Daily bump.
[official-gcc.git] / gcc / libgcc2.c
blob8591051f31e724526a5800b489be06a5f092b731
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
20 executable.)
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 for more details.
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
30 02111-1307, USA. */
32 /* It is incorrect to include config.h here, because this file is being
33 compiled for the target, and hence definitions concerning only the host
34 do not apply. */
36 #include "tconfig.h"
37 #include "tsystem.h"
39 #include "machmode.h"
41 /* Don't use `fancy_abort' here even if config.h says to use it. */
42 #ifdef abort
43 #undef abort
44 #endif
46 #include "libgcc2.h"
48 #if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3)
49 #if defined (L_divdi3) || defined (L_moddi3)
50 static inline
51 #endif
52 DWtype
53 __negdi2 (DWtype u)
55 DWunion w;
56 DWunion uu;
58 uu.ll = u;
60 w.s.low = -uu.s.low;
61 w.s.high = -uu.s.high - ((UWtype) w.s.low > 0);
63 return w.ll;
65 #endif
67 #ifdef L_addvsi3
68 Wtype
69 __addvsi3 (Wtype a, Wtype b)
71 Wtype w;
73 w = a + b;
75 if (b >= 0 ? w < a : w > a)
76 abort ();
78 return w;
80 #endif
82 #ifdef L_addvdi3
83 DWtype
84 __addvdi3 (DWtype a, DWtype b)
86 DWtype w;
88 w = a + b;
90 if (b >= 0 ? w < a : w > a)
91 abort ();
93 return w;
95 #endif
97 #ifdef L_subvsi3
98 Wtype
99 __subvsi3 (Wtype a, Wtype b)
101 #ifdef L_addvsi3
102 return __addvsi3 (a, (-b));
103 #else
104 DWtype w;
106 w = a - b;
108 if (b >= 0 ? w > a : w < a)
109 abort ();
111 return w;
112 #endif
114 #endif
116 #ifdef L_subvdi3
117 DWtype
118 __subvdi3 (DWtype a, DWtype b)
120 #ifdef L_addvdi3
121 return (a, (-b));
122 #else
123 DWtype w;
125 w = a - b;
127 if (b >= 0 ? w > a : w < a)
128 abort ();
130 return w;
131 #endif
133 #endif
135 #ifdef L_mulvsi3
136 Wtype
137 __mulvsi3 (Wtype a, Wtype b)
139 DWtype w;
141 w = a * b;
143 if (((a >= 0) == (b >= 0)) ? w < 0 : w > 0)
144 abort ();
146 return w;
148 #endif
150 #ifdef L_negvsi2
151 Wtype
152 __negvsi2 (Wtype a)
154 Wtype w;
156 w = -a;
158 if (a >= 0 ? w > 0 : w < 0)
159 abort ();
161 return w;
163 #endif
165 #ifdef L_negvdi2
166 DWtype
167 __negvdi2 (DWtype a)
169 DWtype w;
171 w = -a;
173 if (a >= 0 ? w > 0 : w < 0)
174 abort ();
176 return w;
178 #endif
180 #ifdef L_absvsi2
181 Wtype
182 __absvsi2 (Wtype a)
184 Wtype w = a;
186 if (a < 0)
187 #ifdef L_negvsi2
188 w = __negvsi2 (a);
189 #else
190 w = -a;
192 if (w < 0)
193 abort ();
194 #endif
196 return w;
198 #endif
200 #ifdef L_absvdi2
201 DWtype
202 __absvdi2 (DWtype a)
204 DWtype w = a;
206 if (a < 0)
207 #ifdef L_negvsi2
208 w = __negvsi2 (a);
209 #else
210 w = -a;
212 if (w < 0)
213 abort ();
214 #endif
216 return w;
218 #endif
220 #ifdef L_mulvdi3
221 DWtype
222 __mulvdi3 (DWtype u, DWtype v)
224 DWtype w;
226 w = u * v;
228 if (((u >= 0) == (v >= 0)) ? w < 0 : w > 0)
229 abort ();
231 return w;
233 #endif
236 /* Unless shift functions are defined whith full ANSI prototypes,
237 parameter b will be promoted to int if word_type is smaller than an int. */
238 #ifdef L_lshrdi3
239 DWtype
240 __lshrdi3 (DWtype u, word_type b)
242 DWunion w;
243 word_type bm;
244 DWunion uu;
246 if (b == 0)
247 return u;
249 uu.ll = u;
251 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
252 if (bm <= 0)
254 w.s.high = 0;
255 w.s.low = (UWtype) uu.s.high >> -bm;
257 else
259 UWtype carries = (UWtype) uu.s.high << bm;
261 w.s.high = (UWtype) uu.s.high >> b;
262 w.s.low = ((UWtype) uu.s.low >> b) | carries;
265 return w.ll;
267 #endif
269 #ifdef L_ashldi3
270 DWtype
271 __ashldi3 (DWtype u, word_type b)
273 DWunion w;
274 word_type bm;
275 DWunion uu;
277 if (b == 0)
278 return u;
280 uu.ll = u;
282 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
283 if (bm <= 0)
285 w.s.low = 0;
286 w.s.high = (UWtype) uu.s.low << -bm;
288 else
290 UWtype carries = (UWtype) uu.s.low >> bm;
292 w.s.low = (UWtype) uu.s.low << b;
293 w.s.high = ((UWtype) uu.s.high << b) | carries;
296 return w.ll;
298 #endif
300 #ifdef L_ashrdi3
301 DWtype
302 __ashrdi3 (DWtype u, word_type b)
304 DWunion w;
305 word_type bm;
306 DWunion uu;
308 if (b == 0)
309 return u;
311 uu.ll = u;
313 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
314 if (bm <= 0)
316 /* w.s.high = 1..1 or 0..0 */
317 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
318 w.s.low = uu.s.high >> -bm;
320 else
322 UWtype carries = (UWtype) uu.s.high << bm;
324 w.s.high = uu.s.high >> b;
325 w.s.low = ((UWtype) uu.s.low >> b) | carries;
328 return w.ll;
330 #endif
332 #ifdef L_ffsdi2
333 DWtype
334 __ffsdi2 (DWtype u)
336 DWunion uu;
337 UWtype word, count, add;
339 uu.ll = u;
340 if (uu.s.low != 0)
341 word = uu.s.low, add = 0;
342 else if (uu.s.high != 0)
343 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
344 else
345 return 0;
347 count_trailing_zeros (count, word);
348 return count + add + 1;
350 #endif
352 #ifdef L_muldi3
353 DWtype
354 __muldi3 (DWtype u, DWtype v)
356 DWunion w;
357 DWunion uu, vv;
359 uu.ll = u,
360 vv.ll = v;
362 w.ll = __umulsidi3 (uu.s.low, vv.s.low);
363 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
364 + (UWtype) uu.s.high * (UWtype) vv.s.low);
366 return w.ll;
368 #endif
370 #ifdef L_udiv_w_sdiv
371 #if defined (sdiv_qrnnd)
372 UWtype
373 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
375 UWtype q, r;
376 UWtype c0, c1, b1;
378 if ((Wtype) d >= 0)
380 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
382 /* dividend, divisor, and quotient are nonnegative */
383 sdiv_qrnnd (q, r, a1, a0, d);
385 else
387 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
388 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
389 /* Divide (c1*2^32 + c0) by d */
390 sdiv_qrnnd (q, r, c1, c0, d);
391 /* Add 2^31 to quotient */
392 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
395 else
397 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
398 c1 = a1 >> 1; /* A/2 */
399 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
401 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
403 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
405 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
406 if ((d & 1) != 0)
408 if (r >= q)
409 r = r - q;
410 else if (q - r <= d)
412 r = r - q + d;
413 q--;
415 else
417 r = r - q + 2*d;
418 q -= 2;
422 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
424 c1 = (b1 - 1) - c1;
425 c0 = ~c0; /* logical NOT */
427 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
429 q = ~q; /* (A/2)/b1 */
430 r = (b1 - 1) - r;
432 r = 2*r + (a0 & 1); /* A/(2*b1) */
434 if ((d & 1) != 0)
436 if (r >= q)
437 r = r - q;
438 else if (q - r <= d)
440 r = r - q + d;
441 q--;
443 else
445 r = r - q + 2*d;
446 q -= 2;
450 else /* Implies c1 = b1 */
451 { /* Hence a1 = d - 1 = 2*b1 - 1 */
452 if (a0 >= -d)
454 q = -1;
455 r = a0 + d;
457 else
459 q = -2;
460 r = a0 + 2*d;
465 *rp = r;
466 return q;
468 #else
469 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
470 UWtype
471 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
472 UWtype a1 __attribute__ ((__unused__)),
473 UWtype a0 __attribute__ ((__unused__)),
474 UWtype d __attribute__ ((__unused__)))
476 return 0;
478 #endif
479 #endif
481 #if (defined (L_udivdi3) || defined (L_divdi3) || \
482 defined (L_umoddi3) || defined (L_moddi3))
483 #define L_udivmoddi4
484 #endif
486 #ifdef L_clz
487 const UQItype __clz_tab[] =
489 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
490 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
491 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
492 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
493 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
494 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
495 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
496 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
498 #endif
500 #ifdef L_udivmoddi4
502 #if (defined (L_udivdi3) || defined (L_divdi3) || \
503 defined (L_umoddi3) || defined (L_moddi3))
504 static inline
505 #endif
506 UDWtype
507 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
509 DWunion ww;
510 DWunion nn, dd;
511 DWunion rr;
512 UWtype d0, d1, n0, n1, n2;
513 UWtype q0, q1;
514 UWtype b, bm;
516 nn.ll = n;
517 dd.ll = d;
519 d0 = dd.s.low;
520 d1 = dd.s.high;
521 n0 = nn.s.low;
522 n1 = nn.s.high;
524 #if !UDIV_NEEDS_NORMALIZATION
525 if (d1 == 0)
527 if (d0 > n1)
529 /* 0q = nn / 0D */
531 udiv_qrnnd (q0, n0, n1, n0, d0);
532 q1 = 0;
534 /* Remainder in n0. */
536 else
538 /* qq = NN / 0d */
540 if (d0 == 0)
541 d0 = 1 / d0; /* Divide intentionally by zero. */
543 udiv_qrnnd (q1, n1, 0, n1, d0);
544 udiv_qrnnd (q0, n0, n1, n0, d0);
546 /* Remainder in n0. */
549 if (rp != 0)
551 rr.s.low = n0;
552 rr.s.high = 0;
553 *rp = rr.ll;
557 #else /* UDIV_NEEDS_NORMALIZATION */
559 if (d1 == 0)
561 if (d0 > n1)
563 /* 0q = nn / 0D */
565 count_leading_zeros (bm, d0);
567 if (bm != 0)
569 /* Normalize, i.e. make the most significant bit of the
570 denominator set. */
572 d0 = d0 << bm;
573 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
574 n0 = n0 << bm;
577 udiv_qrnnd (q0, n0, n1, n0, d0);
578 q1 = 0;
580 /* Remainder in n0 >> bm. */
582 else
584 /* qq = NN / 0d */
586 if (d0 == 0)
587 d0 = 1 / d0; /* Divide intentionally by zero. */
589 count_leading_zeros (bm, d0);
591 if (bm == 0)
593 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
594 conclude (the most significant bit of n1 is set) /\ (the
595 leading quotient digit q1 = 1).
597 This special case is necessary, not an optimization.
598 (Shifts counts of W_TYPE_SIZE are undefined.) */
600 n1 -= d0;
601 q1 = 1;
603 else
605 /* Normalize. */
607 b = W_TYPE_SIZE - bm;
609 d0 = d0 << bm;
610 n2 = n1 >> b;
611 n1 = (n1 << bm) | (n0 >> b);
612 n0 = n0 << bm;
614 udiv_qrnnd (q1, n1, n2, n1, d0);
617 /* n1 != d0... */
619 udiv_qrnnd (q0, n0, n1, n0, d0);
621 /* Remainder in n0 >> bm. */
624 if (rp != 0)
626 rr.s.low = n0 >> bm;
627 rr.s.high = 0;
628 *rp = rr.ll;
631 #endif /* UDIV_NEEDS_NORMALIZATION */
633 else
635 if (d1 > n1)
637 /* 00 = nn / DD */
639 q0 = 0;
640 q1 = 0;
642 /* Remainder in n1n0. */
643 if (rp != 0)
645 rr.s.low = n0;
646 rr.s.high = n1;
647 *rp = rr.ll;
650 else
652 /* 0q = NN / dd */
654 count_leading_zeros (bm, d1);
655 if (bm == 0)
657 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
658 conclude (the most significant bit of n1 is set) /\ (the
659 quotient digit q0 = 0 or 1).
661 This special case is necessary, not an optimization. */
663 /* The condition on the next line takes advantage of that
664 n1 >= d1 (true due to program flow). */
665 if (n1 > d1 || n0 >= d0)
667 q0 = 1;
668 sub_ddmmss (n1, n0, n1, n0, d1, d0);
670 else
671 q0 = 0;
673 q1 = 0;
675 if (rp != 0)
677 rr.s.low = n0;
678 rr.s.high = n1;
679 *rp = rr.ll;
682 else
684 UWtype m1, m0;
685 /* Normalize. */
687 b = W_TYPE_SIZE - bm;
689 d1 = (d1 << bm) | (d0 >> b);
690 d0 = d0 << bm;
691 n2 = n1 >> b;
692 n1 = (n1 << bm) | (n0 >> b);
693 n0 = n0 << bm;
695 udiv_qrnnd (q0, n1, n2, n1, d1);
696 umul_ppmm (m1, m0, q0, d0);
698 if (m1 > n1 || (m1 == n1 && m0 > n0))
700 q0--;
701 sub_ddmmss (m1, m0, m1, m0, d1, d0);
704 q1 = 0;
706 /* Remainder in (n1n0 - m1m0) >> bm. */
707 if (rp != 0)
709 sub_ddmmss (n1, n0, n1, n0, m1, m0);
710 rr.s.low = (n1 << b) | (n0 >> bm);
711 rr.s.high = n1 >> bm;
712 *rp = rr.ll;
718 ww.s.low = q0;
719 ww.s.high = q1;
720 return ww.ll;
722 #endif
724 #ifdef L_divdi3
725 DWtype
726 __divdi3 (DWtype u, DWtype v)
728 word_type c = 0;
729 DWunion uu, vv;
730 DWtype w;
732 uu.ll = u;
733 vv.ll = v;
735 if (uu.s.high < 0)
736 c = ~c,
737 uu.ll = __negdi2 (uu.ll);
738 if (vv.s.high < 0)
739 c = ~c,
740 vv.ll = __negdi2 (vv.ll);
742 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
743 if (c)
744 w = __negdi2 (w);
746 return w;
748 #endif
750 #ifdef L_moddi3
751 DWtype
752 __moddi3 (DWtype u, DWtype v)
754 word_type c = 0;
755 DWunion uu, vv;
756 DWtype w;
758 uu.ll = u;
759 vv.ll = v;
761 if (uu.s.high < 0)
762 c = ~c,
763 uu.ll = __negdi2 (uu.ll);
764 if (vv.s.high < 0)
765 vv.ll = __negdi2 (vv.ll);
767 (void) __udivmoddi4 (uu.ll, vv.ll, &w);
768 if (c)
769 w = __negdi2 (w);
771 return w;
773 #endif
775 #ifdef L_umoddi3
776 UDWtype
777 __umoddi3 (UDWtype u, UDWtype v)
779 UDWtype w;
781 (void) __udivmoddi4 (u, v, &w);
783 return w;
785 #endif
787 #ifdef L_udivdi3
788 UDWtype
789 __udivdi3 (UDWtype n, UDWtype d)
791 return __udivmoddi4 (n, d, (UDWtype *) 0);
793 #endif
795 #ifdef L_cmpdi2
796 word_type
797 __cmpdi2 (DWtype a, DWtype b)
799 DWunion au, bu;
801 au.ll = a, bu.ll = b;
803 if (au.s.high < bu.s.high)
804 return 0;
805 else if (au.s.high > bu.s.high)
806 return 2;
807 if ((UWtype) au.s.low < (UWtype) bu.s.low)
808 return 0;
809 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
810 return 2;
811 return 1;
813 #endif
815 #ifdef L_ucmpdi2
816 word_type
817 __ucmpdi2 (DWtype a, DWtype b)
819 DWunion au, bu;
821 au.ll = a, bu.ll = b;
823 if ((UWtype) au.s.high < (UWtype) bu.s.high)
824 return 0;
825 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
826 return 2;
827 if ((UWtype) au.s.low < (UWtype) bu.s.low)
828 return 0;
829 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
830 return 2;
831 return 1;
833 #endif
835 #if defined(L_fixunstfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
836 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
837 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
839 DWtype
840 __fixunstfDI (TFtype a)
842 TFtype b;
843 UDWtype v;
845 if (a < 0)
846 return 0;
848 /* Compute high word of result, as a flonum. */
849 b = (a / HIGH_WORD_COEFF);
850 /* Convert that to fixed (but not to DWtype!),
851 and shift it into the high word. */
852 v = (UWtype) b;
853 v <<= WORD_SIZE;
854 /* Remove high part from the TFtype, leaving the low part as flonum. */
855 a -= (TFtype)v;
856 /* Convert that to fixed (but not to DWtype!) and add it in.
857 Sometimes A comes out negative. This is significant, since
858 A has more bits than a long int does. */
859 if (a < 0)
860 v -= (UWtype) (- a);
861 else
862 v += (UWtype) a;
863 return v;
865 #endif
867 #if defined(L_fixtfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
868 DWtype
869 __fixtfdi (TFtype a)
871 if (a < 0)
872 return - __fixunstfDI (-a);
873 return __fixunstfDI (a);
875 #endif
877 #if defined(L_fixunsxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
878 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
879 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
881 DWtype
882 __fixunsxfDI (XFtype a)
884 XFtype b;
885 UDWtype v;
887 if (a < 0)
888 return 0;
890 /* Compute high word of result, as a flonum. */
891 b = (a / HIGH_WORD_COEFF);
892 /* Convert that to fixed (but not to DWtype!),
893 and shift it into the high word. */
894 v = (UWtype) b;
895 v <<= WORD_SIZE;
896 /* Remove high part from the XFtype, leaving the low part as flonum. */
897 a -= (XFtype)v;
898 /* Convert that to fixed (but not to DWtype!) and add it in.
899 Sometimes A comes out negative. This is significant, since
900 A has more bits than a long int does. */
901 if (a < 0)
902 v -= (UWtype) (- a);
903 else
904 v += (UWtype) a;
905 return v;
907 #endif
909 #if defined(L_fixxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
910 DWtype
911 __fixxfdi (XFtype a)
913 if (a < 0)
914 return - __fixunsxfDI (-a);
915 return __fixunsxfDI (a);
917 #endif
919 #ifdef L_fixunsdfdi
920 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
921 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
923 DWtype
924 __fixunsdfDI (DFtype a)
926 DFtype b;
927 UDWtype v;
929 if (a < 0)
930 return 0;
932 /* Compute high word of result, as a flonum. */
933 b = (a / HIGH_WORD_COEFF);
934 /* Convert that to fixed (but not to DWtype!),
935 and shift it into the high word. */
936 v = (UWtype) b;
937 v <<= WORD_SIZE;
938 /* Remove high part from the DFtype, leaving the low part as flonum. */
939 a -= (DFtype)v;
940 /* Convert that to fixed (but not to DWtype!) and add it in.
941 Sometimes A comes out negative. This is significant, since
942 A has more bits than a long int does. */
943 if (a < 0)
944 v -= (UWtype) (- a);
945 else
946 v += (UWtype) a;
947 return v;
949 #endif
951 #ifdef L_fixdfdi
952 DWtype
953 __fixdfdi (DFtype a)
955 if (a < 0)
956 return - __fixunsdfDI (-a);
957 return __fixunsdfDI (a);
959 #endif
961 #ifdef L_fixunssfdi
962 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
963 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
965 DWtype
966 __fixunssfDI (SFtype original_a)
968 /* Convert the SFtype to a DFtype, because that is surely not going
969 to lose any bits. Some day someone else can write a faster version
970 that avoids converting to DFtype, and verify it really works right. */
971 DFtype a = original_a;
972 DFtype b;
973 UDWtype v;
975 if (a < 0)
976 return 0;
978 /* Compute high word of result, as a flonum. */
979 b = (a / HIGH_WORD_COEFF);
980 /* Convert that to fixed (but not to DWtype!),
981 and shift it into the high word. */
982 v = (UWtype) b;
983 v <<= WORD_SIZE;
984 /* Remove high part from the DFtype, leaving the low part as flonum. */
985 a -= (DFtype) v;
986 /* Convert that to fixed (but not to DWtype!) and add it in.
987 Sometimes A comes out negative. This is significant, since
988 A has more bits than a long int does. */
989 if (a < 0)
990 v -= (UWtype) (- a);
991 else
992 v += (UWtype) a;
993 return v;
995 #endif
997 #ifdef L_fixsfdi
998 DWtype
999 __fixsfdi (SFtype a)
1001 if (a < 0)
1002 return - __fixunssfDI (-a);
1003 return __fixunssfDI (a);
1005 #endif
1007 #if defined(L_floatdixf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
1008 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1009 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1010 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1012 XFtype
1013 __floatdixf (DWtype u)
1015 XFtype d;
1017 d = (Wtype) (u >> WORD_SIZE);
1018 d *= HIGH_HALFWORD_COEFF;
1019 d *= HIGH_HALFWORD_COEFF;
1020 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1022 return d;
1024 #endif
1026 #if defined(L_floatditf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
1027 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1028 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1029 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1031 TFtype
1032 __floatditf (DWtype u)
1034 TFtype d;
1036 d = (Wtype) (u >> WORD_SIZE);
1037 d *= HIGH_HALFWORD_COEFF;
1038 d *= HIGH_HALFWORD_COEFF;
1039 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1041 return d;
1043 #endif
1045 #ifdef L_floatdidf
1046 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1047 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1048 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1050 DFtype
1051 __floatdidf (DWtype u)
1053 DFtype d;
1055 d = (Wtype) (u >> WORD_SIZE);
1056 d *= HIGH_HALFWORD_COEFF;
1057 d *= HIGH_HALFWORD_COEFF;
1058 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1060 return d;
1062 #endif
1064 #ifdef L_floatdisf
1065 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1066 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1067 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1068 #define DI_SIZE (sizeof (DWtype) * BITS_PER_UNIT)
1070 /* Define codes for all the float formats that we know of. Note
1071 that this is copied from real.h. */
1073 #define UNKNOWN_FLOAT_FORMAT 0
1074 #define IEEE_FLOAT_FORMAT 1
1075 #define VAX_FLOAT_FORMAT 2
1076 #define IBM_FLOAT_FORMAT 3
1078 /* Default to IEEE float if not specified. Nearly all machines use it. */
1079 #ifndef HOST_FLOAT_FORMAT
1080 #define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT
1081 #endif
1083 #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
1084 #define DF_SIZE 53
1085 #define SF_SIZE 24
1086 #endif
1088 #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
1089 #define DF_SIZE 56
1090 #define SF_SIZE 24
1091 #endif
1093 #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
1094 #define DF_SIZE 56
1095 #define SF_SIZE 24
1096 #endif
1098 SFtype
1099 __floatdisf (DWtype u)
1101 /* Do the calculation in DFmode
1102 so that we don't lose any of the precision of the high word
1103 while multiplying it. */
1104 DFtype f;
1106 /* Protect against double-rounding error.
1107 Represent any low-order bits, that might be truncated in DFmode,
1108 by a bit that won't be lost. The bit can go in anywhere below the
1109 rounding position of the SFmode. A fixed mask and bit position
1110 handles all usual configurations. It doesn't handle the case
1111 of 128-bit DImode, however. */
1112 if (DF_SIZE < DI_SIZE
1113 && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE))
1115 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE))
1116 if (! (- ((DWtype) 1 << DF_SIZE) < u
1117 && u < ((DWtype) 1 << DF_SIZE)))
1119 if ((UDWtype) u & (REP_BIT - 1))
1120 u |= REP_BIT;
1123 f = (Wtype) (u >> WORD_SIZE);
1124 f *= HIGH_HALFWORD_COEFF;
1125 f *= HIGH_HALFWORD_COEFF;
1126 f += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1128 return (SFtype) f;
1130 #endif
1132 #if defined(L_fixunsxfsi) && LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96
1133 /* Reenable the normal types, in case limits.h needs them. */
1134 #undef char
1135 #undef short
1136 #undef int
1137 #undef long
1138 #undef unsigned
1139 #undef float
1140 #undef double
1141 #undef MIN
1142 #undef MAX
1143 #include <limits.h>
1145 UWtype
1146 __fixunsxfSI (XFtype a)
1148 if (a >= - (DFtype) Wtype_MIN)
1149 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1150 return (Wtype) a;
1152 #endif
1154 #ifdef L_fixunsdfsi
1155 /* Reenable the normal types, in case limits.h needs them. */
1156 #undef char
1157 #undef short
1158 #undef int
1159 #undef long
1160 #undef unsigned
1161 #undef float
1162 #undef double
1163 #undef MIN
1164 #undef MAX
1165 #include <limits.h>
1167 UWtype
1168 __fixunsdfSI (DFtype a)
1170 if (a >= - (DFtype) Wtype_MIN)
1171 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1172 return (Wtype) a;
1174 #endif
1176 #ifdef L_fixunssfsi
1177 /* Reenable the normal types, in case limits.h needs them. */
1178 #undef char
1179 #undef short
1180 #undef int
1181 #undef long
1182 #undef unsigned
1183 #undef float
1184 #undef double
1185 #undef MIN
1186 #undef MAX
1187 #include <limits.h>
1189 UWtype
1190 __fixunssfSI (SFtype a)
1192 if (a >= - (SFtype) Wtype_MIN)
1193 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1194 return (Wtype) a;
1196 #endif
1198 /* From here on down, the routines use normal data types. */
1200 #define SItype bogus_type
1201 #define USItype bogus_type
1202 #define DItype bogus_type
1203 #define UDItype bogus_type
1204 #define SFtype bogus_type
1205 #define DFtype bogus_type
1206 #undef Wtype
1207 #undef UWtype
1208 #undef HWtype
1209 #undef UHWtype
1210 #undef DWtype
1211 #undef UDWtype
1213 #undef char
1214 #undef short
1215 #undef int
1216 #undef long
1217 #undef unsigned
1218 #undef float
1219 #undef double
1221 #ifdef L__gcc_bcmp
1223 /* Like bcmp except the sign is meaningful.
1224 Result is negative if S1 is less than S2,
1225 positive if S1 is greater, 0 if S1 and S2 are equal. */
1228 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1230 while (size > 0)
1232 unsigned char c1 = *s1++, c2 = *s2++;
1233 if (c1 != c2)
1234 return c1 - c2;
1235 size--;
1237 return 0;
1240 #endif
1242 /* __eprintf used to be used by GCC's private version of <assert.h>.
1243 We no longer provide that header, but this routine remains in libgcc.a
1244 for binary backward compatibility. Note that it is not included in
1245 the shared version of libgcc. */
1246 #ifdef L_eprintf
1247 #ifndef inhibit_libc
1249 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1250 #include <stdio.h>
1252 void
1253 __eprintf (const char *string, const char *expression,
1254 unsigned int line, const char *filename)
1256 fprintf (stderr, string, expression, line, filename);
1257 fflush (stderr);
1258 abort ();
1261 #endif
1262 #endif
1264 #ifdef L_bb
1266 #if LONG_TYPE_SIZE == GCOV_TYPE_SIZE
1267 typedef long gcov_type;
1268 #else
1269 typedef long long gcov_type;
1270 #endif
1273 /* Structure emitted by -a */
1274 struct bb
1276 long zero_word;
1277 const char *filename;
1278 gcov_type *counts;
1279 long ncounts;
1280 struct bb *next;
1281 const unsigned long *addresses;
1283 /* Older GCC's did not emit these fields. */
1284 long nwords;
1285 const char **functions;
1286 const long *line_nums;
1287 const char **filenames;
1288 char *flags;
1291 #ifndef inhibit_libc
1293 /* Simple minded basic block profiling output dumper for
1294 systems that don't provide tcov support. At present,
1295 it requires atexit and stdio. */
1297 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1298 #include <stdio.h>
1300 #include "gbl-ctors.h"
1301 #include "gcov-io.h"
1302 #include <string.h>
1303 #ifdef TARGET_HAS_F_SETLKW
1304 #include <fcntl.h>
1305 #include <errno.h>
1306 #endif
1308 static struct bb *bb_head;
1310 void
1311 __bb_exit_func (void)
1313 FILE *da_file;
1314 int i;
1315 struct bb *ptr;
1317 if (bb_head == 0)
1318 return;
1320 i = strlen (bb_head->filename) - 3;
1323 for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
1325 int firstchar;
1327 /* Make sure the output file exists -
1328 but don't clobber exiting data. */
1329 if ((da_file = fopen (ptr->filename, "a")) != 0)
1330 fclose (da_file);
1332 /* Need to re-open in order to be able to write from the start. */
1333 da_file = fopen (ptr->filename, "r+b");
1334 /* Some old systems might not allow the 'b' mode modifier.
1335 Therefore, try to open without it. This can lead to a race
1336 condition so that when you delete and re-create the file, the
1337 file might be opened in text mode, but then, you shouldn't
1338 delete the file in the first place. */
1339 if (da_file == 0)
1340 da_file = fopen (ptr->filename, "r+");
1341 if (da_file == 0)
1343 fprintf (stderr, "arc profiling: Can't open output file %s.\n",
1344 ptr->filename);
1345 continue;
1348 /* After a fork, another process might try to read and/or write
1349 the same file simultanously. So if we can, lock the file to
1350 avoid race conditions. */
1351 #if defined (TARGET_HAS_F_SETLKW)
1353 struct flock s_flock;
1355 s_flock.l_type = F_WRLCK;
1356 s_flock.l_whence = SEEK_SET;
1357 s_flock.l_start = 0;
1358 s_flock.l_len = 1;
1359 s_flock.l_pid = getpid ();
1361 while (fcntl (fileno (da_file), F_SETLKW, &s_flock)
1362 && errno == EINTR);
1364 #endif
1366 /* If the file is not empty, and the number of counts in it is the
1367 same, then merge them in. */
1368 firstchar = fgetc (da_file);
1369 if (firstchar == EOF)
1371 if (ferror (da_file))
1373 fprintf (stderr, "arc profiling: Can't read output file ");
1374 perror (ptr->filename);
1377 else
1379 long n_counts = 0;
1381 if (ungetc (firstchar, da_file) == EOF)
1382 rewind (da_file);
1383 if (__read_long (&n_counts, da_file, 8) != 0)
1385 fprintf (stderr, "arc profiling: Can't read output file %s.\n",
1386 ptr->filename);
1387 continue;
1390 if (n_counts == ptr->ncounts)
1392 int i;
1394 for (i = 0; i < n_counts; i++)
1396 gcov_type v = 0;
1398 if (__read_gcov_type (&v, da_file, 8) != 0)
1400 fprintf (stderr,
1401 "arc profiling: Can't read output file %s.\n",
1402 ptr->filename);
1403 break;
1405 ptr->counts[i] += v;
1411 rewind (da_file);
1413 /* ??? Should first write a header to the file. Preferably, a 4 byte
1414 magic number, 4 bytes containing the time the program was
1415 compiled, 4 bytes containing the last modification time of the
1416 source file, and 4 bytes indicating the compiler options used.
1418 That way we can easily verify that the proper source/executable/
1419 data file combination is being used from gcov. */
1421 if (__write_gcov_type (ptr->ncounts, da_file, 8) != 0)
1424 fprintf (stderr, "arc profiling: Error writing output file %s.\n",
1425 ptr->filename);
1427 else
1429 int j;
1430 gcov_type *count_ptr = ptr->counts;
1431 int ret = 0;
1432 for (j = ptr->ncounts; j > 0; j--)
1434 if (__write_gcov_type (*count_ptr, da_file, 8) != 0)
1436 ret = 1;
1437 break;
1439 count_ptr++;
1441 if (ret)
1442 fprintf (stderr, "arc profiling: Error writing output file %s.\n",
1443 ptr->filename);
1446 if (fclose (da_file) == EOF)
1447 fprintf (stderr, "arc profiling: Error closing output file %s.\n",
1448 ptr->filename);
1451 return;
1454 void
1455 __bb_init_func (struct bb *blocks)
1457 /* User is supposed to check whether the first word is non-0,
1458 but just in case.... */
1460 if (blocks->zero_word)
1461 return;
1463 /* Initialize destructor. */
1464 if (!bb_head)
1465 atexit (__bb_exit_func);
1467 /* Set up linked list. */
1468 blocks->zero_word = 1;
1469 blocks->next = bb_head;
1470 bb_head = blocks;
1473 /* Called before fork or exec - write out profile information gathered so
1474 far and reset it to zero. This avoids duplication or loss of the
1475 profile information gathered so far. */
1476 void
1477 __bb_fork_func (void)
1479 struct bb *ptr;
1481 __bb_exit_func ();
1482 for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
1484 long i;
1485 for (i = ptr->ncounts - 1; i >= 0; i--)
1486 ptr->counts[i] = 0;
1490 #endif /* not inhibit_libc */
1491 #endif /* L_bb */
1493 #ifdef L_clear_cache
1494 /* Clear part of an instruction cache. */
1496 #define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH)
1498 void
1499 __clear_cache (char *beg __attribute__((__unused__)),
1500 char *end __attribute__((__unused__)))
1502 #ifdef CLEAR_INSN_CACHE
1503 CLEAR_INSN_CACHE (beg, end);
1504 #else
1505 #ifdef INSN_CACHE_SIZE
1506 static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH];
1507 static int initialized;
1508 int offset;
1509 void *start_addr
1510 void *end_addr;
1511 typedef (*function_ptr) (void);
1513 #if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16
1514 /* It's cheaper to clear the whole cache.
1515 Put in a series of jump instructions so that calling the beginning
1516 of the cache will clear the whole thing. */
1518 if (! initialized)
1520 int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1521 & -INSN_CACHE_LINE_WIDTH);
1522 int end_ptr = ptr + INSN_CACHE_SIZE;
1524 while (ptr < end_ptr)
1526 *(INSTRUCTION_TYPE *)ptr
1527 = JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH;
1528 ptr += INSN_CACHE_LINE_WIDTH;
1530 *(INSTRUCTION_TYPE *) (ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION;
1532 initialized = 1;
1535 /* Call the beginning of the sequence. */
1536 (((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1537 & -INSN_CACHE_LINE_WIDTH))
1538 ());
1540 #else /* Cache is large. */
1542 if (! initialized)
1544 int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1545 & -INSN_CACHE_LINE_WIDTH);
1547 while (ptr < (int) array + sizeof array)
1549 *(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION;
1550 ptr += INSN_CACHE_LINE_WIDTH;
1553 initialized = 1;
1556 /* Find the location in array that occupies the same cache line as BEG. */
1558 offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1);
1559 start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1)
1560 & -INSN_CACHE_PLANE_SIZE)
1561 + offset);
1563 /* Compute the cache alignment of the place to stop clearing. */
1564 #if 0 /* This is not needed for gcc's purposes. */
1565 /* If the block to clear is bigger than a cache plane,
1566 we clear the entire cache, and OFFSET is already correct. */
1567 if (end < beg + INSN_CACHE_PLANE_SIZE)
1568 #endif
1569 offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1)
1570 & -INSN_CACHE_LINE_WIDTH)
1571 & (INSN_CACHE_PLANE_SIZE - 1));
1573 #if INSN_CACHE_DEPTH > 1
1574 end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset;
1575 if (end_addr <= start_addr)
1576 end_addr += INSN_CACHE_PLANE_SIZE;
1578 for (plane = 0; plane < INSN_CACHE_DEPTH; plane++)
1580 int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE;
1581 int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE;
1583 while (addr != stop)
1585 /* Call the return instruction at ADDR. */
1586 ((function_ptr) addr) ();
1588 addr += INSN_CACHE_LINE_WIDTH;
1591 #else /* just one plane */
1594 /* Call the return instruction at START_ADDR. */
1595 ((function_ptr) start_addr) ();
1597 start_addr += INSN_CACHE_LINE_WIDTH;
1599 while ((start_addr % INSN_CACHE_SIZE) != offset);
1600 #endif /* just one plane */
1601 #endif /* Cache is large */
1602 #endif /* Cache exists */
1603 #endif /* CLEAR_INSN_CACHE */
1606 #endif /* L_clear_cache */
1608 #ifdef L_trampoline
1610 /* Jump to a trampoline, loading the static chain address. */
1612 #if defined(_WIN32) && ! defined(__CYGWIN__) && ! defined (_UWIN)
1614 long
1615 getpagesize (void)
1617 #ifdef _ALPHA_
1618 return 8192;
1619 #else
1620 return 4096;
1621 #endif
1624 #ifdef __i386__
1625 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
1626 #endif
1629 mprotect (char *addr, int len, int prot)
1631 int np, op;
1633 if (prot == 7)
1634 np = 0x40;
1635 else if (prot == 5)
1636 np = 0x20;
1637 else if (prot == 4)
1638 np = 0x10;
1639 else if (prot == 3)
1640 np = 0x04;
1641 else if (prot == 1)
1642 np = 0x02;
1643 else if (prot == 0)
1644 np = 0x01;
1646 if (VirtualProtect (addr, len, np, &op))
1647 return 0;
1648 else
1649 return -1;
1652 #endif /* _WIN32 && ! __CYGWIN__ && ! _UWIN */
1654 #ifdef TRANSFER_FROM_TRAMPOLINE
1655 TRANSFER_FROM_TRAMPOLINE
1656 #endif
1658 #if defined (NeXT) && defined (__MACH__)
1660 /* Make stack executable so we can call trampolines on stack.
1661 This is called from INITIALIZE_TRAMPOLINE in next.h. */
1662 #ifdef NeXTStep21
1663 #include <mach.h>
1664 #else
1665 #include <mach/mach.h>
1666 #endif
1668 void
1669 __enable_execute_stack (char *addr)
1671 kern_return_t r;
1672 char *eaddr = addr + TRAMPOLINE_SIZE;
1673 vm_address_t a = (vm_address_t) addr;
1675 /* turn on execute access on stack */
1676 r = vm_protect (task_self (), a, TRAMPOLINE_SIZE, FALSE, VM_PROT_ALL);
1677 if (r != KERN_SUCCESS)
1679 mach_error("vm_protect VM_PROT_ALL", r);
1680 exit(1);
1683 /* We inline the i-cache invalidation for speed */
1685 #ifdef CLEAR_INSN_CACHE
1686 CLEAR_INSN_CACHE (addr, eaddr);
1687 #else
1688 __clear_cache ((int) addr, (int) eaddr);
1689 #endif
1692 #endif /* defined (NeXT) && defined (__MACH__) */
1694 #ifdef __convex__
1696 /* Make stack executable so we can call trampolines on stack.
1697 This is called from INITIALIZE_TRAMPOLINE in convex.h. */
1699 #include <sys/mman.h>
1700 #include <sys/vmparam.h>
1701 #include <machine/machparam.h>
1703 void
1704 __enable_execute_stack (void)
1706 int fp;
1707 static unsigned lowest = USRSTACK;
1708 unsigned current = (unsigned) &fp & -NBPG;
1710 if (lowest > current)
1712 unsigned len = lowest - current;
1713 mremap (current, &len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE);
1714 lowest = current;
1717 /* Clear instruction cache in case an old trampoline is in it. */
1718 asm ("pich");
1720 #endif /* __convex__ */
1722 #ifdef __sysV88__
1724 /* Modified from the convex -code above. */
1726 #include <sys/param.h>
1727 #include <errno.h>
1728 #include <sys/m88kbcs.h>
1730 void
1731 __enable_execute_stack (void)
1733 int save_errno;
1734 static unsigned long lowest = USRSTACK;
1735 unsigned long current = (unsigned long) &save_errno & -NBPC;
1737 /* Ignore errno being set. memctl sets errno to EINVAL whenever the
1738 address is seen as 'negative'. That is the case with the stack. */
1740 save_errno=errno;
1741 if (lowest > current)
1743 unsigned len=lowest-current;
1744 memctl(current,len,MCT_TEXT);
1745 lowest = current;
1747 else
1748 memctl(current,NBPC,MCT_TEXT);
1749 errno=save_errno;
1752 #endif /* __sysV88__ */
1754 #ifdef __sysV68__
1756 #include <sys/signal.h>
1757 #include <errno.h>
1759 /* Motorola forgot to put memctl.o in the libp version of libc881.a,
1760 so define it here, because we need it in __clear_insn_cache below */
1761 /* On older versions of this OS, no memctl or MCT_TEXT are defined;
1762 hence we enable this stuff only if MCT_TEXT is #define'd. */
1764 #ifdef MCT_TEXT
1765 asm("\n\
1766 global memctl\n\
1767 memctl:\n\
1768 movq &75,%d0\n\
1769 trap &0\n\
1770 bcc.b noerror\n\
1771 jmp cerror%\n\
1772 noerror:\n\
1773 movq &0,%d0\n\
1774 rts");
1775 #endif
1777 /* Clear instruction cache so we can call trampolines on stack.
1778 This is called from FINALIZE_TRAMPOLINE in mot3300.h. */
1780 void
1781 __clear_insn_cache (void)
1783 #ifdef MCT_TEXT
1784 int save_errno;
1786 /* Preserve errno, because users would be surprised to have
1787 errno changing without explicitly calling any system-call. */
1788 save_errno = errno;
1790 /* Keep it simple : memctl (MCT_TEXT) always fully clears the insn cache.
1791 No need to use an address derived from _start or %sp, as 0 works also. */
1792 memctl(0, 4096, MCT_TEXT);
1793 errno = save_errno;
1794 #endif
1797 #endif /* __sysV68__ */
1799 #ifdef __pyr__
1801 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1802 #include <stdio.h>
1803 #include <sys/mman.h>
1804 #include <sys/types.h>
1805 #include <sys/param.h>
1806 #include <sys/vmmac.h>
1808 /* Modified from the convex -code above.
1809 mremap promises to clear the i-cache. */
1811 void
1812 __enable_execute_stack (void)
1814 int fp;
1815 if (mprotect (((unsigned int)&fp/PAGSIZ)*PAGSIZ, PAGSIZ,
1816 PROT_READ|PROT_WRITE|PROT_EXEC))
1818 perror ("mprotect in __enable_execute_stack");
1819 fflush (stderr);
1820 abort ();
1823 #endif /* __pyr__ */
1825 #if defined (sony_news) && defined (SYSTYPE_BSD)
1827 #include <stdio.h>
1828 #include <sys/types.h>
1829 #include <sys/param.h>
1830 #include <syscall.h>
1831 #include <machine/sysnews.h>
1833 /* cacheflush function for NEWS-OS 4.2.
1834 This function is called from trampoline-initialize code
1835 defined in config/mips/mips.h. */
1837 void
1838 cacheflush (char *beg, int size, int flag)
1840 if (syscall (SYS_sysnews, NEWS_CACHEFLUSH, beg, size, FLUSH_BCACHE))
1842 perror ("cache_flush");
1843 fflush (stderr);
1844 abort ();
1848 #endif /* sony_news */
1849 #endif /* L_trampoline */
1851 #if !defined __CYGWIN__ && !defined __MINGW32__
1852 #ifdef L__main
1853 #include "gbl-ctors.h"
1854 /* Some systems use __main in a way incompatible with its use in gcc, in these
1855 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
1856 give the same symbol without quotes for an alternative entry point. You
1857 must define both, or neither. */
1858 #ifndef NAME__MAIN
1859 #define NAME__MAIN "__main"
1860 #define SYMBOL__MAIN __main
1861 #endif
1863 #ifdef INIT_SECTION_ASM_OP
1864 #undef HAS_INIT_SECTION
1865 #define HAS_INIT_SECTION
1866 #endif
1868 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
1870 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
1871 code to run constructors. In that case, we need to handle EH here, too. */
1873 #ifdef EH_FRAME_SECTION_NAME
1874 #include "unwind-dw2-fde.h"
1875 extern unsigned char __EH_FRAME_BEGIN__[];
1876 #endif
1878 /* Run all the global destructors on exit from the program. */
1880 void
1881 __do_global_dtors (void)
1883 #ifdef DO_GLOBAL_DTORS_BODY
1884 DO_GLOBAL_DTORS_BODY;
1885 #else
1886 static func_ptr *p = __DTOR_LIST__ + 1;
1887 while (*p)
1889 p++;
1890 (*(p-1)) ();
1892 #endif
1893 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
1895 static int completed = 0;
1896 if (! completed)
1898 completed = 1;
1899 __deregister_frame_info (__EH_FRAME_BEGIN__);
1902 #endif
1904 #endif
1906 #ifndef HAS_INIT_SECTION
1907 /* Run all the global constructors on entry to the program. */
1909 void
1910 __do_global_ctors (void)
1912 #ifdef EH_FRAME_SECTION_NAME
1914 static struct object object;
1915 __register_frame_info (__EH_FRAME_BEGIN__, &object);
1917 #endif
1918 DO_GLOBAL_CTORS_BODY;
1919 atexit (__do_global_dtors);
1921 #endif /* no HAS_INIT_SECTION */
1923 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
1924 /* Subroutine called automatically by `main'.
1925 Compiling a global function named `main'
1926 produces an automatic call to this function at the beginning.
1928 For many systems, this routine calls __do_global_ctors.
1929 For systems which support a .init section we use the .init section
1930 to run __do_global_ctors, so we need not do anything here. */
1932 void
1933 SYMBOL__MAIN ()
1935 /* Support recursive calls to `main': run initializers just once. */
1936 static int initialized;
1937 if (! initialized)
1939 initialized = 1;
1940 __do_global_ctors ();
1943 #endif /* no HAS_INIT_SECTION or INVOKE__main */
1945 #endif /* L__main */
1946 #endif /* __CYGWIN__ */
1948 #ifdef L_ctors
1950 #include "gbl-ctors.h"
1952 /* Provide default definitions for the lists of constructors and
1953 destructors, so that we don't get linker errors. These symbols are
1954 intentionally bss symbols, so that gld and/or collect will provide
1955 the right values. */
1957 /* We declare the lists here with two elements each,
1958 so that they are valid empty lists if no other definition is loaded.
1960 If we are using the old "set" extensions to have the gnu linker
1961 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
1962 must be in the bss/common section.
1964 Long term no port should use those extensions. But many still do. */
1965 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
1966 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
1967 func_ptr __CTOR_LIST__[2] = {0, 0};
1968 func_ptr __DTOR_LIST__[2] = {0, 0};
1969 #else
1970 func_ptr __CTOR_LIST__[2];
1971 func_ptr __DTOR_LIST__[2];
1972 #endif
1973 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
1974 #endif /* L_ctors */
1976 #ifdef L_exit
1978 #include "gbl-ctors.h"
1980 #ifdef NEED_ATEXIT
1982 #ifndef ON_EXIT
1984 # include <errno.h>
1986 static func_ptr *atexit_chain = 0;
1987 static long atexit_chain_length = 0;
1988 static volatile long last_atexit_chain_slot = -1;
1991 atexit (func_ptr func)
1993 if (++last_atexit_chain_slot == atexit_chain_length)
1995 atexit_chain_length += 32;
1996 if (atexit_chain)
1997 atexit_chain = (func_ptr *) realloc (atexit_chain, atexit_chain_length
1998 * sizeof (func_ptr));
1999 else
2000 atexit_chain = (func_ptr *) malloc (atexit_chain_length
2001 * sizeof (func_ptr));
2002 if (! atexit_chain)
2004 atexit_chain_length = 0;
2005 last_atexit_chain_slot = -1;
2006 errno = ENOMEM;
2007 return (-1);
2010 atexit_chain[last_atexit_chain_slot] = func;
2011 return (0);
2014 extern void _cleanup (void);
2015 extern void _exit (int) __attribute__ ((__noreturn__));
2017 void
2018 exit (int status)
2020 if (atexit_chain)
2022 for ( ; last_atexit_chain_slot-- >= 0; )
2024 (*atexit_chain[last_atexit_chain_slot + 1]) ();
2025 atexit_chain[last_atexit_chain_slot + 1] = 0;
2027 free (atexit_chain);
2028 atexit_chain = 0;
2030 #ifdef EXIT_BODY
2031 EXIT_BODY;
2032 #else
2033 _cleanup ();
2034 #endif
2035 _exit (status);
2038 #else /* ON_EXIT */
2040 /* Simple; we just need a wrapper for ON_EXIT. */
2042 atexit (func_ptr func)
2044 return ON_EXIT (func);
2047 #endif /* ON_EXIT */
2048 #endif /* NEED_ATEXIT */
2050 #endif /* L_exit */