1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
37 #include "basic-block.h"
41 #ifndef STACK_PUSH_CODE
42 #ifdef STACK_GROWS_DOWNWARD
43 #define STACK_PUSH_CODE PRE_DEC
45 #define STACK_PUSH_CODE PRE_INC
49 #ifndef STACK_POP_CODE
50 #ifdef STACK_GROWS_DOWNWARD
51 #define STACK_POP_CODE POST_INC
53 #define STACK_POP_CODE POST_DEC
57 static void validate_replace_rtx_1
PARAMS ((rtx
*, rtx
, rtx
, rtx
));
58 static rtx
*find_single_use_1
PARAMS ((rtx
, rtx
*));
59 static void validate_replace_src_1
PARAMS ((rtx
*, void *));
60 static rtx split_insn
PARAMS ((rtx
));
62 /* Nonzero means allow operands to be volatile.
63 This should be 0 if you are generating rtl, such as if you are calling
64 the functions in optabs.c and expmed.c (most of the time).
65 This should be 1 if all valid insns need to be recognized,
66 such as in regclass.c and final.c and reload.c.
68 init_recog and init_recog_no_volatile are responsible for setting this. */
72 struct recog_data recog_data
;
74 /* Contains a vector of operand_alternative structures for every operand.
75 Set up by preprocess_constraints. */
76 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
78 /* On return from `constrain_operands', indicate which alternative
81 int which_alternative
;
83 /* Nonzero after end of reload pass.
84 Set to 1 or 0 by toplev.c.
85 Controls the significance of (SUBREG (MEM)). */
89 /* Initialize data used by the function `recog'.
90 This must be called once in the compilation of a function
91 before any insn recognition may be done in the function. */
94 init_recog_no_volatile ()
105 /* Try recognizing the instruction INSN,
106 and return the code number that results.
107 Remember the code so that repeated calls do not
108 need to spend the time for actual rerecognition.
110 This function is the normal interface to instruction recognition.
111 The automatically-generated function `recog' is normally called
112 through this one. (The only exception is in combine.c.) */
115 recog_memoized_1 (insn
)
118 if (INSN_CODE (insn
) < 0)
119 INSN_CODE (insn
) = recog (PATTERN (insn
), insn
, 0);
120 return INSN_CODE (insn
);
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
127 check_asm_operands (x
)
132 const char **constraints
;
135 /* Post-reload, be more strict with things. */
136 if (reload_completed
)
138 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
139 extract_insn (make_insn_raw (x
));
140 constrain_operands (1);
141 return which_alternative
>= 0;
144 noperands
= asm_noperands (x
);
150 operands
= (rtx
*) alloca (noperands
* sizeof (rtx
));
151 constraints
= (const char **) alloca (noperands
* sizeof (char *));
153 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
);
155 for (i
= 0; i
< noperands
; i
++)
157 const char *c
= constraints
[i
];
160 if (ISDIGIT ((unsigned char) c
[0]) && c
[1] == '\0')
161 c
= constraints
[c
[0] - '0'];
163 if (! asm_operand_ok (operands
[i
], c
))
170 /* Static data for the next two routines. */
172 typedef struct change_t
180 static change_t
*changes
;
181 static int changes_allocated
;
183 static int num_changes
= 0;
185 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
186 at which NEW will be placed. If OBJECT is zero, no validation is done,
187 the change is simply made.
189 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
190 will be called with the address and mode as parameters. If OBJECT is
191 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
194 IN_GROUP is non-zero if this is part of a group of changes that must be
195 performed as a group. In that case, the changes will be stored. The
196 function `apply_change_group' will validate and apply the changes.
198 If IN_GROUP is zero, this is a single change. Try to recognize the insn
199 or validate the memory reference with the change applied. If the result
200 is not valid for the machine, suppress the change and return zero.
201 Otherwise, perform the change and return 1. */
204 validate_change (object
, loc
, new, in_group
)
212 if (old
== new || rtx_equal_p (old
, new))
215 if (in_group
== 0 && num_changes
!= 0)
220 /* Save the information describing this change. */
221 if (num_changes
>= changes_allocated
)
223 if (changes_allocated
== 0)
224 /* This value allows for repeated substitutions inside complex
225 indexed addresses, or changes in up to 5 insns. */
226 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
228 changes_allocated
*= 2;
231 (change_t
*) xrealloc (changes
,
232 sizeof (change_t
) * changes_allocated
);
235 changes
[num_changes
].object
= object
;
236 changes
[num_changes
].loc
= loc
;
237 changes
[num_changes
].old
= old
;
239 if (object
&& GET_CODE (object
) != MEM
)
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
243 changes
[num_changes
].old_code
= INSN_CODE (object
);
244 INSN_CODE (object
) = -1;
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
255 return apply_change_group ();
258 /* This subroutine of apply_change_group verifies whether the changes to INSN
259 were valid; i.e. whether INSN can still be recognized. */
262 insn_invalid_p (insn
)
265 rtx pat
= PATTERN (insn
);
266 int num_clobbers
= 0;
267 /* If we are before reload and the pattern is a SET, see if we can add
269 int icode
= recog (pat
, insn
,
270 (GET_CODE (pat
) == SET
271 && ! reload_completed
&& ! reload_in_progress
)
272 ? &num_clobbers
: 0);
273 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
276 /* If this is an asm and the operand aren't legal, then fail. Likewise if
277 this is not an asm and the insn wasn't recognized. */
278 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
279 || (!is_asm
&& icode
< 0))
282 /* If we have to add CLOBBERs, fail if we have to add ones that reference
283 hard registers since our callers can't know if they are live or not.
284 Otherwise, add them. */
285 if (num_clobbers
> 0)
289 if (added_clobbers_hard_reg_p (icode
))
292 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
293 XVECEXP (newpat
, 0, 0) = pat
;
294 add_clobbers (newpat
, icode
);
295 PATTERN (insn
) = pat
= newpat
;
298 /* After reload, verify that all constraints are satisfied. */
299 if (reload_completed
)
303 if (! constrain_operands (1))
307 INSN_CODE (insn
) = icode
;
311 /* Apply a group of changes previously issued with `validate_change'.
312 Return 1 if all changes are valid, zero otherwise. */
315 apply_change_group ()
318 rtx last_validated
= NULL_RTX
;
320 /* The changes have been applied and all INSN_CODEs have been reset to force
323 The changes are valid if we aren't given an object, or if we are
324 given a MEM and it still is a valid address, or if this is in insn
325 and it is recognized. In the latter case, if reload has completed,
326 we also require that the operands meet the constraints for
329 for (i
= 0; i
< num_changes
; i
++)
331 rtx object
= changes
[i
].object
;
333 /* if there is no object to test or if it is the same as the one we
334 already tested, ignore it. */
335 if (object
== 0 || object
== last_validated
)
338 if (GET_CODE (object
) == MEM
)
340 if (! memory_address_p (GET_MODE (object
), XEXP (object
, 0)))
343 else if (insn_invalid_p (object
))
345 rtx pat
= PATTERN (object
);
347 /* Perhaps we couldn't recognize the insn because there were
348 extra CLOBBERs at the end. If so, try to re-recognize
349 without the last CLOBBER (later iterations will cause each of
350 them to be eliminated, in turn). But don't do this if we
351 have an ASM_OPERAND. */
352 if (GET_CODE (pat
) == PARALLEL
353 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
354 && asm_noperands (PATTERN (object
)) < 0)
358 if (XVECLEN (pat
, 0) == 2)
359 newpat
= XVECEXP (pat
, 0, 0);
365 = gen_rtx_PARALLEL (VOIDmode
,
366 rtvec_alloc (XVECLEN (pat
, 0) - 1));
367 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
368 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
371 /* Add a new change to this group to replace the pattern
372 with this new pattern. Then consider this change
373 as having succeeded. The change we added will
374 cause the entire call to fail if things remain invalid.
376 Note that this can lose if a later change than the one
377 we are processing specified &XVECEXP (PATTERN (object), 0, X)
378 but this shouldn't occur. */
380 validate_change (object
, &PATTERN (object
), newpat
, 1);
383 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
384 /* If this insn is a CLOBBER or USE, it is always valid, but is
390 last_validated
= object
;
393 if (i
== num_changes
)
405 /* Return the number of changes so far in the current group. */
408 num_validated_changes ()
413 /* Retract the changes numbered NUM and up. */
421 /* Back out all the changes. Do this in the opposite order in which
423 for (i
= num_changes
- 1; i
>= num
; i
--)
425 *changes
[i
].loc
= changes
[i
].old
;
426 if (changes
[i
].object
&& GET_CODE (changes
[i
].object
) != MEM
)
427 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
432 /* Replace every occurrence of FROM in X with TO. Mark each change with
433 validate_change passing OBJECT. */
436 validate_replace_rtx_1 (loc
, from
, to
, object
)
438 rtx from
, to
, object
;
444 enum machine_mode op0_mode
= VOIDmode
;
445 int prev_changes
= num_changes
;
452 fmt
= GET_RTX_FORMAT (code
);
454 op0_mode
= GET_MODE (XEXP (x
, 0));
456 /* X matches FROM if it is the same rtx or they are both referring to the
457 same register in the same mode. Avoid calling rtx_equal_p unless the
458 operands look similar. */
461 || (GET_CODE (x
) == REG
&& GET_CODE (from
) == REG
462 && GET_MODE (x
) == GET_MODE (from
)
463 && REGNO (x
) == REGNO (from
))
464 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
465 && rtx_equal_p (x
, from
)))
467 validate_change (object
, loc
, to
, 1);
471 /* Call ourself recursively to perform the replacements. */
473 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
476 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
);
477 else if (fmt
[i
] == 'E')
478 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
479 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
);
482 /* If we didn't substitute, there is nothing more to do. */
483 if (num_changes
== prev_changes
)
486 /* Allow substituted expression to have different mode. This is used by
487 regmove to change mode of pseudo register. */
488 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
489 op0_mode
= GET_MODE (XEXP (x
, 0));
491 /* Do changes needed to keep rtx consistent. Don't do any other
492 simplifications, as it is not our job. */
494 if ((GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == 'c')
495 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
497 validate_change (object
, loc
,
498 gen_rtx_fmt_ee (GET_RTX_CLASS (code
) == 'c' ? code
499 : swap_condition (code
),
500 GET_MODE (x
), XEXP (x
, 1),
509 /* If we have a PLUS whose second operand is now a CONST_INT, use
510 plus_constant to try to simplify it.
511 ??? We may want later to remove this, once simplification is
512 separated from this function. */
513 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
514 validate_change (object
, loc
,
516 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
519 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
520 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
521 validate_change (object
, loc
,
523 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
524 simplify_gen_unary (NEG
,
525 GET_MODE (x
), XEXP (x
, 1),
530 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
532 new = simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
534 /* If any of the above failed, substitute in something that
535 we know won't be recognized. */
537 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
538 validate_change (object
, loc
, new, 1);
542 /* All subregs possible to simplify should be simplified. */
543 new = simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
546 /* Subregs of VOIDmode operands are incorrect. */
547 if (!new && GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
548 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
550 validate_change (object
, loc
, new, 1);
554 /* If we are replacing a register with memory, try to change the memory
555 to be the mode required for memory in extract operations (this isn't
556 likely to be an insertion operation; if it was, nothing bad will
557 happen, we might just fail in some cases). */
559 if (GET_CODE (XEXP (x
, 0)) == MEM
560 && GET_CODE (XEXP (x
, 1)) == CONST_INT
561 && GET_CODE (XEXP (x
, 2)) == CONST_INT
562 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
563 && !MEM_VOLATILE_P (XEXP (x
, 0)))
565 enum machine_mode wanted_mode
= VOIDmode
;
566 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
567 int pos
= INTVAL (XEXP (x
, 2));
569 if (GET_CODE (x
) == ZERO_EXTRACT
)
571 enum machine_mode new_mode
572 = mode_for_extraction (EP_extzv
, 1);
573 if (new_mode
!= MAX_MACHINE_MODE
)
574 wanted_mode
= new_mode
;
576 else if (GET_CODE (x
) == SIGN_EXTRACT
)
578 enum machine_mode new_mode
579 = mode_for_extraction (EP_extv
, 1);
580 if (new_mode
!= MAX_MACHINE_MODE
)
581 wanted_mode
= new_mode
;
584 /* If we have a narrower mode, we can do something. */
585 if (wanted_mode
!= VOIDmode
586 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
588 int offset
= pos
/ BITS_PER_UNIT
;
591 /* If the bytes and bits are counted differently, we
592 must adjust the offset. */
593 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
595 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
598 pos
%= GET_MODE_BITSIZE (wanted_mode
);
600 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
602 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
603 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
614 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
615 with TO. After all changes have been made, validate by seeing
616 if INSN is still valid. */
619 validate_replace_rtx_subexp (from
, to
, insn
, loc
)
620 rtx from
, to
, insn
, *loc
;
622 validate_replace_rtx_1 (loc
, from
, to
, insn
);
623 return apply_change_group ();
626 /* Try replacing every occurrence of FROM in INSN with TO. After all
627 changes have been made, validate by seeing if INSN is still valid. */
630 validate_replace_rtx (from
, to
, insn
)
633 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
634 return apply_change_group ();
637 /* Try replacing every occurrence of FROM in INSN with TO. */
640 validate_replace_rtx_group (from
, to
, insn
)
643 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
646 /* Function called by note_uses to replace used subexpressions. */
647 struct validate_replace_src_data
649 rtx from
; /* Old RTX */
650 rtx to
; /* New RTX */
651 rtx insn
; /* Insn in which substitution is occurring. */
655 validate_replace_src_1 (x
, data
)
659 struct validate_replace_src_data
*d
660 = (struct validate_replace_src_data
*) data
;
662 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
);
665 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
666 SET_DESTs. After all changes have been made, validate by seeing if
667 INSN is still valid. */
670 validate_replace_src (from
, to
, insn
)
673 struct validate_replace_src_data d
;
678 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
679 return apply_change_group ();
683 /* Return 1 if the insn using CC0 set by INSN does not contain
684 any ordered tests applied to the condition codes.
685 EQ and NE tests do not count. */
688 next_insn_tests_no_inequality (insn
)
691 rtx next
= next_cc0_user (insn
);
693 /* If there is no next insn, we have to take the conservative choice. */
697 return ((GET_CODE (next
) == JUMP_INSN
698 || GET_CODE (next
) == INSN
699 || GET_CODE (next
) == CALL_INSN
)
700 && ! inequality_comparisons_p (PATTERN (next
)));
703 #if 0 /* This is useless since the insn that sets the cc's
704 must be followed immediately by the use of them. */
705 /* Return 1 if the CC value set up by INSN is not used. */
708 next_insns_test_no_inequality (insn
)
711 rtx next
= NEXT_INSN (insn
);
713 for (; next
!= 0; next
= NEXT_INSN (next
))
715 if (GET_CODE (next
) == CODE_LABEL
716 || GET_CODE (next
) == BARRIER
)
718 if (GET_CODE (next
) == NOTE
)
720 if (inequality_comparisons_p (PATTERN (next
)))
722 if (sets_cc0_p (PATTERN (next
)) == 1)
724 if (! reg_mentioned_p (cc0_rtx
, PATTERN (next
)))
732 /* This is used by find_single_use to locate an rtx that contains exactly one
733 use of DEST, which is typically either a REG or CC0. It returns a
734 pointer to the innermost rtx expression containing DEST. Appearances of
735 DEST that are being used to totally replace it are not counted. */
738 find_single_use_1 (dest
, loc
)
743 enum rtx_code code
= GET_CODE (x
);
761 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
762 of a REG that occupies all of the REG, the insn uses DEST if
763 it is mentioned in the destination or the source. Otherwise, we
764 need just check the source. */
765 if (GET_CODE (SET_DEST (x
)) != CC0
766 && GET_CODE (SET_DEST (x
)) != PC
767 && GET_CODE (SET_DEST (x
)) != REG
768 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
769 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
770 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
771 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
772 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
773 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
776 return find_single_use_1 (dest
, &SET_SRC (x
));
780 return find_single_use_1 (dest
, &XEXP (x
, 0));
786 /* If it wasn't one of the common cases above, check each expression and
787 vector of this code. Look for a unique usage of DEST. */
789 fmt
= GET_RTX_FORMAT (code
);
790 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
794 if (dest
== XEXP (x
, i
)
795 || (GET_CODE (dest
) == REG
&& GET_CODE (XEXP (x
, i
)) == REG
796 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
799 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
802 result
= this_result
;
803 else if (this_result
)
804 /* Duplicate usage. */
807 else if (fmt
[i
] == 'E')
811 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
813 if (XVECEXP (x
, i
, j
) == dest
814 || (GET_CODE (dest
) == REG
815 && GET_CODE (XVECEXP (x
, i
, j
)) == REG
816 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
819 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
822 result
= this_result
;
823 else if (this_result
)
832 /* See if DEST, produced in INSN, is used only a single time in the
833 sequel. If so, return a pointer to the innermost rtx expression in which
836 If PLOC is non-zero, *PLOC is set to the insn containing the single use.
838 This routine will return usually zero either before flow is called (because
839 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
840 note can't be trusted).
842 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
843 care about REG_DEAD notes or LOG_LINKS.
845 Otherwise, we find the single use by finding an insn that has a
846 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
847 only referenced once in that insn, we know that it must be the first
848 and last insn referencing DEST. */
851 find_single_use (dest
, insn
, ploc
)
863 next
= NEXT_INSN (insn
);
865 || (GET_CODE (next
) != INSN
&& GET_CODE (next
) != JUMP_INSN
))
868 result
= find_single_use_1 (dest
, &PATTERN (next
));
875 if (reload_completed
|| reload_in_progress
|| GET_CODE (dest
) != REG
)
878 for (next
= next_nonnote_insn (insn
);
879 next
!= 0 && GET_CODE (next
) != CODE_LABEL
;
880 next
= next_nonnote_insn (next
))
881 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
883 for (link
= LOG_LINKS (next
); link
; link
= XEXP (link
, 1))
884 if (XEXP (link
, 0) == insn
)
889 result
= find_single_use_1 (dest
, &PATTERN (next
));
899 /* Return 1 if OP is a valid general operand for machine mode MODE.
900 This is either a register reference, a memory reference,
901 or a constant. In the case of a memory reference, the address
902 is checked for general validity for the target machine.
904 Register and memory references must have mode MODE in order to be valid,
905 but some constants have no machine mode and are valid for any mode.
907 If MODE is VOIDmode, OP is checked for validity for whatever mode
910 The main use of this function is as a predicate in match_operand
911 expressions in the machine description.
913 For an explanation of this function's behavior for registers of
914 class NO_REGS, see the comment for `register_operand'. */
917 general_operand (op
, mode
)
919 enum machine_mode mode
;
921 enum rtx_code code
= GET_CODE (op
);
923 if (mode
== VOIDmode
)
924 mode
= GET_MODE (op
);
926 /* Don't accept CONST_INT or anything similar
927 if the caller wants something floating. */
928 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
929 && GET_MODE_CLASS (mode
) != MODE_INT
930 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
933 if (GET_CODE (op
) == CONST_INT
934 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
938 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
940 #ifdef LEGITIMATE_PIC_OPERAND_P
941 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
943 && LEGITIMATE_CONSTANT_P (op
));
945 /* Except for certain constants with VOIDmode, already checked for,
946 OP's mode must match MODE if MODE specifies a mode. */
948 if (GET_MODE (op
) != mode
)
953 rtx sub
= SUBREG_REG (op
);
955 #ifdef INSN_SCHEDULING
956 /* On machines that have insn scheduling, we want all memory
957 reference to be explicit, so outlaw paradoxical SUBREGs. */
958 if (GET_CODE (sub
) == MEM
959 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
962 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
963 may result in incorrect reference. We should simplify all valid
964 subregs of MEM anyway. But allow this after reload because we
965 might be called from cleanup_subreg_operands.
967 ??? This is a kludge. */
968 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
969 && GET_CODE (sub
) == MEM
)
972 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
973 create such rtl, and we must reject it. */
974 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
975 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
979 code
= GET_CODE (op
);
983 /* A register whose class is NO_REGS is not a general operand. */
984 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
985 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
989 rtx y
= XEXP (op
, 0);
991 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
994 if (GET_CODE (y
) == ADDRESSOF
)
997 /* Use the mem's mode, since it will be reloaded thus. */
998 mode
= GET_MODE (op
);
999 GO_IF_LEGITIMATE_ADDRESS (mode
, y
, win
);
1002 /* Pretend this is an operand for now; we'll run force_operand
1003 on its replacement in fixup_var_refs_1. */
1004 if (code
== ADDRESSOF
)
1013 /* Return 1 if OP is a valid memory address for a memory reference
1016 The main use of this function is as a predicate in match_operand
1017 expressions in the machine description. */
1020 address_operand (op
, mode
)
1022 enum machine_mode mode
;
1024 return memory_address_p (mode
, op
);
1027 /* Return 1 if OP is a register reference of mode MODE.
1028 If MODE is VOIDmode, accept a register in any mode.
1030 The main use of this function is as a predicate in match_operand
1031 expressions in the machine description.
1033 As a special exception, registers whose class is NO_REGS are
1034 not accepted by `register_operand'. The reason for this change
1035 is to allow the representation of special architecture artifacts
1036 (such as a condition code register) without extending the rtl
1037 definitions. Since registers of class NO_REGS cannot be used
1038 as registers in any case where register classes are examined,
1039 it is most consistent to keep this function from accepting them. */
1042 register_operand (op
, mode
)
1044 enum machine_mode mode
;
1046 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1049 if (GET_CODE (op
) == SUBREG
)
1051 rtx sub
= SUBREG_REG (op
);
1053 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1054 because it is guaranteed to be reloaded into one.
1055 Just make sure the MEM is valid in itself.
1056 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1057 but currently it does result from (SUBREG (REG)...) where the
1058 reg went on the stack.) */
1059 if (! reload_completed
&& GET_CODE (sub
) == MEM
)
1060 return general_operand (op
, mode
);
1062 #ifdef CLASS_CANNOT_CHANGE_MODE
1063 if (GET_CODE (sub
) == REG
1064 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1065 && (TEST_HARD_REG_BIT
1066 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
1068 && CLASS_CANNOT_CHANGE_MODE_P (mode
, GET_MODE (sub
))
1069 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1070 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1074 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1075 create such rtl, and we must reject it. */
1076 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
1077 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1083 /* If we have an ADDRESSOF, consider it valid since it will be
1084 converted into something that will not be a MEM. */
1085 if (GET_CODE (op
) == ADDRESSOF
)
1088 /* We don't consider registers whose class is NO_REGS
1089 to be a register operand. */
1090 return (GET_CODE (op
) == REG
1091 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1092 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1095 /* Return 1 for a register in Pmode; ignore the tested mode. */
1098 pmode_register_operand (op
, mode
)
1100 enum machine_mode mode ATTRIBUTE_UNUSED
;
1102 return register_operand (op
, Pmode
);
1105 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1106 or a hard register. */
1109 scratch_operand (op
, mode
)
1111 enum machine_mode mode
;
1113 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1116 return (GET_CODE (op
) == SCRATCH
1117 || (GET_CODE (op
) == REG
1118 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1121 /* Return 1 if OP is a valid immediate operand for mode MODE.
1123 The main use of this function is as a predicate in match_operand
1124 expressions in the machine description. */
1127 immediate_operand (op
, mode
)
1129 enum machine_mode mode
;
1131 /* Don't accept CONST_INT or anything similar
1132 if the caller wants something floating. */
1133 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1134 && GET_MODE_CLASS (mode
) != MODE_INT
1135 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1138 if (GET_CODE (op
) == CONST_INT
1139 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1142 /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
1143 result in 0/1. It seems a safe assumption that this is
1144 in range for everyone. */
1145 if (GET_CODE (op
) == CONSTANT_P_RTX
)
1148 return (CONSTANT_P (op
)
1149 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1150 || GET_MODE (op
) == VOIDmode
)
1151 #ifdef LEGITIMATE_PIC_OPERAND_P
1152 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1154 && LEGITIMATE_CONSTANT_P (op
));
1157 /* Returns 1 if OP is an operand that is a CONST_INT. */
1160 const_int_operand (op
, mode
)
1162 enum machine_mode mode
;
1164 if (GET_CODE (op
) != CONST_INT
)
1167 if (mode
!= VOIDmode
1168 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1174 /* Returns 1 if OP is an operand that is a constant integer or constant
1175 floating-point number. */
1178 const_double_operand (op
, mode
)
1180 enum machine_mode mode
;
1182 /* Don't accept CONST_INT or anything similar
1183 if the caller wants something floating. */
1184 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1185 && GET_MODE_CLASS (mode
) != MODE_INT
1186 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1189 return ((GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
)
1190 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1191 || GET_MODE (op
) == VOIDmode
));
1194 /* Return 1 if OP is a general operand that is not an immediate operand. */
1197 nonimmediate_operand (op
, mode
)
1199 enum machine_mode mode
;
1201 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1204 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1207 nonmemory_operand (op
, mode
)
1209 enum machine_mode mode
;
1211 if (CONSTANT_P (op
))
1213 /* Don't accept CONST_INT or anything similar
1214 if the caller wants something floating. */
1215 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1216 && GET_MODE_CLASS (mode
) != MODE_INT
1217 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1220 if (GET_CODE (op
) == CONST_INT
1221 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1224 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1225 || mode
== VOIDmode
)
1226 #ifdef LEGITIMATE_PIC_OPERAND_P
1227 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1229 && LEGITIMATE_CONSTANT_P (op
));
1232 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1235 if (GET_CODE (op
) == SUBREG
)
1237 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1238 because it is guaranteed to be reloaded into one.
1239 Just make sure the MEM is valid in itself.
1240 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1241 but currently it does result from (SUBREG (REG)...) where the
1242 reg went on the stack.) */
1243 if (! reload_completed
&& GET_CODE (SUBREG_REG (op
)) == MEM
)
1244 return general_operand (op
, mode
);
1245 op
= SUBREG_REG (op
);
1248 /* We don't consider registers whose class is NO_REGS
1249 to be a register operand. */
1250 return (GET_CODE (op
) == REG
1251 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1252 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1255 /* Return 1 if OP is a valid operand that stands for pushing a
1256 value of mode MODE onto the stack.
1258 The main use of this function is as a predicate in match_operand
1259 expressions in the machine description. */
1262 push_operand (op
, mode
)
1264 enum machine_mode mode
;
1266 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1268 #ifdef PUSH_ROUNDING
1269 rounded_size
= PUSH_ROUNDING (rounded_size
);
1272 if (GET_CODE (op
) != MEM
)
1275 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1280 if (rounded_size
== GET_MODE_SIZE (mode
))
1282 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1287 if (GET_CODE (op
) != PRE_MODIFY
1288 || GET_CODE (XEXP (op
, 1)) != PLUS
1289 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1290 || GET_CODE (XEXP (XEXP (op
, 1), 1)) != CONST_INT
1291 #ifdef STACK_GROWS_DOWNWARD
1292 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1294 || INTVAL (XEXP (XEXP (op
, 1), 1)) != rounded_size
1300 return XEXP (op
, 0) == stack_pointer_rtx
;
1303 /* Return 1 if OP is a valid operand that stands for popping a
1304 value of mode MODE off the stack.
1306 The main use of this function is as a predicate in match_operand
1307 expressions in the machine description. */
1310 pop_operand (op
, mode
)
1312 enum machine_mode mode
;
1314 if (GET_CODE (op
) != MEM
)
1317 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1322 if (GET_CODE (op
) != STACK_POP_CODE
)
1325 return XEXP (op
, 0) == stack_pointer_rtx
;
1328 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1331 memory_address_p (mode
, addr
)
1332 enum machine_mode mode ATTRIBUTE_UNUSED
;
1335 if (GET_CODE (addr
) == ADDRESSOF
)
1338 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1345 /* Return 1 if OP is a valid memory reference with mode MODE,
1346 including a valid address.
1348 The main use of this function is as a predicate in match_operand
1349 expressions in the machine description. */
1352 memory_operand (op
, mode
)
1354 enum machine_mode mode
;
1358 if (! reload_completed
)
1359 /* Note that no SUBREG is a memory operand before end of reload pass,
1360 because (SUBREG (MEM...)) forces reloading into a register. */
1361 return GET_CODE (op
) == MEM
&& general_operand (op
, mode
);
1363 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1367 if (GET_CODE (inner
) == SUBREG
)
1368 inner
= SUBREG_REG (inner
);
1370 return (GET_CODE (inner
) == MEM
&& general_operand (op
, mode
));
1373 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1374 that is, a memory reference whose address is a general_operand. */
1377 indirect_operand (op
, mode
)
1379 enum machine_mode mode
;
1381 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1382 if (! reload_completed
1383 && GET_CODE (op
) == SUBREG
&& GET_CODE (SUBREG_REG (op
)) == MEM
)
1385 int offset
= SUBREG_BYTE (op
);
1386 rtx inner
= SUBREG_REG (op
);
1388 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1391 /* The only way that we can have a general_operand as the resulting
1392 address is if OFFSET is zero and the address already is an operand
1393 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1396 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1397 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1398 && GET_CODE (XEXP (XEXP (inner
, 0), 1)) == CONST_INT
1399 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1400 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1403 return (GET_CODE (op
) == MEM
1404 && memory_operand (op
, mode
)
1405 && general_operand (XEXP (op
, 0), Pmode
));
1408 /* Return 1 if this is a comparison operator. This allows the use of
1409 MATCH_OPERATOR to recognize all the branch insns. */
1412 comparison_operator (op
, mode
)
1414 enum machine_mode mode
;
1416 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1417 && GET_RTX_CLASS (GET_CODE (op
)) == '<');
1420 /* If BODY is an insn body that uses ASM_OPERANDS,
1421 return the number of operands (both input and output) in the insn.
1422 Otherwise return -1. */
1425 asm_noperands (body
)
1428 switch (GET_CODE (body
))
1431 /* No output operands: return number of input operands. */
1432 return ASM_OPERANDS_INPUT_LENGTH (body
);
1434 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1435 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1436 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
)) + 1;
1440 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
1441 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1443 /* Multiple output operands, or 1 output plus some clobbers:
1444 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1448 /* Count backwards through CLOBBERs to determine number of SETs. */
1449 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1451 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1453 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1457 /* N_SETS is now number of output operands. */
1460 /* Verify that all the SETs we have
1461 came from a single original asm_operands insn
1462 (so that invalid combinations are blocked). */
1463 for (i
= 0; i
< n_sets
; i
++)
1465 rtx elt
= XVECEXP (body
, 0, i
);
1466 if (GET_CODE (elt
) != SET
)
1468 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1470 /* If these ASM_OPERANDS rtx's came from different original insns
1471 then they aren't allowed together. */
1472 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1473 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body
, 0, 0))))
1476 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)))
1479 else if (GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1481 /* 0 outputs, but some clobbers:
1482 body is [(asm_operands ...) (clobber (reg ...))...]. */
1485 /* Make sure all the other parallel things really are clobbers. */
1486 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1487 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1490 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1499 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1500 copy its operands (both input and output) into the vector OPERANDS,
1501 the locations of the operands within the insn into the vector OPERAND_LOCS,
1502 and the constraints for the operands into CONSTRAINTS.
1503 Write the modes of the operands into MODES.
1504 Return the assembler-template.
1506 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1507 we don't store that info. */
1510 decode_asm_operands (body
, operands
, operand_locs
, constraints
, modes
)
1514 const char **constraints
;
1515 enum machine_mode
*modes
;
1519 const char *template = 0;
1521 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1523 rtx asmop
= SET_SRC (body
);
1524 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1526 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
) + 1;
1528 for (i
= 1; i
< noperands
; i
++)
1531 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
- 1);
1533 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
- 1);
1535 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
- 1);
1537 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
- 1);
1540 /* The output is in the SET.
1541 Its constraint is in the ASM_OPERANDS itself. */
1543 operands
[0] = SET_DEST (body
);
1545 operand_locs
[0] = &SET_DEST (body
);
1547 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1549 modes
[0] = GET_MODE (SET_DEST (body
));
1550 template = ASM_OPERANDS_TEMPLATE (asmop
);
1552 else if (GET_CODE (body
) == ASM_OPERANDS
)
1555 /* No output operands: BODY is (asm_operands ....). */
1557 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1559 /* The input operands are found in the 1st element vector. */
1560 /* Constraints for inputs are in the 2nd element vector. */
1561 for (i
= 0; i
< noperands
; i
++)
1564 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1566 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1568 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1570 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1572 template = ASM_OPERANDS_TEMPLATE (asmop
);
1574 else if (GET_CODE (body
) == PARALLEL
1575 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
1576 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1578 rtx asmop
= SET_SRC (XVECEXP (body
, 0, 0));
1579 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1580 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1581 int nout
= 0; /* Does not include CLOBBERs. */
1583 /* At least one output, plus some CLOBBERs. */
1585 /* The outputs are in the SETs.
1586 Their constraints are in the ASM_OPERANDS itself. */
1587 for (i
= 0; i
< nparallel
; i
++)
1589 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1590 break; /* Past last SET */
1593 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1595 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1597 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1599 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1603 for (i
= 0; i
< nin
; i
++)
1606 operand_locs
[i
+ nout
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1608 operands
[i
+ nout
] = ASM_OPERANDS_INPUT (asmop
, i
);
1610 constraints
[i
+ nout
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1612 modes
[i
+ nout
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1615 template = ASM_OPERANDS_TEMPLATE (asmop
);
1617 else if (GET_CODE (body
) == PARALLEL
1618 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1620 /* No outputs, but some CLOBBERs. */
1622 rtx asmop
= XVECEXP (body
, 0, 0);
1623 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1625 for (i
= 0; i
< nin
; i
++)
1628 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1630 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1632 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1634 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1637 template = ASM_OPERANDS_TEMPLATE (asmop
);
1643 /* Check if an asm_operand matches it's constraints.
1644 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1647 asm_operand_ok (op
, constraint
)
1649 const char *constraint
;
1653 /* Use constrain_operands after reload. */
1654 if (reload_completed
)
1659 char c
= *constraint
++;
1673 case '0': case '1': case '2': case '3': case '4':
1674 case '5': case '6': case '7': case '8': case '9':
1675 /* For best results, our caller should have given us the
1676 proper matching constraint, but we can't actually fail
1677 the check if they didn't. Indicate that results are
1679 while (ISDIGIT (*constraint
))
1685 if (address_operand (op
, VOIDmode
))
1690 case 'V': /* non-offsettable */
1691 if (memory_operand (op
, VOIDmode
))
1695 case 'o': /* offsettable */
1696 if (offsettable_nonstrict_memref_p (op
))
1701 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1702 excepting those that expand_call created. Further, on some
1703 machines which do not have generalized auto inc/dec, an inc/dec
1704 is not a memory_operand.
1706 Match any memory and hope things are resolved after reload. */
1708 if (GET_CODE (op
) == MEM
1710 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1711 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1716 if (GET_CODE (op
) == MEM
1718 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1719 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1724 #ifndef REAL_ARITHMETIC
1725 /* Match any floating double constant, but only if
1726 we can examine the bits of it reliably. */
1727 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
1728 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
1729 && GET_MODE (op
) != VOIDmode
&& ! flag_pretend_float
)
1735 if (GET_CODE (op
) == CONST_DOUBLE
)
1740 if (GET_CODE (op
) == CONST_DOUBLE
1741 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, 'G'))
1745 if (GET_CODE (op
) == CONST_DOUBLE
1746 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, 'H'))
1751 if (GET_CODE (op
) == CONST_INT
1752 || (GET_CODE (op
) == CONST_DOUBLE
1753 && GET_MODE (op
) == VOIDmode
))
1759 #ifdef LEGITIMATE_PIC_OPERAND_P
1760 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1767 if (GET_CODE (op
) == CONST_INT
1768 || (GET_CODE (op
) == CONST_DOUBLE
1769 && GET_MODE (op
) == VOIDmode
))
1774 if (GET_CODE (op
) == CONST_INT
1775 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'I'))
1779 if (GET_CODE (op
) == CONST_INT
1780 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'J'))
1784 if (GET_CODE (op
) == CONST_INT
1785 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'K'))
1789 if (GET_CODE (op
) == CONST_INT
1790 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'L'))
1794 if (GET_CODE (op
) == CONST_INT
1795 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'M'))
1799 if (GET_CODE (op
) == CONST_INT
1800 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'N'))
1804 if (GET_CODE (op
) == CONST_INT
1805 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'O'))
1809 if (GET_CODE (op
) == CONST_INT
1810 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'P'))
1818 if (general_operand (op
, VOIDmode
))
1823 /* For all other letters, we first check for a register class,
1824 otherwise it is an EXTRA_CONSTRAINT. */
1825 if (REG_CLASS_FROM_LETTER (c
) != NO_REGS
)
1828 if (GET_MODE (op
) == BLKmode
)
1830 if (register_operand (op
, VOIDmode
))
1833 #ifdef EXTRA_CONSTRAINT
1834 if (EXTRA_CONSTRAINT (op
, c
))
1844 /* Given an rtx *P, if it is a sum containing an integer constant term,
1845 return the location (type rtx *) of the pointer to that constant term.
1846 Otherwise, return a null pointer. */
1849 find_constant_term_loc (p
)
1853 enum rtx_code code
= GET_CODE (*p
);
1855 /* If *P IS such a constant term, P is its location. */
1857 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1861 /* Otherwise, if not a sum, it has no constant term. */
1863 if (GET_CODE (*p
) != PLUS
)
1866 /* If one of the summands is constant, return its location. */
1868 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1869 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1872 /* Otherwise, check each summand for containing a constant term. */
1874 if (XEXP (*p
, 0) != 0)
1876 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1881 if (XEXP (*p
, 1) != 0)
1883 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1891 /* Return 1 if OP is a memory reference
1892 whose address contains no side effects
1893 and remains valid after the addition
1894 of a positive integer less than the
1895 size of the object being referenced.
1897 We assume that the original address is valid and do not check it.
1899 This uses strict_memory_address_p as a subroutine, so
1900 don't use it before reload. */
1903 offsettable_memref_p (op
)
1906 return ((GET_CODE (op
) == MEM
)
1907 && offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)));
1910 /* Similar, but don't require a strictly valid mem ref:
1911 consider pseudo-regs valid as index or base regs. */
1914 offsettable_nonstrict_memref_p (op
)
1917 return ((GET_CODE (op
) == MEM
)
1918 && offsettable_address_p (0, GET_MODE (op
), XEXP (op
, 0)));
1921 /* Return 1 if Y is a memory address which contains no side effects
1922 and would remain valid after the addition of a positive integer
1923 less than the size of that mode.
1925 We assume that the original address is valid and do not check it.
1926 We do check that it is valid for narrower modes.
1928 If STRICTP is nonzero, we require a strictly valid address,
1929 for the sake of use in reload.c. */
1932 offsettable_address_p (strictp
, mode
, y
)
1934 enum machine_mode mode
;
1937 enum rtx_code ycode
= GET_CODE (y
);
1941 int (*addressp
) PARAMS ((enum machine_mode
, rtx
)) =
1942 (strictp
? strict_memory_address_p
: memory_address_p
);
1943 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1945 if (CONSTANT_ADDRESS_P (y
))
1948 /* Adjusting an offsettable address involves changing to a narrower mode.
1949 Make sure that's OK. */
1951 if (mode_dependent_address_p (y
))
1954 /* ??? How much offset does an offsettable BLKmode reference need?
1955 Clearly that depends on the situation in which it's being used.
1956 However, the current situation in which we test 0xffffffff is
1957 less than ideal. Caveat user. */
1959 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1961 /* If the expression contains a constant term,
1962 see if it remains valid when max possible offset is added. */
1964 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1969 *y2
= plus_constant (*y2
, mode_sz
- 1);
1970 /* Use QImode because an odd displacement may be automatically invalid
1971 for any wider mode. But it should be valid for a single byte. */
1972 good
= (*addressp
) (QImode
, y
);
1974 /* In any case, restore old contents of memory. */
1979 if (GET_RTX_CLASS (ycode
) == 'a')
1982 /* The offset added here is chosen as the maximum offset that
1983 any instruction could need to add when operating on something
1984 of the specified mode. We assume that if Y and Y+c are
1985 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1986 go inside a LO_SUM here, so we do so as well. */
1987 if (GET_CODE (y
) == LO_SUM
1989 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1990 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1991 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1993 z
= plus_constant (y
, mode_sz
- 1);
1995 /* Use QImode because an odd displacement may be automatically invalid
1996 for any wider mode. But it should be valid for a single byte. */
1997 return (*addressp
) (QImode
, z
);
2000 /* Return 1 if ADDR is an address-expression whose effect depends
2001 on the mode of the memory reference it is used in.
2003 Autoincrement addressing is a typical example of mode-dependence
2004 because the amount of the increment depends on the mode. */
2007 mode_dependent_address_p (addr
)
2008 rtx addr ATTRIBUTE_UNUSED
; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
2010 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, win
);
2012 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2013 win
: ATTRIBUTE_UNUSED_LABEL
2017 /* Return 1 if OP is a general operand
2018 other than a memory ref with a mode dependent address. */
2021 mode_independent_operand (op
, mode
)
2022 enum machine_mode mode
;
2027 if (! general_operand (op
, mode
))
2030 if (GET_CODE (op
) != MEM
)
2033 addr
= XEXP (op
, 0);
2034 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, lose
);
2036 /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2037 lose
: ATTRIBUTE_UNUSED_LABEL
2041 /* Like extract_insn, but save insn extracted and don't extract again, when
2042 called again for the same insn expecting that recog_data still contain the
2043 valid information. This is used primary by gen_attr infrastructure that
2044 often does extract insn again and again. */
2046 extract_insn_cached (insn
)
2049 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2051 extract_insn (insn
);
2052 recog_data
.insn
= insn
;
2054 /* Do cached extract_insn, constrain_operand and complain about failures.
2055 Used by insn_attrtab. */
2057 extract_constrain_insn_cached (insn
)
2060 extract_insn_cached (insn
);
2061 if (which_alternative
== -1
2062 && !constrain_operands (reload_completed
))
2063 fatal_insn_not_found (insn
);
2065 /* Do cached constrain_operand and complain about failures. */
2067 constrain_operands_cached (strict
)
2070 if (which_alternative
== -1)
2071 return constrain_operands (strict
);
2076 /* Analyze INSN and fill in recog_data. */
2085 rtx body
= PATTERN (insn
);
2087 recog_data
.insn
= NULL
;
2088 recog_data
.n_operands
= 0;
2089 recog_data
.n_alternatives
= 0;
2090 recog_data
.n_dups
= 0;
2091 which_alternative
= -1;
2093 switch (GET_CODE (body
))
2103 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2108 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2109 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2110 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2116 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2119 /* This insn is an `asm' with operands. */
2121 /* expand_asm_operands makes sure there aren't too many operands. */
2122 if (noperands
> MAX_RECOG_OPERANDS
)
2125 /* Now get the operand values and constraints out of the insn. */
2126 decode_asm_operands (body
, recog_data
.operand
,
2127 recog_data
.operand_loc
,
2128 recog_data
.constraints
,
2129 recog_data
.operand_mode
);
2132 const char *p
= recog_data
.constraints
[0];
2133 recog_data
.n_alternatives
= 1;
2135 recog_data
.n_alternatives
+= (*p
++ == ',');
2139 fatal_insn_not_found (insn
);
2143 /* Ordinary insn: recognize it, get the operands via insn_extract
2144 and get the constraints. */
2146 icode
= recog_memoized (insn
);
2148 fatal_insn_not_found (insn
);
2150 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2151 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2152 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2154 insn_extract (insn
);
2156 for (i
= 0; i
< noperands
; i
++)
2158 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2159 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2160 /* VOIDmode match_operands gets mode from their real operand. */
2161 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2162 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2165 for (i
= 0; i
< noperands
; i
++)
2166 recog_data
.operand_type
[i
]
2167 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2168 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2171 if (recog_data
.n_alternatives
> MAX_RECOG_ALTERNATIVES
)
2175 /* After calling extract_insn, you can use this function to extract some
2176 information from the constraint strings into a more usable form.
2177 The collected data is stored in recog_op_alt. */
2179 preprocess_constraints ()
2183 memset (recog_op_alt
, 0, sizeof recog_op_alt
);
2184 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2187 struct operand_alternative
*op_alt
;
2188 const char *p
= recog_data
.constraints
[i
];
2190 op_alt
= recog_op_alt
[i
];
2192 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2194 op_alt
[j
].class = NO_REGS
;
2195 op_alt
[j
].constraint
= p
;
2196 op_alt
[j
].matches
= -1;
2197 op_alt
[j
].matched
= -1;
2199 if (*p
== '\0' || *p
== ',')
2201 op_alt
[j
].anything_ok
= 1;
2211 while (c
!= ',' && c
!= '\0');
2212 if (c
== ',' || c
== '\0')
2217 case '=': case '+': case '*': case '%':
2218 case 'E': case 'F': case 'G': case 'H':
2219 case 's': case 'i': case 'n':
2220 case 'I': case 'J': case 'K': case 'L':
2221 case 'M': case 'N': case 'O': case 'P':
2222 /* These don't say anything we care about. */
2226 op_alt
[j
].reject
+= 6;
2229 op_alt
[j
].reject
+= 600;
2232 op_alt
[j
].earlyclobber
= 1;
2235 case '0': case '1': case '2': case '3': case '4':
2236 case '5': case '6': case '7': case '8': case '9':
2239 op_alt
[j
].matches
= strtoul (p
- 1, &end
, 10);
2240 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2246 op_alt
[j
].memory_ok
= 1;
2249 op_alt
[j
].decmem_ok
= 1;
2252 op_alt
[j
].incmem_ok
= 1;
2255 op_alt
[j
].nonoffmem_ok
= 1;
2258 op_alt
[j
].offmem_ok
= 1;
2261 op_alt
[j
].anything_ok
= 1;
2265 op_alt
[j
].is_address
= 1;
2266 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class]
2267 [(int) MODE_BASE_REG_CLASS (VOIDmode
)];
2271 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class][(int) GENERAL_REGS
];
2275 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c
)];
2283 /* Check the operands of an insn against the insn's operand constraints
2284 and return 1 if they are valid.
2285 The information about the insn's operands, constraints, operand modes
2286 etc. is obtained from the global variables set up by extract_insn.
2288 WHICH_ALTERNATIVE is set to a number which indicates which
2289 alternative of constraints was matched: 0 for the first alternative,
2290 1 for the next, etc.
2292 In addition, when two operands are match
2293 and it happens that the output operand is (reg) while the
2294 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2295 make the output operand look like the input.
2296 This is because the output operand is the one the template will print.
2298 This is used in final, just before printing the assembler code and by
2299 the routines that determine an insn's attribute.
2301 If STRICT is a positive non-zero value, it means that we have been
2302 called after reload has been completed. In that case, we must
2303 do all checks strictly. If it is zero, it means that we have been called
2304 before reload has completed. In that case, we first try to see if we can
2305 find an alternative that matches strictly. If not, we try again, this
2306 time assuming that reload will fix up the insn. This provides a "best
2307 guess" for the alternative and is used to compute attributes of insns prior
2308 to reload. A negative value of STRICT is used for this internal call. */
2316 constrain_operands (strict
)
2319 const char *constraints
[MAX_RECOG_OPERANDS
];
2320 int matching_operands
[MAX_RECOG_OPERANDS
];
2321 int earlyclobber
[MAX_RECOG_OPERANDS
];
2324 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2325 int funny_match_index
;
2327 which_alternative
= 0;
2328 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2331 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2333 constraints
[c
] = recog_data
.constraints
[c
];
2334 matching_operands
[c
] = -1;
2341 funny_match_index
= 0;
2343 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2345 rtx op
= recog_data
.operand
[opno
];
2346 enum machine_mode mode
= GET_MODE (op
);
2347 const char *p
= constraints
[opno
];
2352 earlyclobber
[opno
] = 0;
2354 /* A unary operator may be accepted by the predicate, but it
2355 is irrelevant for matching constraints. */
2356 if (GET_RTX_CLASS (GET_CODE (op
)) == '1')
2359 if (GET_CODE (op
) == SUBREG
)
2361 if (GET_CODE (SUBREG_REG (op
)) == REG
2362 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2363 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2364 GET_MODE (SUBREG_REG (op
)),
2367 op
= SUBREG_REG (op
);
2370 /* An empty constraint or empty alternative
2371 allows anything which matched the pattern. */
2372 if (*p
== 0 || *p
== ',')
2375 while (*p
&& (c
= *p
++) != ',')
2378 case '?': case '!': case '*': case '%':
2383 /* Ignore rest of this alternative as far as
2384 constraint checking is concerned. */
2385 while (*p
&& *p
!= ',')
2390 earlyclobber
[opno
] = 1;
2393 case '0': case '1': case '2': case '3': case '4':
2394 case '5': case '6': case '7': case '8': case '9':
2396 /* This operand must be the same as a previous one.
2397 This kind of constraint is used for instructions such
2398 as add when they take only two operands.
2400 Note that the lower-numbered operand is passed first.
2402 If we are not testing strictly, assume that this
2403 constraint will be satisfied. */
2408 match
= strtoul (p
- 1, &end
, 10);
2415 rtx op1
= recog_data
.operand
[match
];
2416 rtx op2
= recog_data
.operand
[opno
];
2418 /* A unary operator may be accepted by the predicate,
2419 but it is irrelevant for matching constraints. */
2420 if (GET_RTX_CLASS (GET_CODE (op1
)) == '1')
2421 op1
= XEXP (op1
, 0);
2422 if (GET_RTX_CLASS (GET_CODE (op2
)) == '1')
2423 op2
= XEXP (op2
, 0);
2425 val
= operands_match_p (op1
, op2
);
2428 matching_operands
[opno
] = match
;
2429 matching_operands
[match
] = opno
;
2434 /* If output is *x and input is *--x, arrange later
2435 to change the output to *--x as well, since the
2436 output op is the one that will be printed. */
2437 if (val
== 2 && strict
> 0)
2439 funny_match
[funny_match_index
].this = opno
;
2440 funny_match
[funny_match_index
++].other
= match
;
2446 /* p is used for address_operands. When we are called by
2447 gen_reload, no one will have checked that the address is
2448 strictly valid, i.e., that all pseudos requiring hard regs
2449 have gotten them. */
2451 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2456 /* No need to check general_operand again;
2457 it was done in insn-recog.c. */
2459 /* Anything goes unless it is a REG and really has a hard reg
2460 but the hard reg is not in the class GENERAL_REGS. */
2462 || GENERAL_REGS
== ALL_REGS
2463 || GET_CODE (op
) != REG
2464 || (reload_in_progress
2465 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2466 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2471 /* This is used for a MATCH_SCRATCH in the cases when
2472 we don't actually need anything. So anything goes
2478 if (GET_CODE (op
) == MEM
2479 /* Before reload, accept what reload can turn into mem. */
2480 || (strict
< 0 && CONSTANT_P (op
))
2481 /* During reload, accept a pseudo */
2482 || (reload_in_progress
&& GET_CODE (op
) == REG
2483 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2488 if (GET_CODE (op
) == MEM
2489 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2490 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2495 if (GET_CODE (op
) == MEM
2496 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2497 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2502 #ifndef REAL_ARITHMETIC
2503 /* Match any CONST_DOUBLE, but only if
2504 we can examine the bits of it reliably. */
2505 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
2506 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
2507 && GET_MODE (op
) != VOIDmode
&& ! flag_pretend_float
)
2510 if (GET_CODE (op
) == CONST_DOUBLE
)
2515 if (GET_CODE (op
) == CONST_DOUBLE
)
2521 if (GET_CODE (op
) == CONST_DOUBLE
2522 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, c
))
2527 if (GET_CODE (op
) == CONST_INT
2528 || (GET_CODE (op
) == CONST_DOUBLE
2529 && GET_MODE (op
) == VOIDmode
))
2532 if (CONSTANT_P (op
))
2537 if (GET_CODE (op
) == CONST_INT
2538 || (GET_CODE (op
) == CONST_DOUBLE
2539 && GET_MODE (op
) == VOIDmode
))
2551 if (GET_CODE (op
) == CONST_INT
2552 && CONST_OK_FOR_LETTER_P (INTVAL (op
), c
))
2557 if (GET_CODE (op
) == MEM
2558 && ((strict
> 0 && ! offsettable_memref_p (op
))
2560 && !(CONSTANT_P (op
) || GET_CODE (op
) == MEM
))
2561 || (reload_in_progress
2562 && !(GET_CODE (op
) == REG
2563 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2568 if ((strict
> 0 && offsettable_memref_p (op
))
2569 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2570 /* Before reload, accept what reload can handle. */
2572 && (CONSTANT_P (op
) || GET_CODE (op
) == MEM
))
2573 /* During reload, accept a pseudo */
2574 || (reload_in_progress
&& GET_CODE (op
) == REG
2575 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2581 enum reg_class
class;
2583 class = (c
== 'r' ? GENERAL_REGS
: REG_CLASS_FROM_LETTER (c
));
2584 if (class != NO_REGS
)
2588 && GET_CODE (op
) == REG
2589 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2590 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2591 || (GET_CODE (op
) == REG
2592 && reg_fits_class_p (op
, class, offset
, mode
)))
2595 #ifdef EXTRA_CONSTRAINT
2596 else if (EXTRA_CONSTRAINT (op
, c
))
2603 constraints
[opno
] = p
;
2604 /* If this operand did not win somehow,
2605 this alternative loses. */
2609 /* This alternative won; the operands are ok.
2610 Change whichever operands this alternative says to change. */
2615 /* See if any earlyclobber operand conflicts with some other
2619 for (eopno
= 0; eopno
< recog_data
.n_operands
; eopno
++)
2620 /* Ignore earlyclobber operands now in memory,
2621 because we would often report failure when we have
2622 two memory operands, one of which was formerly a REG. */
2623 if (earlyclobber
[eopno
]
2624 && GET_CODE (recog_data
.operand
[eopno
]) == REG
)
2625 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2626 if ((GET_CODE (recog_data
.operand
[opno
]) == MEM
2627 || recog_data
.operand_type
[opno
] != OP_OUT
)
2629 /* Ignore things like match_operator operands. */
2630 && *recog_data
.constraints
[opno
] != 0
2631 && ! (matching_operands
[opno
] == eopno
2632 && operands_match_p (recog_data
.operand
[opno
],
2633 recog_data
.operand
[eopno
]))
2634 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2635 recog_data
.operand
[eopno
]))
2640 while (--funny_match_index
>= 0)
2642 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2643 = recog_data
.operand
[funny_match
[funny_match_index
].this];
2650 which_alternative
++;
2652 while (which_alternative
< recog_data
.n_alternatives
);
2654 which_alternative
= -1;
2655 /* If we are about to reject this, but we are not to test strictly,
2656 try a very loose test. Only return failure if it fails also. */
2658 return constrain_operands (-1);
2663 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2664 is a hard reg in class CLASS when its regno is offset by OFFSET
2665 and changed to mode MODE.
2666 If REG occupies multiple hard regs, all of them must be in CLASS. */
2669 reg_fits_class_p (operand
, class, offset
, mode
)
2671 enum reg_class
class;
2673 enum machine_mode mode
;
2675 int regno
= REGNO (operand
);
2676 if (regno
< FIRST_PSEUDO_REGISTER
2677 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2682 for (sr
= HARD_REGNO_NREGS (regno
, mode
) - 1;
2684 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2693 /* Split single instruction. Helper function for split_all_insns.
2694 Return last insn in the sequence if successful, or NULL if unsuccessful. */
2702 /* Don't split no-op move insns. These should silently
2703 disappear later in final. Splitting such insns would
2704 break the code that handles REG_NO_CONFLICT blocks. */
2706 else if ((set
= single_set (insn
)) != NULL
&& set_noop_p (set
))
2708 /* Nops get in the way while scheduling, so delete them
2709 now if register allocation has already been done. It
2710 is too risky to try to do this before register
2711 allocation, and there are unlikely to be very many
2712 nops then anyways. */
2713 if (reload_completed
)
2715 PUT_CODE (insn
, NOTE
);
2716 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2717 NOTE_SOURCE_FILE (insn
) = 0;
2722 /* Split insns here to get max fine-grain parallelism. */
2723 rtx first
= PREV_INSN (insn
);
2724 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2728 /* try_split returns the NOTE that INSN became. */
2729 PUT_CODE (insn
, NOTE
);
2730 NOTE_SOURCE_FILE (insn
) = 0;
2731 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2733 /* ??? Coddle to md files that generate subregs in post-
2734 reload splitters instead of computing the proper
2736 if (reload_completed
&& first
!= last
)
2738 first
= NEXT_INSN (first
);
2742 cleanup_subreg_operands (first
);
2745 first
= NEXT_INSN (first
);
2753 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2756 split_all_insns (upd_life
)
2763 blocks
= sbitmap_alloc (n_basic_blocks
);
2764 sbitmap_zero (blocks
);
2767 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
2769 basic_block bb
= BASIC_BLOCK (i
);
2772 for (insn
= bb
->head
; insn
; insn
= next
)
2776 /* Can't use `next_real_insn' because that might go across
2777 CODE_LABELS and short-out basic blocks. */
2778 next
= NEXT_INSN (insn
);
2779 last
= split_insn (insn
);
2782 /* The split sequence may include barrier, but the
2783 BB boundary we are interested in will be set to previous
2786 while (GET_CODE (last
) == BARRIER
)
2787 last
= PREV_INSN (last
);
2788 SET_BIT (blocks
, i
);
2793 if (insn
== bb
->end
)
2803 find_many_sub_basic_blocks (blocks
);
2806 if (changed
&& upd_life
)
2808 count_or_remove_death_notes (blocks
, 1);
2809 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
2811 #ifdef ENABLE_CHECKING
2812 verify_flow_info ();
2815 sbitmap_free (blocks
);
2818 /* Same as split_all_insns, but do not expect CFG to be available.
2819 Used by machine depedent reorg passes. */
2822 split_all_insns_noflow ()
2826 for (insn
= get_insns (); insn
; insn
= next
)
2828 next
= NEXT_INSN (insn
);
2834 #ifdef HAVE_peephole2
2835 struct peep2_insn_data
2841 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2842 static int peep2_current
;
2844 /* A non-insn marker indicating the last insn of the block.
2845 The live_before regset for this element is correct, indicating
2846 global_live_at_end for the block. */
2847 #define PEEP2_EOB pc_rtx
2849 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2850 does not exist. Used by the recognizer to find the next insn to match
2851 in a multi-insn pattern. */
2857 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2861 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2862 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2864 if (peep2_insn_data
[n
].insn
== PEEP2_EOB
)
2866 return peep2_insn_data
[n
].insn
;
2869 /* Return true if REGNO is dead before the Nth non-note insn
2873 peep2_regno_dead_p (ofs
, regno
)
2877 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2880 ofs
+= peep2_current
;
2881 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2882 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2884 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2887 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2890 /* Similarly for a REG. */
2893 peep2_reg_dead_p (ofs
, reg
)
2899 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2902 ofs
+= peep2_current
;
2903 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2904 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2906 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2909 regno
= REGNO (reg
);
2910 n
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
2912 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
2917 /* Try to find a hard register of mode MODE, matching the register class in
2918 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2919 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2920 in which case the only condition is that the register must be available
2921 before CURRENT_INSN.
2922 Registers that already have bits set in REG_SET will not be considered.
2924 If an appropriate register is available, it will be returned and the
2925 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2929 peep2_find_free_register (from
, to
, class_str
, mode
, reg_set
)
2931 const char *class_str
;
2932 enum machine_mode mode
;
2933 HARD_REG_SET
*reg_set
;
2935 static int search_ofs
;
2936 enum reg_class
class;
2940 if (from
>= MAX_INSNS_PER_PEEP2
+ 1 || to
>= MAX_INSNS_PER_PEEP2
+ 1)
2943 from
+= peep2_current
;
2944 if (from
>= MAX_INSNS_PER_PEEP2
+ 1)
2945 from
-= MAX_INSNS_PER_PEEP2
+ 1;
2946 to
+= peep2_current
;
2947 if (to
>= MAX_INSNS_PER_PEEP2
+ 1)
2948 to
-= MAX_INSNS_PER_PEEP2
+ 1;
2950 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
2952 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
2956 HARD_REG_SET this_live
;
2958 if (++from
>= MAX_INSNS_PER_PEEP2
+ 1)
2960 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
2962 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
2963 IOR_HARD_REG_SET (live
, this_live
);
2966 class = (class_str
[0] == 'r' ? GENERAL_REGS
2967 : REG_CLASS_FROM_LETTER (class_str
[0]));
2969 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2971 int raw_regno
, regno
, success
, j
;
2973 /* Distribute the free registers as much as possible. */
2974 raw_regno
= search_ofs
+ i
;
2975 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
2976 raw_regno
-= FIRST_PSEUDO_REGISTER
;
2977 #ifdef REG_ALLOC_ORDER
2978 regno
= reg_alloc_order
[raw_regno
];
2983 /* Don't allocate fixed registers. */
2984 if (fixed_regs
[regno
])
2986 /* Make sure the register is of the right class. */
2987 if (! TEST_HARD_REG_BIT (reg_class_contents
[class], regno
))
2989 /* And can support the mode we need. */
2990 if (! HARD_REGNO_MODE_OK (regno
, mode
))
2992 /* And that we don't create an extra save/restore. */
2993 if (! call_used_regs
[regno
] && ! regs_ever_live
[regno
])
2995 /* And we don't clobber traceback for noreturn functions. */
2996 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
2997 && (! reload_completed
|| frame_pointer_needed
))
3001 for (j
= HARD_REGNO_NREGS (regno
, mode
) - 1; j
>= 0; j
--)
3003 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3004 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3012 for (j
= HARD_REGNO_NREGS (regno
, mode
) - 1; j
>= 0; j
--)
3013 SET_HARD_REG_BIT (*reg_set
, regno
+ j
);
3015 /* Start the next search with the next register. */
3016 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3018 search_ofs
= raw_regno
;
3020 return gen_rtx_REG (mode
, regno
);
3028 /* Perform the peephole2 optimization pass. */
3031 peephole2_optimize (dump_file
)
3032 FILE *dump_file ATTRIBUTE_UNUSED
;
3034 regset_head rs_heads
[MAX_INSNS_PER_PEEP2
+ 2];
3038 #ifdef HAVE_conditional_execution
3042 bool do_cleanup_cfg
= false;
3043 bool do_rebuild_jump_labels
= false;
3045 /* Initialize the regsets we're going to use. */
3046 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3047 peep2_insn_data
[i
].live_before
= INITIALIZE_REG_SET (rs_heads
[i
]);
3048 live
= INITIALIZE_REG_SET (rs_heads
[i
]);
3050 #ifdef HAVE_conditional_execution
3051 blocks
= sbitmap_alloc (n_basic_blocks
);
3052 sbitmap_zero (blocks
);
3055 count_or_remove_death_notes (NULL
, 1);
3058 for (b
= n_basic_blocks
- 1; b
>= 0; --b
)
3060 basic_block bb
= BASIC_BLOCK (b
);
3061 struct propagate_block_info
*pbi
;
3063 /* Indicate that all slots except the last holds invalid data. */
3064 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3065 peep2_insn_data
[i
].insn
= NULL_RTX
;
3067 /* Indicate that the last slot contains live_after data. */
3068 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3069 peep2_current
= MAX_INSNS_PER_PEEP2
;
3071 /* Start up propagation. */
3072 COPY_REG_SET (live
, bb
->global_live_at_end
);
3073 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3075 #ifdef HAVE_conditional_execution
3076 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, 0);
3078 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, PROP_DEATH_NOTES
);
3081 for (insn
= bb
->end
; ; insn
= prev
)
3083 prev
= PREV_INSN (insn
);
3086 rtx
try, before_try
, x
;
3090 /* Record this insn. */
3091 if (--peep2_current
< 0)
3092 peep2_current
= MAX_INSNS_PER_PEEP2
;
3093 peep2_insn_data
[peep2_current
].insn
= insn
;
3094 propagate_one_insn (pbi
, insn
);
3095 COPY_REG_SET (peep2_insn_data
[peep2_current
].live_before
, live
);
3097 /* Match the peephole. */
3098 try = peephole2_insns (PATTERN (insn
), insn
, &match_len
);
3101 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3102 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3103 cfg-related call notes. */
3104 for (i
= 0; i
<= match_len
; ++i
)
3107 rtx old_insn
, new_insn
, note
;
3109 j
= i
+ peep2_current
;
3110 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3111 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3112 old_insn
= peep2_insn_data
[j
].insn
;
3113 if (GET_CODE (old_insn
) != CALL_INSN
)
3116 new_insn
= NULL_RTX
;
3117 if (GET_CODE (try) == SEQUENCE
)
3118 for (k
= XVECLEN (try, 0) - 1; k
>= 0; k
--)
3120 rtx x
= XVECEXP (try, 0, k
);
3121 if (GET_CODE (x
) == CALL_INSN
)
3127 else if (GET_CODE (try) == CALL_INSN
)
3132 CALL_INSN_FUNCTION_USAGE (new_insn
)
3133 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3135 for (note
= REG_NOTES (old_insn
);
3137 note
= XEXP (note
, 1))
3138 switch (REG_NOTE_KIND (note
))
3142 case REG_ALWAYS_RETURN
:
3143 REG_NOTES (new_insn
)
3144 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3146 REG_NOTES (new_insn
));
3148 /* Discard all other reg notes. */
3152 /* Croak if there is another call in the sequence. */
3153 while (++i
<= match_len
)
3155 j
= i
+ peep2_current
;
3156 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3157 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3158 old_insn
= peep2_insn_data
[j
].insn
;
3159 if (GET_CODE (old_insn
) == CALL_INSN
)
3165 i
= match_len
+ peep2_current
;
3166 if (i
>= MAX_INSNS_PER_PEEP2
+ 1)
3167 i
-= MAX_INSNS_PER_PEEP2
+ 1;
3169 note
= find_reg_note (peep2_insn_data
[i
].insn
,
3170 REG_EH_REGION
, NULL_RTX
);
3172 /* Replace the old sequence with the new. */
3173 try = emit_insn_after (try, peep2_insn_data
[i
].insn
);
3174 before_try
= PREV_INSN (insn
);
3175 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
);
3177 /* Re-insert the EH_REGION notes. */
3182 for (eh_edge
= bb
->succ
; eh_edge
3183 ; eh_edge
= eh_edge
->succ_next
)
3184 if (eh_edge
->flags
& EDGE_EH
)
3187 for (x
= try ; x
!= before_try
; x
= PREV_INSN (x
))
3188 if (GET_CODE (x
) == CALL_INSN
3189 || (flag_non_call_exceptions
3190 && may_trap_p (PATTERN (x
))
3191 && !find_reg_note (x
, REG_EH_REGION
, NULL
)))
3194 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3198 if (x
!= bb
->end
&& eh_edge
)
3203 nfte
= split_block (bb
, x
);
3204 flags
= EDGE_EH
| EDGE_ABNORMAL
;
3205 if (GET_CODE (x
) == CALL_INSN
)
3206 flags
|= EDGE_ABNORMAL_CALL
;
3207 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3210 nehe
->probability
= eh_edge
->probability
;
3212 = REG_BR_PROB_BASE
- nehe
->probability
;
3214 do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3215 #ifdef HAVE_conditional_execution
3216 SET_BIT (blocks
, nfte
->dest
->index
);
3224 /* Converting possibly trapping insn to non-trapping is
3225 possible. Zap dummy outgoing edges. */
3226 do_cleanup_cfg
|= purge_dead_edges (bb
);
3229 #ifdef HAVE_conditional_execution
3230 /* With conditional execution, we cannot back up the
3231 live information so easily, since the conditional
3232 death data structures are not so self-contained.
3233 So record that we've made a modification to this
3234 block and update life information at the end. */
3235 SET_BIT (blocks
, b
);
3238 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3239 peep2_insn_data
[i
].insn
= NULL_RTX
;
3240 peep2_insn_data
[peep2_current
].insn
= PEEP2_EOB
;
3242 /* Back up lifetime information past the end of the
3243 newly created sequence. */
3244 if (++i
>= MAX_INSNS_PER_PEEP2
+ 1)
3246 COPY_REG_SET (live
, peep2_insn_data
[i
].live_before
);
3248 /* Update life information for the new sequence. */
3255 i
= MAX_INSNS_PER_PEEP2
;
3256 peep2_insn_data
[i
].insn
= x
;
3257 propagate_one_insn (pbi
, x
);
3258 COPY_REG_SET (peep2_insn_data
[i
].live_before
, live
);
3264 /* ??? Should verify that LIVE now matches what we
3265 had before the new sequence. */
3270 /* If we generated a jump instruction, it won't have
3271 JUMP_LABEL set. Recompute after we're done. */
3272 for (x
= try; x
!= before_try
; x
= PREV_INSN (x
))
3273 if (GET_CODE (x
) == JUMP_INSN
)
3275 do_rebuild_jump_labels
= true;
3281 if (insn
== bb
->head
)
3285 free_propagate_block_info (pbi
);
3288 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3289 FREE_REG_SET (peep2_insn_data
[i
].live_before
);
3290 FREE_REG_SET (live
);
3292 if (do_rebuild_jump_labels
)
3293 rebuild_jump_labels (get_insns ());
3295 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3296 we've changed global life since exception handlers are no longer
3301 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES
, PROP_DEATH_NOTES
);
3303 #ifdef HAVE_conditional_execution
3306 count_or_remove_death_notes (blocks
, 1);
3307 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
3309 sbitmap_free (blocks
);
3312 #endif /* HAVE_peephole2 */