) ALL_REGS - 1; class > 0; class--)
1303 /* Ignore classes that are too small for this operand or
1304 invalid for an operand that was auto-incremented. */
1305 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1306 #ifdef FORBIDDEN_INC_DEC_CLASSES
1307 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1308 #endif
1309 #ifdef CANNOT_CHANGE_MODE_CLASS
1310 || invalid_mode_change_p (i, (enum reg_class) class,
1311 PSEUDO_REGNO_MODE (i))
1312 #endif
1315 else if (p->cost[class] < best_cost)
1317 best_cost = p->cost[class];
1318 best = (enum reg_class) class;
1320 else if (p->cost[class] == best_cost)
1321 best = reg_class_subunion[(int) best][class];
1324 /* Record the alternate register class; i.e., a class for which
1325 every register in it is better than using memory. If adding a
1326 class would make a smaller class (i.e., no union of just those
1327 classes exists), skip that class. The major unions of classes
1328 should be provided as a register class. Don't do this if we
1329 will be doing it again later. */
1331 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1332 for (class = 0; class < N_REG_CLASSES; class++)
1333 if (p->cost[class] < p->mem_cost
1334 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1335 > reg_class_size[(int) alt])
1336 #ifdef FORBIDDEN_INC_DEC_CLASSES
1337 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1338 #endif
1339 #ifdef CANNOT_CHANGE_MODE_CLASS
1340 && ! invalid_mode_change_p (i, (enum reg_class) class,
1341 PSEUDO_REGNO_MODE (i))
1342 #endif
1344 alt = reg_class_subunion[(int) alt][class];
1346 /* If we don't add any classes, nothing to try. */
1347 if (alt == best)
1348 alt = NO_REGS;
1350 if (dump
1351 && (reg_pref[i].prefclass != (int) best
1352 || reg_pref[i].altclass != (int) alt))
1354 fprintf (dump, " Register %i", i);
1355 if (alt == ALL_REGS || best == ALL_REGS)
1356 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1357 else if (alt == NO_REGS)
1358 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1359 else
1360 fprintf (dump, " pref %s, else %s\n",
1361 reg_class_names[(int) best],
1362 reg_class_names[(int) alt]);
1365 /* We cast to (int) because (char) hits bugs in some compilers. */
1366 reg_pref[i].prefclass = (int) best;
1367 reg_pref[i].altclass = (int) alt;
1371 #ifdef FORBIDDEN_INC_DEC_CLASSES
1372 free (in_inc_dec);
1373 #endif
1374 free (costs);
1377 /* Record the cost of using memory or registers of various classes for
1378 the operands in INSN.
1380 N_ALTS is the number of alternatives.
1382 N_OPS is the number of operands.
1384 OPS is an array of the operands.
1386 MODES are the modes of the operands, in case any are VOIDmode.
1388 CONSTRAINTS are the constraints to use for the operands. This array
1389 is modified by this procedure.
1391 This procedure works alternative by alternative. For each alternative
1392 we assume that we will be able to allocate all pseudos to their ideal
1393 register class and calculate the cost of using that alternative. Then
1394 we compute for each operand that is a pseudo-register, the cost of
1395 having the pseudo allocated to each register class and using it in that
1396 alternative. To this cost is added the cost of the alternative.
1398 The cost of each class for this insn is its lowest cost among all the
1399 alternatives. */
1401 static void
1402 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1403 enum machine_mode *modes, const char **constraints,
1404 rtx insn, struct costs *op_costs,
1405 struct reg_pref *reg_pref)
1407 int alt;
1408 int i, j;
1409 rtx set;
1411 /* Process each alternative, each time minimizing an operand's cost with
1412 the cost for each operand in that alternative. */
1414 for (alt = 0; alt < n_alts; alt++)
1416 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1417 int alt_fail = 0;
1418 int alt_cost = 0;
1419 enum reg_class classes[MAX_RECOG_OPERANDS];
1420 int allows_mem[MAX_RECOG_OPERANDS];
1421 int class;
1423 for (i = 0; i < n_ops; i++)
1425 const char *p = constraints[i];
1426 rtx op = ops[i];
1427 enum machine_mode mode = modes[i];
1428 int allows_addr = 0;
1429 int win = 0;
1430 unsigned char c;
1432 /* Initially show we know nothing about the register class. */
1433 classes[i] = NO_REGS;
1434 allows_mem[i] = 0;
1436 /* If this operand has no constraints at all, we can conclude
1437 nothing about it since anything is valid. */
1439 if (*p == 0)
1441 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1442 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1444 continue;
1447 /* If this alternative is only relevant when this operand
1448 matches a previous operand, we do different things depending
1449 on whether this operand is a pseudo-reg or not. We must process
1450 any modifiers for the operand before we can make this test. */
1452 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1453 p++;
1455 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1457 /* Copy class and whether memory is allowed from the matching
1458 alternative. Then perform any needed cost computations
1459 and/or adjustments. */
1460 j = p[0] - '0';
1461 classes[i] = classes[j];
1462 allows_mem[i] = allows_mem[j];
1464 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1466 /* If this matches the other operand, we have no added
1467 cost and we win. */
1468 if (rtx_equal_p (ops[j], op))
1469 win = 1;
1471 /* If we can put the other operand into a register, add to
1472 the cost of this alternative the cost to copy this
1473 operand to the register used for the other operand. */
1475 else if (classes[j] != NO_REGS)
1476 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1478 else if (!REG_P (ops[j])
1479 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1481 /* This op is a pseudo but the one it matches is not. */
1483 /* If we can't put the other operand into a register, this
1484 alternative can't be used. */
1486 if (classes[j] == NO_REGS)
1487 alt_fail = 1;
1489 /* Otherwise, add to the cost of this alternative the cost
1490 to copy the other operand to the register used for this
1491 operand. */
1493 else
1494 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1496 else
1498 /* The costs of this operand are not the same as the other
1499 operand since move costs are not symmetric. Moreover,
1500 if we cannot tie them, this alternative needs to do a
1501 copy, which is one instruction. */
1503 struct costs *pp = &this_op_costs[i];
1505 for (class = 0; class < N_REG_CLASSES; class++)
1506 pp->cost[class]
1507 = ((recog_data.operand_type[i] != OP_OUT
1508 ? may_move_in_cost[mode][class][(int) classes[i]]
1509 : 0)
1510 + (recog_data.operand_type[i] != OP_IN
1511 ? may_move_out_cost[mode][(int) classes[i]][class]
1512 : 0));
1514 /* If the alternative actually allows memory, make things
1515 a bit cheaper since we won't need an extra insn to
1516 load it. */
1518 pp->mem_cost
1519 = ((recog_data.operand_type[i] != OP_IN
1520 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1521 : 0)
1522 + (recog_data.operand_type[i] != OP_OUT
1523 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1524 : 0) - allows_mem[i]);
1526 /* If we have assigned a class to this register in our
1527 first pass, add a cost to this alternative corresponding
1528 to what we would add if this register were not in the
1529 appropriate class. */
1531 if (reg_pref)
1532 alt_cost
1533 += (may_move_in_cost[mode]
1534 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1535 [(int) classes[i]]);
1537 if (REGNO (ops[i]) != REGNO (ops[j])
1538 && ! find_reg_note (insn, REG_DEAD, op))
1539 alt_cost += 2;
1541 /* This is in place of ordinary cost computation
1542 for this operand, so skip to the end of the
1543 alternative (should be just one character). */
1544 while (*p && *p++ != ',')
1547 constraints[i] = p;
1548 continue;
1552 /* Scan all the constraint letters. See if the operand matches
1553 any of the constraints. Collect the valid register classes
1554 and see if this operand accepts memory. */
1556 while ((c = *p))
1558 switch (c)
1560 case ',':
1561 break;
1562 case '*':
1563 /* Ignore the next letter for this pass. */
1564 c = *++p;
1565 break;
1567 case '?':
1568 alt_cost += 2;
1569 case '!': case '#': case '&':
1570 case '0': case '1': case '2': case '3': case '4':
1571 case '5': case '6': case '7': case '8': case '9':
1572 break;
1574 case 'p':
1575 allows_addr = 1;
1576 win = address_operand (op, GET_MODE (op));
1577 /* We know this operand is an address, so we want it to be
1578 allocated to a register that can be the base of an
1579 address, i.e. BASE_REG_CLASS. */
1580 classes[i]
1581 = reg_class_subunion[(int) classes[i]]
1582 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1583 break;
1585 case 'm': case 'o': case 'V':
1586 /* It doesn't seem worth distinguishing between offsettable
1587 and non-offsettable addresses here. */
1588 allows_mem[i] = 1;
1589 if (MEM_P (op))
1590 win = 1;
1591 break;
1593 case '<':
1594 if (MEM_P (op)
1595 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1596 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1597 win = 1;
1598 break;
1600 case '>':
1601 if (MEM_P (op)
1602 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1603 || GET_CODE (XEXP (op, 0)) == POST_INC))
1604 win = 1;
1605 break;
1607 case 'E':
1608 case 'F':
1609 if (GET_CODE (op) == CONST_DOUBLE
1610 || (GET_CODE (op) == CONST_VECTOR
1611 && (GET_MODE_CLASS (GET_MODE (op))
1612 == MODE_VECTOR_FLOAT)))
1613 win = 1;
1614 break;
1616 case 'G':
1617 case 'H':
1618 if (GET_CODE (op) == CONST_DOUBLE
1619 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1620 win = 1;
1621 break;
1623 case 's':
1624 if (GET_CODE (op) == CONST_INT
1625 || (GET_CODE (op) == CONST_DOUBLE
1626 && GET_MODE (op) == VOIDmode))
1627 break;
1628 case 'i':
1629 if (CONSTANT_P (op)
1630 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1631 win = 1;
1632 break;
1634 case 'n':
1635 if (GET_CODE (op) == CONST_INT
1636 || (GET_CODE (op) == CONST_DOUBLE
1637 && GET_MODE (op) == VOIDmode))
1638 win = 1;
1639 break;
1641 case 'I':
1642 case 'J':
1643 case 'K':
1644 case 'L':
1645 case 'M':
1646 case 'N':
1647 case 'O':
1648 case 'P':
1649 if (GET_CODE (op) == CONST_INT
1650 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1651 win = 1;
1652 break;
1654 case 'X':
1655 win = 1;
1656 break;
1658 case 'g':
1659 if (MEM_P (op)
1660 || (CONSTANT_P (op)
1661 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1662 win = 1;
1663 allows_mem[i] = 1;
1664 case 'r':
1665 classes[i]
1666 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1667 break;
1669 default:
1670 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1671 classes[i]
1672 = reg_class_subunion[(int) classes[i]]
1673 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1674 #ifdef EXTRA_CONSTRAINT_STR
1675 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1676 win = 1;
1678 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1680 /* Every MEM can be reloaded to fit. */
1681 allows_mem[i] = 1;
1682 if (MEM_P (op))
1683 win = 1;
1685 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1687 /* Every address can be reloaded to fit. */
1688 allows_addr = 1;
1689 if (address_operand (op, GET_MODE (op)))
1690 win = 1;
1691 /* We know this operand is an address, so we want it to
1692 be allocated to a register that can be the base of an
1693 address, i.e. BASE_REG_CLASS. */
1694 classes[i]
1695 = reg_class_subunion[(int) classes[i]]
1696 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1698 #endif
1699 break;
1701 p += CONSTRAINT_LEN (c, p);
1702 if (c == ',')
1703 break;
1706 constraints[i] = p;
1708 /* How we account for this operand now depends on whether it is a
1709 pseudo register or not. If it is, we first check if any
1710 register classes are valid. If not, we ignore this alternative,
1711 since we want to assume that all pseudos get allocated for
1712 register preferencing. If some register class is valid, compute
1713 the costs of moving the pseudo into that class. */
1715 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1717 if (classes[i] == NO_REGS)
1719 /* We must always fail if the operand is a REG, but
1720 we did not find a suitable class.
1722 Otherwise we may perform an uninitialized read
1723 from this_op_costs after the `continue' statement
1724 below. */
1725 alt_fail = 1;
1727 else
1729 struct costs *pp = &this_op_costs[i];
1731 for (class = 0; class < N_REG_CLASSES; class++)
1732 pp->cost[class]
1733 = ((recog_data.operand_type[i] != OP_OUT
1734 ? may_move_in_cost[mode][class][(int) classes[i]]
1735 : 0)
1736 + (recog_data.operand_type[i] != OP_IN
1737 ? may_move_out_cost[mode][(int) classes[i]][class]
1738 : 0));
1740 /* If the alternative actually allows memory, make things
1741 a bit cheaper since we won't need an extra insn to
1742 load it. */
1744 pp->mem_cost
1745 = ((recog_data.operand_type[i] != OP_IN
1746 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1747 : 0)
1748 + (recog_data.operand_type[i] != OP_OUT
1749 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1750 : 0) - allows_mem[i]);
1752 /* If we have assigned a class to this register in our
1753 first pass, add a cost to this alternative corresponding
1754 to what we would add if this register were not in the
1755 appropriate class. */
1757 if (reg_pref)
1758 alt_cost
1759 += (may_move_in_cost[mode]
1760 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1761 [(int) classes[i]]);
1765 /* Otherwise, if this alternative wins, either because we
1766 have already determined that or if we have a hard register of
1767 the proper class, there is no cost for this alternative. */
1769 else if (win
1770 || (REG_P (op)
1771 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1774 /* If registers are valid, the cost of this alternative includes
1775 copying the object to and/or from a register. */
1777 else if (classes[i] != NO_REGS)
1779 if (recog_data.operand_type[i] != OP_OUT)
1780 alt_cost += copy_cost (op, mode, classes[i], 1);
1782 if (recog_data.operand_type[i] != OP_IN)
1783 alt_cost += copy_cost (op, mode, classes[i], 0);
1786 /* The only other way this alternative can be used is if this is a
1787 constant that could be placed into memory. */
1789 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1790 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1791 else
1792 alt_fail = 1;
1795 if (alt_fail)
1796 continue;
1798 /* Finally, update the costs with the information we've calculated
1799 about this alternative. */
1801 for (i = 0; i < n_ops; i++)
1802 if (REG_P (ops[i])
1803 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1805 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1806 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1808 pp->mem_cost = MIN (pp->mem_cost,
1809 (qq->mem_cost + alt_cost) * scale);
1811 for (class = 0; class < N_REG_CLASSES; class++)
1812 pp->cost[class] = MIN (pp->cost[class],
1813 (qq->cost[class] + alt_cost) * scale);
1817 /* If this insn is a single set copying operand 1 to operand 0
1818 and one operand is a pseudo with the other a hard reg or a pseudo
1819 that prefers a register that is in its own register class then
1820 we may want to adjust the cost of that register class to -1.
1822 Avoid the adjustment if the source does not die to avoid stressing of
1823 register allocator by preferrencing two colliding registers into single
1824 class.
1826 Also avoid the adjustment if a copy between registers of the class
1827 is expensive (ten times the cost of a default copy is considered
1828 arbitrarily expensive). This avoids losing when the preferred class
1829 is very expensive as the source of a copy instruction. */
1831 if ((set = single_set (insn)) != 0
1832 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1833 && REG_P (ops[0]) && REG_P (ops[1])
1834 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1835 for (i = 0; i <= 1; i++)
1836 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 unsigned int regno = REGNO (ops[!i]);
1839 enum machine_mode mode = GET_MODE (ops[!i]);
1840 int class;
1841 unsigned int nr;
1843 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1845 enum reg_class pref = reg_pref[regno].prefclass;
1847 if ((reg_class_size[(unsigned char) pref]
1848 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1849 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1850 op_costs[i].cost[(unsigned char) pref] = -1;
1852 else if (regno < FIRST_PSEUDO_REGISTER)
1853 for (class = 0; class < N_REG_CLASSES; class++)
1854 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1855 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1857 if (reg_class_size[class] == 1)
1858 op_costs[i].cost[class] = -1;
1859 else
1861 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1863 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1864 regno + nr))
1865 break;
1868 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1869 op_costs[i].cost[class] = -1;
1875 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1876 TO_P is zero) a register of class CLASS in mode MODE.
1878 X must not be a pseudo. */
1880 static int
1881 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1882 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1884 #ifdef HAVE_SECONDARY_RELOADS
1885 enum reg_class secondary_class = NO_REGS;
1886 #endif
1888 /* If X is a SCRATCH, there is actually nothing to move since we are
1889 assuming optimal allocation. */
1891 if (GET_CODE (x) == SCRATCH)
1892 return 0;
1894 /* Get the class we will actually use for a reload. */
1895 class = PREFERRED_RELOAD_CLASS (x, class);
1897 #ifdef HAVE_SECONDARY_RELOADS
1898 /* If we need a secondary reload (we assume here that we are using
1899 the secondary reload as an intermediate, not a scratch register), the
1900 cost is that to load the input into the intermediate register, then
1901 to copy them. We use a special value of TO_P to avoid recursion. */
1903 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1904 if (to_p == 1)
1905 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1906 #endif
1908 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1909 if (! to_p)
1910 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1911 #endif
1913 if (secondary_class != NO_REGS)
1914 return (move_cost[mode][(int) secondary_class][(int) class]
1915 + copy_cost (x, mode, secondary_class, 2));
1916 #endif /* HAVE_SECONDARY_RELOADS */
1918 /* For memory, use the memory move cost, for (hard) registers, use the
1919 cost to move between the register classes, and use 2 for everything
1920 else (constants). */
1922 if (MEM_P (x) || class == NO_REGS)
1923 return MEMORY_MOVE_COST (mode, class, to_p);
1925 else if (REG_P (x))
1926 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1928 else
1929 /* If this is a constant, we may eventually want to call rtx_cost here. */
1930 return COSTS_N_INSNS (1);
1933 /* Record the pseudo registers we must reload into hard registers
1934 in a subexpression of a memory address, X.
1936 CLASS is the class that the register needs to be in and is either
1937 BASE_REG_CLASS or INDEX_REG_CLASS.
1939 SCALE is twice the amount to multiply the cost by (it is twice so we
1940 can represent half-cost adjustments). */
1942 static void
1943 record_address_regs (rtx x, enum reg_class class, int scale)
1945 enum rtx_code code = GET_CODE (x);
1947 switch (code)
1949 case CONST_INT:
1950 case CONST:
1951 case CC0:
1952 case PC:
1953 case SYMBOL_REF:
1954 case LABEL_REF:
1955 return;
1957 case PLUS:
1958 /* When we have an address that is a sum,
1959 we must determine whether registers are "base" or "index" regs.
1960 If there is a sum of two registers, we must choose one to be
1961 the "base". Luckily, we can use the REG_POINTER to make a good
1962 choice most of the time. We only need to do this on machines
1963 that can have two registers in an address and where the base
1964 and index register classes are different.
1966 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1967 that seems bogus since it should only be set when we are sure
1968 the register is being used as a pointer. */
1971 rtx arg0 = XEXP (x, 0);
1972 rtx arg1 = XEXP (x, 1);
1973 enum rtx_code code0 = GET_CODE (arg0);
1974 enum rtx_code code1 = GET_CODE (arg1);
1976 /* Look inside subregs. */
1977 if (code0 == SUBREG)
1978 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1979 if (code1 == SUBREG)
1980 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1982 /* If this machine only allows one register per address, it must
1983 be in the first operand. */
1985 if (MAX_REGS_PER_ADDRESS == 1)
1986 record_address_regs (arg0, class, scale);
1988 /* If index and base registers are the same on this machine, just
1989 record registers in any non-constant operands. We assume here,
1990 as well as in the tests below, that all addresses are in
1991 canonical form. */
1993 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1995 record_address_regs (arg0, class, scale);
1996 if (! CONSTANT_P (arg1))
1997 record_address_regs (arg1, class, scale);
2000 /* If the second operand is a constant integer, it doesn't change
2001 what class the first operand must be. */
2003 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2004 record_address_regs (arg0, class, scale);
2006 /* If the second operand is a symbolic constant, the first operand
2007 must be an index register. */
2009 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2010 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2012 /* If both operands are registers but one is already a hard register
2013 of index or reg-base class, give the other the class that the
2014 hard register is not. */
2016 else if (code0 == REG && code1 == REG
2017 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2018 && (REG_MODE_OK_FOR_REG_BASE_P (arg0, VOIDmode)
2019 || REG_OK_FOR_INDEX_P (arg0)))
2020 record_address_regs (arg1,
2021 REG_MODE_OK_FOR_REG_BASE_P (arg0, VOIDmode)
2022 ? INDEX_REG_CLASS
2023 : MODE_BASE_REG_REG_CLASS (VOIDmode),
2024 scale);
2025 else if (code0 == REG && code1 == REG
2026 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2027 && (REG_MODE_OK_FOR_REG_BASE_P (arg1, VOIDmode)
2028 || REG_OK_FOR_INDEX_P (arg1)))
2029 record_address_regs (arg0,
2030 REG_MODE_OK_FOR_REG_BASE_P (arg1, VOIDmode)
2031 ? INDEX_REG_CLASS
2032 : MODE_BASE_REG_REG_CLASS (VOIDmode),
2033 scale);
2035 /* If one operand is known to be a pointer, it must be the base
2036 with the other operand the index. Likewise if the other operand
2037 is a MULT. */
2039 else if ((code0 == REG && REG_POINTER (arg0))
2040 || code1 == MULT)
2042 record_address_regs (arg0, MODE_BASE_REG_REG_CLASS (VOIDmode),
2043 scale);
2044 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2046 else if ((code1 == REG && REG_POINTER (arg1))
2047 || code0 == MULT)
2049 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2050 record_address_regs (arg1, MODE_BASE_REG_REG_CLASS (VOIDmode),
2051 scale);
2054 /* Otherwise, count equal chances that each might be a base
2055 or index register. This case should be rare. */
2057 else
2059 record_address_regs (arg0, MODE_BASE_REG_REG_CLASS (VOIDmode),
2060 scale / 2);
2061 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2062 record_address_regs (arg1, MODE_BASE_REG_REG_CLASS (VOIDmode),
2063 scale / 2);
2064 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2067 break;
2069 /* Double the importance of a pseudo register that is incremented
2070 or decremented, since it would take two extra insns
2071 if it ends up in the wrong place. */
2072 case POST_MODIFY:
2073 case PRE_MODIFY:
2074 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2075 2 * scale);
2076 if (REG_P (XEXP (XEXP (x, 1), 1)))
2077 record_address_regs (XEXP (XEXP (x, 1), 1),
2078 INDEX_REG_CLASS, 2 * scale);
2079 break;
2081 case POST_INC:
2082 case PRE_INC:
2083 case POST_DEC:
2084 case PRE_DEC:
2085 /* Double the importance of a pseudo register that is incremented
2086 or decremented, since it would take two extra insns
2087 if it ends up in the wrong place. If the operand is a pseudo,
2088 show it is being used in an INC_DEC context. */
2090 #ifdef FORBIDDEN_INC_DEC_CLASSES
2091 if (REG_P (XEXP (x, 0))
2092 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2093 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2094 #endif
2096 record_address_regs (XEXP (x, 0), class, 2 * scale);
2097 break;
2099 case REG:
2101 struct costs *pp = &costs[REGNO (x)];
2102 int i;
2104 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2106 for (i = 0; i < N_REG_CLASSES; i++)
2107 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2109 break;
2111 default:
2113 const char *fmt = GET_RTX_FORMAT (code);
2114 int i;
2115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2116 if (fmt[i] == 'e')
2117 record_address_regs (XEXP (x, i), class, scale);
2122 #ifdef FORBIDDEN_INC_DEC_CLASSES
2124 /* Return 1 if REG is valid as an auto-increment memory reference
2125 to an object of MODE. */
2127 static int
2128 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2130 if (HAVE_POST_INCREMENT
2131 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2132 return 1;
2134 if (HAVE_POST_DECREMENT
2135 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2136 return 1;
2138 if (HAVE_PRE_INCREMENT
2139 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2140 return 1;
2142 if (HAVE_PRE_DECREMENT
2143 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2144 return 1;
2146 return 0;
2148 #endif
2150 static short *renumber;
2151 static size_t regno_allocated;
2152 static unsigned int reg_n_max;
2154 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2155 reg_scan and flow_analysis that are indexed by the register number. If
2156 NEW_P is nonzero, initialize all of the registers, otherwise only
2157 initialize the new registers allocated. The same table is kept from
2158 function to function, only reallocating it when we need more room. If
2159 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2161 void
2162 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2164 size_t size_info;
2165 size_t size_renumber;
2166 size_t min = (new_p) ? 0 : reg_n_max;
2167 struct reg_info_data *reg_data;
2169 if (num_regs > regno_allocated)
2171 size_t old_allocated = regno_allocated;
2173 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2174 size_renumber = regno_allocated * sizeof (short);
2176 if (!reg_n_info)
2178 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2179 renumber = xmalloc (size_renumber);
2180 reg_pref_buffer = xmalloc (regno_allocated
2181 * sizeof (struct reg_pref));
2183 else
2185 VARRAY_GROW (reg_n_info, regno_allocated);
2187 if (new_p) /* If we're zapping everything, no need to realloc. */
2189 free ((char *) renumber);
2190 free ((char *) reg_pref);
2191 renumber = xmalloc (size_renumber);
2192 reg_pref_buffer = xmalloc (regno_allocated
2193 * sizeof (struct reg_pref));
2196 else
2198 renumber = xrealloc (renumber, size_renumber);
2199 reg_pref_buffer = xrealloc (reg_pref_buffer,
2200 regno_allocated
2201 * sizeof (struct reg_pref));
2205 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2206 + sizeof (struct reg_info_data) - sizeof (reg_info);
2207 reg_data = xcalloc (size_info, 1);
2208 reg_data->min_index = old_allocated;
2209 reg_data->max_index = regno_allocated - 1;
2210 reg_data->next = reg_info_head;
2211 reg_info_head = reg_data;
2214 reg_n_max = num_regs;
2215 if (min < num_regs)
2217 /* Loop through each of the segments allocated for the actual
2218 reg_info pages, and set up the pointers, zero the pages, etc. */
2219 for (reg_data = reg_info_head;
2220 reg_data && reg_data->max_index >= min;
2221 reg_data = reg_data->next)
2223 size_t min_index = reg_data->min_index;
2224 size_t max_index = reg_data->max_index;
2225 size_t max = MIN (max_index, num_regs);
2226 size_t local_min = min - min_index;
2227 size_t i;
2229 if (reg_data->min_index > num_regs)
2230 continue;
2232 if (min < min_index)
2233 local_min = 0;
2234 if (!reg_data->used_p) /* page just allocated with calloc */
2235 reg_data->used_p = 1; /* no need to zero */
2236 else
2237 memset (&reg_data->data[local_min], 0,
2238 sizeof (reg_info) * (max - min_index - local_min + 1));
2240 for (i = min_index+local_min; i <= max; i++)
2242 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2243 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2244 renumber[i] = -1;
2245 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2246 reg_pref_buffer[i].altclass = (char) NO_REGS;
2251 /* If {pref,alt}class have already been allocated, update the pointers to
2252 the newly realloced ones. */
2253 if (reg_pref)
2254 reg_pref = reg_pref_buffer;
2256 if (renumber_p)
2257 reg_renumber = renumber;
2260 /* Free up the space allocated by allocate_reg_info. */
2261 void
2262 free_reg_info (void)
2264 if (reg_n_info)
2266 struct reg_info_data *reg_data;
2267 struct reg_info_data *reg_next;
2269 VARRAY_FREE (reg_n_info);
2270 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2272 reg_next = reg_data->next;
2273 free ((char *) reg_data);
2276 free (reg_pref_buffer);
2277 reg_pref_buffer = (struct reg_pref *) 0;
2278 reg_info_head = (struct reg_info_data *) 0;
2279 renumber = (short *) 0;
2281 regno_allocated = 0;
2282 reg_n_max = 0;
2285 /* This is the `regscan' pass of the compiler, run just before cse
2286 and again just before loop.
2288 It finds the first and last use of each pseudo-register
2289 and records them in the vectors regno_first_uid, regno_last_uid
2290 and counts the number of sets in the vector reg_n_sets.
2292 REPEAT is nonzero the second time this is called. */
2294 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2295 Always at least 3, since the combiner could put that many together
2296 and we want this to remain correct for all the remaining passes.
2297 This corresponds to the maximum number of times note_stores will call
2298 a function for any insn. */
2300 int max_parallel;
2302 /* Used as a temporary to record the largest number of registers in
2303 PARALLEL in a SET_DEST. This is added to max_parallel. */
2305 static int max_set_parallel;
2307 void
2308 reg_scan (rtx f, unsigned int nregs)
2310 rtx insn;
2312 timevar_push (TV_REG_SCAN);
2314 allocate_reg_info (nregs, TRUE, FALSE);
2315 max_parallel = 3;
2316 max_set_parallel = 0;
2318 for (insn = f; insn; insn = NEXT_INSN (insn))
2319 if (INSN_P (insn))
2321 rtx pat = PATTERN (insn);
2322 if (GET_CODE (pat) == PARALLEL
2323 && XVECLEN (pat, 0) > max_parallel)
2324 max_parallel = XVECLEN (pat, 0);
2325 reg_scan_mark_refs (pat, insn, 0, 0);
2327 if (REG_NOTES (insn))
2328 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2331 max_parallel += max_set_parallel;
2333 timevar_pop (TV_REG_SCAN);
2336 /* Update 'regscan' information by looking at the insns
2337 from FIRST to LAST. Some new REGs have been created,
2338 and any REG with number greater than OLD_MAX_REGNO is
2339 such a REG. We only update information for those. */
2341 void
2342 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2344 rtx insn;
2346 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2348 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2349 if (INSN_P (insn))
2351 rtx pat = PATTERN (insn);
2352 if (GET_CODE (pat) == PARALLEL
2353 && XVECLEN (pat, 0) > max_parallel)
2354 max_parallel = XVECLEN (pat, 0);
2355 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2357 if (REG_NOTES (insn))
2358 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2362 /* X is the expression to scan. INSN is the insn it appears in.
2363 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2364 We should only record information for REGs with numbers
2365 greater than or equal to MIN_REGNO. */
2367 static void
2368 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2370 enum rtx_code code;
2371 rtx dest;
2372 rtx note;
2374 if (!x)
2375 return;
2376 code = GET_CODE (x);
2377 switch (code)
2379 case CONST:
2380 case CONST_INT:
2381 case CONST_DOUBLE:
2382 case CONST_VECTOR:
2383 case CC0:
2384 case PC:
2385 case SYMBOL_REF:
2386 case LABEL_REF:
2387 case ADDR_VEC:
2388 case ADDR_DIFF_VEC:
2389 return;
2391 case REG:
2393 unsigned int regno = REGNO (x);
2395 if (regno >= min_regno)
2397 if (!note_flag)
2398 REGNO_LAST_UID (regno) = INSN_UID (insn);
2399 if (REGNO_FIRST_UID (regno) == 0)
2400 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2401 /* If we are called by reg_scan_update() (indicated by min_regno
2402 being set), we also need to update the reference count. */
2403 if (min_regno)
2404 REG_N_REFS (regno)++;
2407 break;
2409 case EXPR_LIST:
2410 if (XEXP (x, 0))
2411 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2412 if (XEXP (x, 1))
2413 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2414 break;
2416 case INSN_LIST:
2417 if (XEXP (x, 1))
2418 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2419 break;
2421 case CLOBBER:
2423 rtx reg = XEXP (x, 0);
2424 if (REG_P (reg)
2425 && REGNO (reg) >= min_regno)
2427 REG_N_SETS (REGNO (reg))++;
2428 REG_N_REFS (REGNO (reg))++;
2430 else if (MEM_P (reg))
2431 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2433 break;
2435 case SET:
2436 /* Count a set of the destination if it is a register. */
2437 for (dest = SET_DEST (x);
2438 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2439 || GET_CODE (dest) == ZERO_EXTEND;
2440 dest = XEXP (dest, 0))
2443 /* For a PARALLEL, record the number of things (less the usual one for a
2444 SET) that are set. */
2445 if (GET_CODE (dest) == PARALLEL)
2446 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2448 if (REG_P (dest)
2449 && REGNO (dest) >= min_regno)
2451 REG_N_SETS (REGNO (dest))++;
2452 REG_N_REFS (REGNO (dest))++;
2455 /* If this is setting a pseudo from another pseudo or the sum of a
2456 pseudo and a constant integer and the other pseudo is known to be
2457 a pointer, set the destination to be a pointer as well.
2459 Likewise if it is setting the destination from an address or from a
2460 value equivalent to an address or to the sum of an address and
2461 something else.
2463 But don't do any of this if the pseudo corresponds to a user
2464 variable since it should have already been set as a pointer based
2465 on the type. */
2467 if (REG_P (SET_DEST (x))
2468 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2469 && REGNO (SET_DEST (x)) >= min_regno
2470 /* If the destination pseudo is set more than once, then other
2471 sets might not be to a pointer value (consider access to a
2472 union in two threads of control in the presence of global
2473 optimizations). So only set REG_POINTER on the destination
2474 pseudo if this is the only set of that pseudo. */
2475 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2476 && ! REG_USERVAR_P (SET_DEST (x))
2477 && ! REG_POINTER (SET_DEST (x))
2478 && ((REG_P (SET_SRC (x))
2479 && REG_POINTER (SET_SRC (x)))
2480 || ((GET_CODE (SET_SRC (x)) == PLUS
2481 || GET_CODE (SET_SRC (x)) == LO_SUM)
2482 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2483 && REG_P (XEXP (SET_SRC (x), 0))
2484 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2485 || GET_CODE (SET_SRC (x)) == CONST
2486 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2487 || GET_CODE (SET_SRC (x)) == LABEL_REF
2488 || (GET_CODE (SET_SRC (x)) == HIGH
2489 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2490 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2491 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2492 || ((GET_CODE (SET_SRC (x)) == PLUS
2493 || GET_CODE (SET_SRC (x)) == LO_SUM)
2494 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2495 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2496 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2497 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2498 && (GET_CODE (XEXP (note, 0)) == CONST
2499 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2500 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2501 REG_POINTER (SET_DEST (x)) = 1;
2503 /* If this is setting a register from a register or from a simple
2504 conversion of a register, propagate REG_EXPR. */
2505 if (REG_P (dest))
2507 rtx src = SET_SRC (x);
2509 while (GET_CODE (src) == SIGN_EXTEND
2510 || GET_CODE (src) == ZERO_EXTEND
2511 || GET_CODE (src) == TRUNCATE
2512 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2513 src = XEXP (src, 0);
2515 if (!REG_ATTRS (dest) && REG_P (src))
2516 REG_ATTRS (dest) = REG_ATTRS (src);
2517 if (!REG_ATTRS (dest) && MEM_P (src))
2518 set_reg_attrs_from_mem (dest, src);
2521 /* ... fall through ... */
2523 default:
2525 const char *fmt = GET_RTX_FORMAT (code);
2526 int i;
2527 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2529 if (fmt[i] == 'e')
2530 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2531 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2533 int j;
2534 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2535 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2542 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2543 is also in C2. */
2546 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2548 if (c1 == c2) return 1;
2550 if (c2 == ALL_REGS)
2551 win:
2552 return 1;
2553 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2554 reg_class_contents[(int) c2],
2555 win);
2556 return 0;
2559 /* Return nonzero if there is a register that is in both C1 and C2. */
2562 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2564 HARD_REG_SET c;
2566 if (c1 == c2) return 1;
2568 if (c1 == ALL_REGS || c2 == ALL_REGS)
2569 return 1;
2571 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2572 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2574 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2575 return 1;
2577 lose:
2578 return 0;
2581 #ifdef CANNOT_CHANGE_MODE_CLASS
2583 struct subregs_of_mode_node
2585 unsigned int block;
2586 unsigned char modes[MAX_MACHINE_MODE];
2589 static htab_t subregs_of_mode;
2591 static hashval_t
2592 som_hash (const void *x)
2594 const struct subregs_of_mode_node *a = x;
2595 return a->block;
2598 static int
2599 som_eq (const void *x, const void *y)
2601 const struct subregs_of_mode_node *a = x;
2602 const struct subregs_of_mode_node *b = y;
2603 return a->block == b->block;
2606 void
2607 init_subregs_of_mode (void)
2609 if (subregs_of_mode)
2610 htab_empty (subregs_of_mode);
2611 else
2612 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2615 void
2616 record_subregs_of_mode (rtx subreg)
2618 struct subregs_of_mode_node dummy, *node;
2619 enum machine_mode mode;
2620 unsigned int regno;
2621 void **slot;
2623 if (!REG_P (SUBREG_REG (subreg)))
2624 return;
2626 regno = REGNO (SUBREG_REG (subreg));
2627 mode = GET_MODE (subreg);
2629 if (regno < FIRST_PSEUDO_REGISTER)
2630 return;
2632 dummy.block = regno & -8;
2633 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2634 dummy.block, INSERT);
2635 node = *slot;
2636 if (node == NULL)
2638 node = xcalloc (1, sizeof (*node));
2639 node->block = regno & -8;
2640 *slot = node;
2643 node->modes[mode] |= 1 << (regno & 7);
2646 /* Set bits in *USED which correspond to registers which can't change
2647 their mode from FROM to any mode in which REGNO was encountered. */
2649 void
2650 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2651 unsigned int regno)
2653 struct subregs_of_mode_node dummy, *node;
2654 enum machine_mode to;
2655 unsigned char mask;
2656 unsigned int i;
2658 dummy.block = regno & -8;
2659 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2660 if (node == NULL)
2661 return;
2663 mask = 1 << (regno & 7);
2664 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2665 if (node->modes[to] & mask)
2666 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2667 if (!TEST_HARD_REG_BIT (*used, i)
2668 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2669 SET_HARD_REG_BIT (*used, i);
2672 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2673 mode. */
2675 bool
2676 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2677 enum machine_mode from)
2679 struct subregs_of_mode_node dummy, *node;
2680 enum machine_mode to;
2681 unsigned char mask;
2683 dummy.block = regno & -8;
2684 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2685 if (node == NULL)
2686 return false;
2688 mask = 1 << (regno & 7);
2689 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2690 if (node->modes[to] & mask)
2691 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2692 return true;
2694 return false;
2696 #endif /* CANNOT_CHANGE_MODE_CLASS */
2698 #include "gt-regclass.h"