PR target/37072
[official-gcc.git] / gcc / ira-costs.c
blob0d39215b0479f086a813299ed4b173a5dc26f8d8
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hard-reg-set.h"
26 #include "rtl.h"
27 #include "symtab.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "alias.h"
31 #include "tree.h"
32 #include "insn-config.h"
33 #include "expmed.h"
34 #include "dojump.h"
35 #include "explow.h"
36 #include "calls.h"
37 #include "emit-rtl.h"
38 #include "varasm.h"
39 #include "stmt.h"
40 #include "expr.h"
41 #include "tm_p.h"
42 #include "predict.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "basic-block.h"
46 #include "regs.h"
47 #include "addresses.h"
48 #include "recog.h"
49 #include "reload.h"
50 #include "diagnostic-core.h"
51 #include "target.h"
52 #include "params.h"
53 #include "ira-int.h"
55 /* The flags is set up every time when we calculate pseudo register
56 classes through function ira_set_pseudo_classes. */
57 static bool pseudo_classes_defined_p = false;
59 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
60 static bool allocno_p;
62 /* Number of elements in array `costs'. */
63 static int cost_elements_num;
65 /* The `costs' struct records the cost of using hard registers of each
66 class considered for the calculation and of using memory for each
67 allocno or pseudo. */
68 struct costs
70 int mem_cost;
71 /* Costs for register classes start here. We process only some
72 allocno classes. */
73 int cost[1];
76 #define max_struct_costs_size \
77 (this_target_ira_int->x_max_struct_costs_size)
78 #define init_cost \
79 (this_target_ira_int->x_init_cost)
80 #define temp_costs \
81 (this_target_ira_int->x_temp_costs)
82 #define op_costs \
83 (this_target_ira_int->x_op_costs)
84 #define this_op_costs \
85 (this_target_ira_int->x_this_op_costs)
87 /* Costs of each class for each allocno or pseudo. */
88 static struct costs *costs;
90 /* Accumulated costs of each class for each allocno. */
91 static struct costs *total_allocno_costs;
93 /* It is the current size of struct costs. */
94 static int struct_costs_size;
96 /* Return pointer to structure containing costs of allocno or pseudo
97 with given NUM in array ARR. */
98 #define COSTS(arr, num) \
99 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
101 /* Return index in COSTS when processing reg with REGNO. */
102 #define COST_INDEX(regno) (allocno_p \
103 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
104 : (int) regno)
106 /* Record register class preferences of each allocno or pseudo. Null
107 value means no preferences. It happens on the 1st iteration of the
108 cost calculation. */
109 static enum reg_class *pref;
111 /* Allocated buffers for pref. */
112 static enum reg_class *pref_buffer;
114 /* Record allocno class of each allocno with the same regno. */
115 static enum reg_class *regno_aclass;
117 /* Record cost gains for not allocating a register with an invariant
118 equivalence. */
119 static int *regno_equiv_gains;
121 /* Execution frequency of the current insn. */
122 static int frequency;
126 /* Info about reg classes whose costs are calculated for a pseudo. */
127 struct cost_classes
129 /* Number of the cost classes in the subsequent array. */
130 int num;
131 /* Container of the cost classes. */
132 enum reg_class classes[N_REG_CLASSES];
133 /* Map reg class -> index of the reg class in the previous array.
134 -1 if it is not a cost class. */
135 int index[N_REG_CLASSES];
136 /* Map hard regno index of first class in array CLASSES containing
137 the hard regno, -1 otherwise. */
138 int hard_regno_index[FIRST_PSEUDO_REGISTER];
141 /* Types of pointers to the structure above. */
142 typedef struct cost_classes *cost_classes_t;
143 typedef const struct cost_classes *const_cost_classes_t;
145 /* Info about cost classes for each pseudo. */
146 static cost_classes_t *regno_cost_classes;
148 /* Helper for cost_classes hashing. */
150 struct cost_classes_hasher : pointer_hash <cost_classes>
152 static inline hashval_t hash (const cost_classes *);
153 static inline bool equal (const cost_classes *, const cost_classes *);
154 static inline void remove (cost_classes *);
157 /* Returns hash value for cost classes info HV. */
158 inline hashval_t
159 cost_classes_hasher::hash (const cost_classes *hv)
161 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
164 /* Compares cost classes info HV1 and HV2. */
165 inline bool
166 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
168 return (hv1->num == hv2->num
169 && memcmp (hv1->classes, hv2->classes,
170 sizeof (enum reg_class) * hv1->num) == 0);
173 /* Delete cost classes info V from the hash table. */
174 inline void
175 cost_classes_hasher::remove (cost_classes *v)
177 ira_free (v);
180 /* Hash table of unique cost classes. */
181 static hash_table<cost_classes_hasher> *cost_classes_htab;
183 /* Map allocno class -> cost classes for pseudo of given allocno
184 class. */
185 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
187 /* Map mode -> cost classes for pseudo of give mode. */
188 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
190 /* Cost classes that include all classes in ira_important_classes. */
191 static cost_classes all_cost_classes;
193 /* Use the array of classes in CLASSES_PTR to fill out the rest of
194 the structure. */
195 static void
196 complete_cost_classes (cost_classes_t classes_ptr)
198 for (int i = 0; i < N_REG_CLASSES; i++)
199 classes_ptr->index[i] = -1;
200 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
201 classes_ptr->hard_regno_index[i] = -1;
202 for (int i = 0; i < classes_ptr->num; i++)
204 enum reg_class cl = classes_ptr->classes[i];
205 classes_ptr->index[cl] = i;
206 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
208 unsigned int hard_regno = ira_class_hard_regs[cl][j];
209 if (classes_ptr->hard_regno_index[hard_regno] < 0)
210 classes_ptr->hard_regno_index[hard_regno] = i;
215 /* Initialize info about the cost classes for each pseudo. */
216 static void
217 initiate_regno_cost_classes (void)
219 int size = sizeof (cost_classes_t) * max_reg_num ();
221 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
222 memset (regno_cost_classes, 0, size);
223 memset (cost_classes_aclass_cache, 0,
224 sizeof (cost_classes_t) * N_REG_CLASSES);
225 memset (cost_classes_mode_cache, 0,
226 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
227 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
228 all_cost_classes.num = ira_important_classes_num;
229 for (int i = 0; i < ira_important_classes_num; i++)
230 all_cost_classes.classes[i] = ira_important_classes[i];
231 complete_cost_classes (&all_cost_classes);
234 /* Create new cost classes from cost classes FROM and set up members
235 index and hard_regno_index. Return the new classes. The function
236 implements some common code of two functions
237 setup_regno_cost_classes_by_aclass and
238 setup_regno_cost_classes_by_mode. */
239 static cost_classes_t
240 setup_cost_classes (cost_classes_t from)
242 cost_classes_t classes_ptr;
244 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
245 classes_ptr->num = from->num;
246 for (int i = 0; i < from->num; i++)
247 classes_ptr->classes[i] = from->classes[i];
248 complete_cost_classes (classes_ptr);
249 return classes_ptr;
252 /* Return a version of FULL that only considers registers in REGS that are
253 valid for mode MODE. Both FULL and the returned class are globally
254 allocated. */
255 static cost_classes_t
256 restrict_cost_classes (cost_classes_t full, machine_mode mode,
257 const HARD_REG_SET &regs)
259 static struct cost_classes narrow;
260 int map[N_REG_CLASSES];
261 narrow.num = 0;
262 for (int i = 0; i < full->num; i++)
264 /* Assume that we'll drop the class. */
265 map[i] = -1;
267 /* Ignore classes that are too small for the mode. */
268 enum reg_class cl = full->classes[i];
269 if (!contains_reg_of_mode[cl][mode])
270 continue;
272 /* Calculate the set of registers in CL that belong to REGS and
273 are valid for MODE. */
274 HARD_REG_SET valid_for_cl;
275 COPY_HARD_REG_SET (valid_for_cl, reg_class_contents[cl]);
276 AND_HARD_REG_SET (valid_for_cl, regs);
277 AND_COMPL_HARD_REG_SET (valid_for_cl,
278 ira_prohibited_class_mode_regs[cl][mode]);
279 AND_COMPL_HARD_REG_SET (valid_for_cl, ira_no_alloc_regs);
280 if (hard_reg_set_empty_p (valid_for_cl))
281 continue;
283 /* Don't use this class if the set of valid registers is a subset
284 of an existing class. For example, suppose we have two classes
285 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
286 that the mode changes allowed by FR_REGS are not as general as
287 the mode changes allowed by GR_REGS.
289 In this situation, the mode changes for GR_AND_FR_REGS could
290 either be seen as the union or the intersection of the mode
291 changes allowed by the two subclasses. The justification for
292 the union-based definition would be that, if you want a mode
293 change that's only allowed by GR_REGS, you can pick a register
294 from the GR_REGS subclass. The justification for the
295 intersection-based definition would be that every register
296 from the class would allow the mode change.
298 However, if we have a register that needs to be in GR_REGS,
299 using GR_AND_FR_REGS with the intersection-based definition
300 would be too pessimistic, since it would bring in restrictions
301 that only apply to FR_REGS. Conversely, if we have a register
302 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
303 union-based definition would lose the extra restrictions
304 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
305 for cases where GR_REGS and FP_REGS are both valid. */
306 int pos;
307 for (pos = 0; pos < narrow.num; ++pos)
309 enum reg_class cl2 = narrow.classes[pos];
310 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
311 break;
313 map[i] = pos;
314 if (pos == narrow.num)
316 /* If several classes are equivalent, prefer to use the one
317 that was chosen as the allocno class. */
318 enum reg_class cl2 = ira_allocno_class_translate[cl];
319 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
320 cl = cl2;
321 narrow.classes[narrow.num++] = cl;
324 if (narrow.num == full->num)
325 return full;
327 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
328 if (*slot == NULL)
330 cost_classes_t classes = setup_cost_classes (&narrow);
331 /* Map equivalent classes to the representative that we chose above. */
332 for (int i = 0; i < ira_important_classes_num; i++)
334 enum reg_class cl = ira_important_classes[i];
335 int index = full->index[cl];
336 if (index >= 0)
337 classes->index[cl] = map[index];
339 *slot = classes;
341 return *slot;
344 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
345 This function is used when we know an initial approximation of
346 allocno class of the pseudo already, e.g. on the second iteration
347 of class cost calculation or after class cost calculation in
348 register-pressure sensitive insn scheduling or register-pressure
349 sensitive loop-invariant motion. */
350 static void
351 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
353 static struct cost_classes classes;
354 cost_classes_t classes_ptr;
355 enum reg_class cl;
356 int i;
357 cost_classes **slot;
358 HARD_REG_SET temp, temp2;
359 bool exclude_p;
361 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
363 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
364 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
365 /* We exclude classes from consideration which are subsets of
366 ACLASS only if ACLASS is an uniform class. */
367 exclude_p = ira_uniform_class_p[aclass];
368 classes.num = 0;
369 for (i = 0; i < ira_important_classes_num; i++)
371 cl = ira_important_classes[i];
372 if (exclude_p)
374 /* Exclude non-uniform classes which are subsets of
375 ACLASS. */
376 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
377 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
378 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
379 continue;
381 classes.classes[classes.num++] = cl;
383 slot = cost_classes_htab->find_slot (&classes, INSERT);
384 if (*slot == NULL)
386 classes_ptr = setup_cost_classes (&classes);
387 *slot = classes_ptr;
389 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
391 if (regno_reg_rtx[regno] != NULL_RTX)
393 /* Restrict the classes to those that are valid for REGNO's mode
394 (which might for example exclude singleton classes if the mode
395 requires two registers). Also restrict the classes to those that
396 are valid for subregs of REGNO. */
397 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
398 if (!valid_regs)
399 valid_regs = &reg_class_contents[ALL_REGS];
400 classes_ptr = restrict_cost_classes (classes_ptr,
401 PSEUDO_REGNO_MODE (regno),
402 *valid_regs);
404 regno_cost_classes[regno] = classes_ptr;
407 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
408 decrease number of cost classes for the pseudo, if hard registers
409 of some important classes can not hold a value of MODE. So the
410 pseudo can not get hard register of some important classes and cost
411 calculation for such important classes is only wasting CPU
412 time. */
413 static void
414 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
416 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
417 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
418 mode, *valid_regs);
419 else
421 if (cost_classes_mode_cache[mode] == NULL)
422 cost_classes_mode_cache[mode]
423 = restrict_cost_classes (&all_cost_classes, mode,
424 reg_class_contents[ALL_REGS]);
425 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
429 /* Finalize info about the cost classes for each pseudo. */
430 static void
431 finish_regno_cost_classes (void)
433 ira_free (regno_cost_classes);
434 delete cost_classes_htab;
435 cost_classes_htab = NULL;
440 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
441 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
442 be a pseudo register. */
443 static int
444 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
445 secondary_reload_info *prev_sri)
447 secondary_reload_info sri;
448 reg_class_t secondary_class = NO_REGS;
450 /* If X is a SCRATCH, there is actually nothing to move since we are
451 assuming optimal allocation. */
452 if (GET_CODE (x) == SCRATCH)
453 return 0;
455 /* Get the class we will actually use for a reload. */
456 rclass = targetm.preferred_reload_class (x, rclass);
458 /* If we need a secondary reload for an intermediate, the cost is
459 that to load the input into the intermediate register, then to
460 copy it. */
461 sri.prev_sri = prev_sri;
462 sri.extra_cost = 0;
463 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
465 if (secondary_class != NO_REGS)
467 ira_init_register_move_cost_if_necessary (mode);
468 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
469 + sri.extra_cost
470 + copy_cost (x, mode, secondary_class, to_p, &sri));
473 /* For memory, use the memory move cost, for (hard) registers, use
474 the cost to move between the register classes, and use 2 for
475 everything else (constants). */
476 if (MEM_P (x) || rclass == NO_REGS)
477 return sri.extra_cost
478 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
479 else if (REG_P (x))
481 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
483 ira_init_register_move_cost_if_necessary (mode);
484 return (sri.extra_cost
485 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
487 else
488 /* If this is a constant, we may eventually want to call rtx_cost
489 here. */
490 return sri.extra_cost + COSTS_N_INSNS (1);
495 /* Record the cost of using memory or hard registers of various
496 classes for the operands in INSN.
498 N_ALTS is the number of alternatives.
499 N_OPS is the number of operands.
500 OPS is an array of the operands.
501 MODES are the modes of the operands, in case any are VOIDmode.
502 CONSTRAINTS are the constraints to use for the operands. This array
503 is modified by this procedure.
505 This procedure works alternative by alternative. For each
506 alternative we assume that we will be able to allocate all allocnos
507 to their ideal register class and calculate the cost of using that
508 alternative. Then we compute, for each operand that is a
509 pseudo-register, the cost of having the allocno allocated to each
510 register class and using it in that alternative. To this cost is
511 added the cost of the alternative.
513 The cost of each class for this insn is its lowest cost among all
514 the alternatives. */
515 static void
516 record_reg_classes (int n_alts, int n_ops, rtx *ops,
517 machine_mode *modes, const char **constraints,
518 rtx_insn *insn, enum reg_class *pref)
520 int alt;
521 int i, j, k;
522 int insn_allows_mem[MAX_RECOG_OPERANDS];
523 move_table *move_in_cost, *move_out_cost;
524 short (*mem_cost)[2];
526 for (i = 0; i < n_ops; i++)
527 insn_allows_mem[i] = 0;
529 /* Process each alternative, each time minimizing an operand's cost
530 with the cost for each operand in that alternative. */
531 alternative_mask preferred = get_preferred_alternatives (insn);
532 for (alt = 0; alt < n_alts; alt++)
534 enum reg_class classes[MAX_RECOG_OPERANDS];
535 int allows_mem[MAX_RECOG_OPERANDS];
536 enum reg_class rclass;
537 int alt_fail = 0;
538 int alt_cost = 0, op_cost_add;
540 if (!TEST_BIT (preferred, alt))
542 for (i = 0; i < recog_data.n_operands; i++)
543 constraints[i] = skip_alternative (constraints[i]);
545 continue;
548 for (i = 0; i < n_ops; i++)
550 unsigned char c;
551 const char *p = constraints[i];
552 rtx op = ops[i];
553 machine_mode mode = modes[i];
554 int allows_addr = 0;
555 int win = 0;
557 /* Initially show we know nothing about the register class. */
558 classes[i] = NO_REGS;
559 allows_mem[i] = 0;
561 /* If this operand has no constraints at all, we can
562 conclude nothing about it since anything is valid. */
563 if (*p == 0)
565 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
566 memset (this_op_costs[i], 0, struct_costs_size);
567 continue;
570 /* If this alternative is only relevant when this operand
571 matches a previous operand, we do different things
572 depending on whether this operand is a allocno-reg or not.
573 We must process any modifiers for the operand before we
574 can make this test. */
575 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
576 p++;
578 if (p[0] >= '0' && p[0] <= '0' + i)
580 /* Copy class and whether memory is allowed from the
581 matching alternative. Then perform any needed cost
582 computations and/or adjustments. */
583 j = p[0] - '0';
584 classes[i] = classes[j];
585 allows_mem[i] = allows_mem[j];
586 if (allows_mem[i])
587 insn_allows_mem[i] = 1;
589 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
591 /* If this matches the other operand, we have no
592 added cost and we win. */
593 if (rtx_equal_p (ops[j], op))
594 win = 1;
595 /* If we can put the other operand into a register,
596 add to the cost of this alternative the cost to
597 copy this operand to the register used for the
598 other operand. */
599 else if (classes[j] != NO_REGS)
601 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
602 win = 1;
605 else if (! REG_P (ops[j])
606 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
608 /* This op is an allocno but the one it matches is
609 not. */
611 /* If we can't put the other operand into a
612 register, this alternative can't be used. */
614 if (classes[j] == NO_REGS)
615 alt_fail = 1;
616 /* Otherwise, add to the cost of this alternative
617 the cost to copy the other operand to the hard
618 register used for this operand. */
619 else
620 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
622 else
624 /* The costs of this operand are not the same as the
625 other operand since move costs are not symmetric.
626 Moreover, if we cannot tie them, this alternative
627 needs to do a copy, which is one insn. */
628 struct costs *pp = this_op_costs[i];
629 int *pp_costs = pp->cost;
630 cost_classes_t cost_classes_ptr
631 = regno_cost_classes[REGNO (op)];
632 enum reg_class *cost_classes = cost_classes_ptr->classes;
633 bool in_p = recog_data.operand_type[i] != OP_OUT;
634 bool out_p = recog_data.operand_type[i] != OP_IN;
635 enum reg_class op_class = classes[i];
637 ira_init_register_move_cost_if_necessary (mode);
638 if (! in_p)
640 ira_assert (out_p);
641 if (op_class == NO_REGS)
643 mem_cost = ira_memory_move_cost[mode];
644 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
646 rclass = cost_classes[k];
647 pp_costs[k] = mem_cost[rclass][0] * frequency;
650 else
652 move_out_cost = ira_may_move_out_cost[mode];
653 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
655 rclass = cost_classes[k];
656 pp_costs[k]
657 = move_out_cost[op_class][rclass] * frequency;
661 else if (! out_p)
663 ira_assert (in_p);
664 if (op_class == NO_REGS)
666 mem_cost = ira_memory_move_cost[mode];
667 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
669 rclass = cost_classes[k];
670 pp_costs[k] = mem_cost[rclass][1] * frequency;
673 else
675 move_in_cost = ira_may_move_in_cost[mode];
676 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
678 rclass = cost_classes[k];
679 pp_costs[k]
680 = move_in_cost[rclass][op_class] * frequency;
684 else
686 if (op_class == NO_REGS)
688 mem_cost = ira_memory_move_cost[mode];
689 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
691 rclass = cost_classes[k];
692 pp_costs[k] = ((mem_cost[rclass][0]
693 + mem_cost[rclass][1])
694 * frequency);
697 else
699 move_in_cost = ira_may_move_in_cost[mode];
700 move_out_cost = ira_may_move_out_cost[mode];
701 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
703 rclass = cost_classes[k];
704 pp_costs[k] = ((move_in_cost[rclass][op_class]
705 + move_out_cost[op_class][rclass])
706 * frequency);
711 /* If the alternative actually allows memory, make
712 things a bit cheaper since we won't need an extra
713 insn to load it. */
714 pp->mem_cost
715 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
716 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
717 - allows_mem[i]) * frequency;
719 /* If we have assigned a class to this allocno in
720 our first pass, add a cost to this alternative
721 corresponding to what we would add if this
722 allocno were not in the appropriate class. */
723 if (pref)
725 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
727 if (pref_class == NO_REGS)
728 alt_cost
729 += ((out_p
730 ? ira_memory_move_cost[mode][op_class][0] : 0)
731 + (in_p
732 ? ira_memory_move_cost[mode][op_class][1]
733 : 0));
734 else if (ira_reg_class_intersect
735 [pref_class][op_class] == NO_REGS)
736 alt_cost
737 += ira_register_move_cost[mode][pref_class][op_class];
739 if (REGNO (ops[i]) != REGNO (ops[j])
740 && ! find_reg_note (insn, REG_DEAD, op))
741 alt_cost += 2;
743 p++;
747 /* Scan all the constraint letters. See if the operand
748 matches any of the constraints. Collect the valid
749 register classes and see if this operand accepts
750 memory. */
751 while ((c = *p))
753 switch (c)
755 case '*':
756 /* Ignore the next letter for this pass. */
757 c = *++p;
758 break;
760 case '^':
761 alt_cost += 2;
762 break;
764 case '?':
765 alt_cost += 2;
766 break;
768 case 'g':
769 if (MEM_P (op)
770 || (CONSTANT_P (op)
771 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
772 win = 1;
773 insn_allows_mem[i] = allows_mem[i] = 1;
774 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
775 break;
777 default:
778 enum constraint_num cn = lookup_constraint (p);
779 enum reg_class cl;
780 switch (get_constraint_type (cn))
782 case CT_REGISTER:
783 cl = reg_class_for_constraint (cn);
784 if (cl != NO_REGS)
785 classes[i] = ira_reg_class_subunion[classes[i]][cl];
786 break;
788 case CT_CONST_INT:
789 if (CONST_INT_P (op)
790 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
791 win = 1;
792 break;
794 case CT_MEMORY:
795 /* Every MEM can be reloaded to fit. */
796 insn_allows_mem[i] = allows_mem[i] = 1;
797 if (MEM_P (op))
798 win = 1;
799 break;
801 case CT_ADDRESS:
802 /* Every address can be reloaded to fit. */
803 allows_addr = 1;
804 if (address_operand (op, GET_MODE (op))
805 || constraint_satisfied_p (op, cn))
806 win = 1;
807 /* We know this operand is an address, so we
808 want it to be allocated to a hard register
809 that can be the base of an address,
810 i.e. BASE_REG_CLASS. */
811 classes[i]
812 = ira_reg_class_subunion[classes[i]]
813 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
814 ADDRESS, SCRATCH)];
815 break;
817 case CT_FIXED_FORM:
818 if (constraint_satisfied_p (op, cn))
819 win = 1;
820 break;
822 break;
824 p += CONSTRAINT_LEN (c, p);
825 if (c == ',')
826 break;
829 constraints[i] = p;
831 /* How we account for this operand now depends on whether it
832 is a pseudo register or not. If it is, we first check if
833 any register classes are valid. If not, we ignore this
834 alternative, since we want to assume that all allocnos get
835 allocated for register preferencing. If some register
836 class is valid, compute the costs of moving the allocno
837 into that class. */
838 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
840 if (classes[i] == NO_REGS && ! allows_mem[i])
842 /* We must always fail if the operand is a REG, but
843 we did not find a suitable class and memory is
844 not allowed.
846 Otherwise we may perform an uninitialized read
847 from this_op_costs after the `continue' statement
848 below. */
849 alt_fail = 1;
851 else
853 unsigned int regno = REGNO (op);
854 struct costs *pp = this_op_costs[i];
855 int *pp_costs = pp->cost;
856 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
857 enum reg_class *cost_classes = cost_classes_ptr->classes;
858 bool in_p = recog_data.operand_type[i] != OP_OUT;
859 bool out_p = recog_data.operand_type[i] != OP_IN;
860 enum reg_class op_class = classes[i];
862 ira_init_register_move_cost_if_necessary (mode);
863 if (! in_p)
865 ira_assert (out_p);
866 if (op_class == NO_REGS)
868 mem_cost = ira_memory_move_cost[mode];
869 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
871 rclass = cost_classes[k];
872 pp_costs[k] = mem_cost[rclass][0] * frequency;
875 else
877 move_out_cost = ira_may_move_out_cost[mode];
878 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
880 rclass = cost_classes[k];
881 pp_costs[k]
882 = move_out_cost[op_class][rclass] * frequency;
886 else if (! out_p)
888 ira_assert (in_p);
889 if (op_class == NO_REGS)
891 mem_cost = ira_memory_move_cost[mode];
892 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
894 rclass = cost_classes[k];
895 pp_costs[k] = mem_cost[rclass][1] * frequency;
898 else
900 move_in_cost = ira_may_move_in_cost[mode];
901 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
903 rclass = cost_classes[k];
904 pp_costs[k]
905 = move_in_cost[rclass][op_class] * frequency;
909 else
911 if (op_class == NO_REGS)
913 mem_cost = ira_memory_move_cost[mode];
914 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
916 rclass = cost_classes[k];
917 pp_costs[k] = ((mem_cost[rclass][0]
918 + mem_cost[rclass][1])
919 * frequency);
922 else
924 move_in_cost = ira_may_move_in_cost[mode];
925 move_out_cost = ira_may_move_out_cost[mode];
926 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
928 rclass = cost_classes[k];
929 pp_costs[k] = ((move_in_cost[rclass][op_class]
930 + move_out_cost[op_class][rclass])
931 * frequency);
936 if (op_class == NO_REGS)
937 /* Although we don't need insn to reload from
938 memory, still accessing memory is usually more
939 expensive than a register. */
940 pp->mem_cost = frequency;
941 else
942 /* If the alternative actually allows memory, make
943 things a bit cheaper since we won't need an
944 extra insn to load it. */
945 pp->mem_cost
946 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
947 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
948 - allows_mem[i]) * frequency;
949 /* If we have assigned a class to this allocno in
950 our first pass, add a cost to this alternative
951 corresponding to what we would add if this
952 allocno were not in the appropriate class. */
953 if (pref)
955 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
957 if (pref_class == NO_REGS)
959 if (op_class != NO_REGS)
960 alt_cost
961 += ((out_p
962 ? ira_memory_move_cost[mode][op_class][0]
963 : 0)
964 + (in_p
965 ? ira_memory_move_cost[mode][op_class][1]
966 : 0));
968 else if (op_class == NO_REGS)
969 alt_cost
970 += ((out_p
971 ? ira_memory_move_cost[mode][pref_class][1]
972 : 0)
973 + (in_p
974 ? ira_memory_move_cost[mode][pref_class][0]
975 : 0));
976 else if (ira_reg_class_intersect[pref_class][op_class]
977 == NO_REGS)
978 alt_cost += (ira_register_move_cost
979 [mode][pref_class][op_class]);
984 /* Otherwise, if this alternative wins, either because we
985 have already determined that or if we have a hard
986 register of the proper class, there is no cost for this
987 alternative. */
988 else if (win || (REG_P (op)
989 && reg_fits_class_p (op, classes[i],
990 0, GET_MODE (op))))
993 /* If registers are valid, the cost of this alternative
994 includes copying the object to and/or from a
995 register. */
996 else if (classes[i] != NO_REGS)
998 if (recog_data.operand_type[i] != OP_OUT)
999 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1001 if (recog_data.operand_type[i] != OP_IN)
1002 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1004 /* The only other way this alternative can be used is if
1005 this is a constant that could be placed into memory. */
1006 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1007 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1008 else
1009 alt_fail = 1;
1012 if (alt_fail)
1013 continue;
1015 op_cost_add = alt_cost * frequency;
1016 /* Finally, update the costs with the information we've
1017 calculated about this alternative. */
1018 for (i = 0; i < n_ops; i++)
1019 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1021 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1022 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1023 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1024 cost_classes_t cost_classes_ptr
1025 = regno_cost_classes[REGNO (ops[i])];
1027 pp->mem_cost = MIN (pp->mem_cost,
1028 (qq->mem_cost + op_cost_add) * scale);
1030 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1031 pp_costs[k]
1032 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1036 if (allocno_p)
1037 for (i = 0; i < n_ops; i++)
1039 ira_allocno_t a;
1040 rtx op = ops[i];
1042 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1043 continue;
1044 a = ira_curr_regno_allocno_map [REGNO (op)];
1045 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1046 ALLOCNO_BAD_SPILL_P (a) = true;
1053 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1054 static inline bool
1055 ok_for_index_p_nonstrict (rtx reg)
1057 unsigned regno = REGNO (reg);
1059 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1062 /* A version of regno_ok_for_base_p for use here, when all
1063 pseudo-registers should count as OK. Arguments as for
1064 regno_ok_for_base_p. */
1065 static inline bool
1066 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1067 enum rtx_code outer_code, enum rtx_code index_code)
1069 unsigned regno = REGNO (reg);
1071 if (regno >= FIRST_PSEUDO_REGISTER)
1072 return true;
1073 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1076 /* Record the pseudo registers we must reload into hard registers in a
1077 subexpression of a memory address, X.
1079 If CONTEXT is 0, we are looking at the base part of an address,
1080 otherwise we are looking at the index part.
1082 MODE and AS are the mode and address space of the memory reference;
1083 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1084 These four arguments are passed down to base_reg_class.
1086 SCALE is twice the amount to multiply the cost by (it is twice so
1087 we can represent half-cost adjustments). */
1088 static void
1089 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1090 int context, enum rtx_code outer_code,
1091 enum rtx_code index_code, int scale)
1093 enum rtx_code code = GET_CODE (x);
1094 enum reg_class rclass;
1096 if (context == 1)
1097 rclass = INDEX_REG_CLASS;
1098 else
1099 rclass = base_reg_class (mode, as, outer_code, index_code);
1101 switch (code)
1103 case CONST_INT:
1104 case CONST:
1105 case CC0:
1106 case PC:
1107 case SYMBOL_REF:
1108 case LABEL_REF:
1109 return;
1111 case PLUS:
1112 /* When we have an address that is a sum, we must determine
1113 whether registers are "base" or "index" regs. If there is a
1114 sum of two registers, we must choose one to be the "base".
1115 Luckily, we can use the REG_POINTER to make a good choice
1116 most of the time. We only need to do this on machines that
1117 can have two registers in an address and where the base and
1118 index register classes are different.
1120 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1121 but that seems bogus since it should only be set when we are
1122 sure the register is being used as a pointer. */
1124 rtx arg0 = XEXP (x, 0);
1125 rtx arg1 = XEXP (x, 1);
1126 enum rtx_code code0 = GET_CODE (arg0);
1127 enum rtx_code code1 = GET_CODE (arg1);
1129 /* Look inside subregs. */
1130 if (code0 == SUBREG)
1131 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1132 if (code1 == SUBREG)
1133 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1135 /* If this machine only allows one register per address, it
1136 must be in the first operand. */
1137 if (MAX_REGS_PER_ADDRESS == 1)
1138 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1140 /* If index and base registers are the same on this machine,
1141 just record registers in any non-constant operands. We
1142 assume here, as well as in the tests below, that all
1143 addresses are in canonical form. */
1144 else if (INDEX_REG_CLASS
1145 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1147 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1148 if (! CONSTANT_P (arg1))
1149 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1152 /* If the second operand is a constant integer, it doesn't
1153 change what class the first operand must be. */
1154 else if (CONST_SCALAR_INT_P (arg1))
1155 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1156 /* If the second operand is a symbolic constant, the first
1157 operand must be an index register. */
1158 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1159 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1160 /* If both operands are registers but one is already a hard
1161 register of index or reg-base class, give the other the
1162 class that the hard register is not. */
1163 else if (code0 == REG && code1 == REG
1164 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1165 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1166 || ok_for_index_p_nonstrict (arg0)))
1167 record_address_regs (mode, as, arg1,
1168 ok_for_base_p_nonstrict (arg0, mode, as,
1169 PLUS, REG) ? 1 : 0,
1170 PLUS, REG, scale);
1171 else if (code0 == REG && code1 == REG
1172 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1173 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1174 || ok_for_index_p_nonstrict (arg1)))
1175 record_address_regs (mode, as, arg0,
1176 ok_for_base_p_nonstrict (arg1, mode, as,
1177 PLUS, REG) ? 1 : 0,
1178 PLUS, REG, scale);
1179 /* If one operand is known to be a pointer, it must be the
1180 base with the other operand the index. Likewise if the
1181 other operand is a MULT. */
1182 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1184 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1185 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1187 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1189 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1190 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1192 /* Otherwise, count equal chances that each might be a base or
1193 index register. This case should be rare. */
1194 else
1196 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1197 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1198 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1199 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1202 break;
1204 /* Double the importance of an allocno that is incremented or
1205 decremented, since it would take two extra insns if it ends
1206 up in the wrong place. */
1207 case POST_MODIFY:
1208 case PRE_MODIFY:
1209 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1210 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1211 if (REG_P (XEXP (XEXP (x, 1), 1)))
1212 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1213 2 * scale);
1214 break;
1216 case POST_INC:
1217 case PRE_INC:
1218 case POST_DEC:
1219 case PRE_DEC:
1220 /* Double the importance of an allocno that is incremented or
1221 decremented, since it would take two extra insns if it ends
1222 up in the wrong place. */
1223 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1224 break;
1226 case REG:
1228 struct costs *pp;
1229 int *pp_costs;
1230 enum reg_class i;
1231 int k, regno, add_cost;
1232 cost_classes_t cost_classes_ptr;
1233 enum reg_class *cost_classes;
1234 move_table *move_in_cost;
1236 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1237 break;
1239 regno = REGNO (x);
1240 if (allocno_p)
1241 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1242 pp = COSTS (costs, COST_INDEX (regno));
1243 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1244 if (INT_MAX - add_cost < pp->mem_cost)
1245 pp->mem_cost = INT_MAX;
1246 else
1247 pp->mem_cost += add_cost;
1248 cost_classes_ptr = regno_cost_classes[regno];
1249 cost_classes = cost_classes_ptr->classes;
1250 pp_costs = pp->cost;
1251 ira_init_register_move_cost_if_necessary (Pmode);
1252 move_in_cost = ira_may_move_in_cost[Pmode];
1253 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1255 i = cost_classes[k];
1256 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1257 if (INT_MAX - add_cost < pp_costs[k])
1258 pp_costs[k] = INT_MAX;
1259 else
1260 pp_costs[k] += add_cost;
1263 break;
1265 default:
1267 const char *fmt = GET_RTX_FORMAT (code);
1268 int i;
1269 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1270 if (fmt[i] == 'e')
1271 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1272 scale);
1279 /* Calculate the costs of insn operands. */
1280 static void
1281 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1283 const char *constraints[MAX_RECOG_OPERANDS];
1284 machine_mode modes[MAX_RECOG_OPERANDS];
1285 rtx ops[MAX_RECOG_OPERANDS];
1286 rtx set;
1287 int i;
1289 for (i = 0; i < recog_data.n_operands; i++)
1291 constraints[i] = recog_data.constraints[i];
1292 modes[i] = recog_data.operand_mode[i];
1295 /* If we get here, we are set up to record the costs of all the
1296 operands for this insn. Start by initializing the costs. Then
1297 handle any address registers. Finally record the desired classes
1298 for any allocnos, doing it twice if some pair of operands are
1299 commutative. */
1300 for (i = 0; i < recog_data.n_operands; i++)
1302 memcpy (op_costs[i], init_cost, struct_costs_size);
1304 ops[i] = recog_data.operand[i];
1305 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1306 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1308 if (MEM_P (recog_data.operand[i]))
1309 record_address_regs (GET_MODE (recog_data.operand[i]),
1310 MEM_ADDR_SPACE (recog_data.operand[i]),
1311 XEXP (recog_data.operand[i], 0),
1312 0, MEM, SCRATCH, frequency * 2);
1313 else if (constraints[i][0] == 'p'
1314 || (insn_extra_address_constraint
1315 (lookup_constraint (constraints[i]))))
1316 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1317 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1318 frequency * 2);
1321 /* Check for commutative in a separate loop so everything will have
1322 been initialized. We must do this even if one operand is a
1323 constant--see addsi3 in m68k.md. */
1324 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1325 if (constraints[i][0] == '%')
1327 const char *xconstraints[MAX_RECOG_OPERANDS];
1328 int j;
1330 /* Handle commutative operands by swapping the constraints.
1331 We assume the modes are the same. */
1332 for (j = 0; j < recog_data.n_operands; j++)
1333 xconstraints[j] = constraints[j];
1335 xconstraints[i] = constraints[i+1];
1336 xconstraints[i+1] = constraints[i];
1337 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1338 recog_data.operand, modes,
1339 xconstraints, insn, pref);
1341 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1342 recog_data.operand, modes,
1343 constraints, insn, pref);
1345 /* If this insn is a single set copying operand 1 to operand 0 and
1346 one operand is an allocno with the other a hard reg or an allocno
1347 that prefers a hard register that is in its own register class
1348 then we may want to adjust the cost of that register class to -1.
1350 Avoid the adjustment if the source does not die to avoid
1351 stressing of register allocator by preferencing two colliding
1352 registers into single class.
1354 Also avoid the adjustment if a copy between hard registers of the
1355 class is expensive (ten times the cost of a default copy is
1356 considered arbitrarily expensive). This avoids losing when the
1357 preferred class is very expensive as the source of a copy
1358 instruction. */
1359 if ((set = single_set (insn)) != NULL_RTX
1360 /* In rare cases the single set insn might have less 2 operands
1361 as the source can be a fixed special reg. */
1362 && recog_data.n_operands > 1
1363 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1365 int regno, other_regno;
1366 rtx dest = SET_DEST (set);
1367 rtx src = SET_SRC (set);
1369 if (GET_CODE (dest) == SUBREG
1370 && (GET_MODE_SIZE (GET_MODE (dest))
1371 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1372 dest = SUBREG_REG (dest);
1373 if (GET_CODE (src) == SUBREG
1374 && (GET_MODE_SIZE (GET_MODE (src))
1375 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1376 src = SUBREG_REG (src);
1377 if (REG_P (src) && REG_P (dest)
1378 && find_regno_note (insn, REG_DEAD, REGNO (src))
1379 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1380 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1381 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1382 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1384 machine_mode mode = GET_MODE (src);
1385 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1386 enum reg_class *cost_classes = cost_classes_ptr->classes;
1387 reg_class_t rclass;
1388 int k, nr;
1390 i = regno == (int) REGNO (src) ? 1 : 0;
1391 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1393 rclass = cost_classes[k];
1394 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1395 && (reg_class_size[(int) rclass]
1396 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1398 if (reg_class_size[rclass] == 1)
1399 op_costs[i]->cost[k] = -frequency;
1400 else
1402 for (nr = 0;
1403 nr < hard_regno_nregs[other_regno][mode];
1404 nr++)
1405 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1406 other_regno + nr))
1407 break;
1409 if (nr == hard_regno_nregs[other_regno][mode])
1410 op_costs[i]->cost[k] = -frequency;
1420 /* Process one insn INSN. Scan it and record each time it would save
1421 code to put a certain allocnos in a certain class. Return the last
1422 insn processed, so that the scan can be continued from there. */
1423 static rtx_insn *
1424 scan_one_insn (rtx_insn *insn)
1426 enum rtx_code pat_code;
1427 rtx set, note;
1428 int i, k;
1429 bool counted_mem;
1431 if (!NONDEBUG_INSN_P (insn))
1432 return insn;
1434 pat_code = GET_CODE (PATTERN (insn));
1435 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1436 return insn;
1438 counted_mem = false;
1439 set = single_set (insn);
1440 extract_insn (insn);
1442 /* If this insn loads a parameter from its stack slot, then it
1443 represents a savings, rather than a cost, if the parameter is
1444 stored in memory. Record this fact.
1446 Similarly if we're loading other constants from memory (constant
1447 pool, TOC references, small data areas, etc) and this is the only
1448 assignment to the destination pseudo.
1450 Don't do this if SET_SRC (set) isn't a general operand, if it is
1451 a memory requiring special instructions to load it, decreasing
1452 mem_cost might result in it being loaded using the specialized
1453 instruction into a register, then stored into stack and loaded
1454 again from the stack. See PR52208.
1456 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1457 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1458 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1459 && ((MEM_P (XEXP (note, 0))
1460 && !side_effects_p (SET_SRC (set)))
1461 || (CONSTANT_P (XEXP (note, 0))
1462 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1463 XEXP (note, 0))
1464 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1465 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1467 enum reg_class cl = GENERAL_REGS;
1468 rtx reg = SET_DEST (set);
1469 int num = COST_INDEX (REGNO (reg));
1471 COSTS (costs, num)->mem_cost
1472 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1473 record_address_regs (GET_MODE (SET_SRC (set)),
1474 MEM_ADDR_SPACE (SET_SRC (set)),
1475 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1476 frequency * 2);
1477 counted_mem = true;
1480 record_operand_costs (insn, pref);
1482 /* Now add the cost for each operand to the total costs for its
1483 allocno. */
1484 for (i = 0; i < recog_data.n_operands; i++)
1485 if (REG_P (recog_data.operand[i])
1486 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1488 int regno = REGNO (recog_data.operand[i]);
1489 struct costs *p = COSTS (costs, COST_INDEX (regno));
1490 struct costs *q = op_costs[i];
1491 int *p_costs = p->cost, *q_costs = q->cost;
1492 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1493 int add_cost;
1495 /* If the already accounted for the memory "cost" above, don't
1496 do so again. */
1497 if (!counted_mem)
1499 add_cost = q->mem_cost;
1500 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1501 p->mem_cost = INT_MAX;
1502 else
1503 p->mem_cost += add_cost;
1505 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1507 add_cost = q_costs[k];
1508 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1509 p_costs[k] = INT_MAX;
1510 else
1511 p_costs[k] += add_cost;
1515 return insn;
1520 /* Print allocnos costs to file F. */
1521 static void
1522 print_allocno_costs (FILE *f)
1524 int k;
1525 ira_allocno_t a;
1526 ira_allocno_iterator ai;
1528 ira_assert (allocno_p);
1529 fprintf (f, "\n");
1530 FOR_EACH_ALLOCNO (a, ai)
1532 int i, rclass;
1533 basic_block bb;
1534 int regno = ALLOCNO_REGNO (a);
1535 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1536 enum reg_class *cost_classes = cost_classes_ptr->classes;
1538 i = ALLOCNO_NUM (a);
1539 fprintf (f, " a%d(r%d,", i, regno);
1540 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1541 fprintf (f, "b%d", bb->index);
1542 else
1543 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1544 fprintf (f, ") costs:");
1545 for (k = 0; k < cost_classes_ptr->num; k++)
1547 rclass = cost_classes[k];
1548 fprintf (f, " %s:%d", reg_class_names[rclass],
1549 COSTS (costs, i)->cost[k]);
1550 if (flag_ira_region == IRA_REGION_ALL
1551 || flag_ira_region == IRA_REGION_MIXED)
1552 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1554 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1555 if (flag_ira_region == IRA_REGION_ALL
1556 || flag_ira_region == IRA_REGION_MIXED)
1557 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1558 fprintf (f, "\n");
1562 /* Print pseudo costs to file F. */
1563 static void
1564 print_pseudo_costs (FILE *f)
1566 int regno, k;
1567 int rclass;
1568 cost_classes_t cost_classes_ptr;
1569 enum reg_class *cost_classes;
1571 ira_assert (! allocno_p);
1572 fprintf (f, "\n");
1573 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1575 if (REG_N_REFS (regno) <= 0)
1576 continue;
1577 cost_classes_ptr = regno_cost_classes[regno];
1578 cost_classes = cost_classes_ptr->classes;
1579 fprintf (f, " r%d costs:", regno);
1580 for (k = 0; k < cost_classes_ptr->num; k++)
1582 rclass = cost_classes[k];
1583 fprintf (f, " %s:%d", reg_class_names[rclass],
1584 COSTS (costs, regno)->cost[k]);
1586 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1590 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1591 costs. */
1592 static void
1593 process_bb_for_costs (basic_block bb)
1595 rtx_insn *insn;
1597 frequency = REG_FREQ_FROM_BB (bb);
1598 if (frequency == 0)
1599 frequency = 1;
1600 FOR_BB_INSNS (bb, insn)
1601 insn = scan_one_insn (insn);
1604 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1605 costs. */
1606 static void
1607 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1609 basic_block bb;
1611 bb = loop_tree_node->bb;
1612 if (bb != NULL)
1613 process_bb_for_costs (bb);
1616 /* Find costs of register classes and memory for allocnos or pseudos
1617 and their best costs. Set up preferred, alternative and allocno
1618 classes for pseudos. */
1619 static void
1620 find_costs_and_classes (FILE *dump_file)
1622 int i, k, start, max_cost_classes_num;
1623 int pass;
1624 basic_block bb;
1625 enum reg_class *regno_best_class, new_class;
1627 init_recog ();
1628 regno_best_class
1629 = (enum reg_class *) ira_allocate (max_reg_num ()
1630 * sizeof (enum reg_class));
1631 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1632 regno_best_class[i] = NO_REGS;
1633 if (!resize_reg_info () && allocno_p
1634 && pseudo_classes_defined_p && flag_expensive_optimizations)
1636 ira_allocno_t a;
1637 ira_allocno_iterator ai;
1639 pref = pref_buffer;
1640 max_cost_classes_num = 1;
1641 FOR_EACH_ALLOCNO (a, ai)
1643 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1644 setup_regno_cost_classes_by_aclass
1645 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1646 max_cost_classes_num
1647 = MAX (max_cost_classes_num,
1648 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1650 start = 1;
1652 else
1654 pref = NULL;
1655 max_cost_classes_num = ira_important_classes_num;
1656 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1657 if (regno_reg_rtx[i] != NULL_RTX)
1658 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1659 else
1660 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1661 start = 0;
1663 if (allocno_p)
1664 /* Clear the flag for the next compiled function. */
1665 pseudo_classes_defined_p = false;
1666 /* Normally we scan the insns once and determine the best class to
1667 use for each allocno. However, if -fexpensive-optimizations are
1668 on, we do so twice, the second time using the tentative best
1669 classes to guide the selection. */
1670 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1672 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1673 fprintf (dump_file,
1674 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1676 if (pass != start)
1678 max_cost_classes_num = 1;
1679 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1681 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1682 max_cost_classes_num
1683 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1687 struct_costs_size
1688 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1689 /* Zero out our accumulation of the cost of each class for each
1690 allocno. */
1691 memset (costs, 0, cost_elements_num * struct_costs_size);
1693 if (allocno_p)
1695 /* Scan the instructions and record each time it would save code
1696 to put a certain allocno in a certain class. */
1697 ira_traverse_loop_tree (true, ira_loop_tree_root,
1698 process_bb_node_for_costs, NULL);
1700 memcpy (total_allocno_costs, costs,
1701 max_struct_costs_size * ira_allocnos_num);
1703 else
1705 basic_block bb;
1707 FOR_EACH_BB_FN (bb, cfun)
1708 process_bb_for_costs (bb);
1711 if (pass == 0)
1712 pref = pref_buffer;
1714 /* Now for each allocno look at how desirable each class is and
1715 find which class is preferred. */
1716 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1718 ira_allocno_t a, parent_a;
1719 int rclass, a_num, parent_a_num, add_cost;
1720 ira_loop_tree_node_t parent;
1721 int best_cost, allocno_cost;
1722 enum reg_class best, alt_class;
1723 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1724 enum reg_class *cost_classes = cost_classes_ptr->classes;
1725 int *i_costs = temp_costs->cost;
1726 int i_mem_cost;
1727 int equiv_savings = regno_equiv_gains[i];
1729 if (! allocno_p)
1731 if (regno_reg_rtx[i] == NULL_RTX)
1732 continue;
1733 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1734 i_mem_cost = temp_costs->mem_cost;
1736 else
1738 if (ira_regno_allocno_map[i] == NULL)
1739 continue;
1740 memset (temp_costs, 0, struct_costs_size);
1741 i_mem_cost = 0;
1742 /* Find cost of all allocnos with the same regno. */
1743 for (a = ira_regno_allocno_map[i];
1744 a != NULL;
1745 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1747 int *a_costs, *p_costs;
1749 a_num = ALLOCNO_NUM (a);
1750 if ((flag_ira_region == IRA_REGION_ALL
1751 || flag_ira_region == IRA_REGION_MIXED)
1752 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1753 && (parent_a = parent->regno_allocno_map[i]) != NULL
1754 /* There are no caps yet. */
1755 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1756 (a)->border_allocnos,
1757 ALLOCNO_NUM (a)))
1759 /* Propagate costs to upper levels in the region
1760 tree. */
1761 parent_a_num = ALLOCNO_NUM (parent_a);
1762 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1763 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1764 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1766 add_cost = a_costs[k];
1767 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1768 p_costs[k] = INT_MAX;
1769 else
1770 p_costs[k] += add_cost;
1772 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1773 if (add_cost > 0
1774 && (INT_MAX - add_cost
1775 < COSTS (total_allocno_costs,
1776 parent_a_num)->mem_cost))
1777 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1778 = INT_MAX;
1779 else
1780 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1781 += add_cost;
1783 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1784 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1786 a_costs = COSTS (costs, a_num)->cost;
1787 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1789 add_cost = a_costs[k];
1790 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1791 i_costs[k] = INT_MAX;
1792 else
1793 i_costs[k] += add_cost;
1795 add_cost = COSTS (costs, a_num)->mem_cost;
1796 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1797 i_mem_cost = INT_MAX;
1798 else
1799 i_mem_cost += add_cost;
1802 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1803 i_mem_cost = 0;
1804 else if (equiv_savings < 0)
1805 i_mem_cost = -equiv_savings;
1806 else if (equiv_savings > 0)
1808 i_mem_cost = 0;
1809 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1810 i_costs[k] += equiv_savings;
1813 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1814 best = ALL_REGS;
1815 alt_class = NO_REGS;
1816 /* Find best common class for all allocnos with the same
1817 regno. */
1818 for (k = 0; k < cost_classes_ptr->num; k++)
1820 rclass = cost_classes[k];
1821 if (i_costs[k] < best_cost)
1823 best_cost = i_costs[k];
1824 best = (enum reg_class) rclass;
1826 else if (i_costs[k] == best_cost)
1827 best = ira_reg_class_subunion[best][rclass];
1828 if (pass == flag_expensive_optimizations
1829 /* We still prefer registers to memory even at this
1830 stage if their costs are the same. We will make
1831 a final decision during assigning hard registers
1832 when we have all info including more accurate
1833 costs which might be affected by assigning hard
1834 registers to other pseudos because the pseudos
1835 involved in moves can be coalesced. */
1836 && i_costs[k] <= i_mem_cost
1837 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1838 > reg_class_size[alt_class]))
1839 alt_class = reg_class_subunion[alt_class][rclass];
1841 alt_class = ira_allocno_class_translate[alt_class];
1842 if (best_cost > i_mem_cost)
1843 regno_aclass[i] = NO_REGS;
1844 else if (!optimize && !targetm.class_likely_spilled_p (best))
1845 /* Registers in the alternative class are likely to need
1846 longer or slower sequences than registers in the best class.
1847 When optimizing we make some effort to use the best class
1848 over the alternative class where possible, but at -O0 we
1849 effectively give the alternative class equal weight.
1850 We then run the risk of using slower alternative registers
1851 when plenty of registers from the best class are still free.
1852 This is especially true because live ranges tend to be very
1853 short in -O0 code and so register pressure tends to be low.
1855 Avoid that by ignoring the alternative class if the best
1856 class has plenty of registers. */
1857 regno_aclass[i] = best;
1858 else
1860 /* Make the common class the biggest class of best and
1861 alt_class. */
1862 regno_aclass[i]
1863 = ira_reg_class_superunion[best][alt_class];
1864 ira_assert (regno_aclass[i] != NO_REGS
1865 && ira_reg_allocno_class_p[regno_aclass[i]]);
1867 if ((new_class
1868 = (reg_class) (targetm.ira_change_pseudo_allocno_class
1869 (i, regno_aclass[i]))) != regno_aclass[i])
1871 regno_aclass[i] = new_class;
1872 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1873 reg_class_contents[best]))
1874 best = new_class;
1875 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1876 reg_class_contents[alt_class]))
1877 alt_class = new_class;
1879 if (pass == flag_expensive_optimizations)
1881 if (best_cost > i_mem_cost)
1882 best = alt_class = NO_REGS;
1883 else if (best == alt_class)
1884 alt_class = NO_REGS;
1885 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1886 if ((!allocno_p || internal_flag_ira_verbose > 2)
1887 && dump_file != NULL)
1888 fprintf (dump_file,
1889 " r%d: preferred %s, alternative %s, allocno %s\n",
1890 i, reg_class_names[best], reg_class_names[alt_class],
1891 reg_class_names[regno_aclass[i]]);
1893 regno_best_class[i] = best;
1894 if (! allocno_p)
1896 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1897 continue;
1899 for (a = ira_regno_allocno_map[i];
1900 a != NULL;
1901 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1903 enum reg_class aclass = regno_aclass[i];
1904 int a_num = ALLOCNO_NUM (a);
1905 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1906 int *a_costs = COSTS (costs, a_num)->cost;
1908 if (aclass == NO_REGS)
1909 best = NO_REGS;
1910 else
1912 /* Finding best class which is subset of the common
1913 class. */
1914 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1915 allocno_cost = best_cost;
1916 best = ALL_REGS;
1917 for (k = 0; k < cost_classes_ptr->num; k++)
1919 rclass = cost_classes[k];
1920 if (! ira_class_subset_p[rclass][aclass])
1921 continue;
1922 if (total_a_costs[k] < best_cost)
1924 best_cost = total_a_costs[k];
1925 allocno_cost = a_costs[k];
1926 best = (enum reg_class) rclass;
1928 else if (total_a_costs[k] == best_cost)
1930 best = ira_reg_class_subunion[best][rclass];
1931 allocno_cost = MAX (allocno_cost, a_costs[k]);
1934 ALLOCNO_CLASS_COST (a) = allocno_cost;
1936 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1937 && (pass == 0 || pref[a_num] != best))
1939 fprintf (dump_file, " a%d (r%d,", a_num, i);
1940 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1941 fprintf (dump_file, "b%d", bb->index);
1942 else
1943 fprintf (dump_file, "l%d",
1944 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1945 fprintf (dump_file, ") best %s, allocno %s\n",
1946 reg_class_names[best],
1947 reg_class_names[aclass]);
1949 pref[a_num] = best;
1950 if (pass == flag_expensive_optimizations && best != aclass
1951 && ira_class_hard_regs_num[best] > 0
1952 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1953 >= ira_class_hard_regs_num[best]))
1955 int ind = cost_classes_ptr->index[aclass];
1957 ira_assert (ind >= 0);
1958 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1959 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1960 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1961 / (ira_register_move_cost
1962 [ALLOCNO_MODE (a)][best][aclass]));
1963 for (k = 0; k < cost_classes_ptr->num; k++)
1964 if (ira_class_subset_p[cost_classes[k]][best])
1965 a_costs[k] = a_costs[ind];
1970 if (internal_flag_ira_verbose > 4 && dump_file)
1972 if (allocno_p)
1973 print_allocno_costs (dump_file);
1974 else
1975 print_pseudo_costs (dump_file);
1976 fprintf (dump_file,"\n");
1979 ira_free (regno_best_class);
1984 /* Process moves involving hard regs to modify allocno hard register
1985 costs. We can do this only after determining allocno class. If a
1986 hard register forms a register class, then moves with the hard
1987 register are already taken into account in class costs for the
1988 allocno. */
1989 static void
1990 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1992 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1993 bool to_p;
1994 ira_allocno_t a, curr_a;
1995 ira_loop_tree_node_t curr_loop_tree_node;
1996 enum reg_class rclass;
1997 basic_block bb;
1998 rtx_insn *insn;
1999 rtx set, src, dst;
2001 bb = loop_tree_node->bb;
2002 if (bb == NULL)
2003 return;
2004 freq = REG_FREQ_FROM_BB (bb);
2005 if (freq == 0)
2006 freq = 1;
2007 FOR_BB_INSNS (bb, insn)
2009 if (!NONDEBUG_INSN_P (insn))
2010 continue;
2011 set = single_set (insn);
2012 if (set == NULL_RTX)
2013 continue;
2014 dst = SET_DEST (set);
2015 src = SET_SRC (set);
2016 if (! REG_P (dst) || ! REG_P (src))
2017 continue;
2018 dst_regno = REGNO (dst);
2019 src_regno = REGNO (src);
2020 if (dst_regno >= FIRST_PSEUDO_REGISTER
2021 && src_regno < FIRST_PSEUDO_REGISTER)
2023 hard_regno = src_regno;
2024 a = ira_curr_regno_allocno_map[dst_regno];
2025 to_p = true;
2027 else if (src_regno >= FIRST_PSEUDO_REGISTER
2028 && dst_regno < FIRST_PSEUDO_REGISTER)
2030 hard_regno = dst_regno;
2031 a = ira_curr_regno_allocno_map[src_regno];
2032 to_p = false;
2034 else
2035 continue;
2036 rclass = ALLOCNO_CLASS (a);
2037 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2038 continue;
2039 i = ira_class_hard_reg_index[rclass][hard_regno];
2040 if (i < 0)
2041 continue;
2042 a_regno = ALLOCNO_REGNO (a);
2043 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2044 curr_loop_tree_node != NULL;
2045 curr_loop_tree_node = curr_loop_tree_node->parent)
2046 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2047 ira_add_allocno_pref (curr_a, hard_regno, freq);
2049 int cost;
2050 enum reg_class hard_reg_class;
2051 machine_mode mode;
2053 mode = ALLOCNO_MODE (a);
2054 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2055 ira_init_register_move_cost_if_necessary (mode);
2056 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2057 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2058 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2059 ALLOCNO_CLASS_COST (a));
2060 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2061 rclass, 0);
2062 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2063 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2064 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2065 ALLOCNO_HARD_REG_COSTS (a)[i]);
2070 /* After we find hard register and memory costs for allocnos, define
2071 its class and modify hard register cost because insns moving
2072 allocno to/from hard registers. */
2073 static void
2074 setup_allocno_class_and_costs (void)
2076 int i, j, n, regno, hard_regno, num;
2077 int *reg_costs;
2078 enum reg_class aclass, rclass;
2079 ira_allocno_t a;
2080 ira_allocno_iterator ai;
2081 cost_classes_t cost_classes_ptr;
2083 ira_assert (allocno_p);
2084 FOR_EACH_ALLOCNO (a, ai)
2086 i = ALLOCNO_NUM (a);
2087 regno = ALLOCNO_REGNO (a);
2088 aclass = regno_aclass[regno];
2089 cost_classes_ptr = regno_cost_classes[regno];
2090 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2091 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2092 ira_set_allocno_class (a, aclass);
2093 if (aclass == NO_REGS)
2094 continue;
2095 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2097 n = ira_class_hard_regs_num[aclass];
2098 ALLOCNO_HARD_REG_COSTS (a)
2099 = reg_costs = ira_allocate_cost_vector (aclass);
2100 for (j = n - 1; j >= 0; j--)
2102 hard_regno = ira_class_hard_regs[aclass][j];
2103 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2104 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2105 else
2107 rclass = REGNO_REG_CLASS (hard_regno);
2108 num = cost_classes_ptr->index[rclass];
2109 if (num < 0)
2111 num = cost_classes_ptr->hard_regno_index[hard_regno];
2112 ira_assert (num >= 0);
2114 reg_costs[j] = COSTS (costs, i)->cost[num];
2119 if (optimize)
2120 ira_traverse_loop_tree (true, ira_loop_tree_root,
2121 process_bb_node_for_hard_reg_moves, NULL);
2126 /* Function called once during compiler work. */
2127 void
2128 ira_init_costs_once (void)
2130 int i;
2132 init_cost = NULL;
2133 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2135 op_costs[i] = NULL;
2136 this_op_costs[i] = NULL;
2138 temp_costs = NULL;
2141 /* Free allocated temporary cost vectors. */
2142 void
2143 target_ira_int::free_ira_costs ()
2145 int i;
2147 free (x_init_cost);
2148 x_init_cost = NULL;
2149 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2151 free (x_op_costs[i]);
2152 free (x_this_op_costs[i]);
2153 x_op_costs[i] = x_this_op_costs[i] = NULL;
2155 free (x_temp_costs);
2156 x_temp_costs = NULL;
2159 /* This is called each time register related information is
2160 changed. */
2161 void
2162 ira_init_costs (void)
2164 int i;
2166 this_target_ira_int->free_ira_costs ();
2167 max_struct_costs_size
2168 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2169 /* Don't use ira_allocate because vectors live through several IRA
2170 calls. */
2171 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2172 init_cost->mem_cost = 1000000;
2173 for (i = 0; i < ira_important_classes_num; i++)
2174 init_cost->cost[i] = 1000000;
2175 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2177 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2178 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2180 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2185 /* Common initialization function for ira_costs and
2186 ira_set_pseudo_classes. */
2187 static void
2188 init_costs (void)
2190 init_subregs_of_mode ();
2191 costs = (struct costs *) ira_allocate (max_struct_costs_size
2192 * cost_elements_num);
2193 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2194 * cost_elements_num);
2195 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2196 * max_reg_num ());
2197 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2198 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2201 /* Common finalization function for ira_costs and
2202 ira_set_pseudo_classes. */
2203 static void
2204 finish_costs (void)
2206 finish_subregs_of_mode ();
2207 ira_free (regno_equiv_gains);
2208 ira_free (regno_aclass);
2209 ira_free (pref_buffer);
2210 ira_free (costs);
2213 /* Entry function which defines register class, memory and hard
2214 register costs for each allocno. */
2215 void
2216 ira_costs (void)
2218 allocno_p = true;
2219 cost_elements_num = ira_allocnos_num;
2220 init_costs ();
2221 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2222 * ira_allocnos_num);
2223 initiate_regno_cost_classes ();
2224 calculate_elim_costs_all_insns ();
2225 find_costs_and_classes (ira_dump_file);
2226 setup_allocno_class_and_costs ();
2227 finish_regno_cost_classes ();
2228 finish_costs ();
2229 ira_free (total_allocno_costs);
2232 /* Entry function which defines classes for pseudos.
2233 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2234 void
2235 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2237 allocno_p = false;
2238 internal_flag_ira_verbose = flag_ira_verbose;
2239 cost_elements_num = max_reg_num ();
2240 init_costs ();
2241 initiate_regno_cost_classes ();
2242 find_costs_and_classes (dump_file);
2243 finish_regno_cost_classes ();
2244 if (define_pseudo_classes)
2245 pseudo_classes_defined_p = true;
2247 finish_costs ();
2252 /* Change hard register costs for allocnos which lives through
2253 function calls. This is called only when we found all intersected
2254 calls during building allocno live ranges. */
2255 void
2256 ira_tune_allocno_costs (void)
2258 int j, n, regno;
2259 int cost, min_cost, *reg_costs;
2260 enum reg_class aclass, rclass;
2261 machine_mode mode;
2262 ira_allocno_t a;
2263 ira_allocno_iterator ai;
2264 ira_allocno_object_iterator oi;
2265 ira_object_t obj;
2266 bool skip_p;
2267 HARD_REG_SET *crossed_calls_clobber_regs;
2269 FOR_EACH_ALLOCNO (a, ai)
2271 aclass = ALLOCNO_CLASS (a);
2272 if (aclass == NO_REGS)
2273 continue;
2274 mode = ALLOCNO_MODE (a);
2275 n = ira_class_hard_regs_num[aclass];
2276 min_cost = INT_MAX;
2277 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2278 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2280 ira_allocate_and_set_costs
2281 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2282 ALLOCNO_CLASS_COST (a));
2283 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2284 for (j = n - 1; j >= 0; j--)
2286 regno = ira_class_hard_regs[aclass][j];
2287 skip_p = false;
2288 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2290 if (ira_hard_reg_set_intersection_p (regno, mode,
2291 OBJECT_CONFLICT_HARD_REGS
2292 (obj)))
2294 skip_p = true;
2295 break;
2298 if (skip_p)
2299 continue;
2300 rclass = REGNO_REG_CLASS (regno);
2301 cost = 0;
2302 crossed_calls_clobber_regs
2303 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2304 if (ira_hard_reg_set_intersection_p (regno, mode,
2305 *crossed_calls_clobber_regs)
2306 && (ira_hard_reg_set_intersection_p (regno, mode,
2307 call_used_reg_set)
2308 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2309 cost += (ALLOCNO_CALL_FREQ (a)
2310 * (ira_memory_move_cost[mode][rclass][0]
2311 + ira_memory_move_cost[mode][rclass][1]));
2312 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2313 cost += ((ira_memory_move_cost[mode][rclass][0]
2314 + ira_memory_move_cost[mode][rclass][1])
2315 * ALLOCNO_FREQ (a)
2316 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2317 #endif
2318 if (INT_MAX - cost < reg_costs[j])
2319 reg_costs[j] = INT_MAX;
2320 else
2321 reg_costs[j] += cost;
2322 if (min_cost > reg_costs[j])
2323 min_cost = reg_costs[j];
2326 if (min_cost != INT_MAX)
2327 ALLOCNO_CLASS_COST (a) = min_cost;
2329 /* Some targets allow pseudos to be allocated to unaligned sequences
2330 of hard registers. However, selecting an unaligned sequence can
2331 unnecessarily restrict later allocations. So increase the cost of
2332 unaligned hard regs to encourage the use of aligned hard regs. */
2334 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2336 if (nregs > 1)
2338 ira_allocate_and_set_costs
2339 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2340 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2341 for (j = n - 1; j >= 0; j--)
2343 regno = ira_non_ordered_class_hard_regs[aclass][j];
2344 if ((regno % nregs) != 0)
2346 int index = ira_class_hard_reg_index[aclass][regno];
2347 ira_assert (index != -1);
2348 reg_costs[index] += ALLOCNO_FREQ (a);
2356 /* Add COST to the estimated gain for eliminating REGNO with its
2357 equivalence. If COST is zero, record that no such elimination is
2358 possible. */
2360 void
2361 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2363 if (cost == 0)
2364 regno_equiv_gains[regno] = 0;
2365 else
2366 regno_equiv_gains[regno] += cost;
2369 void
2370 ira_costs_c_finalize (void)
2372 this_target_ira_int->free_ira_costs ();