./
[official-gcc.git] / gcc / postreload-gcse.c
blobdaacb538b62e90f34b5bef1f831b39ac5cc8e24c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "intl.h"
43 #include "obstack.h"
44 #include "hashtab.h"
45 #include "params.h"
46 #include "target.h"
48 /* The following code implements gcse after reload, the purpose of this
49 pass is to cleanup redundant loads generated by reload and other
50 optimizations that come after gcse. It searches for simple inter-block
51 redundancies and tries to eliminate them by adding moves and loads
52 in cold places.
54 Perform partially redundant load elimination, try to eliminate redundant
55 loads created by the reload pass. We try to look for full or partial
56 redundant loads fed by one or more loads/stores in predecessor BBs,
57 and try adding loads to make them fully redundant. We also check if
58 it's worth adding loads to be able to delete the redundant load.
60 Algorithm:
61 1. Build available expressions hash table:
62 For each load/store instruction, if the loaded/stored memory didn't
63 change until the end of the basic block add this memory expression to
64 the hash table.
65 2. Perform Redundancy elimination:
66 For each load instruction do the following:
67 perform partial redundancy elimination, check if it's worth adding
68 loads to make the load fully redundant. If so add loads and
69 register copies and delete the load.
70 3. Delete instructions made redundant in step 2.
72 Future enhancement:
73 If the loaded register is used/defined between load and some store,
74 look for some other free register between load and all its stores,
75 and replace the load with a copy from this register to the loaded
76 register.
80 /* Keep statistics of this pass. */
81 static struct
83 int moves_inserted;
84 int copies_inserted;
85 int insns_deleted;
86 } stats;
88 /* We need to keep a hash table of expressions. The table entries are of
89 type 'struct expr', and for each expression there is a single linked
90 list of occurrences. */
92 /* The table itself. */
93 static htab_t expr_table;
95 /* Expression elements in the hash table. */
96 struct expr
98 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
99 rtx expr;
101 /* The same hash for this entry. */
102 hashval_t hash;
104 /* List of available occurrence in basic blocks in the function. */
105 struct occr *avail_occr;
108 static struct obstack expr_obstack;
110 /* Occurrence of an expression.
111 There is at most one occurrence per basic block. If a pattern appears
112 more than once, the last appearance is used. */
114 struct occr
116 /* Next occurrence of this expression. */
117 struct occr *next;
118 /* The insn that computes the expression. */
119 rtx insn;
120 /* Nonzero if this [anticipatable] occurrence has been deleted. */
121 char deleted_p;
124 static struct obstack occr_obstack;
126 /* The following structure holds the information about the occurrences of
127 the redundant instructions. */
128 struct unoccr
130 struct unoccr *next;
131 edge pred;
132 rtx insn;
135 static struct obstack unoccr_obstack;
137 /* Array where each element is the CUID if the insn that last set the hard
138 register with the number of the element, since the start of the current
139 basic block.
141 This array is used during the building of the hash table (step 1) to
142 determine if a reg is killed before the end of a basic block.
144 It is also used when eliminating partial redundancies (step 2) to see
145 if a reg was modified since the start of a basic block. */
146 static int *reg_avail_info;
148 /* A list of insns that may modify memory within the current basic block. */
149 struct modifies_mem
151 rtx insn;
152 struct modifies_mem *next;
154 static struct modifies_mem *modifies_mem_list;
156 /* The modifies_mem structs also go on an obstack, only this obstack is
157 freed each time after completing the analysis or transformations on
158 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
159 object on the obstack to keep track of the bottom of the obstack. */
160 static struct obstack modifies_mem_obstack;
161 static struct modifies_mem *modifies_mem_obstack_bottom;
163 /* Mapping of insn UIDs to CUIDs.
164 CUIDs are like UIDs except they increase monotonically in each basic
165 block, have no gaps, and only apply to real insns. */
166 static int *uid_cuid;
167 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
170 /* Helpers for memory allocation/freeing. */
171 static void alloc_mem (void);
172 static void free_mem (void);
174 /* Support for hash table construction and transformations. */
175 static bool oprs_unchanged_p (rtx, rtx, bool);
176 static void record_last_reg_set_info (rtx, int);
177 static void record_last_mem_set_info (rtx);
178 static void record_last_set_info (rtx, rtx, void *);
179 static void record_opr_changes (rtx);
181 static void find_mem_conflicts (rtx, rtx, void *);
182 static int load_killed_in_block_p (int, rtx, bool);
183 static void reset_opr_set_tables (void);
185 /* Hash table support. */
186 static hashval_t hash_expr (rtx, int *);
187 static hashval_t hash_expr_for_htab (const void *);
188 static int expr_equiv_p (const void *, const void *);
189 static void insert_expr_in_table (rtx, rtx);
190 static struct expr *lookup_expr_in_table (rtx);
191 static int dump_hash_table_entry (void **, void *);
192 static void dump_hash_table (FILE *);
194 /* Helpers for eliminate_partially_redundant_load. */
195 static bool reg_killed_on_edge (rtx, edge);
196 static bool reg_used_on_edge (rtx, edge);
198 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
199 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
200 static rtx get_avail_load_store_reg (rtx);
202 static bool bb_has_well_behaved_predecessors (basic_block);
203 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
204 static void hash_scan_set (rtx);
205 static void compute_hash_table (void);
207 /* The work horses of this pass. */
208 static void eliminate_partially_redundant_load (basic_block,
209 rtx,
210 struct expr *);
211 static void eliminate_partially_redundant_loads (void);
214 /* Allocate memory for the CUID mapping array and register/memory
215 tracking tables. */
217 static void
218 alloc_mem (void)
220 int i;
221 basic_block bb;
222 rtx insn;
224 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
225 uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
226 i = 0;
227 FOR_EACH_BB (bb)
228 FOR_BB_INSNS (bb, insn)
230 if (INSN_P (insn))
231 uid_cuid[INSN_UID (insn)] = i++;
232 else
233 uid_cuid[INSN_UID (insn)] = i;
236 /* Allocate the available expressions hash table. We don't want to
237 make the hash table too small, but unnecessarily making it too large
238 also doesn't help. The i/4 is a gcse.c relic, and seems like a
239 reasonable choice. */
240 expr_table = htab_create (MAX (i / 4, 13),
241 hash_expr_for_htab, expr_equiv_p, NULL);
243 /* We allocate everything on obstacks because we often can roll back
244 the whole obstack to some point. Freeing obstacks is very fast. */
245 gcc_obstack_init (&expr_obstack);
246 gcc_obstack_init (&occr_obstack);
247 gcc_obstack_init (&unoccr_obstack);
248 gcc_obstack_init (&modifies_mem_obstack);
250 /* Working array used to track the last set for each register
251 in the current block. */
252 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
254 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
255 can roll it back in reset_opr_set_tables. */
256 modifies_mem_obstack_bottom =
257 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
258 sizeof (struct modifies_mem));
261 /* Free memory allocated by alloc_mem. */
263 static void
264 free_mem (void)
266 free (uid_cuid);
268 htab_delete (expr_table);
270 obstack_free (&expr_obstack, NULL);
271 obstack_free (&occr_obstack, NULL);
272 obstack_free (&unoccr_obstack, NULL);
273 obstack_free (&modifies_mem_obstack, NULL);
275 free (reg_avail_info);
279 /* Hash expression X.
280 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
281 or if the expression contains something we don't want to insert in the
282 table. */
284 static hashval_t
285 hash_expr (rtx x, int *do_not_record_p)
287 *do_not_record_p = 0;
288 return hash_rtx (x, GET_MODE (x), do_not_record_p,
289 NULL, /*have_reg_qty=*/false);
292 /* Callback for hashtab.
293 Return the hash value for expression EXP. We don't actually hash
294 here, we just return the cached hash value. */
296 static hashval_t
297 hash_expr_for_htab (const void *expp)
299 struct expr *exp = (struct expr *) expp;
300 return exp->hash;
303 /* Callback for hashtab.
304 Return nonzero if exp1 is equivalent to exp2. */
306 static int
307 expr_equiv_p (const void *exp1p, const void *exp2p)
309 struct expr *exp1 = (struct expr *) exp1p;
310 struct expr *exp2 = (struct expr *) exp2p;
311 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
313 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
314 return equiv_p;
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
322 static void
323 insert_expr_in_table (rtx x, rtx insn)
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
330 hash = hash_expr (x, &do_not_record_p);
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
367 /* If an occurrence isn't found, save a pointer to the end of
368 the list. */
369 last_occr = avail_occr;
370 avail_occr = avail_occr->next;
373 if (avail_occr)
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
377 to end. */
378 avail_occr->insn = insn;
379 else
381 /* First occurrence of this expression in this basic block. */
382 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
383 sizeof (struct occr));
385 /* First occurrence of this expression in any block? */
386 if (cur_expr->avail_occr == NULL)
387 cur_expr->avail_occr = avail_occr;
388 else
389 last_occr->next = avail_occr;
391 avail_occr->insn = insn;
392 avail_occr->next = NULL;
393 avail_occr->deleted_p = 0;
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
401 static struct expr *
402 lookup_expr_in_table (rtx pat)
404 int do_not_record_p;
405 struct expr **slot, *tmp_expr;
406 hashval_t hash = hash_expr (pat, &do_not_record_p);
408 if (do_not_record_p)
409 return NULL;
411 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
412 sizeof (struct expr));
413 tmp_expr->expr = pat;
414 tmp_expr->hash = hash;
415 tmp_expr->avail_occr = NULL;
417 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
418 hash, INSERT);
419 obstack_free (&expr_obstack, tmp_expr);
421 if (!slot)
422 return NULL;
423 else
424 return (*slot);
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
431 /* This helper is called via htab_traverse. */
432 static int
433 dump_hash_table_entry (void **slot, void *filep)
435 struct expr *expr = (struct expr *) *slot;
436 FILE *file = (FILE *) filep;
437 struct occr *occr;
439 fprintf (file, "expr: ");
440 print_rtl (file, expr->expr);
441 fprintf (file,"\nhashcode: %u\n", expr->hash);
442 fprintf (file,"list of occurences:\n");
443 occr = expr->avail_occr;
444 while (occr)
446 rtx insn = occr->insn;
447 print_rtl_single (file, insn);
448 fprintf (file, "\n");
449 occr = occr->next;
451 fprintf (file, "\n");
452 return 1;
455 static void
456 dump_hash_table (FILE *file)
458 fprintf (file, "\n\nexpression hash table\n");
459 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table),
461 (long) htab_elements (expr_table),
462 htab_collisions (expr_table));
463 if (htab_elements (expr_table) > 0)
465 fprintf (file, "\n\ntable entries:\n");
466 htab_traverse (expr_table, dump_hash_table_entry, file);
468 fprintf (file, "\n");
472 /* Return nonzero if the operands of expression X are unchanged
473 1) from the start of INSN's basic block up to but not including INSN
474 if AFTER_INSN is false, or
475 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
477 static bool
478 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
480 int i, j;
481 enum rtx_code code;
482 const char *fmt;
484 if (x == 0)
485 return 1;
487 code = GET_CODE (x);
488 switch (code)
490 case REG:
491 /* We are called after register allocation. */
492 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
493 if (after_insn)
494 /* If the last CUID setting the insn is less than the CUID of
495 INSN, then reg X is not changed in or after INSN. */
496 return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
497 else
498 /* Reg X is not set before INSN in the current basic block if
499 we have not yet recorded the CUID of an insn that touches
500 the reg. */
501 return reg_avail_info[REGNO (x)] == 0;
503 case MEM:
504 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
505 return 0;
506 else
507 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
509 case PC:
510 case CC0: /*FIXME*/
511 case CONST:
512 case CONST_INT:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case SYMBOL_REF:
516 case LABEL_REF:
517 case ADDR_VEC:
518 case ADDR_DIFF_VEC:
519 return 1;
521 case PRE_DEC:
522 case PRE_INC:
523 case POST_DEC:
524 case POST_INC:
525 case PRE_MODIFY:
526 case POST_MODIFY:
527 if (after_insn)
528 return 0;
529 break;
531 default:
532 break;
535 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
537 if (fmt[i] == 'e')
539 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
540 return 0;
542 else if (fmt[i] == 'E')
543 for (j = 0; j < XVECLEN (x, i); j++)
544 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
545 return 0;
548 return 1;
552 /* Used for communication between find_mem_conflicts and
553 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
554 conflict between two memory references.
555 This is a bit of a hack to work around the limitations of note_stores. */
556 static int mems_conflict_p;
558 /* DEST is the output of an instruction. If it is a memory reference, and
559 possibly conflicts with the load found in DATA, then set mems_conflict_p
560 to a nonzero value. */
562 static void
563 find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
564 void *data)
566 rtx mem_op = (rtx) data;
568 while (GET_CODE (dest) == SUBREG
569 || GET_CODE (dest) == ZERO_EXTRACT
570 || GET_CODE (dest) == STRICT_LOW_PART)
571 dest = XEXP (dest, 0);
573 /* If DEST is not a MEM, then it will not conflict with the load. Note
574 that function calls are assumed to clobber memory, but are handled
575 elsewhere. */
576 if (! MEM_P (dest))
577 return;
579 if (true_dependence (dest, GET_MODE (dest), mem_op,
580 rtx_addr_varies_p))
581 mems_conflict_p = 1;
585 /* Return nonzero if the expression in X (a memory reference) is killed
586 in the current basic block before (if AFTER_INSN is false) or after
587 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
589 This function assumes that the modifies_mem table is flushed when
590 the hash table construction or redundancy elimination phases start
591 processing a new basic block. */
593 static int
594 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
596 struct modifies_mem *list_entry = modifies_mem_list;
598 while (list_entry)
600 rtx setter = list_entry->insn;
602 /* Ignore entries in the list that do not apply. */
603 if ((after_insn
604 && INSN_CUID (setter) < uid_limit)
605 || (! after_insn
606 && INSN_CUID (setter) > uid_limit))
608 list_entry = list_entry->next;
609 continue;
612 /* If SETTER is a call everything is clobbered. Note that calls
613 to pure functions are never put on the list, so we need not
614 worry about them. */
615 if (CALL_P (setter))
616 return 1;
618 /* SETTER must be an insn of some kind that sets memory. Call
619 note_stores to examine each hunk of memory that is modified.
620 It will set mems_conflict_p to nonzero if there may be a
621 conflict between X and SETTER. */
622 mems_conflict_p = 0;
623 note_stores (PATTERN (setter), find_mem_conflicts, x);
624 if (mems_conflict_p)
625 return 1;
627 list_entry = list_entry->next;
629 return 0;
633 /* Record register first/last/block set information for REGNO in INSN. */
635 static inline void
636 record_last_reg_set_info (rtx insn, int regno)
638 reg_avail_info[regno] = INSN_CUID (insn);
642 /* Record memory modification information for INSN. We do not actually care
643 about the memory location(s) that are set, or even how they are set (consider
644 a CALL_INSN). We merely need to record which insns modify memory. */
646 static void
647 record_last_mem_set_info (rtx insn)
649 struct modifies_mem *list_entry;
651 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
652 sizeof (struct modifies_mem));
653 list_entry->insn = insn;
654 list_entry->next = modifies_mem_list;
655 modifies_mem_list = list_entry;
658 /* Called from compute_hash_table via note_stores to handle one
659 SET or CLOBBER in an insn. DATA is really the instruction in which
660 the SET is taking place. */
662 static void
663 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
665 rtx last_set_insn = (rtx) data;
667 if (GET_CODE (dest) == SUBREG)
668 dest = SUBREG_REG (dest);
670 if (REG_P (dest))
671 record_last_reg_set_info (last_set_insn, REGNO (dest));
672 else if (MEM_P (dest)
673 /* Ignore pushes, they clobber nothing. */
674 && ! push_operand (dest, GET_MODE (dest)))
675 record_last_mem_set_info (last_set_insn);
679 /* Reset tables used to keep track of what's still available since the
680 start of the block. */
682 static void
683 reset_opr_set_tables (void)
685 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
686 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
687 modifies_mem_list = NULL;
691 /* Record things set by INSN.
692 This data is used by oprs_unchanged_p. */
694 static void
695 record_opr_changes (rtx insn)
697 rtx note;
699 /* Find all stores and record them. */
700 note_stores (PATTERN (insn), record_last_set_info, insn);
702 /* Also record autoincremented REGs for this insn as changed. */
703 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
704 if (REG_NOTE_KIND (note) == REG_INC)
705 record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
707 /* Finally, if this is a call, record all call clobbers. */
708 if (CALL_P (insn))
710 unsigned int regno;
712 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
713 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
714 record_last_reg_set_info (insn, regno);
716 if (! CONST_OR_PURE_CALL_P (insn))
717 record_last_mem_set_info (insn);
722 /* Scan the pattern of INSN and add an entry to the hash TABLE.
723 After reload we are interested in loads/stores only. */
725 static void
726 hash_scan_set (rtx insn)
728 rtx pat = PATTERN (insn);
729 rtx src = SET_SRC (pat);
730 rtx dest = SET_DEST (pat);
732 /* We are only interested in loads and stores. */
733 if (! MEM_P (src) && ! MEM_P (dest))
734 return;
736 /* Don't mess with jumps and nops. */
737 if (JUMP_P (insn) || set_noop_p (pat))
738 return;
740 /* We shouldn't have any EH_REGION notes post reload. */
741 gcc_assert (!find_reg_note (insn, REG_EH_REGION, NULL_RTX));
743 if (REG_P (dest))
745 if (/* Don't CSE something if we can't do a reg/reg copy. */
746 can_copy_p (GET_MODE (dest))
747 /* Is SET_SRC something we want to gcse? */
748 && general_operand (src, GET_MODE (src))
749 /* An expression is not available if its operands are
750 subsequently modified, including this insn. */
751 && oprs_unchanged_p (src, insn, true))
753 insert_expr_in_table (src, insn);
756 else if (REG_P (src))
758 /* Only record sets of pseudo-regs in the hash table. */
759 if (/* Don't CSE something if we can't do a reg/reg copy. */
760 can_copy_p (GET_MODE (src))
761 /* Is SET_DEST something we want to gcse? */
762 && general_operand (dest, GET_MODE (dest))
763 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
764 /* Check if the memory expression is killed after insn. */
765 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
766 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
768 insert_expr_in_table (dest, insn);
774 /* Create hash table of memory expressions available at end of basic
775 blocks. Basically you should think of this hash table as the
776 representation of AVAIL_OUT. This is the set of expressions that
777 is generated in a basic block and not killed before the end of the
778 same basic block. Notice that this is really a local computation. */
780 static void
781 compute_hash_table (void)
783 basic_block bb;
785 FOR_EACH_BB (bb)
787 rtx insn;
789 /* First pass over the instructions records information used to
790 determine when registers and memory are last set.
791 Since we compute a "local" AVAIL_OUT, reset the tables that
792 help us keep track of what has been modified since the start
793 of the block. */
794 reset_opr_set_tables ();
795 FOR_BB_INSNS (bb, insn)
797 if (INSN_P (insn))
798 record_opr_changes (insn);
801 /* The next pass actually builds the hash table. */
802 FOR_BB_INSNS (bb, insn)
803 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
804 hash_scan_set (insn);
809 /* Check if register REG is killed in any insn waiting to be inserted on
810 edge E. This function is required to check that our data flow analysis
811 is still valid prior to commit_edge_insertions. */
813 static bool
814 reg_killed_on_edge (rtx reg, edge e)
816 rtx insn;
818 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
819 if (INSN_P (insn) && reg_set_p (reg, insn))
820 return true;
822 return false;
825 /* Similar to above - check if register REG is used in any insn waiting
826 to be inserted on edge E.
827 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
828 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
830 static bool
831 reg_used_on_edge (rtx reg, edge e)
833 rtx insn;
835 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
836 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
837 return true;
839 return false;
843 /* Return the insn that sets register REG or clobbers it in between
844 FROM_INSN and TO_INSN (exclusive of those two).
845 Just like reg_set_between but for hard registers and not pseudos. */
847 static rtx
848 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
850 rtx insn;
852 /* We are called after register allocation. */
853 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
855 if (from_insn == to_insn)
856 return NULL_RTX;
858 for (insn = NEXT_INSN (from_insn);
859 insn != to_insn;
860 insn = NEXT_INSN (insn))
861 if (INSN_P (insn))
863 if (set_of (reg, insn) != NULL_RTX)
864 return insn;
865 if ((CALL_P (insn)
866 && call_used_regs[REGNO (reg)])
867 || find_reg_fusage (insn, CLOBBER, reg))
868 return insn;
870 if (FIND_REG_INC_NOTE (insn, reg))
871 return insn;
874 return NULL_RTX;
877 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
878 (exclusive of those two). Similar to reg_used_between but for hard
879 registers and not pseudos. */
881 static rtx
882 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
884 rtx insn;
886 /* We are called after register allocation. */
887 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
889 if (from_insn == to_insn)
890 return NULL_RTX;
892 for (insn = NEXT_INSN (from_insn);
893 insn != to_insn;
894 insn = NEXT_INSN (insn))
895 if (INSN_P (insn))
897 if (reg_overlap_mentioned_p (reg, PATTERN (insn))
898 || (CALL_P (insn)
899 && call_used_regs[REGNO (reg)])
900 || find_reg_fusage (insn, USE, reg)
901 || find_reg_fusage (insn, CLOBBER, reg))
902 return insn;
904 if (FIND_REG_INC_NOTE (insn, reg))
905 return insn;
908 return NULL_RTX;
911 /* Return true if REG is used, set, or killed between the beginning of
912 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
914 static bool
915 reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
917 rtx insn, start = PREV_INSN (BB_HEAD (bb));
919 if (reg_avail_info[REGNO (reg)] != 0)
920 return true;
922 insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
923 if (! insn)
924 insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
926 if (insn)
927 reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
929 return insn != NULL_RTX;
932 /* Return the loaded/stored register of a load/store instruction. */
934 static rtx
935 get_avail_load_store_reg (rtx insn)
937 if (REG_P (SET_DEST (PATTERN (insn))))
938 /* A load. */
939 return SET_DEST(PATTERN(insn));
940 else
942 /* A store. */
943 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
944 return SET_SRC (PATTERN (insn));
948 /* Return nonzero if the predecessors of BB are "well behaved". */
950 static bool
951 bb_has_well_behaved_predecessors (basic_block bb)
953 edge pred;
954 edge_iterator ei;
956 if (EDGE_COUNT (bb->preds) == 0)
957 return false;
959 FOR_EACH_EDGE (pred, ei, bb->preds)
961 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
962 return false;
964 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
965 return false;
967 return true;
971 /* Search for the occurrences of expression in BB. */
973 static struct occr*
974 get_bb_avail_insn (basic_block bb, struct occr *occr)
976 for (; occr != NULL; occr = occr->next)
977 if (BLOCK_FOR_INSN (occr->insn) == bb)
978 return occr;
979 return NULL;
983 /* This handles the case where several stores feed a partially redundant
984 load. It checks if the redundancy elimination is possible and if it's
985 worth it.
987 Redundancy elimination is possible if,
988 1) None of the operands of an insn have been modified since the start
989 of the current basic block.
990 2) In any predecessor of the current basic block, the same expression
991 is generated.
993 See the function body for the heuristics that determine if eliminating
994 a redundancy is also worth doing, assuming it is possible. */
996 static void
997 eliminate_partially_redundant_load (basic_block bb, rtx insn,
998 struct expr *expr)
1000 edge pred;
1001 rtx avail_insn = NULL_RTX;
1002 rtx avail_reg;
1003 rtx dest, pat;
1004 struct occr *a_occr;
1005 struct unoccr *occr, *avail_occrs = NULL;
1006 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1007 int npred_ok = 0;
1008 gcov_type ok_count = 0; /* Redundant load execution count. */
1009 gcov_type critical_count = 0; /* Execution count of critical edges. */
1010 edge_iterator ei;
1011 bool critical_edge_split = false;
1013 /* The execution count of the loads to be added to make the
1014 load fully redundant. */
1015 gcov_type not_ok_count = 0;
1016 basic_block pred_bb;
1018 pat = PATTERN (insn);
1019 dest = SET_DEST (pat);
1021 /* Check that the loaded register is not used, set, or killed from the
1022 beginning of the block. */
1023 if (reg_set_or_used_since_bb_start (dest, bb, insn))
1024 return;
1026 /* Check potential for replacing load with copy for predecessors. */
1027 FOR_EACH_EDGE (pred, ei, bb->preds)
1029 rtx next_pred_bb_end;
1031 avail_insn = NULL_RTX;
1032 avail_reg = NULL_RTX;
1033 pred_bb = pred->src;
1034 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1035 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1036 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1038 /* Check if the loaded register is not used. */
1039 avail_insn = a_occr->insn;
1040 avail_reg = get_avail_load_store_reg (avail_insn);
1041 gcc_assert (avail_reg);
1043 /* Make sure we can generate a move from register avail_reg to
1044 dest. */
1045 extract_insn (gen_move_insn (copy_rtx (dest),
1046 copy_rtx (avail_reg)));
1047 if (! constrain_operands (1)
1048 || reg_killed_on_edge (avail_reg, pred)
1049 || reg_used_on_edge (dest, pred))
1051 avail_insn = NULL;
1052 continue;
1054 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1055 next_pred_bb_end))
1056 /* AVAIL_INSN remains non-null. */
1057 break;
1058 else
1059 avail_insn = NULL;
1062 if (EDGE_CRITICAL_P (pred))
1063 critical_count += pred->count;
1065 if (avail_insn != NULL_RTX)
1067 npred_ok++;
1068 ok_count += pred->count;
1069 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1070 copy_rtx (avail_reg)))))
1072 /* Check if there is going to be a split. */
1073 if (EDGE_CRITICAL_P (pred))
1074 critical_edge_split = true;
1076 else /* Its a dead move no need to generate. */
1077 continue;
1078 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1079 sizeof (struct occr));
1080 occr->insn = avail_insn;
1081 occr->pred = pred;
1082 occr->next = avail_occrs;
1083 avail_occrs = occr;
1084 if (! rollback_unoccr)
1085 rollback_unoccr = occr;
1087 else
1089 /* Adding a load on a critical edge will cuase a split. */
1090 if (EDGE_CRITICAL_P (pred))
1091 critical_edge_split = true;
1092 not_ok_count += pred->count;
1093 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1094 sizeof (struct unoccr));
1095 unoccr->insn = NULL_RTX;
1096 unoccr->pred = pred;
1097 unoccr->next = unavail_occrs;
1098 unavail_occrs = unoccr;
1099 if (! rollback_unoccr)
1100 rollback_unoccr = unoccr;
1104 if (/* No load can be replaced by copy. */
1105 npred_ok == 0
1106 /* Prevent exploding the code. */
1107 || (optimize_size && npred_ok > 1)
1108 /* If we don't have profile information we cannot tell if splitting
1109 a critical edge is profitable or not so don't do it. */
1110 || ((! profile_info || ! flag_branch_probabilities
1111 || targetm.cannot_modify_jumps_p ())
1112 && critical_edge_split))
1113 goto cleanup;
1115 /* Check if it's worth applying the partial redundancy elimination. */
1116 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1117 goto cleanup;
1118 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1119 goto cleanup;
1121 /* Generate moves to the loaded register from where
1122 the memory is available. */
1123 for (occr = avail_occrs; occr; occr = occr->next)
1125 avail_insn = occr->insn;
1126 pred = occr->pred;
1127 /* Set avail_reg to be the register having the value of the
1128 memory. */
1129 avail_reg = get_avail_load_store_reg (avail_insn);
1130 gcc_assert (avail_reg);
1132 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1133 copy_rtx (avail_reg)),
1134 pred);
1135 stats.moves_inserted++;
1137 if (dump_file)
1138 fprintf (dump_file,
1139 "generating move from %d to %d on edge from %d to %d\n",
1140 REGNO (avail_reg),
1141 REGNO (dest),
1142 pred->src->index,
1143 pred->dest->index);
1146 /* Regenerate loads where the memory is unavailable. */
1147 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1149 pred = unoccr->pred;
1150 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1151 stats.copies_inserted++;
1153 if (dump_file)
1155 fprintf (dump_file,
1156 "generating on edge from %d to %d a copy of load: ",
1157 pred->src->index,
1158 pred->dest->index);
1159 print_rtl (dump_file, PATTERN (insn));
1160 fprintf (dump_file, "\n");
1164 /* Delete the insn if it is not available in this block and mark it
1165 for deletion if it is available. If insn is available it may help
1166 discover additional redundancies, so mark it for later deletion. */
1167 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1168 a_occr && (a_occr->insn != insn);
1169 a_occr = get_bb_avail_insn (bb, a_occr->next));
1171 if (!a_occr)
1173 stats.insns_deleted++;
1175 if (dump_file)
1177 fprintf (dump_file, "deleting insn:\n");
1178 print_rtl_single (dump_file, insn);
1179 fprintf (dump_file, "\n");
1181 delete_insn (insn);
1183 else
1184 a_occr->deleted_p = 1;
1186 cleanup:
1187 if (rollback_unoccr)
1188 obstack_free (&unoccr_obstack, rollback_unoccr);
1191 /* Performing the redundancy elimination as described before. */
1193 static void
1194 eliminate_partially_redundant_loads (void)
1196 rtx insn;
1197 basic_block bb;
1199 /* Note we start at block 1. */
1201 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1202 return;
1204 FOR_BB_BETWEEN (bb,
1205 ENTRY_BLOCK_PTR->next_bb->next_bb,
1206 EXIT_BLOCK_PTR,
1207 next_bb)
1209 /* Don't try anything on basic blocks with strange predecessors. */
1210 if (! bb_has_well_behaved_predecessors (bb))
1211 continue;
1213 /* Do not try anything on cold basic blocks. */
1214 if (probably_cold_bb_p (bb))
1215 continue;
1217 /* Reset the table of things changed since the start of the current
1218 basic block. */
1219 reset_opr_set_tables ();
1221 /* Look at all insns in the current basic block and see if there are
1222 any loads in it that we can record. */
1223 FOR_BB_INSNS (bb, insn)
1225 /* Is it a load - of the form (set (reg) (mem))? */
1226 if (NONJUMP_INSN_P (insn)
1227 && GET_CODE (PATTERN (insn)) == SET
1228 && REG_P (SET_DEST (PATTERN (insn)))
1229 && MEM_P (SET_SRC (PATTERN (insn))))
1231 rtx pat = PATTERN (insn);
1232 rtx src = SET_SRC (pat);
1233 struct expr *expr;
1235 if (!MEM_VOLATILE_P (src)
1236 && GET_MODE (src) != BLKmode
1237 && general_operand (src, GET_MODE (src))
1238 /* Are the operands unchanged since the start of the
1239 block? */
1240 && oprs_unchanged_p (src, insn, false)
1241 && !(flag_non_call_exceptions && may_trap_p (src))
1242 && !side_effects_p (src)
1243 /* Is the expression recorded? */
1244 && (expr = lookup_expr_in_table (src)) != NULL)
1246 /* We now have a load (insn) and an available memory at
1247 its BB start (expr). Try to remove the loads if it is
1248 redundant. */
1249 eliminate_partially_redundant_load (bb, insn, expr);
1253 /* Keep track of everything modified by this insn, so that we
1254 know what has been modified since the start of the current
1255 basic block. */
1256 if (INSN_P (insn))
1257 record_opr_changes (insn);
1261 commit_edge_insertions ();
1264 /* Go over the expression hash table and delete insns that were
1265 marked for later deletion. */
1267 /* This helper is called via htab_traverse. */
1268 static int
1269 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1271 struct expr *expr = (struct expr *) *slot;
1272 struct occr *occr;
1274 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1276 if (occr->deleted_p)
1278 delete_insn (occr->insn);
1279 stats.insns_deleted++;
1281 if (dump_file)
1283 fprintf (dump_file, "deleting insn:\n");
1284 print_rtl_single (dump_file, occr->insn);
1285 fprintf (dump_file, "\n");
1290 return 1;
1293 static void
1294 delete_redundant_insns (void)
1296 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1297 if (dump_file)
1298 fprintf (dump_file, "\n");
1301 /* Main entry point of the GCSE after reload - clean some redundant loads
1302 due to spilling. */
1304 void
1305 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1308 memset (&stats, 0, sizeof (stats));
1310 /* Allocate ememory for this pass.
1311 Also computes and initializes the insns' CUIDs. */
1312 alloc_mem ();
1314 /* We need alias analysis. */
1315 init_alias_analysis ();
1317 compute_hash_table ();
1319 if (dump_file)
1320 dump_hash_table (dump_file);
1322 if (htab_elements (expr_table) > 0)
1324 eliminate_partially_redundant_loads ();
1325 delete_redundant_insns ();
1327 if (dump_file)
1329 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1330 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1331 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1332 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1333 fprintf (dump_file, "\n\n");
1337 /* We are finished with alias. */
1338 end_alias_analysis ();
1340 free_mem ();