1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
53 #include "hard-reg-set.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
60 #include "conditions.h"
65 #include "rtl-error.h"
66 #include "toplev.h" /* exact_log2, floor_log2 */
70 #include "dominance.h"
73 #include "basic-block.h"
75 #include "targhooks.h"
84 #include "tree-pass.h"
91 #include "tree-pretty-print.h" /* for dump_function_header */
93 #include "wide-int-print.h"
96 #ifdef XCOFF_DEBUGGING_INFO
97 #include "xcoffout.h" /* Needed for external data
98 declarations for e.g. AIX 4.x. */
101 #include "dwarf2out.h"
103 #ifdef DBX_DEBUGGING_INFO
107 #ifdef SDB_DEBUGGING_INFO
111 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
112 So define a null default for it to save conditionalization later. */
113 #ifndef CC_STATUS_INIT
114 #define CC_STATUS_INIT
117 /* Is the given character a logical line separator for the assembler? */
118 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
119 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
122 #ifndef JUMP_TABLES_IN_TEXT_SECTION
123 #define JUMP_TABLES_IN_TEXT_SECTION 0
126 /* Bitflags used by final_scan_insn. */
128 #define SEEN_EMITTED 2
130 /* Last insn processed by final_scan_insn. */
131 static rtx_insn
*debug_insn
;
132 rtx_insn
*current_output_insn
;
134 /* Line number of last NOTE. */
135 static int last_linenum
;
137 /* Last discriminator written to assembly. */
138 static int last_discriminator
;
140 /* Discriminator of current block. */
141 static int discriminator
;
143 /* Highest line number in current block. */
144 static int high_block_linenum
;
146 /* Likewise for function. */
147 static int high_function_linenum
;
149 /* Filename of last NOTE. */
150 static const char *last_filename
;
152 /* Override filename and line number. */
153 static const char *override_filename
;
154 static int override_linenum
;
156 /* Whether to force emission of a line note before the next insn. */
157 static bool force_source_line
= false;
159 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
161 /* Nonzero while outputting an `asm' with operands.
162 This means that inconsistencies are the user's fault, so don't die.
163 The precise value is the insn being output, to pass to error_for_asm. */
164 const rtx_insn
*this_is_asm_operands
;
166 /* Number of operands of this insn, for an `asm' with operands. */
167 static unsigned int insn_noperands
;
169 /* Compare optimization flag. */
171 static rtx last_ignored_compare
= 0;
173 /* Assign a unique number to each insn that is output.
174 This can be used to generate unique local labels. */
176 static int insn_counter
= 0;
178 /* This variable contains machine-dependent flags (defined in tm.h)
179 set and examined by output routines
180 that describe how to interpret the condition codes properly. */
184 /* During output of an insn, this contains a copy of cc_status
185 from before the insn. */
187 CC_STATUS cc_prev_status
;
189 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
191 static int block_depth
;
193 /* Nonzero if have enabled APP processing of our assembler output. */
197 /* If we are outputting an insn sequence, this contains the sequence rtx.
200 rtx_sequence
*final_sequence
;
202 #ifdef ASSEMBLER_DIALECT
204 /* Number of the assembler dialect to use, starting at 0. */
205 static int dialect_number
;
208 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
209 rtx current_insn_predicate
;
211 /* True if printing into -fdump-final-insns= dump. */
212 bool final_insns_dump_p
;
214 /* True if profile_function should be called, but hasn't been called yet. */
215 static bool need_profile_function
;
217 static int asm_insn_count (rtx
);
218 static void profile_function (FILE *);
219 static void profile_after_prologue (FILE *);
220 static bool notice_source_line (rtx_insn
*, bool *);
221 static rtx
walk_alter_subreg (rtx
*, bool *);
222 static void output_asm_name (void);
223 static void output_alternate_entry_point (FILE *, rtx_insn
*);
224 static tree
get_mem_expr_from_op (rtx
, int *);
225 static void output_asm_operand_names (rtx
*, int *, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx_insn
*);
230 static int alter_cond (rtx
);
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx
);
235 static int align_fuzz (rtx
, rtx
, int, unsigned);
236 static void collect_fn_hard_reg_usage (void);
237 static tree
get_call_fndecl (rtx_insn
*);
239 /* Initialize data in final at the beginning of a compilation. */
242 init_final (const char *filename ATTRIBUTE_UNUSED
)
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number
= ASSEMBLER_DIALECT
;
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
263 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
264 tree decl ATTRIBUTE_UNUSED
,
265 bool new_is_cold ATTRIBUTE_UNUSED
)
269 /* Default target hook that outputs nothing to a stream. */
271 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
275 /* Enable APP processing of subsequent output.
276 Used before the output from an `asm' statement. */
283 fputs (ASM_APP_ON
, asm_out_file
);
288 /* Disable APP processing of subsequent output.
289 Called from varasm.c before most kinds of output. */
296 fputs (ASM_APP_OFF
, asm_out_file
);
301 /* Return the number of slots filled in the current
302 delayed branch sequence (we don't count the insn needing the
303 delay slot). Zero if not in a delayed branch sequence. */
307 dbr_sequence_length (void)
309 if (final_sequence
!= 0)
310 return XVECLEN (final_sequence
, 0) - 1;
316 /* The next two pages contain routines used to compute the length of an insn
317 and to shorten branches. */
319 /* Arrays for insn lengths, and addresses. The latter is referenced by
320 `insn_current_length'. */
322 static int *insn_lengths
;
324 vec
<int> insn_addresses_
;
326 /* Max uid for which the above arrays are valid. */
327 static int insn_lengths_max_uid
;
329 /* Address of insn being processed. Used by `insn_current_length'. */
330 int insn_current_address
;
332 /* Address of insn being processed in previous iteration. */
333 int insn_last_address
;
335 /* known invariant alignment of insn being processed. */
336 int insn_current_align
;
338 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
339 gives the next following alignment insn that increases the known
340 alignment, or NULL_RTX if there is no such insn.
341 For any alignment obtained this way, we can again index uid_align with
342 its uid to obtain the next following align that in turn increases the
343 alignment, till we reach NULL_RTX; the sequence obtained this way
344 for each insn we'll call the alignment chain of this insn in the following
347 struct label_alignment
353 static rtx
*uid_align
;
354 static int *uid_shuid
;
355 static struct label_alignment
*label_align
;
357 /* Indicate that branch shortening hasn't yet been done. */
360 init_insn_lengths (void)
371 insn_lengths_max_uid
= 0;
373 if (HAVE_ATTR_length
)
374 INSN_ADDRESSES_FREE ();
382 /* Obtain the current length of an insn. If branch shortening has been done,
383 get its actual length. Otherwise, use FALLBACK_FN to calculate the
386 get_attr_length_1 (rtx_insn
*insn
, int (*fallback_fn
) (rtx_insn
*))
392 if (!HAVE_ATTR_length
)
395 if (insn_lengths_max_uid
> INSN_UID (insn
))
396 return insn_lengths
[INSN_UID (insn
)];
398 switch (GET_CODE (insn
))
408 length
= fallback_fn (insn
);
412 body
= PATTERN (insn
);
413 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
416 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
417 length
= asm_insn_count (body
) * fallback_fn (insn
);
418 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
419 for (i
= 0; i
< seq
->len (); i
++)
420 length
+= get_attr_length_1 (seq
->insn (i
), fallback_fn
);
422 length
= fallback_fn (insn
);
429 #ifdef ADJUST_INSN_LENGTH
430 ADJUST_INSN_LENGTH (insn
, length
);
435 /* Obtain the current length of an insn. If branch shortening has been done,
436 get its actual length. Otherwise, get its maximum length. */
438 get_attr_length (rtx_insn
*insn
)
440 return get_attr_length_1 (insn
, insn_default_length
);
443 /* Obtain the current length of an insn. If branch shortening has been done,
444 get its actual length. Otherwise, get its minimum length. */
446 get_attr_min_length (rtx_insn
*insn
)
448 return get_attr_length_1 (insn
, insn_min_length
);
451 /* Code to handle alignment inside shorten_branches. */
453 /* Here is an explanation how the algorithm in align_fuzz can give
456 Call a sequence of instructions beginning with alignment point X
457 and continuing until the next alignment point `block X'. When `X'
458 is used in an expression, it means the alignment value of the
461 Call the distance between the start of the first insn of block X, and
462 the end of the last insn of block X `IX', for the `inner size of X'.
463 This is clearly the sum of the instruction lengths.
465 Likewise with the next alignment-delimited block following X, which we
468 Call the distance between the start of the first insn of block X, and
469 the start of the first insn of block Y `OX', for the `outer size of X'.
471 The estimated padding is then OX - IX.
473 OX can be safely estimated as
478 OX = round_up(IX, X) + Y - X
480 Clearly est(IX) >= real(IX), because that only depends on the
481 instruction lengths, and those being overestimated is a given.
483 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
484 we needn't worry about that when thinking about OX.
486 When X >= Y, the alignment provided by Y adds no uncertainty factor
487 for branch ranges starting before X, so we can just round what we have.
488 But when X < Y, we don't know anything about the, so to speak,
489 `middle bits', so we have to assume the worst when aligning up from an
490 address mod X to one mod Y, which is Y - X. */
493 #define LABEL_ALIGN(LABEL) align_labels_log
497 #define LOOP_ALIGN(LABEL) align_loops_log
500 #ifndef LABEL_ALIGN_AFTER_BARRIER
501 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
505 #define JUMP_ALIGN(LABEL) align_jumps_log
509 default_label_align_after_barrier_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
515 default_loop_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
517 return align_loops_max_skip
;
521 default_label_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
523 return align_labels_max_skip
;
527 default_jump_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
529 return align_jumps_max_skip
;
532 #ifndef ADDR_VEC_ALIGN
534 final_addr_vec_align (rtx addr_vec
)
536 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
538 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
539 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
540 return exact_log2 (align
);
544 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
547 #ifndef INSN_LENGTH_ALIGNMENT
548 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
551 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
553 static int min_labelno
, max_labelno
;
555 #define LABEL_TO_ALIGNMENT(LABEL) \
556 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
558 #define LABEL_TO_MAX_SKIP(LABEL) \
559 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
561 /* For the benefit of port specific code do this also as a function. */
564 label_to_alignment (rtx label
)
566 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
567 return LABEL_TO_ALIGNMENT (label
);
572 label_to_max_skip (rtx label
)
574 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
575 return LABEL_TO_MAX_SKIP (label
);
579 /* The differences in addresses
580 between a branch and its target might grow or shrink depending on
581 the alignment the start insn of the range (the branch for a forward
582 branch or the label for a backward branch) starts out on; if these
583 differences are used naively, they can even oscillate infinitely.
584 We therefore want to compute a 'worst case' address difference that
585 is independent of the alignment the start insn of the range end
586 up on, and that is at least as large as the actual difference.
587 The function align_fuzz calculates the amount we have to add to the
588 naively computed difference, by traversing the part of the alignment
589 chain of the start insn of the range that is in front of the end insn
590 of the range, and considering for each alignment the maximum amount
591 that it might contribute to a size increase.
593 For casesi tables, we also want to know worst case minimum amounts of
594 address difference, in case a machine description wants to introduce
595 some common offset that is added to all offsets in a table.
596 For this purpose, align_fuzz with a growth argument of 0 computes the
597 appropriate adjustment. */
599 /* Compute the maximum delta by which the difference of the addresses of
600 START and END might grow / shrink due to a different address for start
601 which changes the size of alignment insns between START and END.
602 KNOWN_ALIGN_LOG is the alignment known for START.
603 GROWTH should be ~0 if the objective is to compute potential code size
604 increase, and 0 if the objective is to compute potential shrink.
605 The return value is undefined for any other value of GROWTH. */
608 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
610 int uid
= INSN_UID (start
);
612 int known_align
= 1 << known_align_log
;
613 int end_shuid
= INSN_SHUID (end
);
616 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
618 int align_addr
, new_align
;
620 uid
= INSN_UID (align_label
);
621 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
622 if (uid_shuid
[uid
] > end_shuid
)
624 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
625 new_align
= 1 << known_align_log
;
626 if (new_align
< known_align
)
628 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
629 known_align
= new_align
;
634 /* Compute a worst-case reference address of a branch so that it
635 can be safely used in the presence of aligned labels. Since the
636 size of the branch itself is unknown, the size of the branch is
637 not included in the range. I.e. for a forward branch, the reference
638 address is the end address of the branch as known from the previous
639 branch shortening pass, minus a value to account for possible size
640 increase due to alignment. For a backward branch, it is the start
641 address of the branch as known from the current pass, plus a value
642 to account for possible size increase due to alignment.
643 NB.: Therefore, the maximum offset allowed for backward branches needs
644 to exclude the branch size. */
647 insn_current_reference_address (rtx_insn
*branch
)
652 if (! INSN_ADDRESSES_SET_P ())
655 rtx_insn
*seq
= NEXT_INSN (PREV_INSN (branch
));
656 seq_uid
= INSN_UID (seq
);
657 if (!JUMP_P (branch
))
658 /* This can happen for example on the PA; the objective is to know the
659 offset to address something in front of the start of the function.
660 Thus, we can treat it like a backward branch.
661 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
662 any alignment we'd encounter, so we skip the call to align_fuzz. */
663 return insn_current_address
;
664 dest
= JUMP_LABEL (branch
);
666 /* BRANCH has no proper alignment chain set, so use SEQ.
667 BRANCH also has no INSN_SHUID. */
668 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
670 /* Forward branch. */
671 return (insn_last_address
+ insn_lengths
[seq_uid
]
672 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
676 /* Backward branch. */
677 return (insn_current_address
678 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
682 /* Compute branch alignments based on frequency information in the
686 compute_alignments (void)
688 int log
, max_skip
, max_log
;
691 int freq_threshold
= 0;
699 max_labelno
= max_label_num ();
700 min_labelno
= get_first_label_num ();
701 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
703 /* If not optimizing or optimizing for size, don't assign any alignments. */
704 if (! optimize
|| optimize_function_for_size_p (cfun
))
709 dump_reg_info (dump_file
);
710 dump_flow_info (dump_file
, TDF_DETAILS
);
711 flow_loops_dump (dump_file
, NULL
, 1);
713 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
714 FOR_EACH_BB_FN (bb
, cfun
)
715 if (bb
->frequency
> freq_max
)
716 freq_max
= bb
->frequency
;
717 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
720 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
721 FOR_EACH_BB_FN (bb
, cfun
)
723 rtx_insn
*label
= BB_HEAD (bb
);
724 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
729 || optimize_bb_for_size_p (bb
))
733 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
734 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
738 max_log
= LABEL_ALIGN (label
);
739 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
741 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
743 if (e
->flags
& EDGE_FALLTHRU
)
744 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
746 branch_frequency
+= EDGE_FREQUENCY (e
);
750 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
751 " %2i fall %4i branch %4i",
752 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
754 fallthru_frequency
, branch_frequency
);
755 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
756 fprintf (dump_file
, " inner_loop");
757 if (bb
->loop_father
->header
== bb
)
758 fprintf (dump_file
, " loop_header");
759 fprintf (dump_file
, "\n");
762 /* There are two purposes to align block with no fallthru incoming edge:
763 1) to avoid fetch stalls when branch destination is near cache boundary
764 2) to improve cache efficiency in case the previous block is not executed
765 (so it does not need to be in the cache).
767 We to catch first case, we align frequently executed blocks.
768 To catch the second, we align blocks that are executed more frequently
769 than the predecessor and the predecessor is likely to not be executed
770 when function is called. */
773 && (branch_frequency
> freq_threshold
774 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
775 && (bb
->prev_bb
->frequency
776 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
778 log
= JUMP_ALIGN (label
);
780 fprintf (dump_file
, " jump alignment added.\n");
784 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
787 /* In case block is frequent and reached mostly by non-fallthru edge,
788 align it. It is most likely a first block of loop. */
790 && !(single_succ_p (bb
)
791 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
792 && optimize_bb_for_speed_p (bb
)
793 && branch_frequency
+ fallthru_frequency
> freq_threshold
795 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
797 log
= LOOP_ALIGN (label
);
799 fprintf (dump_file
, " internal loop alignment added.\n");
803 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
806 LABEL_TO_ALIGNMENT (label
) = max_log
;
807 LABEL_TO_MAX_SKIP (label
) = max_skip
;
810 loop_optimizer_finalize ();
811 free_dominance_info (CDI_DOMINATORS
);
815 /* Grow the LABEL_ALIGN array after new labels are created. */
818 grow_label_align (void)
820 int old
= max_labelno
;
824 max_labelno
= max_label_num ();
826 n_labels
= max_labelno
- min_labelno
+ 1;
827 n_old_labels
= old
- min_labelno
+ 1;
829 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
831 /* Range of labels grows monotonically in the function. Failing here
832 means that the initialization of array got lost. */
833 gcc_assert (n_old_labels
<= n_labels
);
835 memset (label_align
+ n_old_labels
, 0,
836 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
839 /* Update the already computed alignment information. LABEL_PAIRS is a vector
840 made up of pairs of labels for which the alignment information of the first
841 element will be copied from that of the second element. */
844 update_alignments (vec
<rtx
> &label_pairs
)
847 rtx iter
, label
= NULL_RTX
;
849 if (max_labelno
!= max_label_num ())
852 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
855 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
856 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
864 const pass_data pass_data_compute_alignments
=
867 "alignments", /* name */
868 OPTGROUP_NONE
, /* optinfo_flags */
870 0, /* properties_required */
871 0, /* properties_provided */
872 0, /* properties_destroyed */
873 0, /* todo_flags_start */
874 0, /* todo_flags_finish */
877 class pass_compute_alignments
: public rtl_opt_pass
880 pass_compute_alignments (gcc::context
*ctxt
)
881 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
884 /* opt_pass methods: */
885 virtual unsigned int execute (function
*) { return compute_alignments (); }
887 }; // class pass_compute_alignments
892 make_pass_compute_alignments (gcc::context
*ctxt
)
894 return new pass_compute_alignments (ctxt
);
898 /* Make a pass over all insns and compute their actual lengths by shortening
899 any branches of variable length if possible. */
901 /* shorten_branches might be called multiple times: for example, the SH
902 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
903 In order to do this, it needs proper length information, which it obtains
904 by calling shorten_branches. This cannot be collapsed with
905 shorten_branches itself into a single pass unless we also want to integrate
906 reorg.c, since the branch splitting exposes new instructions with delay
910 shorten_branches (rtx_insn
*first
)
917 #define MAX_CODE_ALIGN 16
919 int something_changed
= 1;
920 char *varying_length
;
923 rtx align_tab
[MAX_CODE_ALIGN
];
925 /* Compute maximum UID and allocate label_align / uid_shuid. */
926 max_uid
= get_max_uid ();
928 /* Free uid_shuid before reallocating it. */
931 uid_shuid
= XNEWVEC (int, max_uid
);
933 if (max_labelno
!= max_label_num ())
936 /* Initialize label_align and set up uid_shuid to be strictly
937 monotonically rising with insn order. */
938 /* We use max_log here to keep track of the maximum alignment we want to
939 impose on the next CODE_LABEL (or the current one if we are processing
940 the CODE_LABEL itself). */
945 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
949 INSN_SHUID (insn
) = i
++;
956 bool next_is_jumptable
;
958 /* Merge in alignments computed by compute_alignments. */
959 log
= LABEL_TO_ALIGNMENT (insn
);
963 max_skip
= LABEL_TO_MAX_SKIP (insn
);
966 next
= next_nonnote_insn (insn
);
967 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
968 if (!next_is_jumptable
)
970 log
= LABEL_ALIGN (insn
);
974 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
977 /* ADDR_VECs only take room if read-only data goes into the text
979 if ((JUMP_TABLES_IN_TEXT_SECTION
980 || readonly_data_section
== text_section
)
981 && next_is_jumptable
)
983 log
= ADDR_VEC_ALIGN (next
);
987 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
990 LABEL_TO_ALIGNMENT (insn
) = max_log
;
991 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
995 else if (BARRIER_P (insn
))
999 for (label
= insn
; label
&& ! INSN_P (label
);
1000 label
= NEXT_INSN (label
))
1001 if (LABEL_P (label
))
1003 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
1007 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1013 if (!HAVE_ATTR_length
)
1016 /* Allocate the rest of the arrays. */
1017 insn_lengths
= XNEWVEC (int, max_uid
);
1018 insn_lengths_max_uid
= max_uid
;
1019 /* Syntax errors can lead to labels being outside of the main insn stream.
1020 Initialize insn_addresses, so that we get reproducible results. */
1021 INSN_ADDRESSES_ALLOC (max_uid
);
1023 varying_length
= XCNEWVEC (char, max_uid
);
1025 /* Initialize uid_align. We scan instructions
1026 from end to start, and keep in align_tab[n] the last seen insn
1027 that does an alignment of at least n+1, i.e. the successor
1028 in the alignment chain for an insn that does / has a known
1030 uid_align
= XCNEWVEC (rtx
, max_uid
);
1032 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1033 align_tab
[i
] = NULL_RTX
;
1034 seq
= get_last_insn ();
1035 for (; seq
; seq
= PREV_INSN (seq
))
1037 int uid
= INSN_UID (seq
);
1039 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1040 uid_align
[uid
] = align_tab
[0];
1043 /* Found an alignment label. */
1044 uid_align
[uid
] = align_tab
[log
];
1045 for (i
= log
- 1; i
>= 0; i
--)
1050 /* When optimizing, we start assuming minimum length, and keep increasing
1051 lengths as we find the need for this, till nothing changes.
1052 When not optimizing, we start assuming maximum lengths, and
1053 do a single pass to update the lengths. */
1054 bool increasing
= optimize
!= 0;
1056 #ifdef CASE_VECTOR_SHORTEN_MODE
1059 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1062 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1063 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1066 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1068 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1069 int len
, i
, min
, max
, insn_shuid
;
1071 addr_diff_vec_flags flags
;
1073 if (! JUMP_TABLE_DATA_P (insn
)
1074 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1076 pat
= PATTERN (insn
);
1077 len
= XVECLEN (pat
, 1);
1078 gcc_assert (len
> 0);
1079 min_align
= MAX_CODE_ALIGN
;
1080 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1082 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1083 int shuid
= INSN_SHUID (lab
);
1094 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1095 min_align
= LABEL_TO_ALIGNMENT (lab
);
1097 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1098 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1099 insn_shuid
= INSN_SHUID (insn
);
1100 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1101 memset (&flags
, 0, sizeof (flags
));
1102 flags
.min_align
= min_align
;
1103 flags
.base_after_vec
= rel
> insn_shuid
;
1104 flags
.min_after_vec
= min
> insn_shuid
;
1105 flags
.max_after_vec
= max
> insn_shuid
;
1106 flags
.min_after_base
= min
> rel
;
1107 flags
.max_after_base
= max
> rel
;
1108 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1111 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1114 #endif /* CASE_VECTOR_SHORTEN_MODE */
1116 /* Compute initial lengths, addresses, and varying flags for each insn. */
1117 int (*length_fun
) (rtx_insn
*) = increasing
? insn_min_length
: insn_default_length
;
1119 for (insn_current_address
= 0, insn
= first
;
1121 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1123 uid
= INSN_UID (insn
);
1125 insn_lengths
[uid
] = 0;
1129 int log
= LABEL_TO_ALIGNMENT (insn
);
1132 int align
= 1 << log
;
1133 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1134 insn_lengths
[uid
] = new_address
- insn_current_address
;
1138 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1140 if (NOTE_P (insn
) || BARRIER_P (insn
)
1141 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1143 if (insn
->deleted ())
1146 body
= PATTERN (insn
);
1147 if (JUMP_TABLE_DATA_P (insn
))
1149 /* This only takes room if read-only data goes into the text
1151 if (JUMP_TABLES_IN_TEXT_SECTION
1152 || readonly_data_section
== text_section
)
1153 insn_lengths
[uid
] = (XVECLEN (body
,
1154 GET_CODE (body
) == ADDR_DIFF_VEC
)
1155 * GET_MODE_SIZE (GET_MODE (body
)));
1156 /* Alignment is handled by ADDR_VEC_ALIGN. */
1158 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1159 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1160 else if (rtx_sequence
*body_seq
= dyn_cast
<rtx_sequence
*> (body
))
1163 int const_delay_slots
;
1165 const_delay_slots
= const_num_delay_slots (body_seq
->insn (0));
1167 const_delay_slots
= 0;
1169 int (*inner_length_fun
) (rtx_insn
*)
1170 = const_delay_slots
? length_fun
: insn_default_length
;
1171 /* Inside a delay slot sequence, we do not do any branch shortening
1172 if the shortening could change the number of delay slots
1174 for (i
= 0; i
< body_seq
->len (); i
++)
1176 rtx_insn
*inner_insn
= body_seq
->insn (i
);
1177 int inner_uid
= INSN_UID (inner_insn
);
1180 if (GET_CODE (body
) == ASM_INPUT
1181 || asm_noperands (PATTERN (inner_insn
)) >= 0)
1182 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1183 * insn_default_length (inner_insn
));
1185 inner_length
= inner_length_fun (inner_insn
);
1187 insn_lengths
[inner_uid
] = inner_length
;
1188 if (const_delay_slots
)
1190 if ((varying_length
[inner_uid
]
1191 = insn_variable_length_p (inner_insn
)) != 0)
1192 varying_length
[uid
] = 1;
1193 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1194 + insn_lengths
[uid
]);
1197 varying_length
[inner_uid
] = 0;
1198 insn_lengths
[uid
] += inner_length
;
1201 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1203 insn_lengths
[uid
] = length_fun (insn
);
1204 varying_length
[uid
] = insn_variable_length_p (insn
);
1207 /* If needed, do any adjustment. */
1208 #ifdef ADJUST_INSN_LENGTH
1209 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1210 if (insn_lengths
[uid
] < 0)
1211 fatal_insn ("negative insn length", insn
);
1215 /* Now loop over all the insns finding varying length insns. For each,
1216 get the current insn length. If it has changed, reflect the change.
1217 When nothing changes for a full pass, we are done. */
1219 while (something_changed
)
1221 something_changed
= 0;
1222 insn_current_align
= MAX_CODE_ALIGN
- 1;
1223 for (insn_current_address
= 0, insn
= first
;
1225 insn
= NEXT_INSN (insn
))
1228 #ifdef ADJUST_INSN_LENGTH
1233 uid
= INSN_UID (insn
);
1237 int log
= LABEL_TO_ALIGNMENT (insn
);
1239 #ifdef CASE_VECTOR_SHORTEN_MODE
1240 /* If the mode of a following jump table was changed, we
1241 may need to update the alignment of this label. */
1243 bool next_is_jumptable
;
1245 next
= next_nonnote_insn (insn
);
1246 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1247 if ((JUMP_TABLES_IN_TEXT_SECTION
1248 || readonly_data_section
== text_section
)
1249 && next_is_jumptable
)
1251 int newlog
= ADDR_VEC_ALIGN (next
);
1255 LABEL_TO_ALIGNMENT (insn
) = log
;
1256 something_changed
= 1;
1261 if (log
> insn_current_align
)
1263 int align
= 1 << log
;
1264 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1265 insn_lengths
[uid
] = new_address
- insn_current_address
;
1266 insn_current_align
= log
;
1267 insn_current_address
= new_address
;
1270 insn_lengths
[uid
] = 0;
1271 INSN_ADDRESSES (uid
) = insn_current_address
;
1275 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1276 if (length_align
< insn_current_align
)
1277 insn_current_align
= length_align
;
1279 insn_last_address
= INSN_ADDRESSES (uid
);
1280 INSN_ADDRESSES (uid
) = insn_current_address
;
1282 #ifdef CASE_VECTOR_SHORTEN_MODE
1284 && JUMP_TABLE_DATA_P (insn
)
1285 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1287 rtx body
= PATTERN (insn
);
1288 int old_length
= insn_lengths
[uid
];
1290 safe_as_a
<rtx_insn
*> (XEXP (XEXP (body
, 0), 0));
1291 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1292 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1293 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1294 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1295 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1298 addr_diff_vec_flags flags
;
1299 machine_mode vec_mode
;
1301 /* Avoid automatic aggregate initialization. */
1302 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1304 /* Try to find a known alignment for rel_lab. */
1305 for (prev
= rel_lab
;
1307 && ! insn_lengths
[INSN_UID (prev
)]
1308 && ! (varying_length
[INSN_UID (prev
)] & 1);
1309 prev
= PREV_INSN (prev
))
1310 if (varying_length
[INSN_UID (prev
)] & 2)
1312 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1316 /* See the comment on addr_diff_vec_flags in rtl.h for the
1317 meaning of the flags values. base: REL_LAB vec: INSN */
1318 /* Anything after INSN has still addresses from the last
1319 pass; adjust these so that they reflect our current
1320 estimate for this pass. */
1321 if (flags
.base_after_vec
)
1322 rel_addr
+= insn_current_address
- insn_last_address
;
1323 if (flags
.min_after_vec
)
1324 min_addr
+= insn_current_address
- insn_last_address
;
1325 if (flags
.max_after_vec
)
1326 max_addr
+= insn_current_address
- insn_last_address
;
1327 /* We want to know the worst case, i.e. lowest possible value
1328 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1329 its offset is positive, and we have to be wary of code shrink;
1330 otherwise, it is negative, and we have to be vary of code
1332 if (flags
.min_after_base
)
1334 /* If INSN is between REL_LAB and MIN_LAB, the size
1335 changes we are about to make can change the alignment
1336 within the observed offset, therefore we have to break
1337 it up into two parts that are independent. */
1338 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1340 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1341 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1344 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1348 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1350 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1351 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1354 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1356 /* Likewise, determine the highest lowest possible value
1357 for the offset of MAX_LAB. */
1358 if (flags
.max_after_base
)
1360 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1362 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1363 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1366 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1370 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1372 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1373 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1376 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1378 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1379 max_addr
- rel_addr
, body
);
1381 || (GET_MODE_SIZE (vec_mode
)
1382 >= GET_MODE_SIZE (GET_MODE (body
))))
1383 PUT_MODE (body
, vec_mode
);
1384 if (JUMP_TABLES_IN_TEXT_SECTION
1385 || readonly_data_section
== text_section
)
1388 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1389 insn_current_address
+= insn_lengths
[uid
];
1390 if (insn_lengths
[uid
] != old_length
)
1391 something_changed
= 1;
1396 #endif /* CASE_VECTOR_SHORTEN_MODE */
1398 if (! (varying_length
[uid
]))
1400 if (NONJUMP_INSN_P (insn
)
1401 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1405 body
= PATTERN (insn
);
1406 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1408 rtx inner_insn
= XVECEXP (body
, 0, i
);
1409 int inner_uid
= INSN_UID (inner_insn
);
1411 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1413 insn_current_address
+= insn_lengths
[inner_uid
];
1417 insn_current_address
+= insn_lengths
[uid
];
1422 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1424 rtx_sequence
*seqn
= as_a
<rtx_sequence
*> (PATTERN (insn
));
1427 body
= PATTERN (insn
);
1429 for (i
= 0; i
< seqn
->len (); i
++)
1431 rtx_insn
*inner_insn
= seqn
->insn (i
);
1432 int inner_uid
= INSN_UID (inner_insn
);
1435 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1437 /* insn_current_length returns 0 for insns with a
1438 non-varying length. */
1439 if (! varying_length
[inner_uid
])
1440 inner_length
= insn_lengths
[inner_uid
];
1442 inner_length
= insn_current_length (inner_insn
);
1444 if (inner_length
!= insn_lengths
[inner_uid
])
1446 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1448 insn_lengths
[inner_uid
] = inner_length
;
1449 something_changed
= 1;
1452 inner_length
= insn_lengths
[inner_uid
];
1454 insn_current_address
+= inner_length
;
1455 new_length
+= inner_length
;
1460 new_length
= insn_current_length (insn
);
1461 insn_current_address
+= new_length
;
1464 #ifdef ADJUST_INSN_LENGTH
1465 /* If needed, do any adjustment. */
1466 tmp_length
= new_length
;
1467 ADJUST_INSN_LENGTH (insn
, new_length
);
1468 insn_current_address
+= (new_length
- tmp_length
);
1471 if (new_length
!= insn_lengths
[uid
]
1472 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1474 insn_lengths
[uid
] = new_length
;
1475 something_changed
= 1;
1478 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1480 /* For a non-optimizing compile, do only a single pass. */
1485 free (varying_length
);
1488 /* Given the body of an INSN known to be generated by an ASM statement, return
1489 the number of machine instructions likely to be generated for this insn.
1490 This is used to compute its length. */
1493 asm_insn_count (rtx body
)
1497 if (GET_CODE (body
) == ASM_INPUT
)
1498 templ
= XSTR (body
, 0);
1500 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1502 return asm_str_count (templ
);
1505 /* Return the number of machine instructions likely to be generated for the
1506 inline-asm template. */
1508 asm_str_count (const char *templ
)
1515 for (; *templ
; templ
++)
1516 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1523 /* ??? This is probably the wrong place for these. */
1524 /* Structure recording the mapping from source file and directory
1525 names at compile time to those to be embedded in debug
1527 typedef struct debug_prefix_map
1529 const char *old_prefix
;
1530 const char *new_prefix
;
1533 struct debug_prefix_map
*next
;
1536 /* Linked list of such structures. */
1537 static debug_prefix_map
*debug_prefix_maps
;
1540 /* Record a debug file prefix mapping. ARG is the argument to
1541 -fdebug-prefix-map and must be of the form OLD=NEW. */
1544 add_debug_prefix_map (const char *arg
)
1546 debug_prefix_map
*map
;
1549 p
= strchr (arg
, '=');
1552 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1555 map
= XNEW (debug_prefix_map
);
1556 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1557 map
->old_len
= p
- arg
;
1559 map
->new_prefix
= xstrdup (p
);
1560 map
->new_len
= strlen (p
);
1561 map
->next
= debug_prefix_maps
;
1562 debug_prefix_maps
= map
;
1565 /* Perform user-specified mapping of debug filename prefixes. Return
1566 the new name corresponding to FILENAME. */
1569 remap_debug_filename (const char *filename
)
1571 debug_prefix_map
*map
;
1576 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1577 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1581 name
= filename
+ map
->old_len
;
1582 name_len
= strlen (name
) + 1;
1583 s
= (char *) alloca (name_len
+ map
->new_len
);
1584 memcpy (s
, map
->new_prefix
, map
->new_len
);
1585 memcpy (s
+ map
->new_len
, name
, name_len
);
1586 return ggc_strdup (s
);
1589 /* Return true if DWARF2 debug info can be emitted for DECL. */
1592 dwarf2_debug_info_emitted_p (tree decl
)
1594 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1597 if (DECL_IGNORED_P (decl
))
1603 /* Return scope resulting from combination of S1 and S2. */
1605 choose_inner_scope (tree s1
, tree s2
)
1611 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1616 /* Emit lexical block notes needed to change scope from S1 to S2. */
1619 change_scope (rtx_insn
*orig_insn
, tree s1
, tree s2
)
1621 rtx_insn
*insn
= orig_insn
;
1622 tree com
= NULL_TREE
;
1623 tree ts1
= s1
, ts2
= s2
;
1628 gcc_assert (ts1
&& ts2
);
1629 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1630 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1631 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1632 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1635 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1636 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1645 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1646 NOTE_BLOCK (note
) = s
;
1647 s
= BLOCK_SUPERCONTEXT (s
);
1654 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1655 NOTE_BLOCK (insn
) = s
;
1656 s
= BLOCK_SUPERCONTEXT (s
);
1660 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1661 on the scope tree and the newly reordered instructions. */
1664 reemit_insn_block_notes (void)
1666 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1670 insn
= get_insns ();
1671 for (; insn
; insn
= NEXT_INSN (insn
))
1675 /* Prevent lexical blocks from straddling section boundaries. */
1676 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1678 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1679 s
= BLOCK_SUPERCONTEXT (s
))
1681 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1682 NOTE_BLOCK (note
) = s
;
1683 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1684 NOTE_BLOCK (note
) = s
;
1688 if (!active_insn_p (insn
))
1691 /* Avoid putting scope notes between jump table and its label. */
1692 if (JUMP_TABLE_DATA_P (insn
))
1695 this_block
= insn_scope (insn
);
1696 /* For sequences compute scope resulting from merging all scopes
1697 of instructions nested inside. */
1698 if (rtx_sequence
*body
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
1703 for (i
= 0; i
< body
->len (); i
++)
1704 this_block
= choose_inner_scope (this_block
,
1705 insn_scope (body
->insn (i
)));
1709 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1712 this_block
= DECL_INITIAL (cfun
->decl
);
1715 if (this_block
!= cur_block
)
1717 change_scope (insn
, cur_block
, this_block
);
1718 cur_block
= this_block
;
1722 /* change_scope emits before the insn, not after. */
1723 note
= emit_note (NOTE_INSN_DELETED
);
1724 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1730 static const char *some_local_dynamic_name
;
1732 /* Locate some local-dynamic symbol still in use by this function
1733 so that we can print its name in local-dynamic base patterns.
1734 Return null if there are no local-dynamic references. */
1737 get_some_local_dynamic_name ()
1739 subrtx_iterator::array_type array
;
1742 if (some_local_dynamic_name
)
1743 return some_local_dynamic_name
;
1745 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1746 if (NONDEBUG_INSN_P (insn
))
1747 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
1749 const_rtx x
= *iter
;
1750 if (GET_CODE (x
) == SYMBOL_REF
)
1752 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
1753 return some_local_dynamic_name
= XSTR (x
, 0);
1754 if (CONSTANT_POOL_ADDRESS_P (x
))
1755 iter
.substitute (get_pool_constant (x
));
1762 /* Output assembler code for the start of a function,
1763 and initialize some of the variables in this file
1764 for the new function. The label for the function and associated
1765 assembler pseudo-ops have already been output in `assemble_start_function'.
1767 FIRST is the first insn of the rtl for the function being compiled.
1768 FILE is the file to write assembler code to.
1769 OPTIMIZE_P is nonzero if we should eliminate redundant
1770 test and compare insns. */
1773 final_start_function (rtx_insn
*first
, FILE *file
,
1774 int optimize_p ATTRIBUTE_UNUSED
)
1778 this_is_asm_operands
= 0;
1780 need_profile_function
= false;
1782 last_filename
= LOCATION_FILE (prologue_location
);
1783 last_linenum
= LOCATION_LINE (prologue_location
);
1784 last_discriminator
= discriminator
= 0;
1786 high_block_linenum
= high_function_linenum
= last_linenum
;
1788 if (flag_sanitize
& SANITIZE_ADDRESS
)
1789 asan_function_start ();
1791 if (!DECL_IGNORED_P (current_function_decl
))
1792 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1794 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1795 dwarf2out_begin_prologue (0, NULL
);
1797 #ifdef LEAF_REG_REMAP
1798 if (crtl
->uses_only_leaf_regs
)
1799 leaf_renumber_regs (first
);
1802 /* The Sun386i and perhaps other machines don't work right
1803 if the profiling code comes after the prologue. */
1804 if (targetm
.profile_before_prologue () && crtl
->profile
)
1806 if (targetm
.asm_out
.function_prologue
== default_function_pro_epilogue
1807 && targetm
.have_prologue ())
1810 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1816 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1817 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1819 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1820 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1829 need_profile_function
= true;
1831 profile_function (file
);
1834 profile_function (file
);
1837 /* If debugging, assign block numbers to all of the blocks in this
1841 reemit_insn_block_notes ();
1842 number_blocks (current_function_decl
);
1843 /* We never actually put out begin/end notes for the top-level
1844 block in the function. But, conceptually, that block is
1846 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1849 if (warn_frame_larger_than
1850 && get_frame_size () > frame_larger_than_size
)
1852 /* Issue a warning */
1853 warning (OPT_Wframe_larger_than_
,
1854 "the frame size of %wd bytes is larger than %wd bytes",
1855 get_frame_size (), frame_larger_than_size
);
1858 /* First output the function prologue: code to set up the stack frame. */
1859 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1861 /* If the machine represents the prologue as RTL, the profiling code must
1862 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1863 if (! targetm
.have_prologue ())
1864 profile_after_prologue (file
);
1868 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1870 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1871 profile_function (file
);
1875 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1877 #ifndef NO_PROFILE_COUNTERS
1878 # define NO_PROFILE_COUNTERS 0
1880 #ifdef ASM_OUTPUT_REG_PUSH
1881 rtx sval
= NULL
, chain
= NULL
;
1883 if (cfun
->returns_struct
)
1884 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1886 if (cfun
->static_chain_decl
)
1887 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1888 #endif /* ASM_OUTPUT_REG_PUSH */
1890 if (! NO_PROFILE_COUNTERS
)
1892 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1893 switch_to_section (data_section
);
1894 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1895 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1896 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1899 switch_to_section (current_function_section ());
1901 #ifdef ASM_OUTPUT_REG_PUSH
1902 if (sval
&& REG_P (sval
))
1903 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1904 if (chain
&& REG_P (chain
))
1905 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1908 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1910 #ifdef ASM_OUTPUT_REG_PUSH
1911 if (chain
&& REG_P (chain
))
1912 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1913 if (sval
&& REG_P (sval
))
1914 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1918 /* Output assembler code for the end of a function.
1919 For clarity, args are same as those of `final_start_function'
1920 even though not all of them are needed. */
1923 final_end_function (void)
1927 if (!DECL_IGNORED_P (current_function_decl
))
1928 debug_hooks
->end_function (high_function_linenum
);
1930 /* Finally, output the function epilogue:
1931 code to restore the stack frame and return to the caller. */
1932 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1934 /* And debug output. */
1935 if (!DECL_IGNORED_P (current_function_decl
))
1936 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1938 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1939 && dwarf2out_do_frame ())
1940 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1942 some_local_dynamic_name
= 0;
1946 /* Dumper helper for basic block information. FILE is the assembly
1947 output file, and INSN is the instruction being emitted. */
1950 dump_basic_block_info (FILE *file
, rtx_insn
*insn
, basic_block
*start_to_bb
,
1951 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1955 if (!flag_debug_asm
)
1958 if (INSN_UID (insn
) < bb_map_size
1959 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1964 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1966 fprintf (file
, " freq:%d", bb
->frequency
);
1968 fprintf (file
, " count:%" PRId64
,
1970 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1971 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1972 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1974 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1976 fprintf (file
, "\n");
1978 if (INSN_UID (insn
) < bb_map_size
1979 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1984 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1985 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1987 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1989 fprintf (file
, "\n");
1993 /* Output assembler code for some insns: all or part of a function.
1994 For description of args, see `final_start_function', above. */
1997 final (rtx_insn
*first
, FILE *file
, int optimize_p
)
1999 rtx_insn
*insn
, *next
;
2002 /* Used for -dA dump. */
2003 basic_block
*start_to_bb
= NULL
;
2004 basic_block
*end_to_bb
= NULL
;
2005 int bb_map_size
= 0;
2008 last_ignored_compare
= 0;
2011 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2013 /* If CC tracking across branches is enabled, record the insn which
2014 jumps to each branch only reached from one place. */
2015 if (optimize_p
&& JUMP_P (insn
))
2017 rtx lab
= JUMP_LABEL (insn
);
2018 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
2020 LABEL_REFS (lab
) = insn
;
2033 bb_map_size
= get_max_uid () + 1;
2034 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2035 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2037 /* There is no cfg for a thunk. */
2038 if (!cfun
->is_thunk
)
2039 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2041 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2042 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2046 /* Output the insns. */
2047 for (insn
= first
; insn
;)
2049 if (HAVE_ATTR_length
)
2051 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2053 /* This can be triggered by bugs elsewhere in the compiler if
2054 new insns are created after init_insn_lengths is called. */
2055 gcc_assert (NOTE_P (insn
));
2056 insn_current_address
= -1;
2059 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2062 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2063 bb_map_size
, &bb_seqn
);
2064 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2073 /* Remove CFI notes, to avoid compare-debug failures. */
2074 for (insn
= first
; insn
; insn
= next
)
2076 next
= NEXT_INSN (insn
);
2078 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2079 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2085 get_insn_template (int code
, rtx insn
)
2087 switch (insn_data
[code
].output_format
)
2089 case INSN_OUTPUT_FORMAT_SINGLE
:
2090 return insn_data
[code
].output
.single
;
2091 case INSN_OUTPUT_FORMAT_MULTI
:
2092 return insn_data
[code
].output
.multi
[which_alternative
];
2093 case INSN_OUTPUT_FORMAT_FUNCTION
:
2095 return (*insn_data
[code
].output
.function
) (recog_data
.operand
,
2096 as_a
<rtx_insn
*> (insn
));
2103 /* Emit the appropriate declaration for an alternate-entry-point
2104 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2105 LABEL_KIND != LABEL_NORMAL.
2107 The case fall-through in this function is intentional. */
2109 output_alternate_entry_point (FILE *file
, rtx_insn
*insn
)
2111 const char *name
= LABEL_NAME (insn
);
2113 switch (LABEL_KIND (insn
))
2115 case LABEL_WEAK_ENTRY
:
2116 #ifdef ASM_WEAKEN_LABEL
2117 ASM_WEAKEN_LABEL (file
, name
);
2119 case LABEL_GLOBAL_ENTRY
:
2120 targetm
.asm_out
.globalize_label (file
, name
);
2121 case LABEL_STATIC_ENTRY
:
2122 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2123 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2125 ASM_OUTPUT_LABEL (file
, name
);
2134 /* Given a CALL_INSN, find and return the nested CALL. */
2136 call_from_call_insn (rtx_call_insn
*insn
)
2139 gcc_assert (CALL_P (insn
));
2142 while (GET_CODE (x
) != CALL
)
2144 switch (GET_CODE (x
))
2149 x
= COND_EXEC_CODE (x
);
2152 x
= XVECEXP (x
, 0, 0);
2162 /* The final scan for one insn, INSN.
2163 Args are same as in `final', except that INSN
2164 is the insn being scanned.
2165 Value returned is the next insn to be scanned.
2167 NOPEEPHOLES is the flag to disallow peephole processing (currently
2168 used for within delayed branch sequence output).
2170 SEEN is used to track the end of the prologue, for emitting
2171 debug information. We force the emission of a line note after
2172 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2175 final_scan_insn (rtx_insn
*insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2176 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2185 /* Ignore deleted insns. These can occur when we split insns (due to a
2186 template of "#") while not optimizing. */
2187 if (insn
->deleted ())
2188 return NEXT_INSN (insn
);
2190 switch (GET_CODE (insn
))
2193 switch (NOTE_KIND (insn
))
2195 case NOTE_INSN_DELETED
:
2196 case NOTE_INSN_UPDATE_SJLJ_CONTEXT
:
2199 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2200 in_cold_section_p
= !in_cold_section_p
;
2202 if (dwarf2out_do_frame ())
2203 dwarf2out_switch_text_section ();
2204 else if (!DECL_IGNORED_P (current_function_decl
))
2205 debug_hooks
->switch_text_section ();
2207 switch_to_section (current_function_section ());
2208 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2209 current_function_decl
,
2211 /* Emit a label for the split cold section. Form label name by
2212 suffixing "cold" to the original function's name. */
2213 if (in_cold_section_p
)
2216 = clone_function_name (current_function_decl
, "cold");
2217 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2218 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file
,
2220 (cold_function_name
),
2221 current_function_decl
);
2223 ASM_OUTPUT_LABEL (asm_out_file
,
2224 IDENTIFIER_POINTER (cold_function_name
));
2229 case NOTE_INSN_BASIC_BLOCK
:
2230 if (need_profile_function
)
2232 profile_function (asm_out_file
);
2233 need_profile_function
= false;
2236 if (targetm
.asm_out
.unwind_emit
)
2237 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2239 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2243 case NOTE_INSN_EH_REGION_BEG
:
2244 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2245 NOTE_EH_HANDLER (insn
));
2248 case NOTE_INSN_EH_REGION_END
:
2249 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2250 NOTE_EH_HANDLER (insn
));
2253 case NOTE_INSN_PROLOGUE_END
:
2254 targetm
.asm_out
.function_end_prologue (file
);
2255 profile_after_prologue (file
);
2257 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2259 *seen
|= SEEN_EMITTED
;
2260 force_source_line
= true;
2267 case NOTE_INSN_EPILOGUE_BEG
:
2268 if (!DECL_IGNORED_P (current_function_decl
))
2269 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2270 targetm
.asm_out
.function_begin_epilogue (file
);
2274 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2277 case NOTE_INSN_CFI_LABEL
:
2278 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2279 NOTE_LABEL_NUMBER (insn
));
2282 case NOTE_INSN_FUNCTION_BEG
:
2283 if (need_profile_function
)
2285 profile_function (asm_out_file
);
2286 need_profile_function
= false;
2290 if (!DECL_IGNORED_P (current_function_decl
))
2291 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2293 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2295 *seen
|= SEEN_EMITTED
;
2296 force_source_line
= true;
2303 case NOTE_INSN_BLOCK_BEG
:
2304 if (debug_info_level
== DINFO_LEVEL_NORMAL
2305 || debug_info_level
== DINFO_LEVEL_VERBOSE
2306 || write_symbols
== DWARF2_DEBUG
2307 || write_symbols
== VMS_AND_DWARF2_DEBUG
2308 || write_symbols
== VMS_DEBUG
)
2310 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2314 high_block_linenum
= last_linenum
;
2316 /* Output debugging info about the symbol-block beginning. */
2317 if (!DECL_IGNORED_P (current_function_decl
))
2318 debug_hooks
->begin_block (last_linenum
, n
);
2320 /* Mark this block as output. */
2321 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2323 if (write_symbols
== DBX_DEBUG
2324 || write_symbols
== SDB_DEBUG
)
2326 location_t
*locus_ptr
2327 = block_nonartificial_location (NOTE_BLOCK (insn
));
2329 if (locus_ptr
!= NULL
)
2331 override_filename
= LOCATION_FILE (*locus_ptr
);
2332 override_linenum
= LOCATION_LINE (*locus_ptr
);
2337 case NOTE_INSN_BLOCK_END
:
2338 if (debug_info_level
== DINFO_LEVEL_NORMAL
2339 || debug_info_level
== DINFO_LEVEL_VERBOSE
2340 || write_symbols
== DWARF2_DEBUG
2341 || write_symbols
== VMS_AND_DWARF2_DEBUG
2342 || write_symbols
== VMS_DEBUG
)
2344 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2348 /* End of a symbol-block. */
2350 gcc_assert (block_depth
>= 0);
2352 if (!DECL_IGNORED_P (current_function_decl
))
2353 debug_hooks
->end_block (high_block_linenum
, n
);
2355 if (write_symbols
== DBX_DEBUG
2356 || write_symbols
== SDB_DEBUG
)
2358 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2359 location_t
*locus_ptr
2360 = block_nonartificial_location (outer_block
);
2362 if (locus_ptr
!= NULL
)
2364 override_filename
= LOCATION_FILE (*locus_ptr
);
2365 override_linenum
= LOCATION_LINE (*locus_ptr
);
2369 override_filename
= NULL
;
2370 override_linenum
= 0;
2375 case NOTE_INSN_DELETED_LABEL
:
2376 /* Emit the label. We may have deleted the CODE_LABEL because
2377 the label could be proved to be unreachable, though still
2378 referenced (in the form of having its address taken. */
2379 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2382 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2383 /* Similarly, but need to use different namespace for it. */
2384 if (CODE_LABEL_NUMBER (insn
) != -1)
2385 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2388 case NOTE_INSN_VAR_LOCATION
:
2389 case NOTE_INSN_CALL_ARG_LOCATION
:
2390 if (!DECL_IGNORED_P (current_function_decl
))
2391 debug_hooks
->var_location (insn
);
2404 /* The target port might emit labels in the output function for
2405 some insn, e.g. sh.c output_branchy_insn. */
2406 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2408 int align
= LABEL_TO_ALIGNMENT (insn
);
2409 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2410 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2413 if (align
&& NEXT_INSN (insn
))
2415 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2416 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2418 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2419 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2421 ASM_OUTPUT_ALIGN (file
, align
);
2428 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2429 debug_hooks
->label (as_a
<rtx_code_label
*> (insn
));
2433 next
= next_nonnote_insn (insn
);
2434 /* If this label is followed by a jump-table, make sure we put
2435 the label in the read-only section. Also possibly write the
2436 label and jump table together. */
2437 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2439 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2440 /* In this case, the case vector is being moved by the
2441 target, so don't output the label at all. Leave that
2442 to the back end macros. */
2444 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2448 switch_to_section (targetm
.asm_out
.function_rodata_section
2449 (current_function_decl
));
2451 #ifdef ADDR_VEC_ALIGN
2452 log_align
= ADDR_VEC_ALIGN (next
);
2454 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2456 ASM_OUTPUT_ALIGN (file
, log_align
);
2459 switch_to_section (current_function_section ());
2461 #ifdef ASM_OUTPUT_CASE_LABEL
2462 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2465 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2470 if (LABEL_ALT_ENTRY_P (insn
))
2471 output_alternate_entry_point (file
, insn
);
2473 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2478 rtx body
= PATTERN (insn
);
2479 int insn_code_number
;
2483 /* Reset this early so it is correct for ASM statements. */
2484 current_insn_predicate
= NULL_RTX
;
2486 /* An INSN, JUMP_INSN or CALL_INSN.
2487 First check for special kinds that recog doesn't recognize. */
2489 if (GET_CODE (body
) == USE
/* These are just declarations. */
2490 || GET_CODE (body
) == CLOBBER
)
2495 /* If there is a REG_CC_SETTER note on this insn, it means that
2496 the setting of the condition code was done in the delay slot
2497 of the insn that branched here. So recover the cc status
2498 from the insn that set it. */
2500 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2503 rtx_insn
*other
= as_a
<rtx_insn
*> (XEXP (note
, 0));
2504 NOTICE_UPDATE_CC (PATTERN (other
), other
);
2505 cc_prev_status
= cc_status
;
2510 /* Detect insns that are really jump-tables
2511 and output them as such. */
2513 if (JUMP_TABLE_DATA_P (insn
))
2515 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2519 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2520 switch_to_section (targetm
.asm_out
.function_rodata_section
2521 (current_function_decl
));
2523 switch_to_section (current_function_section ());
2527 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2528 if (GET_CODE (body
) == ADDR_VEC
)
2530 #ifdef ASM_OUTPUT_ADDR_VEC
2531 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2538 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2539 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2545 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2546 for (idx
= 0; idx
< vlen
; idx
++)
2548 if (GET_CODE (body
) == ADDR_VEC
)
2550 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2551 ASM_OUTPUT_ADDR_VEC_ELT
2552 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2559 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2560 ASM_OUTPUT_ADDR_DIFF_ELT
2563 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2564 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2570 #ifdef ASM_OUTPUT_CASE_END
2571 ASM_OUTPUT_CASE_END (file
,
2572 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2577 switch_to_section (current_function_section ());
2581 /* Output this line note if it is the first or the last line
2583 if (!DECL_IGNORED_P (current_function_decl
)
2584 && notice_source_line (insn
, &is_stmt
))
2585 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2586 last_discriminator
, is_stmt
);
2588 if (GET_CODE (body
) == ASM_INPUT
)
2590 const char *string
= XSTR (body
, 0);
2592 /* There's no telling what that did to the condition codes. */
2597 expanded_location loc
;
2600 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2601 if (*loc
.file
&& loc
.line
)
2602 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2603 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2604 fprintf (asm_out_file
, "\t%s\n", string
);
2605 #if HAVE_AS_LINE_ZERO
2606 if (*loc
.file
&& loc
.line
)
2607 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2613 /* Detect `asm' construct with operands. */
2614 if (asm_noperands (body
) >= 0)
2616 unsigned int noperands
= asm_noperands (body
);
2617 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2620 expanded_location expanded
;
2622 /* There's no telling what that did to the condition codes. */
2625 /* Get out the operand values. */
2626 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2627 /* Inhibit dying on what would otherwise be compiler bugs. */
2628 insn_noperands
= noperands
;
2629 this_is_asm_operands
= insn
;
2630 expanded
= expand_location (loc
);
2632 #ifdef FINAL_PRESCAN_INSN
2633 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2636 /* Output the insn using them. */
2640 if (expanded
.file
&& expanded
.line
)
2641 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2642 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2643 output_asm_insn (string
, ops
);
2644 #if HAVE_AS_LINE_ZERO
2645 if (expanded
.file
&& expanded
.line
)
2646 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2650 if (targetm
.asm_out
.final_postscan_insn
)
2651 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2654 this_is_asm_operands
= 0;
2660 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
2662 /* A delayed-branch sequence */
2665 final_sequence
= seq
;
2667 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2668 force the restoration of a comparison that was previously
2669 thought unnecessary. If that happens, cancel this sequence
2670 and cause that insn to be restored. */
2672 next
= final_scan_insn (seq
->insn (0), file
, 0, 1, seen
);
2673 if (next
!= seq
->insn (1))
2679 for (i
= 1; i
< seq
->len (); i
++)
2681 rtx_insn
*insn
= seq
->insn (i
);
2682 rtx_insn
*next
= NEXT_INSN (insn
);
2683 /* We loop in case any instruction in a delay slot gets
2686 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2687 while (insn
!= next
);
2689 #ifdef DBR_OUTPUT_SEQEND
2690 DBR_OUTPUT_SEQEND (file
);
2694 /* If the insn requiring the delay slot was a CALL_INSN, the
2695 insns in the delay slot are actually executed before the
2696 called function. Hence we don't preserve any CC-setting
2697 actions in these insns and the CC must be marked as being
2698 clobbered by the function. */
2699 if (CALL_P (seq
->insn (0)))
2706 /* We have a real machine instruction as rtl. */
2708 body
= PATTERN (insn
);
2711 set
= single_set (insn
);
2713 /* Check for redundant test and compare instructions
2714 (when the condition codes are already set up as desired).
2715 This is done only when optimizing; if not optimizing,
2716 it should be possible for the user to alter a variable
2717 with the debugger in between statements
2718 and the next statement should reexamine the variable
2719 to compute the condition codes. */
2724 && GET_CODE (SET_DEST (set
)) == CC0
2725 && insn
!= last_ignored_compare
)
2728 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2729 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2731 src1
= SET_SRC (set
);
2733 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2735 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2736 XEXP (SET_SRC (set
), 0)
2737 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2738 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2739 XEXP (SET_SRC (set
), 1)
2740 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2741 if (XEXP (SET_SRC (set
), 1)
2742 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2743 src2
= XEXP (SET_SRC (set
), 0);
2745 if ((cc_status
.value1
!= 0
2746 && rtx_equal_p (src1
, cc_status
.value1
))
2747 || (cc_status
.value2
!= 0
2748 && rtx_equal_p (src1
, cc_status
.value2
))
2749 || (src2
!= 0 && cc_status
.value1
!= 0
2750 && rtx_equal_p (src2
, cc_status
.value1
))
2751 || (src2
!= 0 && cc_status
.value2
!= 0
2752 && rtx_equal_p (src2
, cc_status
.value2
)))
2754 /* Don't delete insn if it has an addressing side-effect. */
2755 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2756 /* or if anything in it is volatile. */
2757 && ! volatile_refs_p (PATTERN (insn
)))
2759 /* We don't really delete the insn; just ignore it. */
2760 last_ignored_compare
= insn
;
2767 /* If this is a conditional branch, maybe modify it
2768 if the cc's are in a nonstandard state
2769 so that it accomplishes the same thing that it would
2770 do straightforwardly if the cc's were set up normally. */
2772 if (cc_status
.flags
!= 0
2774 && GET_CODE (body
) == SET
2775 && SET_DEST (body
) == pc_rtx
2776 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2777 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2778 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2780 /* This function may alter the contents of its argument
2781 and clear some of the cc_status.flags bits.
2782 It may also return 1 meaning condition now always true
2783 or -1 meaning condition now always false
2784 or 2 meaning condition nontrivial but altered. */
2785 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2786 /* If condition now has fixed value, replace the IF_THEN_ELSE
2787 with its then-operand or its else-operand. */
2789 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2791 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2793 /* The jump is now either unconditional or a no-op.
2794 If it has become a no-op, don't try to output it.
2795 (It would not be recognized.) */
2796 if (SET_SRC (body
) == pc_rtx
)
2801 else if (ANY_RETURN_P (SET_SRC (body
)))
2802 /* Replace (set (pc) (return)) with (return). */
2803 PATTERN (insn
) = body
= SET_SRC (body
);
2805 /* Rerecognize the instruction if it has changed. */
2807 INSN_CODE (insn
) = -1;
2810 /* If this is a conditional trap, maybe modify it if the cc's
2811 are in a nonstandard state so that it accomplishes the same
2812 thing that it would do straightforwardly if the cc's were
2814 if (cc_status
.flags
!= 0
2815 && NONJUMP_INSN_P (insn
)
2816 && GET_CODE (body
) == TRAP_IF
2817 && COMPARISON_P (TRAP_CONDITION (body
))
2818 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2820 /* This function may alter the contents of its argument
2821 and clear some of the cc_status.flags bits.
2822 It may also return 1 meaning condition now always true
2823 or -1 meaning condition now always false
2824 or 2 meaning condition nontrivial but altered. */
2825 int result
= alter_cond (TRAP_CONDITION (body
));
2827 /* If TRAP_CONDITION has become always false, delete the
2835 /* If TRAP_CONDITION has become always true, replace
2836 TRAP_CONDITION with const_true_rtx. */
2838 TRAP_CONDITION (body
) = const_true_rtx
;
2840 /* Rerecognize the instruction if it has changed. */
2842 INSN_CODE (insn
) = -1;
2845 /* Make same adjustments to instructions that examine the
2846 condition codes without jumping and instructions that
2847 handle conditional moves (if this machine has either one). */
2849 if (cc_status
.flags
!= 0
2852 rtx cond_rtx
, then_rtx
, else_rtx
;
2855 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2857 cond_rtx
= XEXP (SET_SRC (set
), 0);
2858 then_rtx
= XEXP (SET_SRC (set
), 1);
2859 else_rtx
= XEXP (SET_SRC (set
), 2);
2863 cond_rtx
= SET_SRC (set
);
2864 then_rtx
= const_true_rtx
;
2865 else_rtx
= const0_rtx
;
2868 if (COMPARISON_P (cond_rtx
)
2869 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2872 result
= alter_cond (cond_rtx
);
2874 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2875 else if (result
== -1)
2876 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2877 else if (result
== 2)
2878 INSN_CODE (insn
) = -1;
2879 if (SET_DEST (set
) == SET_SRC (set
))
2886 /* Do machine-specific peephole optimizations if desired. */
2888 if (HAVE_peephole
&& optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2890 rtx_insn
*next
= peephole (insn
);
2891 /* When peepholing, if there were notes within the peephole,
2892 emit them before the peephole. */
2893 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2895 rtx_insn
*note
, *prev
= PREV_INSN (insn
);
2897 for (note
= NEXT_INSN (insn
); note
!= next
;
2898 note
= NEXT_INSN (note
))
2899 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2901 /* Put the notes in the proper position for a later
2902 rescan. For example, the SH target can do this
2903 when generating a far jump in a delayed branch
2905 note
= NEXT_INSN (insn
);
2906 SET_PREV_INSN (note
) = prev
;
2907 SET_NEXT_INSN (prev
) = note
;
2908 SET_NEXT_INSN (PREV_INSN (next
)) = insn
;
2909 SET_PREV_INSN (insn
) = PREV_INSN (next
);
2910 SET_NEXT_INSN (insn
) = next
;
2911 SET_PREV_INSN (next
) = insn
;
2914 /* PEEPHOLE might have changed this. */
2915 body
= PATTERN (insn
);
2918 /* Try to recognize the instruction.
2919 If successful, verify that the operands satisfy the
2920 constraints for the instruction. Crash if they don't,
2921 since `reload' should have changed them so that they do. */
2923 insn_code_number
= recog_memoized (insn
);
2924 cleanup_subreg_operands (insn
);
2926 /* Dump the insn in the assembly for debugging (-dAP).
2927 If the final dump is requested as slim RTL, dump slim
2928 RTL to the assembly file also. */
2929 if (flag_dump_rtl_in_asm
)
2931 print_rtx_head
= ASM_COMMENT_START
;
2932 if (! (dump_flags
& TDF_SLIM
))
2933 print_rtl_single (asm_out_file
, insn
);
2935 dump_insn_slim (asm_out_file
, insn
);
2936 print_rtx_head
= "";
2939 if (! constrain_operands_cached (insn
, 1))
2940 fatal_insn_not_found (insn
);
2942 /* Some target machines need to prescan each insn before
2945 #ifdef FINAL_PRESCAN_INSN
2946 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2949 if (targetm
.have_conditional_execution ()
2950 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2951 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2954 cc_prev_status
= cc_status
;
2956 /* Update `cc_status' for this instruction.
2957 The instruction's output routine may change it further.
2958 If the output routine for a jump insn needs to depend
2959 on the cc status, it should look at cc_prev_status. */
2961 NOTICE_UPDATE_CC (body
, insn
);
2964 current_output_insn
= debug_insn
= insn
;
2966 /* Find the proper template for this insn. */
2967 templ
= get_insn_template (insn_code_number
, insn
);
2969 /* If the C code returns 0, it means that it is a jump insn
2970 which follows a deleted test insn, and that test insn
2971 needs to be reinserted. */
2976 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2978 /* We have already processed the notes between the setter and
2979 the user. Make sure we don't process them again, this is
2980 particularly important if one of the notes is a block
2981 scope note or an EH note. */
2983 prev
!= last_ignored_compare
;
2984 prev
= PREV_INSN (prev
))
2987 delete_insn (prev
); /* Use delete_note. */
2993 /* If the template is the string "#", it means that this insn must
2995 if (templ
[0] == '#' && templ
[1] == '\0')
2997 rtx_insn
*new_rtx
= try_split (body
, insn
, 0);
2999 /* If we didn't split the insn, go away. */
3000 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
3001 fatal_insn ("could not split insn", insn
);
3003 /* If we have a length attribute, this instruction should have
3004 been split in shorten_branches, to ensure that we would have
3005 valid length info for the splitees. */
3006 gcc_assert (!HAVE_ATTR_length
);
3011 /* ??? This will put the directives in the wrong place if
3012 get_insn_template outputs assembly directly. However calling it
3013 before get_insn_template breaks if the insns is split. */
3014 if (targetm
.asm_out
.unwind_emit_before_insn
3015 && targetm
.asm_out
.unwind_emit
)
3016 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3018 if (rtx_call_insn
*call_insn
= dyn_cast
<rtx_call_insn
*> (insn
))
3020 rtx x
= call_from_call_insn (call_insn
);
3022 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3026 t
= SYMBOL_REF_DECL (x
);
3028 assemble_external (t
);
3030 if (!DECL_IGNORED_P (current_function_decl
))
3031 debug_hooks
->var_location (insn
);
3034 /* Output assembler code from the template. */
3035 output_asm_insn (templ
, recog_data
.operand
);
3037 /* Some target machines need to postscan each insn after
3039 if (targetm
.asm_out
.final_postscan_insn
)
3040 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3041 recog_data
.n_operands
);
3043 if (!targetm
.asm_out
.unwind_emit_before_insn
3044 && targetm
.asm_out
.unwind_emit
)
3045 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3047 current_output_insn
= debug_insn
= 0;
3050 return NEXT_INSN (insn
);
3053 /* Return whether a source line note needs to be emitted before INSN.
3054 Sets IS_STMT to TRUE if the line should be marked as a possible
3055 breakpoint location. */
3058 notice_source_line (rtx_insn
*insn
, bool *is_stmt
)
3060 const char *filename
;
3063 if (override_filename
)
3065 filename
= override_filename
;
3066 linenum
= override_linenum
;
3068 else if (INSN_HAS_LOCATION (insn
))
3070 expanded_location xloc
= insn_location (insn
);
3071 filename
= xloc
.file
;
3072 linenum
= xloc
.line
;
3080 if (filename
== NULL
)
3083 if (force_source_line
3084 || filename
!= last_filename
3085 || last_linenum
!= linenum
)
3087 force_source_line
= false;
3088 last_filename
= filename
;
3089 last_linenum
= linenum
;
3090 last_discriminator
= discriminator
;
3092 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3093 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3097 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3099 /* If the discriminator changed, but the line number did not,
3100 output the line table entry with is_stmt false so the
3101 debugger does not treat this as a breakpoint location. */
3102 last_discriminator
= discriminator
;
3110 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3111 directly to the desired hard register. */
3114 cleanup_subreg_operands (rtx_insn
*insn
)
3117 bool changed
= false;
3118 extract_insn_cached (insn
);
3119 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3121 /* The following test cannot use recog_data.operand when testing
3122 for a SUBREG: the underlying object might have been changed
3123 already if we are inside a match_operator expression that
3124 matches the else clause. Instead we test the underlying
3125 expression directly. */
3126 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3128 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3131 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3132 || GET_CODE (recog_data
.operand
[i
]) == MULT
3133 || MEM_P (recog_data
.operand
[i
]))
3134 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3137 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3139 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3141 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3144 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3145 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3146 || MEM_P (*recog_data
.dup_loc
[i
]))
3147 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3150 df_insn_rescan (insn
);
3153 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3154 the thing it is a subreg of. Do it anyway if FINAL_P. */
3157 alter_subreg (rtx
*xp
, bool final_p
)
3160 rtx y
= SUBREG_REG (x
);
3162 /* simplify_subreg does not remove subreg from volatile references.
3163 We are required to. */
3166 int offset
= SUBREG_BYTE (x
);
3168 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3169 contains 0 instead of the proper offset. See simplify_subreg. */
3171 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3173 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3174 - GET_MODE_SIZE (GET_MODE (x
));
3175 if (WORDS_BIG_ENDIAN
)
3176 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3177 if (BYTES_BIG_ENDIAN
)
3178 offset
+= difference
% UNITS_PER_WORD
;
3182 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3184 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3186 else if (REG_P (y
) && HARD_REGISTER_P (y
))
3188 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3193 else if (final_p
&& REG_P (y
))
3195 /* Simplify_subreg can't handle some REG cases, but we have to. */
3197 HOST_WIDE_INT offset
;
3199 regno
= subreg_regno (x
);
3200 if (subreg_lowpart_p (x
))
3201 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3203 offset
= SUBREG_BYTE (x
);
3204 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3211 /* Do alter_subreg on all the SUBREGs contained in X. */
3214 walk_alter_subreg (rtx
*xp
, bool *changed
)
3217 switch (GET_CODE (x
))
3222 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3223 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3228 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3233 return alter_subreg (xp
, true);
3244 /* Given BODY, the body of a jump instruction, alter the jump condition
3245 as required by the bits that are set in cc_status.flags.
3246 Not all of the bits there can be handled at this level in all cases.
3248 The value is normally 0.
3249 1 means that the condition has become always true.
3250 -1 means that the condition has become always false.
3251 2 means that COND has been altered. */
3254 alter_cond (rtx cond
)
3258 if (cc_status
.flags
& CC_REVERSED
)
3261 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3264 if (cc_status
.flags
& CC_INVERTED
)
3267 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3270 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3271 switch (GET_CODE (cond
))
3276 /* Jump becomes unconditional. */
3282 /* Jump becomes no-op. */
3286 PUT_CODE (cond
, EQ
);
3291 PUT_CODE (cond
, NE
);
3299 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3300 switch (GET_CODE (cond
))
3304 /* Jump becomes unconditional. */
3309 /* Jump becomes no-op. */
3314 PUT_CODE (cond
, EQ
);
3320 PUT_CODE (cond
, NE
);
3328 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3329 switch (GET_CODE (cond
))
3332 /* Jump becomes unconditional. */
3336 PUT_CODE (cond
, EQ
);
3341 PUT_CODE (cond
, NE
);
3346 /* Jump becomes no-op. */
3353 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3354 switch (GET_CODE (cond
))
3360 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3365 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3370 if (cc_status
.flags
& CC_NOT_SIGNED
)
3371 /* The flags are valid if signed condition operators are converted
3373 switch (GET_CODE (cond
))
3376 PUT_CODE (cond
, LEU
);
3381 PUT_CODE (cond
, LTU
);
3386 PUT_CODE (cond
, GTU
);
3391 PUT_CODE (cond
, GEU
);
3403 /* Report inconsistency between the assembler template and the operands.
3404 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3407 output_operand_lossage (const char *cmsgid
, ...)
3411 const char *pfx_str
;
3414 va_start (ap
, cmsgid
);
3416 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3417 fmt_string
= xasprintf ("%s%s", pfx_str
, _(cmsgid
));
3418 new_message
= xvasprintf (fmt_string
, ap
);
3420 if (this_is_asm_operands
)
3421 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3423 internal_error ("%s", new_message
);
3430 /* Output of assembler code from a template, and its subroutines. */
3432 /* Annotate the assembly with a comment describing the pattern and
3433 alternative used. */
3436 output_asm_name (void)
3440 int num
= INSN_CODE (debug_insn
);
3441 fprintf (asm_out_file
, "\t%s %d\t%s",
3442 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3443 insn_data
[num
].name
);
3444 if (insn_data
[num
].n_alternatives
> 1)
3445 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3447 if (HAVE_ATTR_length
)
3448 fprintf (asm_out_file
, "\t[length = %d]",
3449 get_attr_length (debug_insn
));
3451 /* Clear this so only the first assembler insn
3452 of any rtl insn will get the special comment for -dp. */
3457 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3458 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3459 corresponds to the address of the object and 0 if to the object. */
3462 get_mem_expr_from_op (rtx op
, int *paddressp
)
3470 return REG_EXPR (op
);
3471 else if (!MEM_P (op
))
3474 if (MEM_EXPR (op
) != 0)
3475 return MEM_EXPR (op
);
3477 /* Otherwise we have an address, so indicate it and look at the address. */
3481 /* First check if we have a decl for the address, then look at the right side
3482 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3483 But don't allow the address to itself be indirect. */
3484 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3486 else if (GET_CODE (op
) == PLUS
3487 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3491 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3494 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3495 return inner_addressp
? 0 : expr
;
3498 /* Output operand names for assembler instructions. OPERANDS is the
3499 operand vector, OPORDER is the order to write the operands, and NOPS
3500 is the number of operands to write. */
3503 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3508 for (i
= 0; i
< nops
; i
++)
3511 rtx op
= operands
[oporder
[i
]];
3512 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3514 fprintf (asm_out_file
, "%c%s",
3515 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3519 fprintf (asm_out_file
, "%s",
3520 addressp
? "*" : "");
3521 print_mem_expr (asm_out_file
, expr
);
3524 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3525 && ORIGINAL_REGNO (op
) != REGNO (op
))
3526 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3530 #ifdef ASSEMBLER_DIALECT
3531 /* Helper function to parse assembler dialects in the asm string.
3532 This is called from output_asm_insn and asm_fprintf. */
3534 do_assembler_dialects (const char *p
, int *dialect
)
3545 output_operand_lossage ("nested assembly dialect alternatives");
3549 /* If we want the first dialect, do nothing. Otherwise, skip
3550 DIALECT_NUMBER of strings ending with '|'. */
3551 for (i
= 0; i
< dialect_number
; i
++)
3553 while (*p
&& *p
!= '}')
3561 /* Skip over any character after a percent sign. */
3573 output_operand_lossage ("unterminated assembly dialect alternative");
3580 /* Skip to close brace. */
3585 output_operand_lossage ("unterminated assembly dialect alternative");
3589 /* Skip over any character after a percent sign. */
3590 if (*p
== '%' && p
[1])
3604 putc (c
, asm_out_file
);
3609 putc (c
, asm_out_file
);
3620 /* Output text from TEMPLATE to the assembler output file,
3621 obeying %-directions to substitute operands taken from
3622 the vector OPERANDS.
3624 %N (for N a digit) means print operand N in usual manner.
3625 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3626 and print the label name with no punctuation.
3627 %cN means require operand N to be a constant
3628 and print the constant expression with no punctuation.
3629 %aN means expect operand N to be a memory address
3630 (not a memory reference!) and print a reference
3632 %nN means expect operand N to be a constant
3633 and print a constant expression for minus the value
3634 of the operand, with no other punctuation. */
3637 output_asm_insn (const char *templ
, rtx
*operands
)
3641 #ifdef ASSEMBLER_DIALECT
3644 int oporder
[MAX_RECOG_OPERANDS
];
3645 char opoutput
[MAX_RECOG_OPERANDS
];
3648 /* An insn may return a null string template
3649 in a case where no assembler code is needed. */
3653 memset (opoutput
, 0, sizeof opoutput
);
3655 putc ('\t', asm_out_file
);
3657 #ifdef ASM_OUTPUT_OPCODE
3658 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3665 if (flag_verbose_asm
)
3666 output_asm_operand_names (operands
, oporder
, ops
);
3667 if (flag_print_asm_name
)
3671 memset (opoutput
, 0, sizeof opoutput
);
3673 putc (c
, asm_out_file
);
3674 #ifdef ASM_OUTPUT_OPCODE
3675 while ((c
= *p
) == '\t')
3677 putc (c
, asm_out_file
);
3680 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3684 #ifdef ASSEMBLER_DIALECT
3688 p
= do_assembler_dialects (p
, &dialect
);
3693 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3694 if ASSEMBLER_DIALECT defined and these characters have a special
3695 meaning as dialect delimiters.*/
3697 #ifdef ASSEMBLER_DIALECT
3698 || *p
== '{' || *p
== '}' || *p
== '|'
3702 putc (*p
, asm_out_file
);
3705 /* %= outputs a number which is unique to each insn in the entire
3706 compilation. This is useful for making local labels that are
3707 referred to more than once in a given insn. */
3711 fprintf (asm_out_file
, "%d", insn_counter
);
3713 /* % followed by a letter and some digits
3714 outputs an operand in a special way depending on the letter.
3715 Letters `acln' are implemented directly.
3716 Other letters are passed to `output_operand' so that
3717 the TARGET_PRINT_OPERAND hook can define them. */
3718 else if (ISALPHA (*p
))
3721 unsigned long opnum
;
3724 opnum
= strtoul (p
, &endptr
, 10);
3727 output_operand_lossage ("operand number missing "
3729 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3730 output_operand_lossage ("operand number out of range");
3731 else if (letter
== 'l')
3732 output_asm_label (operands
[opnum
]);
3733 else if (letter
== 'a')
3734 output_address (operands
[opnum
]);
3735 else if (letter
== 'c')
3737 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3738 output_addr_const (asm_out_file
, operands
[opnum
]);
3740 output_operand (operands
[opnum
], 'c');
3742 else if (letter
== 'n')
3744 if (CONST_INT_P (operands
[opnum
]))
3745 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3746 - INTVAL (operands
[opnum
]));
3749 putc ('-', asm_out_file
);
3750 output_addr_const (asm_out_file
, operands
[opnum
]);
3754 output_operand (operands
[opnum
], letter
);
3756 if (!opoutput
[opnum
])
3757 oporder
[ops
++] = opnum
;
3758 opoutput
[opnum
] = 1;
3763 /* % followed by a digit outputs an operand the default way. */
3764 else if (ISDIGIT (*p
))
3766 unsigned long opnum
;
3769 opnum
= strtoul (p
, &endptr
, 10);
3770 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3771 output_operand_lossage ("operand number out of range");
3773 output_operand (operands
[opnum
], 0);
3775 if (!opoutput
[opnum
])
3776 oporder
[ops
++] = opnum
;
3777 opoutput
[opnum
] = 1;
3782 /* % followed by punctuation: output something for that
3783 punctuation character alone, with no operand. The
3784 TARGET_PRINT_OPERAND hook decides what is actually done. */
3785 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3786 output_operand (NULL_RTX
, *p
++);
3788 output_operand_lossage ("invalid %%-code");
3792 putc (c
, asm_out_file
);
3795 /* Write out the variable names for operands, if we know them. */
3796 if (flag_verbose_asm
)
3797 output_asm_operand_names (operands
, oporder
, ops
);
3798 if (flag_print_asm_name
)
3801 putc ('\n', asm_out_file
);
3804 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3807 output_asm_label (rtx x
)
3811 if (GET_CODE (x
) == LABEL_REF
)
3812 x
= LABEL_REF_LABEL (x
);
3815 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3816 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3818 output_operand_lossage ("'%%l' operand isn't a label");
3820 assemble_name (asm_out_file
, buf
);
3823 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3826 mark_symbol_refs_as_used (rtx x
)
3828 subrtx_iterator::array_type array
;
3829 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
3831 const_rtx x
= *iter
;
3832 if (GET_CODE (x
) == SYMBOL_REF
)
3833 if (tree t
= SYMBOL_REF_DECL (x
))
3834 assemble_external (t
);
3838 /* Print operand X using machine-dependent assembler syntax.
3839 CODE is a non-digit that preceded the operand-number in the % spec,
3840 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3841 between the % and the digits.
3842 When CODE is a non-letter, X is 0.
3844 The meanings of the letters are machine-dependent and controlled
3845 by TARGET_PRINT_OPERAND. */
3848 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3850 if (x
&& GET_CODE (x
) == SUBREG
)
3851 x
= alter_subreg (&x
, true);
3853 /* X must not be a pseudo reg. */
3854 if (!targetm
.no_register_allocation
)
3855 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3857 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3862 mark_symbol_refs_as_used (x
);
3865 /* Print a memory reference operand for address X using
3866 machine-dependent assembler syntax. */
3869 output_address (rtx x
)
3871 bool changed
= false;
3872 walk_alter_subreg (&x
, &changed
);
3873 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3876 /* Print an integer constant expression in assembler syntax.
3877 Addition and subtraction are the only arithmetic
3878 that may appear in these expressions. */
3881 output_addr_const (FILE *file
, rtx x
)
3886 switch (GET_CODE (x
))
3893 if (SYMBOL_REF_DECL (x
))
3894 assemble_external (SYMBOL_REF_DECL (x
));
3895 #ifdef ASM_OUTPUT_SYMBOL_REF
3896 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3898 assemble_name (file
, XSTR (x
, 0));
3903 x
= LABEL_REF_LABEL (x
);
3906 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3907 #ifdef ASM_OUTPUT_LABEL_REF
3908 ASM_OUTPUT_LABEL_REF (file
, buf
);
3910 assemble_name (file
, buf
);
3915 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3919 /* This used to output parentheses around the expression,
3920 but that does not work on the 386 (either ATT or BSD assembler). */
3921 output_addr_const (file
, XEXP (x
, 0));
3924 case CONST_WIDE_INT
:
3925 /* We do not know the mode here so we have to use a round about
3926 way to build a wide-int to get it printed properly. */
3928 wide_int w
= wide_int::from_array (&CONST_WIDE_INT_ELT (x
, 0),
3929 CONST_WIDE_INT_NUNITS (x
),
3930 CONST_WIDE_INT_NUNITS (x
)
3931 * HOST_BITS_PER_WIDE_INT
,
3933 print_decs (w
, file
);
3938 if (CONST_DOUBLE_AS_INT_P (x
))
3940 /* We can use %d if the number is one word and positive. */
3941 if (CONST_DOUBLE_HIGH (x
))
3942 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3943 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3944 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3945 else if (CONST_DOUBLE_LOW (x
) < 0)
3946 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3947 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3949 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3952 /* We can't handle floating point constants;
3953 PRINT_OPERAND must handle them. */
3954 output_operand_lossage ("floating constant misused");
3958 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3962 /* Some assemblers need integer constants to appear last (eg masm). */
3963 if (CONST_INT_P (XEXP (x
, 0)))
3965 output_addr_const (file
, XEXP (x
, 1));
3966 if (INTVAL (XEXP (x
, 0)) >= 0)
3967 fprintf (file
, "+");
3968 output_addr_const (file
, XEXP (x
, 0));
3972 output_addr_const (file
, XEXP (x
, 0));
3973 if (!CONST_INT_P (XEXP (x
, 1))
3974 || INTVAL (XEXP (x
, 1)) >= 0)
3975 fprintf (file
, "+");
3976 output_addr_const (file
, XEXP (x
, 1));
3981 /* Avoid outputting things like x-x or x+5-x,
3982 since some assemblers can't handle that. */
3983 x
= simplify_subtraction (x
);
3984 if (GET_CODE (x
) != MINUS
)
3987 output_addr_const (file
, XEXP (x
, 0));
3988 fprintf (file
, "-");
3989 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3990 || GET_CODE (XEXP (x
, 1)) == PC
3991 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3992 output_addr_const (file
, XEXP (x
, 1));
3995 fputs (targetm
.asm_out
.open_paren
, file
);
3996 output_addr_const (file
, XEXP (x
, 1));
3997 fputs (targetm
.asm_out
.close_paren
, file
);
4005 output_addr_const (file
, XEXP (x
, 0));
4009 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
4012 output_operand_lossage ("invalid expression as operand");
4016 /* Output a quoted string. */
4019 output_quoted_string (FILE *asm_file
, const char *string
)
4021 #ifdef OUTPUT_QUOTED_STRING
4022 OUTPUT_QUOTED_STRING (asm_file
, string
);
4026 putc ('\"', asm_file
);
4027 while ((c
= *string
++) != 0)
4031 if (c
== '\"' || c
== '\\')
4032 putc ('\\', asm_file
);
4036 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
4038 putc ('\"', asm_file
);
4042 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4045 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4047 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4052 char *p
= buf
+ sizeof (buf
);
4054 *--p
= "0123456789abcdef"[value
% 16];
4055 while ((value
/= 16) != 0);
4058 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4062 /* Internal function that prints an unsigned long in decimal in reverse.
4063 The output string IS NOT null-terminated. */
4066 sprint_ul_rev (char *s
, unsigned long value
)
4071 s
[i
] = "0123456789"[value
% 10];
4074 /* alternate version, without modulo */
4075 /* oldval = value; */
4077 /* s[i] = "0123456789" [oldval - 10*value]; */
4084 /* Write an unsigned long as decimal to a file, fast. */
4087 fprint_ul (FILE *f
, unsigned long value
)
4089 /* python says: len(str(2**64)) == 20 */
4093 i
= sprint_ul_rev (s
, value
);
4095 /* It's probably too small to bother with string reversal and fputs. */
4104 /* Write an unsigned long as decimal to a string, fast.
4105 s must be wide enough to not overflow, at least 21 chars.
4106 Returns the length of the string (without terminating '\0'). */
4109 sprint_ul (char *s
, unsigned long value
)
4111 int len
= sprint_ul_rev (s
, value
);
4114 std::reverse (s
, s
+ len
);
4118 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4119 %R prints the value of REGISTER_PREFIX.
4120 %L prints the value of LOCAL_LABEL_PREFIX.
4121 %U prints the value of USER_LABEL_PREFIX.
4122 %I prints the value of IMMEDIATE_PREFIX.
4123 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4124 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4126 We handle alternate assembler dialects here, just like output_asm_insn. */
4129 asm_fprintf (FILE *file
, const char *p
, ...)
4133 #ifdef ASSEMBLER_DIALECT
4138 va_start (argptr
, p
);
4145 #ifdef ASSEMBLER_DIALECT
4149 p
= do_assembler_dialects (p
, &dialect
);
4156 while (strchr ("-+ #0", c
))
4161 while (ISDIGIT (c
) || c
== '.')
4172 case 'd': case 'i': case 'u':
4173 case 'x': case 'X': case 'o':
4177 fprintf (file
, buf
, va_arg (argptr
, int));
4181 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4182 'o' cases, but we do not check for those cases. It
4183 means that the value is a HOST_WIDE_INT, which may be
4184 either `long' or `long long'. */
4185 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4186 q
+= strlen (HOST_WIDE_INT_PRINT
);
4189 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4194 #ifdef HAVE_LONG_LONG
4200 fprintf (file
, buf
, va_arg (argptr
, long long));
4207 fprintf (file
, buf
, va_arg (argptr
, long));
4215 fprintf (file
, buf
, va_arg (argptr
, char *));
4219 #ifdef ASM_OUTPUT_OPCODE
4220 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4225 #ifdef REGISTER_PREFIX
4226 fprintf (file
, "%s", REGISTER_PREFIX
);
4231 #ifdef IMMEDIATE_PREFIX
4232 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4237 #ifdef LOCAL_LABEL_PREFIX
4238 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4243 fputs (user_label_prefix
, file
);
4246 #ifdef ASM_FPRINTF_EXTENSIONS
4247 /* Uppercase letters are reserved for general use by asm_fprintf
4248 and so are not available to target specific code. In order to
4249 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4250 they are defined here. As they get turned into real extensions
4251 to asm_fprintf they should be removed from this list. */
4252 case 'A': case 'B': case 'C': case 'D': case 'E':
4253 case 'F': case 'G': case 'H': case 'J': case 'K':
4254 case 'M': case 'N': case 'P': case 'Q': case 'S':
4255 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4258 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4271 /* Return nonzero if this function has no function calls. */
4274 leaf_function_p (void)
4278 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4279 functions even if they call mcount. */
4280 if (crtl
->profile
&& !targetm
.keep_leaf_when_profiled ())
4283 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4286 && ! SIBLING_CALL_P (insn
))
4288 if (NONJUMP_INSN_P (insn
)
4289 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4290 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4291 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4298 /* Return 1 if branch is a forward branch.
4299 Uses insn_shuid array, so it works only in the final pass. May be used by
4300 output templates to customary add branch prediction hints.
4303 final_forward_branch_p (rtx_insn
*insn
)
4305 int insn_id
, label_id
;
4307 gcc_assert (uid_shuid
);
4308 insn_id
= INSN_SHUID (insn
);
4309 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4310 /* We've hit some insns that does not have id information available. */
4311 gcc_assert (insn_id
&& label_id
);
4312 return insn_id
< label_id
;
4315 /* On some machines, a function with no call insns
4316 can run faster if it doesn't create its own register window.
4317 When output, the leaf function should use only the "output"
4318 registers. Ordinarily, the function would be compiled to use
4319 the "input" registers to find its arguments; it is a candidate
4320 for leaf treatment if it uses only the "input" registers.
4321 Leaf function treatment means renumbering so the function
4322 uses the "output" registers instead. */
4324 #ifdef LEAF_REGISTERS
4326 /* Return 1 if this function uses only the registers that can be
4327 safely renumbered. */
4330 only_leaf_regs_used (void)
4333 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4335 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4336 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4337 && ! permitted_reg_in_leaf_functions
[i
])
4340 if (crtl
->uses_pic_offset_table
4341 && pic_offset_table_rtx
!= 0
4342 && REG_P (pic_offset_table_rtx
)
4343 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4349 /* Scan all instructions and renumber all registers into those
4350 available in leaf functions. */
4353 leaf_renumber_regs (rtx_insn
*first
)
4357 /* Renumber only the actual patterns.
4358 The reg-notes can contain frame pointer refs,
4359 and renumbering them could crash, and should not be needed. */
4360 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4362 leaf_renumber_regs_insn (PATTERN (insn
));
4365 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4366 available in leaf functions. */
4369 leaf_renumber_regs_insn (rtx in_rtx
)
4372 const char *format_ptr
;
4377 /* Renumber all input-registers into output-registers.
4378 renumbered_regs would be 1 for an output-register;
4385 /* Don't renumber the same reg twice. */
4389 newreg
= REGNO (in_rtx
);
4390 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4391 to reach here as part of a REG_NOTE. */
4392 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4397 newreg
= LEAF_REG_REMAP (newreg
);
4398 gcc_assert (newreg
>= 0);
4399 df_set_regs_ever_live (REGNO (in_rtx
), false);
4400 df_set_regs_ever_live (newreg
, true);
4401 SET_REGNO (in_rtx
, newreg
);
4406 if (INSN_P (in_rtx
))
4408 /* Inside a SEQUENCE, we find insns.
4409 Renumber just the patterns of these insns,
4410 just as we do for the top-level insns. */
4411 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4415 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4417 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4418 switch (*format_ptr
++)
4421 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4425 if (NULL
!= XVEC (in_rtx
, i
))
4427 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4428 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4447 /* Turn the RTL into assembly. */
4449 rest_of_handle_final (void)
4451 const char *fnname
= get_fnname_from_decl (current_function_decl
);
4453 assemble_start_function (current_function_decl
, fnname
);
4454 final_start_function (get_insns (), asm_out_file
, optimize
);
4455 final (get_insns (), asm_out_file
, optimize
);
4457 collect_fn_hard_reg_usage ();
4458 final_end_function ();
4460 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4461 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4462 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4463 output_function_exception_table (fnname
);
4465 assemble_end_function (current_function_decl
, fnname
);
4467 user_defined_section_attribute
= false;
4469 /* Free up reg info memory. */
4473 fflush (asm_out_file
);
4475 /* Write DBX symbols if requested. */
4477 /* Note that for those inline functions where we don't initially
4478 know for certain that we will be generating an out-of-line copy,
4479 the first invocation of this routine (rest_of_compilation) will
4480 skip over this code by doing a `goto exit_rest_of_compilation;'.
4481 Later on, wrapup_global_declarations will (indirectly) call
4482 rest_of_compilation again for those inline functions that need
4483 to have out-of-line copies generated. During that call, we
4484 *will* be routed past here. */
4486 timevar_push (TV_SYMOUT
);
4487 if (!DECL_IGNORED_P (current_function_decl
))
4488 debug_hooks
->function_decl (current_function_decl
);
4489 timevar_pop (TV_SYMOUT
);
4491 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4492 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4494 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4495 && targetm
.have_ctors_dtors
)
4496 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4497 decl_init_priority_lookup
4498 (current_function_decl
));
4499 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4500 && targetm
.have_ctors_dtors
)
4501 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4502 decl_fini_priority_lookup
4503 (current_function_decl
));
4509 const pass_data pass_data_final
=
4511 RTL_PASS
, /* type */
4513 OPTGROUP_NONE
, /* optinfo_flags */
4514 TV_FINAL
, /* tv_id */
4515 0, /* properties_required */
4516 0, /* properties_provided */
4517 0, /* properties_destroyed */
4518 0, /* todo_flags_start */
4519 0, /* todo_flags_finish */
4522 class pass_final
: public rtl_opt_pass
4525 pass_final (gcc::context
*ctxt
)
4526 : rtl_opt_pass (pass_data_final
, ctxt
)
4529 /* opt_pass methods: */
4530 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4532 }; // class pass_final
4537 make_pass_final (gcc::context
*ctxt
)
4539 return new pass_final (ctxt
);
4544 rest_of_handle_shorten_branches (void)
4546 /* Shorten branches. */
4547 shorten_branches (get_insns ());
4553 const pass_data pass_data_shorten_branches
=
4555 RTL_PASS
, /* type */
4556 "shorten", /* name */
4557 OPTGROUP_NONE
, /* optinfo_flags */
4558 TV_SHORTEN_BRANCH
, /* tv_id */
4559 0, /* properties_required */
4560 0, /* properties_provided */
4561 0, /* properties_destroyed */
4562 0, /* todo_flags_start */
4563 0, /* todo_flags_finish */
4566 class pass_shorten_branches
: public rtl_opt_pass
4569 pass_shorten_branches (gcc::context
*ctxt
)
4570 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4573 /* opt_pass methods: */
4574 virtual unsigned int execute (function
*)
4576 return rest_of_handle_shorten_branches ();
4579 }; // class pass_shorten_branches
4584 make_pass_shorten_branches (gcc::context
*ctxt
)
4586 return new pass_shorten_branches (ctxt
);
4591 rest_of_clean_state (void)
4593 rtx_insn
*insn
, *next
;
4594 FILE *final_output
= NULL
;
4595 int save_unnumbered
= flag_dump_unnumbered
;
4596 int save_noaddr
= flag_dump_noaddr
;
4598 if (flag_dump_final_insns
)
4600 final_output
= fopen (flag_dump_final_insns
, "a");
4603 error ("could not open final insn dump file %qs: %m",
4604 flag_dump_final_insns
);
4605 flag_dump_final_insns
= NULL
;
4609 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4610 if (flag_compare_debug_opt
|| flag_compare_debug
)
4611 dump_flags
|= TDF_NOUID
;
4612 dump_function_header (final_output
, current_function_decl
,
4614 final_insns_dump_p
= true;
4616 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4618 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4622 set_block_for_insn (insn
, NULL
);
4623 INSN_UID (insn
) = 0;
4628 /* It is very important to decompose the RTL instruction chain here:
4629 debug information keeps pointing into CODE_LABEL insns inside the function
4630 body. If these remain pointing to the other insns, we end up preserving
4631 whole RTL chain and attached detailed debug info in memory. */
4632 for (insn
= get_insns (); insn
; insn
= next
)
4634 next
= NEXT_INSN (insn
);
4635 SET_NEXT_INSN (insn
) = NULL
;
4636 SET_PREV_INSN (insn
) = NULL
;
4639 && (!NOTE_P (insn
) ||
4640 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4641 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4642 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4643 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4644 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4645 print_rtl_single (final_output
, insn
);
4650 flag_dump_noaddr
= save_noaddr
;
4651 flag_dump_unnumbered
= save_unnumbered
;
4652 final_insns_dump_p
= false;
4654 if (fclose (final_output
))
4656 error ("could not close final insn dump file %qs: %m",
4657 flag_dump_final_insns
);
4658 flag_dump_final_insns
= NULL
;
4662 /* In case the function was not output,
4663 don't leave any temporary anonymous types
4664 queued up for sdb output. */
4665 #ifdef SDB_DEBUGGING_INFO
4666 if (write_symbols
== SDB_DEBUG
)
4667 sdbout_types (NULL_TREE
);
4670 flag_rerun_cse_after_global_opts
= 0;
4671 reload_completed
= 0;
4672 epilogue_completed
= 0;
4674 regstack_completed
= 0;
4677 /* Clear out the insn_length contents now that they are no
4679 init_insn_lengths ();
4681 /* Show no temporary slots allocated. */
4684 free_bb_for_insn ();
4688 /* We can reduce stack alignment on call site only when we are sure that
4689 the function body just produced will be actually used in the final
4691 if (decl_binds_to_current_def_p (current_function_decl
))
4693 unsigned int pref
= crtl
->preferred_stack_boundary
;
4694 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4695 pref
= crtl
->stack_alignment_needed
;
4696 cgraph_node::rtl_info (current_function_decl
)
4697 ->preferred_incoming_stack_boundary
= pref
;
4700 /* Make sure volatile mem refs aren't considered valid operands for
4701 arithmetic insns. We must call this here if this is a nested inline
4702 function, since the above code leaves us in the init_recog state,
4703 and the function context push/pop code does not save/restore volatile_ok.
4705 ??? Maybe it isn't necessary for expand_start_function to call this
4706 anymore if we do it here? */
4708 init_recog_no_volatile ();
4710 /* We're done with this function. Free up memory if we can. */
4711 free_after_parsing (cfun
);
4712 free_after_compilation (cfun
);
4718 const pass_data pass_data_clean_state
=
4720 RTL_PASS
, /* type */
4721 "*clean_state", /* name */
4722 OPTGROUP_NONE
, /* optinfo_flags */
4723 TV_FINAL
, /* tv_id */
4724 0, /* properties_required */
4725 0, /* properties_provided */
4726 PROP_rtl
, /* properties_destroyed */
4727 0, /* todo_flags_start */
4728 0, /* todo_flags_finish */
4731 class pass_clean_state
: public rtl_opt_pass
4734 pass_clean_state (gcc::context
*ctxt
)
4735 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4738 /* opt_pass methods: */
4739 virtual unsigned int execute (function
*)
4741 return rest_of_clean_state ();
4744 }; // class pass_clean_state
4749 make_pass_clean_state (gcc::context
*ctxt
)
4751 return new pass_clean_state (ctxt
);
4754 /* Return true if INSN is a call to the the current function. */
4757 self_recursive_call_p (rtx_insn
*insn
)
4759 tree fndecl
= get_call_fndecl (insn
);
4760 return (fndecl
== current_function_decl
4761 && decl_binds_to_current_def_p (fndecl
));
4764 /* Collect hard register usage for the current function. */
4767 collect_fn_hard_reg_usage (void)
4773 struct cgraph_rtl_info
*node
;
4774 HARD_REG_SET function_used_regs
;
4776 /* ??? To be removed when all the ports have been fixed. */
4777 if (!targetm
.call_fusage_contains_non_callee_clobbers
)
4780 CLEAR_HARD_REG_SET (function_used_regs
);
4782 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= next_insn (insn
))
4784 HARD_REG_SET insn_used_regs
;
4786 if (!NONDEBUG_INSN_P (insn
))
4790 && !self_recursive_call_p (insn
))
4792 if (!get_call_reg_set_usage (insn
, &insn_used_regs
,
4796 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4799 find_all_hard_reg_sets (insn
, &insn_used_regs
, false);
4800 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4803 /* Be conservative - mark fixed and global registers as used. */
4804 IOR_HARD_REG_SET (function_used_regs
, fixed_reg_set
);
4807 /* Handle STACK_REGS conservatively, since the df-framework does not
4808 provide accurate information for them. */
4810 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
4811 SET_HARD_REG_BIT (function_used_regs
, i
);
4814 /* The information we have gathered is only interesting if it exposes a
4815 register from the call_used_regs that is not used in this function. */
4816 if (hard_reg_set_subset_p (call_used_reg_set
, function_used_regs
))
4819 node
= cgraph_node::rtl_info (current_function_decl
);
4820 gcc_assert (node
!= NULL
);
4822 COPY_HARD_REG_SET (node
->function_used_regs
, function_used_regs
);
4823 node
->function_used_regs_valid
= 1;
4826 /* Get the declaration of the function called by INSN. */
4829 get_call_fndecl (rtx_insn
*insn
)
4833 note
= find_reg_note (insn
, REG_CALL_DECL
, NULL_RTX
);
4834 if (note
== NULL_RTX
)
4837 datum
= XEXP (note
, 0);
4838 if (datum
!= NULL_RTX
)
4839 return SYMBOL_REF_DECL (datum
);
4844 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4845 call targets that can be overwritten. */
4847 static struct cgraph_rtl_info
*
4848 get_call_cgraph_rtl_info (rtx_insn
*insn
)
4852 if (insn
== NULL_RTX
)
4855 fndecl
= get_call_fndecl (insn
);
4856 if (fndecl
== NULL_TREE
4857 || !decl_binds_to_current_def_p (fndecl
))
4860 return cgraph_node::rtl_info (fndecl
);
4863 /* Find hard registers used by function call instruction INSN, and return them
4864 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4867 get_call_reg_set_usage (rtx_insn
*insn
, HARD_REG_SET
*reg_set
,
4868 HARD_REG_SET default_set
)
4872 struct cgraph_rtl_info
*node
= get_call_cgraph_rtl_info (insn
);
4874 && node
->function_used_regs_valid
)
4876 COPY_HARD_REG_SET (*reg_set
, node
->function_used_regs
);
4877 AND_HARD_REG_SET (*reg_set
, default_set
);
4882 COPY_HARD_REG_SET (*reg_set
, default_set
);